Web User Interface Developer's Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition)
11g Release 1 (11.1.1.6.2)
E28163-02
May 2012
Documentation for developers that describes how to create web-based applications using ADF Faces components and the supporting architecture.
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition), 11g Release 1 (11.1.1.6.2)
E28163-02
Copyright © 2008, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Robin Whitmore (lead), Peter Jew, Kathryn Munn, Walter Egan, Himanshu Marathe, Ralph Gordon, Michele Whittaker, Cindy Hall
Contributing Author: Poh Lee Tan and Odile Sullivan-Tarazi
Contributors: ADF Faces development team, Frank Nimphius, Laura Akel, Katia Obradovic-Sarkic
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Web User Interface Developer's Guide for Oracle Application Development Framework (Oracle Fusion Applications Edition)!
This document is intended for developers who need to create the view layer of a web application using the rich functionality of ADF Faces components.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following related documents:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.1.6.2, this guide has been updated in several ways. The following table lists the sections that have been added or changed.	
For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the New Features page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html	
.	
Sections	Changes Made
---	---
Chapter 8 Organizing Content on Web Pages	
Section 8.8, "Displaying and Hiding Contents Dynamically"	Section revised to document using skin selectors to change indentation of child components to the
Chapter 9 Using Input Components and Defining Forms	
Section 9.3.1, "How to Add an inputText Component"	Section revised to document new
Section 9.5.1, "How to Add an inputColor Component"	Section revised to document new
Section 9.5.2, "How to Add an InputDate Component"	Section revised to document new
Chapter 24 Using ADF Graph Components	
Section 24.1, "Introduction to the Graph Component"	Section revised to document changes in graph image format behavior.
Section 24.4.3, "What You May Need to Know About Graph Image Formats"	Section revised to document changes in graph image format behavior.
Section 24.6.1, "Changing the Color, Style, and Display of Graph Data Values"	Removed obsolete procedure to set
Section 24.6.7, "Customizing Graph Legends"	Section revised to document new
Section 24.8.4, "Adding Data Marker Selection Support for Graphs"	Added section to describe how to enable graph single and multiple selection support.
Chapter 25 Using ADF Gauge Components	
Section 25.1, "Introduction to the Gauge Component"	Section revised to document changes in gauge image format behavior.
Section 25.3.4, "What You May Need to Know About Gauge Image Formats"	Section revised to document changes in gauge image format behavior.
Chapter 29 Using ADF Hierarchy Viewer Components	
Section 29.7.5, "How to Disable the Hover Detail Window"	Section revised to remove
Appendix A ADF Faces Configuration	
Section A.2.3.22, "Graph and Gauge Image Format"	Section revised to document changes in graph and gauge image format behavior.
Section A.5.1, "How to Configure for ADF Faces in adf-settings.xml"	Section revised to clarify where to create the
Appendix C Keyboard Shortcuts	
Section C.3, "Accelerator Keys"	Section revised to document shortcut key updates of Rich Text Editor.
Appendix E Troubleshooting ADF Faces	
Appendix E, "Troubleshooting ADF Faces"	New appendix added to document troubleshooting the application user interface.
This chapter introduces ADF Faces rich client, providing a history, an overview of the framework functionality, and an overview of each of the different component types found in the library. It also introduces the ADF Faces demonstration application that can be used in conjunction with this guide.	
This chapter includes the following sections:	
ADF Faces rich client (known also as ADF Faces) is a set of JavaServer Faces (JSF) components that include built-in Asynchronous JavaScript and XML (AJAX) functionality. While AJAX brings rich client-like functionality to browser-based applications, using JSF provides server-side control, which reduces the amount of JavaScript code that application developers need to write in order to implement AJAX-based applications.	
In addition to providing a rich set of JSF components, the ADF Faces rich client framework (RCF) provides a client-side programming model familiar to developers accustomed to the JSF development model. Most of the RCF differs little from any standard JSF application: the server programming model is still JavaServer Faces, and the framework still uses the JavaServer Faces lifecycle, server-side component tree, and the expression language (EL). However, the RCF also provides a client-side programming model and lifecycle that execute independently of the server. Developers can find and manipulate components from JavaScript, for example get	
and set	
properties, receive and queue events, and so forth, entirely from JavaScript. The RCF makes sure that changes to component state are automatically synchronized back to the server to ensure consistency of state, and that events are delivered, when necessary, to the server for further processing.	
Before providing more detailed information regarding ADF Faces, it may help to have a brief history of the ADF Faces library and Rich Internet Applications (RIAs) and AJAX in general.	
In the 1990s, software vendors began to see the need for Internet applications to appear and behave more like desktop applications, and so they developed RIA frameworks on which to build these applications. However, these frameworks required that users install proprietary plug-ins in order to utilize the functionality. As web standards developed, and Java web applications became more prevalent, the development community at large started to recognize the need for a standard view-layer framework. The Java Community Process (JCP) developed JSF as a user interface standard for Java web applications. From the formative years of JSR-127 in 2001, through the first release in 2004, and up to the current release, the JCP has brought together resources from the community, including Oracle, to define the JSF specification and produce a reference implementation of the specification. JSF is now part of the Java EE standard.	
With JSF being a standard for building enterprise Java view components, vendors could now develop their own components that could run on any compliant application server. These components could now be more sophisticated, allowing developers to create browser-based RIAs that behaved more like thick-client applications. To meet this need, Oracle developed a set of components called ADF Faces that could be used on any runtime implementation of JSF. ADF Faces provided a set of over 100 components with built-in functionality, such as data tables, hierarchical tables, and color and date pickers, that exceeded the functionality of the standard JSF components. To underline its commitment to the technology and the open source community, Oracle has since donated that version of the ADF Faces component library to the Apache Software Foundation, and it is now known as Apache MyFaces Trinidad. This component library is currently available through the Apache Software Foundation.	
ADF Faces not only provided a standard set of complex components, pages were now able to be partially refreshed using partial page rendering with AJAX. AJAX is a combination of asynchronous JavaScript, dynamic HTML (DHTML), XML, and the XmlHttpRequest	
communication channel, which allows requests to be made to the server without fully rerendering the page. However, pages built solely using AJAX require a large amount of JavaScript to be written by the developer.	
The latest version of ADF Faces takes full advantage of AJAX, and it also provides a fully-functioning framework, allowing developers to implement AJAX-based RIAs relatively easily with a minimal amount of hand-coded JavaScript. Using ADF Faces, you can easily build a stock trader's dashboard application that allows a stock analyst to use drag and drop to add new stock symbols to a table view, which then gets updated by the server model using an advanced push technology. To close new deals, the stock trader could navigate through the process of purchasing new stocks for a client, without having to leave the actual page. ADF Faces insulates the developer from the need to deal with the intricacies of JavaScript and the DHTML differences across browsers.	
ADF Faces rich client framework offers complete RIA functionality, including drag and drop, lightweight dialogs, a navigation and menu framework, and a complete JavaScript API. The library provides over 100 RIA components, including hierarchical data tables, tree menus, in-page dialogs, accordion panels, dividers, and sortable tables. ADF Faces also includes data visualization components, which are Flash- and SVG-enabled components capable of rendering dynamic charts, graphs, gauges, and other graphics that provide a real-time view of underlying data. Each component also offers customizing and skinning, along with support for internationalization and accessibility.	
To achieve these capabilities, ADF Faces components use a rich JSF render kit. This kit renders both HTML content as well as the corresponding client-side components. This built-in support enables you to build RIAs without needing extensive knowledge of the individual technologies.	
ADF Faces can also be used in an application that uses the Facelets library. Facelets is a JSF-centric declarative XML view definition technology that provides an alternative to using the JSP engine technology for the view. For more details about the architecture of ADF Faces, see Section 1.2, "Architecture of ADF Faces Components."	
Tip: You can use ADF Faces in conjunction with ADF Model data binding, allowing you to declaratively bind ADF Faces components to the business layer. Using ADF Model data binding, most developer tasks that would otherwise require writing code are declarative. However, this guide covers only using ADF Faces components in a standard JSF application. For more information about using ADF Faces with the ADF Model, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
In addition to an extensive library of RIA components, Oracle also offers Oracle JDeveloper, a full-featured development environment with built-in declarative support for ADF Faces components, allowing you to quickly and easily build the view layer of your web application. JDeveloper contains a visual layout editor that displays JSF pages in a WYSIWYG environment. The Component Palette in JDeveloper holds visual representations of each of the ADF Faces components, which allows you to drag and drop a component onto a page in the visual editor, instead of having to manually add tag syntax to a page. You can use JDeveloper throughout the complete development lifecycle, as it has integrated features for modeling, coding, debugging, testing, tuning, and deploying. For more information about using JDeveloper, see Chapter 2, "Getting Started with ADF Faces."	
Unlike frameworks where most of the application logic resides on the client, with ADF Faces application logic resides mostly on the server, executing in the JSF lifecycle. The Java data model also remains on the server: the ADF Faces framework performs initial rendering of its components on the server, generating HTML content that is consumed directly by browsers. Rendering HTML on the server means that there is less client-side rendering overhead, which is helpful for complex components.	
Note: Because ADF Faces adheres to the standards of the JSF technology, this guide is mostly concerned with content that is in addition to, or different from, JSF standards. Therefore, it is recommended that you have a basic understanding of how JSF works before beginning to develop with ADF Faces. To learn more about JSF, visit the Java web site at	
JavaScript performance can suffer when too many objects are created. To improve performance, the RCF minimizes the number of component objects present on the client, and the number of attributes sent to the client. The framework also has the JavaScript files that make up the components housed in configurable partitions, allowing your application to load only the required JavaScript.	
In JSF, as in most component-based frameworks, an intrinsic property of the component model is that components can be nested to form a hierarchy, typically known as the component tree. This simply means that parent components keep track of their children, making it possible to walk over the component tree to find all descendents of any given component. While the full component tree still exists on the server, the ADF Faces client-side component tree is sparsely populated. Client-side components primarily exist to add behavior to the page by exposing an API contract for both application developers as well as for the framework itself. It is this contract that allows, among other things, toggling the enabled state of a button on the client. Therefore, client-side components are created only for those components that are truly needed on the client, typically those that have been explicitly configured to have client representation.	
It is also possible for JavaScript components to be present that do not correspond to any existing server-side component. For example, some ADF Faces components have client-side behavior that requires popup content. These components may create AdfRichPopup	
JavaScript components, even though no Java RichPopup	
component may exist.	
The JavaScript class that you will interact with most is AdfUIComponent	
and its subclasses. An instance of this class is the client-side representation of a server-side component. Each client component has a set of properties (key/value pairs) and a list of listeners for each supported event type. All RCF JavaScript classes are prefixed with Adf	
to avoid naming conflicts with other JavaScript libraries. For example, RichCommandButton	
has AdfRichCommandButton	
, RichDocument	
has AdfRichDocument	
, and so on.	
While the Java UIComponent	
object represents the state of the component, and this object is what you interact with to register listeners and set properties, the Renderer	
handles producing HTML and receiving postbacks on behalf of the component. In the RCF client-side JavaScript layer, client-side components have no direct interaction with the document object model (DOM) whatsoever. All DOM interaction goes through an intermediary called the peer. Peers interact with the DOM generated by the Java renderer and handle updating that state and responding to user interactions.	
Peers have a number of other responsibilities, including:	
Geometry management	
A common issue with JavaScript-heavy frameworks is determining how best to deliver a large JavaScript code base to the client. On one extreme, bundling all code into a single JavaScript library can result in a long download time. On the other extreme, breaking up JavaScript code into many small JavaScript libraries can result in a large number of roundtrips. Both approaches can result in the end user waiting unnecessarily long for the initial page to load.	
To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A JavaScript library partition contains code for components and/or features that are commonly used together. By default, ADF Faces provides a partitioning that is intended to provide a balance between total download size and total number of roundtrips.	
One benefit of ADF Faces's library partitioning strategy is that it is configurable. Because different applications make use of different components and features, the default partitioning provided by ADF Faces may not be ideal for all applications. As such, ADF Faces allows the JavaScript library partitioning to be customized on a per-application basis. This partitioning allows application developers to tune the JavaScript library footprint to meet the needs of their application. For more information about configuring JavaScript partitioning, see Section A.9, "Using JavaScript Library Partitioning."	
The RCF enables many architectural features that can be used throughout your application. For example, because processing can be done on the client, small amounts of data can be exchanged with the server without requiring the whole page to be rendered. This is referred to as partial page rendering (PPR). Many ADF Faces components have PPR functionality implemented natively. For example, the ADF Faces table component comes with built-in AJAX-style functionality that lets you scroll through the table, sort the table by clicking a column header, mark a row or several rows for selection, and even expand specific rows in the table, all without requiring a roundtrip to the server, and with no coding needed. For more information, see Chapter 7, "Rerendering Partial Page Content."	
The RCF also adds functionality to the standard JSF lifecycle. Examples include a client-side value lifecycle, a subform component that allows you to create independent submittable regions on a page without the drawbacks of using multiple forms on a single page, and an optimized lifecycle that can limit the parts of the page submitted for processing. For more information, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."	
The RCF uses the standard JSF event framework. However, events in the RCF have been abstracted from the standard JavaScript DOM event model. Though the events share some of the same abstractions found in the DOM event model, they also add functionality. Consequently, you need not listen for click events on buttons, for example. You can instead listen for AdfActionEvent	
events, which may or may not have been caused by key or mouse events. RCF events can be configured to either deliver or not deliver the event to the server. For more information, see Chapter 5, "Handling Events."	
ADF Faces input components have built-in validation capabilities. You set one or more validators on a component by either setting the required	
attribute or by using the prebuilt ADF Faces validators. In addition, you can create your own custom validators to suit your business needs.	
ADF Faces input components also have built-in conversion capabilities, which allow users to enter information as a string and the application can automatically convert the string to another data type, such as a date. Conversely, data stored as something other than a string can be converted to a string for display and updating. Many components, such as the inputDate	
component, automatically provide this capability. For more information, see Chapter 6, "Validating and Converting Input."	
In addition to these architectural features, the RCF also supports the following:	
ADF Faces components generally fall into two categories. Layout components are those that are used to organize the contents of the page. Along with components that act as containers to determine the layout of the page, ADF Faces layout components also include interactive container components that can show or hide content, or that provide sections, lists, or empty spaces. Certain layout components support geometry management, that is, the process by which the size and location of components appear on a page. The RCF notifies these components of browser resize activity, and they in turn are able to resize their children. This allows certain components to stretch or shrink, filling up any available browser space. JDeveloper provides prebuilt quick-start layouts that declaratively add layout components to your page based on how you want the page to look. For more information about layout components and geometry management, see Chapter 8, "Organizing Content on Web Pages."	
The remaining components are considered to be in the common category, and are divided into the following subcategories:	
Query	
component can support multiple search criteria, dynamically adding and deleting criteria, selectable search operators, match all/any selections, seeded or saved searches, a basic or advanced mode, and personalization of searches. The QuickQuery	
component is a simplified version of the Query	
component that allows a search on a single item (criterion). For more information, see Chapter 12, "Using Query Components." carousel	
output component that can display graphics in a revolving carousel. For more information, see Chapter 16, "Using Output Components." ADF Faces includes a demonstration application that allows you both to experiment with running samples of the components and architecture features, and view the source code.	
In order to view the demo application (both the code and at runtime), install JDeveloper, and then download and open the application within JDeveloper.	
You can download the ADF Faces demo application from the Oracle Technology Network (OTN) web site. Navigate to	
and click the link for installing the ADF Faces Rich Client demo. The resulting page provides detailed instructions for downloading the WAR file that contains the application, along with instructions for deploying the application to a standalone server, or for running the application using the Integrated WebLogic Server included with JDeveloper.	
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html	
If you do not want to install the application, you can run the application directly from OTN by clicking the ADF Faces Rich Client Components Hosted Demo link.	
The demo application contains the following:	
selectManyCheckbox	
component. Each demo provides a link to the associated tag documentation. inputNumberSpinbox	
component. Other pages demonstrate the main architectural features of ADF Faces, such as layout components, AJAX postback functionality, and drag and drop. Figure 1-4 shows the demonstration on using the AutoSubmit	
attribute and validation.	
panelBox	
component. Because the File Explorer is a complete working application, many sections in this guide use that application to illustrate key points, or to provide code samples. The source for the File Explorer application can be found in the fileExplorer	
directory.	
The File Explorer application uses the fileExplorerTemplate	
page template. This template contains a number of layout components that provide the basic look and feel for the application. For more information about layout components, see Chapter 8, "Organizing Content on Web Pages." For more information about using templates, see Chapter 19, "Creating and Reusing Fragments, Page Templates, and Components."	
The left-hand side of the application contains a panelAccordion	
component that holds two areas: the directory structure and a search field with a results table, as shown in Figure 1-8.	
You can expand and collapse both these areas. The directory structure is created using a tree	
component. The search area is created using input components, a command button, and a table	
component. For more information about using panelAccordion	
components, see Section 8.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels." For more information about using input components, see Chapter 9, "Using Input Components and Defining Forms." For more information about using command buttons, see Chapter 18, "Working with Navigation Components." For more information about using tables and trees, see Chapter 10, "Using Tables and Trees."	
The right-hand side of the File Explorer application uses tabbed panes to display the contents of a directory in either a table, a tree table or a list, as shown in Figure 1-9.	
The table and tree table have built-in toolbars that allow you to manipulate how the contents are displayed. In the table an list, you can drag a file or subdirectory from one directory and drop it into another. In all tabs, you can right-click a file, and from the context menu, you can view the properties of the file in a popup window. For more information about using tabbed panes, see Section 8.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels." For more information about table and tree table toolbars, see Section 10.8, "Displaying Table Menus, Toolbars, and Status Bars." For more information about enabling drag and drop, see Chapter 32, "Adding Drag and Drop Functionality." For more information about using context menus and popup windows, see Chapter 13, "Using Popup Dialogs, Menus, and Windows."	
The top of the File Explorer application contains a menu and a toolbar, as shown in Figure 1-10.	
The menu options allow you to create and delete files and directories and change how the contents are displayed. The Help menu opens a help system that allows users to provide feedback in dialogs, as shown in Figure 1-11.	
The help system consists of a number of forms created with various input components, including a rich text editor. For more information about menus, see Section 14.2, "Using Menus in a Menu Bar." For more information about creating help systems, see Section 17.5, "Displaying Help for Components." For more information about input components, see Chapter 9, "Using Input Components and Defining Forms."	
Within the toolbar of the File Explorer are controls that allow you navigate within the directory structure, as well as controls that allow you to change the look and feel of the application by changing its skin. Figure 1-12 shows the File Explorer application using the simple skin.	
For more information about toolbars, see Section 14.3, "Using Toolbars." For more information about using skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."	
All the source files for the ADF Faces demo application are contained in one project (you give this project a name when you create it during installation). The project is divided into two directories: Application Sources and Web Content. Application Sources contains the oracle.adfdemo.view package	
, which in turn contains packages that hold managed beans that provide functionality throughout the application.	
Tip: The managed beans for the component demos are in the	
The Web Content directory contains all the web resources used by the application, including JSPX files, JavaScript libraries, images, configuration files, and so on.	
Tip: The	
This chapter describes how to use JDeveloper to declaratively create ADF Faces applications.	
This chapter includes the following sections:	
Using JDeveloper 11g with ADF Faces and JSF provides a number of areas where page and managed bean code is generated for you declaratively, including creating EL expressions and automatic component binding. Additionally, there are a number of areas where XML metadata is generated for you declaratively, including metadata that controls navigation and configuration.	
At a high level, the development process for an ADF Faces view project usually involves the following:	
Ongoing tasks throughout the development cycle will probably include the following:	
JDeveloper also includes debugging and testing capabilities. For more information, see the "Testing and Debugging ADF Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The first steps in building a new application are to assign it a name and to specify the directory where its source files will be saved. By creating an application using application templates provided by JDeveloper, you automatically get the organization of your workspace into projects, along with many of the configuration files and libraries required by the type of application you are creating.	
You create an application workspace using the Create Application wizard.	
To create an application:	
The New Gallery opens, where you can select different application components to create.	
This template provides the building blocks you need to create a web application that uses JSF for the view and Enterprise JavaBean (EJB) session beans and Java Persistence API (JPA) entities for business services. All the files and directories for the business layer of your application will be stored in a project that by default is named Model	
. All the files and directories for your view layer will be stored in a project that by default is named ViewController	
.	
Note: This document covers only how to create the ADF Faces project in an application, without regard to the business services used or the binding to those services. For information about how to use ADF Faces with the ADF Model layer, the ADF Controller, and ADF Business Components, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about using ADF Faces with the ADF Model layer and EJBs and JPA, see Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.	
When you create an application workspace using the Java EE Web Application template, JDeveloper creates a project named Model	
that will contain all the source files related to the business services in your application. JDeveloper automatically adds the libraries needed for your EJB project. For example, if you kept the default EJB settings, JDeveloper adds the EJB 3.0 library.	
JDeveloper also creates a project named ViewController	
that will contain all the source files for your ADF Faces view layer. JDeveloper automatically creates the JSF and ADF configuration files needed for the application. Additionally, JDeveloper adds the following libraries to your view project:	
The ADF Faces and other runtime libraries are added when you create a JSF page in your project.	
Once the projects are created for you, you can rename them. Figure 2-1 shows the workspace for a new Java EE Web application.	
JDeveloper also sets configuration parameters in the configuration files based on the options chosen when you created the application. In the web.xml	
file, these are configurations needed to run a JSF application (settings specific to ADF Faces are added when you create a JSF page with ADF Faces components). Example 2-1 shows the web.xml	
file generated by JDeveloper when you create a new Java EE application.	
Example 2-1 Generated web.xml File	
Configurations required for specific ADF Faces features are covered in the respective chapters of this guide. For example, any configuration needed in order to use the Change Persistence framework is covered in Chapter 31, "Allowing User Customization on JSF Pages." For comprehensive information about configuring an ADF Faces application, see Appendix A, "ADF Faces Configuration."	
Once you create your application workspace, often the next step is to design the flow of your UI. As with standard JSF applications, ADF Faces applications use navigation cases and rules to define the page flow. These definitions are stored in the faces-config.xml	
file. JDeveloper provides a diagrammer through which you can declaratively define your page flow using icons.	
Figure 2-2 shows the navigation diagram created for a simple page flow that contains two pages: a DisplayCustomer	
page that shows data for a specific customer, and an EditCustomer	
page that allows a user to edit the customer information. There is one navigation rule that goes from the display page to the edit page and one navigation rule that returns to the display page from the edit page.	
Note: If you plan on using ADF Model data binding and the ADF Controller, then instead of using standard JSF navigation rules, you use task flows. For more information, see the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Best Practice: The ADF Controller extends the JSF default controller. While you can technically use the JSF controller and ADF Controller in your application, you should use only one or the other.	
For more information on how navigation works in a JSF application, see the Java EE 5 tutorial at http://www.oracle.com/technetwork/java/index.html	
.	
You use the navigation diagrammer to declaratively create a page flow using JSP or JSPX pages. When you use the diagrammer, JDeveloper creates the XML metadata needed for navigation to work in your application in the faces-config.xml	
file.	
Note: The diagrammer supports only pages created as JSP and JSPX files. If you need to create navigation for XHTML pages, you must code the XML manually.	
To create a page flow:	
faces-config.xml	
file for your application. By default, this is in the Web Content/WEB-INF node. The components are contained in two accordion panels: Components and Diagram Annotations. Figure 2-3 shows the Component Palette displaying JSF navigation components.	
JDeveloper redraws the diagram with the newly added component.	
Tip: You can also use the overview editor to create navigation rules and navigation cases by clicking the Overview tab. Press F1 for details on using the overview editor to create navigation. Additionally, you can manually add elements to the	
Once the navigation for your application is defined, you can create the pages and add the components that will execute the navigation. For more information about using navigation components on a page, see Chapter 18, "Working with Navigation Components."	
When you use the diagrammer to create a page flow, JDeveloper creates the associated XML entries in the faces-config.xml	
file. Example 2-2 shows the XML generated for the navigation rules displayed in Figure 2-2.	
Example 2-2 Navigation Rules in faces-config.xml	
From the page flows you created during the planning stages, you can double-click the page icons to create the actual JSP files. When you create a JSP for an ADF Faces application, you can choose to create an XML-based JSP document (which uses the extension *.jspx	
) rather than a *.jsp	
file.	
Best Practice: Using an XML-based document has the following advantages:	
If you want to use Facelets instead of JSP in your application, you can instead create XHTML files. Facelets is a JSF-centric declarative XML view definition technology that provides an alternative to using the JSP engine.	
Best Practice: Use Facelets to take advantage of the following:	
ADF Faces provides a number of components that you can use to define the overall layout of a page. JDeveloper contains predefined quick start layouts that use these components to provide you with a quick and easy way to correctly build the layout. You can choose from one, two, or three column layouts, and then determine how you want the columns to behave. For example, you may want one column's width to be locked, while another column stretches to fill available browser space. Figure 2-4 shows the quick start layouts available for a two-column layout with the second column split between two panes. For more information about the layout components, see Chapter 8, "Organizing Content on Web Pages."	
Along with adding layout components, you can also choose to apply a theme to the chosen quick layout. These themes add color styling to some of the components used in the quick start layout. To see the color and where it is added, see Appendix F, "Quick Start Layout Themes." For more information about themes, see Section 20.3.4, "How to Apply Themes to Components."	
When you know you want to use the same layout on many pages in your application, ADF Faces allows you to create and use predefined page templates. When creating templates, the template developer can not only determine the layout of any page that will use the template (either by selecting a quick layout design, as shown in Figure 2-4, or by building it manually) but can also provide static content that must appear on all pages, as well as create placeholder attributes that can be replaced with valid values for each individual page. For example, ADF Faces ships with the Oracle Three-Column-Layout template. This template provides areas for specific content, such as branding, a header, and copyright information, and also displays a static logo and busy icon, as shown in Figure 2-5.	
Whenever a template is changed, for example if the layout changes, any page that uses the template will also be automatically updated. For more information about creating and using templates, see Section 19.3, "Using Page Templates."	
At the time you create a JSF page, you can also choose to create an associated backing bean for the page. Backing beans allow you to access the components on the page programmatically. For more information about using backing beans with JSF JSP pages, see Section 2.4.3, "What You May Need to Know About Automatic Component Binding."	
Best Practice: Create backing beans only for pages that contain components that must be accessed and manipulated programmatically. Use managed beans instead if you need only to provide additional functionality accessed through EL expressions on component attributes (such as listeners).	
You can also choose to have your page available for display in mobile devices. Once your page files are created, you can add UI components and work with the page source.	
You create JSF JSP pages using the Create JSF Page dialog.	
To create a JSF JSP page:	
OR	
From a navigation diagram, double-click a page icon for a page that has not yet been created.	
When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates the physical file and adds the code necessary to import the component libraries and display a page. The code created depends on whether or not you chose to create a .jspx	
document. Example 2-3 shows a .jspx	
page when it is first created by JDeveloper.	
Example 2-3 Declarative Page Source Created by JDeveloper	
If you chose to use one of the quick layouts, then JDeveloper also adds the components necessary to display the layout. Example 2-4 shows the generated code when you choose a two-column layout, where the first column is locked and the second column stretches to fill up available browser space, and you also choose to apply themes.	
Example 2-4 Two-Column Layout	
If you chose to automatically create a backing bean using the Page Implementation section of the dialog, JDeveloper also creates and registers a backing bean for the page, and binds any existing components to the bean. Example 2-5 shows the code created for a backing bean for a page.	
Example 2-5 Declarative Backing Bean Source Created by JDeveloper	
Tip: You can access the backing bean source from the JSF page by right-clicking the page in the editor, and choosing Go to and then selecting the bean from the list.	
Additionally, JDeveloper adds the following libraries to the view project:	
JDeveloper also adds entries to the web.xml	
file, as shown in Example 2-6.	
Example 2-6 Code in the web.xml File After a JSF JSP Page is Created	
In the faces-config.xml	
file, when you create a JSF JSP page, JDeveloper creates an entry that defines the default render kit (used to display the components in an HTML client) for ADF Faces, as shown in Example 2-7.	
Example 2-7 Generated faces-config.xml File	
An entry in the trinidad-config.xml	
file defines the default skin used by the user interface (UI) components in the application, as shown in Example 2-8.	
Example 2-8 Generated trinidad-config.xml File	
When the page is first displayed in JDeveloper, it is displayed in the visual editor (accessed by clicking the Design tab), which allows you to view the page in a WYSIWYG environment. You can also view the source for the page in the source editor by clicking the Source tab. The Structure window located in the lower left-hand corner of JDeveloper, provides a hierarchical view of the page.	
Backing beans are managed beans that contain logic and properties for UI components on a JSF page (for more information about managed beans, see Section 2.6, "Creating and Using Managed Beans"). If when you create your JSF JSP page you choose to automatically expose UI components by selecting one of the choices in the Page Implementation option of the Create JSF Page dialog, JDeveloper automatically creates a backing bean (or uses a managed bean of your choice) for the page. For each component you add to the page, JDeveloper then inserts a bean property for that component, and uses the binding	
attribute to bind component instances to those properties, allowing the bean to accept and return component instances.	
Specifically, JDeveloper does the following when you use automatic component binding:	
view.backing	
package (if you elect to have JDeveloper create a backing bean). faces-config.xml	
file for the backing bean. By default, the managed bean name is backing_<page_name>	
and the bean uses the request	
scope (for more information about scopes, see Section 4.6, "Object Scope Lifecycles"). Note: JDeveloper does not create managed bean property entries in the	
Once the JSP is created and components added, you can then declaratively add method binding expressions to components that use them by double-clicking the component in the visual editor, which launches an editor that allows you to select the managed bean and method to which you want to bind the attribute. When automatic component binding is used on a JSP and you double-click the component, skeleton methods to which the component may be bound are automatically created for you in the page's backing bean. For example, if you add a command button component and then double-click it in the visual editor, the Bind Action Property dialog displays the page's backing bean along with a new skeleton action method, as shown in Figure 2-6.	
You can select from one these methods, or if you enter a new method name, JDeveloper automatically creates the new skeleton method in the page's backing bean. You must then add the logic to the method.	
Note: When automatic component binding is not used on a JSP, you must select an existing managed bean or create a new backing bean to create the binding.	
For example, suppose you created a JSP with the file name myfile.jspx	
. If you chose to let JDeveloper automatically create a default backing bean, then JDeveloper creates the backing bean as view.backing.MyFile.java	
, and places it in the \src	
directory of the ViewController	
project. The backing bean is configured as a managed bean in the faces-config.xml	
file, and the default managed bean name is backing_myfile	
.	
Example 2-9 shows the code on a JSP that uses automatic component binding, and contains form	
, inputText	
, and commandButton	
components.	
Example 2-9 JSF Page Code with Automatic Component Binding	
Example 2-10 shows the corresponding code on the backing bean.	
Example 2-10 Backing Bean Code Using Automatic Component Binding	
Example 2-11 shows the code added to the faces-config.xml	
file to register the page's backing bean as a managed bean.	
Example 2-11 Registration for a Backing Bean	
In addition, when you edit a Java file that is a backing bean for a JSP, a method binding toolbar appears in the source editor for you to bind appropriate methods quickly and easily to selected components in the page. When you select an event, JDeveloper creates the skeleton method for the event, as shown in Figure 2-7.	
Once you create a page, you can turn automatic component binding off or on, and you can also change the backing bean to a different Java class. Open the JSP in the visual Editor and from the JDeveloper menu, choose Design > Page Properties. Here you can select or deselect the Auto Bind option, and change the managed bean class. Click Help for more information about using the dialog.	
Note: If you turn automatic binding off, nothing changes in the binding attributes of existing bound components in the page. If you turn automatic binding on, all existing bound components and any new components that you insert are bound to the selected managed bean. If automatic binding is on and you change the managed bean selection, all existing bindings and new bindings are switched to the new bean.	
You can always access the backing bean for a JSP from the page editor by right-clicking the page, choosing Go to, and then choosing the bean from the list of beans associated with the JSP.	
You use the Create Facelets Page dialog to create the XHTML file.	
To create an XHTML page:	
Tip: Click the All Technologies tab in the New Gallery if Facelets is not a listed technology.	
When you use the Create Facelets Page dialog to create an XHTML page, JDeveloper creates the physical file and adds the code necessary to import the component libraries and display a page. Example 2-3 shows an .xthml	
page when it is first created by JDeveloper.	
Example 2-12 Declarative Page Source Created by JDeveloper	
Additionally, JDeveloper adds the following libraries to the view project:	
JDeveloper also adds entries to the web.xml	
file, as shown in Example 2-13.	
Example 2-13 Code in the web.xml File After a JSF XHTML Page is Created	
An entry is also created in the faces-config.xml	
file for the view handler, as shown in Example 2-14.	
Example 2-14 Generated faces-config.xml File for an XHTML Page	
An entry in the trinidad-config.xml	
file defines the default skin used by the user interface (UI) components in the application, as shown in Example 2-15.	
Example 2-15 Generated trinidad-config.xml File	
When the page is first displayed in JDeveloper, it is displayed in the visual editor (accessed by clicking the Design tab), which allows you to view the page in a WYSIWYG environment. You can also view the source for the page in the source editor by clicking the Source tab. The Structure window located in the lower left-hand corner of JDeveloper, provides a hierarchical view of the page.	
Once you have created a page, you can use the Component Palette to drag and drop components onto the page. JDeveloper then declaratively adds the necessary page code and sets certain values for component attributes.	
Tip: For detailed procedures and information about adding and using specific ADF Faces components, see Part III, "Using ADF Faces Components".	
Note: You cannot use ADF Faces components on the same page as MyFaces Trinidad components (Note that your application may contain a mix of pages built using either ADF Faces or other components.	
To add ADF Faces components to a page:	
The components are contained in three accordion panels: Common Components, Layout, and Operations. Figure 2-8 shows the Component Palette displaying the Common Components for ADF Faces.	
JDeveloper redraws the page in the visual editor with the newly added component. In the visual editor, you can directly select components on the page and use the resulting context menu to add more components. Figure 2-9 shows a page in the visual editor.	
Tip: You can also drag and drop components from the palette into the Structure window or directly into the code in the source editor. You can always add components by directly editing the page in the source editor. To view the page in the source editor, click the Source tab at the bottom of the window.	
When you drag and drop components from the Component Palette onto a JSF page, JDeveloper adds the corresponding code to the JSF page. This code includes the tag necessary to render the component, as well as values for some of the component attributes. Example 2-16 shows the code when you drop an Input Text and a Button component from the palette.	
Example 2-16 JDeveloper Declaratively Adds Tags to a JSF Page	
Note: If you chose to use automatic component binding, then JDeveloper also adds the	
When you drop a component that contains mandatory child components (for example a table or a list), JDeveloper launches a wizard where you define the parent and also each of the child components. Figure 2-10 shows the Table wizard used to create a table component and the table's child column components.	
Example 2-17 shows the code created when you use the wizard to create a table with three columns, each of which uses an outputText	
component to display data.	
Example 2-17 Declarative Code for a Table Component	
Once you drop components onto a page you can use the Property Inspector (displayed by default at the bottom right of JDeveloper) to set attribute values for each component.	
Tip: If the Property Inspector is not displayed, choose View > Property Inspector from the main menu.	
Figure 2-11 shows the Property Inspector displaying the attributes for an inputText	
component.	
The Property Inspector has sections that group similar properties together. For example, the Property Inspector groups commonly used attributes for the inputText	
component in the Common section, while properties that affect how the component behaves are grouped together in the Behavior section. Figure 2-12 shows the Behavior section of the Property Inspector for an inputText	
component.	
To set component attributes:	
Tip: Some attributes are displayed in more than one section. Entering or changing the value in one section will also change it in any other sections. You can search for an attribute by entering the attribute name in the search field at the top of the inspector.	
When you use the Property Inspector to set or change attribute values, JDeveloper automatically changes the page source for the attribute to match the entered value.	
Tip: You can always change attribute values by directly editing the page in the source editor. To view the page in the source editor, click the Source tab at the bottom of the window.	
You use EL expressions throughout an ADF Faces application to bind attributes to object values determined at runtime. For example, #{UserList.selectedUsers}	
might reference a set of selected users, #{user.name}	
might reference a particular user's name, while #{user.role == 'manager'}	
would evaluate whether a user is a manager or not. At runtime, a generic expression evaluator returns the List	
, String	
, and boolean	
values of these respective expressions, automating access to the individual objects and their properties without requiring code.	
At runtime, the value of certain JSF UI components (such as an inputText	
component or an outputText	
component) is determined by its value	
attribute. While a component can have static text as its value, typically the value	
attribute will contain an EL expression that the runtime infrastructure evaluates to determine what data to display. For example, an outputText	
component that displays the name of the currently logged-in user might have its value	
attribute set to the expression #{UserInfo.name}	
. Since any attribute of a component (and not just the value	
attribute) can be assigned a value using an EL expression, it's easy to build dynamic, data-driven user interfaces. For example, you could hide a component when a set of objects you need to display is empty by using a boolean-valued expression like #{not empty UserList.selectedUsers}	
in the UI component's rendered	
attribute. If the list of selected users in the object named UserList	
is empty, the rendered	
attribute evaluates to false	
and the component disappears from the page.	
In a typical JSF application, you would create objects like UserList	
as a managed bean. The JSF runtime manages instantiating these beans on demand when any EL expression references them for the first time. When displaying a value, the runtime evaluates the EL expression and pulls the value from the managed bean to populate the component with data when the page is displayed. If the user updates data in the UI component, the JSF runtime pushes the value back into the corresponding managed bean based on the same EL expression. For more information about creating and using managed beans, see Section 2.6, "Creating and Using Managed Beans." For more information about EL expressions, see the Java EE 5 tutorial at http://www.oracle.com/technetwork/java/index.html	
.	
You can create EL expressions declaratively using the JDeveloper Expression Builder. You can access the builder from the Property Inspector.	
To use the Expression Builder:	
To narrow down the tree, you can either use the dropdown filter or enter search criteria in the search field. The EL accessible objects exposed by ADF Faces are located under the adfFacesContext node, which is under the JSF Managed Beans node, as shown in Figure 2-14.	
Selecting an item in the tree causes it to be moved to the Expression box within an EL expression. You can also type the expression directly in the Expression box.	
Figure 2-15 shows the Expression Builder dialog being used to create an expression that binds to the value of a label for a component to the label	
property of the explorer	
managed bean.	
While JDeveloper creates many needed EL expressions for you, and you can use the Expression Builder to create those not built for you, there may be times when you need to access, set, or invoke EL expressions within a managed bean.	
Example 2-18 shows how you can get a reference to an EL expression and return (or create) the matching object.	
Example 2-18 Resolving an EL Expression from a Managed Bean	
Example 2-19 shows how you can resolve a method expression.	
Example 2-19 Resolving a Method Expression from a Managed Bean	
Example 2-20 shows how you can set a new object on a managed bean.	
Example 2-20 Setting a New Object on a Managed Bean	
Managed beans are Java classes that you register with the application using various configuration files. When the JSF application starts up, it parses these configuration files and the beans are made available and can be referenced in an EL expression, allowing access to the beans' properties and methods. Whenever a managed bean is referenced for the first time and it does not already exist, the Managed Bean Creation Facility instantiates the bean by calling the default constructor method on the bean. If any properties are also declared, they are populated with the declared default values.	
Often, managed beans handle events or some manipulation of data that is best handled at the front end. For a more complete description of how managed beans are used in a standard JSF application, see the Java EE 5 tutorial at http://www.oracle.com/technetwork/java/index.html	
.	
Best Practice: Use managed beans to store only bookkeeping information, for example the current user. All application data and processing should be handled by logic in the business layer of the application.	
In a standard JSF application, managed beans are registered in the faces-config.xml	
configuration file.	
Note: If you plan on using ADF Model data binding and ADF Controller, then instead of registering managed beans in the	
You can create a managed bean and register it with the JSF application at the same time using the overview editor for the faces-config.xml	
file.	
To create and register a managed bean:	
faces-config.xml	
file. Figure 2-16 shows the editor for the faces-config.xml	
file used by the ADF Faces demo that contains the File Explorer application.	
Note: When determining what scope to register a managed bean with or to store a value in, keep the following in mind:	
For more information about the different object scopes, see Section 4.6, "Object Scope Lifecycles."	
Note: While you can declare managed properties using this editor, the corresponding code is not generated on the Java class. You must add that code by creating private member fields of the appropriate type, and then by choosing the Generate Accessors menu item on the context menu of the code editor to generate the corresponding	
When you create a managed bean and elect to generate the Java file, JDeveloper creates a stub class with the given name and a default constructor. Example 2-21 shows the code added to the MyBean	
class stored in the view package.	
Example 2-21 Generated Code for a Managed Bean	
You now must add the logic required by your page. You can then refer to that logic using an EL expression that refers to the managed-bean-name	
given to the managed bean. For example, to access the myInfo	
property on the my_bean	
managed bean, the EL expression would be:	
JDeveloper also adds a managed-bean	
element to the faces-config.xml	
file. Example 2-22 shows the managed-bean	
element created for the MyBean	
class.	
To avoid issues with managed beans, if your bean needs to use component binding (through the binding	
attribute on the component), you must store the bean in request	
scope. (If your application uses the Fusion technology stack, then you must store it in backingBean	
scope. For more information, see the "Using a Managed Bean in a Fusion Web Application" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.) However, there may be circumstances where you can't store the bean in request	
or backingBean	
scope. For example, there may be managed beans that are stored in session	
scope so that they can be deployed in a clustered environment, and therefore must implement the Serializable interface. When they are serializable, managed beans that change during a request can be distributed to other servers for fail-over. However, ADF Faces components (and JSF components in general) are not serializable. So if a serialized managed bean attempts to access a component using component binding, the bean will fail serialization because the referenced component cannot be serialized. There are also thread safety issues with components bound to serialized managed beans because ADF Faces components are not thread safe.	
When you need to store a component reference to a UI component instance in a backing bean that is not using request	
or backingBean	
scope, you should store a reference to the component instance using the Trinidad ComponentReference	
API. The UIComponentReference.newUIComponentReference()	
method creates a serializable reference object that can be used to retrieve a UIComponent	
instance on the current page. Example 2-23 shows how a managed bean might use the UIComponentReference	
API to get and set values for a search field.	
Example 2-23 Session Scoped Managed Bean Uses the UIComponentReference API	
Keep the following in mind when using the UIComponentReference	
API:	
For more information about the UIComponentReference	
API, see the Trinidad JavaDoc.	
You can view the ADF Faces Javadoc directly from JDeveloper.	
To view Javadoc for a class:	
oracle.adf.view.rich	
package. Tip: When in a Java class file, you can go directly to the Javadoc for a class name reference or for a JavaScript function call by placing your cursor on the name or function and pressing Ctrl+D.	
This chapter outlines the major features of the ADF Faces client-side architecture.	
This chapter includes the following sections:	
The ADF Faces rich client framework (RCF) provides many of the features you need to create AJAX-type functionality in your web application, all built into the framework. A key aspect of the RCF is the sparsely populated client-side component model. Client components exist only when they are required, either due to having a clientListener	
handler registered on them, or because the page developer needs to interact with a component on the client side and has specifically configured the client component to be available.	
The main reason client components exist is to provide an API contract for the framework and for developers. You can think of a client-side component as a simple property container with support for event handling. Because client components exist only to store state and provide an API, they have no direct interaction with the DOM (document object model) whatsoever. All DOM interaction goes through an intermediary called the peer. Most of the inner workings of the framework are hidden from you. Using JDeveloper in conjunction with ADF Faces, you can use many of the architectural features declaratively, without having to create any code.	
For example, because RCF does not create client components for every server-side component, there may be cases where you need a client version of a component instance. Section 3.4, "Instantiating Client-Side Components," explains how to do this declaratively. You use the Property Inspector in JDeveloper to set properties that determine whether a component should be rendered at all, or simply be made not visible, as described in Section 3.9, "Understanding Rendering and Visibility."	
Other functionality may require you to use the ADF Faces JavaScript API. For example, Section 3.5, "Locating a Client Component on a Page," explains how to use the API to locate a specific client-side component, and Section 3.7, "Accessing Component Properties on the Client," documents how to access specific properties.	
The following RCF features are more complex, and therefore have full chapters devoted to them:	
panelSplitter	
, allow users to change the display of the component at runtime. By default, these changes live only as long as the page request. However, you can configure your application so that the changes can be persisted through the length of the user's session. For more information, see Chapter 31, "Allowing User Customization on JSF Pages." The remainder of this chapter focuses on working with the client-side framework.	
In a traditional JSF application, if you want to process events on the client, you must listen to DOM-level events. However, these events are not delivered in a portable manner. The ADF Faces client-side event model is similar to the JSF events model, but implemented on the client. The client-side event model abstracts from the DOM, providing a component-level event model and lifecycle, which executes independently of the server. Consequently, you do not need to listen for click	
events on buttons. You can instead listen for AdfActionEvent	
events, which can be caused by key or mouse events.	
Events sent by clients are all subclasses of the AdfBaseEvent	
class. Each client event has a source, which is the component that triggered the event. Events also have a type (for example, action	
or dialog	
), used to determine which listeners are interested in the event. You register a client listener on the component using the af:clientListener	
tag.	
For example, suppose you have a button that, when clicked, causes a "Hello World" alert to be displayed. You would first register a listener with the button that will invoke an event handler, as shown in Example 3-1.	
Example 3-1 Registering a Client Listener	
Tip: Because the button has a registered client listener, the framework will automatically create a client version of the component.	
Next, implement the handler in a JavaScript function, as shown in Example 3-2.	
When the button is clicked, because there is a client version of the component, the Adf	
Action	
client event is invoked. Because a clientListener	
tag is configured to listen for the AdfAction	
event, it causes the sayHello	
function to execute. For more information about client-side events, see Section 5.3, "Using JavaScript for ADF Faces Client Events."	
You can either add inline JavaScript directly to a page or you can import JavaScript libraries into a page. When you import libraries, you reduce the page content size, the libraries can be shared across pages, and they can be cached by the browser. You should import JavaScript libraries whenever possible. Use inline JavaScript only for cases where a small, page-specific script is needed.	
Performance Tip: Including JavaScript only in the pages that need it will result in better performance because those pages that do not need it will not have to load it, as they would if the JavaScript were included in a template. However, if you find that most of your pages use the same JavaScript code, you may want to consider including the script or the tag to import the library in a template. Note, however, that if a JavaScript code library becomes too big, you should consider splitting it into meaningful pieces and include only the pieces needed by the page (and not in a template). This approach will provide improved performance, because the browser cache will be used and the HTML content of the page will be smaller.	
Create and use inline JavaScript in the same way you would in any JSF application. Once the JavaScript is on the page, use a clientListener	
tag to invoke it.	
To use inline JavaScript:	
For example, the sayHello	
function shown in Example 3-2 might be included in a JSF page as shown in Example 3-4.	
Example 3-4 Inline JavaScript	
Note: Do not use the	
Use the af:resource	
tag to access a JavaScript library from a page. This tag should appear inside the document	
tag's metaContainer	
facet.	
To access a JavaScript library from a page:	
document	
tag, add the code shown in bold in Example 3-5 and replace /mySourceDirectory	
with the relative path to the directory that holds the JavaScript library. sayHello	
function was in the MyScripts	
library, you would enter MyScripts.sayHello	
. In the Type field, select the event type that should invoke the function. Often when your JavaScript needs to access a client, it is within the context of a listener and must access the event's source component. Use the getSource()	
method to get the client component. Example 3-6 shows the sayHello	
function accessing the source client component in order to display its name.	
Example 3-6 Accessing a Client Event Source	
For more information about accessing client event sources, see Section 5.3, "Using JavaScript for ADF Faces Client Events." For more information about accessing client-side properties, see Section 3.7, "Accessing Component Properties on the Client." For a complete description of how client events are handled at runtime, see Section 5.3.6, "What Happens at Runtime: How Client-Side Events Work."	
The RCF does not make any guarantees about which components will have corresponding client-side component instances by default. You will usually interact with client-side components by registering a clientListener	
handler. When a component has a registered clientListener	
handler, it will automatically have client-side representation. If you have to access another component on the client, then explicitly configure that component to be available on the client by setting the clientComponent	
attribute to true	
.	
Performance Tip: Only set	
When you set the clientComponent	
attribute to true	
, the framework creates an instance of an AdfUIComponent	
class for the component. This class provides the API that you can work with on the client side and also provides basic property accessor methods (for example, getProperty()	
and setProperty()	
), event listener registration, and event delivery-related APIs. The framework also provides renderer-specific subclasses (for example, AdfRichOutputText	
) which expose property-specific accessor methods (for example, getText()	
and setText()	
). These accessor methods are simply wrappers around the AdfUIComponent	
class's getProperty()	
and setProperty()	
methods and are provided for coding convenience.	
For example, suppose you have an outputText	
component on the page that will get its value (and therefore the text to display) from the sayHello	
function. That function must be able to access the outputText	
component in order to set its value. For this to work, there must be a client-side version of the outputText	
component. Example 3-7 shows the JSF page code. Note that the outputText	
component has an id	
value and the clientComponent	
attribute is set to true	
. Also, note there is no value in the example, because that value will be set by the JavaScript.	
Example 3-7 Adding a Component	
Because the outputText	
component will now have client-side representation, the JavaScript will be able to locate and work with it.	
When you need to find a client component that is not the source of an event, you can use the AdfUIComponent.findComponent(expr)	
method. This method is similar to the JSF UIComponent.findComponent()	
method, which searches for and returns the UIComponent	
object with an ID that matches the specified search expression. The AdfUIComponent.findComponent(expr)	
method simply works on the client instead of the server.	
Example 3-8 shows the sayHello	
function finding the outputText	
component using the component's ID.	
Example 3-8 Finding a Client Component Using findComponent()	
Instead of using the AdfUIComponent.findComponent(expr)	
method, you can use the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr)	
method when you know the absolute identifier for the component, but you don't have a component instance to call AdfUIComponent.findComponent(expr)	
on. AdfPage.PAGE	
is a global object that provides a static reference to the page's context object. However, if the component you are finding is within a naming container, then you must use AdfUIComponent.findComponent	
. For more information, see Section 3.5.1, "What You May Need to Know About Finding Components in Naming Containers."	
Note: There is also a confusingly named	
If the component you need to find is within a component that is a naming container (such as pageTemplate	
, subform	
, table	
, and tree	
), then instead of using the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr)	
method, use the AdfUIComponent.findComponent(expr)	
method. The expression can be either absolute or relative.	
Tip: You can determine whether or not a component is a naming container by reviewing the component tag documentation. The tag documentation states whether a component is a naming container.	
Absolute expressions use the fully qualified JSF client ID (meaning, prefixed with the IDs of all NamingContainer	
components that contain the component) with a leading NamingContainer.SEPARATOR_CHAR	
character, for example:	
For example, to find a table whose ID is t1	
that is within a panel collection component whose ID is pc1	
contained in a region whose ID is r1	
on page that uses the myTemplate	
template, you might use the following:	
Alternatively, if both the components (the one doing the search and the one being searched for) share the same NamingContainer	
component somewhere in the hierarchy, you can use a relative path to perform a search relative to the component doing the search. A relative path has multiple leading NamingContainer.SEPARATOR_CHAR	
characters, for example:	
In the preceding example, if the component doing the searching is also in the same region as the table, you might use the following:	
Tip: Think of a naming container as a folder and the	
When deciding whether to use an absolute or relative path, keep the following in mind:	
There are no getChildren()	
or getFacet()	
functions on the client. Instead, the AdfUIComponent.visitChildren()	
function is provided to visit all children components or facets (that is all descendents). See the ADF Faces JavaScript documentation for more information.	
ADF Faces provides JavaScript APIs that return the current contextual page information, in response to an event. The AdfPage.prototype.getViewId()	
function returns the identifier for the currently displayed view. This ID is set when either a full page render or a partial page navigation occurs. The AdfPage.prototype.getComponentsByType(componentType)	
function returns an array of component instances that match the given component type.	
For example, say your application contains a page with tabs, and each tab is made up of a number of regions. Each region could contain other nested regions as well. You can use the APIs to return a String identifier that is a combination of the viewId	
of the entire page and the viewIds	
of the fragments displayed in each of the regions currently rendered on the page, as shown in Example 3-9.	
In order to retrieve the viewID property of the region component on the client, the user activity monitoring feature needs to be enabled by setting a parameter in the web.xml	
file. You then create JavaScript code that builds a String representation of the viewIds	
that make up the current page.	
To determine a context identifier:	
web.xml	
file. oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER	
to true. This parameter notifies ADF Faces that the ExecutionContextProvider	
service provider is enabled. This service monitors and aggregates user activity information for the client-initiated requests.	
oracle.adf.view.rich.automation.ENABLED	
to true. This parameter ensures that component IDs are set for all components. For more information, see Section A.2.3.10, "Test Automation."	
Example 3-9 shows JavaScript used to get the current view ID for a region.	
Example 3-9 JavaScript to Retrieve viewIds	
For each built-in property on a component, convenience accessor methods are available on the component class. For example, you can call the getValue()	
method on a client component and receive the same value that was used on the server.	
Note: All client properties in ADF Faces use the	
Constants are also available for the property names on the class object. For instance, you can use AdfRichDialog.STYLE_CLASS	
constant instead of using "styleClass	
".	
Note: In JavaScript, it is more efficient to refer to a constant than to code the string, as the latter requires an object allocation on each invocation.	
When a component's property changes, the end result should be that the component's DOM is updated to reflect its new state, in some cases without a roundtrip to the server. The component's role in this process is fairly limited: it simply stores away the new property value and then notifies the peer of the change. The peer contains the logic for updating the DOM to reflect the new component state.	
Note: Not all property changes are handled through the peer on the client side. Some property changes are propagated back to the server and the component is rerendered using PPR.	
As noted in Section 1.2.2, "ADF Faces Architectural Features," most property values that are set on the client result in automatic synchronization with the server (although some complex Java objects are not sent to the client at all). There are however, two types of properties that act differently: secured properties and disconnected properties.	
Secured properties are those that cannot be set on the client at all. For example, say a malicious client used JavaScript to set the immediate	
flag on a commandLink	
component to true	
. That change would then be propagated to the server, resulting in server-side validation being skipped, causing a possible security hole (for more information about using the immediate	
property, see Section 4.2, "Using the Immediate Attribute"). Consequently, the immediate	
property is a secured property.	
Attempts to set any other secured property from JavaScript will fail. For more information, see Section 3.7.2, "How to Unsecure the disabled Property." Table 3-1 shows the secure properties on the client components.	
Table 3-1 Secure Client Properties	
Component	Secure Property
---	---
ADF Faces does allow you to configure the disabled	
property so that it can be made unsecure. This can be useful when you need to use JavaScript to enable and disable buttons. When you set the unsecure	
property to true	
, the disabled	
property (and only the disabled	
property) will be made unsecure.	
Disconnected properties are those that can be set on the client, but that do not propagate back to the server. These properties have a lifecycle on the client that is independent of the lifecycle on the server. For example, client form input components (like AdfRichInputText	
) have a submittedValue	
property, just as the Java EditableValueHolder	
components do. However, setting this property does not directly affect the server. In this case, standard form submission techniques handle updating the submitted value on the server.	
A property can be both disconnected and secured. In practice, such properties act like disconnected properties on the client: they can be set on the client, but will not be sent to the server. But they act like secured properties on the server, in that they will refuse any client attempts to set them.	
The RCF provides setXYZ	
convenience functions that provide calls to the AdfUIComponent	
setProperty()	
function. The setProperty()	
function takes the following arguments:	
You use the unsecured	
property to set the disabled	
property to be unsecure. You need to manually add this property and the value of disabled	
to the code for the component whose disabled	
property should be unsecure. For example, the code for a button whose disabled	
property should be unsecured would be:	
Once you set the unsecure	
attribute to disabled	
, a malicious JavaScript could change the disabled	
attribute unwittingly. For example, say you have an expense approval page, and on that page, you want certain managers to be able to only approve invoices that are under $200. For this reason, you want the approval button to be disabled unless the current user is allowed to approve the invoice.	
If you did not set the unsecured	
attribute to disabled	
, the approval button would remain disabled until a round-trip to the server occurs, where logic determines if the current user can approve the expense. But because you want the button to display correctly as the page loads the expense, say you set the unsecure	
attribute to disabled	
. Now you can use JavaScript on the client to determine if the button should be disabled. But now, any JavaScript (including malicious JavaScript that you have no control over) can do the same thing.	
To avoid this issue, you must ensure that your application still performs the same logic as if the round-trip to the server had happened. In the expense report approval screen, you might have JavaScript that checks that the amount is under $200, but you still need to have the action for the approval button perform the logic on the server. Adding the logic to the server ensures that the disabled attribute does not get changed when it should not.	
Similarly, if you allow your application to be modified at runtime, and you allow users to potentially edit the unsecure	
and/or the disabled	
attributes, you must ensure that your application still performs the same logic as if the round-trip to the server had occurred.	
Calling the setProperty()	
function on the client sets the property to the new value, and synchronously fires a PropertyChangeEvent	
event with the new values (as long as the value is different). Also, setting a property may cause the component to rerender itself.	
In some cases you may want to send additional information to the client beyond the built-in properties. This can be accomplished using bonus attributes. Bonus attributes are extra attributes that you can add to a component using the clientAttribute	
tag. For performance reasons, the only bonus attributes sent to the client are those specified by clientAttribute	
.	
The clientAttribute	
tag specifies a name/value pair that is added to the server-side component's attribute map. In addition to populating the server-side attribute map, using the clientAttribute	
tag results in the bonus attribute being sent to the client, where it can be accessed through the AdfUIComponent.getProperty("	
bonusAttributeName	
")	
method.	
The RCF takes care of marshalling the attribute value to the client. The marshalling layer supports marshalling of a range of object types, including strings, booleans, numbers, dates, arrays, maps, and so on. For more information on marshalling, see Section 5.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data."	
Performance Tip: In order to avoid excessive marshalling overhead, use client-side bonus attributes sparingly.	
Note: The	
You can use the Component Palette to add a bonus attribute to a component.	
To create bonus attributes:	
Although client-side bonus attributes are automatically delivered from the server to the client, the reverse is not true. That is, changing or setting a bonus attribute on the client will have no effect on the server. Only known (nonbonus) attributes are synchronized from the client to the server. If you want to send application-defined data back to the server, you should create a custom event. For more information, see Section 5.4, "Sending Custom Events from the Client to the Server."	
All ADF Faces display components have two attributes that relate to whether or not the component is displayed on the page for the user to see: rendered	
and visible	
.	
The rendered	
attribute has very strict semantics. When rendered	
is set to false	
, there is no way to show a component on the client without a roundtrip to the server. To support dynamically hiding and showing page contents, the RCF adds the visible	
attribute. When set to false	
, the component's markup is available on the client but the component is not displayed. Therefore calls to the setVisible(true)	
or setVisible(false)	
method will, respectively, show and hide the component within the browser (as long as rendered	
is set to true	
), whether those calls happen from Java or from JavaScript.	
Performance Tip: You should set the If you do not need to toggle visibility only on the client, then you should instead set the	
Example 3-10 shows two outputText	
components, only one of which is rendered at a time. The first outputText	
component is rendered when no value has been entered into the inputText	
component. The second outputText	
component is rendered when a value is entered.	
Example 3-10 Rendered and Not Rendered Components	
Provided a component is rendered in the client, you can either display or hide the component on the page using the visible	
property.	
Example 3-11 shows how you might achieve the same functionality as shown in Example 3-10, but in this example, the visible	
attribute is used to determine which component is displayed (the rendered	
attribute is true	
by default, it does not need to be explicitly set).	
Example 3-11 Visible and Not Visible Components	
However, because using the rendered	
attribute instead of the visible	
attribute improves performance on the server side, you may instead decide to have JavaScript handle the visibility.	
Example 3-12 shows the page code for JavaScript that handles the visiblity of the components.	
Example 3-12 Using JavaScript to Turn On Visibility	
You can create a conditional JavaScript function that can toggle the visible	
attribute of components.	
To set visibility:	
outputText	
component if there is no value; otherwise, the script turns visibility on for the other outputText	
component. ClientComponent	
attribute to true	
. This creates a client component that will be used by the JavaScript. visible	
attribute to false	
. Example 3-13 shows the full page code used to toggle visibility with JavaScript.	
Example 3-13 JavaScript Toggles Visibility	
If the parent of a component has its visible	
attribute set to false	
, when the isVisible	
function is run against a child component whose visible	
attribute is set to true	
, it will return true	
, even though that child is not displayed. For example, say you have a panelGroupLayout	
component that contains an outputText	
component as a child, and the panelGroupLayout	
component's visible	
attribute is set to false	
, while the outputText	
component's visible	
attribute is left as the default (true	
). On the client, neither the panelGroupLayout	
nor the outputText	
component will be displayed, but if the isVisible	
function is run against the outputText	
component, it will return true	
.	
For this reason, the RCF provides the isShowing()	
function. This function will return false	
if the component's visible	
attribute is set to false	
, or if any parent of that component has visible	
set to false	
.	
This chapter describes the JSF page request lifecycle and the additions to the lifecycle from ADF Faces, and how to use the lifecycle properly in your application.	
This chapter includes the following sections:	
Because the ADF Faces rich client framework (RCF) extends the JSF framework, any application built using the ADF Faces rich client framework uses the standard JSF page request lifecycle. However, the ADF Faces framework extends that lifecycle, providing additional functionality, such as a client-side value lifecycle, a subform component that allows you to create independent submittable regions on a page without the drawbacks (for example, lost user edits) of using multiple forms on a single page, and additional scopes.	
To better understand the lifecycle enhancements that the RCF delivers, it is important that you understand the standard JSF lifecycle. This section provides only an overview. For a more detailed explanation, refer to the JSF specification at http://www.oracle.com/technetwork/java/index.html	
.	
When a JSF page is submitted and a new page is requested, the JSF page request lifecycle is invoked. This lifecycle handles the submission of values on the page, validation for components on the current page, navigation to and display of the components on the resulting page, as well as saving and restoring state. The JSF lifecycle phases use a UI component tree to manage the display of the faces components. This tree is a runtime representation of a JSF page: each UI component tag in a page corresponds to a UI component instance in the tree. The FacesServlet	
object manages the page request lifecycle in JSF applications. The FacesServlet	
object creates an object called FacesContext	
, which contains the information necessary for request processing, and invokes an object that executes the lifecycle.	
Figure 4-1 shows the JSF lifecycle of a page request. As shown, events are processed before and after each phase.	
In a JSF application, the page request lifecycle is as follows:	
immediate	
attribute set to true	
, then the validation, the conversion, and the events associated with the component are processed during this phase. For more information, see Section 4.2, "Using the Immediate Attribute." If there are no failures, the required	
attribute on the component is checked. If the value is true	
, and the associated field contains a value, then any associated validators are run. If the value is true	
and there is no field value, this phase completes (all remaining validators are executed), but the lifecycle jumps to the Render Response phase. If the value is false	
, the phase completes, unless no value is entered, in which case no validation is run. For more information about conversion and validation, see Chapter 6, "Validating and Converting Input."	
At the end of this phase, converted versions of the local values are set, any validation or conversion error messages and events are queued on the FacesContext	
object, and any value change events are delivered.	
Tip: In short, for an input component that can be edited, the steps for the Process Validations phase is as follows:	
To help illustrate the lifecycle, consider a page that has a simple input text component where a user can enter a date and then click a command button to submit the entered value. A valueChangeListener	
method is also registered on the component. Example 4-1 shows the code for the example.	
Example 4-1 Sample Code to Illustrate the JSF Lifecycle	
Suppose a user enters the string "June 25, 2005" and clicks the submit button. Figure 4-2 shows how the values pass through the lifecycle and where the different events are processed.	
You can use the immediate	
attribute to allow processing of components to move up to the Apply Request Values phase of the lifecycle. When actionSource	
components (such as a commandButton	
) are set to immediate	
, events are delivered in the Apply Request Values phase instead of in the Invoke Application phase. The actionListener	
handler then calls the Render Response phase, and the validation and model update phases are skipped.	
For example, you might want to configure a Cancel button to be immediate	
, and have the action return a string used to navigate back to the previous page (for more information about navigation, see Chapter 18, "Working with Navigation Components"). Because the Cancel button is set to immediate	
, when the user clicks the Cancel button, all validation is skipped, any entered data is not updated to the model, and the user navigates as expected, as shown in Figure 4-3.	
Note: A command button that does not provide any navigation and is set to	
As with command components, for components that invoke disclosure events, (such as a showDetail	
component), and for editableValueHolder	
components (components that hold values that can change, such as an inputText	
component) the events are delivered to the Apply Request Values phase. However, for editableValueHolder	
components, instead of skipping phases, conversion, validation, and delivery of valueChangeEvents	
events are done earlier in the lifecycle, during the Apply Request Values phase, instead of after the Process Validations phase. No lifecycle phases are skipped.	
Figure 4-4 shows the lifecycle for an input component whose immediate	
attribute is set to true	
. The input component takes a date entered as a string and stores it as a date object when the command button is clicked.	
Setting immediate	
to true	
for an input component can be useful when one or more input components must be validated before other components. Then, if one of those components is found to have invalid data, validation is skipped for the other input components in the same page, thereby reducing the number of error messages shown for the page.	
Performance Tip: There are some cases where setting the	
As another example, suppose you have a form with an input component used to search for a string with a command button configured to invoke the search execution, and another input text component used to input a date with an associated command button used to submit the date. In this example, we want to set the search input component and its button both to be immediate	
. This will allow the user to execute a search, even if an invalid string is entered into the date field, because the date input component's converter is never fired. Also, because the search input text is set to immediate	
and the date input field is not, only the search input text will be processed. And because both fields are within the same form, if the user enters a valid date in the date field, but then performs a search and does not click the Save button, the entered value will still be displayed when the search results are displayed. Example 4-2 shows the code used for the two fields and two buttons.	
Example 4-2 Input Component and Command Components Using Immediate	
Figure 4-5 shows the lifecycle for this page when a user does the following:	
binky	
into the Date input field (which is not a valid entry) dress	
into the Search field dress	
binky	
as the date When using the immediate	
attribute for editableValueHolder	
and actionSource	
components on the same page, note the following issues:	
editableValueHolder	
component is marked as immediate	
, it will execute before the Update Model Values phase. This could be an issue when an immediate actionSource	
component requires data from an editableValueHolder	
component, as data entered into an editableValueHolder	
component is not available to the model until after the Update Model Values phase. If you have an immediate actionSource	
component, and that component needs data, then set immediate	
on the editableValueHolder	
fields as well. Then, you can call the getValue	
method on the editableValueHolder	
component and the local value will be returned. It will not have been pushed into the model yet, but it will be available on the component. editableValueHolder	
component fails validation, any immediate actionSource	
component will still execute. To use the immediate attribute:	
immediate	
attribute to true	
. ADF Faces provides an optimized lifecycle that you can use when you want the JSF page request lifecycle (including conversion and validation) to be run only for certain components on a page. For example, suppose you have an inputText	
component on a page whose required attribute is set to true	
. On the same page are radio buttons that when selected cause the page to either show or hide text in an outputText	
component, as shown in Figure 4-6.	
Also assume that you want the user to be able to select a radio button before entering the required text into the field. While you could set the radio button components to automatically trigger a submit action and also set their immediate	
attribute to true	
so that they are processed before the inputText	
component, you would also have to add a valueChangeEvent	
listener, and in it call the Render Response phase so that validation is not run on the input text component.	
Instead of having to write this code in a listener, ADF Faces allows you to set boundaries on the page that allow the lifecycle to run just on components within the boundary. In order to determine the boundary, the framework must be notified of the root component to process. This component can be determined in two ways:	
showDetail	
component (see Section 8.8, "Displaying and Hiding Contents Dynamically") indicates that the showDetail	
component is a root, and so the lifecycle is run only on the showDetail	
component and any child components. The lifecycle may also be run on any components configured to listen for that disclosure event. Configuring a component to listen for events on root components in order to be processed is called cross-component refresh. Cross-component refresh allows you to set up dependencies so that the events from one component act as triggers for another component, known as the target. When any event occurs on the trigger component, the lifecycle is run on any target components, as well as on any child components of both the trigger and the target, causing only those components to be rerendered. This is considered a partial page rendering (PPR).	
In the radio button example, you would set the radio buttons to be triggers and the panelGroupLayout	
component that contains the output text to be the target, as shown in Example 4-3.	
Example 4-3 Example of Cross-Component Rendering	
Because the autoSubmit	
attribute is set to true	
on the radio buttons, when they are selected, a SelectionEvent	
is fired, for which the radio button is considered the root. Because the panelGroupLayout	
component is set to be a target to both radio components, when that event is fired, only the selectOneRadio	
(the root), the panelGroupLayout	
component (the root's target), and its child component (the outputText	
component) are processed through the lifecycle. Because the outputText	
component is configured to render only when the Show radio button is selected, the user is able to select that radio button and see the output text, without having to enter text into the required input field above the radio buttons.	
For more information about how the ADF Faces framework uses PPR, and how you can use PPR throughout your application, see Chapter 7, "Rerendering Partial Page Content."	
There may be cases where PPR will not be able to keep certain components from being validated. For example, suppose instead of using an outputText	
component, you want to use an inputText	
component whose required	
attribute is set to true	
, inside the panelGroupLayout	
component, as shown in Example 4-4.	
Example 4-4 inputText Component Within a panelGroup Component Will Be Validated with Cross-Component PPR	
In this example, the inputText	
component will be validated because the lifecycle runs on the root (the selectOneRadio	
component), the target (the panelGroupLayout	
component), and the target's child (the inputText	
component). Validation will fail because the inputText	
component is marked as required and there is no value, so an error will be thrown. Because of the error, the lifecycle will skip to the Render Response phase and the model will not be updated. Therefore, the panelGroupLayout	
component will not be able to show or hide because the value of the radio button will not be updated.	
For cases like these, you can skip validation using the immediate	
attribute on the radio buttons. Doing so causes the valueChangeEvent	
on the buttons to run before the Process Validation phase of the inputText	
component. Then you need to add a valueChangeListener	
handler method that would call the Render Response phase (thereby skipping validation of the input component), and set the values on the radio buttons and input component. Example 4-5 shows the JSF code to do this.	
Example 4-5 Using the immediate Attribute and a valueChangeListener	
Example 4-6 shows the valueChangeListener	
code.	
For the inputListOfValues	
and inputComboBoxListOfValues	
components, the procedures described in Section 4.3.1, "What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle," will not work. Consider the following example.	
Suppose you have an inputListOfValues	
component from which a user selects an employee name, and an inputText	
component whose required attribute is set to true	
, which is updated with the employee's ID number once the employee is selected, as shown in Figure 4-7.	
To achieve this, you might set the Empno field to have the Ename field as a partial trigger, as shown in Example 4-7.	
Example 4-7	
As with the radio button and input component example in Section 4.3.1, "What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle," once the user clicks the search icon, the inputText	
component will be validated because the lifecycle runs on both the root (the inputListOfValues	
component) and the target (the inputText	
component). Validation will fail because the inputText	
component is marked as required and there is no value, so an error will be thrown, as shown in Figure 4-8.	
However, the solution recommended in Section 4.3.1, "What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle," of setting the LOV component's immediate attribute to true	
and using a ValueChange	
Listener on the LOV will not fix the validation error. For LOV components, the ValueChangeEvent	
is queued only when the value of the LOV component changes. For this reason, setting the immediate	
attribute to true	
has no effect when the user clicks the search icon, because at that point the ADF LaunchPopupEvent	
is queued for the Invoke Application phase always, regardless of the value of the immediate	
attribute. In other words, the optimized lifecycle is run as normal on both the root and target components and therefore the input component throws a validation error.	
When the user selects a new value from the LOV popup, the LOV component queues two events. One is a ValueChangeEvent	
to signal a change in value for the component. The second is a ReturnPopupEvent	
queued for the Invoke Application phase, which gives application methods a chance to handle the selection. Both these events need to occur in order for the LOV to behave as expected.	
As mentioned, the LOV component queues a ValueChangeEvent	
only when the user selects a new value. If you were to set the immediate	
attribute to true	
on the LOV component, this event would be queued for the Apply Request Values phase and the new value would be validated. In addition if you were to create a ValueChangeListener	
method for the LOV component, and in its implementation jump to the Render Response phase to avoid validation of the input component, the selected value would never get pushed to the model, the ReturnPopupListener	
would never get called during the Invoke Application phase, and the target input component would not get updated with new value, as shown in Figure 4-9.	
To resolve this issue of needing both the ValueChangeEvent	
and the ReturnPopupEvent	
to be queued as part of the same request and to have any target fields refreshed with newly selected values, instead of declaratively setting the LOV component as a partial trigger for the input component and creating a method for the ValueChangeListener	
, you need to create a listener for the ReturnPopupEvent	
. This listener must programmatically set the input components as partial targets for the LOV. You do not need to set the LOV's immediate	
attribute to true	
because the input component is no longer a target for the LOV until the ReturnPopupListener	
method is executed, and so it will not fail validation because the lifecycle will not be run on it. And because a listener method is used for the ReturnPopupEvent	
instead of for the ValueChangeEvent	
, both events can be queued and the model updated appropriately.	
Example 4-8 shows the needed page code for the LOV and input components.	
Example 4-8	
The input component uses its binding	
attribute to store the instance on a backing bean, allowing the instance to be accessed by the listener method. The listener method then accesses the input component and sets it as a partial target for the LOV, as shown in Example 4-9.	
For more information about programmatically setting partial page rendering, see Section 7.3, "Enabling Partial Page Rendering Programmatically."	
The ADF Faces framework provides client-side conversion and validation. You can create your own JavaScript-based converters and validators that run on the page without a trip to the server.	
You can use client-side validation so that when a specific client event is queued, it triggers client validation of the appropriate form or subform (for more information about subforms, see Section 4.5, "Using Subforms to Create Regions on a Page"). If this client validation fails, meaning there are known errors, then the events that typically propagate to the server (for example, a command button's actionEvent	
when a form is submitted) do not go to the server. Having the event not delivered also means that nothing is submitted and therefore, none of the client listeners is called. This is similar to server-side validation in that when validation fails on the server, the lifecycle jumps to the Render Response phase; the action event, though queued, will never be delivered; and the actionListener	
handler method will never be called.	
For example, ADF Faces provides the required	
attribute for input components, and this validation runs on the client. When you set this attribute to true	
, the framework will show an error on the page if the value of the component is null	
, without requiring a trip to the server. Example 4-10 shows code that has an inputText	
component's required	
attribute set to true	
, and a command button whose actionListener	
attribute is bound to a method on a managed bean.	
Example 4-10 Simple Client-Side Validation Example	
When this page is run, if you clear the field of the value of the inputText	
component and tab out of the field, the field will redisplay with a red outline. If you then click into the field, an error message will state that a value is required, as shown in Figure 4-10. There will be no trip to the server; this error detection and message generation is all done on the client.	
In this same example, if you were to clear the field of the value and click the Search button, the page would not be submitted because the required field is empty and therefore an error occurs; the action event would not be delivered, and the method bound to the action listener would not be executed. This process is what you want, because there is no reason to submit the page if the client can tell that validation will fail on the server.	
For more information about using client-side validation and conversion, see Chapter 6, "Validating and Converting Input."	
In the JSF reference implementation, if you want to independently submit a region of the page, you have to use multiple forms. However multiple forms require multiple copies of page state, which can result in the loss of user edits in forms that aren't submitted.	
ADF Faces adds support for a subform component, which represents an independently submittable region of a page. The contents of a subform will be validated (or otherwise processed) only if a component inside of the subform is responsible for submitting the page, allowing for comparatively fine-grained control of the set of components that will be validated and pushed into the model without the compromises of using entirely separate form elements. When a page using subforms is submitted, the page state is written only once, and all user edits are preserved.	
Best Practice: Always use only a single	
A subform will always allow the Apply Request Values phase to execute for its child components, even when the page was submitted by a component outside of the subform. However, the Process Validations and Update Model Values phases will be skipped (this differs from an ordinary form component, which, when not submitted, cannot run the Apply Request Values phase). To allow components in subforms to be processed through the Process Validations and Update Model Value phases when a component outside the subform causes a submit action, use the default	
attribute. When a subform's default	
attribute is set to true	
, it acts like any other subform in most respects, but if no subform on the page has an appropriate event come from its child components, then any subform with default	
set to	
true	
will behave as if one of its child components caused the submit. For more information about subforms, see Section 9.2, "Defining Forms."	
At runtime, you pass data to pages by storing the needed data in an object scope where the page can access it. The scope determines the lifespan of an object. Once you place an object in a scope, it can be accessed from the scope using an EL expression. For example, you might create a managed bean named foo	
, and define the bean to live in the Request scope. To access that bean, you would use the expression #{requestScope.foo}	
.	
There are three types of scopes in a standard JSF application:	
application	
Scope	
: The object is available for the duration of the application. session	
Scope	
: The object is available for the duration of the session. request	
Scope	
: The object is available for the duration between the time an HTTP request is sent until a response is sent back to the client. In addition to the standard JSF scopes, ADF Faces provides the following scopes:	
pageFlow	
Scope	
: The object is available as long as the user continues navigating from one page to another. If the user opens a new browser window and begins navigating, that series of windows will have its own pageFlowScope	
scope. backingBean	
Scope	
: Used for managed beans for page fragments and declarative components only. The object is available for the duration between the time an HTTP request is sent until a response is sent back to the client. This scope is needed because there may be more than one page fragment or declarative component on a page, and to avoid collisions between values, any values must be kept in separate scope instances. Use backingBeanScope	
scope for any managed bean created for a page fragment or declarative component. view	
Scope	
: The object is available until the ID for the current view changes. Use viewScope	
scope to hold values for a given page. Note: Because these are not standard JSF scopes, EL expressions must explicitly include the scope to reference the bean. For example, to reference the	
Object scopes are analogous to global and local variable scopes in programming languages. The wider the scope, the higher the availability of an object. During their lifespan, these objects may expose certain interfaces, hold information, or pass variables and parameters to other objects. For example, a managed bean defined in sessionScope	
scope will be available for use during multiple page requests. However, a managed bean defined in requestScope	
scope will be available only for the duration of one page request.	
Figure 4-11 shows the time period in which each type of scope is valid, and its relationship with the page flow.	
When determining what scope to register a managed bean with or to store a value in, always try to use the narrowest scope possible. Use the sessionScope	
scope only for information that is relevant to the whole session, such as user or context information. Avoid using the sessionScope	
scope to pass values from one page to another.	
Note: If you are using the full Fusion technology stack, then you have the option to register your managed beans in various configuration files. For more information, see the "Using a Managed Bean in a Fusion Web Application" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Note: If you are using the full Fusion technology stack and you need information about passing values between pages in an ADF bounded task flow, or between ADF regions and pages, refer to the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The ADF Faces pageFlowScope	
scope makes it easier to pass values from one page to another, thus enabling you to develop master-detail pages more easily. Values added to the pageFlowScope	
scope automatically continue to be available as the user navigates from one page to another, even if you use a redirect	
directive. But unlike session	
scope, these values are visible only in the current page flow or process. If the user opens a new window and starts navigating, that series of windows will have its own process. Values stored in each window remain independent.	
Like objects stored in any standard JSF scope, objects stored in the pageFlow	
scope can be accessed through EL expressions. The only difference with the pageFlow	
scope is that the object names must use the pageFlow	
Scope	
prefix. For example, to have a button's label provided by a managed bean stored in the pageFlow	
scope, and to have a method on the bean called when the button is selected, you might use the following code on your page:	
The pageFlowScope	
is a java.util.Map	
object that may be accessed from Java code. The setPropertyListener	
tag allows you to set property values onto a scope, and also allows you to define the event the tag should listen for. For example, when you use the setPropertyListener	
tag with the type	
attribute set to action	
, it provides a declarative way to cause an action source (for example, commandButton	
) to set a value before navigation. You can use the pageFlowScope	
scope with the setPropertyListener	
tag to pass values from one page to another, without writing any Java code in a backing bean. For example, you might have one page that uses the setPropertyListener	
tag and a command component to set a value in the pageFlowScope	
scope, and another page whose text components use the pageFlowScope	
scope to retrieve their values.	
You can also use the pageFlowScope	
scope to set values between secondary windows such as dialogs. When you launch secondary windows from, for example, a commandButton	
component, you can use a launchEvent	
event and the pageFlowScope	
scope to pass values into and out of the secondary windows without overriding values in the parent process.	
You can access pageFlow	
scope from within any Java code in your application. Remember to clear the scope once you are finished.	
Note: If your application uses ADF Controller, then you do not have to manually clear the scope.	
To use pageFlowScope in Java code:	
pageFlowScope	
scope, use the org.apache.myfaces.trinidad.context.RequestContext.	
getPageFlowScope()	
method. For example, to retrieve an object from the pageFlowScope	
scope, you might use the following Java code:	
pageFlowScope	
scope, access it and then manually clear it. For example, you might use the following Java code to clear the scope:	
To use the pageFlowScope	
scope without writing Java code, use a setPropertyListener	
tag in conjunction with a command component to set a value in the scope. The setPropertyListener	
tag uses the type	
attribute that defines the event type it should listen for. It ignores all events that do not match its type. Once set, you then can access that value from another page within the page flow.	
Tip: Instead of using the	
To set a value in the pageFlowScope scope:	
Or right-click the component and choose Insert inside Button > ADF Faces > setPropertyListener.	
For example, say you have a managed bean named MyBean	
that stores the name value for an employee, and you want to pass that value to the next page. You would enter #{myBean.empName}	
in the From field.	
Set the To field to be a value on the pageFlowScope	
scope.	
For example, you might enter #{pageFlowScope.empName}	
in the To field.	
This allows the listener to listen for the action event associated with the command component.	
To access a value from the pageFlowScope scope:	
To	
value set on the setPropertyListener	
tag. For example, to have an outputText	
component access the employee name, you would set the value of that component to be #{pageFlowScope.empName}	
.	
When a user clicks a command button that contains a setPropertyListener	
tag, the listener executes and the To	
value is resolved and retrieved, and then stored as a property on the pageFlowScope	
scope. On any subsequent pages that access that property through an EL expression, the expression is resolved to the value set by the original page.	
This chapter describes how to handle events on the server as well as on the client.	
This chapter includes the following sections:	
In traditional JSF applications, event handling typically takes place on the server. JSF event handling is based on the JavaBeans event model, where event classes and event listener interfaces are used by the JSF application to handle events generated by components.	
Examples of user events in an application include clicking a button or link, selecting an item from a menu or list, and changing a value in an input field. When a user activity occurs such as clicking a button, the component creates an event object that stores information about the event and identifies the component that generated the event. The event is also added to an event queue. At the appropriate time in the JSF lifecycle, JSF tells the component to broadcast the event to the appropriate registered listener, which invokes the listener method that processes the event. The listener method may trigger a change in the user interface, invoke backend application code, or both.	
Like standard JSF components, ADF Faces command components deliver ActionEvent	
events when the components are activated, and ADF Faces input and select components deliver ValueChangeEvent	
events when the component local values change.	
For example, in the File Explorer application, the File Menu contains a submenu whose commandMenuItem	
components allow a user to create a new file or folder. When users click the Folder commandMenuItem	
, an ActionEvent	
is invoked. Because the EL expression set as the value for the component's actionListener	
attribute resolves to the createNewDirectory	
method on the headerManager	
managed bean, that method is invoked and a new directory is created.	
Note: Any ADF Faces component that has built-in event functionality must be enclosed in the	
While ADF Faces adheres to standard JSF event handling techniques, it also enhances event handling in two key ways by providing:	
Unlike standard JSF events, ADF Faces events support AJAX-style partial postbacks to enable partial page rendering (PPR). Instead of full page rendering, ADF Faces events and components can trigger partial page rendering, that is, only portions of a page refresh upon request.	
Certain components are considered event root components. Event root components determine boundaries on the page, and so allow the lifecycle to run just on components within that boundary (for more information about this aspect of the lifecycle, see Section 4.3, "Using the Optimized Lifecycle"). When an event occurs within an event root, only those components that are children to the root are refreshed on the page. An example of an event root component is a popup. When an event happens within a popup, only the popup and its children are rerendered, and not the whole page.	
Additionally, certain events indicate a specific component as an event root component. For example, the disclosure event sent when a expanding or collapsing a showDetail	
component (see Section 8.8, "Displaying and Hiding Contents Dynamically"), indicates that the showDetail	
component is a root. The lifecycle is run only on the showDetail	
component (and any child components or other components that point to this as a trigger), and only they are rerendered when it is expanded or collapsed.	
Table 5-1 shows the event types in ADF Faces, and whether or not the source component is an event root.	
Table 5-1 Events and Event Root Components	
Event Type	Component Trigger
---	---
All command components	
All command components	NA
NA	
NA	
NA	
NA	
All components	NA
NA	
NA	
All command components	
All input and select components (components that implement	
Tip: If components outside of the event root need to be processed when the event root is processed, then you must set the	
In addition to server-side action and value change events, ADF Faces components also invoke client-side action and value change events, and other kinds of server and client events. Some events are generated by both server and client components (for example, selection events); some events are generated by server components only (for example, launch events); and some events are generated by client components only (for example, load events).	
By default, most client events are propagated to the server. Changes to the component state are automatically synchronized back to the server to ensure consistency of state, and events are delivered, when necessary, to the server for further processing. However, you can configure your event so that it does not propagate.	
In addition, any time you register a client-side event listener on the server-side Java component, the RCF assumes that you require a JavaScript component, so a client-side component is created.	
Client-side JavaScript events can come from several sources: they can be derived automatically from DOM events, from property change events, or they can be manually created during the processing of other events.	
ADF Faces provides a number of server-side events. Table 5-2 lists the events generated by ADF Faces components on the server, and the components that trigger them.	
Table 5-2 ADF Faces Server Events	
Event	Triggered by Component...
---	---
All command components	
All command components	
All command components	
All input and select components (components that implement	
* This focus event is generated when focusing in on a specific subtree, which is not the same as a client-side keyboard focus event.
** The LoadEvent
event is fired after the initial page is displayed (data streaming results may arrive later).
All server events have event listeners on the associated component(s). You need to create a handler that processes the event and then associate that handler code with the listener on the component.
For example, in the File Explorer application, a selection event is fired when a user selects a row in the table. Because the table's selectionListener
attribute is bound to the tableSelectFileItem
handler method on the TableContentView.java
managed bean, that method is invoked in response to the event.
To handle server-side events:
In a managed bean (or the backing bean for the page that will use the event listener), create a public method that accepts the event (as the event type) as the only parameter and returns void
. Example 5-1 shows the code for the tableSelectFileItem
handler. (For information about creating and using managed beans, see Section 2.6, "Creating and Using Managed Beans.")
Example 5-1 Event Listener Method
Tip: If the event listener code is likely to be used by more than one page in your application, consider creating an event listener implementation class that all pages can access. All server event listener class implementations must override a For example, the public void processLaunch (LaunchEvent evt) { // your code here } |
Example 5-2 shows sample code for registering a selection event listener method on a table
component.
Most components can also work with client-side events. Handling events on the client saves a roundtrip to the server. When you use client-side events, instead of having managed beans contain the event handler code, you use JavaScript, which can be contained either on the calling page or in a JavaScript library.
By default, client events are processed only on the client. However, some event types are also delivered to the server, for example, AdfActionEvent
events, which indicate a button has been clicked. Other events may be delivered to the server depending on the component state. For example, AdfValueChangeEvent
events will be delivered to the server when the autoSubmit
attribute is set to true
. You can cancel an event from being delivered to the server if no additional processing is needed. However, some client events cannot be canceled. For example, because the popupOpened
event type is delivered after the popup window has opened, this event delivery to the server cannot be canceled.
Performance Tip: If no server processing is needed for an event, consider canceling the event at the end of processing so that the event does not propagate to the server. For more information, see Section 5.3.5, "How to Prevent Events from Propagating to the Server." |
Table 5-3 lists the events generated by ADF Faces client components, whether or not events are sent to the sever, whether or not the events are cancelable, and the components that trigger the events.
Table 5-3 ADF Faces Client Events
Event Type | Event Class | Propagates to Server | Can Be Canceled | Triggered by Component |
---|---|---|---|---|
|
| Yes | Yes | All command components |
|
| Yes | Yes |
When user selects the OK or Cancel button in a dialog |
|
| Yes | Yes |
When the disclosure state is toggled by the user |
| Yes | Yes |
| |
| Yes | Yes |
| |
|
| Yes | Yes |
When the internal |
|
| Yes | Yes |
After the document's contents have been displayed on the client, even when PPR navigation is used. It does not always correspond to the onLoad DOM event. |
| Yes | Yes |
| |
|
| No | No |
After a popup window or dialog is opened |
|
| No | Yes |
Prior to opening a popup window or dialog |
|
| No | No |
After a popup window or dialog is closed |
|
| No | No | All components |
|
| Yes | Yes |
Upon a query action (that is, when the user clicks the search icon or search button) |
|
| Yes | Yes |
|
| Yes | Yes | All command components | |
| Yes | Yes |
| |
| Yes | Yes |
| |
|
| Yes | Yes |
When the row disclosure state is toggled |
|
| Yes | Yes |
When the selection state changes |
|
| Yes | Yes |
When the user sorts the table data |
|
| No | Yes | All |
|
| Yes | Yes | All input and select components (components that implement When the value of an input or select component is changed |
ADF Faces also supports client keyboard and mouse events, as shown in Table 5-4
Table 5-4 Keyboard and Mouse Event Types Supported
Event Type | Event Fires When... |
---|---|
| User clicks a component |
| User double-clicks a component |
| User moves mouse down on a component |
| User moves mouse up on a component |
| User moves mouse while over a component |
| Mouse enters a component |
| Mouse leaves a component |
| User presses key down while focused on a component |
| User releases key while focused on a component |
| When a successful keypress occurs while focused on a component |
| Component gains keyboard focus |
| Component loses keyboard focus |
Best Practice: Keyboard and mouse events wrap native DOM events using the |
The clientListener
tag provides a declarative way to register a client-side event handler script on a component. The script will be invoked when a supported client event type is fired. Example 5-3 shows an example of a JavaScript function associated with an action event.
Example 5-3 clientListener Tag
Tip: Use the |
To use client-side events, you need to first create the JavaScript that will handle the event. You then use a clientListener
tag.
To use client-side events:
If you want your event handler to operate on another component, you must locate that component on the page. For example, in the File Explorer application, when users choose the Give Feedback menu item in the Help menu, the associated JavaScript function has to locate the help popup dialog in order to open it. For more information about locating client components, see Section 3.5, "Locating a Client Component on a Page."
If you have more than one of the same component on the page, your JavaScript function may need to determine which component issued the event. For example, say more than one component can open the same popup dialog, and you want that dialog aligned with the component that called it. You must know the source of the AdfLaunchPopupEvent
in order to determine where to align the popup dialog. For more information, see Section 5.3.2, "How to Return the Original Source of the Event."
It may be that your client event handler will need to work with certain attributes of a component. For example, in the File Explorer application, when users choose the About menu item in the Help menu, a dialog launches that allows users to provide feedback. The function used to open and display this dialog is also used by other dialogs, which may need to be displayed differently. Therefore, the function needs to know which dialog to display along with information about how to align the dialog. This information is carried in client attributes. Client attributes can also be used to marshall custom server-side attributes to the client. For more information, see Section 5.3.3, "How to Use Client-Side Attributes for an Event."
Some of the components propagate client-side events to the server, as shown in Table 5-3. If you do not need this extra processing, then you can cancel that propagation. For more information, see Section 5.3.5, "How to Prevent Events from Propagating to the Server."
Note: Alternatively, you can use a JSF 2.0 client behavior tag (such as |
The method
attribute of the clientListener
tag specifies the JavaScript function to call when the corresponding event is fired. The JavaScript function must take a single parameter, which is the event object.
The type
attribute of the clientListener
tag specifies the client event type that the tag will listen for, such as action
or valueChange
. Table 5-3 lists the ADF Faces client events.
The type
attribute of the clientListener
tag also supports client event types related to keyboard and mouse events. Table 5-4 lists the keyboard and mouse event types.
Example 5-4 shows the code used to invoke the showHelpFileExplorerPopup
function from the Explorer.js
JavaScript file.
showAboutFileExplorerPopup
function. Example 5-5 Adding Attributes
Note: If you use the |
The JavaScript method getSource()
returns the original source of a client event. For example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in Example 5-6, that could be used by multiple events to set the alignment on a given popup dialog or window, using client attributes to pass in the values. Because each event that uses the function may have different values for the attributes, the function must know which source fired the event so that it can access the corresponding attribute values (for more about using client attributes, see Section 5.3.3, "How to Use Client-Side Attributes for an Event").
Example 5-6 Finding the Source Component of a Client Event
The getSource()
method is called to determine the client component that fired the current focus event, which in this case is the popup component.
There may be cases when you want the script logic to cause some sort of change on a component. To do this, you may need attribute values passed in by the event. For example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in Example 5-7, that can be used to set the alignment on a given popup component, using client attributes to pass in the values. The attribute values are accessed by calling the getProperty
method on the source component.
Example 5-7 Attribute Values Are Accessed from JavaScript
The values are set on the source component, as shown in Example 5-8.
Example 5-8 Setting Attributes on a Component
Using attributes in this way allows you to reuse the script across different components, as long as they all trigger the same event.
There may be times when you do not want the user to be able to interact with the UI while a long-running event is processing. For example, suppose your application uses a button to submit an order, and part of the processing includes creating a charge to the user's account. If the user were to inadvertently press the button twice, the account would be charged twice. By blocking user interaction until server processing is complete, you ensure no erroneous client activity can take place.
The ADF Faces JavaScript API includes the AdfBaseEvent.preventUserInput
function. To prevent all user input while the event is processing, you can call the preventUserInput
function, and a glass pane will cover the entire browser window, preventing further input until the event has completed a roundtrip to the server.
You can use the preventUserInput
function only with custom events, events raised in a custom client script, or events raised in a custom client component's peer. Additionally, the event must propagate to the server. Example 5-9 shows how you can use preventUserInput
in your JavaScript.
Example 5-9 Blocking UI Input
By default, some client events propagate to the server once processing has completed on the client. In some circumstances, it is desirable to block this propagation. For instance, if you are using a commandButton
component to execute JavaScript code when the button is clicked, and there is no actionListener
event listener on the server, propagation of the event is a waste of resources. To block propagation to the server, you call the cancel()
function on the event in your listener. Once the cancel()
function has been called, the isCanceled()
function will return true
.
Example 5-10 shows the showAboutFileExplorerPopup
function, which cancels its propagation.
Example 5-10 Canceling a Client Event from Propagating to the Server
Canceling an event may also block some default processing. For example, canceling an AdfUIInputEvent
event for a context menu will block the browser from showing a context menu in response to that event.
The cancel()
function call will be ignored if the event cannot be canceled, which an event indicates by returning false
from the isCancelable()
function (events that cannot be canceled show "no" in the Is Cancelable column in Table 5-3). This generally means that the event is a notification that an outcome has already completed, and cannot be blocked. There is also no way to uncancel an event once it has been canceled.
Event processing in general is taken from the browser's native event loop. The page receives all DOM events that bubble up to the document, and hands them to the peer associated with that piece of DOM. The peer is responsible for creating a rich client JavaScript event object that wraps that DOM event, returning it to the page, which queues the event (for more information about peers and the ADF Faces architecture, see Chapter 3, "Using ADF Faces Architecture").
The event queue on the page most commonly empties at the end of the browser's event loop once each DOM event has been processed by the page (typically, resulting in a component event being queued). However, because it is possible for events to be queued independently of any user input (for example, poll components firing their poll event when a timer is invoked), queueing an event also starts a timer that will force the event queue to empty even if no user input occurs.
The event queue is a First-In-First-Out queue. For the event queue to empty, the page takes each event object and delivers it to a broadcast()
function on the event source. This loop continues until the queue is empty. It is completely legitimate (and common) for broadcasting an event to indirectly lead to queueing a new, derived event. That derived event will be broadcast in the same loop.
When an event is broadcast to a component, the component does the following:
DispatchComponentEvent
method. While an event is bubbling, it is delivered to the AdfUIComponent
HandleBubbledEvent
function, which offers up the event to the peer's DispatchComponentEvent
function. Note that client event listeners do not receive the event, only the peers do.
Event bubbling can be blocked by calling an event's stopBubbling()
function, after which the isBubblingStopped()
function will return true
, and bubbling will not continue. As with cancelling, you cannot undo this call.
Note: Canceling an event does not stop bubbling. If you want to both cancel an event and stop it from bubbling, you must call both functions. |
AdfUIComponent.HandleEvent
method, which adds the event to the server event queue, if the event requests it. Several components in ADF Faces are NamingContainer
components, such as pageTemplate
, subform
, table
, and tree
. When working with client-side API and events in pages that contain NamingContainer
components, you should use the findComponent()
method on the source component.
For example, because all components in any page within the File Explorer application eventually reside inside a pageTemplate
component, any JavaScript function must use the getSource()
and findComponent()
methods, as shown in Example 5-11. The getSource()
method accesses the AdfUIComponent
class, which can then be used to find the component.
Example 5-11 JavaScript Using the findComponent() Method
When you use the findComponent()
method, the search starts locally at the component where the method is invoked. For more information about working with naming containers, see Section 3.5, "Locating a Client Component on a Page."
While the clientAttribute
tag supports sending bonus attributes from the server to the client, those attributes are not synchronized back to the server. To send any custom data back to the server, use a custom event sent through the AdfCustomEvent
class and the serverListener
tag.
The AdfCustomEvent.queue()
JavaScript method enables you to fire a custom event from any component whose clientComponent
attribute is set to true
. The custom event object contains information about the client event source and a map of parameters to include on the event. The custom event can be set for immediate delivery (that is, during the Apply Request Values phase), or non-immediate delivery (that is, during the Invoke Application phase).
For example, in the File Explorer application, after entering a file name in the search field on the left, users can press the Enter key to invoke the search. As Example 5-12 shows, this happens because the inputText
field contains a clientListener
that invokes a JavaScript function when the Enter key is pressed.
Example 5-12 clientListener Invokes JavaScript Function and Causes ServerLIstener to Be Invoked
The JavaScript contains the AdfCustomEvent.queue
method that takes the event source, the string enterPressedOnSearch
as the custom event type, a null parameter map, and False
for the immediate parameter.
The inputText
component on the page also contains the following serverListener
tag:
Because the type value enterPressedOnSearch
is the same as the value of the parameter in the AdfCustomEvent.queue
method in the JavaScript, the method that resolves to the method expression #{explorer.navigatorManager.searchNavigator.searchOnEnter}
will be invoked.
To send a custom event from the client to the server, fire the client event using a custom event type, write the server listener method on a backing bean, and have this method process the custom event. Next, register the server listener with the component.
To send custom events:
AdfCustomEvent.queue()
method to provide the event source, custom event type, and the parameters to send to the server. For example, the JavaScript used to cause the pressing of the Enter key to invoke the search functionality uses the AdfCustomEvent.queue
method that takes the event source, the string enterPressedOnSearch
as the custom event type, a null parameter map, and False
for the immediate parameter, as shown in Example 5-13.
Create the server listener method on a managed bean. This method must be public and take an oracle.adf.view.rich.render.ClientEvent
object and return a void
type. Example 5-14 shows the code used in the SearchNavigatorView
managed bean that simply calls another method to execute the search and then refreshes the navigator.
Example 5-14 Server Listener Method for a Custom Client Event
Note: The Java-to-JavaScript transformation can lose type information for |
clientListener
by dragging a Client Listener from the Operations panel of the Component Palette, and dropping it as a child to the component that raises the event. Note: On the component that will fire the custom client event, the |
enterPressedOnSearch
was used in the File Explorer. clientListener
tag. enterPressedOnSearch
. In the Property Inspector, for the method
attribute, enter an expression that resolves to the method created in Step 2.
At runtime, when the user initiates the event, for example, pressing the Enter key, the client listener script executes. This script calls the AdfCustomEvent.queue()
method, and a custom event of the specified event type is queued on the input component. The server listener registered on the input component receives the custom event, and the associated bean method executes.
Marshalling and unmarshalling is the process of converting data objects of a programming language into a byte stream and back into data objects that are native to the same or a different programming language. In ADF Faces, marshalling and unmarshalling refer to transformation of data into a suitable format so that it can be optimally exchanged between JavaScript on the client end and Java on the server end. When the client is browser-based, the two common strategies for marshalling are JavaScript Object Notation (JSON) and XML. ADF Faces uses a mix of both of these strategies, with the information sent from the server to the client mostly as JSON and information sent from the client to the server as XML (for more information about JSON, see http://www.json.org
).
When you send information from JavaScript to Java, the JavaScript data objects are converted (marshalled) into XML, which is then parsed back or unmarshalled into Java objects at the server-side. For example, consider a JSF page that has a commandButton
component whose ID is cmd
. When a user clicks the commandButton
component, the client must communicate to the server that an actionEvent
has been fired by this specific commandButton
. In the requestParameter
map, the information is mapped with the key using the format event + . + id
where id
is the ID of the component. So the requestParameter
map key for the commandComponent
would be the XML string stored as the value of the key event.cmd
.
The XML fragment after marshalling in this example would be:
The m
in the example means that this should be unmarshalled into a map. The k
denotes the key and the value is of type String
. On the server side, this XML fragment is parsed into a java.util.Map
of one entry having type
(java.lang.String
) as the key and action
(java.lang.String
) as the value.
The unmarshalled information is grouped per client ID, stored in the request map, and used when the components are being decoded. So in this example, when the commandButton
is decoded, it will check for the presence of any client events using its client ID (event.cmd
) and then queue an action event if one is found (the decode behavior is implemented in the renderer hierarchy for commandButton
component).
Table 5-5 shows the mapping between corresponding JavaScript and Java types.
Table 5-5 JavaScript to Java Type Map
JavaScript Type | Java Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Marshalling from Java to JavaScript happens mostly through JSON. This type of marshalling is straightforward as JSON is the object literal notation in JavaScript. The client-components usually have their properties encoded in JSON. Consider the following example:
The second argument ({'partialSubmit':true,'useWindow':false}) is a JSON object. There is no additional unmarshalling step required at the browser end as JSON can directly be parsed into the JavaScript environment as an object.
Encoding for a table also uses JSON to pass push messages to the client. The following is an example of an envelope containing a single encoded push message:
The envelope is a JavaScript Array
with only one object, which describes the message. This message contains information about the type of change, the actual value of the data, and so on, that is then used by the client-side table peer to update the table itself.
Table 5-6 shows the mapping between corresponding Java and JavaScript types.
Table 5-6 Java to JavaScript Type Map
Java Type | JavaScript Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note that there could be some loss of information during the conversion process. For example, say you are using the following custom event to send the number 1
and the String test
, as shown in the following example:
In the server-side listener, the type of the first
parameter would become a java.lang.Double
because numbers are converted to Doubles
when going from JavaScript to Java. However, it might be that the parameter started on the server side as an int
, and was converted to a number when conversion from Java to JavaScript took place. Now on its return trip to the server, it will be converted to a Double
.
Using the ExtendedRenderKitService
class, you can add JavaScript to an event response, for example, after invoking an action method binding. It can be a simple message like sending an alert informing the user that the database connection could not be established, or a call to a function like hide()
on a popup window to programatically dismiss a popup dialog.
For example, in the File Explorer application, when the user clicks the UpOneFolder
navigation button to move up in the folder structure, the folder pane is repainted to display the parent folder as selected. The HandleUpOneFolder()
method is called in response to clicking the UpOneFolder
button event. It uses the ExtendedRenderKitService
class to add JavaScript to the response.
Example 5-15 shows the UpOneFolder
code in the page with the actionListener
attribute bound to the HandleUpOneFolder()
handler method which will process the action event when the button is clicked.
Example 5-15 Invoking a Method to Add JavaScript to a Response
Example 5-16 shows the handleUpOneFolder
method that uses the ExtendedRenderKitService
class.
Example 5-16 Adding JavaScript to a Response
ADF Faces client behavior tags provide declarative solutions to common client operations that you would otherwise have to write yourself using JavaScript, and register on components as client listeners. By using these tags instead of writing your own JavaScript code to implement the same operations, you reduce the amount of JavaScript code that needs to be downloaded to the browser.
ADF Faces provides these client behavior tags that you can use in place of client listeners:
panelDashboardBehavior
: Enables the runtime insertion of a child component into a panelDasboard
component to appear more responsive. For details, see Section 8.7.1, "How to Use the panelDashboard Component." insertTextBehavior
: Enables a command component to insert text at the cursor in an inputText
component. For details, see Section 9.3.2, "How to Add the Ability to Insert Text into an inputText Component." richTextEditorInsertBehavior
: Enables a command component to insert text (including preformatted text) at the cursor in a richTextEditor
component. For details, see Section 9.8.2, "How to Add the Ability to Insert Text into a richTextEditor Component." showPopupBehavior
: Enables a command component to launch a popup component. For details, see Section 13.4, "Invoking Popup Elements." showPrintablePageBehavior
: Enables a command component to generate and display a printable version of the page. For details, see Section 33.2, "Displaying a Page for Print." scrollComponentIntoViewBehavior
: Enables a command component to jump to a named component when clicked. For details, see Section 5.6.1, "How to Use the scrollComponentIntoViewBehavior Tag." Client behavior tags cancel server-side event delivery automatically. Therefore, any actionListener
or action
attributes on the parent component will be ignored. This cannot be disabled. If you want to also trigger server-side functionality, you should use either a client-side event (see Section 5.3, "Using JavaScript for ADF Faces Client Events"), or add an additional client listener that uses AdfCustomEvent
and af:serverListener
to deliver a server-side event (see Section 5.4, "Sending Custom Events from the Client to the Server").
Use the scrollComponentIntoViewBehavior
tag when you want the user to be able to jump to a particular component on a page. This action is similar to an anchor in HTML. For example, you may want to allow users to jump to a particular part of a page using a commandLink
component. For the richTextEditor
and inlineFrame
components, you can jump to a subcomponent. For example, Figure 5-1 shows a richTextEditor
component with a number of sections in its text. The command links below the editor allow the user to jump to specific parts of the text.
You can also configure the tag to have focus switched to the component to which the user has scrolled.
To use the scrollComponentIntoViewBehavior tag:
focus
attribute to true
if you want the component to have focus after the jump. richTextEditor
or inlineFrame
component, optionally enter a value for the subTargetId
attribute. This ID is defined in the value of the richTextEditor
or inlineFrame
component. For example, the value of the subTargetId
attribute for the scrollComponentIntoViewBehavior
tag shown in Figure 5-1 is Introduction
. The value of the richTextEditor
is bound to the property shown in Example 5-17. Note that Introduction
is the ID for the first header.
Example 5-17 subTargetId Value Defined in a Property
ADF Faces provides the poll component whose pollEvent
can be used to communicate with the server at specified intervals. For example, you might use the poll component to update an outputText
component, or to deliver a heartbeat to the server to prevent a user from being timed out of their session.
You need to create a listener for the pollEvent
that will be used to do the processing required at poll time. For example, if you want to use the poll component to update the value of an outputText
component, you would implement a pollEventListener
method that would check the value in the data source and then update the component.
You can configure the interval time to determine how often the poll component will deliver its poll event. You also configure the amount of time after which the page will be allowed to time out. This can be useful, as the polling on a page causes the session to never time out. Each time a request is sent to the server, a session time out value is written to the page to determine when to cause a session time out. Because the poll component will continually send a request to the server (based on the interval time), the session will never time out. This is expensive both in network usage and in memory.
To avoid this issue, the web.xml
configuration file contains the oracle.adf.view.rich.poll.TIMEOUT
context-parameter, which specifies how long a page should run before it times out. A page is considered eligible to time out if there is no keyboard or mouse activity. The default timeout period is set at ten minutes. So if user is inactive for 10 minutes, that is, does not use the keyboard or mouse, then the framework stops polling, and from that point on, the page participates in the standard server-side session timeout (for more information, see Section A.2.3.19, "Session Timeout Warning").
If the application does time out, when the user moves the mouse or uses the keyboard again, a new session timeout value is written to the page, and polling starts again.
You can override this time for a specific page using the poll component's timeout
attribute.
When you use the poll component, you normally also create a handler method to handle the functionality for the polling event.
Before You Begin
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 5.7, "Using Polling Events to Update Pages"
To use a poll component:
In a managed bean, create a handler for the poll event. For more information about managed beans, see Section 2.6, "Creating and Using Managed Beans"
web.xml
file, expand the Other section and set Timeout to the amount of time in milliseconds after which the page will stop polling and the session will time out. This chapter describes how to add conversion and validation capabilities to ADF Faces input components in your application. It also describes how to handle and display any errors, including those not caused by validation.
This chapter includes the following sections:
ADF Faces input components support conversion capabilities. A web application can store data of many types, such as int
, long
, and date
in the model layer. When viewed in a client browser, however, the user interface has to present the data in a manner that can be read or modified by the user. For example, a date field in a form might represent a java.util.Date
object as a text string in the format mm/dd/yyyy
. When a user edits a date field and submits the form, the string must be converted back to the type that is required by the application. Then the data is validated against any rules and conditions. Conversely, data stored as something other than a String
type can be converted to a String
for display and updating. Many components, such as af:inputDate,
automatically provide a conversion capability.
ADF Faces input components also support validation capabilities. If the required
attribute of an input component is set to true
you can set one or more validator attributes or you can use the ADF Faces validator components. In addition, you can create your own custom validators to suit your business needs.
Validators and converters have a default hint message that is displayed to users when they click in the associated field. For converters, the hint usually tells the user the correct format to use for input values, based on the given pattern. For validators, the hint is used to convey what values are valid, based on the validation configured for the component. If conversion or validation fails, associated error messages are displayed to the user. These messages can be displayed in dialogs, or they can be displayed on the page itself next to the component whose conversion or validation failed. For more information about displaying messages in an ADF Faces application, see Chapter 17, "Displaying Tips, Messages, and Help."
When a form with data is submitted, the browser sends a request value to the server for each UI component whose editable value
attribute is bound. Request values are decoded during the JSF Apply Request Values phase and the decoded value is saved locally on the component in the sumbittedValue
attribute. If the value requires conversion (for example, if it is displayed as a String
type but stored as a DateTime
object), the data is converted to the correct type during the Process Validation phase on a per-UI-component basis.
If validation or conversion fails, the lifecycle proceeds to the Render Response phase and a corresponding error message is displayed on the page. If conversion and validation are successful, then the Update Model phase starts and the converted and validated values are used to update the model.
When a validation or conversion error occurs, the component whose validation or conversion failed places an associated error message in the queue and invalidates itself. The current page is then redisplayed with an error message. ADF Faces components provide a way of declaratively setting these messages.
For detailed information about how conversion and validation works in the JSF Lifecycle, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."
A web application can store data of many types (such as int
, long
, date
) in the model layer. When viewed in a client browser, however, the user interface has to present the data in a manner that can be read or modified by the user. For example, a date field in a form might represent a java.util.Date
object as a text string in the format mm/dd/yyyy
. When a user edits a date field and submits the form, the string must be converted back to the type that is required by the application. Then the data is validated against any rules and conditions. You can set only one converter on a UI component.
When you create an af:inputText
component and set an attribute that is of a type for which there is a converter, JDeveloper automatically adds that converter's tag as a child of the input component. This tag invokes the converter, which will convert the String
type entered by the user back into the type expected by the object.
The JSF standard converters, which handle conversion between String
types and simple data types, implement the javax.faces.convert.Converter
interface. The supplied JSF standard converter classes are:
BigDecimalConverter
BigIntegerConverter
BooleanConverter
ByteConverter
CharacterConverter
DateTimeConverter
DoubleConverter
EnumConverter
FloatConverter
IntegerConverter
LongConverter
NumberConverter
ShortConverter
Table 6-1 shows the converters provided by ADF Faces.
Table 6-1 ADF Faces Converters
Converter | Tag Name | Description |
---|---|---|
|
| Converts |
|
| Converts |
|
| Converts |
As with validators, the ADF Faces converters are also run on the client side.
If no converter is explicitly added, ADF Faces will attempt to create a converter based on the data type. Therefore, if the value is bound to any of the following types, you do not need to explicitly add a converter:
java.util.Date
java.util.Color
java.awt.Color
java.lang.Number
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.Byte
java.lang.Float
java.lang.Double
Unlike the converters listed in Table 6-1, the JavaScript-enabled converters are applied by type
and used instead of the standard ones, overriding the class
and id
attributes. They do not have associated tags that can be nested in the component.
Some oracle.jbo.domain
datatypes are automatically converted. For some oracle.jbo.domain
datatypes that are not handled automatically, you can add a oracle.jbo.domain
converter to your component as described in Section 6.3.4, "How to Add oracle.jbo.domain Converters."
You can also manually insert a converter into a UI component.
To add ADF Faces converters that have tags:
You can set multiple patterns for some ADF Faces converters. For more information, see Section 6.3.2, "How to Set Attributes on a Standard ADF Faces Converter".
ADF Faces lets you customize the detail portion of a conversion error message. By setting a value for a MessageDetailxyz attribute, where xyz is the conversion error type (for example, MessageDetailconvertDate
), ADF Faces displays the custom message instead of a default message, if conversion fails. For more information about creating messages, see Chapter 17, "Displaying Tips, Messages, and Help."
Patterns specify the format of data accepted for conversion. Multiple patterns allow for more than one format. For example, a user could enter dates using a slash (/) or hyphen (-) as a separator. Not all converters support multiple patterns, although pattern matching is flexible and multiple patterns may not be needed.
Example 6-1 illustrates the use of a multiple pattern for the af:convertColor
tag in which "255-255-000" and "FFFF00" are both acceptable values.
Example 6-1 af:convertColor Multiple Patterns
Example 6-2 illustrates the use of an af:convertDateTime
tag in which "6/9/2007" and "2007/9/6" are both acceptable values.
Example 6-2 af:convertDateTime Multiple Patterns
Example 6-3 illustrates an af:convertNumber
tag with the type
attribute set to currency
to accepts "$78.57" and "$078.57" as values for conversion.
When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject()
method to convert the String
value to the required object type. When there is not an attached converter and if the component is bound to a bean property in the model, then ADF checks the model's data type and attempts to find the appropriate converter. If conversion fails, the component's value
attribute is set to false
and JSF adds an error message to a queue that is maintained by FacesContext
. If conversion is successful and there are validators attached to the component, the converted value is passed to the validators. If no validators are attached to the component, the converted value is stored as a local value that is later used to update the model.
For oracle.jbo.domain
datatypes that are not automatically converted, you will need to reference the oracle.jbo.domain
converter in your component. These converters are automatically registered and do not need a tag.
Table 6-2 lists the oracle.jbo.domain
datatype converters.
Table 6-2 oracle.jbo.domain Datatype Converters
oracle.jbo.domain Converter | Description |
---|---|
| Handles |
| Handles generic |
To add a oracle.jbo.domain
converter, you can add the converter to the converter
attribute as shown in Example 6-4.
Example 6-4 Adding genericDomain Converter using the converter attribute
Or you can add the f:converter
tag and reference the converter using the converterId
attribute as shown in Example 6-5.
You can create your own converters to meet your specific business needs. You can create custom JSF converters that run on the server-side using Java, and then also create a JavaScript version that can run on the client-side. However, unlike creating custom validators, you can create only converter classes. You cannot add a method to a backing bean to provide conversion.
Creating a custom converter requires writing the business logic for the conversion by creating an implementation of the Converter
interface that contains the getAsObject()
and getAsString()
methods, and then registering the custom converter with the application. You then use the f:converter
tag and set the custom converter as a property of that tag, or you can use the converter
attribute on the input component to bind to that converter.
You can also create a client-side version of the converter. ADF Faces client-side converters work in the same way standard JSF conversion works on the server, except that JavaScript is used on the client. JavaScript converter objects can throw ConverterException
exceptions and they support the getAsObject()
and getAsString()
methods.
To create a custom JSF converter:
javax.faces.converter.Converter
interface. The implementation must contain a public no-args
constructor, a set of accessor methods for any attributes, and getAsObject
and getAsString
methods to implement the Converter
interface. The getAsObject()
method takes the FacesContext
instance, the UI component, and the String
value to be converted to a specified object, for example:
The getAsString()
method takes the FacesContext
instance, the UI component, and the object to be converted to a String
value. For example:
For more information about these classes, refer to the API documentation or visit http://download.oracle.com/docs/cd/E17410_01/javaee/index.html
.
javax.faces.convert.ConverterException
to throw the appropriate exceptions and javax.faces.application.FacesMessage
to generate the corresponding error messages. For more information about the Converter
interface and the FacesMessage
error handlers, see the API documentation for javax.faces.convert.ConverterException
and javax.faces.application.FacesMessage
, or visit http://download.oracle.com/docs/cd/E17410_01/javaee/index.html
. Serializable
interface or the StateHolder
interface, and the saveState(FacesContext)
and restoreState(FacesContext, Object)
methods of the StateHolder
interface. For more information, see the Javadoc for the StateHolder
interface of javax.faces.component
package. faces-config.xml
file. faces-config.xml
file and select the Overview tab in the editor window. The faces-config.xml
file is located in the <View_Project>/WEB-INF
directory in the JDeveloper Application Navigator. To create a client-side version of the converter:
org.apache.myfaces.trinidad.convert.ClientConverter
, which has two methods. The first method is getClientScript()
, which returns an implementation of the JavaScript Converter
object. The second method is getClientConversion()
, which returns a JavaScript constructor that is used to instantiate an instance of the converter. Example 6-6 Interface Converter
The TrConverter
interface can throw a TrConverterException
exception, which should contain a TrFacesMessage
error message. Example 6-7 shows the signature for TrFacesMessage
and Example 6-8 shows the signature for TrFacesException
.
Example 6-7 TrFacesMessage Signature
Example 6-8 TrFacesException Signature
Example 6-9 shows an example of a customer converter, SimpleNumberConverter, written in Java that will run on the server. The custom converter has to implement the ClientConverter
interface.
Example 6-9 Custom Converter SimpleNumberConverter in Java
You must also create a JavaScript implementation of the custom converter for the client, as shown in Example 6-10.
Example 6-10 Client-side Implementation of SimpleNumberConverter in JavaScript
To use a custom converter on a JSF page:
converter
attribute of the input component. Note: If a custom converter is registered in an application under a class for a specific data type, whenever a component's value references a value binding that has the same type as the custom converter object, JSF will automatically use the converter of that class to convert the data. In that case, you do not need to use the <af:inputText value="#{myBean.myProperty}"/> The |
When you use a custom converter, the application accesses the converter class referenced in the converter
attribute, and executes the getAsObject
or getAsString
method as appropriate. These methods access the data from the component and execute the conversion logic.
You can add validation so that when a user edits or enters data in a field and submits the form, the data is validated against any set rules and conditions. If validation fails, the application displays an error message. For example, in Figure 6-1 a specific date range for user input with a message hint is set by the af:validateDateTimeRange
component and an error message is displayed in the message popup window when an invalid value is entered.
On the view layer use ADF Faces validation when you want client-side validation. All validators provided by ADF Faces have a client-side peer. Many components have attributes that provide validation. For information, see Section 6.5.1.2, "Using Validation Attributes." In addition, ADF Faces provides separate validation classes that can be run on both the client and the server. For details, see Section 6.5.1.3, "Using ADF Faces Validators." You can also create your own validators. For information about custom validators, see Section 6.6.3, "How to Create a Custom JSF Validator."
Set ADF Faces validation on the input component and an error message is displayed inline or in a popup window on the page. For more information about displaying messages created by validation errors, see Chapter 17, "Displaying Tips, Messages, and Help."
By default, ADF Faces syntactic and semantic validation occurs on both the client and server side. Client-side validation allows validators to catch and display data without requiring a round-trip to the server.
ADF Faces provides the following types of validation:
required
attribute on ADF Faces input components to specify whether or not a value must be supplied. When the required
attribute is set to true
, the component must have a value. Otherwise the application displays an error message. For more information, see Section 6.5.1.2, "Using Validation Attributes." Many ADF Faces UI components have attributes that provide simple validation. For example, the af:chooseDate
component is used in conjunction with an af:inputDate
component for easy date selection. The af:chooseDate
component has maxValue
and minValue
attributes to specify the maximum and minimum number allowed for the Date value.
For additional help with UI component attributes, in the Property Inspector, right-click the attribute name and choose Help.
ADF Faces Validators are separate classes that can be run on the server or client. Table 6-3 describes the validators and their logic.
Table 6-3 ADF Faces Validators
Validator | Tag Name | Description |
---|---|---|
|
| Validates the byte length of strings when encoded. The |
|
| Validates that the entered date is valid with some given restrictions. |
|
| Validates that the entered date is within a given range. You specify the range as attributes of the validator. |
|
| Validates that a component value is within a specified range. The value must be convertible to a floating-point type. |
|
| Validates that the length of a component value is within a specified range. The value must be of type |
|
| Validates that a component value is within a specified range. The value must be any numeric type or |
|
| Validates the data using Java regular expression syntax. |
Note: To register a custom validator on a component, use a standard JSF |
To add ADF Faces validators:
ADF Faces lets you customize the detail portion of a validation error message. By setting a value for a MessageDetailxyz attribute, where xyz is the validation error type (for example, MessageDetailmaximum
), ADF Faces displays the custom message instead of a default message, if validation fails.
When the user submits the page, ADF Faces checks the submitted value and runs conversion on any non-null value. The converted value is then passed to the validate()
method. If the value is empty, the required
attribute of the component is checked and an error message is generated if indicated. If the submitted value is non-null, the validation process continues and all validators on the component are called in order of their declaration.
Note: ADF Faces provides extensions to the standard JSF validators, which have client-side support. |
ADF Faces validation is performed during the Process Validations phase. If any errors are encountered, the components are invalidated and the associated messages are added to the queue in the FacesContext
instance. Once all validation is run on the components, control passes to the model layer, which runs the Validate Model Updates phase. As with the Process Validations phase, if any errors are encountered, the components are invalidated and the associated messages are added to the queue in the FacesContext
instance.
The lifecycle then goes to the Render Response phase and redisplays the current page. ADF Faces automatically displays an error icon next to the label of any input component that generated an error, and displays the associated messages in a popup window unless the af:message
component inline
attribute is set to true
. Figure 6-2 shows a server-side validation error.
You can set zero or more validators on a UI component. You can set the required
attribute and use validators on a component. However, if you set the required
attribute to true
and the value is null
or a zero-length string, the component is invalidated and any other validators registered on the component are not called.
This combination might be an issue if there is a valid case for the component to be empty. For example, if the page contains a Cancel button, the user should be able to click that button and navigate off the page without entering any data. To handle this case, you set the immediate
attribute on the Cancel button's component to true
. This attribute allows the action to be executed during the Apply Request Values phase. Then the default JSF action listener calls FacesContext.renderResponse()
, thus bypassing the validation whenever the action is executed. For more information see Chapter 4, "Using the JSF Lifecycle with ADF Faces."
You can add your own validation logic to meet your specific business needs. If you want custom validation logic for a component on a single page, you can create a validation method on the page's backing bean.
If you want to create logic that will be reused by various pages within the application, or if you want the validation to be able to run on the client side, you should create a JSF validator class. You can then create an ADF Faces version, which will allow the validator to run on the client.
When you want custom validation for a component on a single page, create a method that provides the required validation on a backing bean.
To add a backing bean validation method:
When you click OK in the dialog, JDeveloper adds a skeleton method to the code and opens the bean in the source editor.
javax.faces.validator.ValidatorException
exception to throw the appropriate exceptions and the javax.faces.application.FacesMessage
error message to generate the corresponding error messages. For more information about the Validator
interface and FacesMessage
, see the API documentation for javax.faces.validator.ValidatorException
and javax.faces.application.FacesMessage
, or visit http://download.oracle.com/docs/cd/E17410_01/javaee/index.html
. When you create a validation method, JDeveloper adds a skeleton method to the managed bean you selected. Example 6-11 shows the code JDeveloper generates.
Example 6-11 Managed Bean Code for a Validation Method
When the form containing the input component is submitted, the method to which the validator
attribute is bound is executed.
Creating a custom validator requires writing the business logic for the validation by creating a Validator
implementation of the interface, and then registering the custom validator with the application. You can also create a tag for the validator, or you can use the f:validator
tag and the custom validator as an attribute for that tag.
You can then create a client-side version of the validator. ADF Faces client-side validation works in the same way that standard validation works on the server, except that JavaScript is used on the client. JavaScript validator objects can throw ValidatorExceptions
exceptions and they support the validate()
method.
To create a custom JSF validator:
javax.faces.validator.Validator
interface. The implementation must contain a public no-args
constructor, a set of accessor methods for any attributes, and a validate
method to implement the Validator
interface. For more information about these classes, refer to the API documentation or visit http://download.oracle.com/docs/cd/E17410_01/javaee/index.html
.
javax.faces.validate.ValidatorException
exception to throw the appropriate exceptions and the javax.faces.application.FacesMessage
error message to generate the corresponding error messages. For more information about the Validator
interface and FacesMessage
, see the API documentation for javax.faces.validate.ValidatorException
and javax.faces.application.FacesMessage
, or visit http://download.oracle.com/docs/cd/E17410_01/javaee/index.html
. Serializable
interface, or the StateHolder
interface, and the saveState(FacesContext)
and restoreState(FacesContext, Object)
methods of the StateHolder
interface. For more information, see the Javadoc for the StateHolder
interface of the javax.faces.component
package. faces-config.xml
file. faces-config.xml
file and select the Overview tab in the editor window. The faces-config.xml
file is located in the <View_Project>/WEB-INF
directory. F1
for additional help in registering the validator. To create a client-side version of the validator:
org.apache.myfaces.trinidad.validator.ClientValidator
, which has two methods. The first method is getClientScript()
, which returns an implementation of the JavaScript Validator
object. The second method is getClientValidation()
, which returns a JavaScript constructor that is used to instantiate an instance of the validator. Example 6-12 shows a validator in Java.
Example 6-12 Java Validator
The Java validator calls the JavaScript validator shown in Example 6-13.
To use a custom validator on a JSF page:
Example 6-14 shows a custom validator tag nested inside an inputText
component. Note that the tag attributes are used to provide the values for the validator's properties that were declared in the faces-config.xml
file.
Example 6-14 A Custom Validator Tag on a JSF Page
To use a custom validator without a custom tag:
To use a custom validator without a custom tag, nest the validator's ID (as configured in faces-config.xml
file) inside the f:validator
tag. The validator's ID attribute supports EL expression such that the application can dynamically determine the validator to use.
JDeveloper inserts code on the JSF page that makes the validator ID a property of the f:validator
tag.
Example 6-15 shows the code on a JSF page for a validator using the f:validator
tag.
When you use a custom JSF validator, the application accesses the validator class referenced in either the custom tag or the f:validator
tag and executes the validate()
method. This method accesses the data from the component in the current FacesContext
and executes logic against it to determine if it is valid. If the validator has attributes, those attributes are also accessed and used in the validation routine. Like standard validators, if the custom validation fails, associated messages are placed in the message queue in the FacesContext
instance.
This chapter describes how to use the partial page render features provided with ADF Faces components to rerender areas of a page without rerendering the whole page.
This chapter includes the following sections:
AJAX (Asynchronous JavaScript and XML) is a web development technique for creating interactive web applications, where web pages appear more responsive by exchanging small amounts of data with the server behind the scenes, without the whole web page being rerendered. The effect is to improve a web page's interactivity, speed, and usability.
With ADF Faces, the feature that delivers the AJAX partial page render behavior is called partial page rendering (PPR). PPR allows certain components on a page to be rerendered without the need to rerender the entire page. For example, an output component can display what a user has chosen or entered in an input component, or a command link or button can cause another component on the page to be rerendered, without the whole page rerendering.
In order for PPR to work, boundaries must be set on the page that allow the lifecycle to run just on components within the boundary. In order to determine the boundary, the framework must be notified of the root component to process. The root component can be identified in two ways:
showDetail
component (see Section 8.8, "Displaying and Hiding Contents Dynamically"), indicates that the showDetail
component is a root. When the showDetail
component is expanded or collapsed, only that component goes through the lifecycle. Other examples of events identifying a root component are the disclosure event when expanding nodes on a tree, or the sort event on a table. In addition to built-in PPR functionality, you can configure components to use cross-component rendering, which allows you to set up dependencies so that one component acts as a trigger and another as the listener. When an event occurs on the trigger component, the lifecycle is run only on listener components and child components to the listener, and only the listener components and their children are rerendered. Cross-component rendering can be implemented declaratively. However, by default, all events from a trigger component will cause PPR (note that some components, such as table, trigger partial targets on only a subset of their events). For these cases where you need strict control over the event that launches PPR, or for cases where you want to use some logic to determine the target, you can implement PPR programatically.
Tip: If your application uses the Fusion technology stack, you can enable the automatic partial page rendering feature on any page. This causes any components whose values change as a result of backend business logic to be automatically rerendered. For more information, see the "What You May Need to Know About Automatic Partial Page Rendering" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Additionally, ADF Faces applications can use PPR for navigation. In standard JSF applications, the navigation from one page to the next requires the new page to be rendered. When using AJAX-like components, this can cause overhead because of the time needed to download the different JavaScript libraries and style sheets. To avoid this costly overhead, the ADF Faces architecture can optionally simulate full-page transitions while actually remaining on a single page, thereby avoiding the need to reload JavaScript code and skin styles.
Note: The browser must have JavaScript enabled for PPR to work. |
Using the simplest form of cross-component rendering, one component, referred to as the target component, is rerendered when any event occurs on another component, referred to as the trigger component.
For example, as shown in Figure 7-1, the File Explorer application contains a table that shows the search results in the Search panel. This table (and only this table) is rerendered when the search button is activated. The search button is configured to be the trigger and the table is configured to be the target.
Note: In some cases, you may want a component to be rerendered only when a particular event is fired, not for every event associated with the trigger component, or you may want some logic to determine whether a component is to be rerendered. In these cases, you can programatically enable PPR. For more information, see Section 7.3, "Enabling Partial Page Rendering Programmatically." |
Trigger components must inform the framework that a PPR request has occurred. On command components, this is achieved by setting the partialSubmit
attribute to true
. Doing this causes the command component to fire a partial page request each time it is clicked.
For example, say a page includes an inputText
component, a commandButton
component, and an outputText
component. When the user enters a value for the inputText
component, and then clicks the commandButton
component, the input value is reflected in the outputText
component. You would set the partialSubmit
attribute to true
on the commandButton
component.
However, components other than command components can trigger PPR. ADF Faces input and select components have the ability to trigger partial page requests automatically whenever their values change. To make use of this functionality, use the autoSubmit
attribute of the input or select component so that as soon as a value is entered, a submit occurs, which in turn causes a valueChangeEvent
event to occur. It is this event that notifies the framework to execute a PPR, as long as a target component is set. In the previous example, you could delete the commandButton
component and instead set the inputText
component's autoSubmit
attribute to true
. Each time the value changes, a PPR request will be fired.
Tip: The |
Once PPR is triggered, any component configured to be a target will be rerendered. You configure a component to be a target by setting the partialTriggers
attribute to the relative ID of the trigger component. For information about relative IDs, see Section 3.5, "Locating a Client Component on a Page."
In the example, to update the outputText
in response to changes to the inputText
component, you would set its partialTriggers
attribute to the inputText
component's relative ID.
Note: Certain events on components trigger PPR by default, for example the |
Note: If your trigger component is an |
For a component to be rerendered based on an event caused by another component, it must declare which other components are the triggers.
To enable a component to rerender another component:
id
attribute if it is not already set. Note that the value must be unique within that component's naming container. If the component is not within a naming container, then the ID must be unique to the page. For more information about naming containers, see Section 3.5, "Locating a Client Component on a Page." Tip: JDeveloper automatically assigns component IDs. You can safely change this value. A component's ID must be a valid XML name, that is, you cannot use leading numeric values or spaces in the ID. JSF also does not permit colons (:) in the ID. |
partialSubmit
attribute to true
. autoSubmit
attribute of the component to true
. Note: Set the |
partialTriggers
attribute and choose Edit. Tip: The |
Example 7-1 shows a commandLink
component configured to execute PPR.
Example 7-1 Code for Enabling Partial Page Rendering Through a Partial Submit
Example 7-2 shows an outputText
component that will be rerendered when the command link with ID deleteFromCart
in Example 7-1 is clicked.
Example 7-2 Code for Partial Page Rendering Triggered by Another Component
Tip: You can use PPR to prevent components from being validated on a page. For more information, see Section 4.3, "Using the Optimized Lifecycle." |
In an ADF Faces application, because some components use PPR (either implicitly or because they have been configured to listen for a partial trigger), what happens when a user clicks the browser's back button is slightly different than in an application that uses simple JSF components.
In an application that uses simple JSF components, when the user clicks the browser's back button, the browser returns the page to the state of the DOM (document object model) as it was when last rendered, but the state of the JavaScript is as it was when the user first entered the page.
For example, suppose a user visited PageA. After the user interacts with components on the page, say a PPR event took place using JavaScript. Let's call this new version of the page PageA1. Next, say the user navigates to PageB, then clicks the browser back button to return to PageA. The user will be shown the DOM as it was on PageA1, but the JavaScript will not have run, and therefore parts of the page will be as they were for PageA. This might mean that changes to the page will be lost. Refreshing the page will run the JavaScript and so return the user to the state it was in PageA1. In an application that uses ADF Faces, the refresh is not needed; the framework provides built-in support so that the JavaScript is run when the back button is clicked.
Screen readers do not reread the full page in a partial page request. PPR causes the screen reader to read the page starting from the component that fired the partial page request. You should place the target components after the component that triggers the partial request; otherwise, the screen reader would not read the updated target components.
For components such as calendars that have many associated events, PPR will happen any time any event is triggered, causing any component with the calendar as a partial trigger to be rerendered with each event. If you want the target to be rerendered only for certain events, or if you want a target to be rerendered based on some other logic, you can enable partial page rendering programmatically.
For example, in the ADF Faces calendar demo, if a user attempts to change the duration of an activity that no longer exists in the model, the calendar needs to be refreshed to display without the activity (the calendar automatically refreshes itself if a valid activity's duration is changed). In this example, the activityDurationChangeListener
method sets the calendar as a partial target whenever the activityDurationChangeEvent
is invoked, and the activity
object is null.
Before you begin:
Create a managed bean that will contain the listener method. For more information, see Section 2.6, "Creating and Using Managed Beans."
How to enable PPR programatically:
Note: You must set the |
binding
attribute so that the managed bean can work with an instance of the target component. To do so: Binding
to an EL expression that resolves to the target component on the managed bean. In the above example, you might set Binding
to:
Where cal1
is the ID of the target component, in this case, the calendar
component.
calendar
component. In the managed bean, create a listener method for the event on the trigger component that should cause the target component to be rerendered.
Use the addPartialTarget()
method to add the component (using its ID) as a partial target for an event, so that when that event is triggered, the partial target component is rerendered. Using this method associates the component you want to have rerendered with the event that is to trigger the rerendering.
Example 7-4 shows how you might create a ActivityDurationChangeEvent
listener that adds the calendar as a target.
Example 7-4 Rerendering Using Partial Targets
Instead of performing a full page transition in the traditional way, you can configure an ADF Faces application to have navigation triggered through a partial page rendering request. The new page is sent to the client using partial page rendering. Partial page navigation is disabled by default.
In order to keep track of location (for example, for bookmarking purposes, or when a refresh occurs), the framework makes use of the hash portion of the URL. This portion of the URL contains the actual page being displayed in the browser.
You can turn partial page navigation on by setting the oracle.adf.view.rich.pprNavigation.OPTIONS
context parameter in the web.xml
file to on
.
To use partial page navigation:
web.xml
file. oracle.adf.view.rich.prNavigation.OPTIONS
parameter to one of the following: on
: Enables partial page navigation. Note: If you set the parameter to |
onWithForcePPR
: Enables partial page navigation and notifies the framework to use the PPR channel for all action events, even those that do not result in navigation. Since partial page navigation requires that the action event be sent over PPR channel, use this option to easily enable partial page navigation. When partial page navigation is used, normally only the visual contents of the page are rerendered (the header content remains constant for all pages). However, the entire document will be rerendered when an action on the page is defined to use full page submit and also when an action does not result in navigation.
Before using PPR navigation, you should be aware of the following:
AdfPage.getPageProperty()
and AdfPage.setPageProperty()
methods to store these objects. Part III contains the following chapters:
This chapter describes how to use several of the ADF Faces layout components to organize content on web pages.
This chapter includes the following sections:
ADF Faces provides a number of layout components that can be used to arrange other components on a page. Usually, you begin building your page with these components. You then add components that provide other functionality (for example rendering data or rendering buttons) either inside facets or as child components to these layout components.
Tip: You can create page templates that allow you to design the layout of pages in your application. The templates can then be used by all pages in your application. For more information, see Chapter 19, "Creating and Reusing Fragments, Page Templates, and Components." |
In addition to layout components that simply act as containers, ADF Faces also provides interactive layout components that can display or hide their content, or that provide sections, lists, or empty space. Some layout components also provide geometry management functionality, such as stretching their contents to fit the browser windows as the window is resized, or the capability to be stretched when placed inside a component that stretches. For more information about stretching and other geometry management functionality of layout components, see Section 8.2.1, "Geometry Management and Component Stretching."
Table 8-1 briefly describes each of the ADF Faces layout components.
Table 8-1 ADF Faces Layout Components
Component | Description | Can Stretch Children | Can Be Stretched | |
---|---|---|---|---|
Page Management Components | ||||
| Creates each of the standard root elements of an HTML page: | X | ||
| Creates an HTML | |||
Page Layout Containers | ||||
| Contains | X | X (when the | |
| Divides a region into two parts (| X | X (when the | |
| Provides a columnar display of child components (usually | X | X (when the | |
| Can have child components, which are placed in its center, and also contains 12 facets along the border where additional components can be placed. These will surround the center. For more information, see Section 8.5, "Arranging Page Contents in Predefined Fixed Areas." | |||
| Positions input form controls, such as | |||
Components with Show/Hide Capabilities | ||||
| Can hide or display contents below the header. Often used as a child to the | X (if the | X (if the | |
| Used to hold the content for the different panes of the | X (if it contains a single child component) | ||
| Titled box that can contain child components. Has a toolbar facet. For more information, see Section 8.8, "Displaying and Hiding Contents Dynamically." | X | ||
| Used in conjunction with | X (when the | ||
| Used in conjunction with If you want the tabs to be used in conjunction with navigational hierarchy, for example each tab is a different page or region that contains another set of navigation items, you may instead want to use a | X (when the | ||
| Hides or displays content through a toggle icon. For more information, see Section 8.8, "Displaying and Hiding Contents Dynamically." | |||
Miscellaneous Containers | ||||
| Contains child components and provides a header that can include messages, toolbars, and help topics. For more information, see Section 8.10, "Displaying Items in a Static Box." | X (if the | X (if the | |
| Used in conjunction with collection components such as | X (only a single table, tree, or tree table) | X | |
| Creates a container component whose facets use style themes to apply a bordered look to its children. This component typically acts as a look and feel transition between areas on a page. For example, a page that has a dark background for its template can use the decorative box to transition to a white background for its main area. For more information, see Section 8.10, "Displaying Items in a Static Box." | X (in the Center facet) | X (when the | |
| Creates an inline | X | ||
| Creates a series of navigation items representing one level in a navigation hierarchy. For more information, see Section 18.5, "Using Navigation Items for a Page Hierarchy." | X (if configured to display tabs) | ||
| Renders each child component as a list item and renders a bullet next to it. Can be nested to create hierarchical lists. For more information, see Section 8.11, "Displaying a Bulleted List in One or More Columns." | |||
| Displays child components inside a popup window. For more information, see Section 13.2, "Declaratively Creating Popup Elements." | |||
| Displays child toolbar and menu components together. For more information, see Section 14.3, "Using Toolbars." | |||
Grouping Containers | ||||
| Groups child components either vertically or horizontally. Used in facets when more than one component is to be contained in a facet. For more information, see Section 8.12, "Grouping Related Items." | X (only if set to scroll or vertical layout) | ||
| Groups child components without regard to layout unless handled by the parent component of the group. Used in facets when more than one component is to be contained in a facet. For more information, see Section 8.12, "Grouping Related Items." | |||
Spacing Components | ||||
| Creates a horizontal line between items. For more information, see Section 8.13, "Separating Content Using Blank Space or Lines." | |||
| Creates an area of blank space. For more information, see Section 8.13, "Separating Content Using Blank Space or Lines." |
JSF pages that use ADF Faces components must have the document
tag enclosed within a view
tag. All other components that make up the page then go in between <af:document>
and </af:document>
. The document
tag is responsible for rendering the browser title text, as well as the invisible page infrastructure that allows other components in the page to be displayed. For example, at runtime, the document
tag creates the root elements for the client page. In HTML output, the standard root elements of an HTML page, namely, <html>
, <head>
, and <body>
, are generated.
By default, the document
tag is configured to allow capable components to stretch to fill available browser space. You can further configure the tag to allow a specific component to have focus when the page is rendered, or to provide messages for failed connections or warnings about navigating before data is submitted. For more information, see Section 8.2.5, "How to Configure the document Tag."
Typically, the next component used is the ADF Faces form
component. This component creates an HTML form
element that can contain controls that allow a user to interact with the data on the page.
Note: Even though you can have multiple HTML forms on a page, you should have only a single ADF Faces |
JDeveloper automatically inserts the view
, document,
and form
tags for you, as shown in Example 8-1. For more information, see Section 2.4, "Creating a View Page."
Example 8-1 Initial JSF Page Created by JDeveloper Wizard
Once those tags are placed in the page, you can use the layout components to control how and where other components on the page will render. The component that will hold all other components is considered the root component. Which component you choose to use as the root component depends on whether you want the contained components to display their contents so that they stretch to fit the browser window, or whether you want the contents to flow, using a scrollbar to access any content that may not fit in the window. For more information about stretching and flowing, see Chapter 8, "Geometry Management and Component Stretching."
Tip: Instead of creating your layout yourself, you can use JDeveloper's quick layout templates, which provide correctly configured components that will display your page with the layout you want. For more information, see Section 8.2.3, "Using Quick Start Layouts." |
Geometry management is the process by which the user, parent components, and child components negotiate the actual sizes and locations of the components in an application. At the heart of the RCF geometry management solution is a resize notification mechanism that allows components that support geometry management to be notified of browser resize activity. The following scenarios trigger the notification:
panelSplitter
), are resized by the user. By default, the root component will stretch automatically to consume the browser's viewable area, provided that component supports geometry management and therefore can stretch its child components. Examples of geometry management components are panelStretchLayout
and panelSplitter
.
Note: The framework does not consider popup dialogs, popup windows, or non-inline messages as root components. If a |
When the user resizes the browser window, and when there is a single maximized root visual component inside of the document
component, that visual root component will also resize along with the browser window. If the root component supports stretching its child components (and they in turn support being stretched), the size of the child components will also recompute, and so on down the component hierarchy until a flowing layout area is reached; that is, an area that does not support stretching of its child components. You do not have to write any code to enable the stretching.
As shown in Table 8-1, the panelStretchLayout
, panelSplitter
, and panelDashboard
components are components that can be stretched and can also stretch their child components. Additionally, when the showDetailItem
component is used as a direct child of the panelAccordion
or panelTabbed
component, the contents in the showDetail
Item
component can be stretched. Therefore, the panelStretchLayout
, panelSplitter
, panelDashboard
, panelAccordion
with a showDetailItem
component, and a panelTabbed
with a showDetailItem
component, are the components you should use as root components when you want to make the contents of the page fill the browser window.
For example, Figure 8-1 shows a table placed in the center
facet of the panelStretchLayout
component. The table stretches to fill the browser space. When the entire table does not fit in the browser window, scrollbars are added in the data body section of the table.
Figure 8-2 shows the same table, but nested inside a panelGroupLayout
component, which cannot stretch its child components (for clarity, a dotted red outline has been placed around the panelGroupLayout
component). The table component displays only a certain number of columns and rows, determined by properties on the table.
Performance Tip: The cost of geometry management is directly related to the complexity of child components. Therefore, try minimizing the number of child components that are under a parent geometry-managed component. |
Even though you choose a component that can stretch its child components, only the following components will actually stretch:
inputText
(when configured to stretch) decorativeBox
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
panelDashboard
(when configured to stretch) panelGroupLayout
(with the layout
attribute set to scroll
or vertical
) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following layout components cannot be stretched when placed inside a facet of a component that stretches its child components:
panelBorderLayout
panelFormLayout
panelGroupLayout
(with the layout
attribute set to default
or horizontal
) panelHeader
panelLabelAndMessage
panelList
showDetail
showDetailHeader
tableLayout
(MyFaces Trinidad component) Because these components cannot be stretched, you cannot place them in a facet of any component that stretches its child components. So if you want to use one of these components within the facet of component that does stretch its child components, you must wrap it in a component that can be stretched, but one that does not stretch its child components. If you do not, you may see unexpected results when the component renders.
For example, suppose you have a panelStretchLayout
as the first component on your page. You then add a panelSplitter
component that is configured to be stretched. Now to the first facet of the panelSplitter
component, say you add a panelGroupLayout
component with its layout
attribute set to scroll
(which means it can stretch), and inside that, you add a panelCollection
component, and then finally a table
component.
To the second facet of the panelSplitter
, suppose you add just the panelCollection
and table
components, as shown in Figure 8-3. Components that can stretch their children are green and components that can be stretched (but cannot stretch their children) are blue.
As shown in Figure 8-4, when the page is run, the panelCollection
and table
components in the panelGroupLayout
do not stretch, while the ones directly in the panelSplitter
component do stretch.
Because the panelStretchLayout
component can stretch its child components, and because the panelSplitter
component was configured to stretch, both stretch to fill up available browser space. Because panelSplitter
component can stretch its child components and because on the left, panelGroupLayout
component with its layout
attribute set to scroll
can be stretched, and on the right, the panelCollection
component can be stretched, both of those stretch to fill up available browser space. However, the panelGroupLayout
component cannot stretch its child components, while the panelCollection
component can stretch a single table. Therefore, the panelCollection
component on the left does not stretch, even though its parent does.
Tip: Do not attempt to stretch any of the components in the list of components that cannot stretch by setting their width to 100%. You may get unexpected results. Instead, surround the component to be stretched with a component that can be stretched. For components that can be stretched, see Table 8-1. |
Now suppose on the left, instead of a table
component, you want to add a panelList
component. You would not need the panelCollection
component (as that is used only for tables), so you might also think you would not need to use the panelGroupLayout
component to group the panelList
component with another component. However, because the panelList
component would then be a direct child of the panelSplitter
component, and because the panelSplitter
component stretches its child components and the panelList
component cannot be stretched, you would need to keep the panelGroupLayout
(set to scroll
) and place the panelList
component as a child to the panelGroupLayout
component.
This way, the panelSplitter
component can stretch the panelGroupLayout
component, but the panelGroupLayout
component will not try to stretch the panelList
component. Because the panelGroupLayout
component can be stretched, but does not stretch its child components, it allows the transition between a layout that stretches and one that flows.
Components that can be stretched but do not stretch their children are considered transition components. Transition components must always be used between a component that stretches its children and a component that does not stretch.
When you use the New Gallery Wizard to create a JSF JSP page (or a page fragment), you can choose from a variety of predefined quick start layouts. When you choose one of these layouts, JDeveloper adds the necessary components and sets their attributes to achieve the look and behavior you want. You can choose from one-, two-, and three-column formats. Within those formats, you can choose how many separate panes will be displayed in each column, and if those panes can stretch or remain a fixed size. Figure 8-5 shows the different layouts available in the two-column format.
Along with adding layout components, you can also choose to apply a theme to the chosen quick layout. These themes add color styling to some of the components used in the quick start layout. To see the color and where it is added, see Appendix F, "Quick Start Layout Themes." For more information about themes, see Section 20.3.4, "How to Apply Themes to Components."
In addition to saving time, when you use the quick layouts, you can be sure that layout components are used together correctly to achieve the desired outcome. For more information about creating pages using the quick layouts, see Section 2.4, "Creating a View Page."
To ensure your page is displayed as expected in all browsers, use one of the quick layouts provided by JDeveloper when you create a page. These ensure that the correct components are used and configured properly. For more information, see Section 8.2.3, "Using Quick Start Layouts."
Best Practice: Use quick start layouts to avoid layout display issues. |
However, if you wish to create your layout yourself, follow these tips for creating a layout that includes both stretched and flowing components:
panelStretchLayout
, panelSplitter
, panelAccordion
with a showDetailItem
, or panelTabbed
with a showDetailItem
. panelGroupLayout
component with the layout
attribute set to scroll
. This component will provide the transition between stretched and flowing components because it supports being stretched but will not stretch its child components. styleClass
attribute on the component to be stretched to AFStretchWidth
. This style will stretch the component to what appears to be 100% of the parent container, taking into account different browsers and any padding or borders on the parent. styleClass
attribute on the component to be stretched to AFAuxiliaryStretchWidth
. This style will stretch the component to what appears to be 100% of the parent container, taking into account different browsers and any padding or borders on the parent. Note: The two different styles are needed due to how Microsoft Internet Explorer 7 computes widths inside scrolling containers (this has been resolved in Internet Explorer 8). Unless you can control the version of browser used to access your application, you should use these styles as described. |
position
style. maximized
attribute on the document
tag is set to true
(this is the default). For more information about setting the attribute, see Section 8.2.5, "How to Configure the document Tag." The remainder of this chapter describes the ADF Faces layout components and how they can be used to design a page. You can find information about how each component handles stretching in the respective "What You May Need to Know About Geometry Management" sections.
The document
tag contains a number of attributes that you can configure to control behavior for the page. For example, you can configure the tag so that one component has focus when the page is first rendered. You can also configure the tag to display a warning message if a user attempts to navigate off the page and the data has not been submitted. You can also set the document to use a different state saving method than the rest of the application.
To configure the document tag:
Because this focus happens on the client, the component you select must have a corresponding client component. For more information, see Section 3.4, "Instantiating Client-Side Components."
true
if you want the root component to expand to fit all available browser space. When the document
tag's maximized
attribute is set to true
, the framework searches for a single visual root component, and stretches that component to consume the browser's viewable area, provided that the component can be stretched. Examples of components that support this are panelStretchLayout
and panelSplitter
. The document
tag's maximized
attribute is set to true
by default. For more information, see Section 8.2.1, "Geometry Management and Component Stretching." on
if you want a warning message displayed to the user when the application detects that data has not been committed. This can happen because either the user attempts to leave the page without committing data or there is uncommitted data on the server. By default, this is set to off
. For ADF Faces applications, it is recommended to have the application use client state saving with tokens, which saves page state to the session and persists a token to the client. This setting affects the application globally, such that all pages have state saved to the session and persist tokens with information regarding state.
However, there may be a page for which you which you want the state saved differently. For example, when a user posts back to a login page after an extended period of time, you do not want the session time out error to be displayed. By changing the stateSaving
attribute on the page to client
, then when the user posts back to the login page, the time out error will not display.
You can override the global setting in web.xml
to one of the following for the page:
web.xml
. For more information about state saving, see Appendix A, "Configuration in web.xml."
Use the panelStretchLayout
component to arrange content in defined areas on a page and when you want the content to be able to stretch when the browser is resized. The panelStretchLayout
component is one of the components that can stretch components placed in its facets. Figure 8-6 shows the component's facets.
Note: Figure 8-6 shows the facets when the language reading direction of the application is configured to be left-to-right. If instead the language direction is right-to-left, the |
When you set the height of the top
and bottom
facets, any contained components are stretched up to fit the height. Similarly, when you set the width of the start
and end
facets, any components contained in those facets are stretched to that width. If no components are placed in the facets, then that facet does not render. That is, that facet will not take up any space. If you want that facet to take up the set space but remain blank, insert a spacer component. See Section 8.13, "Separating Content Using Blank Space or Lines." Child Components components in the center
facet are then stretched to fill up any remaining space. For more information about component stretching, see Section 8.2.1, "Geometry Management and Component Stretching."
Instead of setting the height of the top or bottom facet, or width of the start or end facet to a dimension, you can set the height or width to auto
. This allows the facet to size itself to use exactly the space required by the child components of the facet. Space will be allocated based on what the web browser determines is the required amount of space to display the facet content.
Performance Tip: Using |
The File Explorer application uses a panelStretchLayout
component as the root component in the template. Child components are placed only in the center
and bottom
facets. Therefore, whatever is in the center
facet stretches the full width of the window, and from the top of the window to the top of the bottom
facet, whose height is determined by the bottomHeight
attribute. Example 8-2 shows abbreviated code from the fileExplorerTemplate
file.
Example 8-2 panelStretchLayout in the File Explorer's Template File
The template uses an EL expression to determine the value of the bottomHeight
attribute. This expression resolves to the value of the footerGlobalSize
attribute defined in the template, which by default is 0
. Any page that uses the template can override this value. For example, the index.jspx
page uses this template and sets the value to 30
. Therefore, when the File Explorer application renders, the contents in the panelStretchLayout
component begin 30 pixels from the bottom of the page.
The panelStretchLayout
component cannot have any direct child components. Instead, you place components within its facets. The panelStretchLayout
is one of the components that can be configured to stretch any components in its facets to fit the browser. You can nest panelStretchLayout
components. For more information, see Section 8.2.2, "Nesting Components Inside Components That Allow Stretching."
To create and use the panelStretchLayout component:
When there are child components in the top
, bottom
, start
, and end
facets, these components occupy space that is defined by the topHeight
, bottomHeight
, startWidth
, and endWidth
attributes. For example, topHeight
attribute specifies the height of the top
facet, and startWidth
attribute specifies the width of the start
facet. Child components in top
and bottom
facets are stretched up to the height set by topHeight
and bottomHeight
attributes, respectively, and child components in start
and end
facets are stretched up to the width set by startWidth
and endWidth
attributes, respectively. Instead of setting a numeric dimension, you can set the topHeight
, bottomHeight
, startWidth
and endWidth
attributes to auto
and the browser will determine the amount of space required to display the content in the facets.
Note: If you set a facet to use For example, you should not use Additionally, you should not use |
If you do not explicitly specify a value, by default, the value for the topHeight
, bottomHeight
, startWidth
, and endWidth
attributes is 50 pixels each. The widths of the top
and bottom
facets, and the heights of the start
and end
facets are derived from the width and height of the parent component of panelStretchLayout
.
Tip: If a facet does not contain a child component, it is not rendered and therefore does not take up any space. You must place a child component into a facet in order for that facet to occupy the configured space. |
panelStretchLayout
component stretches to fill available browser space. If you want to place the panelStretchLayout
component inside a component that does not stretch its children, then you need to configure the panelStretchLayout
component to not stretch. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Other section, and set DimensionsFrom to one of the following:
children
: Instead of stretching, the panelStretchLayout
component will get its dimensions from its child component. Note: If you use this setting, you cannot use a percentage to set the height of the Additionally, you cannot set the height of the |
parent
: the size of the panelStretchLayout
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container (that is, the panelStretchLayout
component will stretch). auto
: If the parent component to the panelStretchLayout
component allows stretching of its child, then the panelStretchLayout
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelStretchLayout
component will be based on the size of its child component. Because facets accept one child only, if you want to add more than one child component, wrap the child components inside a container component, for example, a panelGroupLayout
component. This component must also be able to be stretched in order for all contained components to stretch.
Tip: If any facet is not visible in the visual editor:
|
The panelStretchLayout
component can stretch its child components and it can also be stretched. The following components can be stretched inside the facets of the panelStretchLayout
component:
inputText
(when configured to stretch) decorativeBox
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
panelDashboard
(when configured to stretch) panelGroupLayout
(only with the layout
attribute set to scroll
or vertical
) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a facet of the panelStretchLayout
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only with the layout
attribute set to default
or horizontal
) panelHeader
panelLabelAndMessage
panelList
showDetail
showDetailHeader
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place a component that cannot be stretched into a facet of the panelStretchLayout
component, wrap that component in a transition component that can stretch.
For example, if you want to place content in a panelBox
component (which does not stretch) within a facet of the panelStretchLayout
component, you could place a panelGroupLayout
component with its layout
attribute set to scroll
in a facet of the panelStretchLayout
component, and then place the panelBox
component in that panelGroupLayout
component. For more information, see Section 8.2.2, "Nesting Components Inside Components That Allow Stretching."
When you have groups of unique content to present to users, consider using the panelSplitter
component to provide multiple panes separated by adjustable splitters. The File Explorer uses a panelSplitter
to separate the navigation tree from the folder contents, as shown in Figure 8-7. Users can change the size of the panes by dragging the splitter, and can also collapse and restore the panel that displays the directories. When a panel is collapsed, the panel contents are hidden; when a panel is restored, the contents are displayed.
The panelSplitter
component lets you organize contents into two panes separated by an adjustable splitter. The panes can either line up on a horizontal line (as does the splitter shown in Figure 8-7) or on a vertical line. The File Explorer application uses another panelSplitter
component to separate the application's header contents from the main body of the page. Figure 8-8 shows the panelSplitter
component expanded to show the header contents, which includes the Oracle logo and the File Explorer name.
Clicking the arrow button on a splitter collapses the panel that holds the header contents, and the logo and name are no longer shown, as shown in Figure 8-9.
You place components inside the facets of the panelSplitter
component. The panelSplitter
component uses geometry management to stretch its child components at runtime. This means when the user collapses one panel, the contents in the other panel are explicitly resized to fill up available space.
Note: While the user can change the values of the |
The panelSplitter
component lets you create two panes separated by a splitter. Each splitter component has two facets, namely, first
and second
, which correspond to the first panel and second panel, respectively. Child components can reside inside the facets only. To create more than two panes, you nest the panelSplitter
components.
To create and use the panelSplitter component:
vertical
to create two vertical panes (one on top of the other). By default, the value is horizontal
, which means horizontal panes are placed left-to-right (or right-to-left, depending on the language reading direction). splitterPosition
attribute is 200 pixels, and the positionedFromEnd
attribute is false
. This setting means that ADF Faces measures the initial position of the adjustable splitter from the start or top panel (depending on the orientation
attribute value). For example, if the orientation
attribute is set to horizontal
, the splitterPosition
attribute is 200
and the positionedFromEnd
attribute is false
(all default values), then ADF Faces places the splitter 200 pixels from the start panel, as shown in Figure 8-10. If the positionedFromEnd
attribute is set to true
, then ADF Faces measures the initial position of the splitter from the end (or bottom panel, depending on the orientation
value). Figure 8-11 shows the position of the splitter measured 200 pixels from the end panel.
collapsed
attribute is false
, which means both panes are displayed. When the user clicks the arrow button on the splitter, the collapsed
attribute is set to true
and one of the panes is hidden. ADF Faces uses the collapsed
and positionedFromEnd
attributes to determine which panel (that is, the first or second panel) to hide (collapse) when the user clicks the arrow button on the splitter. When the collapsed
attribute is set to true
and the positionedFromEnd
attribute is false
, the first panel is hidden and the second panel stretches to fill up the available space. When the collapsed
attribute is true
and the positionedFromEnd
attribute is true
, the second panel is hidden instead. Visually, the user can know which panel will be collapsed by looking at the direction of the arrow on the button: when the user clicks the arrow button on the splitter, the panel collapses in the direction of the arrow.
panelSplitter
component stretches to fill available browser space. If you want to place the panelSplitter
into a component that does not stretch its children, then you need to change how the panelSplitter
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Other section, and set DimensionsFrom to one of the following:
children
: Instead of stretching, the panelSplitter
component will get its dimensions from its child component. Note: If you use this setting and you set the Additionally, you cannot set the height of the |
parent
: The size of the panelSplitter
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the panelSplitter
component allows stretching of its child, then the panelSplitter
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelSplitter
component will be based on the size of its child component. first
and second
facets. When you have the orientation set to horizontal, the first
facet is the left facet. When you have the orientation set to vertical, the first
facet is the top facet. If you want the child component to stretch, it must be a component that supports stretching. For more details, see Section 8.4.2, "What You May Need to Know About Geometry Management and the panelSplitter Component." Because facets accept one child component only, if you want to add more than one child component, wrap the child components inside a container component. This component must also be able to be stretched in order for all contained components to stretch.
Tip: If any facet is not visible in the visual editor:
|
Example 8-3 shows the code generated by JDeveloper when you nest splitter components.
Example 8-3 Nested panelSplitter Components
clientListener
tag for the collapsed
attribute and a propertyChange
event type. For more information about client-side events, see Chapter 5, "Handling Events." The panelSplitter
component can stretch its child components and it can also be stretched. The following components can be stretched inside the first
or second
facet of the panelSplitter
component:
inputText
(when configured to stretch) decorativeBox
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
panelDashboard
panelGroupLayout
(only with the layout
attribute set to scroll
or vertical
) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a facet of the panelSplitter
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only with the layout
attribute set to default
or horizontal
) panelHeader
panelLabelAndMessage
panelList
showDetail
showDetailHeader
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched into a facet of the panelSplitter
component, wrap that component in a transition component that does not stretch its child components.
For example, if you want to place content in a panelBox
component and have it flow within a facet of the panelSplitter
component, you could place a panelGroupLayout
component with its layout attribute set to scroll
in a facet of the panelSplitter
component, and then place the panelBox
component in that panelGroupLayout
component. For more information, see Section 8.2.2, "Nesting Components Inside Components That Allow Stretching."
The panelBorderLayout
component uses facets to contain components in predefined areas of a page. Instead of a center
facet, the panelBorder
layout component takes 0
to n
direct child components (also known as indexed children), which are rendered consecutively in the center. The facets then surround the child components.
Figure 8-13 shows the facets of the panelBorderLayout
component.
The 12 supported facets of the panelBorderLayout
component are:
top
: Renders child components above the center area. bottom
: Renders child components below the center area. start
: Supports multiple reading directions. This facet renders child components on the left of the center area between top
and bottom
facet child components, if the reading direction of the client browser is left-to-right. If the reading direction is right-to-left, it renders child components on the right of the center area. When your application must support both reading directions, this facet ensures that the content will be displayed on the proper side when the direction changes. If you do not need to support both directions, then you should use either the left
or right
facet. end
: Supports multiple reading directions. This facet renders child components on the right of the center area between top
and bottom
facet child components, if the reading direction of the client browser is left-to-right. If the reading direction is right-to-left, it renders child components on the left of the center area. When your application must support both reading directions, this facet ensures that the content will be displayed on the proper side when the direction changes. If you do not need to support both directions, then you should use either the left
or right
facet. left
: Supports only one reading direction. This facet renders child components on the left of the center area between top
and bottom
facet child components. When the reading direction is left-to-right, the left
facet has precedence over the start
facet if both the left
and start
facets are used (that is, contents in the start
facet will not be displayed). If the reading direction is right-to-left, the left
facet also has precedence over the end
facet if both left
and end
facets are used. right
: Supports only one reading direction. This facet renders child components on the right of the center area between top
and bottom
facet child components. If the reading direction is left-to-right, the right
facet has precedence over the end
facet if both right
and end
facets are used. If the reading direction is right-to-left, the right
facet also has precedence over the start
facet, if both right
and start
facets are used. innerTop
: Renders child components above the center area but below the top
facet child components. innerBottom
: Renders child components below the center area but above the bottom
facet child components. innerLeft
: Renders child components similar to the left
facet, but renders between the innerTop
and innerBottom
facets, and between the left
facet and the center area. innerRight
: Renders child components similar to the right
facet, but renders between the innerTop
facet and the innerBottom
facet, and between the right
facet and the center area. innerStart
: Renders child components similar to the innerLeft
facet, if the reading direction is left-to-right. Renders child components similar to the innerRight
facet, if the reading direction is right-to-left. innerEnd
: Renders child components similar to the innerRight
facet, if the reading direction is left-to-right. Renders child components similar to the innerLeft
facet, if the reading direction is right-to-left. The panelBorderLayout
component does not support stretching its child components, nor does it stretch when placed in a component that stretches its child components. Therefore, the size of each facet is determined by the size of the component it contains. If instead you want the contents to stretch to fill the browser window, consider using the panelStretchLayout
component instead. For more information, see Section 8.3, "Arranging Contents to Stretch Across a Page."
There is no restriction to the number of panelBorderLayout
components you can have on a JSF page.
To create and use the panelBorderLayout component:
panelBorderLayout
component. Child components are displayed consecutively in the order in which you inserted them. If you want some other type of layout for the child components, wrap the components inside the panelGroupLayout
component. For more information, see Section 8.12, "Grouping Related Items."
Because facets accept one child component only, if you want to add more than one child component, wrap the child components inside a container.
Tip: If any facet is not visible in the visual editor:
|
The panelFormLayout
component lets you lay out multiple form input components such as input fields and selection list fields in one or more columns. The File Explorer application uses a panelFormLayout
component to display file properties. The component is configured to have the labels right-aligned, as shown in Figure 8-14.
Figure 8-15 shows the same page with the component configured to display the labels above the fields.
You can configure the panelFormLayout
component to display the fields with their labels in one or more columns. Each field in the form is a child component of the panelFormLayout
component. You set the desired number of rows, and if there are more child components than rows, the remaining child components are placed in a new column. For example, if there are 25 child components, and you set the component to display 15 rows, the last 10 components will be displayed in a second column.
However, the number of rows displayed in each is not solely determined by the configured number of rows. By default, the panelFormLayout
component is set to render no more than three columns (two for PDA applications). This value is what actually determines the number of rows. For example, if you have 25 child components and you set the component to display 5 rows and you leave the default maximum number of columns set to 3
, then the component will actually display 9 rows, even though you have it set to display 5. This is because the maximum number of columns can override the set number of rows. Because it is set to allow only up to 3 columns, it must use 9 rows in order to display all child components. You would need to set the maximum number of columns to 5 in order to have the component display just 5 rows.
ADF Faces uses default label and field widths, as determined by the standard HTML flow in the browser. You can also specify explicit widths to use for the labels and fields. Regardless of the number of columns in the form layout, the widths you specify apply to all labels and fields. You specify the widths using either absolute numbers in pixels or percentage values. If the length of a label does not fit, the text is wrapped.
Tip: If your page will be displayed in languages other than English, you should leave extra space in the labels to account for different languages and characters. |
You can use one or more panelFormLayout
components on a page to create the desired form layout.
To create and use panelFormLayout:
By default, field labels on the child input components are displayed beside the fields. To place the labels above the fields, set the labelAlignment
attribute to top
.
Note: When you nest a |
The rows
attribute value is the number that ADF Faces uses as the number of rows after which a new column will start. By default, it is set to 2147483647
(Integer.MAX_VALUE
). This means all the child components that are set to rendered="true"
and visible="true"
will render in one, single column.
If you want the form to contain more than one column, set the rows
attribute to a multiple of the number of rendered child components, and then set the maxColumns
attribute to the maximum amount of columns that the form should display. The default value of maxColumns
is 3
. (On PDAs, the default is 2
).
Note: If the |
For example, if the rows
attribute is set to 6
and there are 1 to 6 rendered child components, the list will be displayed in 1 column. If there are 7 to 12 rendered child components, the list will be displayed in 2 columns. If there are 13 or more child components, the list will be displayed in 3 columns. To display all rendered child components in 1 column, set the rows
attribute back to the default value.
If the number of rendered child components would require more columns than allowed by the maxColumn
attribute, then the value of the rows
attribute is overridden. For example, if there are 100 rendered child components, and the rows
attribute is set to 30
and the maxColumns
attribute is 3
(default), the list will be displayed in 3 columns and 34 rows. If the maxColumns
attribute is set to 2
, the list will be displayed in 2 columns and 51 rows.
Tip: Rendered child components refers only to direct child components of the form. Therefore, when a component that renders multiple rows (for example |
ADF Faces uses default label and field widths, as determined by standard HTML flow in the browser. You can also specify explicit widths to use for the labels and fields.
The labelWidth
attribute on the panelFormLayout
component lets you set the preferred width for labels; the fieldWidth
attribute lets you set the preferred width for fields.
Note: Any value you specify for the |
Regardless of the number of columns in the form layout, the widths you specify apply to all labels and fields, that is, you cannot set different widths for different columns. You specify the widths using any CSS unit such as em, px, or %. The unit used must be the same for both the labelWidth
and fieldWidth
attribute.
When using percentage values:
panelFormLayout
component, regardless of the number of columns to be displayed. labelWidth
and fieldWidth
percentages must add up to 100%. If the sum is less than 100%, the widths will be normalized to equal 100%. For example, if you set the labelWidth
to 10% and the fieldWidth
to 30%, at runtime the labelWidth
would be 33% and the fieldWidth
would be 67%. labelWidth
but not fieldWidth
), ADF Faces automatically calculates the percentage width that is not specified. Note: If your form contains multiple columns and a footer, you may see a slight offset between the positioning of the main form items and the footer items in web browsers that do not honor fractional divisions of percentages. To minimize this effect, ensure that the percentage |
Suppose the width of the panelFormLayout
component takes up 600 pixels of space, and the labelWidth
attribute is set at 50
%. In a one-column display, the label width will be 300 pixels and the field width will be 300 pixels. In a two-column display, each column is 300 pixels, so each label width in a column will be 150 pixels, and each field width in a column will be 150 pixels.
If the length of the label text does not fit on a single line with the given label width, ADF Faces automatically wraps the label text. If the given field width is less than the minimum size of the child content you have placed inside the panelFormLayout
component, ADF Faces automatically uses the minimum size of the child content as the field width.
Note: If the field is wider than the space allocated, the browser will not truncate the field but instead will take space from the label columns. This potentially could cause the labels to wrap more than you would like. In this case, you may want to consider reducing the width of the field contents (for example, use a smaller |
Usually you insert labeled form input components, such as Input Text, Select Many Checkbox, and other similar components that enable users to provide input.
Tip: The |
Example 8-4 shows the panelFormLayout
component as it is used on the properties.jspx
page of the File Explorer application, shown in Figure 8-14.
Example 8-4 panelFormLayout Component
Tip: If you use non-input components (which do not have |
group
component to wrap those components that belong in a group. Components placed within a group will cause the panelFormLayout
component to draw a separator line above and below the group. For more information about using the group
component, see Section 8.6.2, "What You May Need to Know About Using the group Component with the panelFormLayout Component."
footer
facet. Facets accept only one child component. If you have to insert more than one component in the footer
facet, use the panelGroupLayout
component or the group
component to wrap the footer
child components. Example 8-5 shows sample code that uses the panelGroupLayout
component to arrange footer
child components in a panelFormLayout
component.
Example 8-5 Footer Child Components in panelFormLayout Arranged Horizontally
While the group
component itself does not render anything, when it used as a child in the panelFormLayout
component, visible separators are displayed around the child components of each group
component. For example, you might want to group some of the input fields in a form layout created by the panelFormLayout
component. Example 8-15 shows sample code that groups two sets of child components inside a panelFormLayout
component.
Example 8-6 Grouping Child Components in panelFormLayout
Following along with the sample code in Example 8-15, at runtime the panelFormLayout
component renders dotted, separator lines before and after the first group
of child components, as shown in Figure 8-16.
As described in Section 8.6, "Arranging Content in Forms," the panelFormLayout
component uses certain component attributes to determine how to display its child components (grouped and ungrouped) in columns and rows. When using the group
component to group related components in a panelFormLayout
component that will display its child components in more than one column, the child components of any group
component will always be displayed in the same column, that is, child components inside a group
component will never be split across a column.
While the group
component does not provide any layout for its child components, the underlying HTML elements can provide the desired layout for the child components inside the group
component. For example, if you want child button components in a group
component to flow horizontally in a form layout, use the panelGroupLayout
component to wrap the buttons, and set the layout
attribute on panelGroupLayout
component to horizontal
. Then insert the panelGroupLayout
component into group
component, as shown in Example 8-7.
Example 8-7 panelGroupLayout Inside a Group Component
When you use the group
component to group child components in the footer
facet of the panelFormLayout
component, you must place all the group
components and other ungrouped child components in one root group
component, as shown in Example 8-8.
Example 8-8 footer Facet in panelFormLayout with One Root group Component
Like grouped child components in a panelFormLayout
component, at runtime the panelFormLayout
component renders dotted, separator lines around the child components of each group
component in the footer
facet, as shown in Figure 8-17.
Note: The <f:facet name="footer"> <!-- Only one root group --> <af:group> <af:outputText value="Footer item 1"/> <!-- Any number of groups at this level --> <af:group> <af:outputText value="Group 1 item 1"/> <af:outputText value="Group 1 item 2"/> <!-- But not another nested group. This is illegal. --> <af:group> <af:outputText value="Nested Group 1 item 1"/> <af:outputText value="Nested Group 1 item 2"/> </af:group> </af:group> <af:outputText value="Another footer item"/> </af:group> </f:facet> |
Whether you are grouping components in the footer
facet or in the main body of the panelFormLayout
component, if the first or last child inside the panelFormLayout
component or inside the footer
facet is a group
component, no separator lines will be displayed around the child components in that group. For example, both sets of code examples in Example 8-9 would produce the same visual effect at runtime.
Example 8-9 Code Producing Same Visual Effect
The panelDashboard
component allows you to arrange its child components in rows and columns, similar to the panelForm
component. However, instead of text components, the panelDashboard
children are panelBox
components that contain content, as shown in Figure 8-18.
When you add a panelDashboard
component, you configure the number of columns it will contain, along with the height of each row. The dashboard stretches its children to fill up the configured space. If all the child components do not fit within the specified number of columns and row height, then the panelDashboard
component displays a scroll bar.
When placed in a component that stretches it children, by default, the panelDashboard
stretches to fill its parent container, no matter the number of children. This could mean that you may have blank space in the dashboard when the browser is resized to be much larger than the dashboard needs.
For example, say you have set the panelDashboard
to inherit its size from its parent by setting the dimensionsFrom
attribute to parent
. You set columns to 1 and the rowHeight
to 50px
. You then add two panelBox
components. Because columns
is set to 1, you will have 2 rows. Because the parent component is a panelStretchLayout
, the panelDashboard
will stretch to fill the panelStretchLayout
, no matter the height of the boxes, and you end up with extra space, as shown in Figure 8-19 (the color of the dashboard has been changed to fuchsia to make it more easy to see its boundaries).
If instead you don't want the dashboard to stretch, you can place it in a component that does not stretch its children, and you can configure the panelDashboard
to determine its size based on its children (by setting the dimensionsFrom
attribute to children
). It will then be as tall as the number of rows required to display the children, multiplied by the rowHeight
attribute.
In the previous example, if instead you place the dashboard in a panelGroupLayout
set to scroll
, because the rowHeight
is set to 50
, your panelDashboard
will always be just over 100px tall, no matter the size of the browser window, as shown in Figure 8-20.
The panelDashboard
component also supports declarative drag and drop behavior, so that the user can rearrange the child components. As shown in Figure 8-21, the user can for example, move panelBox 10
between panelBox 4
and panelBox
5
. A shadow is displayed where the box can be dropped.
Note: You can also configure drag and drop functionality that allows users to drag components into and out of the |
Along with the ability to move child components, the panelDashboard
component also provides an API that you can access to allow users to switch child components from being rendered to not rendered, giving the appearance of panelBoxes
being inserted or deleted. The dashboard uses partial page rendering to redraw the new set of child components without needing to redraw the entire page.
You can use the panelDashboardBehavior
tag to make the rendering of components appear more responsive. This tag allows the activation of a command component to apply visual changes to the dashboard before the application code modifies the component tree on the server. Because this opening up of space happens before the action event is sent to the server, the user will see immediate feedback while the action listener for the command component modifies the component tree and prepares the dashboard for the optimized encoding of the insert.
For example, Figure 8-22 shows a panelDashboard
component used in the right panel of a panelSplitter
component. In the left panel, list items displayed as links represent each panelBox
component in the panelDashboard
. When all panelBox
components are displayed, the links are all inactive. However, if a user deletes one of the panelBox
components, the corresponding link becomes active. The user can click the link to reinsert the panelBox
. By using the panelDashboardBehavior
tag with the commandLink
component, the user sees the inserted box drawing.
If you decide not to use this tag, there will be a slight delay while your action listener is processing before the user sees any change to the dashboard structure.
Figure 8-23 shows a practical example using a panelDashboard
component. Selecting one of the links at the top of the page changes the panelBoxes
displayed in the dashboard. The user can also add panelBoxes
by clicking the associated link on the left-hand side of the page.
After you add a panelDashboard
to a page, you can configure the dashboard to determine whether or not it will stretch. Then, add child components, and if you want to allow rearrangement the components, also add a componentDragSource
tag to the child component. If you want to allow insertion and deletion of components, implement a listener to handle the action. You can also use the panelDashboardBehavior
tag to make the panelDashboard
component appear more responsive to the insertion.
To use the panelDashboard component:
panelDashboard
component stretches to fill available browser space. If instead, you want to use the panelDashboard
component as a child to a component that does not stretch its children, then you need to change how the panelDashboard
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Other section, and set DimensionsFrom to one of the following:
children
: the panelDashboard
component will get its dimensions from its child components. Note: If you use this setting, you cannot set the height of the |
parent
: the size of the panelDashboard
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the panelDashboard
component allows stretching of its child, then the panelDashboard
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelDashboard
component will be based on the size of its child component. panelBox
components. Tip: The |
If you want users to be able to reorder the child components, in the Component Palette, from the Operations panel, drag and drop a Component Drag Source as a child to each of the child components.
To use the optimized lifecycle, have the handler call the panelDashboard
component's prepareOptimizedEncodingOfInsertedChild()
method, which causes the dashboard to send just the inserted child component to be rendered.
Note: If you plan on using the |
componentDragSource
tag in Step 7, then you must also implement a DropEvent
handler for the panelDashboard
. With the panelDashboard
component selected, expand the Behavior section and bind the DropListener
attribute to that handler method. If you wish to use a panelDashboardBehavior
tag, drag and drop a command component that will be used to initiate the insertion.
panelDashboard
component's prepareOptimizedEncodingOfInsertedChild()
method, which causes the dashboard to send just the inserted child component to be rendered. Example 8-10 shows code on a managed bean that handles the insertion of child components. Example 8-10 Action Listener Code for Insert Button
panelDashboard
component panelDashboardBehavior
tag, a placeholder element is inserted into the DOM tree where the actual component will be rendered once it is returned from the server. Because the insertion placeholder gets added before the insertion occurs on the server, you must specify the location where you are planning to insert the child component so that if the user reloads the page, the children will continue to remain displayed in the same order. This component organizes its children into a grid based on the number of columns and the rowHeight
attribute. The child components that can be stretched inside of the panelDashboard
include:
inputText
(when the rows
attribute is set to greater than one, and the simple
attribute is set to true
) panelBox
region
table
(when configured to stretch) If you try to put any other component as a child component to the panelDashboard
component, then the component hierarchy is not valid.
Sometimes you want users to have the choice of displaying or hiding content. When you do not need to show all the functionality of the user interface at once, you can save a lot of space by using components that enable users to show and hide parts of the interface at will.
The showDetail
component creates a label with a toggle icon that allows users to disclose (show) or undisclose (hide) contents under the label. When the contents are undisclosed (hidden), the default label is Show and the toggle icon is a plus sign in a box. When the contents are disclosed (shown), the default label is Hide, and the toggle icon changes to a minus sign.
For example, the newFileItem
page of the File Explorer application uses a showDetail
component to hide and display file properties. The component is configured to hide the properties when the page is displayed, as shown in Figure 8-24.
When the user clicks the toggle icon, the properties are displayed, as shown in Figure 8-25.
If you want to use something more complex than an outputText
component to display the disclosed and undisclosed text, you can add components to the showDetail
component's prompt
facet. When set to be visible, any contents in the prompt facet will replace the disclosed and undisclosed text values. To use the showDetail
component, see Section 8.8.1, "How to Use the showDetail Component."
Tip: By default, child components of the af|showDetail { -tr-layout: flush;} af|showDetail::child-container { padding-left: 10px; } For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins." |
Like the showDetail
component, the showDetailHeader
component also toggles the display of contents, but the showDetailHeader
component provides the label and toggle icon in a header, and also provides facets for a menu bar, toolbar, and text.
Tip: The |
When there is not enough space to display everything in all the facets of the title line, the showDetailHeader
text is truncated and displays an ellipsis. When the user hovers over the truncated text, the full text is displayed in a tooltip, as shown in Figure 8-26.
When there is more than enough room to display the contents, the extra space is placed between the context
facet and the toolbar, as shown in Figure 8-27.
Additionally, you can configure the showDetailHeader
component to be used as a message for errors, warnings, information, or confirmations. The contents are hidden or displayed below the header. For example, the newFileItem
page of the File Explorer application uses a showDetailHeader
component to display help for creating a new file. By default, the help is not displayed, as shown in Figure 8-25. When the user clicks the toggle icon in the header, the contents are displayed, as shown in Figure 8-28.
You can also use the showDetailHeader
component in conjunction with the panelHeader
component to divide a page into sections and subsections, where some contents can be hidden. The showDetailHeader
component contains a number of facets, such as a toolbar and menu bar facet. These facets are the same as for the panelHeader
component. For more information about the panelHeader
component, see Section 8.10, "Displaying Items in a Static Box."
You can nest showDetailHeader
components to create a hierarchy of content. Each nested component takes on a different heading style to denote the hierarchy. Figure 8-29 shows three nested showDetailHeader
components, and their different styles.
You can change the styles used by each header level by applying a skin to the showDetailHeader
component. For details about skinning ADF Faces components, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
Note: Heading sizes are determined by default by the physical containment of the header components. That is, the first header component will render as a heading level 1. Any header component nested in the first header component will render as a heading level 2, and so on. You can manually override the heading level on individual header components using the |
Use the panelBox
component when you want information to be able to be displayed or hidden below the header, and you want the box to be offset from other information on the page. The File Explorer application uses two panelBox
components on the properties.jspx
page to display the attributes and history of a file, as shown in Figure 8-30.
Figure 8-31 shows the same page, but with the History panelBox
component in an undisclosed state.
You can set the background color on a panelBox
component so that the contents are further delineated from the rest of the page. Two color combinations (called ramps) are offered, and each combination contains four levels of color: none, light, medium, and dark. Figure 8-32 shows the same panel boxes as in Figure 8-30, but with the bottom panelBox
component configured to show the medium tone of the core ramp.
You can set the size of a panelBox
component either explicitly by assigning a pixel size, or as a percentage of its parent. You can also set the alignment of the title, and add an icon. In addition, the panelBox
component includes the toolbar
facet that allows you to add a toolbar and toolbar buttons to the box.
If you want to show and hide multiple large areas of content, consider using the panelAccordion
and panelTabbed
components. For more information, see Section 8.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."
Use the showDetail
component to show and hide a single set of content.
To create and use the showDetail component:
Tip: This component appears in the Common Components panel of the Component Palette, and not the Layout panel. |
Set Disclosed to true
if you want the component to show its child components.
Note: While the user can change the value of the |
Set DisclosedText to the label you want to display next to the toggle icon when the contents are disclosed (shown). By default, the label is Hide if no value is specified.
Set UndisclosedText to the label you want to display next to the toggle icon when the contents are undisclosed (hidden). By default, the label is Show if no value is specified.
Note: If you specify a value for Instead of using text specified in |
DisclosureListener
method in a backing bean that you want to execute when the user displays or hides the component's contents. For information about disclosure events and listeners, see Section 8.8.4, "What You May Need to Know About Disclosure Events."
showDetail
component. Use the showDetailHeader
component when you want to display a single set of content under a header, or when you want the content to be used as messages that can be displayed or hidden. You can also use the showDetailHeader
component to create a hierarchy of headings and content when you want the content to be able to be hidden.
To create and use the showDetailHeader component:
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
confirmation
: The confirmation icon (represented by a note page overlaid with a green checkmark) replaces any specified icon image. error
: The error icon (represented by a red circle with an x inside) replaces any specified icon image. The header label also changes to red. info
: The info icon (represented by a blue circle with an I inside) replaces any specified icon image. warning
: The warning icon (represented by a yellow triangle with an exclamation mark inside) replaces any specified icon image. none
: Default. No icon is displayed, unless one is specified for the icon
attribute. Figure 8-33 shows each of the icons used for message types.
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
true
if you want the component to show its child components. Note: While the user can change the value of the |
disclosureListener
method in a backing bean that you want to execute when the user displays or hides the component's contents. For information about disclosure events and listeners, see Section 8.8.4, "What You May Need to Know About Disclosure Events."
showDetailHeader
component handles geometry management, expand the Other section and set Type. Set it to flow
if you do not want the component to stretch or to stretch its children. The height of the showDetailHeader
component will be determined solely by its children. Set it to stretch
if you want it to stretch and stretch its child (will only stretch a single child component). Leave it set to the default if you want the parent component of the showDetailHeader
component to determine geometry management. For more information about geometry management, see Section 8.2.1, "Geometry Management and Component Stretching." toolbar
component into the toolbar
facet. Then add any number of commandToolbarButton
or commandButton
components into the newly inserted toolbar
component. For more information about using the toolbar
component, see Section 14.3, "Using Toolbars." Note: Toolbar overflow is not supported in |
menuBar
facet. For more information about creating menus, see Section 14.2, "Using Menus in a Menu Bar." Tip: You can place menus in the |
H1
, H2
, etc. through H6
. The heading level is used to determine the correct page structure, especially when used with screen reader applications. By default, headerLevel
is set to -1, which allows the headers to determine their size based on the physical location on the page. In other words, the first header component will be set to be a H1. Any header component nested in that H1 component will be set to H2, and so on.
Note: Screen reader applications rely on the HTML header level assignments to identify the underlying structure of the page. Make sure your use of header components and assignment of header levels make sense for your page. When using an override value, consider the effects of having headers inside disclosable sections of the page. For example, if a page has collapsible areas, you need to be sure that the overridden structure will make sense when the areas are both collapsed and disclosed. |
size
attribute. The size
attribute specifies the number to use for the header text and overrides the skin. The largest number is 0
, and it corresponds to an H1 header level; the smallest is 5
, and it corresponds to an H6 header.
By default, the size
attribute is -1
. This means ADF Faces automatically calculates the header level style to use from the topmost, parent component. When you use nested components, you do not have to set the size
attribute explicitly to get the proper header style to be displayed.
Note: While you can force the style of the text using the |
In the default skin used by ADF Faces, the style used for sizes above 2 will be displayed the same as size 2. That is, there is no difference in styles for sizes 3, 4, or 5–they all show the same style as size 2. You can change this by creating a custom skin. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
showDetailHeader
component. You can insert any number of panelBox
components on a page.
To create and use a panelBox component:
The core
ramp uses variations of blue, while the highlight
ramp uses variations of yellow. You can change the colors used by creating a custom skin. For details, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
light
, medium
, dark
, or default
. The default background color is transparent. Note: If both the |
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
center
, start
, end
, left
, or right
. The value determines the horizontal alignment of the title (including any icon image) in the header portion of the container. disclosureListener
method in a backing bean that you want to execute when the user shows or hides the component's contents. For information about disclosure events and listeners, see Section 8.8.4, "What You May Need to Know About Disclosure Events."
toolbar
facet. Then insert the desired number of commandToolbarButton
components into the toolbar
component. For information about using toolbar
and commandToolbarButton
components, see Section 14.3, "Using Toolbars." Tip: If any facet is not visible in the visual editor:
|
panelBox
component. Typically, you would insert one child component into the panelBox
component, and then insert the contents for display into the child component. The child component controls how the contents will be displayed, not the parent panelBox
component.
panelBox
component, set the inlineStyle
attribute to the exact pixel size you want. Alternatively, you can set the inlineStyle
attribute to a percentage of the outer element that contains the panelBox
component. Example 8-11 shows the code you might use for changing the width. Any ADF Faces component that has built-in event functionality, as the showDetail
, showDetail
Header
, and panelBox
components do, must be enclosed in the form
component.
The disclosed
attribute on these components specifies whether to show (disclose) or hide (undisclose) the contents under its header. By default, the disclosed
attribute is true
, that is, the contents are shown. When the attribute is set to false
, the contents are hidden. You do not have to write any code to enable the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces handles the toggling automatically.
The value of the disclosed
attribute can be persisted at runtime, that is, when the user shows or hides contents, ADF Faces can change and then persist the attribute value so that it remains in that state for the length of the user's session. For more information, see Chapter 31, "Allowing User Customization on JSF Pages."
When the user clicks the toggle icon to show or hide contents, the components deliver a org.apache.myfaces.trinidad.event.DisclosureEvent
event to the server. The DisclosureEvent
event contains information about the source component and its state: whether it is disclosed (expanded) or undisclosed (collapsed). The isExpanded()
method returns a boolean
value that determines whether to expand (disclose) or collapse (undisclose) the node. If you only want the component to disclose and undisclose its contents, then you do not need to write any code.
However, if you want to perform special handling of a DisclosureEvent
event, you can bind the component's disclosureListener
attribute to a disclosureListener
method in a backing bean. The disclosureListener
method will then be invoked in response to a DisclosureEvent
event, that is, whenever the user clicks the disclosed or undisclosed icon.
The disclosureListener
method must be a public method with a single disclosureEvent
event object and a void return type, shown in Example 8-12.
Example 8-12 disclosureListener Method
By default, DisclosureEvent
events are usually delivered in the Invoke Application phase, unless the component's immediate
attribute is set to true
. When the immediate
attribute is set to true
, the event is delivered in the earliest possible phase, usually the Apply Request Values phase.
On the client-side component, the AdfDisclosureEvent
event is fired. The event root for the client AdfDisclosureEvent
event is set to the event source component: only the event for the panel whose disclosed
attribute is true
gets sent to the server. For more information about client-side events and event roots, see Chapter 5, "Handling Events."
When you need to display multiple areas of content that can be hidden and displayed, you can use the panelAccordion
or the panelTabbed
components. Both of these components use the showDetailItem
component to display the actual contents.
The panelAccordion
component creates a series of expandable panes. You can allow users to expand more than one panel at any time, or to expand only one panel at a time. When more than one panel is expanded, the user can adjust the height of the panel by dragging the header of the showDetailItem
component.
When a panel is collapsed, only the panel header is displayed; when a panel is expanded, the panel contents are displayed beneath the panel header (users can expand the panes by clicking either the panelAccordion
component's header or the expand icon). The File Explorer application uses the panelAccordion
component to display the Folders and Search panes, as shown in Figure 8-34.
At runtime, when available browser space is less than the space needed to display expanded panel contents, ADF Faces automatically displays overflow icons that enable users to select and navigate to those panes that are out of view. Figure 8-35 shows the overflow icon (circled in the lower right-hand corner) displayed in the Folders panel of the File Explorer application when there is not enough room to display the Search panel.
When the user clicks the overflow icon, ADF Faces displays the overflow popup menu (as shown in Figure 8-36) for the user to select and navigate to.
You can also configure the panelAccordion
so that the panes can be rearranged by dragging and dropping, as shown in Figure 8-37.
When the order is changed, the displayIndex
attribute on the showDetailItem
components also changes to reflect the new order.
Note: Items in the overflow cannot be reordered. |
To use the panelAccordion
component, see Section 8.9.1, "How to Use the panelAccordion Component."
The panelTabbed
component creates a series of tabbed panes. Unlike the panelAccordion
panes, the panelTabbed
panes are not collapsible or expandable. Instead, when users select a tab, the contents of the selected tab are displayed. The tabs may be positioned above the display area, below the display area, or both. You can configure a panelTabbed
component so that the individual tabs can be closed. You can have it so that all tabs can be closed, all but the last tab can be closed, or no tabs can be closed. When tabs are configured to be closed, an X is displayed at the end of the tab. You can also configure tabs so that they display a disabled X, meaning it can be closed, but is currently disabled.
You can configure when the showDetailItem
components that contain the contents for each of the tabs will be created. When you have a small number of tabs, you can have all the showDetailItem
components created when the panelTabbed
component is first created, regardless of which tab is currently displayed. However, if the panelTabbed
component contains a large number of showDetailItem
components, the page might be slow to render. To enhance performance, you can instead configure the panelTabbed
component to create a showDetailItem
component only when its corresponding tab is selected. You can further configure the delivery method to either destroy a showDetailItem
once the user selects a different tab, or to keep any selected showDetailItem
components in the component tree so that they do not need to be recreated each time they are accessed.
The File Explorer application uses the panelTabbed
component to display the contents in the main panel, as shown in Figure 8-38.
To use the panelTabbed
component, see Section 8.9.2, "How to Use the panelTabbed Component."
Tip: If you want the tabs to be used in conjunction with navigational hierarchy, for example, each tab is a different page or region that contains another set of navigation items, you may want to use a navigation panel component to create a navigational menu. For more information, see Section 18.5, "Using Navigation Items for a Page Hierarchy." |
For both the panelAccordion
and panelTabbed
components, use one showDetailItem
component to provide the contents for each panel. For example, if you want to use four panes, insert four showDetailItem
components inside the panelAccordion
or panelTabbed
components, respectively. To use the showDetailItem
component, see Section 8.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components." You can add a toolbar to the toolbar
facet of the showDetailItem
component, and the toolbar will be shown whenever the panel or tab is disclosed. Figure 8-38 shows the toolbar used by the showDetailItem
component in the File Explorer application.
The panelTabbed
component also supports an overflow icon if all tabs cannot be displayed. Figure 8-39 shows the overflow icon in the File Explorer application.
Performance Tip: The number of child components within a |
The panelAccordion
and panelTabbed
components can be configured to be stretched, or they can be configured to instead take their dimensions from the currently disclosed showDetailItem
child.
When you configure the panelAccordion
or panelTabbed
component to stretch, then you can also configure the showDetailItem
component to stretch a single child as long as it is the only child of the showDetailItem
component.
You can use more than one panelAccordion
component in a page, typically in different areas of the page, or nested. After adding the panelAccordion
component, insert a series of showDetailItem
components to provide the panes, using one showDetailItem
for one panel. Then insert components into each showDetailItem
to provide the panel contents. For procedures on using the showDetailItem
component, see Section 8.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."
To create and use the panelAccordion component:
true
if you want users to be able to expand and see the contents of more than one panel at the same time. By default, the value is false
. This means only one panel can be expanded at any one time. For example, suppose there is one expanded panel A and one collapsed panel B when the page first loads. If the user expands panel B, panel A will be collapsed, because only one panel can be expanded at any time.
true
if you want users to be able to collapse all panes. By default, the value is false
. This means one panel must remain expanded at any time.
enabled
. The default is disabled
. Note: If the |
panelAccordion
component stretches to fill available browser space. If instead, you want to use the panelAccordion
component as a child to a component that does not stretch its children, then you need to change how the panelAccordion
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Other section, and set DimensionsFrom to one of the following:
children
: the panelAccordion
component will get its dimensions from the currently disclosed showDetailItem
component. Note: If you use this setting, you cannot set the height of the Similarly, you cannot set the |
parent
: the size of the panelAccordion
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the panelAccordion
component allows stretching of its child, then the panelAccordion
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelAccordion
component will be based on the size of its child component. Note: If you want the |
showDetailItem
components are created when the panelTabbed
component is created. If there will be a large number of children, to improve performance you can configure the panelTabbed
either so that it creates the child showDetailItem
component only when the tab is selected, or so that it creates the child showDetailItem
component only when it's selected the first time, and from that point on it remains created. You configure when the child components will be created using the childCreation
attribute. To do so, expand the Other section, and set ChildCreation to one of the following:
immediate
: All showDetailItem
components are created when the panelTabbed
component is created. lazy
: The showDetailItem
component is created only when the associated tab is selected. Once a tab is selected, the showDetailItem
component remains created in the component tree. lazyUncached
: The showDetailItem
component is created only when the associated tab is selected. Once another tab is selected, the showDetailItem
component is destroyed. By default, one panel is added for you using a showDetailItem
component as a child component to the panelAccordion
component. To add more panes, insert the showDetailItem
component inside the panelAccordion
component. You can add as many panes as you wish.
Tip: Accordion panels also allow you to use the |
To add contents for display in a panel, insert the desired child components into each showDetailItem
component. For procedures, see Section 8.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."
Using the panelTabbed
component to create tabbed panes is similar to using the panelAccordion
component to create accordion panes. After adding a panelTabbed
component, you insert a series of showDetailItem
components to provide the tabbed panel contents for display.
To create and use the panelTabbed component:
below
if you want the tabs to be rendered below the contents in the display area. By default, the value is above
. This means the tabs are rendered above the contents in the display area. The other acceptable value is both
, where tabs are rendered above and below the display area.
showDetailItem
components. You can override this on an individual showDetail Item component, so that an individual tab cannot be removed (a close icon does not display), or so that the closed icon is disabled. For more information, see Section 8.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components." panelTabbed
component stretches to fill available browser space. If instead, you want to use the panelTabbed
component as a child to a component that does not stretch its children, then you need to change how the panelTabbed
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Other section, and set DimensionsFrom to one of the following:
disclosedChild
: the panelTabbed
component will get its dimensions from the currently disclosed showDetailItem
component. Note: If you use this setting, you cannot set the height of the |
parent
: the size of the panelTabbed
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the PanelTabbed
component allows stretching of its child, then the panelTabbed
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelTabbed
component will be based on the size of its child component. showDetailItem
component as a child to the panelTabbed
component. To add more panes, insert the showDetailItem
component inside the panelTabbed
component. You can add as many tabbed panes as you wish. Tip: The |
To add contents for display in a panel, insert the desired child components into each showDetailItem
component. For information about using showDetailItem
, see Section 8.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."
Insert showDetailItem
components into a panelAccordion
or panelTabbed
component only. Each showDetailItem
component corresponds to one accordion panel or tabbed panel. Typically, you insert two or more showDetailItem
components into the parent component. Insert the child components for display into the showDetailItem
components.
The disclosed
attribute on a showDetailItem
component specifies whether to show (disclose) or hide (undisclose) the corresponding accordion panel or tab contents. By default, the disclosed
attribute is false
, that is, the contents are hidden (undisclosed). When the attribute is set to true
, the contents are shown (disclosed). You do not have to write any code to enable the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces handles the toggling automatically.
The following procedure assumes you have already added a panelAccordion
or panelTabbed
component to the JSF page, as described in Section 8.9.1, "How to Use the panelAccordion Component," and Section 8.9.2, "How to Use the panelTabbed Component," respectively.
To add accordion panel or tabbed panel contents using a showDetailItem component:
showDetailItem
components inside the parent component, such as panelAccordion
or panelTabbed
, by dragging and dropping a Show Detail Item component from Common Components panel of the Component Palette. Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
showDetailItem
component is being used inside a panelAccordion
component configured to stretch, you can configure the showDetailItem
to stretch and in turn stretch its contents, however, the showDetailItem
component must contain only one child component. You need to set Flex and the StretchChildren for each showDetailItem
component. Note: If you have set the |
Use the following attributes on each showDetailItem
component to control the flexibility of panel contents:
showDetailItem
components of one panelAccordion
component. By default, the value of the flex
attribute is 0
(zero), that is, the panel contents of each showDetailItem
component are inflexible. To enable flexible contents in a panel, specify a flex
number larger than 0
, for example, 1
or 2
. A larger flex
value means that the contents will be made larger than components with lower flex
values. For two flexible components, their height sizes are exactly proportionate to the flex
values assigned. If component A has flex
set to 2
and component B has flex
set to 1,
then the height of component A is two times the height of component B. flex
value of 0
(zero), ADF Faces will use 100 pixels for that panel, and then distribute the remaining space among the nonzero panes. If the contents of a panel cannot fit within the panelAccordion
container given the specified inflexibleHeight
value, ADF Faces automatically moves nearby contents into overflow menus (as shown in Figure 8-36). Also, if a panel has a nonzero flex
value, this will be the minimum height that the panel will shrink to before causing other panes to be moved into the overflow menus. first
, stretches a single child component. However, the child component must allow stretching. For more information, see Section 8.9.4, "What You May Need to Know About Geometry Management and the showDetailItem Component." For example, the File Explorer application uses showDetailItem
components to display contents in the navigator panel. Because the Search Navigator requires more space when both navigators are expanded, its flex
attribute is set to 2 and the showDetailItem
component for the Folders Navigator uses the default flex
value of 1. This setting causes the Search Navigator to be larger than the Folders Navigator when it is expanded.
Note: Instead of directly setting the value for the |
The user can change the panel heights at runtime, thereby changing the value of the flex
and inflexibleHeight
attributes. Those values can be persisted so that they remain for the duration of the user's session. For information, see Chapter 31, "Allowing User Customization on JSF Pages."
Note the following additional information about flexible accordion panel contents:
showDetailItem
components) with flex
values larger than 0
before ADF Faces can enable flexible contents. This is because ADF Faces uses the flex
ratio between two components to determine how much space to allocate among the panel contents. At runtime, two or more panes must be expanded before the effect of flexible contents can be seen. showDetailItem
component has only one child component and the flex
value is nonzero, and the stretchChildren
attribute is set to first
, ADF Faces will stretch that child component regardless of the discloseMany
attribute value on the panelAccordion
component. showDetailItem
components have flex
values of 0
(zero) and their panel contents are disclosed, even though the disclosed contents are set to be inflexible, ADF Faces will stretch the contents of the last disclosed showDetailItem
component as if the component had a flex
value of 1
, but only when that showDetailItem
component has one child only, and the stretchChildren
attribute is set to first
. If the last disclosed panel has more than one child component or the stretchChildren
attribute is set to none
, the contents will not be stretched. Even with the flex
attribute set, there are some limitations regarding geometry management. For more information, see Section 8.9.4, "What You May Need to Know About Geometry Management and the showDetailItem Component."
disclosureListener
method in a backing bean you want to execute when this panel or tab is selected by the user. For information about server disclosure events and event listeners, see Section 8.8.4, "What You May Need to Know About Disclosure Events."
true
if you want to disable this panel or tab (that is, the user will not be able to select the panel or tab). true
if you want this panel or tab to show its child components. By default, the disclosed
attribute is set to false
. This means the contents for this panel or tab are hidden.
Note: Note the difference between the |
If none of the showDetailItem
components has the disclosed
attribute set to true
, ADF Faces automatically shows the contents of the first enabled showDetailItem
component (except when it is a child of a panelAccordion
component, which has a setting for zero disclosed panes).
Note: While the user can change the value of the |
showDetailItem
components used in a panelAccordion
component, expand the Other section, and set DisplayIndex to reflect the order in which the showDetailItem
components should appear. If you simply want them to appear in the order in which they are in the page's code, then leave the default, -1
. Tip: If some |
Tip: This value can be changed at runtime if the parent |
panelTabbed
component, expand the Other section and set Remove to one of the following: panelTabbed
component is configured to allow it. This is the default. Set ItemListener to an EL expression that resolves to a handler method that will handle the actual removal of a component.
panelAccordion
component only), in the Component Palette, from the Common Components panel, insert a Toolbar into the toolbar
facet of the showDetailItem
component that defines that panel. Then, insert the desired number of commandToolbarButton
components into the toolbar
component. Although the toolbar
facet is on the showDetailItem
component, it is the panelAccordion
component that renders the toolbar and its buttons. For information about using toolbar
and commandToolbarButton
, see Section 14.3, "Using Toolbars." Note: When an accordion panel is collapsed, ADF Faces does not display the toolbar and its buttons. The toolbar and its buttons are displayed in the panel header only when the panel is expanded. |
showDetailItem
component. Both the panelAccordion
or panelTabbed
components can be configured to stretch when they are placed inside a component that uses geometry management to stretch its child components. However, for the panelAccordion
component, the showDetailItem
component will stretch only if the discloseMany
attribute on the panelAccordion
component is set to true
(that is, when multiple panes may be expanded to show their inflexible or flexible contents), the showDetailItem
component contains only one child component, and the showDetailItem
component's stretchChildren
attribute is set to first
. By default, panel contents will not stretch.
The showDetailItem
component will allow stretching if:
stretchChildren
attribute is set to first
When all of the preceding bullet points are true, the showDetailItem
component can stretch its child component. The following components can be stretched inside the showDetailItem
component:
inputText
(when configured to stretch) decorativeBox
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
panelDashboard
(when configured to stretch) panelGroupLayout
(only when the layout
attribute is set to scroll
or vertical
) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a showDetailItem
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only when the layout
attribute is set to default
or horizontal
) panelHeader
panelLabelAndMessage
panelList
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch as a child to a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched as a child of a showDetailItem
component, you need to wrap that component in different component that does not stretch its child components.
For example, if you want to place content in a panelList
component and have it be displayed in a showDetailItem
component, you might place a panelGroupLayout
component with its layout
attribute set to scroll
as the chid of the showDetailItem
component, and then place the panelList
component in that component. For more information, see Section 8.2.1, "Geometry Management and Component Stretching."
The showDetailItem
component inside of panelAccordion
and panelTabbed
components supports queuing of disclosure events so that validation is properly handled on the server and on the client.
In general, for any component with the disclosed
attribute, by default, the event root for the client AdfDisclosureEvent
is set to the event source component: only the event for the panel whose disclosed
attribute is true
gets sent to the server. However, for the showDetailItem
component that is used inside of panelTabbed
or panelAccordion
component, the event root is the panelTabbed
or panelAccordion
component (that is, the event source parent component, not the event source component). This ensures that values from the previously disclosed panel will not get sent to the server.
For example, suppose you have two showDetailItem
components inside a panelTabbed
or panelAccordion
component with the discloseMany
attribute set to false
and the discloseNone
attribute set to false
. Suppose the showDetailItem
1 component is disclosed but not showDetailItem
2. Given this scenario, the following occurs:
showDetailItem
2, a client-only disclosure event gets fired to set the disclosed
attribute to false
for the showDetailItem
1 component. If this first event is not canceled, another client disclosure event gets fired to set the disclosed
attribute to true
for the showDetailItem
2 component. If this second event is not canceled, the event gets sent to the server; otherwise, there are no more disclosure changes. disclosed
attribute to true
on the showDetailItem
2 component. If this first server event is not canceled, another server disclosure event gets fired to set the disclosed
attribute to false
for the showDetailItem
1 component. If neither server event is canceled, the new states get rendered, and the user will see the newly disclosed states on the client; otherwise, the client looks the same as it did before. For the panelAccordion
component with the discloseMany
attribute set to false
and the discloseNone
attribute set to true
, the preceding information is the same only when the disclosure change forces a paired change (that is, when two disclosed states are involved). If only one disclosure change is involved, there will just be one client and one server disclosure event.
For the panelAccordion
component with the discloseMany
attribute set to true
(and any discloseNone
setting), only one disclosure change is involved; there will just be one client and one server disclosure event.
For additional information about disclosure events, see Section 8.8.4, "What You May Need to Know About Disclosure Events."
You can use the panelHeader
component when you want header type functionality, such as message display or associated help topics, but you do not have to provide the capability to show and hide content.
You can use the decorativeBox
component when you need to transition to a different look and feel on the page. The decorativeBox
component uses themes and skinning keys to control the borders and colors of its different facets. For example, depending on the skin you are using, if you use the default theme, the decorativeBox
component body is white and the border is blue, and the top-left corner is rounded. If you use the medium theme, the body is a medium blue. For information about using themes and skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins"
The panelHeader
component offers facets for specific types of components and the ability to open a help topic from the header. The following are the facets supported by the panelHeader
component:
context
: Displays information in the header alongside the header text. help
: Displays help information. Use only for backward compatibility. Use the helpTopicId
attribute on the panelHeader
component instead. info
: Displays information beneath the header text, aligned to the right. legend
: If help text is present, displays information to the left of the help content and under the info
facet's content. If help text is not present, the legend content will be rendered directly under the header. toolbar
: Displays a toolbar, before the menu bar. menuBar
: Displays a menu bar, after the toolbar. Figure 8-40 shows the different facets in the panelHeader
component.
When there is not enough space to display everything in all the facets of the title line, the panelHeader
text is truncated and displays an ellipsis. When the user hovers over the truncated text, the full text is displayed in a tooltip, as shown in Figure 8-41.
When there is more than enough room to display the contents, the extra space is placed between the context
facet and the toolbar, as shown in Figure 8-42.
You can configure panelHeader
components so that they represent a hierarchy of sections. For example, as shown in Figure 8-43, you can have a main header with a subheader and then a heading level 1 also with a subheader.
Create subsections by nesting panelHeader
components within each other. When you nest panelHeader
components, the heading text is automatically sized according to the hierarchy, with the outermost panelHeader
component having the largest text.
Note: Heading sizes are determined by default by the physical containment of the header components. That is, the first header component will render as a heading level 1. Any header component nested in the first header component will render as a heading level 2, and so on. You can manually override the heading level on individual header components using the |
For information about using the panelHeader
component, see Section 8.10.1, "How to Use the panelHeader Component."
The decorativeBox
component provides styling capabilities using themes. It has two facets, top and center. The top facet provides a non-colored area, while the center facet is the actual box. The height of the top facet depends on whether or not a component has been put into the top facet. When the facet is set, the topHeight
attribute is used to specify the size the content should occupy.
The color of the box for the center facet depends on the theme and skin used. Figure 8-44 shows the different themes available by default.
By default, the decorativeBox
component stretches to fill its parent component. You can also configure the decorative
Box component to inherit its dimensions from its child components. For example, Figure 8-45 shows the medium-theme decorativeBox
configured to stretch to fill its parent, while the dark-theme decorativeBox
is configured to only be as big as its child outputText
component.
You can further control the style of the decorativeBox
component using skins. Skinning keys can be defined for the following areas of the component:
For more information about skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
You can use one panelHeader
component to contain specific information, or you can use a series of nested panelHeader
components to create a hierarchical organization of content. If you want to be able to hide and display the content, use the showDetailHeader
component instead. For more information, see Section 8.8.2, "How to Use the showDetailHeader Component."
To create and use a panelHeader component:
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
Figure 8-46 shows the icons used for the different message types.
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
H1
, H2
, etc. through H6
. The heading level is used to determine the correct page structure, especially when used with screen reader applications. By default, headerLevel is set to -1, which allows the headers to determine their size based on the physical location on the page. In other words, the first header component will be set to be a H1. Any header component nested in that H1 component will be set to H2, and so on.
Note: Screen reader applications rely on the HTML header level assignments to identify the underlying structure of the page. Make sure your use of header components and assignment of header levels make sense for your page. When using an override value, consider the effects of having headers inside disclosable sections of the page. For example, if a page has collapsible areas, you need to be sure that the overridden structure will make sense when the areas are both collapsed and disclosed. |
size
attribute. The size
attribute specifies the number to use for the header text and overrides the skin. The largest number is 0
, and it corresponds to an H1 header level; the smallest is 5
, and it corresponds to an H6 header.
By default, the size
attribute is -1
. This means ADF Faces automatically calculates the header level style to use from the topmost, parent component. When you use nested components, you do not have to set the size
attribute explicitly to get the proper header style to be displayed.
Note: While you can force the style of the text using the |
In the default skin used by ADF Faces, the style used for sizes above 2 will be displayed the same as size 2. That is, there is no difference in styles for sizes 3, 4, or 5–they all show the same style as size 2. You can change this by creating a custom skin. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
panelHeader
component handles geometry management, expand the Other section and set Type to one of the following. For more information about geometry management, see Section 8.2.1, "Geometry Management and Component Stretching." panelHeader
component will be determined solely by its children. panelHeader
component to determine geometry management. toolbar
component into the toolbar
facet. Then, insert the desired number of commandToolbarButton
components into the toolbar
component. For information about using toolbar
and commandToolbarButton
, see Section 14.3, "Using Toolbars." Note: Toolbar overflow is not supported in |
menuBar
facet. For information about creating menus in a menu bar, see Section 14.2, "Using Menus in a Menu Bar." Tip: You can place menus in the |
Tip: If any facet is not visible in the visual editor:
|
panelHeader
component. You use the decorativeBox
component to provide a colored area or box in a page. This component is typically used as a container for the navigationPane
component that is configured to display tabs. For more information, see Section 18.5, "Using Navigation Items for a Page Hierarchy."
To create and use a decorativeBox component:
top
facet. decorativeBox
component stretches to fill available browser space. If instead, you want to use the decorativeBox
component as a child to a component that does not stretch its children, then you need to change how the decorativeBox
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Other section, and set DimensionsFrom to one of the following:
children
: the decorativeBox
component will get its dimensions from its child components. Note: If you use this setting, you cannot use a percentage to set the height of the Similarly, you cannot set the height of the |
parent
: the size of the decorativeBox
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the decorativeBox
component allows stretching of its child, then the decorativeBox
component will stretch to fill the parent. If the parent does not stretch its children then the size of the decorativeBox
component will be based on the size of its child component. For more information, see Section 8.10.3, "What You May Need to Know About Geometry Management and the decorativeBox Component."
The decorativeBox
component can stretch child components in its center
facet and it can also be stretched. The following components can be stretched inside the center
facet of the decorativeBox
component:
inputText
(when configured to stretch) decorativeBox
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
panelDashboard
panelGroupLayout
(only with the layout
attribute set to scroll
or vertical
) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a facet of the decorativeBox
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only with the layout
attribute set to default
or horizontal
) panelHeader
panelLabelAndMessage
panelList
showDetail
showDetailHeader
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched into a facet of the decorativeBox
component, wrap that component in a transition component that does not stretch its child components.
For example, if you want to place content in a panelBox
component and have it flow within a facet of the decorativeBox
component, you could place a panelGroupLayout
component with its layout attribute set to scroll
in the facet of the decorativeBox
component, and then place the panelBox
component in that panelGroupLayout
component. For more information, see Section 8.2.2, "Nesting Components Inside Components That Allow Stretching."
The panelList
component is a layout element for displaying a vertical list of child components with a bullet next to each child, as shown in Figure 8-47. Only child components whose rendered
attribute is set to true
and whose visible
attribute is set to true
are considered for display by in the list.
Note: To display dynamic data (for example, a list of data determined at runtime by JSF bindings), use the selection components, as documented in Section 9.6, "Using Selection Components." If you need to create lists that change the model layer, see Chapter 11, "Using List-of-Values Components." |
By default, the disc bullet is used to style the child components. There are other styles you can use, such as square bullets and white circles. You can also split the list into columns when you have a very long list of items to display.
Use one panelList
component to create each list of items.
To create and use the panelList component:
listStyle
attribute to a valid CSS 2.1 list style value, such as one of the following: list-style-type: disc
list-style-type: square
list-style-type: circle
list-style-type: decimal
list-style-type: lower-alpha
list-style-type: upper-alpha
For example, the list-style-type: disc
attribute value corresponds to a disc bullet, and the list-style-type: circle
value corresponds to a circle bullet.
For a complete list of the valid style values to use, refer to the CSS 2.1 Specification for generated lists at
http://www.w3.org/TR/CSS21/generate.html
Example 8-13 shows the code for setting the list style to a circle.
panelList
component. Tip: Panel lists also allow you to use the |
For example, you could insert a series of commandLink
components or outputFormatted
components.
Note: By default, ADF Faces displays all rendered child components of a |
You can nest panelList
components to create a list hierarchy. A list hierarchy, as shown in Figure 8-48, has outer items and inner items, where the inner items belonging to an outer item are indented under the outer item. Each group of inner items is created by one nested panelList
component.
To achieve the list hierarchy as shown in Figure 8-48, use a group
component to wrap the components that make up each group of outer items and their respective inner items. Example 8-14 shows the code for how to create a list hierarchy that has one outer item with four inner items, and another outer item with two inner items.
Example 8-14 Nested PanelList Components
By default, the outer list items (for example, item 1 and item 2) are displayed with the disc bullet, while the inner list items (for example, item 1.1 and item 2.1) have the white circle bullet.
For more information about the panelGroupLayout
component, see Section 8.12, "Grouping Related Items."
To keep like items together within a parent component, use either the group
or panelGroupLayout
component. The group
component aggregates or groups together child components that are related semantically. Unlike the panelGroupLayout
component, the group
component does not provide any layout for its child components. Used on its own, the group
component does not render anything; only the child components inside of a group
component render at runtime.
You can use any number of group
components to group related components together. For example, you might want to group some of the input fields in a form layout created by the panelFormLayout
component. Example 8-15 shows sample code that groups two sets of child components inside a panelFormLayout
component.
Example 8-15 Grouping Child Components in panelFormLayout
The panelGroupLayout
component lets you arrange a series of child components vertically or horizontally without wrapping, or consecutively with wrapping, as shown in Figure 8-49. The layout
attribute value determines the arrangement of the child components.
In all arrangements, each pair of adjacent child components can be separated by a line or white space using the separator
facet of the panelGroupLayout
component. For more information, see Section 8.13, "Separating Content Using Blank Space or Lines."
When using the horizontal layout, the child components can also be vertically or horizontally aligned. For example, you could make a short component beside a tall component align at the top, as shown in Figure 8-50.
Unlike the panelSplitter
or panelStretchLayout
components, the panelGroupLayout
component does not stretch its child components. Suppose you are already using a panelSplitter
or panelStretchLayout
component as the root component for the page, and you have a large number of child components to flow, but are not to be stretched. To provide scrollbars when flowing the child components, wrap the child components in the panelGroupLayout
component with its layout
attribute set to scroll
, and then place the panelGroupLayout
component inside a facet of the panelSplitter
or panelStretchLayout
component.
When the layout
attribute is set to scroll
on a panelGroupLayout
component, ADF Faces automatically provides a scrollbar at runtime when the contents contained by the panelGroupLayout
component are larger than the panelGroupLayout
component itself. You do not have to write any code to enable the scrollbars, or set any inline styles to control the overflow.
For example, when you use layout components such as the panelSplitter
component that let users display and hide child components contents, you do not have to write code to show the scrollbars when the contents are displayed, and to hide the scrollbars when the contents are hidden. Simply wrap the contents the be displayed inside a panelGroupLayout
component, and set the layout
attribute to scroll
.
In the File Explorer application, the Search Navigator contains a panelSplitter
component used to hide and show the search criteria. When the search criteria are hidden, and the search results content does not fit into the area, a scrollbar is rendered, as shown in Figure 8-51.
Any number of panelGroupLayout
components can be nested to achieve the desired layout.
To create and use the panelGroupLayout component:
panelGroupLayout
component. Tip: The |
spacer
or separator
component into the separator
facet. At runtime, when the contents exceed the browser space available (that is, when the child components are larger than the width of the parent container panelGrouplayout
), the browser flows the contents onto the next line so that all child components are displayed.
Note: ADF Faces uses the bidirectional algorithm when making contents flow. Where there is a mix of right-to-left content and left-to-right content, this may result in contents not flowing consecutively. |
In a horizontal layout, the child components can also be aligned vertically and horizontally. By default, horizontal child components are aligned in the center with reference to an imaginary horizontal line, and aligned in the middle with reference to an imaginary vertical line. To change the horizontal and vertical alignments of horizontal components, use the following attributes:
center
. Other acceptable values are: start
, end
, left
, right
. For example, set halign
to start
if you want horizontal child components to always be left-aligned in browsers where the language reading direction is left-to-right, and right-aligned in a right-to-left reading direction.
middle
. Other acceptable values are: top
, bottom
, baseline
. In output text components (such as outputText
) that have varied font sizes in the text, setting valign
to baseline
would align the letters of the text along an imaginary line on which the letters sit, as shown in Figure 8-52. If you set valign
to bottom
for such text components, the resulting effect would not be as pleasant looking, because bottom
vertical alignment causes the bottommost points of all the letters to be on the same imaginary line.
Note: The |
While the panelGroupLayout
component cannot stretch its child components, it can be stretched when it is the child of a panelSplitter
or panelStretchLayout
component and its layout
attribute is set to either scroll
or vertical
.
You can incorporate some blank space in your pages, to space out the components so that the page appears less cluttered than it would if all the components were presented immediately next to each other, or immediately below each other. The ADF Faces component provided specifically for this purpose is the spacer
component.
You can include either or both vertical and horizontal space in a page using the height
and width
attributes.
The height
attribute determines the amount of vertical space to include in the page. Example 8-16 shows a page set up to space out two lengthy outputText
components with some vertical space.
Example 8-16 Vertical Space
Figure 8-53 shows the effect the spacer
component has on the page output as viewed in a browser.
The width
attribute determines the amount of horizontal space to include between components. Example 8-17 shows part of the source of a page set up to space out two components horizontally.
Example 8-17 Horizontal Space
Figure 8-54 shows the effect of spacing components horizontally as viewed in a browser.
The separator
component creates a horizontal line. Figure 8-55 shows the properties.jspx
file as it would be displayed with a separator
component inserted between the two panelBox
components.
The spacer
and separator
components are often used in facets of other layout components. Doing so ensures that the space or line stays with the components they were meant to separate.
You can use as many spacer
components as needed on a page.
To create and use the spacer component:
Note: If the height is specified but not the width, a block-level HTML element is rendered, thereby introducing a new line effect. If the width is specified, then, irrespective of the specified value of height, it may not get shorter than the applicable line-height in user agents that strictly support HTML standards. |
This chapter describes the input components that are used to enter data, select values, edit text, and load files.
This chapter includes the following sections:
Input components accept user input in a variety of formats. The most common formats are text, numbers, date, and selection lists that appear inside a form and are submitted when the form is submitted. The entered values or selections may be validated and converted before they are processed further. For example, the File Explorer application contains a form that allows users to create a new file. Using input components, users enter the name, the size, select permissions, and add keywords, and a description, as shown in Figure 9-1.
In addition to standard input components used to input text, number, date, or color, ADF Faces includes input type components that provide additional functionality. The inputFile
component allows users to browse for a file to load.
The richTextEditor
component provides rich text input that can span many lines and can be formatted using different fonts, sizes, justification, and other editing features. The richTextEditor
component can also be used with command components to insert given text into the component. The inserted text can be preformatted. Additionally, you can customize the buttons that appear in the editor's toolbar.
The selection components allow the user to make selections from a list of items instead of or in addition to typing in values. For example, the selectOneChoice
component lets the user select input from a dropdown list and the selectOneRadio
component lets a user pick from a group of radio buttons.
You can use either selection or list-of-values (LOV) components to display a list. LOV components should be used when the selection list is large. LOV components are model-driven using the ListOfValueModel
class and may be configured programmatically using the API. They present their selection list inside a popup window that may also include a query panel. Selection lists simply display a static list of values. For more information about using LOV components, see Chapter 11, "Using List-of-Values Components."
The selectItem
component is used within other selection components to represent the individual selectable items for that component. For example, a selectOneRadio
component will have a selectItem
component for each of its radio buttons. If the radio button selections are coffee, tea, and milk, there would be a selectItem
component for coffee, one for tea, and one for milk.
The form components provide a container for other components. The form
component represents a region where values from embedded input components can be submitted. Form components cannot be nested. However, the subform
component provides additional flexibility by defining subregions whose component values can be submitted separately within a form. The resetButton
component provides an easy way for the user to reset input values within a form or subform to their previous state.
All the input and selection components deliver the ValueChangeEvent
and AttributeChangeEvent
events. You can create valueChangeListener
and attributeChangeListener
methods to provide functionality in response to the corresponding events.
All input components, selection components (except selectItem
), and the rich text editor component have a changed
attribute that when set to true
enables a change indicator icon to be displayed upon changes in the value
field. This indicator allows the user to easily see which input value has changed, which can be helpful when there are multiple components on the page. By default, the change indicator usually is displayed to the left of the component. If the value in a field automatically changes due to a change in another field's value, such as an automatically generated postal code when the city is entered, the postal code field will also display a change indicator. Figure 9-2 shows changed indicators present for the checkbox and input components.
Tip: You can change the icon or the position of the icon using skins. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins." |
Most input components also have the capability of displaying only the label, and not appearing capable of changing value until the user mouses over or hovers over the component. Once the user changes the value, that new value displays as read-only. Figure 9-3 shows a selectManyChoice
component configured to be editable only on access.
Input components can also display tooltips, error and validation messages, and context-sensitive help. For more information, see Chapter 17, "Displaying Tips, Messages, and Help."
All input components have JavaScript client APIs that you can use to set or get property values. For more information, see the ADF Faces JavaScript API documentation.
A form is a component that serves as a container for other components. When a submit action occurs within the form, any modified input values are submitted. For example, you can create an input form that consists of input and selection components, and a submit command button, all enclosed within a form. When the user enters values into the various input fields and clicks the Submit button, those new input values will be sent for processing.
By default, when you create a JSF page in JDeveloper, it automatically inserts a form
component into the page. When you add components to the page, they will be inserted inside the form
component.
Tip: If you do not already have an |
Example 9-1 shows two input components and a Submit button that when clicked will submit both input values for processing.
Example 9-1 ADF Faces Form as a Container for Input Components
Because there can be only one form
component on a page, you can use subforms within a form to create separate regions whose input values can be submitted. Within a region, the values in the subform will be validated and processed only if a component inside the subform caused the values to be submitted. You can also nest a subform within another subform to create nested regions whose values can be submitted. For more information about subforms, see Section 4.5, "Using Subforms to Create Regions on a Page."
Example 9-2 shows a form with two subforms, each containing its own input components and Submit button. When a Submit button is clicked, only the input values within that subform will be submitted for processing.
Example 9-2 ADF Faces Subform Within a Form
Aside from the basic Submit button, you can add any other command component within a form and have it operate on any field within the form. ADF Faces provides a specialized command component: the resetButton
component, which when clicked, resets all the input and selection components within a form. That is, it updates all components whose values can be edited with the current values of the model. The resetButton
component is different from HTML reset in that the resetButton
component will reset the input components to their previous state which was partially or fully submitted successfully to the server without any validation or conversion error. For example, if a user enters value A
and clicks the Submit button, and then changes the value from A
to B
and clicks the resetButton
component, the value A
will be restored.
In most cases, JDeveloper will add the form component for you. However, there may be cases where you must manually add a form, or configure the form with certain attribute values.
To add a form to a page:
_self
. You should add subform components within a form component when you need a section of the page to be capable of independently submitting values.
To add subforms to a page:
form
component. false
, this subform
component will consider itself to be submitted only if no other subform
component has been submitted. When set to true
, this subform component assumes it has submitted its values. Tip: A |
You can add the resetButton
component inside a form or a subform. The reset button will act upon only those components within that form or subform.
To add a reset button to a page:
Although input components include many variations, such as pickers, sliders, and a spinbox, the inputText
component is the basic input component for entering values. You can define an inputText
component as a single-row input field or as a text area by setting the rows
attribute to more than 1. However, if you want to create a multiple row text input, consider using the richTextEditor
component as described in Section 9.8, "Using the richTextEditor Component."
You can hide the input values from being displayed, such as for passwords, by setting the secret
attribute to true
. Like other ADF Faces components, the inputText
component supports label, text, and messages. When you want this component to be displayed without a label, you set the simple
attribute to true
. Figure 9-4 shows a single-row inputText
component.
You can make the inputText
component display more than one row of text using the rows
attribute. If you set the rows
attribute to be greater than one, and you set the simple
attribute to true, then the inputText
component can be configured to stretch to fit its container using the dimensionsFrom
attribute. For more information about how components stretch, see Chapter 8, "Geometry Management and Component Stretching." Figure 9-6 shows a multi-row inputText
component.
You can add multiple inputText
components to create an input form. Figure 9-5 shows an input form using three inputText
components and a Submit command button.
You can also configure an insertTextBehavior
tag that works with command components to insert given text into an inputText
component. The text to be entered can be a simple string, or it can be the value of another component, for example the selected list item in a selectOneChoice
component. For example, Figure 9-6 shows an inputText
component with some text already entered by a user.
The user can then select additional text from a dropdown list, click the command button, and that text appears in the inputText
component as shown in Figure 9-7.
You can use an inputText
component inside any of the layout components described in Chapter 8, "Organizing Content on Web Pages."
To add an inputText component:
If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog either to search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 21, "Internationalizing and Localizing Pages."
get
method but no set
method, and this is a component whose value can be edited, then the component will be rendered in read-only mode. wrap
attribute. true
, the secret
attribute hides the actual value of the text from the user. soft
, which means multiple-row text wraps visually, but does not include carriage returns in the submitted value. Setting this attribute to off
will disable wrapping: the multiple-row text will scroll horizontally. Setting it to hard
specifies that the value of the text should include any carriage returns needed to wrap the lines. required
attribute to true
will also show the visual indication. You may want to use the showRequired
attribute when a field is required only if another field's value is changed. true
, you may also want to set the changedDesc
attribute. For example, if the label of a field is Description and you want the D to be the access key, you would enter &Description
.
Note: Because the value is being stored in the source of the page in XML, the ampersand (&) character must be escaped, so the value will actually be represented in the source of the page using the characters |
true
if you do not want the label to be displayed. The placeholder text is used to inform the user what should be entered in the input component.
true
, a visual indication is displayed to let the user know a value must be entered. If a value is not entered, an exception will occur and the component will fail validation. autoSubmit
attribute, see Section 4.3, "Using the Optimized Lifecycle." auto
, text
, and search
. Default is auto
. If the usage type is search
, the input component will render as an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon that can be used to clear the search text.
maximumLength
attribute is ignored. Note that in some browsers such as Internet Explorer, a new line is treated as two characters. inputText
component to handle geometry management. Set this attribute to one of the following: auto
: If the parent component to the inputText
component allows stretching of its child, then the inputText
component will stretch to fill the parent component, as long as the rows
attribute is set to a number greater than one and the simple
attribute is set to true
. If the parent component does not allow stretching, then the inputText
component gets its dimensions from the content. inputText
component gets its dimensions from the component content. This is the default. parent
: The inputText
component gets its dimensions from the inlineStyle
attribute. If no value exists for inlineStyle
, then the size is determined by the parent container. always
. If you want the value to appear as read-only until the user hovers over it, select onAccess
. If you want the value to be inherited from an ancestor component, select inherit
. Note: If you select |
The insertTextBehavior
tag works with command components to insert given text into an inputText
component. The text to be entered can be a simple string, or it can be the value of another component, for example the selected list item in a selectOneChoice
component. To allow text to be inserted into an inputText
component, add the insertTextBehavior
tag as a child to a command component that will be used to insert the text.
Note: The |
Before You Begin
Before you add an insertTextBehavior
tag, you need to create an inputText
component as described in Section 9.3.1, "How to Add an inputText Component." Set the clientComponent
attribute to true
.
To add text insert behavior:
inputText
component into which the text will be inserted. selectOneChoice
component), then enter an EL expression that resolves to that value. Example 9-3 shows page code for an inputText
component into which either the value of a dropdown list or the value of static text can be inserted. Example 9-3 Using the insertTextBehavior Tag
triggerType
attribute of the insertTextBehavior
component in the Property Inspector. The slider components present the user with a slider with one or two markers whose position on the slider corresponds to a value. The slider values are displayed and include a minus icon at one end and a plus icon at the other. The user selects the marker and moves it along the slider to select a value. The inputNumberSlider
component has one marker and allows the user to select one value from the slider, as shown in Figure 9-8 in horizontal layout, and in Figure 9-9 in vertical layout.
The inputRangeSlider
component has two markers and allows the user to pick the end points of a range, as shown in Figure 9-10.
The inputNumberSpinbox
is an input component that presents the user with an input field for numerical values and a set of up- and down-arrow keys to increment or decrement the current value in the input field, as shown in Figure 9-11.
When you add an inputNumberSlider
or an inputRangeSlider
component, you can determine the range of numbers shown and the increment of the displayed numbers.
To add an inputNumberSlider or inputRangeSlider component:
inputRangeSlider
component, also expand the Data section) and set the following attributes: majorIncrement
value of the inputRangeSlider
component in Figure 9-10 is 5.0
. If set to less than 0
, major increments will not be shown. value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode. The inputNumberSpinbox
component allows the user to scroll through a set of numbers to select a value.
To add an inputNumberSpinbox component:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode. onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
. Note: If you select |
The inputColor
component presents a text input field for entering code for colors and a button for picking colors from a palette. The default color code format is the hexadecimal color format. However, you can override the format using a ColorConverter
class.
By default, the inputColor
component opens the chooseColor
component that allows users to pick the color from a a palette. Figure 9-12 shows the inputColor
component with the chooseColor
component in a popup dialog.
The inputDate
component presents a text input field for entering dates and a button for picking dates from a popup calendar, as shown in Figure 9-13. The default date format is the short date format appropriate for the current locale. For example, the default format in American English (ENU) is mm/dd/yy
. However, you can override the format using a date-time converter (for more information about using converters, see Section 6.3, "Adding Conversion").
When you add a date-time converter and configure it to show both the date and the time, the date picker is displayed as a modal dialog with additional controls for the user to enter a time. Additionally, if the converter is configured to show a time zone, a timezone dropdown list is shown in the dialog, as shown in Figure 9-14.
The inputColor
component allows users either to enter a value in an input text field, or to select a color from a color chooser.
To add an inputColor component:
true
if you do not want to display the input text field, as shown in Figure 9-15. value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode. width
attribute. For example, if you set the colorData
attribute to 49, the width must be 7. If the number does not match the width, extra color elements in the list will be ignored and missing color elements will be displayed as no-color. The color list must be an array of type TrColor
on the client side. TrColor
on the client side. On the server side, it must be a List
of java.awt.Color
objects, or a list of hexadecimal color strings. #000000
. colorData
and customColorData
attributes. true
, the Custom Color button and custom color row will be rendered. true
, the Default button will be rendered. The Default button allows the user to easily select the color set as the value for the defaultColor
attribute. true
the Last Used button will be rendered, which allows the user to select the color that was most recently used. The placeholder text is used to inform the user what should be entered in the input component.
id
of the chooseColor
component which can be used to choose the color value. If not set, the inputColor
component has its own default popup dialog with a chooseColor
component. auto
, text
, and search
. Default is auto
. If the usage type is search
, the input component will render as an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon that can be used to clear the search text.
onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
. Note: If you select |
The inputDate
component allows the user to either enter or select a date.
To add an inputDate component:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode. java.util.Date
objects. java.util.Date
objects. org.apache.myfaces.trinidad.model.DateListProvider
interface. The getDateList
method should generate a List
of individual java.util.Date
objects which will be rendered as disabled. The dates must be in the context of the given base calendar. Performance Tip: This binding requires periodic roundtrips. If you just want to disable certain weekdays (for example, Saturday and Sunday), use the |
sun
, mon
, tue
, wed
, thu
, fri
, sat
. By default, all days are enabled. jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
. By default, all months are enabled. id
of the chooseDate
component which can be used to choose the date value. If not set, the inputDate
component has its own default popup dialog with a chooseDate
component. auto
, text
, and search
. Default is auto
. If the usage type is search
, the input component will render as an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon that can be used to clear the search text.
onAccess
if you want the value of the component to appear as read-only until the user hovers over it. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
. Note: If you select |
The placeholder text is used to inform the user what should be entered in the input component.
By default, the inputDate
component displays a drop down list of time zones if the associated converter is configured to do so, for example, if you include the timezone placeholder z
in the converter's pattern. The end user can only modify the timezone using this list. The list is configured to display the most common time zones.
However, there may be times when you need to display the list of time zones outside of the inputDate
component. For example, on a Application Preferences page, you may want to use a selectOneChoice
component that allows the user to select the time zone that will be used to display all inputDates
in the application. A backing bean would handle the conversion between the time zone ID and the java.util.TimeZone object
. Converters for the inputDate
instances in the application would then bind the time zone to that time zone object.
You can access this list using either an API on the DateTimeUtils
class, or using an EL expression on a component.
Following are the methods on DateTimeUtils
class:
getCommonTimeZoneSelectItems ()
: Returns a list of commonly used time zones. getCommonTimeZoneSelectItems (String timeZoneId)
: Returns a list of commonly used time zones, including the given time zone if it is not part of the list. To access this list using EL, use one of the following expressions:
af:getCommonTimeZoneSelectItems
For example:
af:getMergedTimeZoneSelectItems (id)
For example:
If you will be using an inputDate
component and a selection list for its time zone on the same page, you must clear out the local value for the inputDate
's timezone to ensure that the value binding for the selection takes precedence. Otherwise, a non-null local value will take precedence, and the inputDate
component will not appear to be updated.In Example 9-4, the backing bean has a reference using the binding attribute to the inputDate
component. When the user picks a new time zone, the id is set and the code gets the converter for the inputDate
and clears out its time zone. When the page is rendered, since the local value for the converter's time zone is null, it will evaluate #{demoInput.preferredTimeZone}
and obtain the updated time zone.
Example 9-4 Using an inputDate and Time Zone Selection List Together
The selection components allow the user to select single and multiple values from a list or group of items. ADF Faces provides a number of different selection components, ranging from simple boolean radio buttons to list boxes that allow the user to select multiple items. The list of items within a selection component is made up of a number of selectItem
components
All the selection components except the selectItem
component delivers the ValueChangeEvent
and AttributeChangeEvent
events. The selectItem
component only delivers the AttributeChangeEvent
event. You must create a valueChangeListener
handler or an attributeChangeListener
handler, or both for them.
The selectBooleanCheckbox
component value must always be set to a boolean and not an object. It toggles between selected and unselected states, as shown in Figure 9-16.
The selectBooleanRadio
component displays a boolean choice, and must always be set to a boolean. Unlike the selectBooleanCheckbox
component, the selectBooleanRadio
component allows you to group selectBooleanRadio
components together using the same group
attribute.
For example, say you have one boolean that determines whether or not a user is age 10 to 18 and another boolean that determines whether a user is age 19-100. As shown in Figure 9-17, the two selectBooleanRadio
components can be placed anywhere on the page, they do not have to be next to each other. As long as they share the same group
value, they will have mutually exclusive selection, regardless of their physical placement on the page.
Tip: Each |
You use the selectOneRadio
component to create a list of radio buttons from which the user can select a single value, as shown in Figure 9-18.
You use the selectManyCheckbox
component to create a list of checkboxes from which the user can select one or more values, as shown in Figure 9-19.
The selectOneListbox
component creates a component which allows the user to select a single value from a list of items displayed in a shaded box, as shown in Figure 9-20.
The selectManyListbox
component creates a component which allows the user to select many values from a list of items. This component includes an All checkbox that is displayed at the beginning of the list of checkboxes, as shown in Figure 9-21.
The selectOneChoice
component creates a menu-style component, which allows the user to select a single value from a dropdown list of items. The selectOneChoice
component is intended for a relatively small number of items in the dropdown list.
Best Practice: If a large number of items is desired, use an |
The selectOneChoice
component is shown in Figure 9-22.
You can configure the selectOneChoice
component to display in a compact mode, as shown in Figure 9-23. When in compact mode, the input field is replaced with a smaller icon.
When the user clicks the icon, the dropdown list is displayed, as shown in Figure 9-24.
The selectManyChoice
component creates a menu-style dropdown component, which allows the user to select multiple values from a dropdown list of items. This component can be configured to include an All selection item that is displayed at the beginning of the list of selection items. If the number of choices is greater than 15, a scrollbar will be presented, as shown in Figure 9-25.
By default, all selectItem
child components are built when the selectManyChoice
component is built, as the page is rendered. However, if the way the list items are accessed is slow, then performance can be hampered. This delay can be especially troublesome when it is likely that the user will select the items once, and then not change them on subsequent visits. For example, suppose you have a selectManyChoice
component used to filter what a user sees on a page, and that the values for the child selectItem
components are accessed from a web service. Suppose also that the user is not likely to change that selection each time they visit the page. By default, each time the page is rendered, all the selectItems
must be built, regardless of whether or not the user will actually need to view them. Instead, you can change the contentDelivery
attribute on the selectManyChoice
component from immediate
(the default) to lazy
. The lazy
setting causes the selectItem
components to be built only when the user clicks the dropdown.
For both immediate
and lazy
, when the user then makes a selection, the values of the selected selectItem
components are displayed in the field. However when lazy content delivery is used, on subsequent visits, instead of pulling the selected values from the selectItem
components (which would necessitate building these components), the values are pulled from the lazySelectedLabel
attribute. This attribute is normally bound to a method that returns an array of Strings
representing the selected items. The selectItem
components will not be built until the user goes to view or change them, using the dropdown.
Note that there are limitations when using the lazy
delivery method on the selectManyChoice
component. For more information about content delivery for the selectManyChoice
component and its limitations, see Section 9.6.2, "What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component."
For the following components, if you want the label to appear above the control, you can place them in a panelFormLayout
component.
selectOneChoice
selectOneRadio
selectOneListbox
selectManyChoice
selectManyCheckbox
selectManyListbox
For the following components, the attributes disabled
, immediate
, readOnly
, required
, requireMessageDetail
, and value
cannot be set from JavaScript on the client for security reasons (for more information, see Section 3.7.1, "How to Set Property Values on the Client"):
selectOneChoice
selectOneRadio
selectOneListbox
selectBooleanRadio
selectBooleanCheckbox
selectManyChoice
selectManyCheckbox
selectManyListbox
The procedures for adding selection components are the same for each of the components. First, you add the selection component and configure its attributes. Then you add any number of selectItem
components for the individual items in the list, and configure those.
To use a selection component:
For all selection components except the selectBooleanCheckbox
and selectBooleanRadio
components, a dialog opens where you choose either to bind to a value in a managed bean, or to create a static list. On the second page of the dialog, you can set the following properties:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode. Note: If you are creating a |
Table 9-1 Appearance Attributes for Selection Components
Components | Attribute |
---|---|
| Layout: Set to |
| Size: Set to the number of items that should be displayed in the list. If the number of items in the list is larger than the |
| SelectAllVisible: Set to |
| Mode: Set to |
| UnselectedLabel: Enter text for the option that represents a value of |
Table 9-2 Behavior Attributes for Selection Components
Component | Attribute |
---|---|
All except the boolean selection components | ValuePassThru: Specify whether or not the values are passed through to the client. When Note that if your selection components uses ADF Model binding, this value will be ignored. |
| Group: Enter a group name that will enforce mutual exclusivity for all other |
selectOneChoice
or selectManyChoice
component to appear as read-only until the user hovers over it, expand the Other section and set Editable to onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
. Note: If you select |
selectItem
components for the selectManyChoice
to be built each time the page is rendered, do the following: Note that there are limitations to using lazy content delivery. For more information about content delivery for the selectManyChoice
component, see Section 9.6.2, "What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component."
selectItem
components as children to the boolean component. These will represent the items in the list (for other selection components, the dialog in Step 2 automatically added these for you). selectItem
component selected, in the Property Inspector, expand the Common section, and if not set, enter a value for the value
attribute. This will be the value that will be submitted. true
if you want the item to appear disabled in the list. When the contentDelivery
attribute on the selectManyChoice
component is set to immediate
(the default), the following happens:
selectManyChoice
and all selectItem
components are built as the page is rendered. This can cause performance issues if there are many items, or if the values for the selectItem
components are accessed for example, from a web service. selectManyChoice
component renders, nothing displays in the field, as there has not yet been a selection. selectItem
components are shown in field. selectManyChoice
and all selectItem
components are built again as the page is rendered. Labels for selected selectItem
components are displayed in field. This will cause the same performance issues as on the first visit to the page. When the contentDelivery
attribute on the selectManyChoice
component is set to lazy
, the following happens:
selectManyChoice
is built as the page is rendered, but the selectItem
components are not. selectManyChoice
component renders, nothing displays in the field, as there has not yet been a selection. selectItem
components are built. While this is happening, the user sees a "busy" spinner. Once the components are built, all items are shown. selectItem
components are shown in field. selectManyChoice
component is built. At this point, the value of the lazySelectedLabel
attribute is used to display the selected items. selectItem
components are built. While this is happening, the user sees a "busy" spinner. Once the components are built, all items are shown. Once the selectItem
components are built, the selectManyChoice
component will act as though its contentDelivery
attribute is set to immediate
, and use the actual value of the selectItem
components to display the selected items.
Following are limitations for using lazy content delivery for the selectManyChoice
component:
selectManyChoice
is in Request scope. On postback, the value attribute is accessed from the model, rather than decoding what was returned from the client. If the value is stored in Request scope, that value will be empty. Do not store the value in Request scope. contentDelivery
attribute is ignored when in screen reader mode. The selectItem
components will always be built when the page is rendered. The selectManyShuttle
and selectOrderShuttle
components present the user with two list boxes and buttons to move or shuttle items from one list box to the other. The user can select a single item or multiple items to shuttle between the leading (Available values) list box and the trailing (Selected values) list box. For either component, if you want the label to appear above the control, place them in a panelFormLayout
component.
The selectManyShuttle
component is shown in Figure 9-26.
The selectOrderShuttle
component additionally includes up and down arrow buttons that the user can use to reorder values in the Selected values list box, as shown in Figure 9-27. When the list is reordered, a ValueChangeEvent
event is delivered. If you set the readOnly
attribute to true
, ensure the values to be reordered are selected values that will be displayed in the trailing list (Selected values).
The value
attribute of these components, like any other selectMany
component, must be a List
or an Array
of values that correspond to a value of one of the contained selectItem
components. If a value of one of the selectItems
is in the List
or Array
, that item will appear in the trailing list. You can convert a selectManyListbox
component directly into a selectManyShuttle
; instead of the value
driving which items are selected in the listbox, it affects which items appear in the trailing list of the selectOrderShuttle
component.
Similar to other select components, the List or Array of items are composed of selectItem
components nested within the selectManyShuttle
or selectOrderShuttle
component. Example 9-5 shows a sample selectOrderShuttle
component that allows the user to select the top five file types from a list of file types.
Example 9-5 selectOrderShuttle JSF Page Code
If you set the reorderOnly
attribute of a selectOrdershuttle
component to true
, the shuttle function will be disabled, and only the Selected Values listbox appears. The user can only reorder the items in the listbox, as shown in Figure 9-28.
The procedures for adding shuttle components are the same for both components. First you add the selection component and configure its attributes. Then you add any number of selectItem
components for the individual items in the list, and configure those.
To add a selectManyShuttle or selectOrderShuttle component:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode. horizontal
, meaning the leading and trailing list boxes are displayed next to each other. When set to vertical
, the leading list box is displayed above the trailing list box. true
to display a description of the selected item at the bottom of the leading list box. true
to display a description of the selected item at the bottom of the trailing list box. valuePassThru
is false
, the value and the options' values are converted to indexes before being sent to the client. Therefore, when valuePassThru
is false
, there is no need to write your own converter when you are using custom objects as your values, options, or both. If you need to know the actual values on the client-side, then you can set valuePassThru
to true
. This will pass the values through to the client, using your custom converter if it is available; a custom converter is needed if you are using custom objects. The default is false.
selectOrderShuttle
component only): Specify whether or not the shuttle component is in reorder-only mode, where the user can reorder the list of values, but cannot add or remove them. selectItem
components, and in the Property Inspector, set any needed attributes. Tip: If you elected to have the leading or trailing list box display a description, you must set a value for the |
You can provide the user with information about each selected item before the user shuttles it from one list to another list by creating JavaScript code to perform processing in response to the event of selecting an item. For example, your code can obtain additional information about that item, then display it as a popup to help the user make the choice of whether to shuttle the item or not. Figure 9-29 shows a selectManyShuttle
component in which the user selects Meyers and a popup provides additional information about this selection.
You implement this feature by adding a client listener to the selectManyShuttle
or selectOrderShuttle
component and then create a JavaScript method to process this event. The JavaScript code is executed when a user selects an item from the lists. For more information about using client listeners for events, see Section 3.2, "Listening for Client Events."
How to add a client listener to a shuttle component to handle a selection event:
propertyChange
from the Type dropdown. If for example, you entered showDetails as the function, JDeveloper would enter the code shown in bold in Example 9-6.
Example 9-6 Using a clientListener to Register a Selection
This code causes the showDetails
function to be called any time the property value changes.
In Example 9-7, AdfShuttleUtils.getLastSelectionChange
is called to get the value of the last selected item
Example 9-7 Sample JavaScript methods showDetails used to process a selection
var lastChangedValue = AdfShuttleUtils.getLastSelectionChange(shuttleComponent, event.getOldValue());
The richTextEditor
component provides an input field that can accept text with formatting. It also supports label text, and messages. It allows the user to change font name, size, and style, create ordered lists, justify text, and use a variety of other features. The richTextEditor
component also can be used to edit an HTML source file. Two command buttons are used to toggle back and forth between editing standard formatted text and editing the HTML source file. Figure 9-30 shows the rich text editor component in standard rich text editing Mode.
Figure 9-31 shows the editor in source code editing mode.
Other supported features include:
The value (entered text) of the rich text editor is a well-formed XHTML fragment. Parts of the value may be altered for browser-specific requirements to allow the value to be formatted. Also, for security reasons, some features such as script-related tags and attributes will be removed. There are no guarantees that this component records only the minimal changes made by the user. Because the editor is editing an XHTML document, the following elements may be changed:
The editor supports only HTML 4 tags, with the exception of:
The richTextEditor
component also supports tags that pull in content (such as applet
, iframe
, object
, img
, and a
). For the iframe
tag, the content should not be able to interact with the rest of the page because browsers allow interactions only with content from the same domain. However, this portion of the page is not under the control of the application.
While the richTextEditor
component does not support font units such as px
and em
, it does support font size from 1 to 7 as described in the HTML specification. It does not support embed or unknown tags (such as <foo>
).
On the client, the richTextEditor
component does not support getValue
and setValue
methods. There is no guarantee the component's value on the client is the same as the value on the server. Therefore, the richTextEditor
does not support client-side converters and validators. Server-side converters and validators will still work.
The rich text editor delivers ValueChangeEvent
and AttributeChangeEvent
events. Create valueChangeListener
and attributeChangeListener
handlers for these events as required.
You can also configure the richTextEditorInsertBehavior
tag, which works with command components to insert given text into the richTextEditor
component. The text to be entered can be a simple string, or it can be preformatted text held, for example, in a managed bean.
By default, the toolbar in the richTextEditor
component allows the user to change many aspects of the text, such as the font, font size and weight, text alignment, and view mode, as shown in Figure 9-32.
Figure 9-33 shows a toolbar that has been customized. Many of the toolbar buttons have been removed and a toolbar with a custom toolbar button and a menu have been added.
Once you add a richTextEditor
component, you can configure it so that text can be inserted at a specific place, and you can also customize the toolbar. For more information, see Section 9.8.2, "How to Add the Ability to Insert Text into a richTextEditor Component," and Section 9.8.3, "How to Customize the Toolbar."
To add a richTextEditor component:
value
attribute. contentDelivery
attribute value is immediate
, data is fetched and displayed in the component when it is rendered. If the value is set to lazy
, data will be fetched and delivered to the client during a subsequent request. For more information, see Section 10.1.1, "Content Delivery." Tip: You can set the width of a |
To allow text to be inserted into a richTextEditor
component, add the richTextEditorInsertBehavior
tag as a child to a command component that will be used to insert the text.
Before you begin
You need to create a richTextEditor
component as described in Section 9.3.1, "How to Add an inputText Component." Set the clientComponent
attribute to true
.
To add text insert behavior:
richTextEditor
component into which the text will be inserted. selectOneChoice
component), then enter an EL expression that resolves to that value. If you want the user to enter preformatted text, enter an EL expression that resolves to that text. For example Example 9-8 shows preformatted text as the value for an attribute in the demoInput
managed bean. Example 9-8 Preformatted Text in a Managed Bean
Example 9-9 shows how the text is referenced from the richTextEditorInsertBehavior
tag.
Example 9-9 Using the richTextEditorInsertBehavior Tag
triggerType
attribute. Place the toolbar and toolbar buttons you want to add in custom facets that you create. Then, reference the facet (or facets) from an attribute on the toolbar, along with keywords that determine how or where the contained items should be displayed.
To customize the toolbar:
<f:facet>
tags. Ensure that each facet has a unique name for the page. Tip: To ensure that there will be no conflicts with future releases of ADF Faces, start all your facet names with |
richTextEditor
component selected, in the Property Inspector, in the Other section, click the dropdown icon for the toolboxLayout
attribute and select Edit to open the Edit Property: ToolboxLayout dialog. The value for this attribute should be a list of the custom facet names, in the order in which you want the contents in the custom facets to appear. In addition to those facets, you can also include all, or portions, of the default toolbar, using the following keywords: all
: All the toolbar buttons and text in the default toolbar. If all
is entered, then any keyword for noncustom buttons will be ignored. font
: The font selection and font size buttons. history
: Undo and redo buttons. mode
: Rich text mode and source code mode buttons. color
: Foreground and background color buttons. formatAll
: Bold, italic, underline, superscript, subscript, strikethrough buttons. If formatAll
is specified, formatCommon
and formatUncommon
will be ignored. formatCommon
: Bold, italic, and underline buttons. formatUncommon
: Superscript, subscript, and strikethrough buttons. justify
: Left, center, right and full justify buttons. list
: Bullet and numbered list buttons. indent
: Outdent and indent buttons. link
: Add and remove Link buttons. For example, if you created two facets named customToolbar1
and customToolbar2
, and you wanted the complete default toolbar to appear in between your custom toolbars, you would enter the following list:
customToolbar1
all
customToolbar2
You can also determine the layout of the toolbars using the following keywords:
newline
: Places the toolbar in the next named facet (or the next keyword from the list in the toolboxLayout
attribute) on a new line. For example, if you wanted the toolbar in the customToolbar2
facet to appear on a new line, you would enter the following list: customToolbar1
all
newline
customToolbar2
If instead, you did not want to use all of the default toolbar, but only the font, color, and common formatting buttons, and you wanted those buttons to appear on a new line, you would enter the following list:
customToolbar1
customToolbar2
newline
font
color
formatCommon
stretch
: Adds a spacer component that stretches to fill all available space so that the next named facet (or next keyword from the default toolbar) is displayed as right-aligned in the toolbar. The inputFile
component provides users with file uploading and updating capabilities. This component allows the user to select a local file and upload it to a selectable location on the server. To download a file from the server to the user, see Section 18.4.1, "How to Use a Command Component to Download Files."
The inputFile
component delivers the standard ValueChangeEvent
event as files are being uploaded, and it manages the loading process transparently. The value
property of an inputFile
component is set to an instance of the org.apache.myfaces.trinidad.model.UploadedFile
class when a file is uploaded.
To initiate the upload process, you can create an action component such as a command button, as shown in Figure 9-34.
Once a file has been uploaded, and so the value of the inputFile
is not null (either after the initial load is successful or it has been specified as an initial value), you can create an Update button that will be displayed instead of the Browse button, as shown in Figure 9-35. This will allow the user to modify the value of the inputFile
component.
You can also specify that the component be able to load only a specific file by setting the readOnly
property to true
, In this mode, only the specified file can be loaded, as shown in Figure 9-36.
For security reasons, the following attributes cannot be set from the client:
disabled
(unless the unsecure
property is set. For more information, see Section 3.7.2, "How to Unsecure the disabled Property.") immediate
readOnly
requiredMessageDetail
value
The inputFile
component can be placed in either an h:form
tag or an af:form
tag, but in either case, you have to set the form tag to support file upload. If you use the JSF basic HTML h:form
, set the enctype
to multipart/form-data
. This would make the request into a multipart request to support file uploading to the server. If you are using the ADF Faces af:form
tag, set usesUpload
to true
, which performs the same function as setting enctype to multipart/form-data
to support file upload.
The rich client framework performs a generic upload of the file. You should create an actionListener
or action method to process the file after it has been uploaded (for example, processing xml
files, pdf
files, and so on).
The value
of an inputFile
component is an instance of the org.apache.myfaces.trinidad.model.UploadedFile
interface. The API lets you get at the actual byte stream of the file, as well as the file's name, its MIME type, and its size.
Note: The API does not allow you to get path information from the client about from where the file was uploaded. |
The uploaded file may be stored as a file in the file system, but may also be stored in memory; the API hides that difference. The filter ensures that the UploadedFile
content is cleaned up after the request is complete. Because of this, you cannot usefully cache UploadedFile
objects across requests. If you need to keep the file, you must copy it into persistent storage before the request finishes.
For example, instead of storing the file, add a message stating the file upload was successful using a managed bean as a response to the ValueChangeEvent
event, as shown in Example 9-10.
Example 9-10 Using valueChangeListener to Display Upload Message
You can also handle the upload by binding the value directly to a managed bean, as shown in Example 9-11.
Example 9-11 Binding the Value to a Managed Bean
A Java class must be bound to the inputFile
component. This class will be responsible for containing the value of the uploaded file.
To add an inputFile component:
Create a Java class that will hold the value of the input file. It must be an instance of the org.apache.myfaces.trinidad.model.UploadedFile
interface.
onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
. Note: If you select |
actionListener
attribute to a listener that will process the file after it has been uploaded. Because ADF Faces will temporarily store files being uploaded (either on disk or in memory), by default it limits the size of acceptable incoming upload requests to avoid denial-of-service attacks that might attempt to fill a hard drive or flood memory with uploaded files. By default, only the first 100 kilobytes in any one request will be stored in memory. Once that has been filled, disk space will be used. Again, by default, that is limited to 2,000 kilobytes of disk storage for any one request for all files combined. Once these limits are exceeded, the filter will throw an EOFException
.
Files are, by default, stored in the temporary directory used by the java.io.File.createTempFile()
method, which is usually defined by the system property java.io.tmpdir
. Obviously, this will be insufficient for some applications, so you can configure these values using three servlet context initialization parameters, as shown in Example 9-12.
Example 9-12 Parameters That Define File Upload Size and Directory
You can customize the file upload process by replacing the entire org.apache.myfaces.trinidad.webapp.UploadedFileProcessor
class with the <uploaded-file-processor>
element in the trinidad-config.xml
configuration file. Replacing the UploadedFileProcessor
class makes the parameters listed in Example 9-12 irrelevant, they are processed only by the default UploadedFileProcessor
class.
The <uploaded-file-processor>
element must be the name of a class that implements the oracle.adf.view.rich.webapp.UploadedFileProcessor
interface. This API is responsible for processing each individual uploaded file as it comes from the incoming request, and then making its contents available for the rest of the request. For most applications, the default UploadedFileProcessor
class is sufficient, but applications that need to support uploading very large files may improve their performance by immediately storing files in their final destination, instead of requiring ADF Faces to handle temporary storage during the request.
This chapter describes how to display tables and trees using the ADF Faces table
, tree
and treeTable
components. If your application uses the Fusion technology stack, then you can use data controls to create tables and trees. For more information see the "Creating ADF Databound Tables" and "Displaying Master-Detail Data" chapters of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
This chapter includes the following sections:
Structured data can be displayed as tables consisting of rows and columns using the ADF Faces table component. Hierarchical data can be displayed either as tree structures using ADF Faces tree component, or in a table format, using ADF Faces tree table component. Instead of containing a child component for each record to be displayed, and then binding these components to the individual records, table, tree and tree table components are bound to a complete collection, and they then repeatedly render one component (for example an outputText
component) by stamping the value for each record. For example, say a table contains two child column components. Each column displays a single attribute value for the row using an output component and there are four records to be displayed. Instead of binding four sets of two output components to display the data, the table itself is bound to the collection of all four records and simply stamps one set of the output components four times. As each row is stamped, the data for the current row is copied into the var
attribute on the table, from which the output component can retrieve the correct values for the row. For more information about how stamping works, especially with client components, see Section 10.1.5, "Accessing Client Table, Tree, and Tree Table Components."
Example 10-1 shows the JSF code for a table whose value for the var
attribute is row
. Each outputText
component in a column displays the data for the row because its value is bound to a specific property on the variable.
Example 10-1 JSF Code for a Table Uses the var Attribute to Access Values
The table component displays simple tabular data. Each row in the table displays one object in a collection, for example one row in a database. The column component displays the value of attributes for each of the objects.
For example, as shown in Figure 10-1, the Table tab in the File Explorer application uses a table to display the contents of the selected directory. The table value
attribute is bound to the contentTable
property of the tableContentView
managed bean in the File Explorer demo.
The table component provides a range of features for end users, such as sorting columns, and selecting one or more rows and then executing an application defined action on the selected rows. It also provides a range of presentation features, such as showing grid lines and banding, row and column headers, column headers spanning groups of columns, and values wrapping within cells.
Hierarchical data (that is data that has parent/child relationships), such as the directory in the File Explorer application, can be displayed as expandable trees using the tree component. Items are displayed as nodes that mirror the parent/child structure of the data. Each top-level node can be expanded to display any child nodes, which in turn can also be expanded to display any of their child nodes. Each expanded node can then be collapsed to hide child nodes. Figure 10-2 shows the file directory in the File Explorer application, which is displayed using a tree component.
Hierarchical data can also be displayed using tree table components. The tree table also displays parent/child nodes that are expandable and collapsible, but in a tabular format, which allows the page to display attribute values for the nodes as columns of data. For example, along with displaying a directory's contents using a table component, the File Explorer application has another tab that uses the tree table component to display the contents, as shown in Figure 10-3.
Like the tree component, the tree table component can show the parent/child relationship between items. And like the table component, the tree table component can also show any attribute values for those items in a column. Most of the features available on a table component are also available in tree table component.
You can add a toolbar and a status bar to tables, trees, and tree tables by surrounding them with the panelCollection
component. The top panel contains a standard menu bar as well as a toolbar that holds menu-type components such as menus and menu options, toolbars and toolbar buttons, and status bars. Some buttons and menus are added by default. For example, when you surround a table, tree, or tree table with a panelCollection
component, a toolbar that contains the View menu is added. This menu contains menu items that are specific to the table, tree, or tree table component.
Figure 10-4 shows the tree table from the File Explorer application with the toolbar, menus, and toolbar buttons created using the panelCollection
component.
The table, tree, and tree table components are virtualized, meaning not all the rows that are there for the component on the server are delivered to and displayed on the client. You configure tables, trees, and tree tables to fetch a certain number of rows at a time from your data source. The data can be delivered to the components immediately upon rendering, when it is available, or lazily fetched after the shell of the component has been rendered (by default, the components fetch data when it is available).
With immediate delivery, the data is fetched during the initial request. With lazy delivery, when a page contains one or more table or tree components, the page initially goes through the standard lifecycle. However, instead of fetching the data during that initial request, a special separate partial page rendering (PPR) request is run, and the number of rows set as the value of the fetch size for the table is then returned. Because the page has just been rendered, only the Render Response phase executes for the components, allowing the corresponding data to be fetched and displayed. When a user's actions cause a subsequent data fetch (for example scrolling in a table for another set of rows), another PPR request is executed.
When content delivery is configured to be delivered when it is available, the framework checks for data availability during the initial request, and if it is available, it sends the data to the table. If it is not available, the data is loaded during the separate PPR request, as it is with lazy delivery.
Performance Tip: Lazy delivery should be used when a data fetch is expected to be an expensive (slow) operation, for example, slow, high-latency database connection, or fetching data from slow non-database data sources like web services. Lazy delivery should also be used when the page contains a number of components other than a table, tree, or tree table. Doing so allows the initial page layout and other components to be rendered first before the data is available. Immediate delivery should be used if the table, tree, or tree table is the only context on the page, or if the component is not expected to return a large set of data. In this case, response time will be faster than using lazy delivery (or in some cases, simply perceived as faster), as the second request will not go to the server, providing a faster user response time and better server CPU utilizations. Note however that only the number of rows configured to be the fetch block will be initially returned. As with lazy delivery, when a user's actions cause a subsequent data fetch, the next set of rows are delivered. When available delivery provides the additional flexibility of using immediate when data is available during initial rendering or falling back on lazy when data is not initially available. |
The number of rows that are displayed on the client are just enough to fill the page as it is displayed in the browser. More rows are fetched as the user scrolls the component vertically. The fetchSize
attribute determines the number of rows requested from the client to the server on each attempt to fill the component. The default value is 25. So if the height of the table is small, the fetch size of 25 is sufficient to fill the component. However, if the height of the component is large, there might be multiple requests for the data from the server. Therefore, the fetchSize
attribute should be set to a higher number. For example, if the height of the table is 600 pixels and the height of each row is 18 pixels, you will need at least 45 rows to fill the table. With a fetchSize
of 25, the table has to execute two requests to the server to fill the table. For this example, you would set the fetch size to 50.
However, if you set the fetch size too high, it will impact both server and client. The server will fetch more rows from the data source than needed and this will increase time and memory usage. On the client side, it will take longer to process those rows and attach them to the component.
You can also configure the set of data that will be initially displayed using the displayRow
attribute. By default, the first record in the data source is displayed in the top row or node and the subsequent records are displayed in the following rows or nodes. You can also configure the component to first display the last record in the source instead. In this case, the last record is displayed in the bottom row or node of the component, and the user can scroll up to view the preceding records. Additionally, you can configure the component to display the selected row. This can be useful if the user is navigating to the table, and based on some parameter, a particular row will be programmatically selected. When configured to display the selected row, that row will be displayed at the top of the table and the user can scroll up or down to view other rows.
You can configure selection to be either for no rows, for a single row, or for multiple rows of tables, trees, and tree tables using the rowSelection
attribute. This setting allows you to execute logic against the selected rows. For example, you may want users to be able to select a row in a table or a node in a tree, and then to click a command button that navigates to another page where the data for the selected row is displayed and the user can edit it.
When the selected row (or node) of a table, tree, or tree table changes, the component triggers a selection event. This event reports which rows were just deselected and which rows were just selected. While the components handle selection declaratively, if you want to perform some logic on the selected rows, you need to implement code that can access those rows and then perform the logic. You can do this in a selection listener method on a managed bean. For more information, see Section 10.2.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."
Note: If you configure your component to allow multiple selection, users can select one row and then press the shift key to select another row, and all the rows in between will be selected. This selection will be retained even if the selection is across multiple data fetch blocks. Similarly, you can use the Ctrl key to select rows that are not next to each other. For example, if you configure your table to fetch only 25 rows at a time, but the user selects 100 rows, the framework is able to keep track of the selection. |
You can choose the component used to display the actual data in a table, tree, or tree table. For example, you may want the data to be read-only, and therefore you might use an outputText
component to display the data. Conversely, if you want the data to be able to be edited, you might use an inputText
component, or if choosing from a list, one of the SelectOne
components. All of these components are placed as children to the column component (in the case of a table and tree table) or within the nodeStamp
facet (for a tree).
When you decide to use components whose value can be edited to display your data, you have the option of having the table, tree, or tree table either display all rows as available for editing at once, or display all but the currently active row as read-only using the editingMode
attribute. For example, Figure 10-5 shows a table whose rows can all be edited. The page renders using the components that were added to the page (for example, inputText
, inputDate
, and inputComboBoxListOfValues
components).
Figure 10-6 shows the same table (that is, it uses inputText
, inputDate
, and inputComboBoxListOfValues
components to display the data), but configured so that only the active row displays the editable components. Users can then click on another row to make it editable (only one row is editable at a time). Note that outputText
components are used to display the data in the noneditable rows, even though the same input components as in Figure 10-5 were used to build the page. The only row that actually renders those components is the active row.
The currently active row is determined by the activeRowKey
attribute on the table. By default, the value of this attribute is the first visible row of the table. When the table (or tree or tree table) is refreshed, that component scrolls to bring the active row into view, if it is not already visible. When the user clicks on a row to edit its contents, that row becomes the active row.
When you allow only a single row (or node) to be edited, the table (or tree or tree table) performs PPR when the user moves from one row (or node) to the next, thereby submitting the data (and validating that data) one row at a time. When you allow all rows to be edited, data is submitted whenever there is an event that causes PPR to typically occur, for example scrolling beyond the currently displayed rows or nodes.
Note: You should not use more than one editable component in a column. |
Not all editable components make sense to be displayed in a click-to-edit mode. For example, those that display multiple lines of HTML input elements may not be good candidates. These components include:
SelectManyCheckbox
SelectManyListBox
SelectOneListBox
Select
OneRadio
SelectManyShuttle
Performance Tip: For increased performance during both rendering and postback, you should configure your table to allow editing only to a single row. When you elect to allow only a single row to be edited at a time, the page will be displayed more quickly, as output components tend to generate less HTML than input components. Additionally, client components are not created for the read-only rows. Because the table (or tree, or tree table) performs PPR as the user moves from one row to the next, only that row's data is submitted, resulting in better performance than a table that allows all cells to be edited, which submits all the data for all the rows in the table at the same time. Allowing only a singe row to be edited also provides more intuitive validation, because only a single row's data is submitted for validation, and therefore only errors for that row are displayed. |
You can configure your table, tree, or tree table so that popup dialogs will be displayed based on a user's actions. For example, you can configure a popup dialog to display some data from the selected row when the user hovers the mouse over a cell or node. You can also create popup context menus for when a user right-clicks a row in a table or tree table, or a node in a tree. Additionally, for tables and tree tables, you can create a context menu for when a user right-clicks anywhere within the table, but not on a specific row.
Tables, trees, and tree tables all contain the contextMenu
facet. You place your popup context menu within this facet, and the associated menu will be displayed when the user right-clicks a row. When the context menu is being fetched on the server, the components automatically establish the currency to the row for which the context menu is being displayed. Establishing currency means that the current row in the model for the table now points to the row for which the context menu is being displayed. In order for this to happen, the popup
component containing the menu must have its contentDelivery
attribute set to lazyUncached
so that the menu is fetched every time it is displayed.
Tip: If you want the context menu to dynamically display content based on the selected row, set the popup content delivery to <af:tree value="#{fs.treeModel}" contextMenuSelect="false" var="node" ..> <f:facet name="contextMenu"> <af:popup id="myPopup" contentDelivery="lazyUncached"> <af:setPropertyListener from="#{fs.treeModel.rowData}" to="#{dynamicContextMenuTable.currentTreeRowData}" type="popupFetch" /> <af:menu> <af:menu text="Node Info (Dynamic)"> <af:commandMenuItem actionListener= "#{dynamicContextMenuTable.alertTreeRowData}" text= "Name - #{dynamicContextMenuTable.currentTreeRowData.name}" /> <af:commandMenuItem actionListener= "#{dynamicContextMenuTable.alertTreeRowData}" text= "Path - #{dynamicContextMenuTable.currentTreeRowData.path}" /> <af:commandMenuItem actionListener= "#{dynamicContextMenuTable.alertTreeRowData}" text="Date - #{dynamicContextMenuTable.currentTreeRowData.lastModified}" /> </af:menu> </af:menu> </af:popup> </f:facet> ... </af:tree> The code on the backing bean might look something like this: public class DynamicContextMenuTableBean { ... public void setCurrentTreeRowData(Map currentTreeRowData) { _currentTreeRowData = currentTreeRowData; } public Map getCurrentTreeRowData() { return _currentTreeRowData; } private Map _currentTreeRowData; } |
Tables and tree tables contain the bodyContextMenu
facet. You can add a popup that contains a menu to this facet, and it will be displayed whenever a user clicks on the table, but not within a specific row.
For more information about creating context menus, see Section 13.2, "Declaratively Creating Popup Elements."
With ADF Faces, the contents of the table, tree, or tree table are rendered on the server. There may be cases when the client needs to access that content on the server, including:
inputHidden
component. In order to enable this, the application must be able to retrieve row-specific attribute values from stamped components. AdfDhtmlCommandLinkPeer
class needs a reference to the component instance which will serve as the event source. The component also holds on to relevant state, including client listeners as well as attributes that control event delivery behavior, such as disabled
or partialSubmit
. Because there is no client-side support for EL in the rich client framework (RCF), nor is there support for sending entire table models to the client, the client-side code cannot rely on component stamping to access the value. Instead of reusing the same component instance on each row, a new JavaScript client component is created on each row (assuming any component must be created at all for any of the rows).
Therefore, to access row-specific data on the client, you need to use the stamped component itself to access the value. To do this without a client-side data model, you use a client-side selection change listener. For detailed instructions, see Section 10.10, "Accessing Selected Values on the Client from Components That Use Stamping."
By default, when tables, trees, and tree tables are placed in a component that stretches its children (for example, a panelCollection
component inside a panelStretchLayout
component), the table, tree, or tree table will stretch to fill the existing space. However, in order for the columns to stretch to fit the table, you must specify a specific column to stretch to fill up any unused space, using the columnStretching
attribute. Otherwise, the table will only stretch vertically to fit as many rows as possible. It will not stretch the columns, as shown in Figure 10-7.
When placed in a component that does not stretch its children (for example, in a panelCollection
component inside a panelGroupLayout
component set to vertical
), by default, a table width is set to 300px, as shown in Figure 10-8.
When you place a table in a component that does not stretch its children, you can control the height of the table so that is never more than a specified number of rows, using the autoHeightRows
attribute. When you set this attribute to a positive integer, the table height will be determined by the number of rows set. If that number is higher than the fetchSize
attribute, then only the number of rows in the fetchSize
attribute will be returned. You can set autoHeightRows
to -1 (the default), to turn off auto-sizing.
Auto-sizing can be helpful in cases where you want to use the same table both in components that stretch their children and those that don't. For example, say you have a table that has 6 columns and can potentially display 12 rows. When you use it in a component that stretches its children, you want the table to stretch to fill the available space. If you want to use that table in a component that doesn't stretch its children, you want to be able to "fix" the height of the table. However, if you set a height on the table, then that table will not stretch when placed in the other component. To solve this issue, you can set the autoHeightRows
attribute, which will be ignored when in a component that stretches, and will be honored in one that does not.
The table component uses a Collection
Model
class to access the data in the underlying collection. This class extends the JSF DataModel
class and adds on support for row keys and sorting. In the DataModel
class, rows are identified entirely by index. This can cause problems when the underlying data changes from one request to the next, for example a user request to delete one row may delete a different row when another user adds a row. To work around this, the CollectionModel
class is based on row keys instead of indexes.
You may also use other model classes, such as java.util.List
, array
, and javax.faces.model.DataModel
. If you use one of these other classes, the table component automatically converts the instance into a CollectionModel
class, but without the additional functionality. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
.
Note: If your application uses the Fusion technology stack, then you can use data controls to create tables and the collection model will be created for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
The immediate children of a table component must be column
components. Each visible column component is displayed as a separate column in the table. Column components contain components used to display content, images, or provide further functionality. For more information about the features available with the column component, see Section 10.2.1, "Columns and Column Data."
The child components of each column display the data for each row in that column. The column does not create child components per row; instead, the table uses stamping to render each row. Each child is stamped once per row, repeatedly for all the rows. As each row is stamped, the data for the current row is copied into a property that can be addressed using an EL expression. You specify the name to use for this property using the var
property on the table. Once the table has completed rendering, this property is removed or reverted back to its previous value.
Because of this stamping behavior, some components may not work inside the column. Most components will work without problems, for example any input and output components. If you need to use multiple components inside a cell, you can wrap them inside a panelGroupLayout
component. Components that themselves support stamping are not supported, such as tables within a table. For information about using components whose values are determined dynamically at runtime, see Section 10.2.9, "What You May Need to Know About Dynamically Determining Values for Selection Components in Tables."
You can use the detailStamp
facet in a table to include data that can be optionally displayed or hidden. When you add a component to this facet, the table displays an additional column with an expand and collapse icon for each row. When the user clicks the icon to expand, the component added to the facet is displayed, as shown in Figure 10-9.
When the user clicks on the expanded icon to collapse it, the component is hidden, as shown in Figure 10-10.
For more information about using the detailStamp
facet, see Section 10.3, "Adding Hidden Capabilities to a Table."
Columns contain the components used to display the data. As stated previously, only one child component is needed for each item to be displayed; the values are stamped as the table renders. Columns can be sorted and can also contain a filtering element. Users can enter a value into the filter and the returned data set will match the value entered in the filter. You can set the filter to be either case-sensitive or case-insensitive. If the table is configured to allow it, users can also reorder columns. Columns have both header and footer facets. The header facet can be used instead of using the header text attribute of the column, allowing you to use a component that can be styled. The footer facet is displayed at the bottom of the column. For example, Figure 10-11 uses footer facets to display the total at the bottom of two columns. If the number of rows returned is more than can be displayed, the footer facet is still displayed; the user can scroll to the bottom row.
A table component offers many formatting and visual aids to the user. You can enable these features and specify how they can be displayed. These features include:
rowSelection
attribute. You can configure the table to allow either a single row or multiple rows to be selected. For information about how to then programatically perform some action on the selected rows, see Section 10.2.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables." autoHeightRows
attribute. For more information, see Section 10.1.6, "Geometry Management and Table, Tree, and Tree Table Components." Note: When table is placed in a layout-managing container, such as a |
horizontalGridVisible
and verticalGridVisible
attributes. columnBandingInterval
attribute. This helps to differentiate between adjacent groups of rows or columns. By default, banding is turned off. Performance Tip: When you choose to have cells be available for editing only when the user clicks on them, the table will initially load faster. This may be desirable if you expect the table to display large amounts of data. |
columnStretching
attribute to determine whether or not to stretch columns to fill up the space, and if so, which columns should stretch. You can set the minimum width for columns, so that when there are many columns in a table and you enable stretching, columns will not be made smaller than the set minimum width. You can also set a width percentage for each column you want to stretch to determine the amount of space that column should take up when stretched. Note: If the total sum of the columns' minimum widths equals more than the viewable space in the viewport, the table will expand outside the viewport and a scrollbar will appear to allow access outside the viewport. |
Performance Tip: Column stretching is turned off by default. Turning on this feature may have a performance impact on the client rendering time when used for complex tables (that is, tables with a large amount of data, or with nested columns, and so on). |
Note: Columns configured to be row headers or configured to be frozen will not be stretched because doing so could easily leave the user unable to access the scrollable body of the table. |
columnSelectionListener
to respond to the ColumnSelectionEvent
that is invoked when a new column is selected by the user. This event reports which columns were just deselected and which columns were just selected. panelCollection
component. For more information, see Section 10.8, "Displaying Table Menus, Toolbars, and Status Bars." Each column component also offers many formatting and visual aids to the user. You can enable these features and specify how they can be displayed. These features include:
sortable
attribute. A special indicator on a column header lets the user know that the column can be sorted. When the user clicks on the icon to sort a previously unsorted column, the column's content is sorted in ascending order. Subsequent clicks on the same header sort the content in the reverse order. In order for the table to be able to sort, the underlying data model must also support sorting. For more information, see Section 10.2.7, "What You May Need to Know About Programmatically Enabling Sorting for Table Columns."
align
attribute. Tip: Use |
width
attribute. If you configure a column to allow stretching, then you can also set the width as a percentage. noWrap
attribute. By default, content will not wrap. rowHeader
attribute. When you do so, the left-most column is rendered with the same look as the column headers, and will not scroll off the page. Figure 10-12 shows how a table showing departments appears if the first column is configured to be a row header. If you elect to use a row header column and you configure your table to allow row selection, the row header column displays a selection arrow when a users hovers over the row, as shown in Figure 10-13.
For tables that allow multiple selection, users can mouse down and then drag on the row header to select a contiguous blocks of rows. The table will also autoscroll vertically as the user drags up or down.
Performance Tip: Use of row headers increases the complexity of tables and can have a negative performance impact. |
Tip: While the user can change the way the table displays at runtime (for example the user can reorder columns or change column widths), those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 31, "Allowing User Customization on JSF Pages." |
You use the Create an ADF Faces Table dialog to add a table to a JSF page. You also use this dialog to add column
components for each column you need for the table. You can also bind the table to the underlying model or bean using EL expressions.
Note: If your application uses the Fusion technology stack, then you can use data controls to create tables and the binding will be done for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Once you complete the dialog, and the table and columns are added to the page, you can use the Property Inspector to configure additional attributes of the table or columns, and add listeners to respond to table events. You must have an implementation of the CollectionModel
class to which your table will be bound.
To display a table on a page:
Use the dialog to bind the table to any existing model you have. When you bind the table to a valid model, the dialog automatically shows the columns that will be created. You can then use the dialog to edit the values for the columns' header
and value
attributes, and choose the type of component that will be used to display the data. Alternatively, you can manually configure columns and bind at a later date. For more information about using the dialog, press F1 or click Help.
none
, single
, and multiple
, and multipleNoSelectAll
. Note: Users can select all rows and all columns in a table by clicking the column header for the row header if the |
For information about how to then programatically perform some action on the selected rows, see Section 10.2.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."
none
, single
, and multiple
. Tip: If you want to use a component other than those listed, select any component in the Property Inspector, and then manually change it:
|
Tip: If you want more than one component to be displayed in a column, add the other component manually and then wrap them both in a
|
columnStretching
attribute), you must set the width to percentages. Tip: If the table is a child to a component that stretches its children, then this width setting will be overridden and the table will automatically stretch to fit its container. For more information about how components stretch, see Section 8.2.1, "Geometry Management and Component Stretching." |
Note: If the table is placed inside a component that can stretch its children, only the table will stretch automatically. You must manually configure column stretching if you want the columns to stretch to fill the table. |
Note: Columns configured to be row headers or configured to be frozen will not be stretched because doing so could easily leave the user unable to access the scrollable body of the table. |
Performance Tip: Column stretching is turned off by default. Turning on this feature may have a performance impact on the client rendering time for complex tables. |
You can set column stretching to one of the following values:
blank
: If you want to have an empty blank column automatically inserted and have it stretch (so the row background colors will span the entire width of the table). last
: If you want the last column to stretch to fill up any unused space inside of the window. none
: The default option where nothing will be stretched. Use this for optimal performance. multiple
: All columns that have a percentage value set for their width
attribute will be stretched to that percent, once other columns have been rendered to their (non-stretched) width. The percentage values will be weighted with the total. For example, if you set the width attribute on three columns to 50%, each column will get 1/3 of the remaining space after all other columns have been rendered. Tip: While the user can change the values of the column width at runtime, those values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 31, "Allowing User Customization on JSF Pages." |
columnBandingInterval
=1 would display alternately banded columns in the table. panelCollection
component. You can change this so that users will not be able to change the order of columns. (The panelCollection
component provides default menus and toolbar buttons for tables, trees, and tree tables. For more information, see Section 10.8, "Displaying Table Menus, Toolbars, and Status Bars".) Note: While the user can change the order of columns, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 31, "Allowing User Customization on JSF Pages." |
Tip: You should determine the value of the |
contentDelivery
attribute is set to immediate
, data is fetched at the same time the component is rendered. If the contentDelivery
attribute is set to lazy
, data will be fetched and delivered to the client during a subsequent request. If the attribute is set to whenAvailable
(the default), the renderer checks if the data is available. If it is, the content is delivered immediately. If it is not, then lazy delivery is used. For more information, see Section 10.1.1, "Content Delivery." fetchSize
. Note: Note the following about setting the
|
first
to display the first row at the top of the table, last
to display the last row at the bottom of the table (users will need to scroll up to view preceding rows) and selected
to display the first selected row in the table. Note: The total number of rows from the table model must be known in order for this attribute to work successfully. |
displayRow
attribute. Note: The total number of rows must be known from the table model in order for this attribute to work successfully. |
editAll
), or you want the user to click a row to make it editable (clickToEdit
). For more information, see Section 10.1.3, "Editing Data in Tables, Trees, and Tree Tables." Tip: If you choose |
true
, the row is selected. For more information about context menus, see Chapter 13, "Using Popup Dialogs, Menus, and Windows." filterVisible
. For more information, see Section 10.4, "Enabling Filtering in Tables." columnSelectionListener
is located in the Other section). For more information, see Chapter 5, "Handling Events." clickToEdit
, then only the active row can be edited. This row is determined by the activeRowKey
attribute. By default, when the table is first rendered, the active row is the first visible row. When a user clicks another row, then that row becomes the active row. You can change this behavior by setting a different value for the activeRowKey
attribute. Tip: While the user can change the values of the column width at runtime, those width values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 31, "Allowing User Customization on JSF Pages." |
outputText
component. If you want to use a component other than outputText
, you should use the column's header
facet instead (for more information, see Step 12). When the header
facet is added, any value for the headerText
attribute will not be rendered in a column header. start
, end
, and center
are used for left-justified, right-justified, and center-justified respectively in left-to-right display. The values left
or right
can be used when left-justified or right-justified cells are needed, irrespective of the left-to-right or right-to-left display. The default value is null
, which implies that it is skin-dependent and may vary for the row header column versus the data in the column. For more information about skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins." sortable
attribute must be set to true
and the underlying model must support sorting by this column's property. For more information, see Section 10.2.7, "What You May Need to Know About Programmatically Enabling Sorting for Table Columns." Note: When column selection is enabled, clicking on a column header selects the column instead of sorting the column. In this case, columns can be sorted by clicking the ascending/descending sort indicator. |
true
and the filterModel
attribute must be set on the table. Only leaf columns can be filtered and the filter component is displayed only if the column header is present. This column's sortProperty
attribute must be used as a key for the filterProperty
attribute in the filterModel
class. Note: For a column with filtering turned on (|
displayIndex
attribute. Columns without a displayIndex
attribute value are displayed at the end, in the order in which they appear in the data source. The displayIndex
attribute is honored only for top-level columns, because it is not possible to rearrange a child column outside of the parent column. true
if you want this column to be a row header for the table. Performance Tip: Use of row headers increases the complexity of tables and can have a negative performance impact. |
Performance Tip: Use of frozen columns increases the complexity of tables and can have a negative performance impact. |
true
, the column will be selected on initial rendering. Tip: Facets can have only one direct child. If you want the facet to display more than one component, first insert a group component (such as |
To add facets to a column, right-click the column and from the context menu, choose Facets - Column and choose the type of facet you want to add. You can then add a component directly to the facet.
Tip: Facets can have only one direct child. If you want the facet to display more than one component, first insert a group component (such as |
The component's value should be bound to the variable value set on the table's var
attribute and the attribute to be displayed. For example, the table in the File Explorer application uses file
as the value for the var
attribute, and the first column displays the name of the file for each row. Therefore, the value of the output component used to display the directory name is #{file.name}
.
Tip: If an input component is the direct child of a column, be sure its width is set to a width that is appropriate for the width of the column. If the width is set too large for its parent column, the browser may extend its text input cursor too wide and cover adjacent columns. For example, if an To allow the input component to be automatically sized when it is not the direct child of a column, set |
When you use JDeveloper to add a table onto a page, JDeveloper creates a table with a column for each attribute. If you bind the table to a model, the columns will reflect the attributes in the model. If you are not yet binding to model, JDeveloper will create the columns using the default values. You can change the default values (add/delete columns, change column headings, and so on) during in the table creation dialog or later using the Property Inspector.
Example 10-2 shows abbreviated page code for the table in the File Explorer application.
Example 10-2 ADF Faces Table in the File Explorer Application
When a page is requested that contains a table, and the content delivery is set to lazy
, the page initially goes through the standard lifecycle. However, instead of fetching the data during that request, a special separate PPR request is run. Because the page has just rendered, only the Render Response phase executes, and the corresponding data is fetched and displayed. If the user's actions cause a subsequent data fetch (for example scrolling in a table), another PPR request is executed. Figure 10-14 shows a page containing a table during the second PPR request.
When the user clicks a sortable column header, the table
component generates a SortEvent
event. This event has a getSortCriteria
property, which returns the criteria by which the table must be sorted. The table responds to this event by calling the setSortCriteria()
method on the underlying CollectionModel
instance, and calls any registered SortListener
instances.
Sorting can be enabled for a table column only if the underlying model supports sorting. If the model is a CollectionModel
instance, it must implement the following methods:
public boolean isSortable(String
propertyName
)
public List getSortCriteria()
public void setSortCriteria(List
criteria
)
For more information, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
.
If the underlying model is not a CollectionModel
instance, the table
component automatically examines the actual data to determine which properties can be sorted. Any column that has data that implements the java.lang.Comparable
class is able to be sorted. Although this automatic support is not as efficient as coding sorting directly into a CollectionModel
(for instance, by translating the sort into an ORDER BY
SQL clause), it may be sufficient for small data sets.
Note: Automatic support provides sorting for only one column. Multi-column sorting is not supported. |
A table can allow users to select one or more rows and perform some actions on those rows.
When the selection state of a table changes, the table triggers selection events. A selectionEvent
event reports which rows were just deselected and which rows were just selected.
To listen for selection events on a table, you can register a listener on the table either using the selectionListener
attribute or by adding a listener to the table using the addselectionListener()
method. The listener can then access the selected rows and perform some actions on them.
The current selection, that is the selected row or rows, are the RowKeySet
object, which you obtain by calling the getSelectedRowKeys()
method for the table. To change a selection programmatically, you can do either of the following:
rowKey
objects to, or remove rowKey
objects from, the RowKeySet
object. setRowIndex()
or the setRowKey()
method on the table. You can then either add that row to the selection, or remove it from the selection, by calling the add()
or remove()
method on the RowKeySet
object. Example 10-3 shows a portion of a table in which a user can select some rows then click the Delete button to delete those rows. Note that the actions listener is bound to the performDelete
method on the mybean
managed bean.
Example 10-3 Selecting Rows
Example 10-4 shows an actions method, performDelete
, which iterates through all the selected rows and calls the markForDeletion
method on each one.
Example 10-4 Using the rowKey Object
There may be a case when you want to use a selectOne
component in a table, but you need each row to display different choices in a component. Therefore, you need to dynamically determine the list of items at runtime.
While you may think you should use a forEach
component to stamp out the individual items, this will not work because forEach
does not work with the CollectionModel
instance. It also cannot be bound to EL expressions that use component-managed EL variables, as those used in the table. The forEach
component performs its functions in the JSF tag execution step while the table performs in the following component encoding step. Therefore, the forEach
component will execute before the table is ready and will not perform its iteration function.
In the case of a selectOne
component, the direct child must be the items
component. While you could bind the items
component directly to the row variable (for example, <f:items value="#{row.Items}"/>
, doing so would not allow any changes to the underlying model.
Instead, you should create a managed bean that creates a list of items, as shown in Example 10-5.
Example 10-5 Managed Bean Returns a List of Items
You can then access the list from the one component on the page, as shown in Example 10-6.
When you do not want to use a table, but still need the same stamping capabilities, you can use the iterator tag. For example, say you want to display a list of periodic table elements, and for each element, you want to display the name, atomic number, symbol, and group. You can use the iterator tag as shown in Example 10-7.
Example 10-7 Using the Iterator Tag
Each child is stamped as many times as necessary. Iteration starts at the index specified by the first attribute for as many indexes specified by the row
attribute. If the row
attribute is set to 0
, then the iteration continues until there are no more elements in the underlying data.
You can use the detailStamp
facet in a table to include data that can be displayed or hidden. When you add a component to this facet, the table displays an additional column with a toggle icon. When the user clicks the icon, the component added to the facet is shown. When the user clicks on the toggle icon again, the component is hidden. Figure 10-15 shows the additional column that is displayed when content is added to the detailStamp
facet.
Note: When a table that uses the |
Figure 10-16 shows the same table, but with the detailStamp
facet expanded for the first row.
Note: If you set the table to allow columns to freeze, the freeze will not work when you display the |
To use the detailStamp
facet, you insert a component that is bound to the data to be displayed or hidden into the facet.
To use the detailStamp facet:
Tip: If the facet folder does not appear in the Structure window, right-click the table and choose Facets - Table > Detail Stamp. |
Example 10-8 shows abbreviated code used to display the detailStamp
facet shown in Figure 10-16, which shows details about the selected row.
Example 10-8 Code for detailStamp Facet
Note: If your application uses the Fusion technology stack, then you can drag attributes from a data control and drop them into the |
When the user hides or shows the details of a row, the table generates a rowDisclosureEvent
event. The event tells the table to toggle the details (that is, either expand or collapse).
The rowDisclosureEvent
event has an associated listener. You can bind the rowDisclosureListener
attribute on the table to a method on a managed bean. This method will then be invoked in response to the rowDisclosureEvent
event to execute any needed post-processing.
You can add a filter to a table that can be used so that the table displays only rows whose values match the filter. When enabled and set to visible, a search criteria input field displays above each searchable column.
For example, the table in Figure 10-18 has been filtered to display only rows in which the Location
value is 1700.
Filtered table searches are based on Query-by-Example and use the QBE text or date input field formats. The input validators are turned off to allow for entering characters for operators such as >
and <
to modify the search criteria. For example, you can enter >1500
as the search criteria for a number column. Wildcard characters may also be supported. Searches can be either case-sensitive or case-insensitive. If a column does not support QBE, the search criteria input field will not render for that column.
The filtering feature uses a model for filtering data into the table. The table's filterModel
attribute object must be bound to an instance of the FilterableQueryDescriptor
class.
Note: If your application uses the Fusion technology stack, then you can use data controls to create tables and filtering will be created for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework |
In Example 10-9, the table filterVisible
attribute is set to true
to enable the filter input fields, and the sortProperty
attribute is set on the column to identify the column in the filterModel
instance. Each column element has its filterable
attribute set to true
.
Example 10-9 Table Component with Filtering Enabled
To add filtering to a table, first create a class that can provide the filtering functionality. You then bind the table to that class, and configure the table and columns to use filtering. The table that will use filtering must either have a value for its headerText
attribute, or it must contain a component in the header
facet of the column that is to be filtered. This allows the filter component to be displayed. Additionally, the column must be configured to be sortable, because the filterModel
class uses the sortProperty
attribute.
To add filtering to a table:
Create a Java class that is a subclass of the FilterableQueryDescriptor
class. For more information about this class, see the ADF Faces Javadoc
.
true
to display the filter criteria input field above searchable column. FilterableQueryDescriptor
class created in Step 1. Tip: If you want to use a component other than an
|
true
. caseSensitive
or caseInsensitive
. If not specified, the case sensitivity is determined by the model. The ADF Faces tree component displays hierarchical data, such as organization charts or hierarchical directory structures. In data of these types, there may be a series of top-level nodes, and each element in the structure may expand to contain other elements. As an example, in an organization chart, each element, that is, each employee, in the hierarchy may have any number of child elements (direct reports). The tree component supports multiple root elements. It displays the data in a form that represents the structure, with each element indented to the appropriate level to indicate its level in the hierarchy, and connected to its parent. Users can expand and collapse portions of the hierarchy. Figure 10-19 shows a tree used to display directories in the File Explorer application.
The ADF Faces tree component uses a model to access the data in the underlying hierarchy. The specific model class is oracle.adf.view.rich.model.TreeModel
, which extends CollectionModel
, described in Section 10.2, "Displaying Data in Tables."
You must create your own tree model to support your tree. The tree model is a collection of rows. It has an isContainer()
method that returns true
if the current row contains child rows. To access the children of the current row, you call the enterContainer()
method. Calling this method results in the TreeModel
instance changing to become a collection of the child rows. To revert back up to the parent collection, you call the exitContainer()
method.
You may find the oracle.adf.view.rich.model.ChildPropertyTreeModel
class useful when constructing a TreeModel
class, as shown in Example 10-10.
Example 10-10 Constructing a TreeModel
Note: If your application uses the Fusion technology stack, then you can use data controls to create trees and the model will be created for you. For more information see the "Displaying Master-Detail Data" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework |
You can manipulate the tree similar to the way you can manipulate a table. You can do the following:
setRowIndex()
method on the tree with the appropriate index into the list. Alternatively, call the setRowKey()
method with the appropriate rowKey
object. getRowData()
method on the tree. getAddedSet
and getRemovedSet
methods on the RowDisclosureEvent
. For more information, see Section 10.5.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes." enterContainer()
method before calling the setRowIndex()
and setRowKey()
methods. Then call the exitContainer()
method to return to the parent node. rowKey
for a node inside the tree (at any level) use the focusRowKey
attribute. The focusRowKey
attribute is set when the user right-clicks on a node and selects the Show as top context menu item (or the Show as top toolbar button in the panelCollection
component). When the focusRowKey
attribute is set, the tree renders the node pointed to by the focusRowKey
attribute as the root node in the Tree and displays a Hierarchical Selector icon next to the root node. Clicking the Hierarchical Selector icon displays a Hierarchical Selector dialog which shows the path to the focusRowKey
object from the root node of the tree. How this displays depends on the components placed in the pathStamp
facet.
As with tables, trees use stamping to display content for the individual nodes. Trees contain a nodeStamp
facet, which is a holder for the component used to display the data for each node. Each node is rendered (stamped) once, repeatedly for all nodes. As each node is stamped, the data for the current node is copied into a property that can be addressed using an EL expression. Specify the name to use for this property using the var
property on the tree. Once the tree has completed rendering, this property is removed or reverted back to its previous value.
Because of this stamping behavior, only certain types of components are supported as children inside an ADF Faces tree. All components that have no behavior are supported, as are most components that implement the ValueHolder
or ActionSource
interfaces.
In Example 10-11, the data for each element is referenced using the variable node
, which identifies the data to be displayed in the tree. The nodeStamp
facet displays the data for each element by getting further properties from the node
variable:
Example 10-11 Displaying Data in a Tree
Trees also contain a pathStamp
facet. This facet determines how the content of the Hierarchical Selector dialog is rendered, just like the nodeStamp
facet determines how the content of the tree is rendered. The component inside the pathStamp
facet can be a combination of simple outputText
, image
, and outputFormatted
tags and cannot not be any input component (that is, any EditableValueHolder
component) because no user input is allowed in the Hierarchical Selector popup. If this facet is not provided, then the Hierarchical Selector icon is not rendered.
For example, including an image and an outputText
component in the pathStamp
facet causes the tree to render an image and an outputText
component for each node level in the Hierarchical Selector dialog. Use the same EL expression to access the value. For example, if you want to show the first name for each node in the path in an outputText
component, the EL expression would be <af:outputText value="#{node.firstname}"/>
.
Tip: The |
To create a tree, you add a tree component to your page and configure the display and behavior properties.
To add a tree to a page:
Create a Java class that extends the org.apache.myfaces.trinidad.model.TreeModel
class, as shown in Example 10-10.
org.apache.myfaces.trinidad.model.TreeModel
as created in Step 1. varStatus
attribute provides the following information: model
: A reference to the CollectionModel
instance index
: The current row index rowKey
: The unique key for the current node first
to display the first node, last
to display the last node, and selected
to display the first selected node in the tree. The default is first
. displayRow
attribute. true
if you want all nodes expanded when the component first renders. editAll
), or you want the user to click a node to make it editable (clickToEdit
). For more information, see Section 10.1.3, "Editing Data in Tables, Trees, and Tree Tables." true
, the node is selected. For more information about context menus, see Chapter 13, "Using Popup Dialogs, Menus, and Windows." none
, single
, or multiple
. For information about how to then programatically perform some action on the selected nodes, see Section 10.5.5, "What You May Need to Know About Programmatically Selecting Nodes." contentDelivery
attribute is set to immediate
, data is fetched at the same time the component is rendered. If the contentDelivery
attribute is set to lazy
, data will be fetched and delivered to the client during a subsequent request. If the attribute is set to whenAvailable
(the default), the renderer checks if the data is available. If it is, the content is delivered immediately. If it is not, then lazy delivery is used. For more information, see Section 10.1.1, "Content Delivery." fetchSize
value. Note: Note the following about setting the
|
The component's value should be bound to the variable value set on the tree's var
attribute and the attribute to be displayed. For example, the tree in the File Explorer application uses folder
as the value for the var
attribute, and displays the name of the directory for each node. Therefore, the value of the output component used to display the directory name is #{folder.name}
.
Tip: Facets can accept only one child component. Therefore, if you want to use more than one component per node, place the components in a group component that can be the facet's direct child, as shown in Figure 10-20. |
When you add a tree to a page, JDeveloper adds a nodeStamp
facet to stamp out the nodes of the tree. Example 10-12 shows the abbreviated code for the tree in the File Explorer application that displays the directory structure.
Example 10-12 ADF Faces Tree Code in a JSF Page
The tree is displayed in a format with nodes indented to indicate their levels in the hierarchy. The user can click nodes to expand them to show children nodes. The user can click expanded nodes to collapse them. When a user clicks one of these icons, the component generates a RowDisclosureEvent
event. You can register a custom rowDisclosureListener
method to handle any processing in response to the event. For more information, see Section 10.5.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."
When a user selects or deselects a node, the tree component invokes a selectionEvent
event. You can register custom selectionListener
instances, which can do post-processing on the tree component based on the selected nodes. For more information, see Section 10.5.5, "What You May Need to Know About Programmatically Selecting Nodes."
The RowDisclosureEvent
event has two RowKeySet
objects: the RemovedSet
object for all the collapsed nodes and the AddedSet
object for all the expanded nodes. The component expands the subtrees under all nodes in the added set and collapses the subtrees under all nodes in the removed set.
Your custom rowDisclosureListener
method can do post-processing, on the tree component, as shown in Example 10-13.
Example 10-13 Tree Table Component with rowDisclosureListener
The backing bean method that handles row disclosure events is shown in Example 10-14. The example illustrates expansion of a tree node. For the contraction of a tree node, you would use getRemovedSet
.
Example 10-14 Backing Bean Method for RowDisclosureEvent
Trees and tree tables use an instance of the oracle.adf.view.rich.model.RowKeySet
class to keep track of which nodes are expanded. This instance is stored as the disclosedRowKeys
attribute on the component. You can use this instance to control the expand or collapse state of an node in the hierarchy programatically, as shown in Example 10-15. Any node contained by the RowKeySet
instance is expanded, and all other nodes are collapsed. The addAll()
method adds all elements to the set, and the and removeAll()
method removes all the nodes from the set.
Example 10-15 Tree Component with disclosedRowKeys Attribute
The backing bean method that handles the disclosed row keys is shown in Example 10-16.
Example 10-16 Backing Bean Method for Handling Row Keys
The tree and tree table components allow nodes to be selected, either a single node only, or multiple nodes. If the component allows multiple selections, users can select multiple nodes using Control+click and Shift+click operations.
When a user selects or deselects a node, the tree component fires a selectionEvent
event. This event has two RowKeySet
objects: the RemovedSet
object for all the deselected nodes and the AddedSet
object for all the selected nodes.
Tree and tree table components keep track of which nodes are selected using an instance of the class oracle.adf.view.rich.model.RowKeySet
. This instance is stored as the selectedRowKeys
attribute on the component. You can use this instance to control the selection state of a node in the hierarchy programatically. Any node contained by the RowKeySet
instance is deemed selected, and all other nodes are not selected. The addAll()
method adds all nodes to the set, and the and removeAll()
method removes all the nodes from the set. Tree and tree table node selection works in the same way as table row selection. You can refer to sample code for table row selection in Section 10.2.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."
The ADF Faces tree table component displays hierarchical data in the form of a table. The display is more elaborate than the display of a tree component, because the tree table component can display columns of data for each tree node in the hierarchy. The component includes mechanisms for focusing on subtrees within the main tree, as well as expanding and collapsing nodes in the hierarchy. Figure 10-21 shows the tree table used in the File Explorer application. Like the tree component, the tree table can display the hierarchical relationship between the files in the collection. And like the table component, it can also display attribute values for each file.
The immediate children of a tree table component must be column components, in the same way as for table components. Unlike the table, the tree table component has a nodeStamp
facet which holds the column that contains the primary identifier of an node in the hierarchy. The treeTable
component supports the same stamping behavior as the Tree
component (for details, see Section 10.5, "Displaying Data in Trees").
For example, in the File Explorer application (as shown in Figure 10-21), the primary identifier is the file name. This column is what is contained in the nodeStamp
facet. The other columns, such as Type and Size, display attribute values on the primary identifier, and these columns are the direct children of the tree table component. This tree table uses node
as the value of the variable that will be used to stamp out the data for each node in the nodeStamp
facet column and each component in the child columns. Example 10-17 shows abbreviated code for the tree table in the File Explorer application.
Example 10-17 Stamping Rows in a TreeTable
The tree table component supports many of the same attributes as both tables and trees. For more information about these attributes see Section 10.2, "Displaying Data in Tables" and Section 10.5, "Displaying Data in Trees."
You use the Insert Tree Table wizard to create a tree table. Once the wizard is complete, you can use the Property Inspector to configure additional attributes on the tree table.
To add a tree table to a page:
Tip: The attributes of the tree table are the same as those on the table and tree components. Refer to Section 10.2.4, "How to Display a Table on a Page," and Section 10.5.1, "How to Display Data in Trees" for help in configuring the attributes. |
There may be a case where you need to pass an entire row from a collection as a value. To do this, you pass the variable used in the table to represent the row, or used in the tree to represent a node, and pass it as a value to a property in the pageFlow
scope. Another page can then access that value from the scope. The setPropertyListener
tag allows you to do this (for more information about the setPropertyListener
tag, including procedures for using it, see Section 4.7, "Passing Values Between Pages").
For example, suppose you have a master page with a single-selection table showing employees, and you want users to be able to select a row and then click a command button to navigate to a new page to edit the data for that row, as shown in Example 10-18. The EL variable name emp
is used to represent one row (employee) in the table. The action
attribute value of the commandButton
component is a static string outcome showEmpDetail
, which allows the user to navigate to the Employee Detail page. The setPropertyListener
tag takes the from
value (the variable emp
), and stores it with the to
value.
Example 10-18 Using SetPropertyListener and PageFlowScope
When the user clicks the command button on an employee row, the listener executes, and the value of #{emp}
is retrieved, which corresponds to the current row (employee) in the table. The retrieved row object is stored as the empDetail
property of pageFlowScope
with the #{pageFlowScope.empDetail}
EL expression. Then the action event executes with the static outcome, and the user is navigated to a detail page. On the detail page, the outputText
components get their value from pageFlowScope.empDetail
objects, as shown in Example 10-19.
Example 10-19 Retrieving PageFlowScope Objects
You can use the panelCollection
component to add menus, toolbars, and status bars to tables, trees, and tree tables. To use the panelCollection
component, you add the table, tree, or tree table component as a direct child of the panelCollection
component. The panelCollection
component provides default menus and toolbar buttons.
Figure 10-22 shows the panelCollection
component with the tree table component in the File Explorer application. The toolbar contains a menu that provides actions that can be performed on the tree table (such as expanding and collapsing nodes), a button that allows users to detach the tree table, and buttons that allow users to change the rows displayed in the tree table. You can configure the toolbar to not display certain toolbar items. For example, you can turn off the buttons that allow the user to detach the tree or table. For more information about menus, toolbars, and toolbar buttons, see Chapter 14, "Using Menus, Toolbars, and Toolboxes."
Among other facets, the panelCollection
component contains a menu
facet to hold menu components, a toolbar
facet for toolbar components, a secondaryToolbar
facet for another set of toolbar components, and a statusbar
facet for status items.
The default top-level menu and toolbar items vary depending on the component used as the child of the panelCollection
component:
pathStamp
facet is used): The toolbar buttons Go Up, Go To Top, and Show as Top also appear. Example 10-20 shows how the panelCollection
component contains menus and toolbars.
Example 10-20 The panelCollection Component with Table, Menus, and Toolbars
Tip: You can make menus detachable in the
|
You add a panelCollection
component and then add the table, tree, or tree table inside the panelCollection
component. You can then add and modify the menus and toolbars for it.
To create a panelCollection component with an aggregate display component:
Alternatively, if the table, tree, or tree table already exists on the page, you can right-click the component and choose Surround With. Then select Panel Collection to wrap the component with the panelCollection
component.
panelCollection
toolbar by turning off specific toolbar and menu items. To do so, select the panelCollection
component in the Structure window. In the Property Inspector, set the featuresOff
attribute. Table 10-1 shows the valid values and the corresponding effect on the toolbar. Table 10-1 Valid Values for the featuresOff Attribute
Value | Will not display... |
---|---|
| status bar |
| View menu |
| Format menu |
| Columns menu item in the View menu |
For example: | Columns with matching IDs in the Columns menu For example, the value to the left would not display the columns whose IDs are |
| Freeze menu item in the View menu |
| Detach menu item in the View menu |
| Sort menu item in the View menu |
| Reorder Columns menu item in the View menu |
| Resize Columns menu item in the Format menu |
| Wrap menu item in the Format menu |
| Show As Top menu item in the tree's View menu |
| Scroll To First menu item in the tree's View menu |
| Scroll To Last menu item in the tree's View menu |
| Freeze toolbar item |
| Detach toolbar item |
| Wrap toolbar item |
| Show As Top toolbar item |
| Wrap menu and toolbar items |
| Freeze menu and toolbar items |
| Detach menu and toolbar items |
menu
component inside the menu
facet. toolbar
component inside the toolbar
or secondaryToolbar
facet. statusbar
facet. commandMenuItem
components to the viewMenu
facet. For multiple items, use the group
component as a container for the many commandMenuItem
components. From the Component Palette, drag and drop the component into the facet. For example, drop Menu into the menu
facet, then drop Menu Items into the same facet to build a menu list. For more instructions about menus and toolbars, see Chapter 14, "Using Menus, Toolbars, and Toolboxes."
You can export the data from a table, tree, or tree table, or from a table region of the DVT project Gantt chart to a Microsoft Excel spreadsheet. To allow users to export a table, you create an action source, such as a command button or command link, and add an exportCollectionActionListener
component and associate it with the data you wish to export. You can configure the table so that all the rows will be exported, or so that only the rows selected by the user will be exported.
Tip: You can also export data from a DVT pivot table. For more information, see Section 26.8, "Exporting from a Pivot Table." |
For example, Figure 10-23 shows the table from the ADF Faces demo that includes a command button component that allows users to export the data to an Excel spreadsheet.
When the user clicks the command button, the listener processes the exporting of all the rows to Excel. As shown in Figure 10-23, you can also configure the exportCollectionActionListener
component so that only the rows the user selects are exported.
Note: Only the following can be exported:
|
Depending on the browser, and the configuration of the listener, the browser will either open a dialog, allowing the user to either open or save the spreadsheet as shown in Figure 10-24, or the spreadsheet will be displayed in the browser. For example, if the user is viewing the page in Microsoft Internet Explorer, and no file name has been specified on the exportCollectionActionListener
component, the file is displayed in the browser. In Mozilla Firefox, the dialog opens.
If the user chooses to save the file, it can later be opened in Excel, as shown in Figure 10-25. If the user chooses to open the file, what happens depends on the browser. For example, if the user is viewing the page in Microsoft Internet Explorer, the spreadsheet opens in the browser window. If the user is viewing the page in Mozilla Firefox, the spreadsheet opens in Excel.
Note: You may receive a warning from Excel stating that the file is in a different format than specified by the file extension. This warning can be safely ignored. |
You create a command component, such as a button, link, or menu item, and add the exportCollectionActionListener
inside this component. Then you associate the data collection you want to export by setting the exportCollectionActionListener
component's exportedId
attribute to the ID of the collection component whose data you wish to export.
Before you begin:
You should already have a table, tree, or tree table on your page. If you do not, follow the instructions in this chapter to create a table, tree, or tree table. For example, to add a table, see Section 10.2, "Displaying Data in Tables."
Tip: If you want users to be able to select rows to export, then configure your table to allow selection. For more information, see Section 10.2.2, "Formatting Tables." |
To export collection data to an external format:
Tip: If you want your table, tree, or tree table to have a toolbar that will hold command components, you can wrap the collection component in a |
You may want to change the default label of the command component to a meaningful name such as Export to Excel.
excelHTML
. exportCollectionActionListener
component still selected, in the Property Inspector, set the following: detailStamp
facet, you can elect to either export that data or not (for more information about the detailStamp
facet, see Section 10.3, "Adding Hidden Capabilities to a Table"). Set to one of the following: all
: All rows will be automatically selected and exported. selected
: Only the rows the user has selected will be exported. allWithoutDetails
: All rows, except the data in the detailStamp
facet, will be selected and exported. selectedWithoutDetails
: Only the rows the user has selected will be exported, except for the data in the detailStamp
facet. Example 10-21 shows the code for a table and its exportCollectionActionListener
component. Note that the exportedId
value is set to the table id
value.
Example 10-21 Using the exportCollectionActionListener to Export a Table
Exported data is exported in index order, not selected key order. This means that if you allow selected rows to be exported, and the user selects rows (in this order) 8, 4, and 2, then the rows will be exported and displayed in Excel in the order 2, 4, 8.
Since there is no client-side support for EL in the rich client framework, nor is there support for sending entire table models to the client, if you need to access values on the client using JavaScript, the client-side code cannot rely on component stamping to access the value. Instead of reusing the same component instance on each row, a new JavaScript component is created on each row (assuming any component needs to be created at all for any of the rows), using the fully resolved EL expressions.
Therefore, to access row-specific data on the client, you need to use the stamped component itself to access the value. To do this without a client-side data model, you use a client-side selection change listener.
To access values on the client from a stamped component, you first need to make sure the component has a client representation. Then you need to register a selection change listener on the client and then have that listener handle determining the selected row, finding the associated stamped component for that row, use the stamped component to determine the row-specific name, and finally interact with the selected data as needed.
To access selected values from stamped components:
outputText
component to display the stamped rows. Example 10-22 Table Component Uses an outputText Component for Stamped Rows
Set the following on the component:
Id
attribute. True
. selection
from the Type dropdown. If for example, you entered mySelectedRow as the function, JDeveloper would enter the code shown in bold in Example 10-23.
Example 10-23 Using a clientListener to Register a Selection
This code causes the mySelectedRow
function to be called any time the selection changes.
AdfSelectionEvent
. This type provides access to the newly selected row keys via the getAddedSet()
method, which returns a POJSO (plain old JavaScript object) that contains properties for each selected row key. Once you have access to this object, you can iterate over the row keys using a "for in" loop. For example, the code in Example 10-24 extracts the first row key (which in this case, is the only row key). AdfUIComponent
exposes a findComponent()
method that takes the ID of the component to find and returns the AdfUIComponent
instance. When using stamped components, you need to find a component not just by its ID, but by the row key as well. In order to support this, the AdfUITable
class provides an overloaded method of findComponent()
, which takes both an ID as well as a row key. In the case of selection events, the component is the source of the event. So you can get the table from the source of the event and then use the table to find the instance using the ID and row key. Example 10-25 shows this, where nameStamp
is the ID of the table.
Example 10-25 Finding a Stamped Component Instance Given a Selected Row
name
attribute (which was the stamped value as shown in Example 10-22)and then display the name in an alert. Example 10-27 shows the entire code for the JavaScript.
Example 10-27 JavaScript Used to Access Selected Row Value
Row keys are tokenized on the server, which means that the row key on the client may have no resemblance to the row key on the server. As such, only row keys that are served up by the client-side APIs (like AdfSelectionEvent.getAddedSet()
) are valid.
Also note that AdfUITable.findComponent(id, rowKey)
method may return null
if the corresponding row has been scrolled off screen and is no longer available on the client. Always check for null
return values from AdfUITable.findComponent()
method.
This chapter describes how to use a list-of-values component to display a model-driven list of objects from which a user can select a value.
This chapter includes the following sections:
ADF Faces provides two list-of-values (LOV) input components that can display multiple attributes of each list item and can optionally allow the user to search for the needed item. These LOV components are useful when a field used to populate an attribute for one object might actually be contained in a list of other objects, as with a foreign key relationship in a database. For example, suppose you have a form that allows the user to edit employee information. Instead of having a separate page where the user first has to find the employee record to edit, that search and select functionality can be built into the form, as shown in Figure 11-1.
In this form, the employee name field is an LOV that contains a list of employees. When the user clicks the search icon of the inputListOfValues
component, a Search and Select popup dialog displays all employees, along with a search field that allows the user to search for the employee, as shown in Figure 11-2.
When the user returns to the page, the current information for that employee is displayed in the form, as shown in Figure 11-3. The user can then edit and save the data.
Other list components, such as selectOneChoice
, also allow users to select from a list, but they do not include a popup dialog and they are intended for smaller lists. This chapter describes only the inputListOfValues
and inputComboboxListOfValues
LOV components. For more information about select choice components, list box components, and radio buttons, see Chapter 9, "Using Input Components and Defining Forms."
As shown in the preceding figures, the inputListOfValues
component provides a popup dialog from which the user can search for and select an item. The list is displayed in a table. In contrast, the inputComboboxListOfValues
component allows the user two different ways to select an item to input: from a simple dropdown list, or by searching as you can in the inputListOfValues
component. Note that the columns of the table will not stretch to the full width of the dialog.
You can also create custom content to be rendered in the Search and Select dialog by using the searchContent
facet. You define the returnPopupDataValue
attribute and programmatically set it with a value when the user selects an item from the Search and Select dialog and then closes the dialog. This value will be the return value from ReturnPopupEvent to the returnPopupListener
. When you implement the returnPopupListener
, you can perform functions such as setting the value of the LOV component, its dependent components, and displaying the custom content. In the searchContent
facet you can add components such as tables, trees, and inputText to display your custom content.
If you implement both the searchContent
facet and the ListOfValues
model, the searchContent
facet implementation will take precedence in rendering the Search and Select dialog. Example 11-1 show the code to display custom content using a table component.
Example 11-1 Adding Custom Content to the Search and Select Dialog
If the readOnly
attribute is set to true
, the input field is disabled. If readOnly
is set to false
, then the editMode
attribute determines which type of input is allowed. If editMode
is set to select
, the value can be entered only by selecting from the list. If editMode
is set to input
, then the value can also be entered by typing.
You can also implement the LOV component to automatically display a list of suggested items when the user types in a partial value. For example, when the user enters Ca
, then a suggested list which partially matches Ca
is displayed as a suggested items list, as shown in Figure 11-4.
The user can select an item from this list to enter it into the input field, as shown in Figure 11-5.
You add the auto suggest behavior by adding the af:autoSuggestBehavior
tag inside the LOV component with the tag's suggestItems
values set to a method that retrieves and displays the list. You can create this method in a managed bean. If you are using ADF Model, the method is implemented by default. You also need to set the component's autoSubmit
property to true
.
In your LOV model implementation, you can implement a smart list that filters the list further. You can implement a smart list for both LOV components. If you are using ADF Model, the inputComboboxListOfValues
allows you declaratively select a smart list filter defined as a view criteria for that LOV. If the smart list is implemented, and auto suggest behavior is also used, auto suggest will search from the smart list first. If the user waits for two seconds without a gesture, auto suggest will also search from the full list and append the results. The maxSuggestedItems
attribute specifies the number of items to return (-1 indicates a complete list). If maxSuggestedItems > 0
, a More link is rendered for the user to click to launch the LOV's Search and Select dialog. Example 11-2 shows the code for an LOV component with both auto suggest behavior and smart list.
Example 11-2 Auto Suggest Behavior and Smart List
Figure 11-6 shows how a list can be displayed by an inputComboboxListOfValues
component. If the popup dialog includes a query panel, then a Search link is displayed at the bottom of the dropdown list. If a query panel is not used, a More link is displayed.
The dropdown list of the inputComboboxListOfValues
component can display the following:
ListOfValuesModel.getItems()
method. ListOfValuesModel.getRecentItems()
method. customActions
facet: A facet for adding additional content. Typically, this contains one or more commandLink
components. You are responsible for implementing any logic for the commandLink
to perform its intended action, for example, launching a popup dialog. The number of columns to be displayed for each row can be retrieved from the model using the getItemDescriptors()
method. The default is to show all the columns.
The popup dialog from within an inputListOfValues
component or the optional search popup dialog in the inputComboboxListOfValues
component also provides the ability to create a new record. For the inputListOfValues
component, when the createPopupId
attribute is set on the component, a toolbar
component with a commandToolbarButton
is displayed with a create icon. At runtime, a commandToolbarButton
component appears in the LOV popup dialog, as shown in Figure 11-7.
When the user clicks the Create button, a popup dialog is displayed that can be used to create a new record. For the inputComboboxListOfValues
, instead of a toolbar, a commandLink
with the label Create is displayed in the customActions
facet, at the bottom of the dialog. This link launches a popup where the user can create a new record. In both cases, you must provide the code to actually create the new record.
Tip: Instead of having to build your own create functionality, you can use ADF Business Components and ADF data binding. For more information, see the "Creating an Input Table" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Like the query components, the LOV components rely on a data model to provide the functionality. This data model is the ListOfValuesModel
class. This model uses a table model to display the list of values, and can also access a query model to perform a search against the list. You must implement the provided interfaces for the ListOfValuesModel
in order to use the LOV components.
Tip: Instead of having to build your own |
When the user selects an item in the list, the data is returned as a list of objects for the selected row, where each object is the rowData
for a selected row. The list of objects is available on the ReturnPopupEvent
event, which is queued after a selection is made.
If you choose to also implement a QueryModel
class, then the popup dialog will include a Query
component that the user can use to perform a search and to filter the list. Note the following about using the Query
component in an LOV popup dialog:
Query
component in the popup dialog and its functionality is based on the corresponding QueryDescriptor
class. query
, toolbar
, and table
. When the user clicks the Search button to start a search, the ListOfValuesModel.performQuery()
method is invoked and the search is performed. For more information about the query model, see Chapter 12, "Using Query Components."
Both components support the auto-complete feature, which allows the user to enter a partial value in the input field, tab out, and have the dialog populated with the rows that match the partial criteria. For this to work, you must implement logic so that when the user tabs out after a partial entry, the entered value is posted back to the server. On the server, your model implementation filters the list using the partially entered value and performs a query to retrieve the list of values. ADF Faces provides APIs for this functionality.
Before you can use the LOV components, you must have a data model that uses the ADF Faces API to access the LOV functionality. Figure 11-8 shows the class diagram for a ListOfValues
model.
To create a ListOfValues model and associated events:
Table 11-1 ListOfValues Model API
Method | Functionality |
---|---|
| Called when the search icon is clicked or the value is changed and the user tabs out from the input field, as long as |
| Called when the value is selected from the Search and Select dialog and the OK button is clicked. This method gives the model a chance to update the model based on the selected value. |
| Returns a boolean to decide whether or not the auto complete is enabled. |
| Returns the implementation of the |
| Return the |
| Return the list of |
| Return the |
| Called when the search button in the |
For an example of a ListOfValues
model, see the DemoLOVBean
and DemoComboboxLOVBean
classes located in the oracle.adfdemo.view.lov
package, found in the Application Sources directory of the ADF Faces application.
inputListOfValues
component, provide logic in a managed bean (it can be the same managed bean used to create your LOV model) that accesses the attribute used to populate the list. The inputComboboxListOfValues
component uses the getItems()
and getRecentItems()
methods to return the list. InputListOfValues
component, or if you want the InputComboboxListOfValues
component to use the Search and Select popup dialog, implement the ListOfValuesModel.autoCompleteValue()
and ListOfValuesModel.valueSelected()
methods. These methods open the popup dialog and apply the selected values onto the component. The inputListOfValues
component uses the ListOfValues
model you implemented to access the list of items, as documented in Section 11.2, "Creating the ListOfValues Data Model."
Before you begin:
You should already have a created a page or page fragment. If you also implemented the search API in the model, the component would also allows the user to search through the list for the value.
To add an inputListOfValues component:
ListOfValuesModel
implementation, as created in Section 11.2, "Creating the ListOfValues Data Model." inputListOfValues
component if the component is empty and does not have focus. When the component gets focus, or has a value, then the placeholder text is hidden. The placeholder text is used to inform the user what should be entered in the inputListOfValues
component.
The rest of the attributes in this section can be populated in the same manner as any other input component. For more information, see Section 9.3, "Using the inputText Component."
true
if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto-complete feature to work. If you are adding the auto suggest behavior, you must set autoSubmit
to true
. toolbar
component above the table that contains a commandToolbarButton
component bound to the popup dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will be always refreshed. launchPopupListener
that you implement to provide additional functionality when the popup is launched. returnPopupListener
component that you implement to provide additional functionality when the value is returned. inputListOfValues
component will be rendered in HTML 5 browser. The valid values are auto
, text
, and search
. Default is auto
. If the usage type is search
, the inputListOfValues
component will render as an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon that can be used to clear the search text.
The rest of the attributes in this section can be populated in the same manner as any other input component. For more information, see Section 9.3, "Using the inputText Component."
inputListOfValues
component. suggestItems
method. The method should return List<javax.model.SelectItem>
of the suggestItems
. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)
smartList
method. The method should return List<javax.model.SelectItem>
of the smart list items. If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 11-3
Example 11-3 autoSuggestBehavior Tag in an LOV
If the component is being used with a data model such as ADF Model, the suggestItem
method should be provided by the default implementation.
suggestItems
method to process and display the list. The suggestItems
method signature is shown in Example 11-4. The inputComboboxListOfValues
component allows a user to select a value from a dropdown list and populate the LOV field, and possibly other fields, on a page, similar to the inputListOfValues
component. However, it also allows users to view the values in the list either as a complete list, or by most recently viewed. You can also configure the component to perform a search in a popup dialog, as long as you have implemented the query APIs, as documented in Section 11.2, "Creating the ListOfValues Data Model."
Before you begin:
You should already have a created a page or page fragment.
To add an inputComboboxListOfValues component:
ListOfValuesModel
implementation, as created in Section 11.2, "Creating the ListOfValues Data Model." inputComboboxListOfValues
component if the component is empty and does not have focus. When the component gets focus, or has a value, then the placeholder text is hidden. The placeholder text is used to inform the user what should be entered in the inputComboboxListOfValues
component.
The rest of the attributes in this section can be populated in the same manner as any other input component. For more information, see Section 9.3, "Using the inputText Component."
true
if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit
to true
. toolbar
component above the table that contains a commandToolbarButton
component bound to the dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will always be refreshed. launchPopupListener
handler that you implement to provide additional functionality when the popup dialog is opened. returnPopupListener
handler that you implement to provide additional functionality when the value is returned. inputComboboxListOfValues
component will be rendered in HTML 5 browser. The valid values are auto
, text
, and search
. Default is auto
. If the usage type is search
, the inputComboboxListOfValues
component will render as an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon that can be used to clear the search text.
The rest of the attributes in this section can be populated in the same manner as any other input component. For more information, see Section 9.3, "Using the inputText Component."
launchPopupListener
, you can use the getPopupType()
method of the LaunchPopupEvent
class to differentiate the source of the event. getPopupType()
returns DROPDOWN_LIST
if the event is a result of the launch of the LOV Search and Select dialog, and SEARCH_DIALOG
if the event is the result of the user clicking the Search button in the dialog. inputComboboxListOfValues
component. suggestItems
method. The method should return List<javax.model.SelectItem>
of the suggestItems
. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)
smartList
method. The method should return List<javax.model.SelectItem>
of the smart list items. If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 11-5.
Example 11-5 autoSuggestBehavior Tag in an LOV
If the component is being used with a data model such as ADF Model, the suggestItem
method should be provided by the default implementation.
suggestItems
method to process and display the list. The suggestItems
method signature is shown in Example 11-6. This chapter describes how to use the query
and quickQuery
search panel components.
This chapter includes the following sections:
The query
and quickQuery
components are used to search through data sets. The query
component provides a comprehensive set of search criteria and controls, while the quick
Query
component can be used for searching on a single criterion.
The query
component supports the following functionality:
By default, the advanced mode of the query
component allows the user to add and delete criteria items to the currently displayed search. However you can implement your own QueryModel
class that can hide certain features in basic mode (and expose them only in advanced mode). For example, you might display operators only in advanced mode or display more criteria in advanced mode than in basic mode.
Typically, the results of the query are displayed in a table or tree table, which is identified using the resultComponentId
attribute of the query
component. However, you can display the results in any other output components as well. The component configured to display the results is automatically rerendered when a search is performed.
Figure 12-1 shows an advanced mode query
component with three search criteria.
You can create seeded searches, that is, searches whose criteria are already determined and from which the user can choose, or you can allow the user to add criterion and then save those searches. For example, Figure 12-1 shows a seeded search for an employee. The user can enter values for the criteria on which the search will execute. The user can also choose the operands (greater than, equals, less than) and the conjunction (matches all or matches any, which creates either an "and" or "or" query). The user can click the Add Fields dropdown list to add one or more criteria and then save that search. If the application is configured to use persistence, then those search criteria, along with the chosen operands and conjunctions, can be saved and reaccessed using a given search name (for more information about persistence, see Chapter 31, "Allowing User Customization on JSF Pages").
The quickQuery
component is a simplified version of the query
component. The user can perform a search on any one of the searchable attributes by selecting it from a dropdown list. Figure 12-2 shows a quickQuery
component in horizontal layout.
Both the query
and quickQuery
components use the QueryModel
class to define and execute searches. Create the associated QueryModel
classes for each specific search you want users to be able to execute.
Tip: Instead of having to build your own |
The QueryModel
class manages QueryDescriptor
objects, which define a set of search criteria. The QueryModel
class is responsible for creating, deleting, and updating QueryDescriptor
objects. The QueryModel
class also retrieves saved searches, both those that are seeded and those that the user personalizes. For more information, refer to the ADF Faces Javadoc.
You must create a QueryDescriptor
class for each set of search criteria items. The QueryDescriptor
class is responsible for accessing the criteria and conjunction needed to build each seeded search. It is also responsible for dynamically adding, deleting, or adding and deleting criteria in response to end-user's actions. The QueryDescriptor
class also provides various UI hints such as mode, auto-execute, and so on. For more information, refer to the ADF Faces Javadoc. One QueryModel
class can manage multiple QueryDescriptor
objects.
When a user creates a new saved search, a new QueryDescriptor
object is created for that saved search. The user can perform various operations on the saved search, such as deleting, selecting, resetting, and updating. When a search is executed or changed, in addition to calling the appropriate QueryModel
method to return the correct QueryDescriptor
object, a QueryOperationEvent
event is broadcast during the Apply Request Values phase. This event is consumed by the QueryOperationListener
handlers during the Invoke Application phase of the JSF lifecycle. The QueryOperationEvent
event takes the QueryDescriptor
object as an argument and passes it to the listener. ADF Faces provides a default implementation of the listener. For details of what the listener does, see Table 12-2.
For example, updating a saved search would be accomplished by calling the QueryModel
's update()
method. A QueryOperationEvent
event is queued, and then consumed by the QueryOperationListener
handler, which performs processing to change the model information related to the update operation.
The query operation actions that generate a QueryOperationEvent
event are:
The hasDependentCriterion
method of the AttributeCriterion
class can be called to check to see whether a criterion has dependents. By default, the method returns false
, but it returns true
if the criterion has dependent criteria. When that criterion's value has changed, a QueryOperationEvent
is queued for the Update Model Values JSF lifecycle phase. The model will need a listener to update the values of the dependent criterion based on the value entered in its root criteria.
Before you can use the query
components, you must to create your QueryModel
classes.
Tip: You can use the |
Figure 12-3 shows the class diagram for a QueryModel
class.
To create the model classes:
QueryModel
class and then a QueryDescriptor
class with appropriate criteria (operators and values) for each system-seeded search. For example implementations of the different model classes for a query, see the classes located in the oracle.adfdemo.view.query.rich
package of the ADF Faces sample application. Note: If your query uses composition (for example, |
QueryListener
handler method on a managed bean that listens for the QueryEvent
event (this will be referenced by a button on the query
component). This listener will invoke the proper APIs in the QueryModel
to execute the query. Example 12-1 shows the listener method of a basic QueryListener
implementation that constructs a String
representation of the search criteria. This String
is then displayed as the search result. Query component has a refresh()
method on the UIXQuery component. This method should be called when the model definition changes and the query component need to be refreshed (i.e., all its children removed and recreated). When a new criterion is added to the QueryDescriptor
or an existing one is removed, if the underlying model returns a different collection of criterion objects than what the component subtree expects, then this method should be called. QueryOperationListener
, QueryListener
, and ActionListener
should all call this method. The query component itself will be flushed at the end of the Invoke Application Phase. This method is a no-op when called during the Render Response Phase.
To better understand what your implementations must accomplish, Table 12-1 and Table 12-2 map the functionality found in the UI component shown in Figure 12-4 with the corresponding interface.
Table 12-1 shows UI artifacts rendered for the query
component, the associated class, class property, and methods used by the artifact.
Table 12-1 Query UI Artifacts and Associated Model Class Operations and Properties
UI Artifact | Class Property/Methods Used | Comments | |
---|---|---|---|
1 | Search panel | The | Based on a saved search. |
2 | Disclosure icon | Opens or closes the search panel | |
3 | Match type radio button | Available through the | Displays the default conjunction to use between search fields, when a query is performed. If a default is set, and it is the same for all search fields, it appears selected. If the search fields are configured such that a mix of different conjunctions must be used between them, then a value may not be selected on the UI. For example, if the The Match Type will be read only if the |
4 | Group of search fields | The collection of search fields for a | Displays one or more search fields associated with the currently selected search. |
5 | Search field | An An The The | Each search field contains a label, an operator, one or more value components (for example, an input text component), and an optional delete icon. The information required to render these can be either specific to an instance of a search field (in a saved search) or it can be generic and unchanging regardless of which saved search it is part of. For example, assume an Employee business object contains the search fields Employee Name and Salary. A user can then configure two different searches: one named Low Salaried Employees and one named High Salaried Employees. Both searches contain two search fields based on the Regardless of the search selected by the user, the search field for Salary always has to render a number component, and the label always has to show Salary. |
6 | Saved Searches dropdown | System- and user-saved searches are available through the methods | Displays a list of available system- and user-saved searches. A Personalize option is also added if the |
Table 12-2 shows the behaviors of the different UI artifacts, and the associated methods invoked to execute the behavior.
Table 12-2 UI Artifact Behaviors and Associated Methods
UI Artifact | Class Method Invoked | Event Generated | Comments | |
---|---|---|---|---|
7 | Delete icon | During the Invoke Application phase, the method |
| Deletes a search field from the current |
8 | Search button | During the Apply Request Values phase of the JSF lifecycle, a During the Update Model Values phase, the selected operator and the values entered in the search fields are automatically updated to the model using the EL expressions added to the operator and value components (for more information, see Section 12.4.1, "How to Add the Query Component"). These expressions should invoke the During the Invoke Application phase, the You must implement this listener. |
| Rendered always on the footer (footer contents are not rendered at all when the Performs a query using the select operator and selected Match radio (if no selection is made the default is used), and the values entered for every search field. |
9 | Reset button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method |
| Resets the search fields to its previous saved state. |
10 | Save button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method |
| Creates a new saved search based on the current saved search settings, including any new search fields added by the user. |
11 | Add Fields dropdown list | During the Invoke Application phase, the method |
| Adds an attribute as a search field to the existing saved search. |
12 | Mode (Basic or Advanced) button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method changeMode()on the |
| Clicking the mode button toggles the mode. |
13 | Delete button | During the Invoke Application phase, the method | ActionEvent | Deletes the selected saved search, unless it is the one currently in use. |
14 | Apply button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method |
| Applies changes made to the selected saved search. |
15 | OK button | Same as the Apply button. |
| Applies changes made to the selected saved search and the dialog is closed afterwards. |
16 | Cancel button | No method defined for this action. |
| Cancels any edits made in the dialog. |
The quickQuery
component has one dropdown list that allows a user to select an attribute to search on. The available searchable attributes are drawn from your implementation of the model or from a managed bean. The user can search against the selected attribute or against all attributes.
A quickQuery
component may be used as the starting point of a more complex search using a query
component. For example, the user may perform a quick query search on one attribute, and if successful, may want to continue to a more complex search. The quickQuery
component supports this by allowing you to place command components in the end
facet, which you can bind to a method on a managed bean that allows the user to switch from a quickQuery
to a query
component.
The quickQuery
component renders the searchable criteria in a dropdown list and then, depending on the type of the criteria chosen at runtime, the quickQuery
component renders different criteria fields based on the attribute type. For example, if the attribute type is Number
, it renders an inputNumberSpinbox
component. You do not need to add these components as long as you have implemented the complete model for your query. If instead you have the logic in a managed bean and do not need a complete model, then you create the quickQuery
component artifacts manually. For more information, see Section 12.3.2, "How to Use a quickQuery Component Without a Model."
Before you begin
Implement a QueryModel
class and associated classes. For more information, see Section 12.2, "Implementing the Model for Your Query."
To add a quickQuery component:
QueryModel
class, as created in Section 12.2, "Implementing the Model for Your Query." QueryDescriptor
class, as created in Section 12.2, "Implementing the Model for Your Query." false
, the user can set the conjunction. When set to true
, the radio buttons will not be rendered. QueryListener
handler you created in Section 12.2, "Implementing the Model for Your Query." PartialTriggers
with the ID of the quickQuery
component. The value of this component should resolve to a CollectionModel
object that contains the filtered results. quickQuery
component into a full query
component, add a command component to the End
facet of the quickQuery
component, and implement logic that will hide the quickQuery
component and display the query
component. You can use the quickQuery
component without a model, for example if all your query logic resides in a simple managed bean, including a QueryListener
handler that will execute the search and return the results. You must to manually add and bind the components required to create the complete quickQuery
component.
To add a quickQuery component:
On a managed bean, create a valueChangeListener
handler for the selectOneChoice
component that will display the attributes on which the user can search. The valueChangeListener
handler should handle the choice for which attribute to search on.
On a managed bean, create the QueryListener
handle to execute the search. This handle will use the ID of the input component used to enter the search criterion value, to retrieve the component and the value to execute the query.
QueryListener
attribute to an EL expression that evaluates to the QueryListener
handler created in Step 2. In the Component Palette, from the Common Components panel, drag a Select One Choice and drop it onto the criteriaItems
facet of the quickQuery
component. In the dialog, choose either to enter an EL expression that evaluates to the list of attributes on which the user can search, or to enter a static list. For help with the dialog, press F1 or click Help.
selectOneChoice
component in the criteriaItems
facet, and set the following attributes: true
so that no label for the component displays. true
. selectOneChoice
and selectItems
components, see Section 9.6, "Using Selection Components." quickQuery
component. Set the following attributes: true
so that the label is not displayed. Tip: If you do not provide an |
quickQuery
component into a full query
component, add a command component to the End
facet of the quickQuery
component, and implement logic that will hide the quickQuery
component and display the query
component. PartialTriggers
with the ID of the quickQuery
component. The value of this component should resolve to a CollectionModel
object that contains the filtered results. When the quickQuery
component is bound to a QueryDescriptor
object, the selectOneChoice
and inputText
components are automatically added at runtime as the page is rendered. However, you can provide your own components. If you do provide both the component to display the searchable attributes and the inputText
components, then you need the QueryListener
handler to get the name-value pair from your components.
If you provide only your own component to show the searchable attributes (and use the default input text component), the framework will display an input text component. You must have your QueryListener
handler get the attribute name from the dropdown list and the value from the QueryDescriptor.getCurrentCriterion()
method to perform the query.
If you provide only your own component to collect the searchable attribute value (and use the default selectOneChoice
component to provide the attribute name), then the framework will display the selectOneChoice
component. You must have your QueryListener
handler get the attribute name from the QueryDescriptor.getCurrentCriterion()
method and the value from your component.
If you choose not to bind the Quick
Query
component value
attribute to a QueryDescriptor
object, and you provide both components, when the Go button is clicked, the framework queues a QueryEvent
event with a null QueryDescriptor
object. The provided QueryListener
handler then executes the query using the changeValueListener
handler to access the name and the input component to access the value. You will need to implement a QueryListener
handler to retrieve the attribute name from your selectOneChoice
component and the attribute value from your inputText
component, and then perform a query.
The query
component is used for full feature searches. It has a basic and an advanced mode, which the user can toggle between by clicking a button.
The features for a basic mode query include:
WHERE
clause conjunction of either AND
or OR
(match all or match any) The advanced mode query form also includes the ability for the user to dynamically add search criteria by selecting from a list of searchable attributes. The user can subsequently delete any criteria that were added.
The user can select from the dropdown list of operators to create a query for the search. The input fields may be configured to be list-of-values (LOV), number spinners, date choosers, or other input components.
To support selecting multiple items from a list, the model must expose a control hint on viewCriteriaItem
and the underlying attribute must be defined as an LOV in the corresponding view object. The hint is used to enable or disable the multiple selection or "in" operator functionality. When multiple selection is enabled, selecting the Equals
or Does not equal
operator will render the search criteria field as a selectManyChoice
component. The user can choose multiple items from the list.
The component for the search criteria field depends on the underlying attribute data type, the operator that was chosen, and whether multiple selection is enabled. For example, a search field for an attribute of type String
with the Contains
operator chosen would be rendered as an inputText
component, as shown in Table 12-3.
If the operator is Equals
or Does not equal
, but multiple selection is not enabled, the component defaults to the component specified in the Default List Type hint from the model.
Table 12-3 Rendered Component for Search Criteria Field of Type String
Operator | Component | Component When Multiple Select Is Enabled |
---|---|---|
|
|
|
|
|
|
| Default list type hint |
|
| Default list type hint |
|
|
|
|
|
|
|
| None | None |
| None | None |
If the underlying attribute is the Number
data type, the component that will be rendered is shown in Table 12-4.
Table 12-4 Rendered Component for Search Criteria Field of Type Number
Operator | Component | Component When Multiple Select Is Enabled |
---|---|---|
| Default list type hint |
|
| Default list type hint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| None | None |
| None | None |
If the underlying attribute is the Date
data type, the component that will be rendered is shown in Table 12-5.
Table 12-5 Rendered Component for Search Criteria Field of Type Date
Operator | Component | Component When Multiple Select Is Enabled |
---|---|---|
| Default list type hint |
|
Does not equal | Default list type hint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| None | None |
| None | None |
If a search criterion's underlying attribute was defined as an LOV, in order for the auto-complete feature to work, the ListOfValues
model instance returned by the getModelList
method of the AttributeCriterion
class must return true
for its isAutoCompleteEnabled
method. For more information about LOV, see Chapter 11, "Using List-of-Values Components."
When autoSubmit
is set to true
, any value change on the search criterion will be immediately pushed to the model. The query component will automatically flush its criterion list only when it has dependent criteria. If the criterion instance has no dependent criteria but autoSubmit
is set to true,
then the query component will be only partially refreshed.
A Match All or Match Any radio button group further modifies the query. A Match All selection is essentially an AND
function. The query will return only rows that match all the selected criteria. A Match Any selection is an OR
function. The query will return all rows that match any one of the criteria items.
After the user enters all the search criteria values (including null values) and selects the Match All or Match Any radio button, the user can click the Search button to initiate the query. The query results can be displayed in any output component. Typically, the output component will be a table or tree table, but you can associate other display components such as af:forms
, af:outputText
, and graphics to be the results component by specifying it in the resultComponentId
attribute.
If the Basic or Advanced button is enabled and displayed, the user can toggle between the two modes. Each mode will display only the search criteria that were defined for that mode. A search criteria field can be defined to appear only for basic, only for advanced, or for both modes.
In advanced mode, the control panel also includes an Add Fields button that exposes a popup list of searchable attributes. When the user selects any of these attributes, a dynamically generated search criteria input field and dropdown operator list is displayed. The position of all search criteria input fields, as well as newly added fields, are determined by the model implementation.
This newly created search criteria field will also have a delete icon next to it. The user can subsequently click this icon to delete the added field. The originally defined search criteria fields do not have a delete icon and therefore cannot be deleted by the user. Figure 12-6 shows an advanced mode query
component with a dynamically added search criteria field named Salary. Notice the delete icon (an X) next to the field.
The user can also save the entered search criteria and the mode by clicking the Save button. A popup dialog allows the user to provide a name for the saved search and specify hints by selecting checkboxes. A persistent data store is required if the saved search is to be available beyond the session. For more information about persistence, see Chapter 31, "Allowing User Customization on JSF Pages."
A seeded search is essentially a saved search that was created by the application developer. When the component is initialized, any seeded searches associated with that query
component become available for the user to select.
Any user-created saved searches and seeded system searches appear in the Saved Search dropdown list. The seeded searches and user-saved searches are separated by a divider.
Users can also personalize the saved and seeded searches for future use. Personalization of saved searches requires the availability of a persistent data store. For more information about persistence, see Chapter 31, "Allowing User Customization on JSF Pages."
Along with the default display described previously, you can also configure the query
component to display in a compact mode, simple mode, or design mode. The compact mode has no header or border, and the Saved Search dropdown list moves next to the expand or collapse icon. Figure 12-7 shows the same query
component as in Figure 12-6, but set to compact mode.
The simple mode displays the component without the header and footer, and without the buttons typically displayed in those areas. Figure 12-8 shows the same query
component set to simple mode.
The design mode has the same visual appearance as the simple mode but is used mostly for designing the QueryDescriptor
.
The query
component supports toolbar
and footer
facets that allow you to add additional components to the query, such as command buttons. For example, you can create command components to toggle between the quickQuery
and query
components and place those in a toolbar in the toolbar
facet.
Before you begin:
Implement a QueryModel
class and associated classes. For more information, see Section 12.2, "Implementing the Model for Your Query."
To add a query component:
QueryModel
class, as created in Section 12.2, "Implementing the Model for Your Query." QueryDescriptor
class, as created in Section 12.2, "Implementing the Model for Your Query." default
if you want the user to be able to view and edit all saved searches. Set to readOnly
if you want the user to only be able to view and select saved searches, but not update them. Set to hidden
if you do not want any saved searches to be displayed. footer
facet. false
if you want to hide the basic or advanced toggle button. false
if you want the user to be able to select a radio button to determine if the search should match all criteria (query will use the AND
function) or any criteria (query will use the OR
function). When set to true
, the radio buttons will not be rendered. QueryListener
handler, as created in Section 12.2, "Implementing the Model for Your Query." matchCaseDisplayed
to allow the user to set matchCase
for a criterion. This option is available only for String
data types. CollectionModel
object that contains the filtered results. query
component and set the resultComponentID
to the ID of the table. This chapter describes how to create and use popup elements in secondary windows including dialogs, menus, and windows on JSF pages. The chapter also describes how to use the ADF Faces dialog framework to create dialogs with a separate page flow.
This chapter includes the following sections:
ADF Faces provides a set of rich client components for hiding and showing information in a secondary window. The popup
component is an invisible layout control, typically used in conjunction with other components to display inline (that is, belonging to the same page) dialogs, windows, and menus.
For example, Figure 13-1 shows a dialog box created by placing a dialog
component as a child to a popup
component. A user can enter search criteria and click OK to submit the entry, or exit the dialog by clicking Cancel or closing the dialog.
You can also use components within a popup to display contextual information related to another component. When so configured, the related component displays a small square. When moused over, the icon grows and also displays a note icon as shown in Figure 13-2.
When the user clicks the note icon, the associated popup displays its enclosed content.
ADF Faces also provides a dialog framework to support building pages for a process displayed separate from the parent page. This framework supports multiple dialog pages with a control flow of their own. For example, say a user is checking out of a web site after selecting a purchase and decides to sign up for a new credit card before completing the checkout. The credit card transaction could be launched using the dialog framework in an external browser window. The completion of the credit card transaction does not close the checkout transaction on the original page.
This dialog framework can also be used inline as part of the parent page. This can be useful when you want the pages to have a control flow of their own, but you don't want the external window blocked by popup blockers.
If your application uses the full Fusion technology stack, note that this dialog framework is integrated with ADF Faces Controller for use with ADF task flows. For more information, see the "Running a Bounded Task Flow in a Modal Dialog" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The dialog
, panelWindow
, menu
, and noteWindow
components can all be used inside the popup
component to display inline popup elements, as shown in Table 13-1. When no child component exists for the popup
component, a very simple inline popup is displayed.
Table 13-1 Components Used with the popup Component
Component | Displays at Runtime |
---|---|
| Displays its children inside a dialog and delivers events when the |
| Displays its children in a window that is similar to a dialog, but does not support events. For more information, see Section 13.2.2, "How to Create a Panel Window." |
| Displays a context menu for an associated component. For more information, see Section 13.2.3, "How to Create a Context Menu." |
| Displays read-only information associated with a particular UI component. Note windows are used to display help and messages and are commonly shown on mouseover or on focus gestures. For more information, see Section 13.2.4, "How to Create a Note Window." |
| Displays content inline. |
Both the dialog
and panelWindow
components support definition help, content displayed when a user moves the cursor over a help icon (a blue circle with a question mark). For more information, see Section 17.5, "Displaying Help for Components."
Typically, you use a command component in conjunction with the showPopupBehavior
tag to launch a popup element. You associate the showPopupBehavior
tag with the component it should launch. This tag also controls the positioning of the popup element (when needed).
In addition to being used with action events on command components, the showPopupBehavior
tag can be used in conjunction with other events, such as the showDetail
event and the selection
event. For more information, see Section 13.4, "Invoking Popup Elements."
By default, the content of the popup element is not sent from the server until the popup element is displayed. This represents a trade-off between the speed of showing the popup element when it is opened and the speed of rendering the parent page. Once the popup element is loaded, by default the content will be cached on the client for rapid display.
You can modify this content delivery strategy by setting the contentDelivery
attribute on the popup
component to one of the following options:
lazy
- The default strategy previously described. The content is not loaded until you show the popup element once, after which it is cached. immediate
- The content is loaded onto the page immediately, allowing the content to be displayed as rapidly as possible. Use this strategy for popup elements that are consistently used by all users every time they use the page. lazyUncached
- The content is not loaded until the popup element is displayed, and then the content is reloaded every time you show the popup element. Use this strategy if the popup element shows data that can become stale or outdated. If you choose to set the popup
component's contentDelivery
attribute to lazy
or lazyUncached
, you can further optimize the performance of the popup
component and the page that hosts it by setting another popup
component attribute (childCreation
) to deferred
. This defers the creation of the popup
component's child components until the application delivers the content. The default value for the childCreation
attribute is immediate
.
Create a dialog when you need the dialog to raise events when dismissed. Once you add the dialog
component as a child to the popup
component, you can add other components to display and collect data.
By default, the dialog
component can have the following combination of buttons:
These buttons launch a dialogEvent
when clicked. You can add other buttons to a dialog using the buttonBar
facet. Any buttons that you add do not invoke the dialogEvent
. Instead, they invoke the standard actionEvent
. It is recommended that any of these buttons that you add have their partialSubmit
attribute set to true
. This makes sure that an actionEvent
invokes only on components within the dialog. However, you can add buttons and set their partialSubmit
attribute to false
if you set the af:popup
component's autoCancel
property's value to disabled
. Choosing this latter option (partialSubmit
set to false
) results in increased wait times for end users because your application reloads the page and reinitializes components on the page before it restores the popup
component's visibility (and by extension, the dialog
component). Note that you must set the command component's partialSubmit
attribute to true
if the af:popup
component's autoCancel
property's value is set to enabled
(the default value). For more information about the use of the af:popup
component's autoCancel
property, see Section 13.6, "Controlling the Automatic Cancellation of Inline Popups."
To create an inline dialog:
Tip: It does not matter where the |
Tip: Values of input components in a dialog are not reset when a user clicks the dialog's Cancel button. If the user opens the dialog a second time, those values will still display. If you want the values to match the current values on the server, then set the |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled"). You can override this setting by selecting false
. launcher
. launcher
if the popup is shared by multiple objects, for example if the dialog within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns data only for that row. For more information, see Section 13.2.5, "What Happens at Runtime: Popup Component Events." popup
component. For example, if you set the type
attribute to yesNoCancel
, the dialog will display Yes, No, and Cancel buttons. When any of these buttons are pressed, the dialog dismisses itself, and the associated outcome (either ok
, yes
, no
, or cancel
) is delivered with an event. Ok, yes, and no outcomes are delivered with the dialogEvent
. Cancel outcomes are sent with the PopupCanceled
event. You can use the appropriate listener property to bind to a method to handle the event, using the outcome to determine the logic.
Tip: A dialog will not dismiss if there are any ADF Faces messages with a severity of error or greater. |
off
. first
, the dialog stretches a single child component. However, the child component must allow stretching. For more information, see Section 8.2.1, "Geometry Management and Component Stretching." Note: If you set Resize to |
Instead of specifying separate button text and an access key, you can combine the two, so that the access key is part of the button text. Simply precede the letter to be used as an access key with an ampersand (&).
For example, if you want the text for the affirmative button to be OK, and you want the O in OK to be the access key, enter &OK
.
For example, suppose you create a dialog to confirm the deletion of an item. You might then create a method on a managed bean similar to the deleteItem
method shown in Example 13-1. This method accesses the outcome from the event. If the outcome is anything other than yes
, the dialog is dismissed. If the outcome is yes
(meaning the user wants to delete the item), the method then gets the selected item and deletes it.
Example 13-1 Handler for dialogEvent That Deletes an Item
Example 13-2 shows how the dialogListener
attribute is bound to the deleteItem
method.
Example 13-2 Binding the dialogListener attribute to a Method
The dialogEvent
is propagated to the server only when the outcome is ok
, yes
, or no
. You can block this if needed. For more information, see Section 5.3.5, "How to Prevent Events from Propagating to the Server.")
If the user instead clicks the Cancel button (or the Close icon), the outcome is cancel
, the popupCancel
client event is raised on the popup
component, and any other events (including the dialogEvent
) are prevented from getting to the server. However, the popupCancel
event is delivered to the server.
If you want to set a fixed size for the dialog, or if you have set resize to on
or set stretchChildren to first
, expand the Other section and set the following attributes:
Tip: While the user can change the values of these attributes at runtime (if the |
Note: If a command component without the |
buttonBar
facet. It is recommended that you set the partialSubmit
attribute to true
for every added command component. However, you can set the command component's partialSubmit
attribute to false
if the af:popup
component's autoCancel
property is set to disabled
. The values an af:popup
component's autoCancel
property and a command component partialSubmit
property determine how a command component dismisses and reloads a dialog. For more information, see Section 13.6, "Controlling the Automatic Cancellation of Inline Popups." Tip: If the facet is not visible in the visual editor:
|
By default, added command components do not dismiss the dialog. You need to bind the actionListener
on the command component to a handler that manages closing the dialog, as well as any needed processing. For examples on how to do this, see the tag documentation.
panelGroupLayout
to contain the components. Tip: Normally, clicking a dialog's Cancel button or Close icon prevents any data entered into an |
The panelWindow
component is similar to the dialog
component, but it does not allow you to configure the buttons or to add buttons to a facet. If you need some logic to be invoked to handle data in the panelWindow
, then you need to create a listener for the popup
component's cancel
event.
The popup
component that contains the panelWindow
component must be contained within a form
component.
Tip: If you are using the |
To create an inline window:
Tip: It does not matter where the |
Tip: Values of input components are not reset when a user closes the |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled"). You can override this setting by selecting false
. source
) for a variable. Similar to the var
attribute on a table, this variable is used to store reference in the Request scope to the component containing the showPopupBehavior
tag. The variable is reachable only during event delivery on the popup
or its child components, and only if EventContext is set to launcher
. launcher
if the popup is shared by multiple objects, for example if the window within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns data only for that row. For more information, see Section 13.2.5, "What Happens at Runtime: Popup Component Events." popup
component. off
. first
, the window stretches a single child component. However, the child component must allow stretching. For more information, see Section 8.2.1, "Geometry Management and Component Stretching." Note: If you set Resize to |
If you want to set a fix size for the window, or if you have set resize to on
or set stretchChildren to first
, expand the Other section and set the following attributes:
Tip: While the user can change the values of these attributes at runtime (if the |
Note: If a command component without the |
panelGroupLayout
to contain the components. You create a context menu by using menu components within the popup component. You can then invoke the context menu popup from another component, based on a given trigger. If instead, you want toolbar buttons in a toolbar to launch popup menus, then see Section 14.3, "Using Toolbars."
To create an inline context menu:
Tip: It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled"). You can override this setting by selecting false
. source
) to be used to reference the launch component. This variable is reachable only during event delivery on the popup
or its child components, and only if the EventContext is set to launcher
. launcher
if the popup is shared by multiple objects, for example if the menu within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns only data for that row. For more information, see Section 13.2.5, "What Happens at Runtime: Popup Component Events." popup
component, and build your menu using commandMenuItem
components, as documented starting with Step 6 in Section 14.2.1, "How to Create and Use Menus in a Menu Bar." Tip: Because this is a context menu, you do not need to create a menu bar or multiple menus, as documented in Steps 1 through 5 in Section 14.2.1, "How to Create and Use Menus in a Menu Bar." |
Use the noteWindow
component to display read-only text. The popup
component that contains the noteWindow
component must be contained within a form
component.
To create an inline window:
Tip: It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled"). You can override this setting by selecting false
. popup
or its child components, and only if the EventContext is set to launcher
. launcher
if the popup is shared by multiple objects, for example if the window within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns only data for that row. For more information, see Section 13.2.5, "What Happens at Runtime: Popup Component Events." popup
component. af:noteWindow
tag. af:noteWindow tag
, enter the text to display, using simple HTML tags, and ending with a closed af:noteWindow tag
. Example 13-3 shows text for a note window.
Example 13-3 Text Within an af:noteWindow Tag
Figure 13-3 shows how the note would display.
Note: The feature enabled by this property is not accessible friendly because a mouse over triggers the timeout cancellation period and there is no keyboard equivalent. |
When content is delivered to the popup, and the contentDelivery
attribute is set to either lazy
or lazyUncached
, the popupFetch
server-side event is invoked. This event has two properties, eventContext
and launcherVar
. The eventContext
property determines the context from which the event is delivered, either from the context of the popup (self
) or from the component that launched the popup (launcher
). Setting the context to launcher
can be very useful if the popup is shared by multiple components, because the framework will behave as though the component that launched the popup had launched the event, and not the popup. The launcherVar
property is used to keep track of the current launcher, similar to the way in which variables are used to stamp out rows in a table.
For example, say you have a column in a table that displays a person's first name using a command link. When the command link is hovered over, a popup noteWindow
is invoked that shows the person's full name. Because this noteWindow
will be used by all rows in the table, but it needs to display the full name only for the row containing the command link that was clicked, you need to use the eventContext
property to ensure that the context is that row, as shown in Example 13-4.
Example 13-4 Using eventContext for Shared Popup elements
Using the variable source, you can take values from the source and apply them, or you can set values. For example, you could get the full name value of the people
object used in the table, and set it as the value of the testBean's
fullName
property used by the window, using a setPropertyListener
and clientAttribute
tag, as shown in Example 13-5.
Example 13-5 Setting the Value of a Component in a Popup Using the launcherVar Property
In this example, the launcherVar
property source gets the full name for the current row using the popupFetch
event. For more information about using the setPropertyListener
tag, see Section 4.7.2, "How to Use the pageFlowScope Scope Without Writing Java Code." For more information about using client attributes, see Section 3.8, "Using Bonus Attributes for Client-Side Components." For more information about the showPopupBehavior
tag, see Section 13.4, "Invoking Popup Elements."
Popups also invoke the following client-side events:
popupOpening
: Fired when the popup is invoked. If this event is canceled in a client-side listener, the popup will not be shown. popupOpened
: Fired after the popup becomes visible. One example for using this event would be to create custom rules for overriding default focus within the popup. popupCanceled
: Fired when a popup is unexpectedly dismissed by auto-dismissal or by explicitly invoking the popup client component's cancel method. This client-side event also has a server-side counterpart. popupClosed
: Fired when the popup is hidden or when the popup is unexpectedly dismissed. This client-side event also has a server-side counterpart. When a popup is closed by an affirmative condition, for example, when the Yes button is clicked, it is hidden. When a popup is closed by auto-dismissal, for example when either the Close icon or the Cancel button is clicked, it is canceled. Both types of dismissals result in raising a popupClosed
client-side event. Canceling a popup also raises a client-side popupCanceled
event that has an associated server-side counterpart. The event will not be propagated to the server unless there are registered listeners for the event. If it is propagated, it prevents processing of any child components to the popup, meaning any submitted values and validation are ignored. You can create a listener for the popupCanceled
event that contains logic to handle any processing needed when the popup is canceled.
If you want to invoke some logic based on a client-side event, you can create a custom client listener method. For more information, see Section 3.2, "Listening for Client Events." If you want to invoke server-side logic based on a client event, you can add a serverListener
tag that will invoke that logic. For more information, see Section 5.4, "Sending Custom Events from the Client to the Server."
You can programmatically show, hide, or cancel a popup in response to an actionEvent
generated by a command component. Implement this functionality if you want to deliver the actionEvent
to the server immediately so you can invoke server-side logic and show, hide, or cancel the popup in response to the outcome of invoking the server-side logic.
Programmatically invoking a popup as described here differs to the method of invoking a popup described in Section 13.2, "Declaratively Creating Popup Elements" where the showPopupBehavior
tag does not deliver the actionEvent
to the server immediately.
You create the type of popup that you want by placing one of the components (dialog
, panelWindow
, menu
, or noteWindow
) inside the popup
component as described in Section 13.2, "Declaratively Creating Popup Elements." Make sure that the popup
component is in the right context when you invoke it. One of the easier ways to do this is to bind it to the backing bean for the page, as in Example 13-6.
Example 13-6 Binding a popup Component to a Backing Bean
Once you have done this, you configure a command component's actionListener
attribute to reference the popup
component by calling an accessor for the popup binding.
Write code for the backing bean method that invokes, cancels, or hides the popup. Example 13-7 shows a showPopup
backing bean method that uses the HINT_LAUNCH_ID
hint to identify the command component that passes the actionEvent
to it and p1
to reference the popup on which we invoke the show
method.
Example 13-7 Backing Bean Method Invoking a Popup
Example 13-8 shows a backing bean method that cancels a popup in response to an actionEvent
:
Example 13-8 Backing Bean Method Canceling a Popup
Example 13-9 shows a backing bean method that hides a popup
in response to an actionEvent
:
Example 13-9 Backing Bean Method Hiding a Popup
The p1
object in the previous examples refers to an instance of the RichPopup
class from the following package:
oracle.adf.view.rich.component.rich.RichPopup
For more information about RichPopup
, see the Oracle Fusion Middleware Java API Reference for Oracle ADF Faces.
You configure the command component's actionListener
attribute to reference the backing bean method that shows, cancels or hides the popup.
Before you begin:
Create the type of popup that you want the server-side method to invoke, as described in Section 13.2, "Declaratively Creating Popup Elements."
It may be helpful to have an understanding of the configuration options available to you if you want to invoke a popup component programmatically. For more information, see Section 13.3, "Programmatically Invoking a Popup."
To programmatically invoke a popup:
In the Component Palette, from the General Controls panel, drag and drop a command component onto the JSF page.
For example, a Button component.
true
if you do not want the Fusion web application to render the entire page after an end user clicks the command component. The default value (false
) causes the application to render the whole page after an end user invokes the command component. For more information about page rendering, see Chapter 7, "Rerendering Partial Page Content." actionEvent
. For more information, see Example 13-7, "Backing Bean Method Invoking a Popup", Example 13-8, "Backing Bean Method Canceling a Popup", or Example 13-9, "Backing Bean Method Hiding a Popup".
At runtime, end users can invoke the command components you configure to invoke the server-side methods to show, cancel, or hide a popup. For example, Figure 13-4 shows a panelWindow
component that renders inside a popup
component. It exposes two command buttons (Cancel and Hide) that invoke the cancel
and hide
methods respectively. End users invoke a commandLink
component rendered in the SupplierName column of the table
component in the underlying page to show the popup.
With ADF Faces rich client components, JavaScript is not needed to show or hide popups. The showPopupBehavior
client behavior tag provides a declarative solution, so that you do not have to write JavaScript to open the popup or register the script with the component. For more information about client behavior tags, see Section 5.6, "Using Client Behavior Tags."
The showPopupBehavior
tag listens for a specified event, for example the actionEvent
on a command component, or the disclosureEvent
on a showDetail
component. However, the showPopupBehavior
tag also cancels delivery of that event to the server. Therefore, if you need to invoke some server-side logic based on the event that the showPopupBehavior
tag is listening for, then you need to use either JavaScript to launch the popup, or to use a custom event as documented in Section 5.4, "Sending Custom Events from the Client to the Server."
You use the showPopupBehavior
tag in conjunction with the component that will invoke the popup element, for example a commandButton
component that will invoke a dialog, or an inputText
component that, when right-clicked, will invoke a context menu.
Before you begin:
To use the showPopupBehavior tag:
action
which can be used for command components. Use contextMenu
to trigger a popup when the right-mouse is clicked. Use mouseHover
to trigger a popup when the cursor is over the component. The popup closes when the cursor moves off the component. For a detailed list of component and mouse/keyboard events that can trigger the popup, see the showPopupBehavior
tag documentation. Note: The event selected for the |
Note: The Additionally, if the |
Example 13-10 shows sample code that displays some text in the af:popup
component with the id “popup1
" when the button "Click Me" is clicked.
Example 13-10 showPopupBehavior Associated with commandButton component
The code in Example 13-10 tells ADF Faces to align the popup contents with the commandButton
that is identified by the id
button, and to use the alignment position of afterEnd
, which aligns the popup element underneath the button, as shown in Figure 13-5.
There may be cases when you think the user may need more information to complete a task on a page, but you don't want to clutter the page with information that may not be needed each time the page is accessed, or with multiple buttons that might launch dialogs to display information. While you could put the information in a popup element that was launched with a right-click on a component, the user would have no way of knowing the information was available in a popup.
The contextInfo
component allows you to display additional information in a popup element and also notifies users that additional information is available. When you place the contextInfo
component into the context facet of a component that supports contextual information, a small orange square is shown in the upper left-hand corner of the component, as shown in Figure 13-6.
When the user places the cursor over the square, a larger triangle with a note icon and tooltip is displayed, indicating that additional information is available, as shown in Figure 13-7
Because a showPopupBehavior
tag is a child to the contextInfo
component, the referenced popup will display when the user clicks the information icon, as shown in Figure 13-8.
You use the showPopupBehavior
component as a child to the contextInfo
component, which allows the popup component to align with the component that contains the contextInfo
component.
Before you begin:
contextInfo
component. The following components support the contextInfo
component: column
commandLink
inputComboboxListOfValues
inputListOfValues
inputText
outputFormatted
outputText
selectOneChoice
To use a contextInfo component:
Context
facet of the component that is to display the additional information icons. Tip: If the facet is not visible in the visual editor:
|
contextInfo
component displays, bind the contextInfoListener
attribute to a handler that can handle the event. Note: If you use the |
contextInfo
component. showPopupBehavior
tag selected in the editor, in the Property Inspector, set the attributes as described in Section 13.4.1, "How to Use the af:showPopupBehavior Tag." For the triggerType value, be sure to enter contextInfo
. You can use the af:popup
component with a number of other components to create inline popups. That is, inline windows, dialogs, and context menus. These other components include the:
For more information, see Section 13.2.1, "How to Create a Dialog."
panelWindow
component to create an inline window For more information, see Section 13.2.2, "How to Create a Panel Window."
For more information, see Section 13.2.3, "How to Create a Context Menu."
noteWindow
component to create a note window For more information, see Section 13.2.4, "How to Create a Note Window."
By default, a Fusion web application automatically cancels an inline popup if the metadata that defines the inline popup is replaced. Scenarios where this happens include the following:
partialSubmit
property set to false
. The Fusion web application renders the entire page after it invokes such a command component. In contrast, a command component that has its partialSubmit
property set to true
causes the Fusion web application to render partial content. For more information about page rendering, see Chapter 7, "Rerendering Partial Page Content." popup
component. Examples include the showDetailItem
and panelTabbed
components. For more information about the use of components that render toggle icons, see Section 8.8, "Displaying and Hiding Contents Dynamically." You can change the default behavior described in the previous list by disabling the automatic cancellation of an inline popup component. This means that the Fusion web application does not automatically cancel the inline popup if any of the above events occur. Instead, the Fusion web applications restores the inline popup.
You disable the automatic cancellation of an inline popup by setting the popup
component's autoCancel
property to disabled
.
Before you begin:
It may be helpful to understand how other components can affect functionality. For more information, see Section 13.6, "Controlling the Automatic Cancellation of Inline Popups."
To control the automatic cancellation of inline popups:
af:popup
component for which you want to configure the automatic cancellation behavior and choose Go to Properties. JDeveloper sets the af:popup
component autoCancel
property's value to disabled
, as shown in Example 13-11:
Example 13-11 Metadata to Prevent the Automatic Cancellation of an Inline Popup
At runtime, the Fusion web application restores an inline popup after it rerenders a page if the inline popup displayed before invocation of the command to rerender the page.
This chapter describes how to create menu bars and toolbars that contain tool buttons.
For information about creating navigation menus, that is, menus that allow you to navigate through a hierarchy of pages, see Section 18.5, "Using Navigation Items for a Page Hierarchy."
This chapter includes the following sections:
Menus and toolbars allow users to choose from a specified list of options (in the case of a menu) or to click buttons (in the case of a toolbar) to effect some change to the application. The File Explorer application contains both a menu bar and a toolbar, as shown in Figure 14-1.
When a user chooses a menu item in the menu bar, the menu
component displays a list of menu items, as shown in Figure 14-2.
Note that as shown in Figure 14-3, menus can be nested.
Buttons in a toolbar also allow a user to invoke some sort of action on an application or to open a popup menu that behaves the same as a standard menu.
You can organize toolbars and menu bars using a toolbox. The toolbox gives you the ability to define relative sizes for the toolbars on the same line and to define several layers of toolbars and menu bars vertically.
Note: If you want to create menus and toolbars in a table, then follow the procedures in Section 10.8, "Displaying Table Menus, Toolbars, and Status Bars." If you want to create a context menu for a component (that is a menu that launches when a user right-clicks the component), follow the procedures in Section 13.2.3, "How to Create a Context Menu." |
Use the menuBar
component to render a bar that contains the menu bar items (such as File in the File Explorer application). Each item on a menu bar is rendered by a menu
component, which holds a vertical menu. Each vertical menu consists of a list of commandMenuItem
components that can invoke some operation on the application. You can nest menu components inside menu components to create submenus. The different components used to create a menu are shown in Figure 14-4.
You can use more than one menu bar by enclosing them in a toolbox. Enclosing them in a toolbox stacks the menu bars so that the first menu bar in the toolbox is displayed at the top, and the last menu bar is displayed at the bottom. When you use more than one menu bar in a single toolbox row (by having them grouped inside the toolbox), then the flex
attribute will determine which menu bar will take up the most space.
If you wish menu bars to be displayed next to each other (rather than being stacked), you can enclose them in a group
component.
Tip: You can also use the |
Within a menu bar, you can set one component to stretch so that the menu bar will always be the same size as its parent container. For example, in Figure 14-5, the menu bar is set to stretch a spacer component that is placed between the Disabled GMI menu and the Component Guide button. When the window is resized, that spacer component either stretches or shrinks so that the menu bar will always be the same width as the parent. Using a spacer component like this also ensures that any components to the right of the spacer will remain right-justified in the menu bar.
When a window is resized such that all the components within the menu bar can no longer be displayed, the menu bar displays an overflow icon, identified by the arrow cursor as shown in Figure 14-6.
Clicking that overflow icon displays the remaining components in a popup window, as shown in Figure 14-7.
Menus and submenus can be made to be detachable and to float on the browser window. Figure 14-8 shows the New submenu in the File menu configured to be detachable. The top of the menu is rendered with a bar to denote that it can be detached.
The user can drag the detachable menu to anywhere within the browser. When the mouse button is released, the menu stays on top of the application until the user closes it, as shown in Figure 14-9.
Tip: Consider using detachable menus when you expect users to:
|
The menu
and commandMenuItem
components can each include an icon image. Figure 14-10 shows the Delete menu item configured to display a delete icon.
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
You can configure commandMenuItem
components to be specific types that change how they are displayed when the menu item is chosen. For example, you can configure a commandMenuItem
component to display a checkmark or a radio button next to the label when the item is chosen. Figure 14-11 shows the View menu with the Folders menu item configured to use a checkmark when chosen. The Table, Tree Table, and List menu items are configured to be radio buttons, and allow the user to choose only one of the group.
You can also configure a commandMenuItem
component to have an antonym. Antonyms display different text when the user chooses a menu item. Figure 14-12 shows an Undo menu item in the Edit menu (added to the File Explorer application for this example).
By configuring the commandMenuItem
component for the Undo menu item to be an antonym and to have alternate text to display, when a user chooses Undo, the next time the user returns to the menu, the menu item will display the antonym Restore, as shown in Figure 14-13.
Because an action is expected when a user chooses a menu item, you must bind the action
or actionListener
attribute of the commandMenuItem
component to some method that will execute the needed functionality.
Along with commandMenuItem
components, a menu can also include one or more goMenuItem
components. These are navigation components similar to the goLink
component, in that they perform direct page navigation, without delivering an ActionEvent
event. Figure 14-14 shows three goMenuItem
components used to navigate to external web sites.
Aside from menus that are invoked from menu bars, you can also create context menus that are invoked when a user right-clicks a UI component, and popup menus that are invoked when a user clicks a command component. For more information, see Section 13.2.3, "How to Create a Context Menu."
Note: ADF Faces provides a button with built-in functionality that allows a user to view a printable version of the current page. Menus and menu bars do not render on these pages. For more information, see Section 5.6, "Using Client Behavior Tags.". |
By default, the contents of the menu are delivered immediately, as the page is rendered. If you plan on having a large number of children in a menu (multiple menu
and commandMenuItem
components), you can choose to configure the menu to use lazy content delivery. This means that the child components are not retrieved from the server until the menu is accessed.
Note: Content delivery for menus used as popup context menus is determined by the parent popup dialog, and not the menu itself. |
You can also create menus that mainly provide navigation throughout the application, and are not used to cause any change on a selected item in an application. To create this type of menu, see Section 18.6, "Using a Menu Model to Create a Page Hierarchy."
To create a menu, you first have to create a menu bar to hold the menus. You then add and configure menu
and commandMenuItem
components as needed.
Note: If you want to create menus in a table, follow the procedures outlined in Section 10.8, "Displaying Table Menus, Toolbars, and Status Bars." |
To create and use menus in a menu bar:
toolbox
component by dragging and dropping a Toolbox component from the Layout panel of the Component Palette. Tip: The |
toolbox
component, the Panel Menu Bar should be dropped as a direct child of the toolbox
component. Tip: Toolboxes also allow you to use the iterator, switcher, and group components as direct children, providing these components wrap child components that would usually be direct children of the toolbox. For more information about toolboxes, see Section 14.3, "Using Toolbars." |
flex
attribute to determine the relative sizes of each of the menu bars. The higher the number given for the flex
attribute, the longer the toolbox will be. For the set of menu bars shown in Example 14-5, menubar2
will be the longest, menubar4
will be the next longest, and because their flex
attributes are not set, the remaining menu bars will be the same size and shorter than menubar4
. Example 14-1 Flex Attribute Determines Length of Toolbars
Performance Tip: At runtime, when available browser space is less than the space needed to display the contents of the toolbox, ADF Faces automatically displays overflow icons that enable users to select and navigate to those items that are out of view. The number of child components within a |
Tip: You can use the |
For information about how the flex
attribute works, see Section 14.3.2, "What Happens at Runtime: Determining the Size of Menu Bars and Toolbars."
menu
components into the menu bar by dragging a Menu from the Component Palette, and dropping it as a child to the menuBar
component. You can also insert commandMenuItem
components directly into a menu bar by dragging and dropping a Menu Item. Doing so creates a commandMenuItem
component that renders similar to a toolbar button.
Tip: Menu bars also allow you to use the |
menu
component, expand the Appearance section in the Property Inspector and set the following attributes: textAndAccessKey
instead. &File
sets the menu label to File, and at the same time sets the menu access key to the letter F. For more information about access keys and the ampersand notation, see Section 22.3, "Specifying Component-Level Accessibility Properties." Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, this icon must only be used when the use is purely decorative. You must provide the meaning of this icon using another accessible manner. |
true
. At runtime, the user can drag the menu to detach it, and drop it anywhere on the screen (as shown in Figure 14-9). lazy
. Note: If you use lazy content delivery, any accelerators set on the child |
Note: If the menu will be used inside a popup dialog or window, leave ContentDelivery set to |
menu
component to create a commandMenuItem
component. Create a number of commandMenuItem
components to define the items in the vertical menu. If necessary, you can wrap the commandMenuItem
components within a group
component to display the items as a group. Example 14-2 shows simplified code for grouping the Folders and Search menu items in one group, the Table, Tree Table and List menu items in a second group, and the Refresh menu item by itself at the end.
Example 14-2 Grouping Menu Items
Figure 14-15 shows how the menu is displayed.
Tip: By default, only up to 14 items are displayed in the menu. If more than 14 items are added to a menu, the first 14 are displayed along with a scrollbar, which can be used to access the remaining items. If you wish to change the number of visible items, edit the |
You can also insert another menu
component into an existing menu
component to create a submenu (as shown in Figure 14-3).
Tip: Menus also allow you to use the iterator and switcher components as direct children, providing these components wrap child components that would usually be direct children of the menu. |
commandMenuItem
component, expand the Common section in the Property Inspector and set the following attributes: type
values: text
or textAndAccessKey
attribute (which is what is displayed when the menu item is not chosen). If you select this type, you must set a value for SelectedText. accessKey
attribute. true
to have this menu item appear to be chosen. The selected
attribute is supported for check-, radio-, and antonym-type menu items only. antonym
. Example 14-3 shows the Special menu with one group of menu items configured to use radio buttons and another group of menu items configured to show blue squares when chosen. The last group contains a menu item configured to be the antonym Open when it is first displayed, and then it toggles to Closed.
Example 14-3 Using the Type Attribute in a commandMenuItem Component
Figure 14-16 shows how the menu will be displayed when it is first accessed.
Note: By default, ADF Faces components use the FusionFX skin, which displays the check type as a square. You can change this by creating your own skin. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins." |
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, this icon must only be used when the use is purely decorative. You must provide the meaning of this icon using another accessible manner. |
Control O
. ADF Faces converts the keystroke and displays a text version of the keystroke (for example, Ctrl+O) next to the menu item label, as shown in Figure 14-3. Note: If you choose to use lazy content delivery, any accelerators set on the child |
&Save
sets the menu item label to Save, and at the same time sets the menu item access key to the letter S
. For more information about access keys and the ampersand notation, see Section 22.3, "Specifying Component-Level Accessibility Properties." java.lang.Object
object. If you want to cause navigation in response to the action generated by commandMenuItem
component, instead of entering an EL expression, enter a static action outcome value as the value for the action
attribute. You then must either set the partialSubmit
attribute to false
, or use a redirect. For more information about configuring navigation in your application, see Section 2.3, "Defining Page Flows."
action
attribute, allowing the action
attribute to handle navigation only. The expression must evaluate to a public method that takes an ActionEvent
parameter, with a return type of void
. Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, this icon must only be used when the use is purely decorative. You must provide the meaning of this icon using another accessible manner. |
_blank
: The link opens the document in a new window. _parent
: The link opens the document in the window of the parent. For example, if the link appeared in a dialog, the resulting page would render in the parent window. _self
: The link opens the document in the same page or region. _top
: The link opens the document in a full window, replacing the entire page. Tip: Instead, you can use the |
You can also use the stretchId
attribute to justify components to the left and right by inserting a spacer
component, and setting that component ID as the stretchId
for the menu bar, as shown in Example 14-7.
Example 14-4 Using a Spacer to Justify menuBar Components
Along with menus, you can create toolbars in your application that contain toolbar buttons used to initiate some operation in the application. The buttons can display text, an icon, or a combination of both. Toolbar buttons can also open menus in a popup window. Along with toolbar buttons, other UI components, such as dropdown lists, can be displayed in toolbars. Figure 14-17 shows the toolbar from the File Explorer application.
Tip: Toolbars can also include command buttons and command links (including the |
The toolbar component can contain many different types of components, such as inputText
components, LOV components, selection list components, and command components. ADF Faces also includes a commandToolbarButton
component that has a popup
facet, allowing you to provide popup menus from a toolbar button. You can configure your toolbar button so that it only opens the popup dialog and does not fire an action event. As with menus, you can group related toolbar buttons on the toolbar using the group
component.
You can use more than one toolbar by enclosing them in a toolbox. Enclosing toolbars in a toolbox stacks them so that the first toolbar on the page is displayed at the top, and the last toolbar is displayed on the bottom. For example, in the File Explorer application, the currently selected folder name is displayed in the Current Location toolbar, as shown in Figure 14-17. When you use more than one toolbar, you can set the flex
attribute on the toolbars to determine which toolbar should take up the most space. In this case, the Current Location toolbar is set to be the longest.
If you wish toolbars to be displayed next to each other (rather than stacked), you can enclose them in a group
component.
Tip: You can also use the |
Within a toolbar, you can set one component to stretch so that the toolbar will always be the same size as its parent container. For example, in the File Explorer application, the lower toolbar that displays the current location contains the component that shows the selected folder. This component is set to stretch so that when the window is resized, that component and the toolbar will always be the same width as the parent. However, because no component in the top toolbar is set to stretch, it does not change size when the window is resized. When a window is resized such that all the components within the toolbar can no longer be displayed, the toolbar displays an overflow icon, identified by an arrow cursor in the upper right-hand corner, as shown in Figure 14-18.
Clicking that overflow icon displays the remaining components in a popup window, as shown in Figure 14-19.
When you expect overflow to occur in your toolbar, it is best to wrap it in a toolbox that has special layout logic to help in the overflow.
If you are going to use more than one toolbar
component on a page, or if you plan to use menu bars with toolbars, you first create the toolbox
component to hold them. You then create the toolbars, and last, you create the toolbar buttons.
Tip: If you encounter layout issues with single toolbars or menu bars, consider wrapping them in a toolbox component, because this component can handle overflow and layout issues. |
To create and use toolbars:
toolbox
component by dragging and dropping a Toolbox component from the Layout panel of the Component Palette. Tip: The |
toolbox
component, the Toolbar should be dropped as a direct child of the toolbox
component. Tip: Toolboxes also allow you to use the iterator, switcher, and group components as direct children, providing these components wrap child components that would usually be direct children of the toolbox. |
flex
attributes to determine the relative sizes of each of the toolbars. The higher the number given for the flex
attribute, the longer the toolbox will be. For the set of toolbars shown in Example 14-5, toolbar2
will be the longest, toolbar4
will be the next longest, and because their flex
attributes are not set, the remaining toolbars will be the same size and shorter than toolbar4
. Example 14-5 Flex Attribute Determines Length of Toolbars
Performance Tip: At runtime, when available browser space is less than the space needed to display the contents of the toolbox, ADF Faces automatically displays overflow icons that enable users to select and navigate to those items that are out of view. The number of child components within a |
Tip: You can use the |
For information about how the flex
attribute works, see Section 14.3.2, "What Happens at Runtime: Determining the Size of Menu Bars and Toolbars."
commandToolbarButton
drag a ToolbarButton from the Component Palette and drop it as a direct child of the toolbar
component. Tip: You can use the Toolbars also allow you to use the iterator and switcher components as direct children, providing these components wrap child components that would usually be direct children of the toolbar. |
Tip: You can place other components, such as command buttons and links, input components, and select components in a toolbar. However, they may not have the capability to stretch. For details about stretching the toolbar, see Step 9. |
Tip: If you plan to support changing the |
commandToolbarButton
component, expand the Common section of the Property Inspector and set the following attributes: type
values: depressedIcon
value if selected or to the default icon
value if not selected. Note: When setting the type to |
true
to have this toolbar button appear as selected. The selected
attribute is supported for checkmark- and radio-type toolbar buttons only. Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, this icon must only be used when the use is purely decorative. You must provide the meaning of this icon using another accessible manner. |
java.lang.Object
object. If you want to cause navigation in response to the action generated by the button, instead of entering an EL expression, enter a static action outcome value as the value for the action
attribute. You then must set either partialSubmit
to false
, or use a redirect. For more information about configuring navigation, see Section 2.3, "Defining Page Flows."
action
attribute, allowing the action
attribute to handle navigation only. The expression must evaluate to a public method that takes an ActionEvent
parameter, with a return type of void
. none
if you do not want to fire an action event when the button is clicked. This is useful if you want the button to simply open a popup window. If set to none
, you must have a popup
component in the popup
facet of the toolbar button (see Step 8), and you cannot have any value set for the action
or actionListener
attributes. Set to clientServer
attribute if you want the button to fire an action event as a standard command component To have a toolbar button invoke a popup menu, insert a menu
component into the popup
facet of the commandToolbarButton
component. For information, see Section 14.2.1, "How to Create and Use Menus in a Menu Bar."
If you want a toolbar to stretch so that it equals the width of the containing parent component, set stretchId to be the ID of the component within the toolbar that should be stretched. This one component will stretch, while the rest of the components in the toolbar remain a static size.
For example, in the File Explorer application, the inputText
component that displays the selected folder's name is the one that should stretch, while the outputText
component that displays the words "Current Folder" remains a static size, as shown in Example 14-6.
Example 14-6 Using the stretchId Attribute
You can also use the stretchId
attribute to justify components to the left and right by inserting a spacer
component, and setting that component ID as the stretchId
for the toolbar, as shown in Example 14-7.
Example 14-7 Using a Spacer to Justify Toolbar Components
When a page with a menu bar or toolbar is first displayed or resized, the space needed for each bar is based on the value of the bar's flex
attribute. The percentage of size allocated to each bar is determined by dividing its flex
attribute value by the sum of all the flex
attribute values. For example, say you have three toolbars in a toolbox, and those toolbars are grouped together to display on the same line. The first toolbar is given a flex
attribute value of 1
, the second toolbar also has a flex
attribute value of 1,
and the third has a flex
attribute value of 2
, giving a total of 4
for all flex
attribute values. In this example, the toolbars would have the following allocation percentages:
Once the allocation for the bars is determined, and the size set accordingly, each element within the toolbars are placed left to right. Any components that do not fit are placed into the overflow list for the bar, keeping the same order as they would have if displayed, but from top to bottom instead of left to right.
Note: If the application is configured to read right to left, the toolbars will be placed right to left. For more information, see Section A.6.2.6, "Language Reading Direction." |
Toolbars are supported and rendered by parent components such as panelHeader
, showDetailHeader
, and showDetailItem
, which have a toolbar
facet for adding toolbars and toolbar buttons to section headers and accordion panel headers.
Note the following points about toolbars at runtime:
This chapter describes how to use the ADF Faces calendar
component to create a calendar application.
This chapter includes the following sections:
ADF Faces includes a calendar component that by default displays created activities in daily, weekly, monthly, or list views for a given provider or providers (a provider is the owner of an activity). Figure 15-1 shows an ADF Faces calendar in weekly view mode with some sample activities.
You can configure the calendar so that it only displays a subset of those views. For example, you may not want your calendar to use the month
and list
views. You can configure it so that only the day and week views are available, as shown in Figure 15-2. Because only day and week views are available, those are the only buttons displayed in the toolbar.
By default, the calendar displays dates and times based on the locale set in the trinidad-config.xml
file (for example, Section A.6, "Configuration in trinidad-config.xml"). If a locale is not set in that file, then it is based on the locale sent by the browser. For example, in the United States, by default, the start day of the week is Sunday, and 2 p.m. is shown as 2:00 PM. In France, the default start day is Monday, and 2 p.m. is shown as 14:00. The time zone for the calendar is also based on the setting in trinidad-config.xml
. You can override the default when you configure the calendar. For more information, see Section 15.3, "Configuring the Calendar Component."
The calendar uses the CalendarModel
class to display the activities for a given time period. You must create your own implementation of the model class for your calendar. If your application uses the Fusion technology stack, then you can create ADF Business Components over your data source that represents the activities, and the model will be created for you. You can then declaratively create the calendar, and it will automatically be bound to that model. For more information, see the "Using the ADF Faces Calendar Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If your application does not use the Fusion technology stack, then you create your own implementation of the CalendarModel
class and the associated CalendarActivity
and CalendarProvider
classes. The classes are abstract classes with abstract methods. You must provide the functionality behind the methods, suitable for your implementation of the calendar. For more information, see Section 15.2, "Creating the Calendar."
The calendar includes a toolbar with built-in functionality that allows a user to change the view (between daily, weekly, monthly, or list), go to the previous or next day, week, or month, and return to today. The toolbar is fully customizable. You can choose which buttons and text to display, and you can also add buttons or other components. For more information, see Section 15.5, "Customizing the Toolbar."
Tip: When these toolbar buttons are used, attribute values on the calendar are changed. You can configure these values to be persisted so that they remain for the user during the duration of the session. For more information, see Chapter 31, "Allowing User Customization on JSF Pages." You can also configure your application so that the values will be persisted and used each time the user logs into the system. For this persistence to take place, your application must use the Fusion technology stack. For more information, see the "Allowing User Customizations at Runtime" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The calendar component displays activities based on those activities and the provider returned by the CalendarModel
class. By default, the calendar component is read-only. That is, it can display only those activities that are returned. You can add functionality within supported facets of the calendar so that users can edit, create, and delete activities. When certain events are invoked, popup components placed in these corresponding facets are opened, which can allow the user to act on activities or the calendar.
For example, when a user clicks on an activity in the calendar, the CalendarActivityEvent
is invoked and the popup component in the ActivityDetail
facet is opened. You might use a dialog component that contains a form where users can view and edit the activity, as shown in Figure 15-3.
For more information about implementing additional functionality using events, facets, and popup components, see Section 15.4, "Adding Functionality Using Popup Components."
The calendar component supports the ADF Faces drag and drop architectural feature. Users can drag activities to different areas of the calendar, executing either a copy or a move operation, and can also drag handles on the activity to change the duration of the activity. For more information about adding drag and drop functionality, see Section 32.7, "Adding Drag and Drop Functionality to a Calendar."
By default, the calendar displays activities using a blue ramp. Color ramps are groups of colors all based on the same hue, for example, blue. In the default calendar, for a short-duration activity shown in the daily view, the time of an activity is shown with a dark blue background, while the title of the activity is shown with a light blue background, as shown in Figure 15-1. You can customize how the activities are displayed by changing the color ramp.
Each activity is associated with a provider, that is, an owner. If you implement your calendar so that it can display activities from more than one provider, you can also style those activities so that each provider's activity shows in a different color, as shown in Figure 15-4.
Before you can add a calendar component to a page, you must implement the logic required by the calendar in Java classes that extend ADF Faces calendar abstract classes. For an ADF Faces application, create the classes as managed beans. After you create the classes, you can add the calendar to a page.
Note: If your application uses the Fusion technology stack, implement the calendar classes using ADF Business Components. This will allow you to declaratively create and bind your calendar component. For more information, see the "Using the ADF Faces Calendar Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Before you implement your logic, it helps to have an understanding of the CalendarModel
and CalendarActivity
classes, as described in the following section.
The calendar component must be bound to an implementation of the CalendarModel
class. The CalendarModel
class contains the data for the calendar. This class is responsible for returning a collection of calendar activities, given the following set of parameters:
CalendarModel
class such that the calendar can return just the activities associated with the owner currently in session, or it can also return other owners' activities. A calendar activity represents an object on the calendar, and usually spans a certain period of time. The CalendarActivity
class is an abstract class whose methods you can implement to return information about the specific activities.
Activities can be recurring, have associated reminders, and be of a specific time type (for example, hour or minute). Activities can also have start and end dates, a location, a title, and a tag.
The CalendarProvider
class represents the owner of an activity. A provider can be either enabled or disabled for a calendar.
Create your own implementations of the CalendarModel
and CalendarActivity
classes and implement the abstract methods to provide the logic.
To create the calendar model classes:
oracle.adf.view.rich.model.CalendarModel
class. For more information about the CalendarModel
class, see the ADF Faces Javadoc
.
oracle.adfdemo.view.calendar.rich.model.DemoCalendarBean
managed bean in the ADF Faces demo application (for more information about the demo application, see Section 1.4, "ADF Faces Demonstration Application"). For more information about creating managed beans, see Section 2.6, "Creating and Using Managed Beans."
oracle.adf.view.rich.model.CalendarActivity
class. oracle.adfdemo.view.calendar.rich.model.DemoCalendarActivity
managed bean in the ADF Faces demo application. Tip: If you want to style individual instances of an activity (for example, if you want each provider's activities to be displayed in a different color), then the |
oracle.adf.view.rich.model.CalendarProvider
class. To create the calendar component:
Tip: The |
CalendarModel
class. Configure the many display attributes for the calendar, for example, the day that a week starts, and the time displayed at the beginning of a day.
You configure the calendar using the Property Inspector.
To configure a calendar:
calendar
component selected, expand the Common section of the Property Inspector, and set the following: day
, list
, month
, or week
) that should be the default when the calendar is displayed. Users change this value when they click the corresponding button in the calendar's toolbar. sun
mon
tue
wed
thu
fri
sat
day
or week
view) starts the day at 12:01 a.m., the calendar will automatically scroll to the startHour
value, so that it is displayed at the top of the view. The user can always scroll above that time to view activities that start before the startHour
value. list
view to display activities. Valid values are: day
: Shows activities only for the active day. dayCount
: Shows a number of days including the active day and after, based on the value of the listCount
attribute. month
: Shows all the activities for the month to which the active day belongs. week
: Shows all the activities for the week to which the active day belongs listType
attribute is set to dayCount
). Figure 15-5 shows a calendar in list view with the listType
set to dayCount
and the listCount
value set to 7
.
Note that when the user selects another day, this becomes the value for the activeDay
attribute. For example, when the user first accesses the calendar, the current date, February 6, 2009 is the active day. The month view will show February. If the user uses the next button to scroll to the next month, the active date will become March 6, 2009.
AdfFacesContext
. The valid value is a java.util.TimeZone
object. month
week
day
list
all
If you want to enter more than one value, enter the values with a space between. For example, if you want the calendar to use day and week views, you would enter the following:
Note: If |
The corresponding buttons will automatically be displayed in the toolbar, in the order they appear in the list.
If you do not enter day
as an available view, then activities will be listed as plain text rather than as links in the list
and week
views (provided you do not also enter all
).
Note: In order to handle an overflow of tasks for a given day in the |
CalendarActivityDurationChangeListener
. This handler should include functionality that changes the end time of the activity. If you want the user to be able to move the activity (and, therefore, change the start time as well as the end time), then implement drag and drop functionality. For more information, see Section 32.7, "Adding Drag and Drop Functionality to a Calendar." You can now add the following functionality:
The calendar has two events that are used in conjunction with facets to provide a way to easily implement additional functionality needed in a calendar, such as editing or adding activities. These two events are CalendarActivityEvent
(invoked when an action occurs on an activity) and CalendarEvent
(invoked when an action occurs on the calendar, itself). For more information about using these events to provide additional functionality, see Section 15.4, "Adding Functionality Using Popup Components."
The calendar also supports events that are fired when certain changes occur. The CalendarActivityDurationChangeEvent
is fired when the user changes the duration of an activity by dragging the box that displays the activity. The CalendarDisplayChangeEvent
is fired whenever the component changes the value of a display attribute, for example when the view
attribute changes from month
to day
.
When a CalendarDisplayChangeEvent
is fired, the calendar component adds itself as a partial page rendering (PPR) target, allowing the calendar to be immediately refreshed. This is because the calendar assumes that if the display changed programatically, then the calendar must need to be rerendered. For example, if a user changes the view
attribute from day
to month
, then the calendar is rerendered automatically.
When a user acts upon an activity, a CalendarActivityEvent
is fired. This event causes the popup component contained in a facet to be displayed, based on the user's action. For example, if the user right-clicks an activity, the CalendarActivityEvent
causes the popup component in the activityContextMenu
to be displayed. The event is also delivered to the server, where a configured listener can act upon the event. You create the popup components for the facets (or if you do not want to use a popup component, implement the server-side listener). It is in these popup components and facets where you can implement functionality that will allow users to create, delete, and edit activities, as well as to configure their instances of the calendar.
Table 15-1 shows the different user actions that invoke events, the event that is invoked, and the associated facet that will display its contents when the event is invoked. The table also shows the component you must use within the popup component. You create the popup and the associated component within the facet, along with any functionality implemented in the handler for the associated listener. If you do not insert a popup component into any of the facets in the table, then the associated event will be delivered to the server, where you can act on it accordingly by implementing handlers for the events.
Table 15-1 Calendar Faces Events and Associated Facets
User Action | Event | Associated Facet | Component to Use in Popup |
---|---|---|---|
Right-click an activity. |
|
|
|
Select an activity and press the Delete key. |
|
|
|
Click or double-click an activity, or select an activity and press the Enter key. |
|
|
|
Hover over an activity. |
|
|
|
Right-click the calendar (not an activity or the toolbar). |
|
|
|
Click or double-click any free space in the calendar (not an activity). |
|
|
|
To add functionality, create the popups and associated components in the associated facets.
To add functionality using popup components:
activityDelete
facet. To add a popup component, right-click the facet in the Structure window and choose Insert inside facetName > ComponentName.
For more information about creating popup components, see Chapter 13, "Using Popup Dialogs, Menus, and Windows."
Example 15-1 shows the JSF code for a dialog popup component used in the activityDelete
facet.
Example 15-1 JSF Code for an Activity Delete Dialog
Figure 15-7 shows how the dialog is displayed when a user clicks an activity and presses the Delete key.
calendarActivityListener
. For example, if you are implementing a dialog for the activityDeleteFacet
, then implement logic in the calendarActivityListener
that can save-off the current activity so that when you implement the logic in the dialog listener (in the next step), you will know which activity to delete. Example 15-2 shows the calendarActivityListener
for the calendar.jspx page in the ADF Faces demo application. Example 15-2 calendarActivityLIstener Handler
dialogListener
that actually deletes the activity when the dialog is dismissed. For more information about creating dialogs and other popup components, see Chapter 13, "Using Popup Dialogs, Menus, and Windows." By default, the toolbar in the calendar allows the user to change the view between day, week, month, and list, go to the next or previous item in the view, go to the present day, and also displays a text description of the current view, for example in the day view, it displays the active date, as shown in Figure 15-8.
Figure 15-9 shows a toolbar that has been customized. It has added toolbar buttons, including buttons that are right-aligned on the top toolbar, and buttons in a second toolbar.
Place the toolbar and toolbar buttons you want to add in custom facets that you create. Then, reference the facet (or facets) from an attribute on the toolbar, along with keywords that determine how or where the contained items should be displayed.
To customize the toolbar:
facet
tags. Ensure that each facet has a unique name for the page. Tip: To ensure that there will be no conflicts with future releases of ADF Faces, start all your facet names with |
toolboxLayout
attribute, choose Edit. all
: Displays all the toolbar buttons and text in the default toolbar dates
: Displays only the previous, next, and today buttons range
: Displays only the string showing the current date range views
: Displays only the buttons that allows the user to change the view Note: If you use the |
For example, if you created two facets named customToolbar1
and customToolbar2
, and you wanted the complete default toolbar to appear in between your custom toolbars, the value of the toolboxLayout
attribute would be the following list items:
You can also determine the layout of the toolbars using the following keywords:
newline
: Places the toolbar in the next named facet (or the next keyword from the list in the toolboxLayout
attribute) on a new line. For example, if you wanted the toolbar in the customToolbar2
facet to appear on a new line, the list would be: If instead, you did not want to use all of the default toolbar, but only the views and dates sections, and you wanted those to each appear on a new line, the list would be:
stretch
: Adds a spacer component that stretches to fill up all available space so that the next named facet (or next keyword from the default toolbar) is displayed as right-aligned in the toolbar. Example 15-3 shows the value of the toolboxLayout
attribute for the toolbar displayed in Figure 15-9, along with the toolbar placed in the customToolbarAlign
facet. Note that the toolbar buttons displayed in the customToolbarBold
facet are right-aligned in the toolbar because the keyword stretch
is named before the facet. Example 15-3 Value for Custom Toolbar
Like other ADF Faces components, the calendar component can be styled as described in Chapter 20, "Customizing the Appearance Using Styles and Skins." However, along with standard styling procedures, the calendar component has specific attributes that make styling instances of a calendar easier. These attributes are:
activityStyles
: Allows you to individually style each activity instance. For example, you may want to show activities belonging to different providers in different colors. dateCustomizer
: Allows you to display strings other than the calendar date for the day in the month view. For example, you may want to display countdown or countup type numbers, as shown in Figure 15-10. This attribute also allows you to add strings to the blank portion of the header for a day. The activityStyles
attribute uses InstanceStyles
objects to style specific instances of an activity. The InstanceStyles
class is a way to provide per-instance inline styles based on skinning keys.
The most common usage of the activityStyles
attribute is to display activities belonging to a specific provider using a specific color. For example, the calendar shown in Figure 15-11 shows activities belonging to three different providers. The user can change that color used to represent a provider's activities in the left panel. The activityStyles
attribute is used to determine the color displayed for each activity, based on the provider with which it is associated.
Note that instead of using a single color, a range of a color is used in the calendar. This is called a color ramp. A color ramp is a set of colors in a color family to represent the different states of activities. For example, T.F.'s activities use the Blue ramp. Activities whose time span is within one day are displayed in medium blue text. Activities that span across multiple days are shown in a medium blue box with white text. Darker blue is the background for the start time, while lighter blue is the background for the title. These three different blues are all part of the Blue color ramp.
The CalendarActivityRamp
class is a subclass of InstanceStyles
, and can take a representative color (for example, the blue chosen for T.F.'s activities) and return the correct color ramp to be used to display each activity in the calendar.
The activityStyles
attribute must be bound to a map
object. The map key is the set returned from the getTags
method on an activity. The map value is an InstanceStyles
object, most likely an instance of CalendarActivityRamp
. This InstanceStyles
object will take in skinning keys, and for each activity, styles will be returned.
To style activities:
CalendarActivity
class, have the getTags
method return a string set that will be used by the activityStyles
attribute to map the returned string to a specific style. For example, to use the different color ramps for the different providers shown in Figure 15-11, you must return a string for each provider. In this case, an activity belonging to the current user might return Me
, an activity belonging to L.E. might return LE
, and an activity belonging to T.F. might return TF
. For more information about implementing the CalendarActivity
class, see Section 15.2.2, "How to Create a Calendar." getTags
method, and whose value is an InstanceStyles
object (for example, a CalendarActivityRamp
instance). For example, to use the different color ramps shown in Figure 15-11, you would create a map using the values shown in Table 15-2.
Table 15-2 Map for activityStyles Attribute
Key (String Set) | Value (InstanceStyles Object) |
---|---|
|
|
|
|
|
|
activityStyles
attribute to the map. During calendar rendering for each activity, the renderer calls the CalendarActivity.getTags
method to get a string set. The string set is then passed to the map bound to the activityStyles
attribute, and an InstanceStyles
object is returned (which may be a CalendarActivityRamp
).
Using the example:
{"Me"}
is passed in, the red CalendarActivityRamp
is returned. {"LE"}
is passed in, the orange CalendarActivityRamp
is returned. {"TF"}
is passed in, the blue CalendarActivityRamp
is returned. If you want to display something other than the date number string in the day header of the monthly view, you can bind the dateCustomizer
attribute to an implementation of a DateCustomizer
class that determines what should be displayed for the date.
To customize the date string:
oracle.adf.view.rich.util.DateCustomizer
class. This subclass should determine what to display using the following skinning keys: af|calendar::month-grid-cell-header-misc
: Determines what to display in the left side of the header for a day in the month view. af|calendar::month-grid-cell-header-day-link
: Determines the string to display for the date. Example 15-4 shows the DemoDateCustomizer
class that displays the week number in the first day of the week, and instead of the day of the month, a countdown number to a specific date, as shown in Figure 15-10.
Example 15-4 Date Customizer Class
DateCustomizer
class, for example: dateCustomizer
attribute to the DateCustomizer
instance created in the managed bean. This chapter describes how to display output text, images, and icons using ADF Faces components, and how to use components that allow users to play video and audio clips.
This chapter includes the following sections:
ADF Faces provides components for displaying text, icons, and images, and for playing audio and video clips on JSF pages.
Read-only text can be displayed using the outputText
or outputFormatted
components. The outputFormatted
component enables you to add a limited set of HTML markup to the value of the component, allowing for some very simple formatting to the text.
Many ADF Faces components can have icons associated with them. For example, in a menu, each of the menu items can have an associated icon. You identify the image to use for each one as the value of an icon
attribute for the menu item component itself. Information and instructions for adding icons to components that support them are covered in those components' chapters. In addition to providing icons within components, ADF Faces also provides icons used when displaying messages. You can use these icons outside of messages as well.
To display an image on a page, you use the image
component. Images can also be used as links (including image maps) or to depict the status of the server. You can display a collection of images in a carousel, which allows the users to spin through the collection to view each image.
The media
component can play back an audio clip or a video clip. These components have attributes so that you can define how the item is to be presented on the page.
There are two ADF Faces components specifically for displaying output text on pages: outputText
, which displays unformatted text, and outputFormatted
, which displays text and can include a limited range of formatting options.
To display simple text specified either explicitly or from a resource bundle or bean, you use the outputText
component. You define the text to be displayed as the value of the value
property. For example:
Example 16-1 shows two outputText
components: the first specifies the text to be displayed explicitly, and the second takes the text from a managed bean and converts the value to a text value ready to be displayed (for more information about conversion, see Section 6.3, "Adding Conversion").
Example 16-1 Output Text
You can use the escape
attribute to specify whether or not special HTML and XML characters are escaped for the current markup language. By default, characters are escaped.
Example 16-2 illustrates two outputText
components, the first of which uses the default value of true
for the escape
attribute, and the second of which has the attribute set to false
.
Example 16-2 Output Text With and Without the escape Property Set
Figure 16-1 shows the different effects seen in a browser of the two different settings of the escape
attribute.
You should avoid setting the escape
attribute to false
unless absolutely necessary. A better choice is to use the outputFormatted
component, which allows a limited number of HTML tags.
As with the outputText
component, the outputFormatted
component also displays the text specified for the value
property, but the value can contain HTML tags. Use the formatting features of the outputFormatted
component specifically when you want to format only parts of the value in a certain way. If you want to use the same styling for the whole component value, instead of using HTML within the value, apply a style to the whole component. If you want all instances of a component to be formatted a certain way, then you should create a custom skin. For more information about using inline styles and creating skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
Example 16-3 shows an outputFormatted
component displaying only a few words of its value in bold.
Example 16-3 Using outputFormatted to Bold Some Text
Figure 16-2 shows how the component displays the text.
Before displaying any output text, decide whether or not any parts of the value must be formatted in a special way.
To display output text:
outputFormatted
component, drag and drop an Output Formatted from the Component Palette. Tip: If parts of the value require special formatting, use an |
Tip: If you plan to support changing the text of the component through active data (for example, data being pushed from the data source will determine the text that is displayed), then you should use the |
outputFormatted
component, use HTML formatting codes to format the text as needed, as described in Table 16-1 and Table 16-2. The outputFormatted
component also supports the styleUsage
attribute whose values are the following predefined styles for the text:
inContextBranding
instruction
pageStamp
Figure 16-3 shows how the styleUsage
values apply styles to the component.
Note: If the |
Only certain formatting and character codes can be used. Table 16-1 lists the formatting codes allowed for formatting values in the outputFormatted
component.
Table 16-1 Formatting Codes for Use in af:outputFormatted Values
Formatting Code | Effect |
---|---|
| Line break |
| Horizontal rule |
| Lists: ordered list, unordered list, and list item |
| Paragraph |
| Bold |
| Italic |
| Teletype or monospaced |
| Larger font |
| Smaller font |
| Preformatted: layout defined by whitespace and line break characters preserved |
| Span the enclosed text |
| Anchor |
Table 16-2 lists the character codes for displaying special characters in the values.
Table 16-2 Character Codes for Use in af:outputFormatted Values
Character Code | Character |
---|---|
| Less than |
| Greater than |
| Ampersand |
| Registered |
| Copyright |
| Nonbreaking space |
| Double quotation marks |
The attributes class
, style
, and size
can also be used in the value
attribute of the outputFormatted
component, as can href
constructions. All other HTML tags are ignored.
Note: For security reasons, JavaScript is not supported in output values. |
ADF Faces provides a set of icons used with message components, shown in Figure 16-4.
If you want to display icons outside of a message component, you use the icon
component and provide the name of the icon type you want to display.
Note: The images used for the icons are determined by the skin the application uses. If you want to change the image, create a custom skin. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins." |
When you use messages in an ADF Faces application, the icons are automatically added for you. You do not have to add them to the message component. However, you can use the icons outside of a message component. To display one of the standard icons defined in the skin for your application, you use the icon
component.
To display a standard icon:
error
. To display an image on a page, you use the image
component and set the source
attribute to the URI where the file is located. The image
component also supports accessibility description text by providing a way to link to a long description of the image.
The image
component can also be used as a link and can include an image map, however, it must be placed inside a goLink
component. For more information, see Section 16.5, "Using Images as Links."
To display an image:
Tip: If you plan to support changing the |
ADF Faces provides the commandImageLink
component that renders an image as a link, along with optional text. You can set different icons for when the user hovers the mouse over the icon, and for when the icon is depressed or disabled. For more information about the commandImageLink
component, see Section 18.2, "Using Buttons and Links for Navigation."
If you simply want an image to be used to navigate to a given URI, you can enclose the image in the goLink
component and then, if needed, link to an image map.
You can use an image as a goLink
component to one or more destinations. If you want to use an image as a simple link to a single destination, use a goLink
component to enclose your image, and set the destination
attribute of the goLink
component to the URI of the destination for the link.
If your image is being used as a graphical navigation menu, with different areas of the graphic navigating to different URIs, enclose the image
component in a goLink
component and create a server-side image map for the image.
To use an image as one or more goLink components:
goLink
component. You can display images in a revolving carousel, as shown in Figure 16-5. Users can change the image at the front either by using the slider at the bottom or by clicking one of the auxiliary images to bring that specific image to the front.
By default, the carousel is displayed horizontally. The objects within the horizontal orientation of the carousel are vertically aligned to the middle and the carousel itself is horizontally aligned to the center of its container.
You can configure the carousel so that it can be displayed vertically, as you might want for a reference card file. By default, the objects within the vertical orientation of the carousel are horizontally aligned to the center and the carousel itself is vertically aligned to the middle, as shown in Figure 16-6. You can change the alignments using the carousel's alignment attributes.
Best Practice: Generally the carousel should be placed in a parent component that stretches its children (such as a |
The carousel component can display in circular mode, as in Figure 16-5, or you can configure it so that it displays only the current image, as shown in Figure 16-7
You can also configure the controls used to browse through the images. You can display a slider that has next and previous arrows and that spans more than one image (as shown in Figure 16-5), you can display only next and previous buttons, (as shown in Figure 16-7), or you can display next and previous buttons, along with the slide counter, (as shown in Figure 16-8).
By default, when the carousel is configured to display in the circular mode, when you hover over an auxiliary item (that is, and item that is not the current item at the center), the item is outlined to show that it can be selected (note that this outline will only appear if your application is using the Fusion FX v1.2 skin or later). You can configure the carousel so that instead, the item pops out and displays at full size, as shown in Figure 16-9.
When set to the circular mode, you can also configure the space between images, and you can also configure the size of the auxiliary images. By default, the space between images is set to 0.45 times the size of the preceding image, resulting in the images overlapping each other, and the auxiliary image size is set to 0.8, so that each image is 0.8th of the size as the preceding image, as shown in Figure 16-5. You can change these settings to alter how the carousel appears. For example, if you wanted the carousel to appear more like a filmstrip, you might set the space between the images to be 1.1, and the size of the auxiliary items to be 1, so that they are all the same size, as shown in Figure 16-10.
A child carouselItem
component displays the objects in the carousel, along with a title for the object. Instead of creating a carouselItem
component for each object to be displayed, and then binding these components to the individual object, you bind the carousel
component to a complete collection. The component then repeatedly renders one carouselItem
component by stamping the value for each item, similar to the way a tree stamps out each row of data. As each item is stamped, the data for the current item is copied into a property that can be addressed by an EL expression that uses the carousel
component's var
attribute. Once the carousel has completed rendering, this property is removed or reverted back to its previous value. Carousels contain a nodeStamp
facet, which is both a holder for the carouselItem
component used to display the text and short description for each item, and the parent component to the image displayed for each item.
For example, the carouselItem
JSF page in the ADF Faces demo shown in Figure 16-5 contains a carousel
component that displays an image of each of the ADF Faces components. The demoCarouselItem
(CarouselBean.java
) managed bean contains a list of each of these components. The value attribute of the carousel
component is bound to the items
property on that bean, which represents that list. The carousel component's var
attribute is used to hold the value for each item to display, and is used by both the carouselItem
component and the image
component to retrieve the correct values for each item. Example 16-4 shows the JSF page code for the carousel. For more information about stamping behavior in a carousel, see Section 10.5, "Displaying Data in Trees."
Example 16-4 Carousel Component JSF Page Code
A carouselItem
component stretches its sole child component. If you place a single image
component inside of the carouselItem
, the image stretches to fit within the square allocated for the item (as the user spins the carousel, these dimensions shrink or grow).
Best Practice: The |
The carousel
component uses a Collection
Model
class to access the data in the underlying collection. This class extends the JSF DataModel
class and adds on support for row keys. In the DataModel
class, rows are identified entirely by index. However, to avoid issues if the underlying data changes, the CollectionModel
class is based on row keys instead of indexes.
You may also use other model classes, such as java.util.List
, array
, and javax.faces.model.DataModel
. If you use one of these other classes, the carousel
component automatically converts the instance into a CollectionModel
class, but without any additional functionality. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
.
Note: If your application uses the Fusion technology stack, you can create ADF Business Components over your data source that represent the items, and the model will be created for you. You can then declaratively create the carousel, and it will automatically be bound to that model. For more information, see the "Using the ADF Faces Carousel Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The carousel components are virtualized, meaning that not all the items available to the component on the server are delivered to, and displayed on, the client. You configure the carousel to fetch a certain number of rows at a time from your data source. The data can be delivered to the component either immediately upon rendering, or lazily fetched after the shell of the component has been rendered. By default, the carousel lazily fetches data for the initial request. When a page contains one or more of these components, the page initially goes through the standard lifecycle. However, instead of the carousel fetching the data during that initial request, a special separate partial page rendering (PPR) request is run on the component, and the number of items set as the value of the fetch size for the carousel is then returned. Because the page has just been rendered, only the Render Response phase executes for the carousel, allowing the corresponding data to be fetched and displayed. When a user does something to cause a subsequent data fetch (for example, spinning the carousel for another set of images), another PPR request is executed.
Performance Tip: You should use lazy delivery when the page contains a number of components other than a carousel. Using lazy delivery allows the initial page layout and other components to be rendered first before the data is available. Use immediate delivery if the carousel is the only context on the page, or if the carousel is not expected to return a large set of items. In this case, response time will be faster than with lazy delivery (or in some cases, simply perceived as faster), as the second request will not go to the server, providing a faster user response time and better server CPU utilizations. Note, however, that only the number of items configured to be the fetch block will be initially returned. As with lazy delivery, when a user's actions cause a subsequent data fetch, the next set of items is delivered. |
A slider control allows users to navigate through the collection. Normally, the thumb on the slider displays the current object number out of the total number of objects, for example 6 of 20. When the total number of objects is too high to calculate, the thumb on the slider will show only the current object number. For example, say a carousel is used for a company's employee directory. By default, the directory might show faces for every employee, but it may not know without an expensive database call that there are exactly 94,409 employees in the system that day.
You can use other components in conjunction with the carousel. For example, you can add a toolbar or menu bar, and to that, add buttons or menu items that allow users to perform actions on the current object.
To create a carousel, you must first create the data model that contains the images to display. You then bind a carousel
component to that model and insert a carouselItem
component into the nodeStamp
facet of the carousel. Lastly, you insert an image
component (or other components that contain an image
component) as a child to the carouselItem
component.
To Create a Carousel:
List
, Array
, DataModel
, or CollectionModel
. If the collection is anything other than a CollectionModel
, the framework will automatically convert it to a CollectionModel
. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
. The data model should provide the following information for each of the images to be displayed in the carousel:
For examples, see the CarouselBean.java
and the CarouselMediaBean.java
classes in the ADF Faces demo application.
vertical
if you want it to display vertically, as shown in Figure 16-6. If you set it to horizontal
, you must configure how the items line up using the halign
attribute. If you set it to vertical
, set how the items line up using the valign
attribute. varStatus
include: model
: Returns the CollectionModel
for the component. index
: Returns the zero-based item index. contentDelivery
attribute is set to immediate
, items are fetched at the same time the carousel is rendered. If the contentDelivery
attribute is set to lazy
, items will be fetched and delivered to the client during a subsequent request. CarouselBean
which redraws the detail panel when the spin happens. Example 16-5 Handler for the CarouselSpinEvent
CollectionModel
: 0.45
. hover
to cause an auxiliary image to render full-size when the user hovers over it. The default is off
. 1
means all images would be the same size. A setting of less than 1
causes each image to be incrementally smaller, greater than 1
and they will be larger. By default, the setting is 0.8,
which means each image is 80% smaller than the preceding image. nodeStamp
facet of the Carousel
component. Bind the CarouselItem
component's attributes to the properties in the data model using the variable value set on the carousel's var
attribute. For example, the carousel in Example 16-4 uses item
as the value for the var
attribute. So the value of the carouselItem
's text
attribute would be item.title
(given that title
is the property used to access the text used for the carousel items on the data model).
carouselItem
. Bind the image
component's attributes to the properties in the data model using the variable value set on the carousel's var
attribute. For example, the carousel in Example 16-4 uses item
as the value for the var
attribute. So the value of the image
's source
attribute would be item.url
(given that url
is the property used to access the image).
You can surround the image component with other components if you want more functionality. For example, Figure 16-11 shows a carousel whose images are surrounded by a panelGroupLayout
component and that also uses a clientListener
to call a JavaScript function to show a menu and a navigation bar.
Example 16-6 shows the corresponding page code.
Example 16-6 A More Complex Layout for a Carousel
Performance Tip: The simpler the structure for the carousel is, the faster it will perform. |
In some browsers, the visual decoration of the carousel's items will be richer. For example, Safari and Google Chrome display subtle shadows around the carousel's items, and the noncurrent items have a brightness overlay to help make clear that the auxiliary items are not the current item, as shown in Figure 16-12.
Figure 16-13 shows the same component in Internet Explorer.
ADF Faces provides the statusIndicator
component that you can use to indicate server activity. What displays depends both on the skin your application uses and on how your server is configured. By default, the following are displayed:
When the server is not busy, a static icon is displayed:
Note: ADS allows you to bind your application to an active data source. You must use the Fusion technology stack in order to use ADS. For more information, see the "Using the Active Data Service" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
ADS can be configured to either have data pushed to the model, or it can be configured to have the application poll for the data at specified intervals. Table 16-3 shows the icons that are used to display server states for push and poll modes (note that the icons are actually animated).
Table 16-3 Icons Used in Status Indicator for ADS
Icon | Push Mode | Pull Mode |
---|---|---|
 | At the first attempt at connecting to the server. | At the first attempt at connecting to server. |
 | When the first connection is successfully established. | When the first connection is successfully established and when a connection is reestablished. |
 | When subsequent attempts are made to reconnect to the server. | Before every poll request. |
| When a connection cannot be established or reestablished. | When the configured number of poll attempts are unsuccessful. |
After you drop a status indicator component onto the page, you can use skins to change the actual image files used in the component. For more information about using skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
To use the status indicator icon:
Tip: For help in setting attributes, use the field's dropdown menu to view a description of the attribute. |
The ADF Faces media
component allows you to include video and audio clips on your application pages.
The media control handles two complex aspects of cross-platform media display: determining the best player to display the media, and sizing the media player.
You can specify which media player is preferred for each clip, along with the size of the player to be displayed for the user. By default, ADF Faces uses the MIME type of the media resource to determine the best media player and the default inner player size to use, although you can specify the type of content yourself, using the contentType
attribute.
You can specify which controls are to be available to the user, and other player features such as whether or not the clip should play automatically, and whether or not it should play continuously or a specified number of times.
Once you add a media component to your page, you can configure the media player to use by default, the size of the player and screen, the controls, and whether or not the clip should replay.
To include an audio or video clip in your application page:
Alternatively, you can create a link in the page that starts the playing of the media resource based on the user agent's built-in content type mapping. The media control attempts to pick the appropriate media player using the following steps:
player
attribute, and that player is available on the user agent and can display the media resource, that player is used. Because the set of controls available varies between players, you define what set of controls to display in a general way, rather than listing actual controls. For example, you can have the player display all controls available, the most commonly used controls, or no controls.
As an example, Example 16-7 uses the all
setting for a media
component.
Figure 16-14 shows how the player is displayed to the user.
Following values are valid:
Using this setting can cause a large amount of additional space to be required, depending on the media player used.
This value gives users control over the most important media playing controls, while occupying the least amount of additional space on the user agent.
You would typically use this setting only for kiosk-type applications, where no user control over the playing of the media is allowed. This setting is typically used in conjunction with settings that automatically start the playback, and to play back continuously.
You would typically use this value only in applications where user control over the playing of the media is allowed, but not encouraged. As with the none
setting, this setting is typically used in conjunction with settings that automatically start the playback, and to play back continuously.
This value, the default, gives users control over the most common media playing controls, without occupying an inordinate amount of extra space on the user agent.
Tip: Using the |
Tip: If you do not specify a size for the media control, a default inner size, determined by the content type of the media resource, is used. While this works well for audio content, it can cause video content to be clipped or to occupy too much space. If you specify dimensions from both schemes, such as a |
autostart
attribute to true
. Set PlayCount to the number of times you want the media to play. Once started, by default, the clip with play through once only. If the users have controls available, they can replay the clip. However, you can specify that the clip is to play back a fixed number of times, or loop continuously, by setting a value for the playCount
attribute. Setting the playCount
attribute to 0 replays the clip continuously. Setting the attribute to some other number plays the clip the specified number of times.
Example 16-8 shows an af:media
component in the source of a page. The component will play a video clip starting as soon as it is loaded and will continue to play the clip until stopped by the user. The player will display all the available controls.
This chapter describes how to define and display tips and messages for ADF Faces components, and how to provide different levels of help information for users.
This chapter includes the following sections:
ADF Faces provides many different ways for displaying informational text in an application. You can create simple tip text, validation and conversion tip text, validation and conversion failure messages, as well as elaborate help systems.
Many ADF Faces components support the shortDesc
attribute, which for most components, displays tip information when a user hovers the cursor over the component. Figure 17-1 shows a tip configured for a toolbar button. For more information about creating tips, see Section 17.2, "Displaying Tips for Components."
Along with tips, EditableValueHolder
components (such as the inputText
component, or the selection components) can display hints used for validation and conversion. When you configure validation or conversion, a default hint automatically displays in a note window (for more information, see Chapter 6, "Validating and Converting Input"). For example, when users click Help > Give Feedback in the File Explorer application, a dialog displays where they can enter a time and date for a customer service representative to call. Because the inputDate
component contains a converter, when the user clicks in the field, a note window displays a hint that shows the expected pattern, as shown in Figure 17-2. If the inputDate
component was also configured with a minimum or maximum value, the hint would display that information as well. These hints are provided by the converters and validators automatically.
ADF Faces uses the standard JSF messaging API. JSF supports a built-in framework for messaging by allowing FacesMessage
instances to be added to the FacesContext
object using the addMessage(java.lang.String clientId, FacesMessage message)
method. In general there are two types of messages that can be created: component-level messages, which are associated with a specific component based on any client ID that was passed to the addMessage
method, and global-level messages, which are not associated with a component because no the client ID was passed to the addMessage
method.When conversion or validation fails on an EditableValueHolder
ADF Faces component, FacesMessages
objects are automatically added to the message queue on the FacesContext
instance, passing in that component's ID. These messages are then displayed in the note window for the component. ADF Faces components are able to display their own messages. You do not need to add any tags.
For example, if a user enters a date incorrectly in the field shown in Figure 17-2, an error message is displayed, as shown in Figure 17-3. Note that the error message appears in the note window along with the hint.
If you want to display a message for a non-ADF Faces component, or if you want the message to be displayed inline instead of the note window, use the ADF Faces message
component.
Similarly, the document
tag handles and displays all global FacesMessages
objects (those that do not contain an associated component ID), as well as component FacesMessages
. Like component messages, you do not need to add any tags for messages to be displayed. Whenever a global message is created (or more than two component messages), all messages in the queue will be displayed in a popup window, as shown in Figure 17-4.
However, you can use the ADF Faces messages
component if you want messages to display on the page rather than in a popup window. For more information about displaying hints and messages for components, see Section 17.3, "Displaying Hints and Error Messages for Validation and Conversion."
Tip: While ADF Faces provides messages for validation and conversion, you can add your own |
Instead of having each component display its own messages, you can use the panelLabelAndMessage
component to group components and display a message in one area. This can be very useful when you have to group components together. For example, the File Explorer application uses a panelLabelAndMessage
component where users enter a telephone number. The telephone number input field is actually three separate inputText
components. The panelLabelAndMessage
component wraps three inputText
components. Instead of each having its own label and message, the three have just one label and one message, as shown in Figure 17-3. For more information, see Section 17.4, "Grouping Components with a Single Label and Message."
Instead of configuring messages for individual component instances, you can create a separate help system that provides information that can be reused throughout the application.You create help information using different types of providers, and then reference the help text from the UI components. The following are the three types of help supported by ADF Faces:
panelHeader
components), or displays text in the note window that is opened when the user clicks in the component, as shown in Figure 17-6. The text can be any length. selectOneChoice
component configured to open a help topic about skins. When a user clicks the help icon, the help topic opens. For more information about creating help systems, see Section 17.5, "Displaying Help for Components."
ADF Faces components use the shortDesc
attribute to display a tip when the user hovers the mouse over the component. Input components display the tips in their note window. Other component types display the tip in a standard tip box. This text should be kept short. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text, as described in Section 17.5, "Displaying Help for Components."
Figure 17-8 shows the effect when the cursor hovers over an inputText
component.
Figure 17-9 shows a tip as displayed for a showDetailItem
component.
To define a tip for a component:
shortDesc
attribute. Tip: The value should be less than 80 characters, as some browsers will truncate the tip if it exceeds that length. |
If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 21, "Internationalizing and Localizing Pages."
Validators and converters have a default hint that is displayed to users when they click in the associated field. For converters, the hint usually tells the user the correct format to use. For validators, the hint is used to convey what values are valid.
For example, in the File Explorer application, when a user clicks in the input date field on the Speak with Customer Service page, a tip is displayed showing the correct format to use, as shown in Figure 17-10.
When the value of an ADF Faces component fails validation, or cannot be converted by a converter, the component displays the resulting FacesMessage
instance.
For example, entering a date that does not match the dateStyle
attribute of the converter results in an error message, as shown in Figure 17-11.
You can override the default validator and converter hint and error messages. Each ADF Faces validator and converter component has attributes you can use to define the detail messages to be displayed for the user. The actual attributes vary according to the validator or converter. Figure 17-12 shows the attributes that you can populate to override the messages for the convertDateTime
converter, as displayed in the Property Inspector.
If you do not want messages to be displayed in the note window, you can use the message
component, and messages will be displayed inline with the component. Figure 17-13 shows how messages are displayed using the message
component.
JSF pages in an ADF Faces application use the document
tag, which among other things, handles displaying all global messages (those not associated with a component) in a popup window. However, if you want to display global messages on the page instead, use the messages
component.
Note: To format the message using HTML tags, you must enclose the message within
The following HTML tags are allowed in error messages:
|
To override the default validator and converter messages, set values for the different message attributes.
To define a validator or converter message:
Note: You can override messages only for ADF Faces components. If you want to create a message for a non-ADF Faces component (for example for the |
The values can include dynamic content by using parameter placeholders such as {0}, {1}, {2}, and so on. For example, the messageDetailConvertDate
attribute on the convertDateTime
converter uses the following parameters:
Using these parameters, you could create this message:
{1} is not using the correct date format. Please enter the date as follows: {2}
. The error message would then be displayed as shown in Figure 17-14.
Tip: Use the dropdown menu to view the property help, which includes the parameters accepted by the message. |
If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 21, "Internationalizing and Localizing Pages."
Note: The message text is for the detail message of the |
Instead of changing the message string per component instance with the messageDetail[XYZ]
attributes, override the string globally so that the string will be displayed for all instances. To override globally, create a message bundle whose contents contain the key for the message and the message text you wish to use.
You create and use a message bundle in the same way you create and use resource bundles for translation, using either Java classes or properties files. For procedures and information, see Chapter 21, "Internationalizing and Localizing Pages."
For message key information, see Appendix B, "Message Keys for Converter and Validator Messages."
Instead of having a component display its messages in the note window, use the message
component to display the messages inline on the page. In order for the message
component to display the correct messages, associate it with a specific component.
To display component messages inline:
message
component. If not already set, enter an ID for the component. for
attribute to select Edit. message
component will display messages. Only components that have their ID set are valid selections. Note: The message icon and message content that will be displayed are based on what was given when the |
Instead of displaying global messages in a popup window for the page, display them inline using the messages
component.
globalOnly
: By default, ADF Faces displays global messages (messages that are not associated with components) followed by individual component messages. If you want to display only global messages in the box, set this attribute to true
. Component messages will continue to be displayed with the associated component. inline
: Set to true
to show messages at the top of the page. Otherwise, messages will be displayed in a dialog. By default, ADF Faces input and select components have built-in support for label and message display. If you want to group components and use a single label, wrap the components using the panelLabelAndMessage
component.
For example, the File Explorer application collects telephone numbers using four separate inputText
components; one for the area code, one for the exchange, one for the last four digits, and one for the extension. Because a single label is needed, the four inputText
components are wrapped in a panelLabelAndMessage
component, and the label value is set on that component. However, the input component for the extension requires an additional label, so an outputText
component is used. Example 17-1 shows the JSF code for the panelLabelAndMessage
component.
Example 17-1 panelLabelAndMessage Can Display a Single Label and Help Topic
Figure 17-15 shows how the panelLabelAndMessage
and nested components are displayed in a browser.
The panelLabelAndMessage
component also includes an End
facet that can be used to display additional components at the end of the group. Figure 17-16 shows how the telephone number fields would be displayed if the End
facet was populated with an outputText
component.
Use a panelGroupLayout
component within a panelLabelAndMessage
component to group the components for the required layout. For information about using the panelGrouplayout
component, see Section 8.12, "Grouping Related Items."
You set the simple
attribute to true
on each of the input components so that their individual labels are not displayed. However, you may want to set a value for the label attribute on each of the components for messaging purposes and for accessibility.
Tip: If you have to use multiple |
Group and wrap components using the panelLabelAndMessage
component. The panelLabelAndMessage
component can be used to wrap any components, not just those that typically display messages and labels.
To arrange form input components with one label and message:
Add input or select components as needed to the page.
For each input and select component:
simple
attribute to true
. label
attribute to a label for the component. panelLabelAndMessage
component selected, in the Property Inspector, set the following: Set the for
attribute to the first inputComponent
to meet accessibility requirements.
If one or more of the nested input components is a required component and you want a marker to be displayed indicating this, set the showRequired
attribute to true
.
End
facet, drag and drop the desired component into the facet. Because facets accept one child component only, if you want to add more than one child component, you must wrap the child components inside a container, such as a panelGroupLayout
or group
component.
Tip: If the facet is not visible in the visual editor:
|
ADF Faces provides a framework that allows you to create and display three different types of help whose content comes from an external source, rather than as text configured on the component. Because it is not configured directly on the component, the content can be used by more than one component, saving time in creating pages and also allowing you to change the content in one place rather than everywhere the content appears.
The first type of external help provided by ADF Faces is Definition help. Like a standard tip, the content appears in a message box. However, instead of appearing when the user mouses over the component, Definition help provides a help icon (a blue circle with a question mark). When the user mouses over the icon, the content is displayed, as shown in Figure 17-17.
Table 17-1 shows the components that support Definition help.
Table 17-1 Components That Support Definition Help
Supported Components | Help Icon Placement | Example |
---|---|---|
All input components, Select components, Choose Color, Choose Date, Query components | Before the label, or if no label exists, at the start of the field | |
Panel Header, PanelBox, Show Detail Header | End of header text | |
Panel Window, Dialog | Next to close icon in header | |
Columns in table and tree | Below header text | |
The second type of help is Instruction help. Where Instruction help is displayed depends on the component with which it is associated. The panelHeader
and Search panel components display Instruction help within the header. Figure 17-18 shows how the text that typically is displayed as Definition help as shown in Figure 17-17 would be displayed as Instruction help within the panelHeader
component.
All other components that support Instruction help display the text within a note window, as shown in Figure 17-19. Note that no help icon is displayed.
Table 17-2 shows the components that support Instruction help.
Table 17-2 Components That Support Instruction Help
Supported Components | Help Placement | Example |
---|---|---|
Input components, Choose Color, Choose Date, Quick Query | Note window, on focus only | |
Select components | Note window, on hover and focus | |
Panel Header, Panel Box, Query | Text below header text | |
The last type of help is External URL help. You provide a URL to a web page in an external application, and when the help icon is clicked, the web page opens in a separate browser window, as shown in Figure 17-20. Instead of clicking a help icon, you can use JavaScript to open a help window based on any client-based event.
ADF Faces includes a variety of help providers. The ResourceBundleHelpProvider
help provider allows you to create resource bundles that hold the help content. The ELHelpProvider
help provider allows you to create XLIFF files that get converted into maps, or create a managed bean that contains a map of help text strings. You can use a combination of the different help providers. You can also create your own help provider class.
To create help for your application, do the following:
helpTopicId
attribute. A helpTopicId
attribute contains the following. For example, the value of the helpTopicId
attribute on the inputText
component shown in Figure 17-19 might be RBHELP_FILE_NAME
, where RBHELP
is the resource bundle help providers prefix, and FILE_NAME
is the help topic name.
You can store help text within standard resource bundle property files and use the ResourceBundleHelpProvider
class to deliver the content.
To create resource bundle-based help:
RBHELP
. TELEPHONE_NUMBER
. DEFINITION
. For example, a topic ID might be RBHELP_TELEPHONE_NUMBER_DEFINITION
.
Note: All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 17-2), then both types of help will be displayed by the UI component. |
Example 17-2 shows an example resource bundle with three topics.
Example 17-2 Resource Bundle Help
Note: If you wish to use an external URL help type, create a subclass of the |
adf-settings.xml
file (for information on creating the adf-settings.xml
file if one does not exist, see Section A.5.1, "How to Configure for ADF Faces in adf-settings.xml"). To register the provider, open the adf-settings.xml
file, click the Source tab, and add the following elements:
<help-provider>
: Use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the resource bundle. Note: If the |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter oracle.adf.view.rich.help.ResourceBundleHelpProvider
. <property>
: Create as a child element to the <help-provider>
element. The property defines the actual help source. <property-name>
: Create as a child element to the <property>
element, and enter a name for the source, for example, baseName
. <value>
: Create as a child element to the <property>
element and enter the fully qualified class name of the resource bundle. For example, the qualified class name of the resource bundle used in the ADF Faces demo application is oracle.adfdemo.view.resource.DemoResources
. Example 17-3 shows how the resource bundle in Example 17-2 would be registered in the adf-settings.xml
file.
Example 17-3 Registering a Resource Bundle as a Help Provider
If you want to use External URL help, then you also must extend the ResourceBundleHelpProvider
class and implement the getExternalUrl
method. Example 17-4 shows an example method.
Example 17-4 Overriding the getExternalURL Method
In Example 17-4, all the topics in the method return the same URL. You would have to create separate if
statements to return different URLs.
If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 17.5.4, "How to Use JavaScript to Launch an External Help Window."
You can store the help text in XLIFF XML files and use the ELHelpProvider
class to deliver the content. This class translates the XLIFF file to a map of strings that will be used as the text in the help.
To create XLIFF help:
<body>
tag: <trans-unit>
: Enter the topic ID. This must contain the prefix, the topic name, and the help type, for example, XLIFFHELP_CREDIT_CARD_DEFINITION
. In this example, XLIFFHELP
will become the prefix used to access the XLIFF file. CREDIT_CARD
is the topic name, and DEFINITION
is the type of help. Note: All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 17-5), then both types of help will be displayed by the UI component. |
<source>
: Create as a direct child of the <trans-unit>
element and enter the help text. <target>
: Create as a direct child of the <trans-unit>
element and leave it blank. This is used to hold translated text. <note>
: Create as a direct child of the <trans-unit>
element and enter a description for the help text. Example 17-5 shows an example of an XLIFF file that contains two topics.
Example 17-5 XLIFF Help
adf-settings.xml
file (for information on creating the adf-settings.xml
file if one does not exist, see Section A.5.1, "How to Configure for ADF Faces in adf-settings.xml"). To register the provider, open the adf-settings.xml
file and add the following elements:
<help-provider>
: Use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the XLIFF file. Note: If the |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter oracle.adf.view.rich.help.ELHelpProvider
. <property>
: Create as a child element to the <help-provider>
element. The property values define the actual help source. <property-name>
: Create as a child element to the <property>
element and enter a name for the help, for example, helpSource
. <value>
: Create as a child element to the <property>
element and enter an EL expression that resolves to the XLIFF file, wrapped in the adfBundle
EL function, for example, #{adfBundle['project1xliff.view.Project1XliffBundle']}
. Example 17-6 shows how the XLIFF file in Example 17-5 would be registered in the adf-settings.xml
file.
Example 17-6 Registering an XLIFF File as a Help Provider
To implement managed bean help, create a managed bean that contains a map of strings that will be used as the text in the help. Managed bean help providers use the ELHelpProvider
class to deliver the help.
To create managed bean help:
Example 17-7 Managed Bean that Returns a Map of Help Text Strings
The first string must contain the prefix, the topic name, and the help type, for
example, MAPHELP_CREDIT_CARD_DEFINITION
. In this example, MAPHELP will become the prefix used to access the bean. CREDIT_CARD
is the topic name, and DEFINITION
is the type of help. The second string is the help text.
Note: All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 17-7), then both types of help will be displayed by the UI component. |
Note: If you wish to use external URL help, create a subclass of the |
faces-config.xml
file. Example 17-8 shows the bean shown in Example 17-7 registered in the faces-config.xml
file. Example 17-8 Managed Bean Registration in the faces-config.xml File.
For more information about using and registering managed beans, see Section 2.6, "Creating and Using Managed Beans."
adf-settings.xml
file (for information on creating the adf-settings.xml
file if one does not exist, see Section A.5.1, "How to Configure for ADF Faces in adf-settings.xml"). To register the provider, open the adf-settings.xml
file and add the following elements:
<help-provider>
: Create and use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application. Note: If the |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1. <property>
: Create as a child element to the <help-provider>
element. The property defines the map of help strings on the managed bean. <property-name>
: Create as a child element to the <property>
element and enter a property name, for example helpSource
. <value>
: Create as a child element to the <property>
element and enter an EL expression that resolves to the help map on the managed bean. Example 17-9 shows how the bean in Example 17-8 would be registered in the adf-settings.xml
file.
Example 17-9 Registering a Managed Bean as a Help Provider
If you want to use External URL help with the managed bean provider, then extend the ELHelpProvider
class and implement the getExternalUrl
method. Example 17-10 shows an example method.
Example 17-10 Overriding the getExternalURL Method
In Example 17-10, all the topics in the method return the same URL. You must create separate if
statements to return different URLs.
If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 17.5.4, "How to Use JavaScript to Launch an External Help Window."
If you want to use external URL help, by default, the user clicks a help icon to launch the help window. Instead, you can use JavaScript and a client event listener for a specific component's event to launch the help window.
To use JavaScript to launch an external help window:
Create a JavaScript function that uses the launchHelp
API to launch a specific URL or page.
Example 17-11 shows the launchHelp
function used to launch the helpClient.jspx
.
Drag and drop a component whose client event will cause the function to be called. You must set the clientId
on this component to true
.
clientListener
to invoke the function created in Step 1. For more information about using the clientListener
tag, see Section 3.2, "Listening for Client Events." Example 17-12 shows the code used to have a click event on a commandToolbarButton
component launch the helpClient.jspx
page.
Example 17-12 Page Code Used to Launch an External Help Window
Instead of using one of the ADF Faces help providers, create your own. Create the actual text in some file that your help provider will be able to access and display. To create a Java class help provider, extend the HelpProvider
class. For more information about this class, refer to the ADF Faces Javadoc.
To create a Java class help provider:
Create a Java class that extends oracle.adf.view.rich.help.HelpProvider
.
This class will be able to access properties and values that are set in the adf-settings.xml
file when you register this provider. For example, the ADF Faces providers all use a property to define the actual source of the help strings. To access a property in the adf-settings.xml
file, create a method that sets a property that is a String
. For example:
adf-settings.xml
file and add the following elements: <help-provider>
: Use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application. Note: If the |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1. <property>
: Create as a child element to the <help-provider>
element and use it to define the property that will be used as the argument for the method created in Step 3. <property-name>
: Create as a child element to the <property>
element and enter the property name. <value>
: Create as a child element to the <property>
element and enter the value for the property. Example 17-13 shows an example of a help provider class registered in the adf-settings.xml
file.
Example 17-13 Registering a Help Provider Class
Use the HelpTopicId
attribute on components to access and display the help.
To access help from a component:
helpTopicId
attribute. This should include the prefix to access the correct help provider and the topic name. It should not include the help type, as all help types registered with that name will be returned and displayed, for example: This example will return both the definition and instruction help defined in the XLIFF file in Example 17-5.
outputText
component to display the help text, and then bind that component to the help provider, for example: This will access the instruction help text.
When you add help messages to input components that may already display messages for validation and conversion, ADF Faces displays the messages in the following order within the note window:
panelHeader
components, Instruction help is always displayed below the header. shortDesc
attribute. Figure 17-21 shows an inputDate
component that contains a converter, instruction help, and a tip message.
This chapter describes how to use ADF Faces navigation components such as commandButton
, navigationPane
, and train
to provide navigation in web user interfaces.
This chapter includes the following sections:
Like any JSF application, an application that uses ADF Faces components contains a set of rules for choosing the next page to display when a button or link (or other navigation component) is clicked. You define the rules by adding JSF navigation rules and cases in the application's configuration resource file (faces-config.xml
).
JSF uses an outcome string to select the navigation rule to use to perform a page navigation. ADF Faces navigation components that implement javax.faces.component.ActionSource
interface generate an ActionEvent
event when users activate the component. The JSF NavigationHandler
and default ActionListener
mechanisms use the outcome string on the activated component to find a match in the set of navigation rules. When JSF locates a match, the corresponding page is selected, and the Render Response phase renders the selected page. For more information about the JSF lifecycle, see Chapter 4, "Using the JSF Lifecycle with ADF Faces". Also note that navigation in an ADF Faces application may use partial page rendering. For more information, see Section 7.4, "Using Partial Page Navigation".
Command components in ADF Faces include:
In addition to using command components for navigation, ADF Faces also includes listener tags that you can use in conjunction with command components to have specific functionality execute when the action event fires. For more information, see Section 18.4, "Using Buttons or Links to Invoke Functionality".
Buttons and links in ADF Faces include the command components commandButton
, commandLink
, and commandImageLink
, as well as the go components goButton
, goImageLink
, and goLink
. The main difference between command components and go components is that while command components submit requests and fire ActionEvent
events, go components navigate directly to another location without delivering an action. Visually, the rendered command and go components look the same, as shown in Figure 18-11.
Figure 18-1 Command Components and Go Components
Tip: ADF Faces also provides specialized command components that can be used inside menus and toolbars. For more information, see Chapter 14, "Using Menus, Toolbars, and Toolboxes". |
The commandImageLink
and goImageLink
components render images as links, along with optional text, as shown in Figure 18-2. You can determine the position of the image relative to the optional text by setting a value for the iconPosition
attribute. In addition, you can set different icons for when the user hovers over an icon, or the icon is depressed or disabled.
ADF Faces also includes a toolbar button that provides additional functionality, such as a popup
facet that can open popup menus from a toolbar button. For more information, see Section 14.3, "Using Toolbars".
You can configure your application to allow end users invoke a browser's context menu when they right-click a command component that renders a link. End users who right-click the link rendered by a command component may use a browser's context menu to invoke an action that you do not want them to invoke (for example, open the link in a new window). For more information, see Section 18.3, "Configuring a Browser's Context Menu for Command Links."
You can show a warning message to users if the page that they attempt to navigate away from contains uncommitted data. Add the checkUncommittedDataBehavior
component as a child to command components that have their immediate
attribute set to true
. If the user chooses not to navigate, the client event will be cancelled. You can add the checkUncommittedDataBehavior
component as a child to the following components:
af:commandButton
af:commandLink
af:commandImageLink
af:commandToolbarButton
af:activeCommandToolbarButton
For the warning message to appear to end users, the page must contain uncommitted data and you must have also set the document
tag's uncommittedDataWarning
attribute to on
, as described in Section 8.2.5, "How to Configure the document Tag."
Note: A warning message may also appear for uncommitted data if you set the |
Typically, you use commandButton
, commandLink
, and commandImageLink
components to perform page navigation and to execute any server-side processing.
To create and use command components:
Create a commandButton
component by dragging and dropping a Button from the Component Palette to the JSF page. Create a commandLink
component by dragging and dropping a Link. Create a commandImageLink
component by dragging and dropping an Image Link.
text
attribute. Tip: Alternatively, you can use the |
icon
attribute to the URI of the image file you want to use for inside a commandButton
or commandImageLink
component (this is not supported for commandLink
). For a commandImageLink
component, you can also set the hoverIcon
, disabledIcon
, and depressedIcon
attributes. Tip: You can use either the |
action
attribute to an outcome string or to a method expression that refers to a backing bean action method that returns a logical outcome String
. For more information about configuring the navigation between pages, see Section 2.3, "Defining Page Flows". The default JSF ActionListener
mechanism uses the outcome string to select the appropriate JSF navigation rule, and tells the JSF NavigationHandler
what page to use for the Render Response phase. For more information about using managed bean methods to open dialogs, see Chapter 13, "Using Popup Dialogs, Menus, and Windows". For more information about outcome strings and navigation in JSF applications, see the Java EE 6 tutorial at http://download.oracle.com/javaee/index.html
.
Tip: The For example, in the File Explorer application, the Search button in Search panel does not navigate anywhere. Instead, it is used to perform a search. It has the following value for its actionListener="#{explorer.navigatorManager.searchNavigator. searchForFileItem}" This expression evaluates to a method that actually performs the search. |
disabled
attribute to true
if you want to show the component as a non-interactive button or link. partialSubmit
attribute to true
to fire a partial page request each time the component is activated. For more information, see Section 7.2, "Enabling Partial Page Rendering Declaratively". Set the immediate
attribute to true
if you want skip the Process Validations and Update Model phases. The component's action listeners (if any), and the default JSF ActionListener
handler are executed at the end of the Apply Request Values phase of the JSF lifecycle. For more information, see Section 4.2, "Using the Immediate Attribute".
immediate
attribute to true
as described in step 7, you can add the af:checkUncommittedDataBehavior
component as a child to the command component to display a warning message to the user if the page contains uncommitted data. Drag the Check Uncommitted Data Behavior from the Behavior section of the Operations panel in the Component Palette and drop it as a child of the command component you added in step 1. Note: You must have also set the |
Command buttons and links can also be used to open secondary windows through these attributes: useWindow
, windowHeight
, windowWidth
, launchListener
, and returnListener
. For information about opening secondary windows, see Chapter 18, "Working with Navigation Components".
You use the goButton
, goImageLink
, and goLink
components to perform direct page navigation, without delivering an ActionEvent
event.
To create and use go buttons and go links:
goButton
component by dragging and dropping a Go Button from the Component Palette to the JSF page. Create a goLink
component by dragging and dropping a Go Link. Create a goImageLink
component by dragging and dropping a Go Image Link. text
attribute if you created a goButton
or goLink
component. If you created a goImageLink
component, you set the text
attribute in the Other section. Tip: Instead, you can use the |
icon
attribute to the URI of the image file you want to use for inside a goButton
or goImageLink
component (not supported for goLink
). For a goImageLink
component, you can also set the hoverIcon
, disabledIcon
, depressedIcon
, and iconPosition
attributes. The iconPosition
attribute supports two values: leading
(default) and trailing
. Set to leading
to render the icon before the text. Set to trailing
to render the icon after the text.
Tip: You can use either the |
destination
attribute to the URI of the page to which the link should navigate. For example, in the File Explorer application, the goLink
component in the popups.jspx
file has the following EL expression set for its destination
attribute:
targetFrame
attribute to specify where the new page should display. Acceptable values are: _blank
: The link opens the document in a new window. _parent
: The link opens the document in the window of the parent. For example, if the link appeared in a dialog, the resulting page would render in the parent window. _self
: The link opens the document in the same page or region. _top
: The link opens the document in a full window, replacing the entire page. disabled
attribute to true
if you want to show the component as a non-interactive button or link. You set the disabled
attribute for the goImageLink
component in the Other section. The command components that render links at runtime allow your end users to invoke actions. In addition you can configure your application so that the ADF Faces framework allows the end user´s browser to render a context menu for these command components. The context menu may present menu options that invoke a different action (for example, open a link in a new window) to that specified by the command component. The components for which you can configure this behavior include the following:
af:commandLink
af:commandImageLink
af:commandMenuItem
(stand-alone or within an af:menuBar
component) af:commandNavigationItem
if no value is specified for the destination
attribute, the ADF Faces framework enables the browser context menu in the following scenarios: af:commandNavigationItem
renders when inside an af:train
component af:commandNavigationItem
renders inside an af:breadCrumbs
component af:commandNavigationItem
renders inside an af:navigationPane
component (any hint--tabs, bar, buttons, choice, list) af:panelTabbed
: the tabs and overflow indicators af:panelAccordion
: the disclosure link and overflow indicators You cannot configure this behavior for components that specify a destination and do not invoke an action. Examples of these components include the following:
af:goLink
af:goImageLink
af:commandNavigationItem
where you specify a value for the destination
attribute and no value for the action
attribute Set the value of the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION
context parameter in your application's web.xml
file to no
.
Before you begin:
It may help to understand what command components you can configure this functionality for. For more information, Section 18.3, "Configuring a Browser's Context Menu for Command Links."
To configure a browser's context menu for a command link:
By default, JDeveloper opens the web.xml
file in the Overview editor.
oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION
parameter and set it to no
. web.xml
file. If you followed the procedure outlined in Section 18.3, "Configuring a Browser's Context Menu for Command Links," JDeveloper writes a value to the web.xml
file, as shown in Example 18-1.
Example 18-1 Context Parameter to Configure a Browser's Context Menu
For more information about ADF Faces configuration options in your application's web.xml
file, see Section A.2, "Configuration in web.xml."
At runtime, end users can invoke a browser's context menu by right-clicking on the links rendered by certain components, as described in Section 18.3, "Configuring a Browser's Context Menu for Command Links."
In addition to using command components for navigation, ADF Faces also includes listener tags that you can use in conjunction with command components to have specific functionality execute when the action event fires. Listener tags included with ADF Faces include:
exportCollectionActionListener
: Use to export data from an ADF Faces application to an Excel spreadsheet. For more information, see Section 10.9, "Exporting Data from Table, Tree, or Tree Table". fileDownloadActionListener
: Use to initiate a file download from the server to the local computer. For more information, see Section 18.4.1, "How to Use a Command Component to Download Files". resetActionListener
: Use to reset submitted values. However, no data model states will be altered. For more information, see Section 18.4.2, "How to Use a Command Component to Reset Input Fields". If you want to reset the input components to their previous state, which was partially or fully submitted successfully to the server, then you can use a reset button. For more information, see Section 9.2.3, "How to Add a Reset Button to a Form". You can create a way for users to download files by creating an action component such as a command button and associating it with a fileDownloadActionListener
tag. When the user selects or clicks the action component, a popup dialog is displayed that allows the user to select different download options, as shown in Figure 18-3.
The fileDownloadActionListener
tag is used declaratively to allow an action component such as command button, command link, or menu item to programmatically send the contents of a file to the user. You can also declare a specific content type or file name. Because file download must be processed with an ordinary request instead of the XMLHttp AJAX
requests, the parent component's partialSubmit
attribute, if supported, must be set to false
.
After the content has been sent to the browser, how that content is displayed or saved depends on the option selected in the dialog. If the Open with option was selected, the application associated with that file type will be invoked to display the content. For example, a text file may result in the Notepad application being started. If the Save to Disk option was selected, depending on the browser, a popup dialog may appear to select a file name and a location in which to store the content.
Example 18-2 shows the tags of a command button with the fileDownloadActionListener
tag to download the file content Hi there!
to the user.
Example 18-2 File Download Using Command Button and fileDownloadActionListener Tag
Example 18-3 shows the managed bean method used to process the file download.
Example 18-3 Managed Bean Method Used to Process File Download
To create a file download mechanism:
contentType
: Specify the MIME type of the file, for example text/plain
, text/csv
, application/pdf
, and so on. filename
: Specify the proposed file name for the object. When the file name is specified, a Save File dialog will typically be displayed, though this is ultimately up to the browser. If the name is not specified, the content will typically be displayed inline in the browser, if possible. method
: Specify the method that will be used to download the file contents. The method takes two arguments, a FacesContext
object and an OutputStream
object. The OutputStream
object will be automatically closed, so the sole responsibility of this method is to write all bytes to the OutputStream
object. For example, the code for a command button would be similar to the following:
You can use the resetActionListener
tag in conjunction with a command component to reset input values. All values will be returned to null or empty. If you want to reset the input components to their previous state, which was partially or fully submitted successfully to the server, then you should use a reset button. For more information, see Section 9.2.3, "How to Add a Reset Button to a Form".
To use the reset tag:
Note: If your application uses the Fusion technology stack with the ADF Controller, then you should use ADF task flows and an |
An application may consist of pages that are related and organized in a tree-like hierarchy, where users gain access to specific information on a page by drilling down a path of links. For example, Figure 18-4 shows a simple page hierarchy with three levels of nodes under the top-level node, Home. The top-level node represents the root parent page; the first-level nodes, Benefits and Employee Data, represent parent pages that contain general information for second-level child nodes (such as Insurance and View Employee) that contain more specific information; the Insurance node is also a parent node, which contains general information for third-level child nodes, Health and Dental. Each node in a page hierarchy (except the root Home node) can be a parent and a child node at the same time, and each node in a page hierarchy corresponds to a page.
Navigation in a page hierarchy follows the parent-child links. For example, to view Health information, the user would start drilling from the Benefits page, then move to the Insurance page where two choices are presented, one of which is Health. The path of selected links starting from Home and ending at Health is known as the focus path in the tree.
In addition to direct parent-child navigation, some cross-level or cross-parent navigation is also possible. For example, from the Dental page, users can jump to the Paid Time Off page on the second level, and to the Benefits page or the Employee Data page on the first level.
As shown in Figure 18-4, the Help node, which is not linked to any other node in the hierarchy but is on the same level as the top-level Home node, is a global node. Global nodes represent global pages (such as a Help page) that can be accessed from any page in the hierarchy.
Typical widgets used in a web user interface for a page hierarchy are tabs, bars, lists, and global links, all of which can be created by using the navigationPane
component. Figure 18-5 shows the hierarchy illustrated in Figure 18-4, as rendered using the navigationPane
and other components.
In general, tabs are used as first-level nodes, as shown in Figure 18-5, where there are tabs for the Benefits and Employee Detail pages. Second-level nodes, such as Insurance and Paid Time Off are usually rendered as bars, and third-level nodes, such as Health and Dental are usually rendered as lists. However, you may use tabs for both first- and second-level nodes. Global links (which represent global nodes) are rendered as text links. In Figure 18-5, the Home and Help global links are rendered as text links.
One navigationPane
component corresponds to one level of nodes, whether they are first-, second-, or third-level nodes, or global nodes. Regardless of the type of navigation items the navigationPane
component is configured to render for a level, you always use the commandNavigationItem
component to represent each item within the navigationPane
component.
The navigationPane
component simply renders tabs, bars, lists, and global links for navigation. To achieve the positioning and visual styling of the page background, as shown in Figure 18-10 and Figure 18-11, you use the decorativeBox
component as the parent to the first level navigationPane
component. The decorativeBox
component uses themes and skinning keys to control the borders and colors of its different facets. For example, if you use the default theme, the decorativeBox
component body is white and the border is blue, and the top-left corner is rounded. If you use the medium theme, the body is a medium blue. For information about using themes and skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins".
Tip: Because creating a page hierarchy requires that each page in the hierarchy use the same layout and look and feel, consider using a template to determine where the navigation components should be placed and how they should be styled. For more information, see Section 19.3, "Using Page Templates". |
For each page of simpler hierarchies, you first use a series of navigationPane
components to represent each level of the hierarchy. Then you add commandNavigationItem
components as direct children of the navigationPane
components for each of links for each level. For example, to create the Health insurance page as shown in Figure 18-5, you would first use a navigationPane component for each level displayed on the page, in this case it would be four: one for the global links, one for the first-level nodes, one for the second-level nodes, and one for the third-level nodes. You would then need to add commandNavigationItem
components as children to each of the navigationPane
components to represent the individual links. If instead you were creating the Benefits page, as shown in Figure 18-6, you would create only three navigationPane
components (one each for the global, first, and second levels), and then create just the commandNavigationItem
components for the links seen from this page.
As you can see, with large hierarchies, this process can be very time consuming and error prone. Instead of creating each of the separate commandNavigationItem
components on each page, for larger hierarchies you can use an XMLMenuModel
implementation and managed beans to dynamically generate the navigation items on the pages. The XMLMenuModel
class, in conjunction with a metadata file, contains all the information for generating the appropriate number of hierarchical levels on each page, and the navigation items that belong to each level. Instead of using multiple commandNavigationItem
components within each navigationPane
component and marking the current items as selected on each page, you declaratively bind each navigationPane
component to the same XMLMenuModel
implementation, and use one commandNavigationItem
component in the nodeStamp
facet to provide the navigation items. The commandNavigationItem
component acts as a stamp for navigationPane
component, stamping out navigation items for nodes (at every level) held in the XMLMenuModel
object. The JSF navigation model, through the default ActionListener
mechanism, is used to choose the page to navigate to when users select a navigation item. For more information about the menu model, see Section 18.6, "Using a Menu Model to Create a Page Hierarchy".
On any page, to show the user's current position in relation to the entire page hierarchy, you use the breadCrumbs
component with a series of commandNavigationItem
components or one commandNavigationItem
component as a nodeStamp
, to provide a path of links from the current page back to the root page (that is, the current nodes in the focus path).
For more information about creating a navigational hierarchy using the XMLMenuModel
, see Section 18.6, "Using a Menu Model to Create a Page Hierarchy". For more information about manually creating a navigational hierarchy, see Section 18.7, "Creating a Simple Navigational Hierarchy".
Note: If you want to create menus that can be used to cause some sort of change in an application (for example, a File menu that contains the commands Open and Delete), then see Chapter 14, "Using Menus, Toolbars, and Toolboxes". |
Note: If your application uses the Fusion technology stack or the ADF Controller, then you should use ADF task flows and an |
Section 18.5, "Using Navigation Items for a Page Hierarchy" describes how you can create a navigation menu for a very simple page hierarchy using navigationPane
components with multiple commandNavigationItem
children components. Using the same method for more complex page hierarchies would be time consuming and error prone. It is inefficient and tedious to manually insert and configure individual commandNavigationItem
components within navigationPane
and breadCrumbs
components on several JSF pages to create all the available items for enabling navigation. It is also difficult to maintain the proper selected status of each item, and to deduce and keep track of the breadcrumb links from the current page back to the root page.
For more complex page hierarchies (and even for simple page hierarchies), a more efficient method of creating a navigation menu is to use a menu model. A menu model is a special kind of tree model. A tree model is a collection of rows indexed by row keys. In a tree, the current row can contain child rows (for more information about a tree model, see Section 10.5, "Displaying Data in Trees"). A menu model is a tree model that knows how to retrieve the rowKey
of the node that has the current focus (the focus node). The menu model has no special knowledge of page navigation and places no requirements on the nodes that go into the tree.
The XMLMenuModel
class creates a menu model from a navigation tree model. But XMLMenuModel
class has additional methods that enable you to define the hierarchical tree of navigation in XML metadata. Instead of needing to create Java classes and configuring many managed beans to define and create the menu model (as you would if you used one of the other ADF Faces menu model classes), you create one or more XMLMenuModel
metadata files that contain all the node information needed for XMLMenuModel
class to create the menu model.
Performance Tip: Using the |
To create a page hierarchy using a menu model, you do the following:
XMLMenuModel
metadata. See Section 18.6.1, "How to Create the Menu Model Metadata". XMLMenuModel
class. The application uses the managed bean to build the hierarchy. This configuration is automatically done for you when you use the Create ADF Menu Model dialog in JDeveloper to create the XMLMenuModel
metadata file. See Section 18.6.2, "What Happens When You Use the Create ADF Menu Model Wizard". Tip: Typically, you would use a page template that contains a facet for each level of items (including global items and breadcrumbs) to create each JSF page. For example, the |
navigationPane
and breadCrumbs
components to the XMLMenuModel
class. See Section 18.6.3, "How to Bind to the XMLMenuModel in the JSF Page" and Section 18.6.4, "How to Use the breadCrumbs Component". The XMLMenuModel
metadata file is a representation of a navigation menu for a page hierarchy in XML format. In the XMLMenuModel
metadata file, the entire page hierarchy is described within the menu
element, which is the root element of the file. Every XMLMenuModel
metadata file is required to have a menu
element and only one menu
element is allowed.
The remaining nodes in the hierarchy can be made up of item nodes, group nodes, and shared nodes. Item nodes represent navigable nodes (or pages) in the hierarchy. For example, say you wanted to build the hierarchy as depicted in Figure 18-7.
If you wanted each node in the hierarchy to have its own page to which a user can navigate, then you would create an item node in the metadata for each page. You nest the children nodes inside the parent node to create the hierarchy. However, say you did not need a page for the Employee Data node, but instead wanted the user to navigate directly to the View Employee page. You would then use a group node to represent the Employee Data page and use the group node's idref
attribute to reference the page that opens (the View Employee page) when an end user clicks the Employee Data tab. The group node allows you to retain the hierarchy without needing to create pages for nodes that are simply aggregates for their children nodes.
You can also nest menu models using the shared nodes. This approach is recommended where you have sub trees in the hierarchy (for example, the Benefits tree) as it makes the page hierarchy easier to maintain. For example, you might create the entire Benefits tree as its own model so that it could be reused across an application. Instead of creating the nodes for each use, you could instead create the nodes once as a separate menu and then within the different hierarchies, use a shared node to reference the Benefits menu model.
Example 18-4 shows an XMLMenuModel
metadata file for defining a page hierarchy illustrated in Figure 18-7.
Example 18-4 XMLMenuModel Metadata File Sample
Within the root menu
element, global nodes are any types of nodes that are direct children of the menu
element; in other words, the first level of elements under the menu
element are global nodes. For example, the code in Example 18-4 shows three global nodes, namely, Home, Help, and Preferences. Within a first-level child node, nodes can be nested to provide more levels of navigation. For example, the code in Example 18-4 shows two second-level nodes under Home, namely, Benefits and Employee Data. Within Benefits, there are two third-level nodes, Insurance and Paid Time Off, and so on.
JDeveloper simplifies creating metadata for an XMLMenuModel
class by providing the Create ADF Menu Model wizard.
To create the XMLMenuModel metadata:
For example, the page hierarchy shown in Figure 18-4 has 10 nodes, including the global Help node. Thus, you would create 10 navigation cases within one global navigation rule in the faces-config.xml
file, as shown in Example 18-5.
For each navigation case, specify a unique outcome string, and the path to the JSF page that should be displayed when the navigation system returns an outcome value that matches the specified string.
Example 18-5 Global Navigation Rule for a Page Hierarchy in faces-config.xml
For more information about creating navigation cases in JDeveloper, see Section 2.3, "Defining Page Flows".
XMLMenuModel
metadata file. Under the project's Web Content - WEB-INF folder, right-click the faces-config.xml
file, and choose Create ADF Menu from the context menu. Note: If your application uses ADF Controller, then this menu option will not be available to you. You need to instead use a bounded task flow to create the hierarchy. See the "Creating a Page Hierarchy" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
XMLMenuModel
metadata file, for example, root_menu
. XMLMenuModel
metadata file in the WEB-INF
directory of the application. When you click OK, JDeveloper automatically does the following for you:
faces-config.xml
file, using the name specified in Step 3 for the managed bean name. source
managed property to the XMLMenuModel
metadata file, specified in Step 3, for example, /WEB-INF/root_menu.xml
. /WEB-INF/root_menu.xml
) as a blank XMLMenuModel
metadata file in the source editor, as shown in Example 18-6. Example 18-6 Blank XMLMenuModel Metadata File
For more information about the managed bean configuration JDeveloper automatically adds for you, see Section 18.6.2, "What Happens When You Use the Create ADF Menu Model Wizard".
Table 18-1 shows the attributes you can specify for the menu
element.
Table 18-1 Menu Element Attributes
Attribute | Description |
---|---|
| Optional. This is the resource bundle to use for the labels (visible text) of the navigation items at runtime. For example, |
| If using a resource bundle, specify an ID to use to reference the bundle in EL expressions for navigation item labels. For example, |
| Required. Set to |
Example 18-7 shows sample XMLMenuModel
metadata code that uses EL expressions to access a resource bundle for the navigation item labels.
Example 18-7 XMLMenuModel Using Resource Bundle
Note: When you use a |
For more information about using resource bundles, see Chapter 21, "Internationalizing and Localizing Pages".
itemNode
, groupNode
, or sharedNode
as needed. To begin, right-click menu and choose Insert inside menu, and then choose the desired element from the context menu, as shown in Figure 18-8. The elements can be one of the following:
itemNode
: Specifies a node that performs navigation upon user selection. groupNode
: Groups child components; the groupNode
itself does no navigation. Child nodes node can be itemNode
or another groupNode
. For example, say you did not need a page for the Employee Data node, but instead, wanted the user to navigate directly to the View Employee page. You would then use a group node to represent the Employee Data page by specifying the id
attribute of the desired child node as a value for the group node's idref
attribute. The group node allows you to retain the hierarchy without needing to create pages for nodes that are simply aggregates for their children nodes.
sharedNode
: References another XMLMenuModel
instance. A sharedNode
element is not a true node; it does not perform navigation nor does it render anything on its own. You can insert a sharedNode
element anywhere within the hierarchy. For example, in the code shown in Example 18-8, the sharedNode
element adds a submenu on the same level as the global nodes.
As you build the XMLMenuModel
metadata file, the tree structure you see in the Structure window exactly mirrors the indentation levels of the menu metadata, as shown in Figure 18-9.
itemNode
elements, Table 18-3 for groupNode
elements, and Table 18-4 for sharedNode
elements. Table 18-2 itemNode Element Attributes
Attribute | Description |
---|---|
| Specify either an outcome string or an EL method binding expression that returns an outcome string. In either case, the outcome string must match the |
| Specify the URI of the page to navigate to when the node is selected, for example, Alternatively, specify an EL method expression that evaluates to the URI. If both |
| Required. The URI of the page that matches the node's navigational result, that is, the For example, if the action outcome of the node navigates to The |
| Required. Specify a unique identifier for the node. As shown in Example 18-4, it is good practice to use "inX" for the ID of each |
| Specify the label text to display for the node. Can be an EL expression to a string in a resource bundle, for example, |
A groupNode
element does not have the action
or destination
attribute that performs navigation directly, but it points to a child node that has the action outcome or destination URI, either directly by pointing to an itemNode
child (which has the action
or destination
attribute), or indirectly by pointing to a groupNode
child that will then point to one of its child nodes, and so on until an itemNode
element is reached. Navigation will then be determined from the action outcome or destination URI of that itemNode
element.
Consider the groupNode
code shown in Example 18-9. At runtime, when users click groupNode id="gn1"
, or groupNode id="gn11"
, or itemNode id="in1"
, the navigation outcome is "goToSubTabOne
", as specified by the first itemNode
reached (that is itemNode id="id1"
). Table 18-3 shows the attributes you must specify when you use a groupNode
element.
Example 18-9 groupNode Elements
Table 18-3 GroupNode Element Attribute
Attribute | Description |
---|---|
| A unique identifier for the group node. As shown in Example 18-4, it is good practice to use |
| Specify the ID of a child node, which can be an The |
| Specify the label text to display for the group node. Can be an EL expression to a string in a resource bundle, for example, |
Table 18-4 sharedNode Element Attribute
Attribute | Description |
---|---|
| Specify the managed bean name of another At runtime, the referenced navigation menu is created, inserted as a submenu into the main (root) menu, and rendered. |
When you use the Create ADF Menu Model wizard to create an XMLMenuModel
metadata file, JDeveloper automatically configures for you a managed bean for the metadata file in the faces-config.xml
file, using the metadata file name you provide as the managed bean name.
Example 18-10 shows part of the faces-config.xml
file that contains the configuration of one XMLMenuModel
metadata file. By default, JDeveloper uses the oracle.adf.view.rich.model.MDSMenuModel
class as the managed bean class, and request
as the managed bean scope, which is required and cannot be changed.
Example 18-10 Managed Bean Configuration for XMLMenuModel in faces-config.xml
In addition, the following managed properties are added by JDeveloper for each XMLMenuModel
managed bean:
createHiddenNodes
: When true
, specifies that the hierarchical nodes must be created even if the component's rendered
attribute is false
. The createHiddenNodes
value is obtained and made available when the source menu metadata file is opened and parsed. This allows the entire hierarchy to be created, even when you do not want the actual component to be rendered. The createHiddenNodes
property must be placed before the source
property, which JDeveloper does for you when the managed bean is automatically configured. The XMLMenuModel
managed bean must have this value already set to properly parse and create the menu's XML metadata from the source
managed property.
source
: Specifies the source metadata file to use. For each XMLMenuModel
metadata file that you create in a project using the wizard, JDeveloper configures a managed bean for it in the faces-config.xml
file. For example, if you use a sharedNode
element in an XMLMenuModel
to reference another XMLMenuModel
metadata file (as shown in Example 18-8), you would have created two metadata files. And JDeveloper would have added two managed bean configurations in the faces-config.xml
file, one for the main (root) menu model, and a second managed bean for the shared (referenced) menu model, as shown in Example 18-11.
Example 18-11 Managed Bean for Shared Menu Model in faces-config.xml
This means, if you use shared nodes in your XMLMenuModel
metadata file, the faces-config.xml
file will have a root menu model managed bean, plus menu model managed beans for any menu models referenced through shared nodes.
Each node in the page hierarchy corresponds to one JSF page. On each page, you use one navigationPane
component for each level of navigation items that you have defined in your XMLMenuModel
metadata file, including global items. Levels are defined by a zero-based index number: Starting with global nodes in the metadata file (that is, direct children nodes under the menu element as shown in Example 18-4), the level attribute value is 0 (zero), followed by 1 for the next level (typically tabs), 2 for the next level after that (typically bars), and so on. For example, if you had a page hierarchy like the one shown in Figure 18-7 and Example 18-4, you would use three navigationPane
components on a page such as Home (for the three levels of navigation under the Home node), plus one more navigationPane
component for the global nodes.
Tip: Because the menu model dynamically determines the hierarchy (that is, the links that appear in each Because of this similar code, you can create a single page fragment that has just the facets containing the |
As described in Section 18.7.1, "How to Create a Simple Page Hierarchy", you use the hint
attribute to specify the type of navigation item you want to use for each hierarchical level (for example, buttons
, tabs
, or bar
). But instead of manually adding multiple commandNavigationItem
components yourself to provide the navigation items, you bind each navigationPane
component to the XMLMenuModel
managed bean, and insert only one commandNavigationItem
component into the nodeStamp
facet of each navigationPane
component, as shown in Example 18-12.
Example 18-12 navigationPane Component Bound to XMLMenuModel Managed Bean
The nodeStamp
facet and its single commandNavigationItem
component, in conjunction with the XMLMenuModel
managed bean, are responsible for:
#{menuNode.label}
retrieves the correct label text to use for a navigation item, and #{menuNode.doAction}
evaluates to the action outcome defined for the same item. selected
attribute at all for the commandNavigationItem
components. Note: If there is no node information in the |
To bind to the XMLMenuModel managed bean:
decorativeBox
component by dragging and dropping a Decorative Box from the Layout section of the Component Palette to the JSF page. Set the theme to determine how you want the tabs to appear. Valid values are: default
: Body is white with a blue border. Top-left corner is rounded. light
: Body is light blue. Top-left corner is rounded. medium
: Body is medium blue. Top-left corner is rounded. dark
: Body is dark blue. Top-left corner is rounded. You can change how the themes are displayed. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins".
navigationPane
component by dragging and dropping a Navigation Pane from the Component Palette to the JSF page. Add a navigationPane
component for each level of the hierarchy. Tip: The Navigation Pane component can be found in the Layout pane of the Component Palette. |
For example, to create any of the pages as shown in the hierarchy in Figure 18-5, you would drag and drop four navigationPane
components.
navigationPane
component, in the Property Inspector, expand the Common section and set the Hint
attribute to one of the following types of navigation items to determine how the navigationPane
will display the following: navigationPane
component's icon
attribute and you can associate a label to the dropdown list using the title
attribute. level
attribute to point to the appropriate level of metadata in the XMLMenuModel
metadata file. The level
attribute is a zero-based index number: Starting with global nodes in the metadata file (that is, direct children nodes under the menu
element as shown in Example 18-4), the level
attribute value is 0
(zero), followed by 1
for the next level (typically tabs), 2
for the next level after that (typically bars), and so on. The commandNavigationItem
component is able to get its metadata from the metadata file through the level
attribute on the parent navigationPane
component. By default, if you do not specify a level
attribute value, 0
(zero) is used, that means the navigationPane
component will take the metadata from the first-level under the menu
element for rendering by the commandNavigationItem
component.
value
attribute to the menu model managed bean that is configured for the root XMLMenuModel
class in the faces-config.xml
file. Note: The |
Set the var
attribute to text that you will use in the commandNavigationItem
components to get the needed data from the menu model.
As the hierarchy is created at runtime, and each node is stamped, the data for the current node is copied into the var
attribute, which can then be addressed using an EL expression. You specify the name to use for this property in the EL expression using the var
property.
Tip: You use the same value for the |
nodeStamp
facet of the navigationPane
component. var
attribute you set for the parent navigationPane
component in Step 6 along with the name of the corresponding itemNode
element that holds the value in the metadata. Table 18-5 shows the attributes on the navigation item that has corresponding values in the metadata. Table 18-5 Navigation Item Attributes and the Associated Menu Model Attributes
Navigation Item Attribute | Associated Menu Model Element Attribute |
---|---|
text | label |
action | doAction |
icon | icon |
destination | destination |
visible | visible |
rendered | rendered |
For example, if you had set the var
attribute on the parent navigationPane
component to menuNode
, you would use #{menuNode.doAction}
as the EL expression for the value of the action
attribute. This would resolve to the action property set in the metadata for each node. Example 18-13 shows the JSF code for binding to a menu model for the HR example.
Example 18-13 Binding to the XML Model
Creating a breadcrumb using the menu model is similar to creating the page hierarchy; you use the breadCrumbs
component with a nodeStamp
facet that stamps a commandNavigationItem
component with data from the model.
To create a breadcrumb:
breadCrumbs
component by dragging and dropping a Bread Crumbs component from the Component Palette to the JSF page. orientation
attribute to vertical
. value
attribute to the root menu model managed bean as configured in the faces-config.xml
file. This is the same bean to which the navigationPane
component is bound. Note: The |
Set the var
attribute to text that you will use in the commandNavigationItem
components to get the needed data from the menu model.
As the hierarchy is created at runtime, and each node is stamped, the data for the current node is copied into the var
attribute, which can then be addressed using an EL expression. You specify the name to use for this property in the EL expression using the var
property.
Tip: You can use the same value for the |
commandNavigationItem
component as a child by dragging and dropping a Navigation Item from the Component Palette to the nodeStamp
facet of the breadCrumbs
component. Note: The |
var
attribute you set for the parent breadCrumbs
component in Step 4 along with the name of the corresponding itemNode
element that holds the value in the metadata. Table 18-5 shows the attributes on the navigation item that has corresponding values in the metadata. For example, if you had set the var attribute on the breadCrumbs
component to menuNode
, you would use #{menuNode.doAction}
as the EL expression for the value of the action
attribute. This would resolve to the action property set in the metadata for each node.
Example 18-14 breadCrumbs Component Bound to a MenuModel
The value
attribute of navigationPane
component references the managed bean for the XMLMenuModel
element. When that managed bean is requested, the following takes place:
setSource()
method of the XMLMenuModel
class is called with the location of the model's metadata, as specified in the managed-property
element in the faces-config.xml
file. InputStream
object to the metadata is made available to the parser (SAXParser); the metadata for the navigation items is parsed, and a call to MenuContentHandler
method is made. MenuContentHandler
builds the navigation menu tree structure as a List
object in the following manner: startElement()
method is called at the start of processing a node in the metadata. endElement()
method is called at the end of processing the node. List
of navigation menu nodes that make up the page hierarchy of the menu model is created. TreeModel
object is created from the list of navigation menu nodes. XMLMenuModel
object is created from the TreeModel
object. If a groupNode
element has more than one child id in its idref
attribute, the following occurs:
idref
list, then that node is checked to see if its rendered
attribute is set to true
, its disabled
attribute is set to false
, its readOnly
attribute is set to false
, and its visible
attribute is set to true
. If any of the criteria is not met, the next ID in the idref
list is used, and so on. groupNode
element, the processing continues into its children. The processing stops when an itemNode
element that has either an action
or destination
attribute is encountered. itemNode
element has an action
attribute, the user selection initiates a POST
action and the navigation is performed through the action outcome. When the itemNode
element has a destination
attribute, the user selection initiates a GET
action and navigation is performed directly using the destination
value. The XMLMenuModel
class provides the model that correctly highlights and enables the items on the navigation menus (such as tabs and bars) as you navigate through the navigation menu system. The model is also instantiated with values for label
, doAction
, and other properties that are used to dynamically generate the navigation items.
The XMLMenuModel
class does no rendering; the navigationPane
component uses the return value from the call to the getFocusRowKey()
method to render the navigation menu items for a level on a page.
The commandNavigationItem
component housed within the nodeStamp
facet of the navigationPane
component provides the label text and action outcome for each navigation item. Each time the nodeStamp
facet is stamped, the data for the current navigation item is copied into an EL-reachable property, the name of which is defined by the var
attribute on the navigationPane
component that houses the nodeStamp
facet. The nodeStamp
displays the data for each item by getting further properties from the EL-reachable property. Once the navigation menu has completed rendering, this property is removed (or reverted back to its previous value). When users select a navigation item, the default JSF actionListener
mechanism uses the action outcome string or destination URI to handle the page navigation.
The XMLMenuModel
class, in conjunction with nodeStamp
facet also controls whether or not a navigation item is rendered as selected. As described earlier, the XMLMenuModel
object is created from a tree model, which contains viewId
attribute information for each node. The XMLMenuModel
class has a method getFocusRowKey()
that determines which page has focus, and automatically renders a node as selected if the node is on the focus path. The getFocusRowKey()
method in its most simplistic fashion does the following:
viewId
attribute. viewId
attribute value with the IDs in internal maps used to resolve duplicate viewId
values and in the viewIdFocusPathMap
object that was built by traversing the tree when the menu model was created. viewId
attribute or returns null
if the current viewId
attribute value cannot be found. The viewId
attribute of a node is used to determine the focus rowKey
object. Each item in the model is stamped based on the current rowKey
object. As the user navigates and the current viewId
attribute changes, the focus path of the model also changes and a new set of navigation items is accessed.
Custom attributes that you have created can be displayed, but only for itemNode
elements. To add an itemNode
element to access the value of a custom attribute, you need to get the tree from the menu model by:
getWrappedData()
method getFocusRowKey()
method to get the current focus path getCustomProperty()
API Example 18-15 shows an example of the required code.
Example 18-15 Accessing Custom Attributes from the XMLMenuModel
Figure 18-10 and Figure 18-11 show an example of what the user interface looks like when the navigationPane
component and individual commandNavigationItem
components are used to create a view for the page hierarchy shown in Figure 18-4.
When you create the hierarchy manually, first determine the focus path of each page (that is, where exactly in the hierarchy the page resides) in order to determine the exact number of navigationPanes
and commandNavigationItem
components needed for each page, as well as to determine whether or not each component should be configured as selected when the user visits the page. For example, in Figure 18-10, which shows the Employee Data page, only the child bars of Employee Data are needed, and the Employee Data tab renders as selected.
Similarly in Figure 18-11, which shows the Health page, only the child bars of Benefits are needed, and the Benefits tab must be configured as selected. Additionally for this page, you would create the child nodes under Insurance, which can be presented as vertical lists on the side of the page. The contents of the page are displayed in the middle, to the right of the vertical lists.
Regardless of the type of navigation items you use (such as tabs or bars), a series of commandNavigationItem
child components within each navigationPane
component provide the actual navigation items. For example, in Figure 18-11 the actual link for the Employee Data tab, the Insurance and Paid Time Off bars, and the Health and Dental links in the list are each provided by a commandNavigationItem
component.
When your navigational hierarchy contains only a few pages and is not very deep, you can elect to manually create the hierarchy. Doing so involves creating the navigation metadata, using the navigationPane
component to create the hierarchy, and using the commandNavigationItem
component to create the links.
To manually create a navigation hierarchy:
Create one global JSF navigation rule that has the navigation cases for all the nodes (that is, pages) in the page hierarchy.
For example, the page hierarchy shown in Figure 18-4 has 10 nodes, including the global Help node. Thus, you would create 10 navigation cases within one global navigation rule in the faces-config.xml
file, as shown in Example 18-16.
For each navigation case, specify a unique outcome string, and the path to the JSF page that should be displayed when the navigation system returns an outcome value that matches the specified string.
Example 18-16 Global Navigation Rule for a Page Hierarchy in faces-config.xml
For more information about creating navigation cases in JDeveloper, see Section 2.3, "Defining Page Flows".
decorativeBox
component by dragging and dropping a Decorative Box from the Layout section of the Component Palette to the JSF page. Set the theme to determine how you want the tabs to appear. Valid values are: default
: Body is white with a blue border. Top-left corner is rounded. light
: Body is light blue. Top-left corner is rounded. medium
: Body is medium blue. Top-left corner is rounded. dark
: Body is dark blue. Top-left corner is rounded. You can change how the themes are displayed. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins".
navigationPane
component by dragging and dropping a Navigation Pane from the Layout section of the Component Palette as a child to the decorativeBox
component. Add a navigationPane
component for each level of the hierarchy. For example, to create the Health page as shown in Figure 18-11, drag and drop four navigationPane
components. In the Health page, the components are dropped into specific areas of a template that already contains layout components to create the look and feel of the page.
navigationPane
component, in the Property Inspector, expand the Common section and set the Hint
attribute to one of the following types of navigation items to determine how the navigationPane
component will be displayed: navigationPane
component's icon
attribute and you can associate a label to the dropdown list using title
attribute. navigationPane
component, add the needed commandNavigationItem
components to represent the different links by dragging and dropping a Navigation Item from the Common Components section of the Component Palette. Drop a Navigation Item as a child to the navigationPane
component for each link needed. For example, to create the Health page as shown in Figure 18-11, you would use a total of six commandNavigationItem
components, two for each navigationPane
component.
Performance Tip: At runtime, when available browser space is less than the space needed to display the contents in a tab or bar of a navigation pane, or the contents of the breadcrumb, ADF Faces automatically displays overflow icons that enable users to select and navigate to those items that are out of view. The number of child components within a |
commandNavigationItem
component, set the navigation to the desired page. In the Property Inspector, expand the Common section and provide a static string outcome of an action or use an EL expression to reference an action method through the action
property. If you use a string, it must match the navigation metadata set up in the navigation rules for the page created in Step 1. If referencing a method, that method must return the required string. selected
attribute. This attribute should be true
if the commandNavigationItem
component should be displayed as selected when the page is first rendered, and false
if it should not. At runtime, when a navigation item is selected by the user, that component's selected
attribute changes to selected and the appearance changes to indicate to the user that the item has been selected. For example, in Figure 18-11 the Benefits tab, Insurance bar, and Health list item are shown as selected by a change in either background color or font style. You do not have to write any code to show the selected status; the selected
attribute on the commandNavigationItem
component for that item takes care of turning on the selected status when the attribute value is true
.
Example 18-17 shows code used to generate the navigation items that are available when the current page is Health. Because the Health page is accessed from the Insurance page from the Benefits page, the commandNavigationItem
components for those three links have selected="true"
.
Example 18-17 Sample Code Using Individual Navigation Items on One Page
In both Figure 18-10 and Figure 18-11, the user's current position in the page hierarchy is indicated by a path of links from the current page back to the root page. The path of links, also known as breadcrumbs, is displayed beneath the secondary bars, above the vertical lists (if any). To create such a path of links, you use the breadCrumbs
component with a series of commandNavigationItem
components as children.
To create a breadcrumb:
breadCrumbs
component by dragging and dropping a Bread Crumbs component from the Component Palette to the JSF page. orientation
attribute to vertical
. commandNavigationItem
component by dragging and dropping a Navigation Item from the Component Palette as a child to the breadCrumbs
component. The last item should represent the current page. Tip: Depending on the renderer or client device type, the last link in the breadcrumb may not be displayed, but you still must add the |
commandNavigationItem
component (except the last), set the navigation to the desired page. In the Property Inspector, expand the Common section and provide a static string outcome of an action or use an EL expression to reference an action method through the action
property. If you use a string, it must match the navigation metadata set up in the navigation rule for the page created in Step 1. If referencing a method, that method must return the required string. For example, to create the breadcrumb as shown on the Health page in Figure 18-11, drag and drop four navigationPane
components, as shown in Example 18-18.
Example 18-18 BreadCrumbs Component With Individual CommandNavigationItem Children
Note: Similarly, instead of using individual |
You can configure a navigationPane
component whose hint
attribute value is tabs
so that the individual tabs can be closed. You can set it such that all tabs can be closed, all but the last tab can be closed, or no tabs can be closed. When navigation tabs are configured to be removed, a close icon (for example, an X) is displayed at the end of each tab as the mouse cursor hovers over the tab.
To enable tabs removal in a navigationPane
component when hint="tabs"
, you need to do the following:
itemRemoval
attribute on navigationPane hint="tabs"
to all
or allExceptLast
. When set to allExceptLast
, all but one tab can be closed. This means as a user closes tabs, when there is only one tab left, that single last tab cannot be closed. ItemEvent
of type remove
is launched. Your code must handle this event and the actual removal of the tab, and any other desired functionality (for example, show a warning dialog or how to handle child components). For more information about events, see Chapter 5, "Handling Events." For information about using popup dialogs and windows, see Chapter 13, "Using Popup Dialogs, Menus, and Windows." itemListener
attribute on the commandNavigationItem
component to an EL expression that resolves to the handler method that will handle the actual tab removal, as shown in Example 18-19. Example 18-19 Using itemListener to Remove a Tab Item
Note: If your application uses the Fusion technology stack or the ADF Controller, then you should use ADF task flows to create the navigation system for your application page hierarchy. For details, see the "Creating a Train" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
If you have a set of pages that users should visit in a particular order, consider using the train
component on each page to display a series of navigation items that guide users through the multistep process. Figure 18-12 shows an example of what a rendered train
component might look like on a page. Not only does a train display the number of steps in a multistep process, it also indicates the location of the current step in relation to the entire process.
The train
component renders each configured step represented as a train stop, and with all the stops connected by lines. Each train stop has an image (for example, a square block) with a label underneath the image.
Each train stop corresponds to one step or one page in your multistep process. Users navigate the train stops by clicking an image or label, which causes a new page to be displayed. Typically, train stops must be visited in sequence, that is, a user must start at step 1, move to step 2, then step 3, and so on; a user cannot jump to step 3 if the user has not visited step 2.
As shown in Figure 18-12, the train
component provides at least four styles for train stops. The current stop where the user is visiting is indicated by a bold font style in the train stop's label, and a different image for the stop; visited stops before the current stop are indicated by a different label font color and image color; the next stop immediately after the current stop appears enabled; any other stops that have not been visited are grayed-out.
A train stop can include a subtrain, that is, you configure a command component (for example, a commandButton
component) to start a child multistep process from a parent stop, and then return to the correct parent stop after completing the subprocess. Suppose stop number 3 has a subprocess train containing two stops, when the user navigates into the first stop in the subprocess train, ADF Faces displays an icon representation of the parent train before and after the subprocess train, as shown in Figure 18-13.
You can use the trainButtonBar
component in conjunction with the train
component to provide additional navigation items for the train, in the form of Back and Next buttons, as shown in Figure 18-14. These Back and Next buttons allow users to navigate only to the next or previous train stop from the current stop. You can also use the trainButtonBar
component without a train
component. For example, you may want to display just the Back and Next buttons without displaying the stops when not all of the stops will be visited based on some conditional logic.
Both train components work by having the value
attribute bound to a train model of type org.apache.myfaces.trinidad.model.MenuModel
. The train menu model contains the information needed to:
Note: In an application that uses the ADF Model layer and ADF Controller, this navigation and display is set up and handled in a different manner. For more information, see the "Creating a Train" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Briefly, a menu model for the train is implemented by extending the MenuModel
abstract class, which in turn extends the TreeModel
class (for more information, see Chapter 10, "Using Tables and Trees"). A MenuModel
object represents the menu structure of a page or application or could represent the hierarchy of pages and stops involved in a flow.
Because an instance of a MenuModel
class is a special kind of a TreeModel
object, the nodes in the TreeModel
object can represent the stops of a train. The node instance that represents a train stop within the train component can be of type TrainStopModel
, or it can be any object as long as it provides the same EL structure as a TrainStopModel
object. However, the TrainStopModel
class exposes methods to retrieve the outcome, as well as the label of a stop and its immediate
, disabled
, and visited
attribute states.
The MenuModel
class can also indicate where in the tree the current train stop (page) is focused. The getFocusRowKey()
method in the MenuModel
class returns the rowKey
object of the focus page for the current viewId
. The menu model implementation for the train must also have a specific train behavior, which you can create by extending the org.apache.myfaces.trinidad.model.ProcessMenuModel
class. The train behavior controls what stops along the train users can visit while visiting at a current train stop.
To create a train stop model, you can either extend the TrainStopModel
abstract class and implement the abstract methods, or you can create your own class with the same method signatures. Your class must return a rowData
object.
Binding a train component to a train menu model is similar to binding a navigationPane
component to an XMLMenuModel
class (described in Section 18.6.3, "How to Bind to the XMLMenuModel in the JSF Page"). However, as long as your TrainStopModel
implementation returns a rowData
object, you do not need to provide the commandNavigationItem
components for each stop. At runtime ADF Faces dynamically creates the nodeStamp
facet and commandNavigationItem
component, and automatically binds the methods in the train stop model to the appropriate properties on the commandNavigationItem
component. Example 18-20 shows the simplified binding for a train.
Tip: If you need to collate information for the train stops from various places, then you will need to manually create the nodeStamp facet and the individual |
The MenuModel
implementation of your train model must provide specific train behavior. Train behavior defines how you want to control the pages users can access based on the page they are currently visiting. ADF Faces supports two train behaviors: Plus One and Max Visited.
Suppose there are 5 pages or stops in a train, and the user has navigated from page 1 to page 4 sequentially. At page 4 the user jumps back to page 2. Where the user can go next depends on which train behavior is used in the train model.
In Max Visited, from the current page 2 the user can go back to page 1, go ahead to page 3, or jump ahead to page 4. That is, Max Visited allows the user to return to a previous page or advance to any page up to the farthest page already visited. The user cannot jump ahead to page 5 from page 2 because page 5 has not yet been visited.
Given the same situation, in the Plus One behavior the user can only go ahead to page 3 or go back to page 1. That is, Plus One allows the user to return to a previous page or advance one more stop further than the current stop. The user cannot jump ahead to page 4 even though page 4 has already been visited.
To define and use a train for all pages in a multistep process:
Note: You may want to set the value of the |
train
component to the train model. See Section 18.8.3, "How to Bind to the Train Model in JSF Pages". Optionally, bind the trainButtonBar
component to the same train model, if you want to provide additional navigation buttons for the train. To define a train menu model, you create:
MenuModel
implementation with a specific train behavior (either Max Visited or Plus One) that controls what stops along the train users can visit while visiting at a current train stop, which stops should be disabled or whether the train needs to be navigated sequentially or not, among other things. ADF Faces makes it easier for you to define a train menu model by providing additional public classes, such as:
TrainStopModel
for implementing a train stop model ProcessMenuModel
and ProcessUtils
for implementing a train behavior for the train model For examples of train model classes, see the oracle.adfdemo.view.nav.rich
package of the ADF Faces Demonstration application.
To create the train model:
commandNavigationItem
component. This will allow you to use the simplified binding, as shown in Example 18-20. Alternatively, you can extend the abstract class TrainStopModel
, and implement the abstract methods in the subclass.
The properties on the commandNavigationItem
component that will be automatically EL bound are:
action
: A static action outcome or a reference to an action method that returns an action outcome. The outcome is used for page navigation through the default ActionListener
mechanism in JSF. disabled
: A boolean value that indicates whether or not the train stop should be non-interactive. Note that the train behavior you elect to use affects the value of this property. For more information, see Step 2. immediate
: A boolean value that determines whether or not data validations should be performed. Note that the train behavior you elect to use affects the value of this property. For more information, see Step 2. messageType
: A value that specifies a message alert icon over the train stop image. Possible values are none
, error
, warning
, and info
, and complete
. For more information about messages, see Chapter 17, "Displaying Tips, Messages, and Help". shortDesc
: A value that is commonly used by client user agents to display as tooltip help text for the train stop. showRequired
: A boolean value that determines whether or not to display an asterisk next to the train stop to indicate that required values are contained in that train stop page. textAndAccessKey
: A single value that sets both the label text to display for the train stop, as well as the access key to use. visited
: A boolean value that indicates whether or not the train stop has already been visited. Note that the train behavior you elect to use affects the value of this property. For more information, see Step 2. Create a class based on the MenuModel
class to facilitate the construction of a train model.
The MenuModel
implementation of your train model must have a specific train behavior. The ProcessMenuModel
class in the org.apache.myfaces.trinidad.model
package is a reference implementation of the MenuModel
class that supports the two train behaviors: Plus One and Max Visited. To implement a train behavior for a train model, you can either extend the ProcessMenuModel
class, or create your own.
In your train model class, you override the getFocusRowKey()
method (see the MenuModel
class) and implement a train behavior (see the ProcessMenuModel
and ProcessUtils
classes).
The train behaviors provided in the ProcessMenuModel
class have an effect on the visited
, immediate
, and disabled
properties of the commandNavigationItem
component.
The visited
attribute is set to true
only if that page in the train has been visited. The ProcessMenuModel
class uses the following logic to determine the value of the visited
attribute:
visited
is set to true
for any stop if it is before a max visited stop, or if it is the max visited stop itself. visited
attribute is set to true
for the current stop, or a stop that is before the current stop. When the data on the current page does not have to be validated, the immediate
attribute should be set to true
. Suppose page 4 in the Plus One behavior described earlier has data that must be validated. If the user has advanced to page 4 and then goes back to page 2, the user has to come back to page 4 again later to proceed on to page 5. This means the data on page 4 does not have to be validated when going back to page 1, 2, or 3 from page 4, but the data should be validated when going ahead to page 5. For more information about how the immediate
attribute works, see Section 4.2, "Using the Immediate Attribute".
The ProcessMenuModel
class uses the following logic to determine the value of the immediate
attribute:
immediate
attribute is set to true
for any previous step, and false
otherwise. immediate
attribute is set to false
. Note: In an application that uses the ADF Model layer, the |
The disabled
attribute is set to true
only if that page in the train cannot be reached from the current page. The ProcessMenuModel
class uses the following logic to determine the value of the disabled
attribute:
disabled
attribute will be true
for any page beyond the next available page. disabled
is set to true
for any page beyond the maximum page visited. By default, ADF Faces uses the Max Visited behavior when a non-null maxPathKey
value is passed into the train model, as determined by the managed bean you will create to support the behavior (for more information, see Section 18.8.2, "How to Configure Managed Beans for the Train Model"). If the maxPathKey
value is null
, then ADF Faces uses the Plus One behavior.
You use managed beans in a train model to gather the individual train stops into an Arraylist
object, which is turned into the tree model that is then injected into a menu model to create the train model. You must instantiate the beans with the proper values for injection into the models, and you also have to configure a managed bean for each train stop or page in the train.
To configure managed beans for the train model:
ArrayList
. If a train stop has subprocess train children, there should be a managed bean for each subprocess train stop as well.
Each bean should be an instance of the train stop model class created in Section 18.8.1, "How to Create the Train Model". Example 18-21 shows sample managed bean code for train stops in the faces-config.xml
file.
Example 18-21 Managed Beans for All Train Stops
The managed properties set the values to the train stop model object (the class created in Step 1 in Section 18.8.1, "How to Create the Train Model").
The viewId
value is the path and file name to the page that is navigated to when the user clicks a train stop.
The outcome
property value is the action outcome string that matches a JSF navigation case. The default JSF ActionListener
mechanism is used to choose the page associated with the train stop as the view to navigate to when the train stop is selected.
The label
property value is the train stop label text that displays beneath the train stop image. The value can be static or an EL expression that evaluates to a string in a resource bundle.
The model
property value is the managed bean name of the train model (see Example 18-25).
If a train stop has subprocess train children, the managed bean configuration should also include the property (for example, children
) that lists the managed bean names of the subprocess train stops in value expressions (for example, #{train4a}
), as shown in Example 18-22.
Example 18-22 Managed Bean for a Train Stop with Subprocess train Children
ArrayList
object to create the list of train stops to pass into the train tree model. Example 18-23 shows sample managed bean code for creating the train stop list.
Example 18-23 Managed Bean for Train List
The list-entries
element contains the managed bean names for the train stops (excluding subprocess train stops) in value expressions (for example, #{train1}
), listed in the order that the stops should appear on the train.
The train tree model wraps the entire train list, including any subprocess train lists. The train model managed bean should be instantiated with a childProperty
value that is the same as the property name that represents the list of subprocess train children (see Example 18-22).
Example 18-24 Managed Bean for Train Tree Model
The childProperty
property defines the property name to use to get the child list entries of each train stop that has a subprocess train.
The wrappedData
property value is the train list instance to wrap, created by the managed bean in Step 2.
This is the bean to which the train
component on each page is bound. The train model wraps the train tree model. The train model managed bean should be instantiated with a viewIdProperty
value that is the same as the property name that represents the pages associated with the train stops.
Example 18-25 shows sample managed bean code for a train model.
Example 18-25 Managed Bean for Train Model
The viewIdProperty
property value is set to the property that is used to specify the page to navigate to when the user clicks the train stop.
The wrappedData
property value is the train tree instance to wrap, created by the managed bean in Step 3.
The maxPathKey
property value is the value to pass into the train model for using the Max Visited train behavior. ADF Faces uses the Max Visited behavior when a non-null maxPathKey
value is passed into the train model. If the maxPathKey
value is null
, then ADF Faces uses the Plus One behavior.
Each stop in the train corresponds to one JSF page. On each page, you use one train
component and optionally a trainButtonBar
component to provide buttons that allow the user to navigate through the train.
To bind the train component to the train model:
train
component by dragging and dropping a Train from the Component Palette to the JSF page. Optionally drag and drop a Train Button Bar. MenuModel
implementation for a train model returns a rowData
object similar to the public abstract class oracle.adf.view.rich.model.TrainStopModel
, you can use the simplified form of train binding in the train components, as shown in the following code: The trainMenuModel
in the EL expression is the managed bean name for the train model (see Example 18-25).
If you cannot use the simplified binding, you must bind the train value to the train model bean, manually add the nodeStamp
facet to the train, and to that, add a commandNavigationItem
component, as shown in Example 18-26.
This chapter describes how you can create reusable content and then use that content to build portions of your JSF pages or entire pages.
This chapter includes the following sections:
As you build JSF pages for your application, some pages may become complex and long, making editing complicated and tedious. Some pages may always contain a group of components arranged in a very specific layout, while other pages may always use a specific group of components in multiple parts of the page. And at times, you may want to share some parts of a page or entire pages with other developers. Whatever the case is, when something changes in the UI, you have to replicate your changes in many places and pages. Building and maintaining all those pages, and making sure that some sets or all are consistent in structure and layout can become increasingly inefficient.
Instead of using individual UI components to build pages, you can use page building blocks to build parts of a page or entire pages. The building blocks contain the frequently or commonly used UI components that create the reusable content for use in one or more pages of an application. Depending on your application, you can use just one type of building block, or all types in one or more pages. And you can share some building blocks across applications. When you modify the building blocks, the JSF pages that use the reusable content are automatically updated as well. Thus, by creating and using reusable content in your application, you can build web user interfaces that are always consistent in structure and layout, and an application that is scalable and extensible.
ADF Faces provides the following types of reusable building blocks:
Tip: If your application uses the ADF Controller and the ADF Model layer, then you can also use ADF regions. Regions used in conjunction with ADF bounded task flows, encapsulate business logic, process flow, and UI components all in one package, which can then be reused throughout the application. For complete information about creating and using ADF bounded task flows as regions, see the "Using Task Flows as Regions" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Page templates, declarative components, and regions implement the javax.faces.component.NamingContainer
interface. At runtime, in the pages that consume reusable content, the page templates, declarative components, or regions create component subtrees, which are then inserted into the consuming page's single, JSF component tree. Because the consuming page has its own naming container, when you add reusable content to a page, take extra care when using mechanisms such as partialTargets
and findComponent()
, as you will need to take into account the different naming containers for the different components that appear on the page. For more information about naming containers, see Section 3.5, "Locating a Client Component on a Page."
If you plan to include resources such as CSS or JavaScript, you can use the af:resource
tag to add the resources to the page. If this tag is used in page templates and declarative components, the specified resources will be added to the consuming page during JSP execution. For more information, see Section 19.5, "Adding Resources to Pages."
As you build web pages for an application, some pages may quickly become large and unmanageable. One possible way to simplify the process of building and maintaining complex pages is to use page fragments.
Large, complex pages broken down into several smaller page fragments are easier to maintain. Depending on how you design a page, the page fragments created for one page may be reused in other pages. For example, suppose different parts of several pages use the same form, then you might find it beneficial to create page fragments containing those components in the form, and reuse those page fragments in several pages. Deciding on how many page fragments to create for one or more complex pages depends on your application, the degree to which you wish to reuse portions of a page between multiple pages, and the desire to simplify complex pages.
Page fragments are incomplete JSF pages. A complete JSF page that uses ADF Faces must have the document
tag enclosed within an f:view
tag. The contents for the entire page are enclosed within the document
tag. A page fragment, on the other hand, represents a portion of a complete page, and does not contain the f:view
or document
tags. The contents for the page fragment are simply enclosed within a jsp:root
tag.
When you build a JSF page using page fragments, the page can use one or more page fragments that define different portions of the page. The same page fragment can be used more than once in a page, and in multiple pages.
Note: The view parts of a page (fragments, declarative components, and the main page) all share the same request scope. This may result in a collision when you use the same fragment or declarative component multiple times on a page and the fragments or components share a backing bean. For more information about scopes, see Section 4.6, "Object Scope Lifecycles." |
For example, the File Explorer application uses one main page (index.jspx
) that includes the following page fragments:
popups.jspx
: Contains all the popup code used in the application. help.jspx
: Contains the help content. header.jspx
: Contains the toolbars and menus for the application. navigators.jspx
: Contains the tree that displays the folder hierarchy of the application. contentViews.jspx
: Contains the content for the folder selected in the navigator pane. Example 19-1 shows the abbreviated code for the included header.jspx
page fragment. Note that it does not contain an f:view
or document
tag.
Example 19-1 header.jspx Page Fragment
When you consume a page fragment in a JSF page, at the part of the page that will use the page fragment contents, you insert the jsp:include
tag to include the desired page fragment file, as shown in Example 19-2, which is abbreviated code from the index.jspx
page.
Example 19-2 File Explorer Index JSF Page Includes Fragments
When you modify a page fragment, the pages that consume the page fragment are automatically updated with the modifications. With pages built from page fragments, when you make layout changes, it is highly probable that modifying the page fragments alone is not sufficient; you may also have to modify every page that consumes the page fragments.
Note: If the consuming page uses ADF Model data binding, the included page fragment will use the binding container of the consuming page. Only page fragments created as part of ADF bounded task flows can have their own binding container. For information about ADF bounded task flows, see the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Like complete JSF pages, page fragments can also be based on a page template, as shown in Example 19-3. For information about creating and applying page templates, see Section 19.3, "Using Page Templates," and Section 19.3.3, "How to Create JSF Pages Based on Page Templates."
Example 19-3 Page Fragment Based on a Template
Page fragments are just like any JSF page, except you do not use the f:view
or document
tags in page fragments. You can use the Create JSF Page Fragment wizard to create page fragments. When you create page fragments using the wizard, JDeveloper uses the extension .jsff
for the page fragment files. If you do not use the wizard, you can use .jspx
as the file extension (as the File Explorer application does); there is no special reason to use .jsff
other than quick differentiation between complete JSF pages and page fragments when you are working in the Application Navigator in JDeveloper.
To create a page fragment:
By default, JDeveloper saves page fragments in the project's /public_html
directory in the file system. For example, you could change the default directory to /public_html/fragments
.
When the page fragment creation is complete, JDeveloper displays the page fragment file in the visual editor.
You can use any ADF Faces or standard JSF component, for example table
, panelHeader
, or f:facet
.
Example 19-4 shows an example of a page fragment that contains a menu component.
Example 19-4 Page Fragment Sample
In JDeveloper, because page fragment files use a different file extension from regular JSF pages, configuration entries are added to the web.xml
file for recognizing and interpreting .jsff
files in the application. Example 19-5 shows the web.xml
configuration entries needed for .jsff
files, which JDeveloper adds for you when you first create a page fragment using the wizard.
Example 19-5 Entries in web.xml for Recognizing and Interpreting .jsff Files
By specifying the url-pattern
subelement to *.jsff
and setting the is-xml
subelement to true
in a jsp-property-group
element, the application will recognize that files with extension .jsff
are actually JSP documents, and thus must be interpreted as XML documents.
To consume a page fragment in a JSF page, add the page using either the Component Palette or the Application Navigator.
You can use the jsp:include
tag to include the desired page fragment file
To add a page fragment using the Component Palette:
jsp:include
tag by dragging and dropping Include from the Component Palette. You can drag and drop the page fragment directly onto the page.
To add a page fragment using the Application Navigator:
When the page that contains the included page(s) is executed, the jsp:include
tag evaluates the view ID during JSF tree component build time and dynamically adds the content to the parent page at the location of the jsp:include tag
. The fragment becomes part of the parent page after the component tree is built.
Page templates let you define entire page layouts, including values for certain attributes of the page. When pages are created using a template, they all inherit the defined layout. When you make layout modifications to the template, all pages that consume the template will automatically reflect the layout changes. You can either create the layout of your template yourself, or you can use one of the many quick layout designs. These predefined layouts automatically insert and configure the correct components required to implement the layout look and behavior you want. For example, you may want one column's width to be locked, while another column stretches to fill available browser space. Figure 19-1 shows the quick layouts available for a two-column layout with the second column split between two panes. For more information about the layout components, see Chapter 8, "Organizing Content on Web Pages."
To use page templates in an application, you first create a page template definition. Page template definitions must be JSF documents written in XML syntax (with the file extension of .jspx
) because page templates embed XML content. In contrast to regular JSF pages where all components on the page must be enclosed within the f:view
tag, page template definitions cannot contain an f:view
tag and must have pageTemplateDef
as the root tag. Either the template or the page that uses the template must contain the document
tag, but they cannot both contain the tag (by default, JDeveloper adds the document
tag to the consuming page).
A page template can have fixed content areas and dynamic content areas. For example, if a Help button should always be located at the top right-hand corner of pages, you could define such a button in the template layout, and when page authors use the template to build their pages, they do not have to add and configure a Help button. Dynamic content areas, on the other hand, are areas of the template where page authors can add contents within defined facets of the template or set property values that are specific to the type of pages they are building.
The entire description of a page template is defined within the pageTemplateDef
tag, which has two sections. One section is within the xmlContent
tag, which contains all the page template component metadata that describes the template's supported content areas (defined by facets), and available properties (defined as attributes). The second section (anything outside of the xmlContent
tag) is where all the components that make up the actual page layout of the template are defined. The components in the layout section provide a JSF component subtree that is used to render the contents of the page template.
Facets act as placeholders for content on a page. In a page that consumes a template, page authors can insert content for the template only in named facets that have already been defined. This means that when you design a page template, you must define all possible facets within the xmlContent
tag, using a facet
element for each named facet. In the layout section of a page template definition, as you build the template layout using various components, you use the facetRef
tag to reference the named facets within those components where content can eventually be inserted into the template by page authors.
For example, the fileExplorerTemplate
template contains a facet for copyright information and another facet for application information, as shown in Example 19-6.
Example 19-6 Facet Definition in a Template
In the layout section of the template as shown in Example 19-7, a panelGroupLayout
component contains a table whose cell contains a reference to the appCopyright
facet and another facet contains a reference to the appAbout
facet. This is where a page developer will be allowed to place that content.
Example 19-7 Facet References in a Page Template
Note: To avoid component ID collisions at runtime, each named facet can be referenced only once in the layout section of the page template definition. That is, you cannot use multiple |
While the pageTemplateDef
tag describes all the information and components needed in a page template definition, the JSF pages that consume a page template use the pageTemplate
tag to reference the page template definition. Example 19-7 shows how the index.jspx
page references the fileExplorerTemplate
template, provides values for the template's attributes, and places content within the template's facet definitions.
At design time, page developers using the template can insert content into the appCopyright
facet, using the f:facet
tag, as shown in Example 19-8
Example 19-8 Using Page Templates Facets in a JSF Page
At runtime, the inserted content is displayed in the right location on the page, as indicated by af:facetRef facetName="appCopyright"
in the template definition.
Note: You cannot run a page template as a run target in JDeveloper. You can run the page that uses the page template. |
Page template attributes specify the component properties (for example, headerGlobalSize
) that can be set or modified in the template. While facet
element information is used to specify where in a template content can be inserted, attribute
element information is used to specify what page attributes are available for passing into a template, and where in the template those attributes can be used to set or modify template properties.
For the page template to reference its own attributes, the pageTemplateDef
tag must have a var
attribute, which contains an EL variable name for referencing each attribute defined in the template. For example, in the fileExplorerTemplate
template, the value of var
on the pageTemplateDef
tag is set to attrs
. Then in the layout section of the template, an EL expression such as #{attrs.someAttributeName}
is used in those component attributes where page authors are allowed to specify their own values or modify default values.
For example, the fileExplorerTemplate
template definition defines an attribute for the header size, which has a default int
value of 100
pixels as shown in Example 19-9.
Example 19-9 Page Template AttributeDefinition
In the layout section of the template, the splitterPosition
attribute of the panelSplitter
component references the headerGlobalSize
attribute in the EL expression #{attrs.headerGlobalSize}
, as shown in the following code:
When page authors use the template, they can modify the headerGlobalSize
value using f:attribute
, as shown in the following code:
At runtime, the specified attribute value is substituted into the appropriate part of the template, as indicated by the EL expression that bears the attribute name.
Tip: If you define a resource bundle in a page template, the pages that consume the template will also be able to use the resource bundle. For information about using resource bundles, see Section 21.3, "Manually Defining Resource Bundles and Locales." |
For a simple page template, it is probably sufficient to place all the components for the entire layout section into the page template definition file. For a more complex page template, you can certainly break the layout section into several smaller fragment files for easier maintenance, and use jsp:include
tags to include and connect the various fragment files.
When you break the layout section of a page template into several smaller fragment files, all the page template component metadata must be contained within the xmlContent
tag in the main page template definition file. There can be only one xmlContent
tag within a pageTemplateDef
tag. You cannot have page template component metadata in the fragment files; fragment files can contain portions of the page template layout components only.
Note: You cannot nest page templates inside other page templates. |
If your template requires resources such as custom styles defined in CSS or JavaScript, then you need to include these on the consuming page, using the af:resource
tag. For more information, see Section 19.5, "Adding Resources to Pages."
JDeveloper simplifies creating page template definitions by providing the Create JSF Page Template wizard, which lets you add named facets and attributes declaratively to create the template component metadata section of a template. In addition to generating the metadata code for you, JDeveloper also creates and modifies a pagetemplate-metadata.xml
file that keeps track of all the page templates you create in a project.
Performance Tip: Because page templates may be present in every application page, templates should be optimized so that common overhead is avoided. One example of overhead is round corners, for example on boxes, which are quite expensive. Adding them to the template will add overhead to every page. |
To create a page template definition:
.jspx
) because they embed XML content. Performance Tip: Avoid long names because they can have an impact on server-side, network traffic, and client processing. |
Facets are predefined areas on a page template where content can eventually be inserted when building pages using the template. Each facet must have a unique name. For example, you could define a facet called main
for the main content area of the page, and a facet called branding
for the branding area of the page.
Attributes are UI component attributes that can be passed into a page when building pages using the template. Each attribute must have a name and class type. Note that whatever consumes the attribute (for example an attribute on a component that you configure in Step 12) must be able to accept that type. You can assign default values, and you can specify that the values are mandatory by selecting the Required
checkbox.
Once you complete the wizard, JDeveloper displays the page template definition file in the visual editor. Example 19-10 shows the code JDeveloper adds for you when you use the wizard to define the metadata for a page template definition. You can view this code in the source editor.
Tip: Once a template is created, you can add facets and attributes by selecting the |
Note: When you change or delete any facet name or attribute name in the template component metadata, you have to manually change or delete the facet or attribute name referenced in the layout section of the template definition, as well as the JSF pages that consume the template. |
Example 19-10 Component Metadata in Page Template Definition
In the layout section of a page template definition (or in fragment files that contain a portion of the layout section), you cannot use the f:view
tag, because it is already used in the JSF pages that consume page templates.
Best Practice Tip: You should not use the |
You can add any number of components to the layout section. If you did not choose to use one of the quick start layouts, then typically, you would add a panel component such as panelStretchLayout
or panelGroupLayout
, and then add the components that define the layout into the panel component. For more information, see Chapter 8, "Organizing Content on Web Pages."
Declarative components and databound components may be used in the layout section. For information about using declarative components, see Section 19.4, "Using Declarative Components." For information about using databound components in page templates, see the "Using Page Templates" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For example, if you have defined a main
facet for the main content area on a page template, you might add the facetRef
tag as a child in the center
facet of panelStretchLayout
component to reference the main
facet. At design time, when the page author drops content into the main
facet, the content is placed in the correct location on the page as defined in the template.
When you use the facetRef
tag to reference the appropriate named facet, JDeveloper displays the Insert FacetRef dialog. In that dialog, select a facet name from the dropdown list, or enter a facet name. If you enter a facet name that is not already defined in the component metadata of the page template definition file, JDeveloper automatically adds an entry for the new facet definition in the component metadata within the xmlContent
tag.
Note: Each facet can be referenced only once in the layout section of the page template definition. That is, you cannot use multiple |
To specify where attributes should be used in the page template, use the page template's var
attribute value to reference the relevant attributes on the appropriate components in the layout section.
The var
attribute of the pageTemplateDef
tag specifies the EL variable name that is used to access the page template's own attributes. As shown in Example 19-10, the default value of var
used by JDeveloper is attrs
.
For example, if you have defined a title
attribute and added the panelHeader
component, you might use the EL expression #{attrs.title}
in the text
value of the panelHeader
component, as shown in the following code, to reference the value of title
:
jsp:include
tag wrapped inside the subview
tag to reference a fragment file, as shown in the following code: The included fragment file must also be an XML document, containing only jsp:root
at the top of the hierarchy. For more information about using fragments, see Section 19.2.3, "How to Use a Page Fragment in a JSF Page."
By creating a few fragment files for the components that define the template layout, and then including the fragment files in the page template definition, you can split up an otherwise large template file into smaller files for easier maintenance.
Note: If components in your page template use ADF Model data binding, or if you chose to associate an ADF page definition when you created the template, JDeveloper automatically creates files and folders related to ADF Model. For information about the files used with page templates and ADF Model data binding, the "Using Page Templates" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The first time you use the wizard to create a JSF page template in a project, JDeveloper automatically creates the pagetemplate-metadata.xml
file, which is placed in the /ViewController/src/META-INF
directory in the file system.
For each page template that you define using the wizard, JDeveloper creates a page template definition file (for example, sampleTemplateDef1.jspx
), and adds an entry to the pagetemplate-metadata.xml
file. Example 19-11 shows an example of the pagetemplate-metadata.xml
file.
Example 19-11 Sample pagetemplate-metadata.xml File
Note: When you rename or delete a page template in the Application Navigator, JDeveloper renames or deletes the page template definition file in the file system, but you must manually change or delete the page template entry in the |
The pagetemplate-metadata.xml
file contains the names and paths of all the page templates that you create in a project. This file is used to determine which page templates are available when you use a wizard to create template-based JSF pages, and when you deploy a project containing page template definitions.
Typically, you create JSF pages in the same project where page template definitions are created and stored. If the page templates are not in the same project as where you are going to create template-based pages, first deploy the page templates project to an ADF Library JAR. For information about deploying a project, see the "Reusing Application Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Deploying a page template project also allows you to share page templates with other developers working on the application.
Note: If the template uses |
You can use page templates to build JSF pages or page fragments. If you modify the layout section of a page template later, all pages or page fragments that use the template are automatically updated with the layout changes.
In the page that consumes a template, you can add content before and after the pageTemplate
tag. In general, you would use only one pageTemplate
tag in a page, but there are no restrictions for using more than one.
JDeveloper simplifies the creation of JSF pages based on page templates by providing a template selection option in the Create JSF Page or Create JSF Page Fragment wizard.
To create a JSF page or page fragment based on a page template:
Tip: Only page templates that have been created using the template wizard in JDeveloper are available for selection. If the Use Page Template dropdown list is disabled, this means no page templates are available in the project where you are creating new pages. |
By default, JDeveloper displays the new page or page fragment in the visual editor. The facets defined in the page template appear as named boxes in the visual editor. If the page template contains any default values, you should see the values in the Property Inspector, and if the default values have some visual representation (for example, size), that will be reflected in the visual editor, along with any content that is rendered by components defined in the layout section of the page template definition.
Within the form
tag, you can drop content before and after the pageTemplate
tag.
The type of components you can drop into a facet may be dependent on the location of the facetRef
tag in the page template definition. For example, if you've defined a facetRef
tag to be inside a table
component in the page template definition, then only column
components can be dropped into the facet because the table
component accepts only column
components as children.
Tip: The content you drop into the template facets may contain ADF Model data binding. In other words, you can drag and drop items from the Data Controls panel. For more information about using ADF Model data binding, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
You can assign static values to the predefined attributes, or you can use EL expressions (for example, #{myBean.somevalue}
). When you enter a value for an attribute, JDeveloper adds the f:attribute
tag to the code, and replaces the attribute's default value (if any) with the value you assign (see Example 19-12).
At runtime, the default or assigned attribute value is used or displayed in the appropriate part of the template, as specified in the page template definition by the EL expression that bears the name of the attribute (such as #{attrs.someAttributeName}
).
Note: In addition to predefined template definition attributes, the Property Inspector also shows other attributes of the The |
af:resource
tag. For more information, see Section 19.5, "Adding Resources to Pages." When you create a page using a template, JDeveloper inserts the pageTemplate
tag, which references the page template definition, as shown in Example 19-12. Any components added inside the template's facets use the f:facet
tag to reference the facet. Any attribute values you specified are shown in the f:attribute
tag.
Example 19-12 JSF Page that References a Page Template
When a JSF page that consumes a page template is executed:
pageTemplate
component in the consuming page, using the viewId
attribute (for example, <af:pageTemplate viewId="/sampleTemplateDef1.jspx"/>
), locates the page template definition file that contains the template component metadata and layout. pageTemplateDef
tag is instantiated and inserted into the consuming page's component tree at the location identified by the pageTemplate
tag in the page. facet
tag. The facet contents of each facet
tag are inserted into the appropriate location on the template as specified by the corresponding facetRef
tag in the layout section of the pageTemplateDef
tag. attribute
tag. The pageTemplateDef
tag sets the value of the var
attribute so that the pageTemplate
tag can internally reference its own parameters. The pageTemplate
tag just sets the parameters; the runtime maps those parameters into the attributes defined in the pageTemplateDef
tag. pageTemplate
tag applies any default values to its attributes and checks for required values. Note: Page templates are processed during JSP execution, not during JSF processing (that is, component tree creation). This means that fragments built from page templates cannot be used within tags that require the component tree creation. For example, you could not include a fragment based on a template within an |
For information about what happens when the page template uses ADF Model data binding, see the "Using Page Templates" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The pageTemplate
component acts as a naming container for all content in the template (whether it is direct content in the template definition, or fragment content included using the jsp:include
action). When working with client-side events in template-based pages, you must include the template's ID when using code to locate a component. For more details, see Section 5.3.7, "What You May Need to Know About Using Naming Containers."
Declarative components are reusable, composite UI components that are made up of other existing ADF Faces components. Suppose you are reusing the same components consistently in multiple circumstances. Instead of copying and pasting the commonly used UI elements repeatedly, you can define a declarative component that comprises those components, and then reuse that composite declarative component in multiple places or pages.
Note: The view parts of a page (fragments, declarative components, and the main page) all share the same request scope. This may result in a collision when you use the same fragment or declarative component multiple times on a page, and when they share a backing bean. For more information about scopes, see Section 4.6, "Object Scope Lifecycles." |
To use declarative components in an application, you first create an XML-based declarative component definition, which is a JSF document written in XML syntax (with a file extension of .jspx
). Declarative component JSF files do not contain the f:view
and document
tags, and they must have componentDef
as the root tag.
The entire description of a declarative component is defined within two sections. One section is xmlContent
, which contains all the page template component metadata that describes the declarative component's supported content areas. A declarative component's metadata includes the following:
Tip: Facets are the only area within a declarative component that can contain content. That is, when used on a JSF page, a declarative component may not have any children. Create facets for all areas where content may be needed. |
panelHeader
component, you may decide to create an attribute named Title
. You may then design the declarative component so that the value of the Title
attribute is used as the value for the text
attribute of the panelHeader
component. You can provide default values for attributes that the user can then override. Tip: Because users of a declarative component will not be able to directly set attributes on the individual components, you must be sure to create attributes for all attributes that you want users to be able to set or override the default value. Additionally, if you want the declarative component to be able to use client-side attributes (for example, |
actionListener
attribute to the declared method. When page developers use the declarative component, they rebind to a method on a managed bean that contains the logic required by the component. For example, say your declarative component contains a button that you knew always had to invoke an actionEvent
method. You might create a declarative method named method1
that used the signature void method(javax.faces.event.ActionEvent)
. You might then bind the actionListener
attribute on the button to the declared method. When page developers use the declarative component, JDeveloper will ask them to provide a method on a backing bean that uses the same signature.
The second section (anything outside of the xmlContent
tag) is where all the components that make up the declarative component are defined. Each component contains a reference back to the facet that will be used to add content to the component.
To use declarative components in a project, you first must deploy the library that contains the declarative component as an ADF Library. You can then add the deployed ADF Library JAR to the project's properties, which automatically inserts the JSP tag library or libraries into the project's properties. Doing so allows the component(s) to be displayed in the Component Palette so that you can drag and drop them onto a JSF page.
For example, say you want to create a declarative component that uses a panelBox
component. In the panelBox
component's toolbar, you want to include three buttons that can be used to invoke actionEvent
methods on a backing bean. To do this, create the following:
Content
to hold the content of the panelBox
component. Title
to determine the text to display as the panelBox
component's title. buttonText1
, buttonText2
, and buttonText3
) to determine the text to display on each button. display1
, display2
, display3
) to determine whether or not the button will render, because you do not expect all three buttons will be needed every time the component is used. method1
, method2
, and method3
) that each use the actionEvent
method signature. panelBox
component whose text
attribute is bound to the created Title
attribute, and references the Content
facet. toolbarButton
components. The text
attribute for each would be bound to the corresponding buttonText
attribute, the render
attribute would be bound to the corresponding display
attribute, and the actionListener
attribute would be bound to the corresponding method
name. Figure 19-2 shows how such a declarative component would look in the visual editor.
When a page developer drops a declarative component that contains required attributes or methods onto the page, a dialog opens asking for values.
If the developer set values where only the first two buttons would render, and then added a panelGroupLayout
component with output text, the page would render as shown in Figure 19-3.
Note: You cannot use fragments or ADF databound components in the component layout of a declarative component. If you think some of the components will need to be bound to the ADF Model layer, then create attributes for those component attributes that need to be bound. The user of the declarative component can then manually bind those attributes to the ADF Model layer. Additionally, because declarative components are delivered in external JAR files, the components cannot use the |
If your declarative component requires resources such as custom styles defined in CSS or JavaScript, then you need to include these using the af:resource
tag on the consuming page. For more information, see Section 19.5, "Adding Resources to Pages."
JDeveloper simplifies creating declarative component definitions by providing the Create JSF Declarative Component wizard, which lets you create facets, and define attributes and methods for the declarative component. The wizard also creates metadata in the component-extension
tile that describes tag library information for the declarative component. The tag library metadata is used to create the JSP tag library for the declarative component.
First you add the template component metadata for facets and attributes inside the xmlContent
section of the componentDef
tag. After you have added all the necessary component metadata for facets and attributes, then you add the components that define the actual layout of the declarative component in the section outside of the xmlContent
section.
Best Practice Tip: Because the tag library definition (TLD) for the declarative component must be generated before the component can be used, the component must be deployed to a JAR file before it can be consumed. It is best to create an application that contains only your declarative components. You can then deploy all the declarative components in a single library for use in multiple applications. |
To create a declarative component definition:
The name you specify will be used as the display name of the declarative component in the Component Palette, as well as the name of the Java class generated for the component tag. Only alphanumeric characters are allowed in the name for the declarative component, for example, SampleName
or SampleName1
.
The file name is the name of the declarative component definition file (for example, componentDef1.jspx
). By default, JDeveloper uses .jspx
as the file extension because declarative component definition files must be XML documents.
By default, JDeveloper saves declarative component definitions in the /ViewController/public_html
directory in the file system. For example, you could save all declarative component definitions in the /View Controller/public_html/declcomps
directory.
dcomponent1
). JDeveloper uses the package name when creating the Java class for the declarative component. dcompLib1
). /dcomponentLib1
). dc
). Facets in a declarative component are predefined areas where content can eventually be inserted. The components you use to create the declarative component will reference the facets. When page developers use the declarative components, they will place content into the facets, which in turn will allow the content to be placed into the individual components. Each facet must have a unique name. For example, your declarative component has a panelBox
component, you could define a facet named box-main
for the content area of the panelBox
component.
Attributes are UI component attributes that can be passed into a declarative component. Each attribute must have a name and class type. Possible class types to use are: java.lang.String
, int
, boolean
, and float
. You can assign default values, and you can specify that the values are mandatory by selecting the Required checkbox.
Tip: You must create attributes for any attributes on the included components for which you want users to be able to set or change values. Remember to also add attributes for any tags you may need to add to support functionality of the component, for example values required by the |
Declarative methods allow you to bind command component actions or action listeners to method signatures, which will later resolve to actual methods of the same signature on backing beans for the page on which the components are used. You can click the ellipses button to open the Method Signature dialog, which allows you to search for and build your signature.
When you complete the dialog, JDeveloper displays the declarative component definition file in the visual editor.
Tip: Once a declarative component is created, you can add facets and attributes by selecting the |
componentDef
tag in the Structure window. Suppose you dropped a panelBox
component. In the Structure window, JDeveloper adds the component after the xmlContent
tag. It does not matter where you place the components for layout, before or after the xmlContent
tag, but it is good practice to be consistent.
You can use any number of components in the component layout of a declarative component. Typically, you would add a component such as panelFormLayout
or panelGroupLayout
, and then add the components that define the layout into the panel component.
Note: You cannot use fragments or ADF databound components in the component layout of a declarative component. If you think some of the components will need to be bound to the ADF Model layer, then create attributes for those component attributes. The user of the declarative component can then manually bind those attributes to the ADF Model layer. For more information about using the ADF Model layer, see the "Using ADF Model in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Additionally, because declarative components are delivered in external JAR files, the components cannot use the |
facetRef
tag to reference the appropriate named facet. For example, if you have defined a content
facet for the main content area, you might add the facetRef
tag as a child in the panelBox
component to reference the content
facet. At design time, when the page developer drops components into the content
facet, the components are placed in the panelBox
component.
When you drag FacetRef from the Component Palette and drop it in the desired location on the page, JDeveloper displays the Insert FacetRef dialog. In that dialog, select a facet name from the dropdown list, or enter a facet name. If you enter a facet name that is not already defined in the component metadata of the definition file, JDeveloper automatically adds an entry for the new facet definition in the component metadata within the xmlContent
tag.
Note: Each facet can be referenced only once. That is, you cannot use multiple |
To specify where attributes should be used in the declarative component, use the Property Inspector and the Expression Builder to bind component attribute values to the created attributes.
For example, if you have defined a title
attribute and added a panelBox
as a component, you might use the dropdown menu next to the text attribute in the Property Inspector to open the Expression Builder, as shown in Figure 19-4.
In the Expression Builder, you can expand the JSP Objects > attrs node to select the created attribute that should be used for the value of the attribute in the Property Inspector. For example, Figure 19-5 shows the title attribute selected in the Expression Builder. Click the Insert Into Expression button and then click OK to add the expression as the value for the attribute.
actionListener
attribute and choose Edit to open the Edit Property dialog. This dialog allows you to choose one of the declarative methods you created for the declarative component. In the dialog, select Declarative Component Methods, select the declarative method from the dropdown list, and click OK.
When you first use the Create JSF Declarative Component wizard, JDeveloper creates the metadata file using the name you entered in the wizard. The entire definition for the component is contained in the componentDef
tag. This tag uses two attributes. The first is var
, which is a variable used by the individual components to access the attribute values. By default, the value of var
is attrs
. The second attribute is componentVar
, which is a variable used by the individual components to access the methods. By default the value of componentVar
is component
.
The metadata describing the facets, attributes, and methods is contained in the xmlContent
tag. Facet information is contained within the facet
tag, attribute information is contained within the attribute
tag, and method information is contained within the component-extension
tag, as is library information. Example 19-13 shows abbreviated code for the declarative component shown in Figure 19-2.
Example 19-13 Declarative Component Metadata in the xmlContent Tag
Metadata for the included components is contained after the xmlContent
tag. The code for these components is the same as it might be in a standard JSF page, including any attribute values you set directly on the components. Any bindings you created to the attributes or methods use the component's variables in the bindings. Example 19-14 shows the code for the panelBox
component with the three buttons in the toolbar. Notice that the facetRef
tag appears as a child to the panelBox
component, as any content a page developer will add will then be a child to the panelBox
component.
Example 19-14 Components in a Declarative Component
The first time you use the wizard to create a declarative component in a project, JDeveloper automatically creates the declarativecomp-metadata.xml
file, which is placed in the /ViewController/src/META-INF
directory in the file system.
For each declarative component that you define using the wizard, JDeveloper creates a declarative component definition file (for example, componentDef1.jspx
), and adds an entry to the declarativecomp-metadata.xml
file. Example 19-15 shows an example of the declarativecomp-metadata.xml
file.
Example 19-15 Sample declarativecomp-metadata.xml File
Note: When you rename or delete a declarative component in the Application Navigator, JDeveloper renames or deletes the declarative component definition file in the file system, but you must manually change or delete the declarative component entry in the |
The declarativecomp-metadata.xml
file contains the names, paths, and tag library information of all the declarative components you create in the project. When you deploy the project, the metadata is used by JDeveloper to create the JSP tag libraries and Java classes for the declarative components.
Declarative components require a tag library definition (TLD) in order to be displayed. JDeveloper automatically generates the TLD when you deploy the project. Because of this, you must first deploy the project that contains your declarative components before you can use them. This means before you can use declarative components in a project, or before you can share declarative components with other developers, you must deploy the declarative component definitions project to an ADF Library JAR. For instructions on how to deploy a project to an ADF Library JAR, see the "Reusing Application Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Briefly, when you deploy a project that contains declarative component definitions, JDeveloper adds the following for you to the ADF Library JAR:
componentDef1Tag.class
) for each declarative component definition (that is, for each componentDef
component) declarativecomp-metadata.xml
file To use declarative components in a consuming project, you add the deployed ADF Library JAR to the project's properties. For instructions on how to add an ADF Library JAR, see the "Reusing Application Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. By adding the deployed JAR, JDeveloper automatically inserts the JSP tag library or libraries (which contain the reusable declarative components) into the project's properties, and also displays them in the Component Palette.
In JDeveloper, you add declarative components to a JSF page just like any other UI components, by selecting and dragging the components from the Component Palette, and dropping them into the desired locations on the page. Your declarative components appear in a page of the palette just for your tag library. Figure 19-6 shows the page in the Component Palette for a library with a declarative component.
When you drag a declarative component that contains required attributes onto a page, a dialog opens where you enter values for any defined attributes.
Once the declarative component is added to the page, you must manually bind the declarative methods to actual methods on managed beans.
Before proceeding with the following procedure, you must already have added the ADF Library JAR that contains the declarative components to the project where you are creating JSF pages that are to consume the declarative components. For instructions on how to add an ADF Library JAR, see the "Reusing Application Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To use declarative components in a JSF page:
If the declarative component definition contains any required attributes, JDeveloper opens a dialog for you to enter the required values for the declarative component that you are inserting.
Note: If you want to use ADF Model layer bindings as values for the attributes, then to create these bindings manually by using the Expression Builder to locate the needed binding property. |
dc:myPanelBox
, where dc
is the tag library prefix and myPanelBox
is the declarative component name. Under that are the facets (for example, f:facet - content
) that have been defined in the declarative component definition. You add components to these facets.
You cannot add content directly into the declarative component; you can drop content into the named facets only. The types of components you can drop into a facet may be dependent on the location of the facetRef
tag in the declarative component definition. For example, if you have defined facetRef
to be a child of table
in the declarative component definition, then only column
components can be dropped into the facet because table
accepts column
children only.
Note: You cannot place any components as direct children of a declarative component. All content to appear within a declarative component must be placed within a facet of that component. |
dc:myPanelBox
. The Property Inspector displays all the attributes and methods that have been predefined in the declarative component definition (for example, title
). The attributes might have default values. You can assign static values to the attributes, or you can use EL expressions (for example, #{myBean.somevalue}
). For any of the methods, you must bind to a method that uses the same signature as the declared method defined on the declarative component.
At runtime, the attribute value will be displayed in the appropriate location as specified in the declarative component definition by the EL expression that bears the name of the attribute (for example, #{attrs.someAttributeName}
).
af:resource
tag. For more information, see Section 19.5, "Adding Resources to Pages." After adding a declarative component to the page, the visual editor displays the component's defined facets as named boxes, along with any content that is rendered by components defined in the component layout section of the declarative component definition.
Like other UI components, JDeveloper adds the declarative component tag library namespace and prefix to the jsp:root
tag in the page when you first add a declarative component to a page, for example:
In this example, dc
is the tag library prefix, and /dcomponentLib1
is the namespace.
JDeveloper adds the tag for the declarative component onto the page. The tag includes values for the component's attributes as set in the dialog when adding the component. Example 19-16 shows the code for the MyPanelBox
declarative component to which a user has added a panelGroupLayout
component that contains three outputFormatted
components.
Example 19-16 JSF Code for a Declarative Component that Contains Content
When a JSF page that consumes a declarative component is executed:
componentDef
tag is instantiated and inserted into the consuming page's component tree at the location identified by the declarative component tag in the page. componentDef
tag sets the value of the var
attribute so that the declarative component can internally reference its own attributes. The declarative component just sets the attribute values; the runtime maps those values into the attributes defined in the componentDef
tag. facet
tag. The facet contents of each facet
tag are inserted into the appropriate location on the declarative component as specified by the corresponding facetRef
tag in the layout section of the componentDef
tag. You should use the af:resource
tag to add CSS or JavaScript to pages, page templates, or declarative components. This tag is especially useful for page templates and declarative components because resources can only be added to the page (in the HTML head element). When you can use this tag in page templates and declarative components, the resources will be added to the consuming page during JSP execution. If this tag is not used, browsers may need to re-layout pages that use page templates and declarative components whenever it encounters a style or link tag. The resources can be added to the page during any page request, but they must be added before the document component is rendered.
The resource tag can be used with PPR. During PPR, the following requirements apply:
You use the af:resource
tag to define the location of the resource. The resource will then be added to the document header of the consuming page.
To add resources:
css
or javascript
. source
attribute. Start the URI with a single forward slash (/) if the URI should be context relative. Start the URI with two forward slashes if the URI should be server relative. If you start the URI with something other than one or two slashes, the URI will be resolved relative to URI location in the browser During JSP tag execution, the af:resource
tag only executes if its parent component has been created. When it executes, it adds objects to a set in the RichDocument component. RichDocument then adds the specified resources (CSS or JavaScript) to the consuming page.
This chapter describes how to change the appearance of your application by changing style properties using ADF Faces skins and component style attributes.
This chapter includes the following sections:
JDeveloper supports two options for applying style information to your ADF Faces components:
ADF Faces components delegate the functionality of the component to a component class, and the display of the component to a renderer. By default, all tags for ADF Faces combine the associated component class with an HTML renderer, and are part of the HTML render kit. HTML render kits are included with ADF Faces for display on both desktop and PDA. You cannot customize ADF Faces renderers. However, you can customize how components display using skins.
If you do not wish to change ADF Faces components throughout the entire application, you can choose to change the styles for the instance of a component on a page. You can also programmatically set styles conditionally. For example, you may want to display text in red only under certain conditions. For more information, see Section 20.4, "Changing the Style Properties of a Component".
The File Explorer application allows you to select several skins from a dropdown list. It provides several CSS files to support skin selection. For more information, see Section 1.4.3, "Overview of the File Explorer Application".
It is beyond the scope of this guide to explain the concept of CSS. For extensive information on style sheets, including the official specification, visit the W3C web site at:
Note: The 11g Release 2 (11.1.2.0.0) introduced the ADF Skin Editor. Using this standalone product, you can visually create and modify skins for ADF Faces applications. The ADF Skin Editor provides a range of features that simplify the process of creating a skin. For more information, including how to install the ADF Skin Editor, see the Release Downloads for Oracle ADF 11g page at |
A skin is a style sheet based on the CSS 3.0 syntax specified in one place for an entire application. Instead of providing a style sheet for each component, or inserting a style sheet on each page, you can create one skin for the entire application. Every component automatically uses the styles as described by the skin. You do not have to make design-time changes to JSF pages to change their appearance when you use a skin. The skin allows you to globally change the appearance of ADF Faces components.
Existing ADF Faces applications use the skin that the application was configured to use when the application was created. For example, if you created an application using Oracle ADF 11g (11.1.1.2.0), the application uses the fusion
skin. Applications created with subsequent releases use skins that extend this skin. If you upgrade an application, the application continues to use the skin that it was configured to use when first created. You edit the trinidad-config.xml
file, as described in Section 20.2.4, "How to Configure an Application to Use a Custom Skin," if you want your application to use another skin.
You can create your own custom skin by extending one of the skins provided by ADF Faces. For more information, see Section 20.2.1, "How to Add a Custom Skin to an Application." Create or edit the trinidad-skins.xml
file, as described in Section 20.2.3, "How to Register a Custom Skin," in addition to editing the trinidad-config.xml
file if you want your application to use a custom skin that you created.
ADF Faces provides the following skins for use in your applications:
simple
: Contains only minimal formatting. blafplus-medium
: Provides a modest amount of styling. This style extends the simple
skin. blafplus-rich
: This skin extends the blafplus-medium
skin. Provides more styling than the blafplus-medium
skin. For example, graphics in the blafplus-rich
skin have rounded corners. fusion
: Defines the default styles for ADF Faces components. This skin provides a significant amount of styling. fusion-11.1.1.3.0
: Modifies the fusion
skin to make the hierarchy structure in certain components that render tabs clearer. These components are panelTabbed
, navigationPane
(attribute hint="tabs"
), and decorativeBox
. This skin also defines a more subtle background image for disclosed panelAccordion
component panes to make text that appears in these panes easier to read. fusionFx-v1
: This skin extends from the fusion-11.1.1.3.0
skin. If you create a custom skin that extends any of the skins provided by ADF Faces, you need to register it in the trinidad-skins.xml
file. Use the following values in the trinidad-skins.xml
file if you extend the fusionFx-v1
skin: Use the following value in the trinidad-config.xml
file if you want your application to use the fusionFx-v1
skin:
The fusionFx-v1
contains design improvements and changes to address a number of issues. Specifically, it adds:
.AFMaskingFrame
global style selector to prevent the display of content from an underlying frame when an inline popup displays in certain browsers. -tr-stretch-dropdown-table
, for the inputComboboxListOfValues
component. This property determines whether the table in the dropdown list stretches to show the content of the table columns or limits the width of the table to the width of the input field in the inputComboboxListOfValues
component. inlineFrame
component displays an image that serves as a loading indicator until the browser determines that the frame's contents have been loaded. You can implement this functionality in a custom skin that you create. The af|inlineFrame
selector has "busy
" and "flow
" pseudo-classes that enable you to do this. The inlineFrame
component only generates an IFrame element when the parent component does not stretch the inlineFrame
component (the inlineFrame
component is flowing). Use af|inlineFrame:busy:flow
to define a background-image style that references a loading indicator. When the parent component stretches the inlineFrame
component, the generated content is more complex. This complexity allows you define a content image URL using the af|inlineFrame::status-icon
and an optional additional background-image using the af|inlineFrame::status-icon-style
. It also allows you to reuse images that other component selectors use. For example, the carousel
component's af|carousel::status-icon
and af|carousel::status-icon-style
selectors. Use skinning aliases to reuse these images.
The following global selectors have also been introduced that you can use if you implement this functionality in your ADF skin:
.AFBackgroundImageStatus:alias
: use to reference the background image used in af|inlineFrame::busy:flow
. .AFStatusIcon:alias
use to reference the af|carousel::status-icon
and af|inlineFrame::status-icon
. .AFStatusIconStyle:alias
use to reference the af|carousel::status-icon-style
and af|inlineFrame::status-icon-style
. A resource key (af_inlineFrame.LABEL_FETCHING
) defines the string to display for the inlineFrame
component's loading icon.
fusionFx-v1.1
: This skin extends from the fusionFx-v1
skin. It adds supports for the ability to clear Query-By-Example (QBE) filters in an af:table
component. If you create a custom skin that extends any of the skins provided by ADF Faces, you need to register it in the trinidad-skins.xml
file. Use the following values in the trinidad-skins.xml
file if you want to extend the fusionFx-v1.1
skin:
Use the following value in the trinidad-config.xml
file if you want your application to use the fusionFx-v1.1
skin:
fusionFx-v1.2
: This skin extends from the fusionFx-v1.1
skin. It contains a number of user interface enhancements including optimizations for when your application renders in a touch screen device. Use the following values in the trinidad-skins.xml
file if you want to extend the fusionFx-v1.2
skin.
Use the following value in the trinidad-config.xml
file if you want your application to use the fusionFx-v1.2
skin:
fusion-projector
skin modifies a number of elements in the fusion
skin. These skins are useful if the audience is present at the same location as the projector. They may not be appropriate for an audience that views an application online through a web conference. ADF Faces provides the projector skins as a download from the Oracle Technology Network (OTN) web site. Figure 20-1 shows the default fusion
skin applied to the File Explorer Application index page.
Note: The syntax in a skin style sheet is based on the CSS 3.0 specification. However, many browsers do not yet adhere to this version. At runtime, ADF Faces converts the CSS to the CSS 2.0 specification. |
ADF Faces also provides the simple
skin, shown in Figure 20-2 as applied to the File Explorer Application index page.
Skins provide more options than setting standard CSS styles and layouts. The skin's CSS file is processed by the skin framework to extract skin properties and icons and register them with the Skin
object. For example, you can customize the skin file using rules and pseudo classes that are supported by the skinning framework. Supported rules and pseudo classes include @platform
, @agent
, @accessibility-profile
, :rtl
, and @locale
. For more information, see Section 20.1.2, "Skin Style Selectors".
Style sheet rules include a style selector, which identifies an element, and a set of style properties, which describe the appearance of the components. ADF Faces components include two categories of skin style selectors:
Global selectors determine the style properties for multiple ADF Faces components. If the global selector name ends in the :alias
pseudo-class, then the selector is most likely included in other component-specific selectors and will affect the skin for more than one component. For example, most, if not all, components use the .AFDefaultFontFamily:alias
definition to specify the font family. If your skin overrides this selector with a different font family, that change will affect all the components that have included it in their selector definition. Example 20-1 shows the global selector for the default font family for ADF Faces components in an application.
Component-specific selectors are selectors that can apply a skin to a particular ADF Faces component. Example 20-2 shows the selector set to red as the background color for the content area of the af:inputText
component.
Each category may include one or more of these types of ADF Faces skin selectors:
Standard selectors are those that directly represent an element that can have styles applied to it. For example, af|body
represents the af:body
component. You can set CSS styles, properties, and icons for this type of element.
Pseudo-elements are used to denote a specific area of a component that can have styles applied. Pseudo-elements are denoted by a double colon followed by the portion of the component the selector represents. For example, af|chooseDate::days-row
provides the styles and properties for the appearance of the dates within the calendar grid.
Some components render icons (
tags) using a set of base icons. These icons can have skins applied even though no entries appear in the CSS source file for the icons in the way, for example, that entries appear for the background-image
CSS property. Instead, the icons are registered with the Skin
object for use by the renderer. As no entries for an icon selector appear in the CSS source file that a browser interprets, you cannot create containment selector definitions for an icon definition. You can only create a containment selector definition for items that have an entry in the CSS source file.
Icon selectors are denoted by -icon
for component selectors and Icon:alias
for global selectors. For example, the af:inputDate
component has a changed icon that can have a skin using the selector af|inputDate::changed-icon
. The changed icon can also be globally set for all components using that icon with the global selector .AFChangedIcon:alias
. For more information, see Section 20.3.2, "How to Apply Skins to Icons".
The text rendered by ADF Faces components is translatable. The text is abstracted as a resource string that has skins applied. For example, af_dialog.LABEL_OK
is a resource string for the text label of an af:dialog
component when the OK button has been configured. Resource strings do not have skins in the CSS skin file, but in a resource bundle referenced from the skin definition file in the trinidad-skins.xml
file using the <bundle-name>
parameter. You can also use the <translation-source>
parameter for an EL binding to point to a Map
or ResourceBundle
. For more information, see Section 20.3.1, "How to Apply Skins to Text".
Skin style properties allow you to customize the rendering of a component throughout the application. A CSS property is stored with a value in the Skin
object and is available when the component is being rendered. For example, in af|breadCrumbs{-tr-show-last-item: false}
, the skin property -tr-show-last-item
is set to hide the last item in the af:breadCrumbs
navigation path.
The CSS specification defines pseudo-classes such as :hover
and :active
that can apply to almost every component. ADF Faces provides additional pseudo-classes for specialized functions. Pseudo-classes are denoted in the selector by a colon followed by the class definition. The following are common pseudo-classes used by ADF Faces style selectors:
:alias
pseudo-class is a special type of class that serves as a syntax aid to organize code in your skin file. You can, for example, use it to set styles for more than one component or more than one portion of a component. You can also create your own alias classes that you can then include on other selectors. For example, you can define an alias pseudo-class (.AFLabel:alias
) where you define label colors for a number of form components. Subsequent changes to the alias pseudo-class impact all components referenced by the alias pseudo-class. The .AFLabel:alias
pseudo-class has color set to blue, but you can change all the component's label color to red by simply changing .AFLabel:alias
:
For more information, see Section 20.3.5, "How to Create a Custom Alias".
:drag-source
applied to the component initiating the drag and removed once the drag is over, and :drop-target
applied to a component willing to accept the drop of the current drag. :hover,
:active
, and :focus
are considered states of the component. This same concept is used in applying skins to components. Components can have states like read-only
or disabled
. When states are combined in the same selector, the selector applies only when all states are satisfied. :rtl
pseudo-class to the very end of the selector and point it to a flipped image file. For example, the end image of the panelBox
component will be the panelBoxStart.png
file when the browser is set to right-to-left. The panelBox
end image in right-to-left is the same as the flipped left-to-right panelBox
start image. You can also use :rtl
to apply to skin icons. For more information, see Section 20.3.2, "How to Apply Skins to Icons".
:inline-selected
is a pseudo-class applied to currently selected components in the active inline-editable subtree. :fatal
, :error
, :warning
, :confirmation
, and :info
. For more information, see Section 20.3.3, "How to Apply Skins to Messages". You may not want your selector's CSS properties to be applied to all browsers, all platforms, all locales, and both reading-directions. For example, you may need to add some padding in Internet Explorer that you do not need on any other browser. You may want the font style to be different on Windows than it is on other platforms. To style a selector for a particular user environment, put that skinning information inside a skinning framework rule or :rtl
pseudo-class. The skinning framework picks the styles based on the HTTP
request information, such as agent and platform, and merges them with the styles without rules. Those CSS properties that match the rules get merged with those outside of any rules. The most specific rules that match a user's environment take precedence. The skinning framework currently supports these rules and pseudo-classes:
@platform
and @agent
Define platform styles using @platform
and browser styles using @agent
.
The supported values to set a platform-specific style are windows
, macos
, linux
, solaris
, and ppc
. For a browser agent-specific style, the supported values are ie
, mozilla
, gecko
, webkit
(maps to safari), ice
, and email
.
In this example, the content area of the af:inputText
component is set to the color pink for versions 7 and 8 of Internet Explorer, and set to version 1.9 of gecko
on Windows and Linux platforms:
Note that the following syntax examples results in the same behavior:
In order to specify only version 7.0.x of Internet Explorer, use the following syntax:
There is currently no syntax to specify a range of versions.
You can also use the @agent
rule to determine styles to apply to agents that are touchscreen devices. The following examples show the syntax that you write in a custom skin file to configure this capability.
For more information about creating applications to render in touchscreen devices, see Appendix D, "Creating Web Applications for Touch Devices Using ADF Faces."
Define @accessibility-profile,
which defines styles for high-contrast and large-fonts accessibility profile settings from the trinidad-config.xml
file.
The high-contrast value would be for cases where background and foreground colors need to be highly contrasted with each other. The large-fonts value would be for cases where the user must be allowed to increase or decrease the text scaling setting in the web browser. Defining large-fonts does not mean that the fonts are large, but rather that they are scalable fonts or dimensions instead of fixed pixel sizes.
:rtl
Use the :rtl
pseudo-class to create a style or icon definition when the browser is displaying a right-to-left language.
@locale
-tr-inhibit
skin property. Suppress or reset CSS properties inherited from a base skin with the -tr-inhibit
skin property. For example, the -tr-inhibit:padding
property will remove any inherited padding. Remove (clear) all inherited properties with the -tr-inhibit:all
property. The suppressed property name must be matched exactly with the property name in the base skin.
-tr-rule-ref
property. Create your own alias and combine it with other style selectors using the -tr-rule-ref
property. For more information, see Section 20.3.5, "How to Create a Custom Alias".
-tr-children-theme
property. For more information, see Section 20.3.4, "How to Apply Themes to Components".
Example 20-3 shows several selectors in the CSS file that will be merged together to provide the final style.
Example 20-3 Merging of Style Selectors
The selectors used to apply skins to the ADF Faces components are defined in the "Skin Selectors for Fusion's ADF Faces Components" and "Skin Selectors for Fusion's Data Visualization Tools Components" topics in JDeveloper's online help.
You can also apply themes as a way to implement look and feel at the component level. For information about themes, see Section 20.3.4, "How to Apply Themes to Components".
For information about defining skin style properties, see Section 20.3, "Defining Skin Style Properties".
You can adjust the look and feel of any component at design time by changing the style-related properties, inlineStyle
and styleClass
, both of which render on the root DOM element. Any style-related property you specify at design time overrides the comparable style specified in the application skin or CSS for that particular instance of the component.
The inlineStyle
attribute is a semicolon-delimited string of CSS styles that can set individual attributes, for example, background-color:red; color:blue; font-style:italic; padding:3px
. The styleClass
attribute is a CSS style class selector used to group a set of inline styles. The style classes can be defined using an ADF public style class, for example, .AFInstructionText
, sets all properties for the text displayed in an af:outputText
component.
For information about applying component style properties, see Section 20.4, "Changing the Style Properties of a Component".
Given a specific selector, you can get style properties for a custom component by creating a class for a renderer. For more information, see Section 30.4.7, "How to Create a Class for a Renderer".
Custom skins can change the colors, fonts, and even the location of portions of ADF Faces components to represent your company's preferred look and feel. You build the skin by defining style selectors in a CSS file. After you create your custom style sheet, register it as a valid skin in the application, and then configure the application to use the skin. If you versioned multiple ADF skins in the same skin family, as described in Section 20.6, "Versioning Custom Skins," use the <skin-version>
element to identify the specific version that you want the application to use.
By default, ADF Faces components use the fusion
skin. Custom skins can extend to any of the ADF Faces skins, fusion
, blafplus-rich
, blafplus-medium
, or simple
. To create a custom skin, you declare selectors in a style sheet that override or inhibit the selectors in the style sheet being extended. Any selectors that you choose not to override will continue to use the style as defined in that skin.
Extending the simple
skin does not require inhibiting as many properties as you would if you extended the BLAF Plus skins. For example, the BLAF Plus skins use many different colors for style properties, including text, background, and borders. The simple
skin uses the :alias
pseudo-class, as in .AFDarkBackground:alias
, instead of specific colors. Changing a color scheme would require overriding far fewer global skin selectors than component skin selectors that specify multiple colors.
The text used in a skin is defined in a resource bundle. As with the selectors for the blafplus-rich
skin, you can override the text by creating a custom resource bundle and declaring only the text you want to change. After you create your custom resource bundle, register it with the skin.
You can create and apply multiple skins. For example, you might create one skin for the version of an application for the web, and another for when the application runs on a PDA. Or you can change the skin based on the locale set on the current user's browser. Additionally, you can configure a component, for example an af:selectOneChoice
component, to allow a user to switch between skins.
While you can bundle the custom skin resources and configuration files with the application for deployment, you can also store skin definitions in a Java Archive (JAR) file and then add it to the deployed application. The advantages to using a JAR file are that the custom skin can be developed and deployed separately from the application, improving consistency in the look and feel, and that skin definitions and image files can be partitioned into their own JAR files, reducing the number of files that may have to be deployed to an application.
The steps to apply a custom skin to your application are the following:
To add a custom skin to your application, create a CSS file within JDeveloper, which places the CSS in a project's source file for deployment with the application.
To add a custom skin to an application:
You can now open the CSS in the CSS editor and define styles for your application. For information about setting ADF Faces component style selectors, see Section 20.3, "Defining Skin Style Properties".
You can also create a CSS outside the context of Oracle JDeveloper and package the CSS with the skin resources into a JAR file. For information about this recommended option, see Section 20.7, "Deploying a Custom Skin File in a JAR File".
You need to register the trindidad-skins.xsd
file with JDeveloper if you plan to register a custom skin, as described in Section 20.2.3, "How to Register a Custom Skin". The trindidad-skins.xsd
file defines the valid elements for a custom skin.
To register an XML schema definition file:
The directory path to the XML schemas is similar to the following:
JDeveloper_Home
/jdeveloper/modules/oracle.adf.view_11.1.1/trinidad-impl.jar!/org/apache/myfaces/trinidadinternal/ui/laf/xml/schemas/skin/trinidad-skins.xsd
Note: In the Add Schema dialog, make sure the value in the Extension input field is |
Registering a skin involves creating a file named trinidad-skins.xml
and populating it with values that identify the skin's ID, family, location, and the custom resource bundle if you are using one.
Before you begin:
Register the XML schema definition file that defines valid elements for the trinidad-skins.xml
file. For more information, see Section 20.2.2, "How to Register the XML Schema Definition File for a Custom Skin".
To register a custom skin:
trinidad-skins.xml
. http://myfaces.apache.org/trinidad/skin
. skins
. <id>
A skin is required to have a unique ID. You can also use an EL expression to reference the skin ID. For example, if you want to have different skins for different locales, create an EL expression that selects the correct skin based on its ID. The convention is to put a "desktop" or ".pda" or ".portlet" at the end of the ID, such as "fusion.desktop".
<family>
You configure an application to use a particular family of skins. This allows you to group skins together for an application, based on the render kit used.
For example, you can define the blafplus-rich.desktop
skin and the blafplus-rich.pda
skin to be part of the richDemo
family and the system automatically chooses the right skin based on the render-kit-id
.
Note: If you create more than one skin in a particular family of skins, you can version the skins that you create. For more information, see Section 20.6, "Versioning Custom Skins." |
<extends>
You extend a custom skin by using this element. The default value for this element is simple.desktop
. However, you can extend any skin by using this element.
For example, you can easily change the font of the entire skin by extending the skin and creating a CSS with the font alias. For example, extend the fusion.desktop
family as follows:
In the CSS, set the alias to change the font for the entire skin:
<render-kit-id>
This value determines which render kit to use for the skin. You can enter one of the following:
org.apache.myfaces.trinidad.desktop
: The skin will automatically be used when the application is rendered on a desktop. org.apache.myfaces.trinidad.pda
: The skin will be used when the application is rendered on a PDA. <style-sheet-name>
This is the URL of the custom style sheet. The style sheet name file is retrieved as a URL object using the following methods:
new java.new.URL(style-sheet-name)
if style-sheet-name
starts with http:
, https:
, file:
, ftp:
, or jar:
. Otherwise, the URL is created by calling <FacesContext>
<ExternalContext>
getResource<style-sheet-name>
. It will add a slash (/
) to delimit the URL parts if it is not already present. For example, the slash is added between skins/bigfont/bigfont.css
. ClassLoader
> getResource
in a style-sheet-name format similar to META-INF/purpleSkin/styles/myPurpleSkin.css
. Once the URL is converted to this format, it can be searched for in JAR files that may contain the style sheet. <bundle-name>
This is the resource bundle created for the skin. If you did not create a custom bundle, then you do not need to declare this element. For more information, see Section 20.3.1, "How to Apply Skins to Text".
Note: If you have created localized versions of the resource bundle, then you need to register only the base resource bundle. |
<translation-source>
This is an EL binding that can point to a Map
or a ResourceBundle
. You can use this instead of the bundle name if you would like to be more dynamic in your skin translations at runtime. The <bundle-name>
tag takes precedence.
Example 20-4 shows the entry in the trinidad-skins.xml
file for the mySkin
skin.
Example 20-4 Skin Entry in the trinidad-skins.xml File
You set an element in the trinidad-config.xml
file that determines which skin to use, and if necessary, under what conditions.
Note: If you do not see the skin, check to see whether or not the |
To configure an application to use a skin:
trinidad-config.xml
file. trinidad-config.xml
file, write entries to specify the value of the <skin-family>
element for the skin you want to use and, optionally, the <skin-version>
element. Example 20-5 shows the configuration to use for the mySkin
skin family.
For example, if you want to use the German skin when the user's browser is set to the German locale, and to use the English skin otherwise, you would have the following entry in the trinidad-config.xml
file:
During development, after you make changes to the custom skin, you can see your CSS changes without restarting the server by setting the web.xml
file parameter org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
to true
, as shown in Example 20-6. However, you must always restart the server to see icon and skin property changes.
The ADF Faces skin style selectors support multiple options for applying skins to a component to create a custom look and feel to your application. The af:goButton
component skin style selectors are described in Table 20-1.
Table 20-1 af:goButton Component Style Selectors
Name | Description |
---|---|
| Style on the root element of the |
| Style on the button icon, if the icon attribute is set on the |
| Style on the text of the button. This includes the |
Figure 20-3 shows the application of the default fusion
skin on the af:goButton
component and the component icon.
Figure 20-4 shows the new appearance of the button and icon by setting the following style properties in a custom skin:
The ADF Faces skin style selectors used by the default skin are defined in the "Skin Selectors for Fusion's ADF Faces Components" and "Skin Selectors for Fusion's Data Visualization Tools Components" topics in JDeveloper's online help. They are located in All Online Help > Developing Oracle ADF Faces Applications.
JDeveloper provides coding support while editing your CSS files. You can invoke the CSS code editor when editing your file directly or when editing an ADF Faces component in the JSP source editor. Code support is available for the following:
In addition to using a CSS file to determine styles, skins also use a resource bundle to determine the text within a component. The text that ADF Faces components render can be translated and abstracted as a resource string. For example,
af_chooseDate.LABEL_SELECT_YEAR
is the resource string for the label of the field used to select the year using an af:chooseDate
component. All the ADF Faces skins use the same resource bundle.
To apply a skin to the text in ADF Faces components, create a custom resource bundle and override the default resource string values. Then, set the <bundle-name>
property for your custom resource bundle in the trinidad-skins.xml
file.
Note: ADF Faces components provide automatic translation. The resource bundle used for the components' skin is translated into 28 languages. If a user sets the browser to use the German (Germany) language, any text contained within the components will automatically be displayed in German. For this reason, if you create a resource bundle for a custom skin, you must also create localized versions of that bundle for any other languages the application supports. See Chapter 21, "Internationalizing and Localizing Pages" for more information. |
To create and register a custom resource bundle:
java.util.ListResourceBundle
. SkinBundle
custom resource bundle. Example 20-7 Resource Strings Set in Custom SkinBundle
<bundle-name>
parameter of the trinidad-skins.xml
file. Example 20-8 shows the custom SkinBundle
set in the trinidad-skins.xml
file. Example 20-8 Custom SkinBundle Set in trinidad-skins.xml
Another option for applying skins to text is to use the <translation-source>
parameter instead of <bundle-name>
. The <translation-source>
parameter is an EL binding that points to a Map
or a ResourceBundle
. The benefit of this option is that you can automatically change the translation value based on any logic that you want at runtime. The <bundle-name>
tag takes precedence if both are set. Example 20-9 shows the code for using an EL expression to set the <translation-source>
parameter in a bundle map.
Example 20-9 Custom Resource Bundle Map
Example 20-10 shows setting the <translation-source>
parameter for the resource map in the trinidad-skins.xml
file.
Example 20-10 Custom Resource Bundle Map Set in trinidad-skins.xml
You can apply skins to the default icons associated with ADF Faces components by specifying the URL path to the icon image in the icon style selector.
Note that CSS syntax like pseudo-classes (:hover
, and so forth) and descendant selectors and composite class selectors does not work with icon selectors.
Note: If you are overriding a selector for an icon, use a context-relative path for the URL to the icon image (that is, start with a leading slash (Also, you must include the width and the height for the icon. |
Example 20-11 shows a selector for an icon.
Example 20-11 Selector for an Icon
Icons and buttons can both use the rtl
pseudo-class. This defines an icon or button for use when the application displays in right-to-left mode. Example 20-12 shows the rtl
pseudo-class used for an icon.
You can apply style to ADF Faces input components based on whether or not they have certain levels of messages associated with them. When a message of a particular type is added to a component, the styles of that component are automatically modified to reflect the new status. If styles are not defined for the status in question, then the default styles are used.
In order to define styles for your input components based on message levels that are tied to them, you would append a style pseudo-class to your component definition. For example, to define the base style for the content region of the af:inputText
component to a background color of purple, use the style selector af|inputText::content{background-color:purple}
. To define the content region of the component when an error message is present, use the skin style selector af|inputText:error::content
.
The valid message properties are :fatal
, :error
, :warning
, :confirmation
, and :info
.
Themes are a way of implementing a look and feel at a component level. The purpose is to provides a consistent look and feel across multiple components for a portion of a page. A common usage for themes is in a JSF page template where certain areas have a distinct look. For example, a page may have a branding area at the top with a dark background and light text, a navigation component with a lighter background, and a main content area with a light background.
A component that sets a theme exposes that theme to its child components and therefore the theme is inherited. Themes can be set (started or changed) by the following components:
af:document
af:decorativeBox
af:panelStretchLayout
af:panelGroupLayout
The Fusion and BLAF Plus skins (blafplus-rich
and blafplus-medium
) support the following themes:
In the JSPX page, the theme is started by the af:document
component, as in:
To set the theme for a component, specify a theme
attribute in the skin selector in the CSS file. For example, the selector to change the text color under an af:panelTabbed
component to a dark theme is:
If you do not want a child component to inherit modifications made to a parent component in a JSPX page, set a value for the -tr-children-theme
property in the CSS file. For example, you do not want the af:panelTabbed
child component to inherit the dark
theme defined for the af:document
parent component in the JSPX page. Set the -tr-children-theme
property in the CSS file as follows:
By default, themes are not set for components or their child components. Because themes are inherited, the following values are supported when a component has a theme
attribute that is not set:
<af:decorativeBox>...
#{null}
- The theme is inherited; same as not given. inherit
- The theme is inherited; same as null. default
- The theme is removed for the component and its child components. default
. For example, <af:decorativeBox theme="">
will remove the theme for the component and its child components. Because the themes are added to every HTML element of a component that supports themes and that has style classes, there is no need for containment-style CSS selectors for themes. With the exception of :ltr
and :rtl
, all theme selectors should always appear on the last element of the selector. For example, the selector to apply a dark theme to each step of an af:breadCrumbs
component would be:
Color incompatibility may occur if a component sets its background color to a color that is not compatible with its encompassing theme color. For example, if a panelHeader
component is placed in a dark theme, the CSS styles inside the panelHeader
component will set its component background to a light color without changing its foreground color accordingly. The result is a component with a light foreground on a light background. Many other components also set their foreground color to a light color when placed in a dark theme.
If color incompatibility occurs, you can resolve color incompatibility between parent and child components by setting a value for the -tr-children-theme
property. For components that do not have a parent-child relationship, you can manually set the component's theme color to a color that is compatible with the surrounding theme color. You do this by inserting the panelGroupLayout
or panelStretchLayout
component inside the component and by setting the panelGroupLayout
or panelStretchLayout
theme to a compatible color.
You can create your own alias that you can then include on other selectors.
To create a custom alias:
-tr-rule-ref:selector
property. For example, you can create a new selector for the af|menuBar::enabled-link
selector to style the hover color, and then reference the custom alias, as shown in Example 20-13.
To configure a component to dynamically change the skin, you must first configure the component on the JSF page to set a scope value that can later be evaluated by the configuration file. You then configure the skin family in the trinidad-config
file to be dynamically set by that value.
To conditionally configure a component to set the skin family:
index.jspx
or a similar file) that contains the component that will be used to set the skin family. sessionScope
component. Example 20-14 shows an af:selectOneChoice
component that takes its selected value, and sets it as the value for the skinFamily
attribute in the sessionScope
component on the index.jspx
page.
Example 20-14 Using a Component to Set the Skin Family
The Refresh button on the page resubmits the page. Every time the page refreshes, the EL expression is evaluated and if there is a change, the page is redrawn with the new skin.
To conditionally configure a component for changing skins at runtime:
In the trinidad-config.xml
file, use an EL expression to dynamically evaluate the skin family:
ADF Faces components use the CSS style properties based on the Cascading Style Sheet (CSS) specification. Cascading style sheets contain rules, composed of selectors and declarations, that define how styles will be applied. These are then interpreted by the browser and override the browser's default settings.
WARNING: Do not use styles to achieve stretching of components. Using styles to achieve stretching is not declarative and, in many cases, will result in inconsistent behavior across different web browsers. Instead, you can use the geometry management provided by the ADF Faces framework to achieve component stretching. For more information about layouts and stretching, see Section 8.2.1, "Geometry Management and Component Stretching.". |
Set an inline style for a component by defining the inlineStyle
attribute. You can use inline style to specify the style of a component for that instance of the component. For more information, see Section 8.3, "Arranging Contents to Stretch Across a Page".
To set an inline style:
inlineStyle
attribute of the component to the inline style you want to use. JDeveloper adds the corresponding code for the component to the JSF page. Example 20-15 shows the source for an af:outputText
component with an inlineStyle
attribute.
inlineStyle
attribute itself to conditionally set inline style attributes. For example, if you want the date to be displayed in red when an action has not yet been completed, you could use the code similar to that in Example 20-16. af:inputText
component, set the text of the element using the contentStyle
property, as shown in Example 20-17. You can define the style for a component using a style class. You create a style class to group a set of inline styles.
To set a style using a style class:
styleClass
attribute of the component to the style class you want to use. Example 20-18 shows an example of a style class being used in the page source.
styleClass
attribute to conditionally set style attributes. For example, if you want the date to be displayed in red when an action has not yet been completed, you could use code similar to that in Example 20-16. You can refer to a URL from a skin's CSS file in a number of different formats. The supported formats are:
You specify the complete URL to the resource. For example, a URL in the following format:
http://www.mycompany.com/WebApp/Skin/skin1/img/errorIcon.gif
You can specify a relative URL if the URL does not start with /
and no protocol is present. A relative URL is based on the location of the skin's CSS file. For example, if the skin's CSS file directory is WebApp/Skin/skin1/
and the specified URL is img/errorIcon.gif
, the final URL is /WebApp/Skin/mySkin/img/errorIcon.gif
This format of URL is resolved relative to the context root of your web application. You start a context relative root with /
. For example, if the context relative root of a web application is:
/WebApp
and the specified URL is:
/img/errorIcon.gif
the resulting URL is:
/WebApp/img/errorIcon.gif
A server relative URL is resolved relative to the web server. This differs to the context relative URL in that it allows you reference a resource located in another application on the same web server. You specify the start of the URL using //
. For example, write a URL in the following format:
//WebApp/Skin/mySkin/img/errorIcon.gif
You can specify version numbers for your custom skins in the trinidad-skins.xml
file using the <version>
element. Use this capability if you want to distinguish between custom skins that have the same value for the <family>
element in the trinidad-skins.xml
file. Note that when you configure an application to use a particular custom skin, you do so by specifying values in the trinidad-config.xml
file, as described in Section 20.2, "Applying Custom Skins to Applications."
You specify a version for your custom skin by entering a value for the <version>
element in the trinidad-skins.xml
file.
To version a custom skin:
trinidad-skins.xml
file. By default, this is in the Web Content/WEB-INF node. <skin-version>
element of the trinidad-config.xml
file, as described in Section 20.2, "Applying Custom Skins to Applications." v1
if this is the first version of the custom skin. Example 20-19 shows an example trinidad-skins.xml
that references three source files for custom skins (skin1.css
, skin2.css
, and skin3.css
). Each of these custom skins have the same value for the <family>
element (test
). The values for the child elements of the <version>
elements distinguish between each of these custom skins. At runtime, an application that specifies test
as the value for the <skin-family>
element in the application's trinidad-config.xml
file uses skin3
because this custom skin is configured as the default skin in the trinidad-skins.xml
file (<default>true</default>
). You can override this behavior by specifying a value for the <skin-version>
element in the trinidad-config.xml
file, as described in Section 20.2, "Applying Custom Skins to Applications."
Example 20-19 trinidad-skins.xml with versioned custom skin files
You may want to store skin definitions in a Java Archive (JAR) file and then add it to the deployed application. The benefits of packaging skins into a JAR file as compared to bundling them into the application are the following:
To deploy a skin into a JAR file, follow these rules:
trinidad-skins.xml
file that defines the skin and that references the CSS file must be within the META-INF
directory. META-INF
directory. The images must be in a directory that starts with an adf
root directory or any directory name that is mapped in the web.xml
file for the resource servlet, as shown in Example 20-20. WEB-INF/lib
directory of the view layer project of the application to deploy (or use a shared library at the application-server level). Example 20-20 web.xml File with Paths
To deploy a skin into a JAR file:
META-INF
directory starts with adf
. The images
directory contains all the images used within the oracleblaf.css
skin. The CSS reference to the images should have a path similar to this: Note the two leading periods in front of the image path ../adf/oracle/skin/images/cfsortl.png
. This allows the search for the META-INF
root to start one directory above the META-INF/skin
directory in which the CSS is located.
trinidad-skins.xml
file is located in the META-INF
directory and that it contains content in a format similar to this: This example defines the skin as richdemo.desktop
in the richDemo
family. The trinidad-skins.xml
file can have more than one skin definition. The richdemo.css
file (or your custom CSS file) is referenced from the style-sheet-name
element.
c:\temp
directory: customSkin.jar
file to the WEB-INF/lib
directory of the consuming ADF project. Configure the trinidad-skins.xml
file located on the WEB-INF
directory of the ADF project. Because the skin can be discovered at runtime, you do not need to code the skin family name.
Note: The skin definition in the JAR file is not displayed in the JDeveloper visual editor. You may see a message in the log window that the skin family could not be found. You can ignore this message. |
This chapter describes how to configure JSF pages or an application to display text in the correct language of a user's browser.
This chapter includes the following sections:
Internationalization is the process of designing and developing products for easy adaptation to specific local languages and cultures. Localization is the process of adapting a product for a specific local language or culture by translating text and adding locale-specific components. A successfully localized application will appear to have been developed within the local culture. JDeveloper supports easy localization of ADF Faces components using the abstract class java.util.ResourceBundle
to provide locale-specific resources.
When your application will be viewed by users in more than one country, you can configure your JSF page or application to use different locales so that it displays the correct language for the language setting of a user's browser. For example, if you know your page will be viewed in Italy, you can localize your page so that when a user's browser is set to use the Italian language, text strings in the browser page will appear in Italian.
ADF Faces components may include text that is part of the component, for example the af:table
component uses the resource string af_table.LABEL_FETCHING
for the message text that is displayed in the browser while the table is fetching data during the initial load of data or while the table is being scrolled. JDeveloper provides automatic translation of these text resources into 28 languages. These text resources are referenced in a resource bundle. If you set the browser to use the language in Italy, any text contained within the components will automatically be displayed in Italian. For more information on skins and resource bundles, see Chapter 20, "Customizing the Appearance Using Styles and Skins".
For any text you add to a component, for example if you define the label of an af:commandButton
component by setting the text
attribute, you must provide a resource bundle that holds the actual text, create a version of the resource bundle for each locale, and add a <locale-config>
element to define default and support locales in the application's faces-config.xml
file. You must also add a <resource-bundle>
element to your application's faces-config.xml
file in order to make the resource bundles available to all the pages in your application. Once you have configured and registered a resource bundle, the Expression Language (EL) editor will display the key from the bundle, making it easier to reference the bundle in application pages.
To simplify the process of creating text resources for text you add to ADF components, JDeveloper supports automatic resource bundle synchronization for any translatable string in the visual editor. When you edit components directly in the visual editor or in the Property Inspector, text resources are automatically created in the base resource bundle.
Note: Any text retrieved from the database is not translated. This document explains how to localize static text, not text that is stored in the database. |
For instance, if the title of this page is My Purchase Requests, instead of having My Purchase Requests as the value for the title
attribute of the af:panelPage
component, the value is bound to a key in the UIResources
resource bundle. The UIResources
resource bundle is registered in the faces-config.xml
file for the application, as shown in Example 21-1.
Example 21-1 Resource Bundle Element in JSF Configuration File
The resource bundle is given a variable name (in this case, res
) that can then be used in EL expressions. On the page, the title attribute of the af:panelPage
component is then bound to the myDemo.pageTitle
key in that resource bundle, as shown in Example 21-2.
Example 21-2 Component Text Referencing Resource Bundle
The UIResources
resource bundle has an entry in the English language for all static text displayed on each page in the application, as well as for text for messages and global text, such as generic labels. Example 21-3 shows the keys for the myDemo page.
Example 21-3 Resource Bundle Keys for the myDemo Page Displayed in English
Note that text in the banner image and data retrieved from the database are not translated.
Example 21-4 shows the resource bundle version for the Italian (Italy) locale, UIResources_it
. Note that there is not an entry for the selection facet's title, yet it was translated from Select to Seleziona automatically. That is because this text is part of the ADF Faces table component's selection facet.
Example 21-4 Resource Bundle Keys for the myDemo Page Displayed in Italian
By default, JDeveloper supports the automatic creation of text resources in the default resource bundle when editing ADF Faces components in the visual editor. To treat user-defined strings as static values, disable Automatically Synchronize Bundle in the Project Properties dialog, as described in Section 21.2.1, "How to Set Resource Bundle Options".
Automatic resource bundle integration can be configured to support one resource bundle per page or project, or multiple shared bundles.
You can edit translatable text strings using any one of the following methods:
Note: JDeveloper only writes strings to a resource bundle that you enter using one of the previously-listed methods. |
After you have created a project, you can set resource bundle options in the Project Properties dialog.
To set resource bundle options for a project:
<ProjectName>.properties
. named <PageName>.properties
. JDeveloper generates one or more resource bundles of a particular type based on the selections that you make in the resource bundle options part of the Project Properties dialog, as illustrated in Figure 21-3. It generates a resource bundle the first time that you invoke the Select Text Resource dialog illustrated in Figure 21-2.
Assume, for example, that you select the One Bundle Per Project checkbox and the List Resource Bundle
value from the Resource Bundle Type dropdown list. The first time that you invoke the Select Text Resource dialog, JDeveloper generates one resource bundle for the project. The generated resource bundle is a Java class named after the default project bundle name in the Project Properties dialog (for example, ViewControllerBundle.java
).
JDeveloper generates a resource bundle as an .xlf
file if you select the XML Localization Interchange File Format (XLIFF) Bundle option and a .properties
file if you select the Properties Bundle option.
By default, JDeveloper creates the generated resource bundle in the view subdirectory of the project's Application Sources directory.
JDeveloper generates one or more resource bundles based on the values you select in the resource bundle options part of the Project Properties dialog. It generates a resource bundle the first time that you invoke the Select Text Resource dialog from a component property in the Property Inspector.
JDeveloper writes key-value pairs to the resource bundle based on the values that you enter in the Select Text Resource dialog. It also allows you to select an existing key-value pair from a resource bundle to render a runtime display value for a component.
To create an entry in the resource bundle generated by JDeveloper:
For example, select an af:inputText
component.
The Select Text Resource entry in the dropdown list only appears for properties that support text resources. For example, the Label property of an af:inputText
component.
JDeveloper generates a value in the Key input field.
Note: JDeveloper displays a matching text resource in the Matching Text Resource field if a text resource exists that matches the value you entered in the Display Value input field exists. |
JDeveloper writes the key-value pair that you define in the Select Text Resource dialog to the resource bundle. The options that you select in the resource bundle options part of the Project Properties dialog determine what type of resource bundle JDeveloper writes the key-value pair to. For more information, see Section 21.2.2, "What Happens When You Set Resource Bundle Options".
The component property for which you define the resource bundle entry uses an EL expression to retrieve the value from the resource bundle at runtime. For example, an af:inputText
component's Label property may reference an EL expression similar to the following:
#{viewcontrollerBundle.NAME}
where viewcontrollerBundle
references the resource bundle and NAME
is the key for the runtime value.
A resource bundle contains a number of named resources, where the data type of the named resources is String
. A bundle may have a parent bundle. When a resource is not found in a bundle, the parent bundle is searched for the resource. Resource bundles can be either Java classes, property files, or XLIFF files. The abstract class java.util.ResourceBundle
has two subclasses: java.util.PropertyResourceBundle
and java.util.ListResourceBundle
. A java.util.PropertyResourceBundle
is stored in a property file, which is a plain-text file containing translatable text. Property files can contain values only for String
objects. If you need to store other types of objects, you must use a java.util.ListResourceBundle
class instead.
For more information about using XLIFF, see http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
To add support for an additional locale, replace the values for the keys with localized values and save the property file, appending a language code (mandatory) and an optional country code and variant as identifiers to the name, for example, UIResources_it.properties
.
The java.util.ListResourceBundle
class manages resources in a name and value array. Each java.util.ListResourceBundle
class is contained within a Java class file. You can store any locale-specific object in a java.util.ListResourceBundle
class. To add support for an additional locale, you create a subclass from the base class, save it to a file with a locale or language extension, translate it, and compile it into a class file.
The ResourceBundle
class is flexible. If you first put your locale-specific String
objects in a java.util.PropertyResourceBundle
file, you can still move them to a ListResourceBundle
class later. There is no impact on your code, because any call to find your key will look in both the java.util.ListResourceBundle
class and the java.util.PropertyResourceBundle
file.
The precedence order is class before properties. So if a key exists for the same language in both a class file and a property file, the value in the class file will be the value presented to you. Additionally, the search algorithm for determining which bundle to load is as follows:
For example, if your browser is set to the Italian (Italy) locale and the default locale of the application is US English, the application attempts to find the closest match, looking in the following order:
Tip: The |
You must create a base resource bundle that contains all the text strings that are not part of the components themselves. This bundle should be in the default language of the application. You can create a resource bundle as a property file, as an XLIFF file, or as a Java class. After a resource bundle file has been created, you can edit the file using the Edit Resource Bundles dialog.
To create a resource bundle as a property file or an XLIFF file:
Note: If you are creating a localized version of the base resource bundle, save the file to the same directory as the base file. |
<name><_lang>.properties
for the using the properties file or <name><_lang>.xlf for using the XLIFF file, where the <_lang>
suffix is provided for translated files, as in _de
for German, and omitted for the base language. Note: If you are creating a localized version of a base resource bundle, you must append the ISO 639 lowercase language code to the name of the file. For example, the Italian version of the If you are creating the base resource bundle, do not append any codes. |
Note: All non-ASCII characters must be UNICODE-escaped or the encoding must be explicitly specified when compiling, for example: javac -encoding ISO8859_5 UIResources_it.java |
For example, the key and the value for the title of the myDemo page is:
To create a resource bundle as a Java class:
Note: If you are creating a localized version of the base resource bundle, it must reside in the same directory as the base file. |
java.util.ListResourceBundle
. Note: If you are creating a localized version of a base resource bundle, you must append the ISO 639 lowercase language code to the name of the class. For example, the Italian version of the If you are creating the base resource bundle, do not append any codes. |
getContents()
method, which simply returns an array of key-value pairs. Create the array of keys for the bundle with the appropriate values. Or use the Edit Resource Bundles dialog to automatically generate the code, as described in Section 21.3.2, "How to Edit a Resource Bundle File". Example 21-5 shows a base resource bundle Java class. Note: Keys must be |
After you have created a resource bundle property file, XLIFF file, or Java class file, you can edit it using the source editor.
To edit a resource bundle after it has been created:
You must register the locales and resource bundles used in your application in the faces-config.xml
file.
To register a locale for your application:
faces-config.xml
file and click the Overview tab in the editor window. The faces-config.xml
file is located in the <View_Project>/WEB-INF
directory. After you have added the locales, the faces-config.xml
file should have code similar to the following:
To register the resource bundle:
faces-config.xml
file and click the Overview tab in the editor window. The faces-config.xml
file is located in the <View_Project>/WEB-INF
directory. After you have added the resource bundle, the faces-config.xml
file should have code similar to the following:
With JSF 1.2 you are not required to load the base resource bundle on each page in your application with the <f:loadBundle>
tag.
To use a base resource bundle on your page:
contentType
attribute of the page directive. Example 21-6 shows the encoding for a sample page. Example 21-6 Page and Response Encoding
Tip: By default JDeveloper sets the page encoding to
|
faces-config.xml
file for the <resource-bundle>
element. Example 21-7 shows the code for the View button on the myDemo page. Example 21-7 Binding to a Resource Bundle
Tip: If you type the following syntax in the source editor, JDeveloper displays a dropdown list of the keys that resolve to strings in the resource bundle:
JDeveloper completes the EL expression when you select a key from the dropdown list. |
adfBundle
keyword to resolve resource strings from specific resource bundles as EL expressions in the JSF page. The usage format is #{adfBundle[
bundleID
] [
resource_Key
]}
, where bundleID
is the fully qualified bundle ID, such as project.EmpMsgBundle
, and resource_Key
is the resource key in the bundle, such as Deptno_LABEL
. Example 21-8 shows how adfBundle
is used to provide the button text with a resource strings from a specific resource bundle.
If you use a custom skin and have created a custom resource bundle for the skin, you must also create localized versions of the resource bundle. Similarly, if your application uses control hints to set any text, you must create localized versions of the generated resource bundles for that text.
If you are developing a customizable application using the Oracle Metadata Services (MDS) framework and you create a resource bundle (an override bundle) that overrides key-value pairs from the base resource bundle, you need to configure your application's adf-config.xml
file to support the overriding of the base resource bundle. An override bundle is a resource bundle that contains the key-value pairs that differ from the base resource bundle that you want to use in your customizable application. If, for example, you have a base bundle with the name oracle.demo.CustAppUIBundle
, you configure an entry in your application's adf-config.xml
file as shown in Example 21-9 to make it overrideable. Once it is marked as overriden, any customizations of that bundle will be stored in your application's override bundle.
Example 21-9 Entry for Override Bundle in adf-config.xml File
For more information about the adf-config.xml
file, see Section A.4, "Configuration in adf-config.xml." For more information about creating customizable applications using MDS, see the "Customizing Applications with MDS" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can configure an application so end users can specify the locale at runtime rather than the default behavior where the locale settings of the end user's browser determine the runtime locale. Implement this functionality if you want your application to allow end users to specify their preferred locale and save their preference.
Create a new page or open an existing page. Configure it so that:
locale
attribute of the f:view
tag references the backing bean To configure a page for an end user to specify locale:
For more information, see Section 2.4.1, "How to Create JSF JSP Pages".
selectOneChoice
component) that an end user can use to change locale. For example, in the Components Palette, from the Common Components panel, drag and drop a Select One Choice anywhere onto the page.
locale
attribute of the f:view
tag to the locale value in the backing bean. f:view
tag and choose Go to Properties. JDeveloper generates a reference to the backing bean for the command component that you use to change the locale. Example 21-10 shows an example using the selectOneChoice
component.
Example 21-10 selectOneChoice Component Referencing a Backing Bean
JDeveloper also generates the required methods in the backing bean for the page. Example 21-11 shows extracts for the backing bean that correspond to Example 21-10.
Example 21-11 Backing Bean Methods to Change Locale
At runtime, an end user invokes the command component you configured to change the locale of the application. The backing bean stores the updated locale information. Pages where the locale
attribute of the f:view
tag reference the backing bean render using the locale specified by the end user.
The locale specified by the end user must be registered with your application. For more information about specifying a locale and associated resource bundles, see Section 21.3.3, "How to Register Locales and Resource Bundles in Your Application".
Along with providing text translation, ADF Faces also automatically provides other types of translation, such as text direction and currency codes. The application will automatically be displayed appropriately, based on the user's selected locale. However, you can also manually set the following localization settings for an application in the trinidad-config.xml
file:
<currency-code>
: Defines the default ISO 4217 currency code used by oracle.adf.view.faces.converter.NumberConverter
to format currency fields that do not specify a currency code in their own converter. <number-grouping-separator>
: Defines the separator used for groups of numbers (for example, a comma). ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. If set, this value is used by oracle.adf.view.faces.converter.NumberConverter
while it parses and formats. <decimal-separator>
: Defines the separator used for the decimal point (for example, a period or a comma). ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. If set, this value is used by oracle.adf.view.faces.converter.NumberConverter
while it parses and formats. <right-to-left>
: Defines the direction in which text appears in a page. ADF Faces automatically derives the rendering direction from the current locale, but you can explicitly set the default page rendering direction by using the values true
or false
. <time-zone>
: Defines the time zone appropriate to the selected locale. ADF Faces automatically uses the time zone used by the client browser. This value is used by oracle.adf.view.faces.converter.DateTimeConverter
when it converts String
to Date
. <formatting-locale>
: Defines the date and number format appropriate to the selected locale. ADF Faces and Trinidad, will by default, format dates and numbers in the same locale used for localized text. If you want dates and numbers formatted in a different locale, you can use an IANA-formatted locale (for example, ja, fr-CA). The contents of this element can also be an EL expression pointing at an IANA string or a java.util.Locale
object. You can configure optional localization properties by entering elements in the trinidad-config.xml
file.
To configure optional localization properties:
trinidad-config.xml
file. The file is located in the <View_Project>/WEB-INF
directory. Example 21-12 shows a sample trinidad-config.xml
file with all the optional localization elements set.
Example 21-12 Configuring Currency Code and Separators for Numbers and Decimal Point
This chapter describes how to add accessibility support to ADF Faces components with keyboard shortcuts and text descriptions of the component name and state. Accessibility guidelines for ADF pages that use partial page rendering, scripting, styles, and certain page and navigation structures are also described.
This chapter includes the following sections:
Accessibility involves making your application usable for persons with disabilities such as low vision or blindness, deafness, or other physical limitations. This means creating applications that can be used without a mouse (keyboard only), used with a screen reader for blind or low-vision users, and used without reliance on sound, color, or animation and timing.
Oracle software implements the U.S. Section 508 and Web Content Accessibility Guidelines (WCAG) 1.0 AA standards. The interpretation of these standards is available at http://www.oracle.com/accessibility/standards.html
.
Additional framework and platform issues presented by client-side scripting, in particular using asynchronous JavaScript and XML (AJAX) have been addressed in Oracle's accessibility strategy.
ADF Faces user interface components have built-in accessibility support for visually and physically impaired users. User agents such as a web browser rendering to nonvisual media such as a screen reader can read component text descriptions to provide useful information to impaired users. Access key support provides an alternative method to access components and links using only the keyboard. ADF Faces accessibility audit rules provide direction to create accessible images, tables, frames, forms, error messages and popup windows using accessible HTML markup.
While following provided ADF Faces accessibility guidelines for components, page, and navigation structures is useful, it is not a substitute for familiarity with accessibility standards and performing accessibility testing with assistive technology.
ADF Faces provides two levels of application accessibility support, configured in the trinidad-config.xml
file using the <accessibility-mode>
element. The acceptable values for <accessibility-mode>
are:
default
: By default, ADF Faces generates components that have rich user interface interaction, and are also accessible through the keyboard. Note that in the default mode, screen readers cannot access all ADF Faces components. If a visually impaired user is using a screen reader, it is recommended to use the screenReader
mode. screenReader
: ADF Faces generates components that are optimized for use with screen readers. The screenReader
mode facilitates the display for visually impaired users, but will degrade the display for sighted users (without visual impairment). It is recommended that you provide the ability to switch between the above accessibility support levels in the application, so that users can choose their desired type of accessibility support, if required.
You can also use the @accessibility-profile
element to define finer-grain accessibility preferences in the style sheet or you can specify the accessibility profile options in the trinidad-config.xml
file.The options are high-contrast
, large-fonts
, or both. For more information, see Section 20.1.1, "ADF Faces Skins."
The acceptable values for <accessibility-profile>
are:
high-contrast
: ADF Faces can generate high-contrast–friendly visual content. The high-contrast mode is intended to make ADF Faces applications compatible with operating systems or browsers that have high-contrast features enabled. For example, ADF Faces changes its use of background images and background colors in high-contrast mode to prevent the loss of visual information. Note that the high-contrast mode is more beneficial if it is used in conjunction with your browser's or operating system's high-contrast mode. Also, some users might find it beneficial to use the large-font mode along with the high-contrast mode. large-fonts
: ADF Faces can generate browser-zoom–friendly content. In default mode, most text and many containers have a fixed size to provide a consistent and defined look. In the large-font mode, text and containers have a scalable size. This allows ADF Faces both to be compatible with browsers that are set to larger font sizes and to work with browser-zoom capabilities. Note that if you are not using the large-font mode or browser-zoom capabilities, you should disable the large-font mode. Also, some users might find it beneficial to use the high contrast mode along with the large-font mode. Note: The |
In JDeveloper, when you insert an ADF Faces component into a JSF page for the first time, a starter trinidad-config.xml
file is automatically created for you in the /WEB-INF/
directory. The file has a simple XML structure that enables you to define element properties using the JSF expression language (EL) or static values. The order of elements in the file does not matter. You can configure accessibility support by editing the XML file directly or by using the Structure window.
To configure accessibility support in trinidad-config.xml in JDeveloper:
<accessibility-mode>
and accessibility support value (default
, screenReader
, or inaccessible
). For example: This code sets the application's accessibility support to the screen reader mode.
<accessibility-profile>
and accessibility profile value (high-contrast
, large-fonts
). For example: This code sets the application's profile support to use both high contrast and large fonts.
Once you have configured the trinidad-config.xml
file, you can retrieve the property values programmatically or by using JSF EL expressions.
For example the following code returns nothing if the accessibility mode is not explicitly set:
In this EL expression example, a null is returned if the accessibility mode is not explicitly set:
Guidelines for component-specific accessibility are provided in Section 22.3.1, "ADF Faces Component Accessibility Guidelines." The guidelines include a description of the relevant property with examples and tips. For information about auditing compliance with ADF Faces accessibility rules, see Section 22.5, "Running Accessibility Audit Rules."
Access key support for ADF Faces input or command and go components such as af:inputText
, af:commandButton
, and af:goLink
involves defining labels and specifying keyboard shortcuts. While it is possible to use the tab key to move from one control to the next in a web application, keyboard shortcuts are more convenient and efficient.
To specify an access key for a component, set the component's accessKey
attribute to a keyboard character (or mnemonic) that is used to gain quick access to the component. You can set the attribute in the Property Inspector or in the page source using &
encoding.
Note: Access keys are not displayed if the accessibility mode is set to |
The same access key can be bound to several components. If the same access key appears in multiple locations in the same page, the rendering agent will cycle among the components accessed by the same key. That is, each time the access key is pressed, the focus will move from component to component. When the last component is reached, the focus will return to the first component.
Using access keys on af:goButton
and af:goLink
components may immediately activate them in some browsers. Depending on the browser, if the same access key is assigned to two or more go components on a page, the browser may activate the first component instead of cycling through the components that are accessed by the same key.
To develop accessible page and navigation structures follow the additional accessibility guidelines described in Section 22.4, "Creating Accessible Pages."
To develop accessible ADF Faces components, follow the guidelines described in Table 22-1. Components not listed do not have accessibility guidelines.
Note: In cases where the Unless noted otherwise, you can also label ADF Faces input and select controls by:
|
Table 22-1 ADF Faces Components Accessibility Guidelines
Component | Guidelines |
---|---|
| For every |
| For every |
| One of the following properties must be specified: |
| Specify the |
| One of the following properties must be specified: |
| Specify the |
| One of the following properties must be specified: |
| Specify the |
| Specify the Use the |
| Specify the |
| Specify the For |
| The |
| When using this component to label an ADF Faces input or select control, the |
| Specify the |
| When using this component to label an ADF Faces input or select control, the |
| Refer to Section 22.4.4, "How to Use Page Structures and Navigation." |
| Specify the |
| When using polling to update content, allow end users to control the interval, or to explicitly initiate updates instead of polling. |
| Specify the following properties:
|
| Specify the |
a | Specify the |
| One of the following properties must be specified: |
| Specify the |
| Specify the For the |
| Specify the |
| One of the following properties must be specified: |
| Specify the All table columns must have column headers. |
If you are using ADF Faces table components in your web application, you must designate a column as the row header for screen reader mode. The row header is used by the screen reader software to announce the row when the end user selects it. Typically, a single column is used as a row header that allows multiple selections, but you can mark multiple columns as row headers. When you mark multiple columns as row headers, they appear as the initial columns of the table, and they are frozen.
Sometimes, for display purposes, you may not want to have a row header. In such a case, you must define one column in the table to have the rowHeader
attribute set to unstyled
. In screen reader mode, the table or the tree table component with the unstyled
row header column is moved to the starting position with displayIndex
set to 0
, and it is frozen. In default mode, the table or tree table component with the unstyled
row header column is not moved to the starting position, it is not frozen, and it is rendered without any row header CSS style.
To develop accessible ADF Data Visualization components, follow the accessibility guidelines described in Table 22-2. Components not listed do not have accessibility guidelines.
Table 22-2 ADF Data Visualization Components Accessibility Guidelines
Component | Guideline |
---|---|
| Specify the |
| Specify the |
| Specify the Note that in screen reader mode, an instance of pivot table component substitutes the graph component, and the end user can then use the standard cursor keys to navigate through the data. In screen reader mode, the following visualization features of the graph component are not supported:
In screen reader mode, the following interactive features of the graph component are not supported:
|
| Specify the Note that in screen reader mode, an instance of the tree table component substitutes for the hierarchy viewer component, and the end user can then use the standard cursor keys to navigate through the data. |
| Specify the Note that in screen reader mode, an instance of the table component substitutes for the map component, and the end user can then use the standard cursor keys to navigate through the data. |
| Specify the |
| Specify the |
In the Property Inspector of the component for which you are defining an access key, enter the mnemonic character in the accessKey
attribute field. When simultaneously setting the text, label, or value and mnemonic character, use the ampersand (&
) character in front of the mnemonic character in the relevant attribute field.
Use one of four attributes to specify a keyboard character for an ADF Faces input or command and go component:
accessKey
: Use to set the mnemonic character used to gain quick access to the component. For command and go components, the character specified by this attribute must exist in the text attribute of the instance component; otherwise, ADF Faces does not display the visual indication that the component has an access key. Example 22-1 shows the code that sets the access key to the letter h
for the af:goLink
component. When the user presses the keys ALT+H, the text value of the component will be brought into focus.
textAndAccessKey
: Use to simultaneously set the text and the mnemonic character for a component using the ampersand (&
) character. In JSPX files, the conventional ampersand notation is &
. In JSP files, the ampersand notation is simply &
. In the Property Inspector, you need only the &
. Example 22-2 shows the code that specifies the button text as Home
and sets the access key to H
, the letter immediately after the ampersand character, for the af:commandButton
component.
labelAndAccessKey
: Use to simultaneously set the label
attribute and the access key on an input component, using conventional ampersand notation. Example 22-3 shows the code that specifies the label as Date
and sets the access key to a
, the letter immediately after the ampersand character, for the af:selectInputDate
component.
valueAndAccessKey
: Use to simultaneously set the value
attribute and the access key, using conventional ampersand notation. Example 22-4 shows the code that specifies the label as Select Date
and sets the access key to e
, the letter immediately after the ampersand character, for the af:outputLabel
component.
Access key modifiers are browser and platform-specific. If you assign an access key that is already defined as a menu shortcut in the browser, the ADF Faces component access key will take precedence. Refer to your specific browser's documentation for details.
In some browsers, if you use a space as the access key, you must provide the user with the information that Alt+Space or Alt+Spacebar is the access key because there is no way to present a blank space visually in the component's label or textual label. For that browser you could provide text in a component tooltip using the shortDesc
attribute.
Labels and access keys that must be displayed in different languages can be stored in resource bundles where different language versions can be displayed as needed. Using the <resource-bundle>
element in the JSF configuration file available in JSF 1.2, you can make resource bundles available to all the pages in your application without using a f:loadBundle
tag in every page.
To define localized labels and access keys:
.properties
files to hold each language version of the labels and access keys. For details, see Section 21.3.1, "How to Define the Base Resource Bundle." <locale-config>
element to the faces-config.xml
file to define the default and supported locales for your application. For details, see Section 21.3.3, "How to Register Locales and Resource Bundles in Your Application." &
or amp
) in front of the letter you wish to define as an access key. For example, the following code defines a label and access key for an edit button field in the UIStrings.properties
base resource bundle as Edit:
In the Italian language resource bundle, UIStrings_it.properties
, the following code provides the translated label and access key as Aggiorna:
<resource-bundle>
element to the faces-config.xml
file for your application. Example 22-5 shows an entry in a JSF configuration file for a resource bundle. Once you set up your application to use resource bundles, the resource bundle keys show up in the Expression Language (EL) editor so that you can assign them declaratively.
In the following example, the UI component accesses the resource bundle:
For more information, see Chapter 21, "Internationalizing and Localizing Pages."
In addition to component-level accessibility guidelines, you should also follow page-level accessibility guidelines when you design your application. While component-level guidelines may determine how you use a component, page-level accessibility guidelines are more involved with the overall design and function of the application as a whole.
The page-level accessibility guidelines are for:
Screen readers do not reread the full page in a partial page request. Partial page rendering (PPR) causes the screen reader to read the page starting from the component that triggered the partial action. Therefore, place the target component after the component that triggers the partial request; otherwise, the screen reader will not read the updated target.
For example, the most common PPR use case is the master-detail user interface, where selecting a value in the master component results in partial page replacement of the detail component. In such scenarios, the master component must always appear before the detail component in the document order.
Screen reader or screen magnifier users may have difficulty determining exactly what content has changed as a result of partial page rendering activity. It may be helpful to provide guidance in the form of inline text descriptions that identify relationships between key components in the page. For example, in the master-detail scenario, some text that indicates that selecting a row on a master component will result in the detail component being updated could be helpful. Alternatively, a help topic that describes the structure of the page and the relationships between components may also be helpful.
Client-side scripting is not recommended for any application problem for which there is a declarative solution and should be kept to a minimum.
Follow these accessibility guidelines when using scripting:
ADF Faces components automatically synchronize with the screen reader when DOM changes are made. Direct interaction with the DOM is not allowed.
Screen readers do not reliably track modifications made in response to timeouts implemented using the JavaScript setTimeout()
or setInterval()
APIs. Do not call these methods.
Some users may not have access to a mouse. For example, some users may be limited to keyboard use only, or may use alternate input devices or technology such as voice recognition software. When adding functions using client-side listeners, the function must be accessible in a device-independent way. Practically speaking this means that:
Focus changes can be confusing to screen reader users as these involve a change of context. Applications should avoid changing the focus programmatically, and should never do so in response to focus events. Additionally, popup windows should not be displayed in response to focus changes because standard tabbing will be disrupted.
Screen readers do not automatically respond to inline popup startups. In order to force the screen reader to read the popup contents when in the screen reader mode, the rich client framework explicitly moves the keyboard focus to any popup window just after it is opened. An explicit popup trigger such as a link or button must be provided, or the same information must be available in some other keyboard or screen reader accessible way.
ADF Faces components are already styled and you may not need to make any changes. If you want to use cascading style sheet (CSS) to directly modify their default appearance, you should follow these accessibility guidelines:
Using CSS to change the appearance of components can have accessibility implications. For example, changing colors may result in color contrast issues.
When specifying sizes using CSS, use size units that scale relative to the font size rather than absolute units. For example, use em
, ex
or %
units rather than px
. This is particularly important when specifying heights using CSS, because low-vision users may scale up the font size, causing contents restricted to fixed or absolute heights to be clipped.
CSS positioning should be used only in the case of positioning the stretched layout component. Do not use CSS positioning elsewhere.
Follow these accessibility guidelines when using these page structures and navigation tools:
af:panelSplitter
component for layouts. When implementing geometry-managed layouts, using af:panelSplitter
allows users to:
If you are planning to use af:panelStretchLayout
, you should consider using af:panelStretchLayout
instead when is appropriate
These page structure qualities are useful to all users, and are particularly helpful for low-vision users and screen-reader users
As an example, a chrome navigation bar at the top of the page should be placed within the first
facet of a vertical af:panelSplitter
component, rather than within the top
facet of af:panelStretchLayout
component. This allows the user to decrease the amount of space used by the bar, or to hide it altogether. Similarly, in layouts that contain left, center, or right panes, use horizontal splitters to lay out the panes.
When nesting flow layout contents such as layout controls inside of geometry-managed parent components such as af:panelSplitter
or af:panelStretchLayout
, wrap af:panelGroupLayout
with layout="scroll"
around the flow layout contents. This provides scrollbars in the event that the font size is scaled up such that the content no longer fits. Failure to do this can result in content being clipped or truncated.
HTML header elements play an important role in screen readability. Screen readers typically allow users to gain an understanding of the overall structure of the page by examining or navigating across HTML headers. Identify major portions of the page through components that render HTML header contents including:
af:panelHeader
af:showDetailHeader
af:showDetailItem
in af:panelAccordion
(each accordion in a pane renders an HTML header for the title area) af:breadCrumbs
component to identify page location. Accessibility standards require that users be able to determine their location within a web site or application. The use of af:breadCrumbs
achieves this purpose.
The WAI-ARIA standard defines different sections of the page as different landmark regions. Together with WAI-ARIA roles, they convey information about the high-level structure of the page and facilitate navigation across landmark areas. This is particularly useful to users of assistive technologies such as screen readers.
ADF Faces includes landmark attributes for several layout components, as listed in Table 22-3.
Table 22-3 ADF Faces Components with Landmark Attributes
Component | Attribute |
---|---|
|
|
|
|
| firstLandmark
|
|
|
These attributes can be set to one of the WAI-ARIA landmark roles, including:
banner
complimentary
contentinfo
main
navigation
search
When any of the landmark-related attributes is set, ADF Faces renders a role attribute with the value you specified.
JDeveloper provides ADF Faces accessibility audit rules to investigate and report compliance with many of the common requirements described in Section 22.3.1, "ADF Faces Components Accessibility Guidelines." Running an audit report involves creating and running an audit profile.
To create an audit profile:
To run the audit report:
The audit report results are displayed in the Log window. After the report completes, you can export the results to HTML by clicking the Export icon in the Log window toolbar.
Part IV contains the following chapters:
This chapter highlights the common characteristics and focus of the ADF Data Visualization components, which are an expressive set of interactive ADF Faces components. The remaining chapters in this part of the guide provide detailed information about how to create and customize each component.
This chapter includes the following sections:
The ADF Data Visualization components provide significant graphical and tabular capabilities for displaying and analyzing data. These components provide the following common features:
For information about the data binding of ADF Data Visualization Components, see the "Creating Databound ADF Data Visualization Components" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The ADF Data Visualization components include the following: graph, gauge, pivot table, geographic map, Gantt chart, and hierarchy viewer.
The graph component gives you the capability of producing more than 50 types of graphs, including a variety of bar graphs, pie graphs, line graphs, scatter graphs, and stock graphs. This component lets you evaluate multiple data points on multiple axes in many ways. For example, a number of graphs assist you in the comparison of results from one group against the results from another group.
The following kinds of graphs can be produced by the graph component:
In JDeveloper, you can create and data bind a graph by dragging a data control from the Data Controls Panel. A Component Gallery displays available graph categories, types, and descriptions to provide visual assistance when designing graphs and defining a quick layout. Figure 23-1 shows the Component Gallery that displays when creating a graph from a data control.
For information about the data binding of graphs, see the "Creating Databound ADF Graphs" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can also create a graph on your page by dragging a graph component from the Component Palette. This approach allows you the option of designing the graph user interface before binding the component to data. Figure 23-2 shows the Component Gallery that displays when creating a pie graph from the Component Palette.
Note: The sparkchart component can only be inserted from the Component Palette and bound to data afterwards. |
All graphs support HTML5, Flash, SVG, and PNG rendering. Graph components support interactivity on initial display and data change including the use of zooming and scrolling, the use of an adjustable time selector window to highlight specific sections on a time axis, the use of line and legend highlighting and fading to filter the display of data points, and the use of dynamic reference lines and areas.
Figure 23-3 show an application dashboard that illustrates:
Figure 23-4 shows an application dashboard that illustrates, clockwise from top left:
Figure 23-5 shows a line sparkchart displaying sales trends in a table column.
The gauge component renders graphical representations of data. Unlike the graph, a gauge focuses on a single data point and examines that point relative to minimum, maximum, and threshold indicators to identify problem areas.
One gauge component can create a single gauge or a set of gauges depending on the data provided.
The following kinds of gauges can be produced by this component:
You can specify any number of thresholds for a gauge. However, some LED gauges (such as those with arrow or triangle indicators) support a limited number of thresholds because there are a limited number of meaningful directions for them to point. For arrow or triangle indicators, the threshold limit is three.
In JDeveloper, a Component Gallery displays available gauges categories, types, and descriptions to provide visual assistance when designing gauges and defining a quick layout. Figure 23-6 shows the Component Gallery for gauges.
All gauge components can use HTML5, Flash, SVG, and PNG rendering.
Figure 23-7 shows a set of dial gauges set with thresholds to display warehouse stock levels.
Figure 23-8 shows a set of status meter gauges set with thresholds.
The pivot table produces a grid that supports multiple layers of data labels on rows or columns. An optional pivot filter bar can be associated with the pivot table to filter data not displayed in the row or column edge. When bound to an appropriate data control such as a row set, the component also supports the option of generating subtotals and totals for grid data, and drill operations at runtime. In JDeveloper, a Create Pivot Table wizard provides declarative support for databinding and configuring the pivot table. For more information, see the "Creating Databound ADF Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Pivot tables let you swap data labels from one edge (row or column) or pivot filter bar (page edge) to another edge to obtain different views of your data. For example, a pivot table might initially display total sales data for products within regions on the row edge, broken out by years on the column edge. If you swap region and year at runtime, then you end up with total sales data for products within years, broken out by region.
Pivot tables support horizontal and vertical scrolling, header and cell formatting, and drag-and-drop pivoting. Pivot tables also support ascending and descending group sorting of rows at runtime. Figure 23-9 shows an example pivot table with a pivot filter bar.
The geographic map provides the functionality of Oracle Spatial within the ADF framework. This component represents business data on a map and lets you superimpose multiple layers of information on a single map. This component supports the simultaneous display of a color theme, a graph theme (bar or pie graph), and point themes. You can create any number of each type of theme and you can use the map toolbar to select the desired themes at runtime.
As an example of a geographic map, consider a base map of the United States with a color theme that provides varying color intensity to indicate the popularity of a product within each state, a pie chart theme that shows the stock levels of warehouses, and a point theme that identifies the exact location of each warehouse. When all three themes are superimposed on the United States map, you can easily evaluate whether there is sufficient inventory to support the popularity level of a product in specific locations. Figure 23-10 shows a geographic map with color theme, pie graph theme, and point theme.
The Gantt chart is a type of horizontal bar graph (with time on the horizontal axis) that is used in planning and tracking projects to show resources or tasks in a time frame with a distinct beginning and end.
A Gantt chart consists of two ADF Faces tree tables combined with a splitter. The left-hand table contains a list of tasks or resources while the right-hand table consists of a single column in which progress is graphed over time.
There are three types of gantt components:
Figure 23-11 shows a project Gantt view of staff resources and schedules.
The hierarchy viewer component displays hierarchical data as a set of linked nodes in a diagram. The nodes and links correspond to the elements and relationships to the data. The component supports pan and zoom operations, expanding and collapsing of the nodes, rendering of simple ADF Faces components within the nodes, and search of the hierarchy viewer data. A common use of the hierarchy viewer is to display an organization chart, as shown in Figure 23-12.
In JDeveloper, a Component Gallery displays available hierarchy viewer types and descriptions to provide visual assistance when designing the component and defining a quick layout. Figure 23-13 shows the Component Gallery for the hierarchy viewer.
All data visualization components can be bound to row set data collections in an ADF data control. For information and examples of data binding these components to data controls, see the "Creating Databound ADF Data Visualization Components" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Graphs and gauges have a tabularData
method that lets you provide CSV (Comma Separated Value) data from a method that is stored in a managed bean.
The Gantt chart component supports the use of a basic tree data control when you want to provide data not only for tasks and resources but also for subtasks and subresources.
Graph and gauge components provide text rotation, high fidelity display, and embedded fonts using Flash image types. The Flash engine is a prebuilt Shockwave Flash (SWF) file containing precompiled ActionScript
code used to display a graph or gauge by using an XML definition of a chart. The Flash engine is downloaded and instantiated by a Flash Player embedded in the client browser at runtime.
Embedded fonts are used for display and printing purposes, they are not installed on the client, and they cannot be edited. They are used by the Flash Player, in memory, and are cleared when the player terminates. Although embedded fonts require a roundtrip to the server to download the font SWF file, they provide a consistent look across all clients, support text rotation, and minimize distortion or anti-aliasing.
Oracle provides one font, Albany WT, for use in Flash images when necessary. This font does not provide any non-plain variations such as Bold or Italic. The Albany WT font is used instead of the default font to support certain animations not supported by Flash with device fonts, if the application does not specify and provide its own embedded font to use instead.
Specific fonts and their respective SWF files can be added to your application as embedded fonts to be passed to the Flash engine. The engine will defer-load any font specified in the list until that font is required by any text or labels in a graph or gauge definition. Example 23-1 defines the Georgia font with a Bold and Italic combination.
Example 23-1 SWF File
You can set graph and gauge font attributes as follows:
fontEmbedding
: Defines whether or not the embedded fonts are used. Some performance may be gained by setting the attribute to none
. fontMap
: Contains the actual map of the fonts that should be used for embedding. The map contains the name of a font and a URL where the custom font SWF file can be found. This chapter describes how to use an ADF graph component to display data and provides the options for graph customization.
This chapter includes the following sections:
For information about the data binding of ADF graphs, see the "Creating Databound ADF Graphs" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The graph component gives you the capability of producing more than 50 types of graphs, including a variety of area, bar, bubble, combination, funnel, line, Pareto, pie, radar, scatter, sparkchart, and stock graphs. This component lets you evaluate multiple data points on multiple axes in many ways. For example, a number of graphs assist you in the comparison of results from one group with the results from another group.
A Component Gallery displays available graph categories, types, and descriptions to provide visual assistance when you are creating graphs and specifying a quick-start layout. Figure 24-1 shows the Component Gallery for horizontal bar graphs.
When a graph is inserted into a JSF page using the Component Gallery, a set of child tags that support customization of the graph is automatically inserted. Example 24-1 shows the source code for a horizontal bar graph with the quick-start layout selected in the Component Gallery in Figure 24-1.
Example 24-1 Horizontal Bar Graph Sample Code
Figure 24-2 shows the visual editor display of the horizontal bar graph created with the Component Gallery in Figure 24-1.
When editing a graph in the visual editor, graph components such as the title, legend area, plot area, background, axis labels, and display of bars can be selected to display a context menu with editing choices. For more information about editing a graph in the visual editor, see Section 24.6, "Customizing the Appearance of Graphs."
Graphs are displayed in a default size of 400 X 300 pixels. You can customize the size of a graph or specify dynamic resizing to fit an area across different browser window sizes. When graphs are displayed in a horizontally or vertically restricted area, for example in a web page sidebar, the graph is displayed in a fully featured, although, simplified display.
To support visually impaired users who read web pages with a screen reader, graphs are automatically replaced with pivot tables when screen reader mode is enabled for the application. Screen readers can more easily navigate and read the data in a pivot table than in a graph. For information about enabling screen reader mode, see Section 22.2, "Exposing Accessibility Preferences." For information about ADF pivot tables, see Section 26.1, "Introduction to the ADF Pivot Table Component."
By default, graphs are displayed in the Flash image format. Alternatively, graphs can be displayed using HTML5 or a Portable Network Graphics (PNG) output format. For more information about graph image formats, see Section 24.4.3, "What You May Need to Know About Graph Image Formats."
HTML5, Flash, and PNG image formats for graphs support bi-directional locales. Figure 24-3 shows bi-directional support in multiple pie graphs displayed with a Flash image format.
Because of the many graph types and the significant flexibility of the graph components, graphs have a large number of DVT tags. The prefix (dvt:
) occurs at the beginning of each graph tag name indicating that the tag belongs to the ADF Data Visualization Tools (DVT) tag library. The following list identifies groups of tags related to the graph component:
dvt:graph
tag lets you create an instance of a graph for any supported graph type. Even though some graph attributes and some graph child tags are meaningful only for certain graph types, the graph tag has a complete set of graph attributes and supports the use of all graph child tags. Therefore, the dvt:graph
tag provides full flexibility for choosing graph types, customizing graphs, and changing from one graph type to another. Note: In JDeveloper the |
For complete descriptions of all the tags, their attributes, and a list of valid values, consult the DVT tag documentation. To access this documentation for a specific tag in JDeveloper, select the tag in the Structure window and press F1. To access the full ADF Data Visualization Tools tag library in JDeveloper Help, expand the Javadoc and Tag Library References node in the online Help Table of Contents and click the link to the tag library in the JDeveloper Tag Library Reference topic.
There are 13 graph-specific tags:
dvt:areaGraph
: Supports an area graph in which data is represented as a filled-in area. Use area graphs to show trends over time, such as sales for the last 12 months. Area graphs require at least two groups of data along an axis. The axis is often labeled with increments of time such as months. dvt:barGraph
: Supports a bar graph in which data is represented as a series of vertical bars. Use bar graphs to examine trends over time or to compare items at the same time, such as sales for different product divisions in several regions. dvt:horizontalBarGraph
: Creates a graph that displays bars horizontally along the y-axis. Use horizontal bar graphs to provide an orientation that allows you to show trends or compare values. dvt:bubbleGraph
: Creates a graph in which data is represented by the location and size of round data markers (bubbles). Use bubble graphs to show correlations among three types of values, especially when you have a number of data items and you want to see the general relationships. For example, use a bubble graph to plot salaries (x-axis), years of experience (y-axis), and productivity (size of bubble) for your work force. Such a graph allows you to examine productivity relative to salary and experience. dvt:comboGraph
: Creates a graph that uses different types of data markers (bars, lines, or areas) to display different kinds of data items. Use combination graphs to compare bars and lines, bars and areas, lines and areas, or all three combinations. dvt:funnelGraph
: Creates a graph that is a visual representation of data related to steps in a process. The steps appear as vertical slices across a horizontal cone-shaped section. As the actual value for a given step or slice approaches the quota for that slice, the slice fills. Typically, a funnel graph requires actual values and target values against a stage value, which might be time. For example, use the funnel graph to watch a process where the different sections of the funnel represent different stages in the sales cycle. dvt:lineGraph
: Creates a graph in which data is represented as a line, as a series of data points, or as data points that are connected by a line. Line graphs require data for at least two points for each member in a group. For example, a line graph over months requires at least two months. Typically a line of a specific color is associated with each group of data such as the Americas, Europe, and Asia. Use line graphs to compare items over the same time. dvt:paretoGraph
: Creates a graph in which data is represented by bars and a percentage line that indicates the cumulative percentage of bars. Each set of bars identifies different sources of defects, such as the cause of a traffic accident. The bars are arranged by value, from the largest number to the lowest number of incidents. A Pareto graph is always a dual-Y graph in which the first y-axis corresponds to values that the bars represent and the second y-axis runs from 0% to 100% and corresponds to the cumulative percentage values. Use Pareto graphs to identify and compare the sources of defects. dvt:pieGraph
: Creates a graph in which one group of data is represented as sections of a circle causing the circle to look like a sliced pie. Use pie graphs to show the relationship of parts to a whole such as how much revenue comes from each product line. dvt:radarGraph
: Creates a graph that appears as a circular line graph. Use radar graphs to show patterns that occur in cycles, such as monthly sales for the last three years. dvt:scatterGraph
: Creates a graph in which data is represented by the location of data markers. Use scatter graphs to show correlation between two different kinds of data values such as sales and costs for top products. Use scatter graphs in particular to see general relationships among a number of items. A scatter graph can display data in a directional manner as a polar graph. dvt:sparkChart
: Creates a simple, condensed graph that displays trends or variations in a single data value, typically stamped in the column of a table or in line with related text. Sparkcharts have basic conditional formatting. Note: In this release sparkcharts are created by inserting the |
dvt:stockGraph
: Creates a graph in which data shows the high, low, and closing prices of a stock. Each stock marker displays two to four separate values (not counting the optional volume marker) depending on the specific type of stock graph chosen. Types of common customization and related child tags include:
dvt:animationOnDisplay
and dvt:animationOnDataChange
tags. dvt:alertSet
and dvt:alert
tags. dvt:annotationSet
and dvt:annotation
tags. dvt:background
, dvt:graphFont
, dvt:graphFootnote
, dvt:graphPlotArea
, dvt:graphSubtitle
, and dvt:graphTitle
tags. dvt:seriesSet
and dvt:series
tags. dvt:attributeFormat
. dvt:legendArea
, dvt:legendText
, and dvt:legendTitle
tags. dvt:markerText
, dvt:x1Format
, dvt:y1Format
, dvt:y2Format
, and dvt:zFormat
tags. dvt:referenceObjectSet
and dvt:referenceObject
tags. dvt:o1Axis
, dvt:o1MajorTick
, dvt:o1TickLabel
, and dvt:o1Title
tags. dvt:x1Axis
, dvt:x1MajorTick
, dvt:x1TickLabel
, dvt:x1MinorTick
, and dvt:x1Title
tags. dvt:y1Axis
, dvt:y1BaseLine
, dvt:y1MajorTick
, dvt:y1TickLabel
, dvt:y1MinorTick
, and dvt:y1Title
tags. dvt:y2Axis
, dvt:y2BaseLine
, dvt:y2MajorTick
, dvt:y2TickLabel
, dvt:y2MinorTic
k, and dvt:y2Title
tags. Types of graph-specific customizations and related child tags include:
dvt:background
, dvt:legendArea
, dvt:graphPlotArea
, dvt:graphPieFrame
, dvt:series
, dvt:referenceObject
, or dvt:timeSelector
subcomponents: dvt:specialEffects
and dvt:gradientStopStyle
tags. dvt:shapeAttrbutesSet
and dvt:shapeAttributes
tags. dvt:sliceLabel
, dvt:x1TickLabel
, dvt:y1TickLabel
, dvt:y2TickLabel
, dvt:x1Format
, dvt:y1Format
, dvt:y2Format
, dvt:zFormat
, and dvt:stockVolumeFormat
. dvt:timeAxisDateFormat
, and dvt:timeSelector
tags. dvt:timeSelector
tag. dvt:paretoLine
and dvt:paretoMarker
tags. dvt:graphPieFrame
, dvt:pieFeeler
, dvt:slice
, and dvt:sliceLabel
tags. dvt:sparkItem
tag provides data for the sparkchart. dvt:stockMarker
, dvt:stockVolumeformat
, and dvt:volumeMarker
tags. Child set tags include:
dvt:alertSet
tag: Wraps dvt:alert
tags that define an additional data point that needs to be highlighted with a separate symbol, such as an error or warning. dvt:annotationSet
tag: Wraps dvt:annotation
tags that define an annotation on a graph. An annotation is associated with a specific data point on a graph dvt:referenceObjectSet
tag: Wraps dvt:referenceObject
tags that define a reference line or a reference area for a graph. You can define an unlimited number of reference objects for a given graph. dvt:seriesSet
tag: Wraps dvt:series
tags that define a set of data markers or series on a graph. dvt:shapeAttributesSet
tag: Wraps dvt:shapeAttributes
tags that specified interactivity properties on a subcomponent of a graph. In each case, during design, you must create the wrapper tag first, followed by a related tag for each item in the set. Example 24-2 shows the sequence of the tags when you create a set of alert tags to define two alert points for an area graph.
Example 24-2 Sample Code for a Set of Alert Tags
Data requirements for graphs differ with graph type. Data requirements can be any of the following kinds:
Similar graphs share similar data requirements. For example, you can group the following graphs under the category of area graphs:
An area graph is one in which data is represented as a filled-in area. The following kinds of area graphs are available:
In a split dual-Y graph, the plot area is split into two sections, so that sets of data assigned to the different Y-axes appear in different parts of the plot area.
Data guidelines for area graphs are:
A bar graph is one in which data is represented as a series of bars. The following kinds of bar graphs are available:
Data guidelines for bar graphs are:
A bubble graph is one in which data is represented by the location and size of round data markers (bubbles). Each data marker in a bubble graph represents three group values:
The following kinds of bubble graphs are available: Bubble graph with a single y-axis and bubble graph with a dual y-axis.
Data guidelines for a bubble graph are:
Note: When you look at a bubble graph, you can identify groups of data by examining tooltips on the markers. However, identifying groups is not as important as looking more at the overall pattern of the data markers. |
A combination graph uses different types of data markers to display different sets of data. The data markers used are bar, area, and line.
Data guidelines for combination graphs are:
A funnel graph is a visual representation of data related to steps in a process. As the value for a given step (or slice) of the funnel approaches the quota for that slice, the slice fills. A funnel renders a three-dimensional chart that represents target and actual values, and levels by color. A funnel graph displays data where the target is considered to be 100%. Therefore, if the actual value is 50 and target is 200, then 25% of the slice will be filled.
Data guidelines for funnel graphs are:
Another variation of the funnel graph requires only one set of data, where the data values shown are percentages of the total values. To produce this type of funnel graph, you must set the funnelPercentMeasure
property on the graph to be True
. This setting should be done in the XML for the graph.
A line graph represents data as a line, as a series of data points, or as data points that are connected by a line. The following kinds of line graphs are available:
Data guidelines for line graphs are:
Pareto graphs are specifically designed for identifying sources of defects. In a Pareto graph, a series of bars identifies different sources of defects. These bars are arranged by value, from the greatest number to the lowest number. A line shows the percentage of the cumulative values of the bars to the total values of all the bars in the graph. The line always ends at 100%.
Pareto graphs are always dual-Y graphs. The y1-axis corresponds to values that the bars represent. The y2-axis corresponds to the cumulative percentage values.
Data guidelines for Pareto graphs are:
A pie graph represents data as sections of one or more circles, making the circles look like sliced pies. The following varieties of pie graphs are available:
The data structure of a pie graph follows:
Data guidelines for pie graphs are:
A polar graph is a circular scatter graph. In a polar graph, as in a scatter graph, data is represented by the location of data markers. In a polar graph, the plot area, where the markers appear, is circular. For information about scatter graphs, see Section 24.3.11, "Scatter Graph Data Requirements."
Like scatter graphs, polar graphs are especially useful when you want to see general relationships among a number of data items. Use polar graphs rather than scatter graphs when the data has a directional aspect.
Each data marker in a polar graph represents two data values:
Data guidelines for a polar graph require at least two data values for each marker.
A radar graph is a polygonal line graph similar to how a polar graph is a circular scatter graph. Use radar graphs to show patterns that occur in cycles, such as monthly sales for the last three years.
The data structure of a radar graph follows:
Data guidelines for radar graphs require at least three groups of data.
A scatter graph represents data by the location of data markers. Scatter graphs are especially useful when you want to see general relationships among a number of data points. For example, you can use a scatter graph to examine the relationships between Sales and Profit values for specific products.
Scatter graphs have either a single y-axis or a dual y-axis. Each data marker in a scatter graph represents two values:
Data guidelines for scatter graphs are:
Sparkcharts are used for displaying trends or variations in a single series of data values. They are condensed, simple visualizations designed to be stamped in a table or used inline with text. Since sparkcharts contain no labels, the adjacent columns of a table or surrounding text provide context for sparkchart content.
Sparkcharts do not accept tabular data or graphDataModel
. Data guidelines for sparkcharts are:
Stock graphs display stock prices and, optionally, the volume of trading for one or more stocks in a graph. When any stock or candle stock graph includes the volume of trading, the volume appears as bars in the lower part of the graph.
Candle stock graphs display stock prices and, optionally, the volume of trading for only a single stock. When a candle stock graph includes the volume of trading, the volume appears as bars in the lower part of the graph.
Candle stock graphs also show the lesser of the open and close values at the bottom of the candle. The greater value appears at the top of the candle. If the closing value is greater than the opening value, then the candle is green. If the opening value is higher than the closing value, then the candle is red.
Data requirements for a high-low-close stock graph are:
Data requirements for a high-low-close stock graph with volume are:
Data requirements for an open-high-low-close stock graph are:
Data requirements for an open-high-low-close stock graph with volume are:
Data requirements for an open-close candle stock graph are:
Data requirements for an open-close candle stock graph with volume are:
Data requirements for an open-high-low-close candle stock graph are:
Data requirements for an open-high-low-close candle stock graph with volume are:
You can use any of the following data sources to create a graph component:
tabularData
attribute as shown in Section 24.4.1, "How to Create a Graph Using Tabular Data.". The process of creating a graph from tabular data includes the following steps:
The tabularData
attribute of a dvt:graph
component lets you specify a list of data that the graph uses to create a grid and populate itself. To construct this list, you require an understanding of series and groups of data in a graph as well as knowledge of the structure of the list.
A graph displays series and groups of data. Series and groups are analogous to the rows and columns of a grid. Usually the rows in the grid appear as a series in a graph and the columns in the grid appear as groups in the graph.
For most graphs, a series appears as a set of markers that are the same color. Usually the graph legend shows the identification and associated color of each series. For example, in a bar graph, the yellow bars might represent the sales of shoes and the green bars might represent the sales of boots.
Groups appear differently in different graph types. In a clustered bar graph, each cluster is a group. In a stacked bar graph, each stack is a group. In a multiple pie graph, each pie is a group. A group might represent time periods, such as years. A group might also represent geographical locations such as regions.
Depending on the data requirements for a graph type, a single group might require multiple data values. For example, a scatter graph requires two values for each data marker. The first value determines where the marker appears along the x-axis while the second value determines where the marker appears along the y-axis.
The list that contains the tabular data consists of a three-member Object
array for each data value to be passed to the graph. The members of each array must be organized as follows:
String
. If the graph has a time axis, then this should be a Java Date. Column labels typically identify groups in the graph. String
. Row labels appear as series labels in the graph, usually in the legend. Double
. Figure 24-6 has three columns: 2006, 2007, and 2008. This graph also has two row: Shoes and Boots. This data produces a graph that compares annual sales for boots and shoes over a three-year period.
Example 24-3 shows code that creates the list of data required for a graph to compare annual sales of shoes and boots for a three-year period.
Example 24-3 Code to Create a List of Data for a Graph
Use the tabularData
attribute of a graph tag to reference data that is stored in a method in a managed bean.
To create a graph that uses data from a managed bean:
In the Expression Builder, the tabularData
attribute is set to reference the method that you selected in the managed bean. For example, for a managed bean named named sampleGraph
and a method named getTabularData
, the tabularData
attribute has the following setting: #(sampleGraph.tabularData)
.
When you create a graph that is powered by data obtained from a list referenced the tabulularData
attribute a vertical clustered bar graph is created by default. You have the option of changing the settings of the graphType
attribute to any of the more than 50 graphs that are available as long as the tabular data meets the data requirements for that graph type. You can also change the settings of the many additional attributes on the dvt:graph
tag.
Customize the graph by dragging any of the graph child tags to the dvt:graph
node in the Structure window and providing settings for the attributes that you want to specify.
Graphs support the following image formats: HTML5, Flash, and PNG. The image format used depends upon the application's settings and the client's environment. By default, graphs display in Flash, but you can configure your application to use a specific image format by setting the following parameters:
oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT
To use the HTML5 image format, add this parameter to the web.xml
file and set it to HTML5
. For more information, see Section A.2.3.22, "Graph and Gauge Image Format."
flash-player-usage
You can disable the use of Flash content across the entire application by setting a flash-player-usage
context parameter in adf-config.xml
. For more information, see Section A.4.3, "Configuring Flash as Component Output Format."
If the specified image format isn't available on the client, the application will default to an available format. For example, if the client does not support HTML5, the application will use:
When you insert a graph using the Data Controls panel or the Component Palette, the Component Gallery displays available graph categories, types, and quick-start layout options from which to choose. Selecting a graph type sets the subType
attribute for that graph. You can change the type for all graphs except the funnel and radar graphs.
To change the type of a graph:
For example, the valid values for a bar graph are:
BAR_VERT_CLUST
: Clustered bar graph that has a vertical orientation. BAR_VERT_CLUST_SPLIT2Y
: Clustered, vertical, split dual-Y bar graph. BAR_VERT_CLUST2Y
: Clustered, vertical, dual-Y bar graph. BAR_VERT_FLOAT_STACK
: Floating, vertical, stacked bar graph. BAR_VERT_PERCENT
: Percent, vertical bar graph. BAR_VERT_STACK
: Stacked, vertical bar graph. BAR_VERT_STACK_SPLIT2Y
: Stacked, vertical, split dual-Y bar graph. BAR_VERT_STACK2Y
: Stacked, vertical, dual-Y bar graph. Most graph types have common features that are available for customization. The following types of customization are supported by most graph types:
Note: In order to avoid invalid color values, JDeveloper provides a color selection dialog when you specify color-related attributes in graph elements. |
When you edit graph components in the visual editor, specialized context menus and Property Inspector buttons are available to support the customization of graph features. Popups in the editor provide confirmation of selection of the graph feature to be customized. For example, Figure 24-7 shows the popup displayed in the plot area of a line graph.
When the graph feature is selected in the visual editor, a specialized editing context menu is made available. Figure 24-8 shows the line graph plot area context menu from which you can choose a variety of options including removing the default display of the horizontal grid marks. You can also use the context menu or the Property Inspector buttons to configure special fill effects in the plot area. The selection of the graph tags is synchronized in the visual editor, Structure window, Property Inspector, and source editor.
For additional information about configuring line graphs, see. Section 24.7.2, "Changing the Appearance of Lines in Graphs." For additional information about configuring special fill effects, see Section 24.8.2, "Using Gradient Special Effects in Graphs."
For most graph types, an entry appears in the legend for each set of data values represented as graph bars, lines, areas, points, and slices. This entry identifies a set of related data values and displays the color that represents the set in the graph. For example, a bar graph might use yellow bars to represent the sales of shoes and green bars to represent the sales of boots. The graph component refers to each set of related data values as a series.
The graph automatically assigns a different color to each set of data values. You can customize the colors assigned to each series, including the fill color and the border color. For some graph types, you can enable filtering the display of data values in a graph by hiding or showing the series from the graph legend.
You can specify additional characteristics for specific graph types such as the width and style of lines in a line graph with choices including solid lines, dotted lines, lines with dashes, and so on. For more information, see Section 24.7.2, "Changing the Appearance of Lines in Graphs."
For scatter graphs you can separate data marker shape and color from the series to display the interdependence of data values. For more information, see Section 24.7.4, "Customizing Scatter Graph Series Markers."
You can also customize the colors of each series in a graph by adding gradient special effects. For more information, see Section 24.8.2, "Using Gradient Special Effects in Graphs."
Use one dvt:seriesSet
tag to wrap all the individual dvt:series
tags for a graph and set attributes for color and style of graph data markers.
To specify the color and style for series items in a graph:
dvt:seriesSet
tag. The attributes of this tag determine default settings for all series tags in the set. However, you can override these settings for a given series by entering values in the corresponding attributes of a dvt:series
tag.
The first dvt:series
tag represents the first series item that appears in the Create Graph Binding dialog.
dvt:series
tag. For graph types including area, bar, bubble, combination, line, pie, radar, and scatter, you can enable the hiding or showing of the series in a graph at runtime. Although at least one series must be displayed in the graph, users can filter the display of data values by clicking on the corresponding legend item.
To enable hiding and show series items:
none
: Default value, no hide and show series behavior is enabled. withRescale
: Rescales the graph to show only the visible series. withoutRescale
: Hides the series, but does not rescale the graph. The attributes in a data collection can be data values or categories of data values. Data values are numbers represented by markers, like bar height, or points in a scatter graph. Categories of data values are members represented as an ordinal axis label, or appear as additional properties in a tooltip. You can format both numerical and categorical attributes by using ADF Faces converter tags, including af:convertNumber
for numerical data values, and af:convertNumber
, af:convertDateTime
, and af:convertColor
for categorical data values.
Converter tag attributes let you format percents, scale numbers, control the number of decimal places, placement of signs, and so on. For more information about ADF Faces converters, see Chapter 6, "Validating and Converting Input."
Categorical data values in graphs are represented by the name in the page definition file (<pagename>PageDef.xml
) that defines the graph's data model. Example 24-4 shows the XML code in a page definition file for a page with a graph displaying categorical data values for the hire date and the bonus cost for employees.
Example 24-4 Categorical Data Value Names in Page Definition File
For each categorical attribute to be formatted, use the dvt:attributeFormat
tag to specify the name of the categorical data value, and specify the child converter tag to be used when formatting the attribute. You can use af:convertNumber
, af:convertDateTime
, and af:convertColor
to specify formatting for a categorical attribute.
For example, you can format the hire date and bonus categorical data values defined in the page definition file in Example 24-4.
To format categorical data values defined in a page definition file:
Hiredate
as the name of the af1 category attribute. java.text.SimpleDateFormat
. For the TimeZone attribute, enter the timezone to interpret any time information in the data string. Bonus
as the name of the af2 category attribute, adding an af:convertNumber
converter, and formatting the attribute for currency. Example 24-5 shows the XML code that is generated if you format the categorical data values in a bar graph.
Example 24-5 Formatting Categorical Data Values in a Bar Graph
Note: If there is a single categorical date attribute being displayed on the ordinal (O1) axis, then the graph displays a time axis. The time axis will show dates in a hierarchical format as opposed to a single label on the axis, for example, June 27, 2001. To display a single label on the ordinal axis, the time axis should be turned off, for example |
Use the ADF Faces af:convertNumber
tag to specify formatting for numeric data values related to any of the following graph
tags:
dvt:sliceLabel
dvt:stockVolumeFormat
dvt:x1TickLabel
dvt:x1Format
dvt:y1TickLabel
dvt:y1Format
dvt:y2TickLabel
dvt:y2Format
dvt:zFormat
For example, by default a pie graph shows the relationship of parts to a whole, represented as slices in a pie, and each slice label displays the percentage that each slice represents. You can configure a pie graph to represent each slice as a value such as the cost of materials, labor, and profit that make up the list price. Specify the textType
attribute of the dvt:sliceLabel
tag to display the value represented in the slice, and format the number accordingly.
To format numbers in the slice label of a pie graph:
Example 24-6 shows the XML code that is generated if you format the numerical data values in the slice label of a pie graph to appear as currency, and use the dollar sign symbol.
Example 24-6 Formatting Numerical Data Values in the Slice Label of a Pie Graph
You can also use the ADF Faces af:convertNumber
tag to format numbers in the marker text of a graph.
For example, you can provide different formatting for the marker text of each axis in the graph. In this procedure, the af:convertNumber
tag is used to format the marker text on dvt:y1Format
.
To format numerical values in the marker text associated with the y1-axis of a graph:
For example, select true
for the rendered
attribute to display the text in the graph.
For example, select a percent
value for the type
attribute to place a percentage sign after the marker text.
Example 24-7 shows the XML code that is generated when you format the numbers in the marker text for the y1-axis of a graph. This example specifies that numbers are followed by a percentage sign and the text appears above the markers. For example, in a bar graph, the text will appear above the bars.
Example 24-7 Formatting Numbers in Graph Marker Text
Note: When the textType attribute of a pie slice label is set to percent (LD_PERCENT), or the markerTooltipType attribute of a graph tooltip is set to percent (MTT_PERCENT_XXX), a child |
In order to achieve a compact and clean display, graphs automatically determine the scale and precision of the values being displayed in axis labels, marker text, and tooltips. For example, a value of 40,000 will be formatted as 40K, and 0.230546 will be displayed with 2 decimal points as 0.23.
Automatic formatting still occurs when af:convertNumber
is specified. Graph tags that support af:convertNumber
child tags have scaling
and autoPrecision
attributes that can be used to control the graph's automatic number formatting. By default, these attribute values are set to scaling="auto"
and autoPrecision="on"
. Fraction digit settings specified in af:convertNumber
, such as minFractionDigits
, maxFractionDigits
, or pattern
, are ignored unless autoPrecision
is set to off
.
You can format text in any of the following subcomponents of a graph:
dvt:annotation
tag. dvt:o1Title
, dvt:x1Title
, dvt:y1Title
, and dvt:y2Title
tags. dvt:o1TickLabel
, dvt:x1TickLabel
, dvt:y1TickLabel
, and dvt:y2TickLabel
tags. dvt:graphFootnote
, dvt:graphSubtitle
, and dvt:graphTitle
tags. dvt:legendText
tag. dvt:markerText
tag. Use the dvt:graphFont
tag as a child of the specific subcomponent for which you want to format text. For an example of formatting text in a graph, see Section 24.6.5.2, "How to Specify Titles and Footnotes in a Graph,".
You can set the font
attributes of graph components globally across all pages in your application by using a cascading style sheet (CSS) to build a skin, and configuring your application to use the skin. By applying a skin to define the fonts used in graph components, the pages in an application will be smaller and more organized, with a consistent style easily modified by changing the CSS file.
You can use the ADF Data Visualization Tools Skin Selectors to define the font styles for graph components. Graph component skin selectors include the following:
af|dvt-graphFootnote
af|dvt-graphSubtitle
af|dvt-graphTitle
af|dvt-o1Titl
e af|dvt-x1Title
af|dvt-y1Title
af|dvt-y2Title
af|dvt-pieLabel
af|dvt-ringTotalLabel
af|dvt-legendTitle
af|dvt-legendText
af|dvt-markerText
af|dvt-o1TickLabel
af|dvt-x1TickLabel
af|dvt-y1TickLabel
af|dvt-y2TickLabel
af|dvt-annotation
af|dvt-sliceLabel
af|dvt-tooltips
You can also use ADF Data Visualization Tools global skin selectors to define the font
attributes across multiple graph components. Global skin selector names end in the :alias
pseudo-class, and affect the skin for more than one component. Global graph skin selectors include the following:
.AFDvtGraphFont:alias
: Specifies the font
attributes for all graph components. .AFDvtGraphTitlesFont:alias
: Specifies the font
attributes for all graph title components. .AFDvtGraphLabelsFont:alias
: Specifies the font
attributes for all graph label components. To use a custom skin to set graph fonts:
-tr-font-family
: Specifies the font family (name). It may not contain more than one font. If multiple fonts are specified, the first font will be used. -tr-font-size
: Specifies the size of the font. Units of absolute size are defined as: pt
: Points - the standard font size used by CSS2, where 1 point equals 1/72nd of an inch. in
: Inches, where 1 inch equals 72 points. cm
: Centimeters, where 1 centimeter equals approximately 28 points. mm
: Millimeters, where 1 millimeter equals approximately 2.8 points. You can also use font size names for this attribute, including the following:
xx-small
: 8 points x-small
: 9 points small
: 10 points medium
: 12 points large
: 14 points x-large
: 16 points xx-large
: 18 points -tr-font-style
: Specifies the style of the font. Valid values are normal
or italic
. -tr-font-weight
: Specifies the weight of the font. Valid values are normal
or bold
. -tr-text-decoration
: Specifies whether or not the underline emphasis is rendered. Valid values are none
or underline
. -tr-color:
Specifies the color of the font. Valid values are color names for HTML and CSS. The World Wide Consortium lists 17 valid color names including aqua
, black
, blue
, fuchsia
, gray
, green
, lime
, maroon
, navy
, olive
, orange
(CSS 2.1), purple
, red
, silver
, teal
, white
, and yellow
. You can also use 3, 6, or 8 digits HEX (alpha channel is first 2 digit in 8 digit HEX), RGB, or RGBA.
For example, specify the font family for all graph titles in a mySkin.css
file as follows:
trinidad-skins.xml
file. For example, mySkin.css
extends the default blafplus-rich.desktop
style sheet: trinidad-config.xml
file. For example: trinidad-skins.xml
file that defines the skin and that references the CSS file must be within the META-INF
directory. For detailed information about applying a custom skin to applications, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
You can customize the width and height of a graph and you can allow for dynamic resizing of a graph based on changes to the size of its container. You can also control the style sheet used by a graph. These two aspects of a graph are interrelated in that they share the use of the graph inlineStyle
attribute.
You can specify the initial size of a graph by setting values for attributes of the dvt:<type>Graph
tag. If you do not also provide for dynamic resizing of the graph, then the initial size becomes the only display size for the graph.
To specify the size of a graph at its initial display:
inlineStyle
attribute of the graph tag. For example: You must enter values in each of two attributes of the dvt:<type>Graph
tag to allow for a graph to resize when its container in a JSF page changes in size. The values that you specify for this capability also are useful for creating a graph component that fills an area across different browser window sizes.
To allow dynamic resizing of a graph:
DynamicResize
attribute, select the value DYNAMIC_SIZE. InlineStyle
attribute, enter a fixed number of pixels or a relative percent for both width and height. For example, to create a graph that fills its container's width and has a height of 200 pixels, use the following setting for the inlineStyle
attribute: "width:100%;height:200px;"
.
You have the option of selecting any of the standard styles available for the dvt:<type>Graph
tag. You can also specify a custom style sheet for use with a graph.
To select a specific style sheet for a graph:
style
attribute dropdown list. StyleClass
attribute, select Edit from the Property menu choices, and select the CSS style class to use for this gauge. InlineStyle
attribute, enter a fixed number of pixels or a relative percent for both width and height. For example, to create a graph that fills its container's width and has a height of 200 pixels, use the following setting for the inlineStyle
attribute: "width:100%;height:200px;"
The graph automatically provides default settings for its background and plot area based on the style it is using. You can customize these settings using child tags of the graph.
The graph also provides title, subtitle, and footnote options that you can specify. By default, no text is provided for titles and footnotes. When you enter this information, you can also specify the font and font characteristics that you want to use for the text.
You can customize the following parts of graphs related to background and plot area:
To customize the background and plot area of a graph:
dvt:background
tag. dvt:graphPlotArea
tag. dvt:graphPieFrame
tag. Note: You can also customize the colors of the background and plot area in a graph by adding gradient special effects. For more information, see Section 24.8.2, "Using Gradient Special Effects in Graphs." |
You have the option of specifying a title, subtitle, and footnote for a graph. You use a separate child tag of the graph for each of these text entries. The attributes of each of these child tags let you define the horizontal alignment of the text field, the text content, and whether or not the text should be rendered.
The tags for title, subtitle, and footnote support the use of a child graph font tag to let you identify the exact font characteristics to be used for each text field.
To specify titles and a footnote for a graph:
dvt:graphTitle
tag. dvt:graphFont
tag. dvt:graphSubtitle
tag. dvt:graphFont
tag. dvt:graphFootnote
tag. dvt:graphFont
tag. Graphs can have the following axes:
An example of an ordinal axis is the horizontal line across the bottom of the plot area of a vertical bar graph. The values along this axis do not identify the extent of the data shown. Instead, they identify the different groups to which the data belongs.
For each axis, there are several graph child tags that support customization. The following sections discuss the options available for various kinds of customization of an axis.
The following graph child tags support customization of the title, and appearance of an axis:
dvt:o1Title
, dvt:x1Title
, dvt:y1Title
, and dvt:y2Title
. An axis does not show a title unless you use the appropriate title tag. dvt:o1Axis
, dvt:x1Axis
, dvt:y1Axis
, dvt:y2Axis
. Note: Scaling attributes are not present on the |
To specify the title and appearance of an x1-axis:
The procedure for controlling the title and appearance of any graph axis is similar to the procedure for the x-axis. However, insert the title and axis tags related to the specific axis that you want to customize.
Scrolling on a graph axis can be specified for the following graph types:
dvt:o1Axis
, dvt:y1Axis
, and dvt:y2Axis
tags. dvt:x1Axis,
dvt:y1Axis
, and dvt:y2Axis
tags. By default, a graph axis scrolling
attribute is set to off
. You can specify these values for the scrolling
attribute:
off
: Scrolling is disabled (default). on
: Scrolling is enabled and the scroll bar is always present. asNeeded
: Scrolling is enabled, but the scrollbar is not initially present. After zooming on the graph, the scrollbar displays and remains visible for the session. hidden
: Scrolling is enabled but the scroll bar is always hidden. User may use pan scrolling. Tick marks are used to indicate specific values along a scale on a graph. The following graph child tags support customization of the tick marks and their labels on an axis:
dvt:o1MajorTick
, dvt:x1MajorTick
, dvt:y1MajorTick
, and dvt:y2MajorTick
. Major tick increments are calculated automatically by default, or you can specify the tick steps with the majorIncrement
attribute. dvt:x1MinorTick
, dvt:y1MinorTick
, and dvt:y2MinorTick
. Minor tick increments are one-half of the major tick increment by default, or you can specify the tick steps with the minorIncrement
attribute. Minor ticks do not support labels. dvt:o1TickLabel
, dvt:x1TickLabel
, dvt:y1TickLabel
, and dvt:y2TickLabel
. These tags can also have a dvt:graphFont
child tag to change font characteristics of the label. To control the appearance of the ordinal axis tick labels:
Alternatively, you can select the dvt:o1Axis
element in the Structure window, then in the Property Inspector click the Configure o1Axis button and choose Value Labels.
Note: Use rotation angles that are multiples of 90 degrees to achieve best results. For Flash image types, embedded fonts are required to support rotated text in non-90 degree angles, and embedded fonts are not available for all locales. |
TLS_MANUAL
, you can optionally use the tickLabelSkipCount
to set the number of tick labels to display between tick labels and tickLabelSkipFirst
to set the index of the first tick label to be skipped. dvt:graphFont
tag. To control the appearance of tick marks and labels on an x-axis:
Note: For the |
The procedure for controlling the appearance of tick marks on any graph axis is similar to the procedure for the x-axis. However, you customize the major tick and label tags and insert the minor ticks related to the specific axis that you want to customize.
The dvt:markerText
tag lets you to control the format of numbers on an axis. The following dvt:markerText
child tags wrap the number format for specific axes: dvt:x1Format
, dvt:y1Format
, and dvt:y2Format
.
To format numbers on these axes, insert child tags for the appropriate axis as shown in Section 24.6.2, "Formatting Data Values in Graphs."
The Y-axes have the following graph child tags to support the starting value of the axis: dvt:y1Axis
, and dvt:y2Axis
. You have the option of specifying different scaling on each y-axis in a dual y-axis graph. For example, the y1-axis might represent units in hundreds while the y2-axis might represent sales in thousands of dollars.
Some graphs, such as scatter and bubble graphs, contain a dvt:x1Axis
child tag for which the minimum and maximum values can also be set.
To specify the starting value on a y1-axis:
AxisMinValue
field, enter the starting value for the y1-axis. AxisMinAutoScaled
field, select false from the attribute dropdown list. You must set this attribute in order for the minimum value to be honored.
To establish the starting value on a y2-axis, use a similar procedure, but insert the dvt:y2Axis
tag as a child of the graph.
Graph components provide child tags for the following kinds of customization for the legend:
dvt:legendArea
tag dvt:legendText
tag dvt:legendTitle
tag To customize the legend area, legend text, and title:
AP_ALWAYS
. Setting the value at AP_NEVER
requires the value of the position
attribute to be used for positioning of the legend area. asNeeded
. By default the value is set to off
. alignToCenter
. By default the value is set to alignToEdge
which aligns the legend toward the edge of the graph frame. For example, to set the maximum width of the legend to 50% of the graph's area, enter 50%
.
Tooltips are useful to display identification or detail information for data markers. They can be very useful in smaller graphs without enough space to display markerText
. Graphs automatically displays tooltips for components like title, subtitle, footnote, legend text, and annotations when their text is truncated.
In most graphs, if you move the cursor over a data marker, then a tooltip is displayed. In a line or area graph, you must move the cursor over a data marker or at the corners of the line or area and not merely over the line or area.
You can specify that each graph marker (such as bars) displays a tooltip with information. The following graph attributes are used together to customize a graph tooltip:
Note: The graph displays series tooltip labels only if the graph's |
You can quickly format all the marker tooltips in a graph by setting the graph's markerTooltipTemplate
attribute to a tokenized String. The attribute accepts a String that may contain any number of a set of predefined tokens. For example:
The list of supported tokens is described in Table 24-1.
Table 24-1 markerTooltipTemplate String Tokens
Token | Description |
---|---|
| Inserts a new line. |
| The series label for the series of this marker. |
| The group label for the group of this marker. |
| The X value of a scatter or bubble marker or continuous time axis marker. |
| The Y value of this marker (if this marker has a Y value). |
| The Z value (bubble size) of a bubble marker. |
| The value of a pie slice. |
| The pie slice percentage value. |
| The actual value for a funnel slice. |
| The target value for a funnel slice. |
| The high value for a stock marker. |
| The low value for a stock marker. |
| The close value for a stock marker. |
| The open value for a stock marker. |
| The volume value for a stock volume marker. |
| The cumulative stacked value for a stacked graph. |
| The cumulative percentage value for a stacked percent graph or Pareto graph. |
You can use the graph's customToolTipCallback
attribute to specify tooltips that vary on an object by object basis. For example:
The graph components support more than 50 graph types. Some of the graph attributes and several child tags relate only to specific graph types.
You can customize the appearance of pie graphs and you can specify that you want one slice of a pie to be separated from the other slices in the pie.
You can customize the appearance of a pie graph by inserting any of the following child tags within the graph tag:
dvt:pieFeeler
tag: Specifies the color of a line, called a pie feeler, that extends from a pie slice to a slice label. dvt:slice
tag: Specifies the location of a label for a pie slice. dvt:sliceLabel
tag: Specifies the characteristics of the labels that describe each slice of a pie or ring graph. Each slice represents a data value. Use the textType
attribute of this tag to indicate whether the slice label should show text only, value only, percent only, or text and percent. If you want to format numbers or specify font characteristics, you can add the following tags as a child to the dvt:sliceLabel
tag: dvt:graphFont
and af:convertNumber
. When one slice is separated from the other slices in a pie, this display is referred to as an exploding pie slice. The reason for separating one slice is to highlight that slice possibly as having the highest value of the quantity being measured in the graph.
The slices of a pie graph are the sets of data that are represented in the graph legend. As such, the slices are the series items of a pie graph.
Before you begin:
Follow the procedure in Section 24.6.1.1, "How to Specify the Color and Style for Individual Series Items" to create a series set that wraps individual series items.
To customize one slice in a pie graph:
series
tag that represents the pie slice that you want to separate from the pie, set the PieSliceExplode attribute between 0 to 100, where 100 is the maximum exploded distance available. dvt:pieGraph
tag. Valid values are any combination of the following: none
: No interactive slice behavior enabled. explode
: User can click to explode the slices in a pie graph. explodeAll
: Add Explode All and Unite All options to a context menu. For example, you can specify that users can explode the slices in a pie graph, and use a context menu to explode or collapse all the slices in the graph in the code:
Note: The |
You can use attributes of the dvt:seriesSet
child of a graph tag to change the appearance of lines in graphs.
You have the option of displaying data lines or data markers in a line, combination, or radar graph. If you display markers rather than data lines, then the markers appear in the legend automatically.
In the Property Inspector, set the following attributes of the dvt:seriesSet
tag to display data lines or data markers:
True
indicates that data lines are displayed in the graph. False
indicates that markers are displayed in the graph rather than data lines. True
indicates that markers are displayed in a graph. False
indicates that data lines are displayed in a graph. Note: Do not set both the |
You can customize the appearance of lines by using the dvt:seriesSet
tag and the dvt:series
tag as described in the following list:
dvt:seriesSet
tag, you can affect all the dvt:series
tags within that set by specifying values for the following attributes: defaultMarkerShape
: Used only for line, scatter, and combination graphs. Identifies a default marker shape for all the series in the series set. defaultMarkerType
: Used only for combination graphs. Valid values include MT_AREA
, MT_BAR
, MT_MARKER
, and MT_DEFAULT
. dvt:series
tag, you can specify settings for each individual series using the following line attributes: lineWidth
: Specifies the width of a line in pixels lineStyle
: Specifies whether you want the graph to use solid lines, dotted lines, dashed lines, or dash-dot combination lines. See the procedures in Section 24.6.1.1, "How to Specify the Color and Style for Individual Series Items" for more information about using the dvt:seriesSet
tag and the dvt:series
tag.
A Pareto graph identifies the sources of defects using a series of bars. The bars are arranged by value, from the greatest to the lowest number. The Pareto line shows the percentage of cumulative values of the bars, to the total values of all the bars in the graph. The line always ends at 100 percent.
You can customize the Pareto line and the Pareto marker by using the following graph child tags:
dvt:paretoLine
tag: Lets you specify the color, line width, and line style (such as solid, dashed, dotted, or a combination of dash-dot). dvt:paretoMarker
tag: Lets you specify the shape of the Pareto markers. To customize a Pareto graph:
markerShape
attribute. In scatter graphs, related data values in a series are represented by the data marker's shape and color. You can separate marker shape and color from the series to display the interdependence of data values.
For example, Figure 24-9 shows a scatter graph that uses City and Product attributes collectively to determine the series represented by the data marker's shape and color.
The row header attributes can be used to override the default series specification. Figure 24-10 shows a scatter graph that displays the data values for the City attribute mapped to shapes and the Product attribute mapped to colors.
Use the following attributes to customize the scatter graph series markers:
markerShape
- Specifies the row header attribute name to use to set the marker color. The graph will display the default index based series marker colors if this attribute is not specified. markerColor
- Specifies the row header attribute name to use to set the marker shape. The graph will display the default index based series marker shapes if this attribute is not specified. For example, specify City and Product as separate series item markers using this code:
There are graph customization features that include the ability to define series-related reference lines and axis-related reference areas, the option of adding gradient special effects to several parts of a graph, the option of setting some parts of a graph to transparent colors, and the use of alerts and annotations in graphs. These special features also let you use the interactive capabilities of the graph such as providing context menus, reacting to changes in the zoom or scroll levels, and reacting to user clicks on the graph's data markers.
Reference lines and areas can be set to display always, on rollover only, or never, regardless of how many there are and whether they are associated with a series or an axis.
You can create reference lines that are associated with a series (that is a set of data values that appears as a single color in the graph legend). If there are multiple series with reference lines, then the reference lines show only when you move the cursor over a series marker or the corresponding series legend item. This is because multiple reference lines can be confusing to users.
You can also create reference areas that are associated with an axis. Typically, these areas are associated with a y-axis. If there are multiple reference areas, then these areas are also displayed when you move the cursor over the related axis.
If your application does not know how many reference lines or areas it will need until it is running, then you can create reference lines or areas dynamically at runtime.
Both reference lines and reference areas are created by the use of the following tags:
dvt:referenceObjectSet
: Wraps all the reference object tags for reference lines or reference areas for this graph. dvt:referenceObject
: Identifies whether the tag represents a reference line or a reference area and specifies characteristics for the tag. To add reference lines or areas to a graph during design:
displayX1
, displayY1
, or displayY2
. The value RO_DISPLAY_AUTOMATIC
enables the display of a reference area only when the mouse moves over the related axis. This choice prevents the confusion that might occur if multiple reference areas were displayed all the time.
Optionally, you can apply a gradient special effect to the reference area. For more information see Section 24.8.2.1, "How to Add Gradient Special Effects to a Graph."
dvt:referenceObjectSet
node and choose Insert inside dvt:referenceObjectSet > Reference Object. index
attribute of the reference object, the type
attribute of the reference object (RO_LINE
or RO_AREA
), the associated object in the association
attribute (a series for a reference line or a specific axis for a reference area). Also specify if the object should be displayed in the legend using the displayedInLegend
attribute, and specify the text, if any, to display in the legend. displaySeries
attribute. The value RO_DISPLAY_AUTOMATIC
enables the display of a reference line only when the cursor moves over a series item (such as a bar) or over the corresponding series entry in the graph legend. This choice prevents the confusion that might occur if multiple series reference lines were displayed all the time.
When you create reference lines or areas during design, XML code is generated within the graph XML on the JSF page. The reference objects (both lines and areas) are wrapped by the dvt:referenceObjectSet
tags. Example 24-8 shows the code for three reference areas associated with the y1-axis, one reference area associated with the y2-axis, and four reference lines associated with different series.
Example 24-8 XML Code for Reference Lines and Areas in a Graph
If you want to create reference objects dynamically at runtime, then you use only the dvt:referenceObjectSet
tag. You set the referenceObjectMap
attribute on this tag with a method reference to the code that creates a map of the child component reference objects. The method that creates this map must be stored in a managed bean.
To create reference lines or areas dynamically:
referenceObjectMap
attribute a method reference to the code that creates the map of child component reference objects. For example, for the managed bean (sampleGraph)
and the method getReferenceObjectMapList
, the attribute should be set to the following value: referenceObjectMap="#{sampleGraph.referenceObjectMapList}"
Example 24-9 Code for a Map of Child Reference Objects
A gradient is a special effect in which an object changes color gradually. Each color in a gradient is represented by a stop. The first stop is stop 0, the second is stop 1, and so on. You can specify any number of stops in the special effects for a subcomponent of a graph that supports special effects.
You can define gradient special effects for the following subcomponents of a graph:
dvt:background
tag. dvt:graphPlotArea
tag. dvt:graphPieFrame
tag. dvt:legendArea
tag. dvt:series
tag. Note: By default, a graph's series gradient is set in the |
dvt:timeSelector
tag. dvt:referenceObject
tag. The approach that you use to define gradient special effects is identical for each part of the graph that supports these effects.
For each subcomponent of a graph to which you want to add special effects, you must insert a dvt:specialEffects
tag as a child tag of the subcomponent. For example, if you want to add a gradient to the background of a graph, then you would create one dvt:specialEffects
tag that is a child of the dvt:background
tag.
Then, optionally if you want to control the rate of change for the fill color of the subcomponent, you would insert as many dvt:gradientStopStyle
tags as you need to control the color and rate of change for the fill color of the component. These dvt:gradientStopStyle
tags then must be inserted as child tags of the single dvt:specialEffects
tag.
To add a gradient special effect to the background of a graph:
dvt:background
node that is a child of the graph node, then choose Insert inside dvt:background, then Special Effects. dvt:specialEffects
tag: fillType
attribute, choose FT_GRADIENT. For gradientDirection
attribute, select the direction of change that you want to use for the gradient fill.
numStops
attribute, enter the number of stops to use for the gradient. dvt:specialEffects
node and choose Insert within dvt:specialEffects > dvt:gradientStopStyle if you want to control the color and rate of change for each gradient stop. dvt:gradientStopStyle
tag: stopIndex
attribute, enter a zero-based integer as an index within the dvt:gradientStopStyle
tags that are included within the specialEffects
tag. gradientStopColor
attribute, enter the color that you want to use at this specific point along the gradient. gradientStopPosition
attribute, enter the proportional distance along a gradient for the identified stop color. The gradient is scaled from 0 to 100. If 0 or 100 is not specified, default positions are used for those points. Example 24-10 shows the XML code that is generated when you add a gradient fill to the background of a graph and specify two stops.
Example 24-10 XML Code Generated for Adding a Gradient to the Background of a Graph
You can specify that various parts of a graph show transparent colors by setting the borderTransparent
and fillTransparent
attributes on the graph child tags related to these parts of the graph. The following list identifies the parts of the graph that support transparency:
dvt:background
tag. By default the fillTransparent
attribute is set to true
. dvt:legendArea
tag. dvt:graphPieFrame
tag. dvt:graphPlotArea
tag. Add selection support to respond programmatically when a user selects one or more of the graph's data markers, such as bubbles in a bubble graph or shapes in a scatter graph.
Figure 24-11 shows a bar graph enabled for selection. Each data marker is highlighted as the user moves over it to provide a visual clue that the marker is selectable.
Graphs can be enabled for single and multiple selection support. Enabling selection is required for context menus and for responding programmatically to user clicks on the data markers.
For example, Figure 24-12 displays a bar graph supporting single and multiple selection to output information about each selected series. To make multiple selections, users press Control on the keyboard while selecting the data markers.
To add selection support, create a listener in a managed bean that will handle the selection event and perform the needed logic. You then enable selection support in the graph's dataSelection
attribute and bind the selectionListener
attribute of the graph to that listener.
Example 24-11 shows sample code to create a managed bean that returns the selection state as the formatted string displayed below the bar graph in Figure 24-12.
Example 24-11 Managed Bean Example for Graph Selection Support
Example 24-12 shows the code sample for configuring the JDeveloper page for multiple selection support and to bind the selectionListener
attribute of the graph to the selection listener. The sample uses the af:outputFormatted
component to display the selected information on the page.
Example 24-12 Code Sample for Configuring Graph Selection Support on a Page
To Add Selection Support to Graphs:
To duplicate the multiple selection support example in this section, create a bar graph.
single
or multiple
to enable selection support for single or multiple data markers. The default is none which means that selection is not enabled by default. For example, to specify the selectionListener
method in a managed bean named graphSelection.java
, enter the following in the SelectionListener field: #{graphSelection.selectionListener}
.
For example, to duplicate the multiple selection example in this section, add the following code to your page:
The selection listener responds to click events on graph data markers only.
JDeveloper also provides a clickListener
listener that can respond to click events on other graph components. The click listener, however, provides only single selection support and does not provide the same hover and click feedback that the selectionListener
listener can provide. The clickListener
attribute is also not available on newer components, and its use is generally discouraged in favor of the selection listener.
Graphs support right-click context menus using facets for any of three types:
Context menus can be defined for graph components using these context menu facets:
bodyContextMenu
: Specifies a context menu that is displayed on non selectable elements in the graph component. contextMenu
: Specifies a context menu that is displayed on any selectable element in the graph component. multiSelectContextMenu
: Specifies a content menu that is displayed when multiple elements are selected in the graph component. Each facet supports a single child component. For all of these facets to work, selection must be enabled and supported for the specific graph type. Context menus are currently only supported in Flash.
Due to technical limitations when using the Flash rendering format, context menu contents are currently displayed using the Flash Player's context menu. This imposes several limitations defined by the Flash Player. For more information, see Section 24.8.5.2, "What You May Need to Know About Flash Rendering Format."
For example, Figure 24-13 shows a scatter graph context menu with custom menu items.
Example 24-13 shows a code sample for configuring a scatter graph context menu.
Example 24-13 Code Sample for Scatter Graph Context Menu
Example 24-14 shows a code sample for a managed bean to create a custom context menu. For help with managed beans, see Section 2.6, "Creating and Using Managed Beans."
Example 24-14 Managed Bean to Create Custom Context Menu
The managed bean in the preceding example calls the SelectionSample
class which is displayed in Example 24-15. Store the code for this class in an additional managed bean.
Example 24-15 Managed Bean for Custom Context Menu SelectionSample Class
Due to technical limitations when using the Flash rendering format, context menu contents are currently displayed using the Flash Player's context menu. This imposes several limitations defined by the Flash Player:
interactiveSliceBehavior
menu item, will count towards the limit, Additionally, since the request from Flash for context menu items is a synchronous call, a server request to evaluate EL is not possible when the context menu is invoked. To provide context menus that vary by selected object, the menus will be pre-fetched if the context menu popup uses the setting contentDelivery="lazyUncached"
. For context menus that may vary by state, this means that any EL expressions within the menu definition will be called repeatedly at render time, with different selection and currency states. When using these context menus that are pre-fetched, the application must be aware of the following:
af:commandMenuItem
attributes that are called after a menu item is selected, such as actionListener
. selection
and currency
. You can provide custom code that will be executed when the zoom and scroll levels change on a graph. In a managed bean you store methods that takes as input a ZoomEvent
or ScrollEvent
. With these events, users can determine which axis is zoomed, as well as the current extent of the zoomed axes.
To provide custom behavior in response to zooming and scrolling in a graph:
zoomlListener
field, specify a reference to the method that you stored in the managed bean. For example, if the method setZoom
is stored in the managed bean SampleGraph
, then the setting becomes: "#{sampleGraph.zoom)"
.
scrollListener
field, specify a reference to the method that you stored in the managed bean. For example, if the method setScroll
is stored in the managed bean SampleGraph
, then the setting becomes: "#{sampleGraph.scroll)".
Example 24-16 Sample Code to Set Zoom and Scroll
You can force all the data markers for a given set of data to be highlighted when you move the cursor over one data marker in the set or over the corresponding entry in the graph legend. Markers include lines, bars, areas, scatter markers, bubbles, and pie slices. The highlighting effect is visually achieved by dimming the other data markers in the set. For example, if a bar graph displays sales by month for four products (P1, P2, P3, P4), when you move the cursor over product P2 in January, all the P2 bars are highlighted, and the P1, P3, and P4 bars are dimmed.
Because the graph refers to all the data markers in a given set of data (such as all the P2 bars) as a series, then the ability to highlight the data markers in a series is part of the graph's series rollover behavior feature.
Series rollover behavior is available only in the following graph types: bar, line, area, pie, scatter, polar, radar, and bubble graphs.
To dim all the data markers in a series:
SeriesRolloverBehavior
field, use the dropdown list to select RB_DIM. You can define relative ranges and explicit ranges for the display of time data.
You can define a simple relative range of time data to be displayed, such as the last seven days. This will force old data to scroll off the left edge of the graph as new data points are added to the display of an active data graph. Relative time range specifications are not limited to use in active data graphs.
To specify a relative range of time data for display:
timeRangeMode
attribute, specify the value TRM_RELATIVE_LAST or TRM_RELATIVE_FIRST depending on whether the relative range applies to the end of the time range (such as the last seven days) or to the beginning of the time range (such as the first seven days). timeRelativeRange
attribute, specify the relative range in milliseconds. You can define an explicit range of time data to be displayed, such as the period between March 15 and March 25. In this example, the year, hour, minute, and second use default values because they were not stated in the start and end values.
To specify an explicit range of time data for display:
timeRangeMode
attribute, specify the value TRM_EXPLICIT. timeRangeStart
attribute, enter the initial date for the time range. timeRangeEnd
attribute, enter the ending date for the time range. Alerts define a data value on a graph that must be highlighted with a separate symbol, such as an error or warning. An icon marks the location of the alert. When the cursor moves over the alert icon, the text of that alert is displayed. An unlimited number of alerts can be defined for a graph using dvt:alert
tags. The alerts are wrapped in a dvt:alertSet
tag, that is a child of graph tag. Example 24-17 shows a set of alerts for an area graph.
Example 24-17 Sample Code for Set of Graph Alerts
Annotations are associated with a data value on a graph to provide information when the cursor moves over the data value. An unlimited number of annotations can be defined for a graph using dvt:annotation
tags and multiple annotations can be associated with a single data value. The annotations are wrapped in a dvt:annotationSet
tag that is a child of the graph tag.
The data marker associated with the annotation is defined using these attributes of the dvt:annotation
tag:
series
- Specifies the zero-based index of a series in a graph. In most graphs, each series appears as a set of markers that are the same color. For example, in a multiple pie graph, each yellow slice might represent sales of shoes, while each green slice represents the sales of boots. In a bar graph, all of the yellow bars might represent the sales of shoes, and the green bars might represent the sales of boots. group
- Specifies the zero-based index of a group in a graph. Groups appear differently in different graph types. In a clustered bar graph, each cluster of bars is a group. In a stacked bar graph, each stack is a group. In a multiple pie graph, each pie is a group. Example 24-18 shows a set of annotations for an area graph.
Example 24-18 Sample Code for a Set of Annotations
You can control the position of the annotation in the plot area of a graph using these attributes:
position
- Specifies the type of positioning to use for the annotation. Valid values are: dataValue
(default) - Positions the annotation by the data value defined in the series
and group
attributes. Overlap with other annotations is avoided. absolute
- Positions the annotation at the exact point defined by the xValue
and the yValue
in graphs with both those axes. Overlap with other annotations is not avoided. percentage
- Positions the annotation at the exact point defined by using the xValue
and yValue
as a percentage between 0 and 100 of the plot area of graphs with both those axes. Overlap with other annotations is not avoided. xValue
- Specifies the X value at which to position the annotation. This setting only applies when the annotation position is absolute or percentage. yValue
- Specifies the Y value at which to position the annotation. This setting only applies when the annotation position is absolute
or percentage
. horizontalAlignment
- Specifies the horizontal positioning of the annotation. This setting only applies when the annotation position
attribute is absolute
or percentage
. Valid values are LEFT
(default), CENTER
, LEADING
, or RIGHT
. verticalAlignment
- Specifies the vertical positioning of the annotation. This setting only applies when the annotation position
attribute is absolute
or percentage
. Valid values are CENTER
(default), TOP
, or BOTTOM
. Graph components dvt:areaGraph
, dvt:bubbleGraph
, dvt:barGraph
, dvt:lineGraph
, dvt:comboGraph
, dvt:pieGraph
, and dvt:scatterGraph
support animation effects such as slideshow transition for initial display of the graph component and for partial page refresh (PPR) events. Animation effects are specified in the graph's animationOnDisplay
and animationOnDataChange
properties with these values:
alphaFade
conveyorFromLeft
conveyorFromRight
cubeToLeft
cubeToRight
flipLeft
flipRight
slideToLeft
slideToRight
transitionToLeft
transitionToRight
zoom
Animation effects can also be performed using active data. The Active Data Service (ADS) allows you to bind ADF Faces components to an active data source using the ADF model layer. To allow this, you must configure the components and the bindings so that the components can display the data as it is updated in the source. Alternatively, you can configure the application to poll the data source for changes at prescribed intervals.
To use the Active Data Service, you must have a data source that publishes events when data is changed, and you must create business services that react to those events and the associated data controls to represent those services. For more information about ADS and configuring your application, see the "Using the Active Data Service" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Configure databound graphs to display active data by setting a value on the binding element in the corresponding page definition file.
To configure a graph to display active data:
If you do not select an identifier, one will be entered for you.
ChangeEventPolicy
attribute. In the Property Inspector for the graph you wish to animate, set the following attributes:
animationOnDisplay
: Optional. Use with or without ADS to specify the type of initial rendering effect to apply. Valid values are: auto
: Apply an initial rendering effect automatically chosen based on graph or gauge type. alphaFade
conveyorFromLeft
or conveyorFromRight
cubeToLeft
or cubeToRight
flipLeft
or flipRight
slideToLeft
or slideToRight
transitionToLeft
or transitionToRight
zoom
animationOnDataChange
: Use to specify the type of data change animation to apply. Valid values are: none
: Apply no data change animation effects. activeData
(default): Apply Active Data Service (ADS) data change animation events. alphaFade
conveyorFromLeft
or conveyorFromRight
cubeToLeft
or cubeToRight
flipLeft
or flipRight
slideToLeft
or slideToRight
transitionToLeft
or transitionToRight
zoom
animationDuration
: Use to specify the animation duration in milliseconds. animationIndicators
: Use to specify the type of data change indicators to show. Valid values are: none
: Show no data change indicators. all
(default): Show all data change indicators. animationUpColor
: Use to specify the RGB hexadecimal color used to indicate that a data value has increased. animationDownColor
: Use to specify the RGB hexadecimal color used to indicate that a data value has decreased. This chapter describes how to use a databound ADF gauge component to display data, and provides the options for gauge customization.
This chapter includes the following sections:
For information about the data binding of gauges, see the "Creating Databound ADF Gauges" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Gauges identify problems in data. A gauge usually plots one data point with an indication of whether that point falls in an acceptable or an unacceptable range. Frequently, you display multiple gauges in a single gauge set. The gauges in a set usually appear in a grid-like format with a configurable layout.
A Component Gallery displays available gauge categories, types, and descriptions to provide visual assistance when creating gauges and using a quick-start layout. Figure 25-1 shows the Component Gallery for gauges.
When a gauge component is inserted into a JSF page using the Component Gallery, a set of child tags that support customization of the gauge is automatically inserted. Example 25-1 shows the code inserted in the JSF page for a dial gauge with the quick-start layout selected in the Component Gallery in Figure 25-1.
Example 25-1 Gauge Sample Code
Gauges are displayed in a default size of 200 X 200 pixels. You can customize the size of a gauge or specify dynamic resizing to fit an area across different browser window sizes. When gauges are displayed in a horizontally or vertically restricted area, for example in a web page sidebar, the gauge is displayed in a small image size. Although fully featured, the smaller image is a simplified display.
By default, gauges are displayed using a Flash image format. Alternatively, gauges can be displayed using HMTL5 or a Portable Network Graphics (PNG) output format. For more information about gauge image formats, see Section 25.3.4, "What You May Need to Know About Gauge Image Formats."
HTML5, Flash, and PNG image formats for gauges support bi-directional locales. Support includes text strings containing bi-directional characters, label positions, legend display, and gauge set display.
The following types of gauges are supported by the gauge component:
Figure 25-6 shows the same stock level using a LED arrow.
For dial and status meter gauges, a tooltip of contextual information automatically displays when a users moves a mouse over the plot area, indicator, or threshold region. Figure 25-7 shows the indicator tooltip for a dial gauge.
Gauge terms identify the many aspects of a gauge and gauge set that you can customize. The gauge component includes approximately 20 child tags that provide options for this customization.
The parts of a gauge that can be customized are:
alt
text of a gauge plot area can be displayed as a tooltip when the user moves the mouse over that area at runtime. For more information, see Section 25.5.3, "How to Add Interactivity to Gauges." You can provide the following kinds of data values for a gauge:
tabularData
attribute of the dvt:gauge
tag. This is the only required data for a gauge. The number of metric values supplied affects whether a single gauge is displayed or a series of gauges are displayed in a gauge set. dvt:gauge
tag. For more information, see Section 25.4.4, "How to Add Thresholds to Gauges." The only required data element is the metric value. All other data values are optional.
You can use any of the following ways to supply data to a gauge component:
For more information, see the “Creating Databound ADF Gauges" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
tabularData
attribute of the dvt:gauge
tag. The process of creating a gauge from tabular data includes the following steps:
The tabularData
attribute of a gauge component lets you specify a list of metric values that the gauge uses to create a grid and to populate itself. You can provide only the metric value through the tabularData
attribute. Therefore, you must specify any desired thresholds and minimum or maximum values through the Property Inspector.
A gauge component displays rows and columns of gauges. The text that you specify as column labels appears in the top label of the gauges. The text that you specify as row labels appears in the bottom label of the gauges.
The list that contains the tabular data consists of a three-member Object
array for each data value to be passed to the gauge. The members of each array must be organized as follows:
String
. String
. Double
. Figure 25-9 has five columns: Quota, Sales, Margin, Costs, and Units. The example has three rows: London, Paris, and New York. This data produces a gauge set with five gauges in each row and lets you compare values such as sales across the three cities.
Example 25-2 shows code that creates the list of tabular data required for the gauge that compares annual results for three cities.
Example 25-2 Code to Create a List of Tabular Data for a Gauge
Use the tabularData
attribute of the gauge tag to reference the tabular data that is stored in a managed bean.
To create a gauge that uses tabular data from a managed bean:
tabularData
attribute dropdown menu, choose Expression Builder. The Expression is created.
For example, if the name of the managed bean is sampleGauge
and the name of the method that creates the list of tabular data is getGaugeData
, the Expression Builder generates the code #{sampleGauge.gaugeData}
as the value for the tabularData
attribute of the dvt:gauge
tag.
When you create a gauge tag that is powered by data obtained from a list referenced in the tabularData
attribute, the following results occur:
tabularData
attribute. The settings for all other attributes for this gauge are provided by default. gaugeType
attribute in the Property Inspector to DIAL
, LED
, STATUSMETER
, or VERTICALSTATUSMETER
. Gauges support the following image formats: HTML5, Flash, and PNG. The image format used depends upon the application's settings and the client's environment. By default, gauges display in Flash, but you can configure your application to use a specific image format by setting the following parameters:
oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT
To use the HTML5 image format, add this parameter to the web.xml
file and set it to HTML5
. For more information, see Section A.2.3.22, "Graph and Gauge Image Format."
flash-player-usage
You can disable the use of Flash content across the entire application by setting a flash-player-usage
context parameter in adf-config.xml
. For more information, see Section A.4.3, "Configuring Flash as Component Output Format."
If the specified image format isn't available on the client, the application will default to an available format. For example, if the client does not support HTML5, the application will use:
Gauge components can be customized in the following ways:
You can change the type of a gauge using the gaugeType
attribute of the dvt:gauge
tag. The gauge type is reflected in the visual editor default gauge.
To change the type of a gauge:
DIAL
, LED
, STATUSMETER
, or VERTICALSTATUSMETER
. A single gauge can display one row of data bound to a gauge component. A gauge set displays a gauge for each row in multiple rows of data in a data collection.
You can specify the location of gauges within a gauge set by specifying values for attributes in the dvt:gauge
tag.
To specify the layout of gauges in a gauge set:
gaugeSetColumnCount
attribute. A setting of zero causes all gauges to appear in a single row. Any positive integer determines the exact number of columns in which the gauges are displayed. A setting of -1 causes the number of columns to be determined automatically from the data source.
gaugeSetDirection
attribute. If you select GSD_ACROSS, then the default layout of the gauges is used and the gauges appear from left to right, then top to bottom. If you select GSD_DOWN, the layout of the gauges is from top to bottom, then left to right.
gaugeSetAlignment
attribute. This attribute defaults to the setting GSA_NONE, which divides the available space equally among the gauges in the gauge set. Other options use the available space and optimal gauge size to allow for alignment towards the left or right and the top or bottom within the gauge set. You can also select GSA_CENTER to center the gauges within the gauge set.
You can customize the width and height of a gauge, and you can allow for dynamic resizing of a gauge based on changes to the size of its container. You can also control the style sheet used by a gauge. These two aspects of a gauge are interrelated in that they share the use of the gauge inlineStyle
attribute.
You can specify the initial size of a gauge by setting values for attributes of the dvt:gauge
tag. If you do not also provide for dynamic resizing of the gauge, then the initial size becomes the only display size for the gauge.
To specify the size of a gauge at its initial display:
InlineStyle
attribute of the dvt:gauge
tag. For example: You must enter values in each of two attributes of the dvt:gauge
tag to allow for a gauge to resize when its container in a JSF page changes in size. The values that you specify for this capability also are useful for creating a gauge component that fills an area across different browser window sizes.
To allow dynamic resizing of a gauge:
DynamicResize
attribute, select the value DYNAMIC_SIZE. InlineStyle
attribute, enter a fixed number of pixels or a relative percent for both width and height. For example, to create a gauge that fills its container's width and has a height of 200 pixels, use the following setting for the inlineStyle
attribute: "width:100%;height:200px;"
You have the option of specifying a custom style class for use with a gauge. However, you must specify width and height in the inlineStyle
attribute.
To specify a custom style class for a gauge:
StyleClass
attribute, select Edit from the Property menu choices, and select the CSS style class to use for this gauge. InlineStyle
attribute, enter a fixed number of pixels or a relative percent for both width and height. For example, to create a gauge that fills its container's width and has a height of 200 pixels, use the following setting for the inlineStyle
attribute: "width:100%;height:200px;"
.
Thresholds are data values in a gauge that highlight a particular range of values. Thresholds must be values between the minimum and the maximum value for a gauge. The range identified by a threshold is filled with a color that is different from the color of other ranges.
The data collection for a gauge can provide dynamic values for thresholds when the gauge is databound. After the gauge is created, you can also insert a dvt:thresholdSet
tag and individual dvt:threshold
tags to create static thresholds. If threshold values are supplied in both the data collection and in threshold tags, then the gauge honors the values in the threshold tags.
You can create an indefinite number of thresholds in a gauge. Each threshold is represented by a single dvt:threshold
tag. One dvt:thresholdSet
tag must wrap all the threshold tags.
To add static thresholds to a gauge:
You do not need to specify values for attributes on the dvt:thresholdSet
tag.
You have the option of entering a specific fill color and border color for the section of the gauge related to the threshold. You can also identify the maximum value for the threshold and any text that you want to display in the legend to identify the threshold.
Note: For the final threshold, the maximum value of the gauge is used as the threshold maximum value regardless of any entry you make in the threshold tag for the final threshold. |
You have the option of adding any number of thresholds to gauges. However, arrow and triangle LED gauges support thresholds only for the three directions to which they point.
For gauges, the dvt:metricLabel
and dvt:tickLabel
tags may require numeric formatting.
The metric label tag has a numberType
attribute that lets you specify whether you want to display the value itself or a percentage that the value represents. In some cases, this might be sufficient numeric formatting.
You can also use the af:convertNumber
tag to specify formatting for numeric values in the metric label. For example, the af:convertNumber
tag lets you format data values as currency or display positive or negative signs.
To format numbers in a gauge metric label:
NumberType
attribute of the dvt:metricLabel
tag to NT_PERCENT. af:convertNumber
tag to produce additional formatting. The procedure for formatting numbers in gauge tick labels is similar to that of formatting numbers in the metric label except that you insert the dvt:tickLabel
tag as a child of the gauge.
Note: When the numberType attribute of metric or tick labels is set to percent (NT_PERCENT), a child |
When you add a metric label and number formatting to a gauge, XML code is generated. Example 25-3 shows a sample of the XML code that is generated.
In order to achieve a compact and clean display, gauges automatically determine the scale and precision of the values being displayed in metric labels and tick labels. For example, a value of 40,000 will be formatted as 40K, and 0.230546 will be displayed with 2 decimal points as 0.23.
Automatic formatting still occurs when af:convertNumber
is specified. Gauge tags that support af:convertNumber
child tags have scaling
and autoPrecision
attributes that can be used to control the gauge's automatic number formatting. By default, these attribute values are set to scaling="auto"
and autoPrecision="on"
. Fraction digit settings specified in af:convertNumber
, such as minFractionDigits
, maxFractionDigits
, or pattern
, are ignored unless autoPrecision
is set to off
.
You can format text in any of the following gauge tags that represent titles and labels in a gauge:
dvt:bottomLabel
dvt:gaugeMetricLabel
dvt:gaugeLegendText
dvt:gaugeLegendTitle
dvt:tickLabel
dvt:topLabel
The procedure for formatting text in gauge labels and titles is similar except that you insert the appropriate child tag that represents the gauge label or title. For example, you can use a dvt:gaugeFont
child tag to a dvt:metricLabel
tag to specify gauge metric label font size, color, and if the text should be bold or italic.
To format text in a gauge metric label:
dvt:gaugeFont
tag to produce the desired formatting. When you format text in a gauge metric label using the gaugeFont
tag, XML code is generated. Example 25-4 shows a sample of the XML code that is generated.
You can specify a gauge that sweeps through angles other than the standard 220-degree arc in a dial gauge. Set the angleExtent
attribute to specify the range of degrees in the gauge.
For example, to create a 270 degree dial gauge, set the angleExtent
attribute as follows: <dvt:gauge angleExtent="270"/>
.
You can control the positioning of gauge labels. You can also control the colors and borders of the gauge label frames.
You can specify whether you want labels to appear outside or inside a gauge by using the position
attribute of the appropriate label tag. The following label tags are available as child tags of dvt:gauge
:
dvt:bottomLabel
dvt:metricLabel
dvt:topLabel
The procedure for controlling the position of gauge labels is similar except that you insert the appropriate child tag that represents the gauge label. For example, you can use the dvt:bottomLabel
child tag to position the gauge and specify label text.
To specify the position of the bottom label:
position
attribute, select the desired location of the label. text
attribute, enter the text that you want the label to display. You can control the fill color and border color of the frames for the top label and the bottom label. The dvt:upperLabelFrame
and dvt:lowerLabelFrame
gauge child tags serve as frames for these labels.
To customize the color and border of the upper label frame:
borderColor
attribute and the fillColor
attribute. Use a similar procedure to customize the color and border of the bottom label frame using the dvt:bottomLabel
tag as a child of the gauge node.
There are a variety of options available for customizing the indicators of gauges and the location and labeling of tick marks.
The following gauge child tags are available to customize the indicator of a gauge:
dvt:indicator
: Specifies the visual properties of the dial gauge indicator needle or the status meter bar. Includes the following attributes: borderColor
: Specifies the color of the border of the indicator. fillColor
: Specifies the color of the fill for the indicator. type
: Identifies the kind of indicator: a line indicator, a fill indicator, or a needle indicator. useThresholdFillColor
: Determines whether the color of the threshold area in which the indicator falls should override the specified color of the indicator. dvt:indicatorBar
: Contains the fill properties of the inner rectangle (bar) of a status meter gauge. dvt:indicatorBase
: Contains the fill properties of the circular base of a line and needle style indicator of a dial gauge. To customize the appearance of gauge indicators:
The following gauge child tags are available to customize tick marks and tick labels for a gauge:
dvt:tickMark
: Specifies the display, spacing, and color of major and minor tick marks. Only major tick marks can include value labels. Includes the following attributes: majorIncrement
and minorIncrement
: Sets the distance between two major tick marks and two minor tick marks, respectively. If the value is less than zero for either attribute, the tick marks are not displayed. majorTickColor
and minorTickColor
: Sets the hexidecimal color of major tick marks and minor tick marks, respectively. content
: Specifies where tick marks occur within a gauge set. Valid values are any combination separated by spaces or commas including: TC_INCREMENTS
: Display tick marks in increments. TC_MAJOR_TICK
: Display tick marks for minimum, maximum, and incremental values. TC_MIN_MAX
: Display tick marks for minimum and maximum values. TC_METRIC
: Display tick marks for actual metric values. TC_NONE
: Display no tick marks. TC_THRESHOLD
: Display tick marks for threshold values. dvt:tickLabel
: Identifies major tick marks that will have labels, the location of the labels (interior or exterior of the gauge), and the format for numbers displayed in the tick labels. To customize the tick marks and tick labels of a gauge:
By default, the dial gauge displays interior tick labels to provide a cleaner look when the gauge is contained entirely within the gauge frame. Because the tick labels lie within the plot area, the length of the tick labels must be limited to fit in this space. You can customize your gauge to use exterior labels.
To create interior tick labels on a gauge:
Position
attribute. You can specify that various parts of a gauge show transparent colors by setting the borderColor
and fillColor
attributes on the gauge child tags related to these parts of the gauge. These color properties accept a 6 or 8 RGB hexidecimal value. When an 8-digit value is used, the first two digits represent transparency. For example, you can set transparency by using a value of 00FFFFFF
.
Any gauge child tag that supports borderColor
or fillColor
attributes can be set to transparency. The following list are examples of parts of the gauge that support transparency:
dvt:gaugeBackground
tag. dvt:gaugeFrame
tag. dvt:gaugePlotArea
tag. dvt:gaugeLegendArea
tag. These gauge features are used less frequently than the common gauge features. These special features include applying gradient effects to parts of a gauge, adding interactivity to gauges, animating gauges, and taking advantage of the gauge support for active data.
A gradient is a special effect in which an object changes color gradually. Each color in a gradient is represented by a stop. The first stop is stop 0, the second is stop 1, and so on. You must specify the number of stops in the special effects for a subcomponent of a gauge that supports special effects.
You can define gradient special effects for the following subcomponents of a gauge:
dvt:gaugeBackground
tag. dvt:gaugeSetBackground
tag. dvt:gaugePlotArea
tag. Uses the dvt:gaugeFrame
tag. dvt:gaugeLegendArea
tag. dvt:lowerLabelFrame
tag. dvt:upperLabelFrame
tag. dvt:indicator
tag. dvt:indicatorBar
tag. dvt:indicatorBase
tag. dvt:threshold
tag. The approach that you use to define gradient special effects is identical for each part of the gauge that supports these effects.
For each subcomponent of a gauge to which you want to add special effects, you must insert a dvt:specialEffects
tag as a child tag of the subcomponent. For example, if you want to add a gradient to the background of a gauge, then you would create one dvt:specialEffects
tag that is a child of the dvt:background
tag. You must also set the dvt:specialEffects
tag fillType
property to FT_GRADIENT
.
Then, optionally if you want to control the rate of change for the fill color of the subcomponent, you would add as many dvt:gradientStopStyle
tags as you need to control the color and rate of change for the fill color of the component. These dvt:gradientStopStyle
tags then must be entered as child tags of the single dvt:specialEffects
tag.
Before you begin:
If you have not inserted a dvt:gaugeBackground
tag as a child of the gauge, in the Structure window, right-click the gauge node and choose Insert inside dvt:gauge > ADF Data Visualization > Gauge Background.
To add a gradient special effect to the background of a gauge:
dvt:specialEffects
tag: fillType
attribute, select FT_GRADIENT
. gradientDirection
attribute, select the direction of change that you want to use for the gradient fill. numStops
attribute, enter the number of stops to use for the gradient. dvt:gradientStopStyle
tag: stopIndex
attribute, enter a zero-based integer as an index within the dvt:gradientStopStyle
tags that are included within the dvt:specialEffects
tag. gradientStopColor
attribute, enter the color that you want to use at this specific point along the gradient. gradientStopPosition
attribute, enter the proportional distance along a gradient for the identified stop color. The gradient is scaled from 0 to 100. If 0 or 100 is not specified, default positions are used for those points. When you add a gradient fill to the background of a gauge and specify two stops, XML code is generated. Example 25-5 shows the XML code that is generated.
Example 25-5 XML Code Generated for Adding a Gradient to the Background of a Gauge
You can specify interactivity properties on subcomponents of a gauge using one or more dvt:shapeAttributes
tags wrapped in a dvt:shapeAttributesSet
tag. The interactivity provides a connection between a specific subcomponent and an HTML attribute or a JavaScript event. Each dvt:shapeAttributes
tag must contain a subcomponent and at least one attribute in order to be functional.
For example, Example 25-6 shows the code for a dial gauge where the tooltip of the indicator changes from "Indicator" to "Indicator is Clicked" when the user clicks the indicator, and the tooltip for the gauge metric label displays "Metric Label" when the user mouses over that label at runtime.
Example 25-6 Sample Code for Gauge shapeAttributes Tag
You can also use a backing bean method to return the value of the attribute. Example 25-7 shows sample code for referencing a backing bean and Example 25-8 shows the backing bean sample code.
Example 25-7 Gauge shapeAttributes Tag Referencing a Backing Bean
Example 25-8 Sample Backing Bean Code
The following gauge subcomponents support the dvt:shapeAttributes
tag:
GAUGE_BOTTOMLABEL
- the label below the gauge GAUGE_INDICATOR
- the indicator in the gauge GAUGE_LEGENDAREA
- the legend area of the gauge GAUGE_LEGENDTEXT
- the text label of the legend area GAUGE_METRICLABEL
- the label showing the metric value GAUGE_TOPLABEL
- the label above the gauge GAUGE_PLOTAREA
- the area inside the gauge GAUGE_THRESHOLD
- the threshold area of the gauge You can animate gauges (not gauge sets) to show changes in data, for example, a dial gauge indicator can change color when a data value increases or decreases. Figure 25-10 shows a dial gauge with the dial indicator animated to display the data change at each threshold level.
The attributes for setting animation effects on gauges are:
animationOnDisplay
: Use to specify the type of initial rendering effect to apply. Valid values are: NONE
(default): Do not show any initial rendering effect. AUTO
: Apply an initial rendering effect automatically chosen based on graph or gauge type. animationOnDataChange
: Use to specify the type of data change animation to apply. Valid values are: NONE
: Apply no data change animation effects. AUTO
(default): Apply Active Data Service (ADS) data change animation events. For more information about ADS, see Section 25.5.5, "How to Animate Gauges with Active Data." ON:
Apply partial page refresh (PPR) data change animation events. Use this setting to configure the application to poll the data source for changes at prescribed intervals. Animation effects using Active Data Service (ADS) can be added to dial and status meter gauge types. ADS allows you to bind ADF Faces components to an active data source using the ADF model layer. To allow this, you must configure the components and the bindings so that the components can display the data as it is updated in the data source.
Before you begin:
In order to use the Active Data Service, you must:
For more information about ADS and configuring your application, see the "Using the Active Data Service" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You configure a databound gauge to display active data by setting a value on the binding element in the corresponding page definition file.
To configure a gauge to display active data:
If you do not select an identifier, one will be entered for you.
ChangeEventPolicy
attribute. After configuring the gauge component to display active data, set animation effects using the attributes defined in Section 25.5.4, "How to Animate Gauges."
You can directly specify the graphics for a gauge to create custom gauge shapes. The customShapesPath
attribute is set to point to the vector graphics file that is processed into graphics used for output. JDeveloper also provides a set of custom shape styles accessible by using the customShapesPath
attribute.
Due to the requirements for rotating and resizing a gauge's components, such as the plot area or tick marks, a vector graphics file is required when creating a custom shapes graphic file. Scalable Vector Graphics (SVG) is the supported file format for creating custom shapes for gauges.
After designing the gauge and exporting it to an SVG file, a designer can add information to identify, scale, and position the gauge shapes and components, and to specify other metadata used in processing.
In the SVG file, gauge components are identified using an ID. For example, an SVG file with <polygon id="indicator"/>
would be interpreted as using a polygon shape for the indicator
component. To specify multiple shapes to create the desired visual for a component, the ID can be modified as in id="indicator_0"
, id="indicator_1"
, and id="indicator_2"
.
Table 25-1 shows the gauge component IDs and their descriptions.
Table 25-1 Gauge Component IDs for Custom Shapes
ID | Description |
---|---|
| Points to the value represented by the gauge. If not specified, the gauge will use the indicator specified in the application. For the dial gauge, the For the status meter gauge, the indicator should be specified with its full extent, and the gauge will be cropped to point to the metric value. |
| For a dial gauge, refers to the object that appears at the base of the |
| Refers to the optional component that adds visual distinction to the |
| Refers to the frame that contains the |
| For the dial gauge, refers to the circular area within which the indicator moves. For the status meter gauge, refers to the area that contains the indicator. For the LED gauge, refers to the area that contains any graphics that will not be filled with the LED fill color. When a |
| Used to define increments on the gauge. When a set of tick marks is specified with no |
| Refers to the frame that contains the |
Table 25-2 shows the metadata IDs and the descriptions used for internal calculations, not rendered in the gauge.
Table 25-2 Metadata IDs for Custom Shapes
ID | Description |
---|---|
| Specifies the box containing the minimum and maximum extent of the indicator bar. If not specified, the bounding box is taken to be the entire indicator as specified in the input file. |
| Specifies the center of rotation for the indicator that rotates around in a dial gauge. The center of the shape with this ID is considered to be the indicator center. If not specified, it is assumed to be the center of the bottom edge of the plot area for an 180-degree dial gauge, and the center of the plot area for an N-degree dial gauge. |
| Specifies the area of the LED gauge that should be filled with the appropriate threshold color. If not specified, then the entire |
| For complex |
| Specified the bounding box for the |
| Defines the area that will be filled with the threshold colors. For a dial gauge, specifies the For a status meter gauge, specifies the |
| Defines the path in which to draw tick marks. This is necessary for the gauge to calculate where tick marks should be drawn on a custom plot area, and the gauge will be unable to change the |
| For complex |
Example 25-9 shows a sample SVG file used to specify custom shapes for the components of a gauge.
Example 25-9 Sample SVG File Used for Gauge Custom Shapes
id="gaugeFrame"
/>id="lowerLabelFrame"
/>id="plotAreaBounds"
/>id="indicatorBase"
/>id="indicator"
/>After creating the SVG file to be used to specify the custom shapes for your gauge, set the customShapesPath
attribute to point to the file.
To specify a custom shapes file:
CustomShapesPath
attribute, enter the path to the custom shapes file. For example, customShapesPath="/path/customShapesFile.svg"
. The custom shapes available to you support the following SVG features:
SVG features that are not supported by custom shapes in JDeveloper include:
none
, 6-digit hexadecimal, and a <uri>
reference to a gradient. fill-rule
attribute is not supported. stroke-linecap
, stroke-linejoin
, stroke-miterlimit
, stroke-disarray
, and stroke-opacity
attributes are not supported. gradientUnits
, gradientTransform
, spreadMethod
, and xlink:href
are not supported. Additionally, the r
, fx
, and fy
attributes on the radial gradient are not supported. rx
, ry
, and x-axis-rot
are too small such that there is no solution, the ellipse should be scaled uniformly until there is exactly one solution. The SVG parser will not support this. In addition to the ability to specify custom shapes for gauges, there are a set of prebuilt custom shapes styles for use with the gauge components. The available styles are:
Figure 25-11 shows a dial gauge displayed with each of the custom shapes styles applied.
To apply a custom shapes style to a gauge:
CustomShapesPath
attribute dropdown list. This chapter describes how to use a databound ADF pivot table component to display data, and provides the options for pivot table customization.
This chapter includes the following sections:
For information about the data binding of ADF pivot tables, see the "Creating Databound ADF Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The ADF pivot table component displays a grid of data with rows and columns. Similar to spreadsheets, this component provides the option of automatically generating subtotals and totals for grid data. The pivot table lets you pivot or move data labels and the associated data layer from one row or column edge to another to obtain different views of your data, supporting interactive analysis.
The power of the pivot table's interactive capability is based in its display of multiple nested attributes on row and column headers. You can dynamically change the layout of these attributes using drag-and-drop operations.
Figure 26-1 shows a pivot table with multiple attributes nested on its rows and columns.
Pivot tables support on-demand data scrolling for large data sets. Only the data being viewed in the pivot table is loaded. As the user scrolls vertically or horizontally, data is fetched or discarded to fill the new pivot table view. Figure 26-2 shows a pivot table with a large data set using on-demand data scrolling.
A pivot filter bar is a component that can be added to a pivot table to provide the user with a way to filter pivot table data in layers not displayed in one of the other edges of the pivot table. Users can also drag and drop these layers between the pivot filter bar and the associated pivot table to change the view of the data. Figure 26-3 shows a pivot filter bar for a pivot table.
The following list of pivot table terms uses Figure 26-1 as a Sales Pivot Table sample in its descriptions of terms:
The pivot table component uses a model to display and interact with data. The specific model class used is oracle.adf.view.faces.bi.model.DataModel
.
You can use any row set (flat file) data collection to supply data to a pivot table. During the data binding operation, you have the opportunity to drag each data element to the desired location on the row edge or column edge of the pivot table in the data binding dialog.
During data binding, you also have the option of specifying subtotals and totals for pivot table rows and columns, specifying drill operations at runtime, defining how to aggregate duplicate records, and setting up initial sort criteria.
For information about the data binding of ADF pivot tables, see the "Creating Databound ADF Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can drag any layer in a pivot table to a different location on the same edge or to a different edge. This operation is called pivoting and is enabled by default.
When you move the mouse over a layer, the layer's pivot handle and an optional pivot label are displayed. If you move the mouse over the pivot handle, the cursor changes to a four-point arrow drag cursor. You can then use the handle to drag the layer to the new location. If you move the mouse over a layer on the row edge, the pivot handle appears above the layer, as shown in Figure 26-4.
If you move the cursor over a layer in the column edge, the pivot handle appears to the left of the layer, as shown in Figure 26-5.
If, in Figure 26-4, you drag the pivot handle of the Time (Year) layer from the row edge to the column edge between the Measure (Sales) layer and the Channel layer, the pivot table will change shape as shown in Figure 26-6.
You can customize pivoting to disable pivot labels and pivoting.
To customize pivoting in a pivot table:
PivotLabelVisible
field, select false from the dropdown list to disable the display of the label in the pivot handle. PivotEnabled
field, select false from the dropdown list to disable the pivoting. Selection in a pivot table allows a user to select one or more cells in a pivot table. Only one of the three areas including the row header, column header, or data cells can be selected at one time.
An application can implement features such as displaying customized content for a context menu, based on currently selected cells. Example 26-1 shows sample code for getting the currently selected header cells.
Example 26-1 Sample Code to Get Selected Header Cells
At runtime, selection in a data cell highlights the cell, as shown in Figure 26-7.
Editable data cells are opened for editing by double-clicking the cell or selecting the cell and pressing F2. Data cells selected for direct editing are displayed as shown in Figure 26-8.
Data cells selected for dropdown list editing are displayed as shown in Figure 26-9.
For more information about enabling data cell editing, see Section 26.10, "Pivot Table Data Cell Stamping and Editing."
Pivot tables support sorting of data within the pivot table. When sorting is enabled, ascending and descending sort icons are displayed as the user hovers the cursor over the innermost layer of the column header. By default, the sortMode
attribute of the dvt:pivotTable
component is set to grouped
, effectively sorting the data grouped by the row edge outermost layer. Figure 26-10 shows the sort icons in the World Sales column of the pivot table, where the data is grouped by the Year row edge outermost layers.
When you create a pivot table, default settings determine the overall size of that pivot table. The pivot table also automatically sizes rows, columns, and layers within the space allowed for the overall size. You have the option of changing the overall size of the pivot table, resizing rows and columns, and resizing layers.
The default size of a pivot table is a width of 300 pixels and a height of 300 pixels. Instead of entering pixels for width and height, you have the option of specifying a percentage value for width, height, or both. This percentage value refers to the portion of the page that you want the pivot table to use.
To customize the default settings of a pivot table:
inlineStyle
attribute of the pivotTable
tag, where value1
is an integer with the unit type for the width of the pivot table and value2
is an integer with the unit type for the height of the pivot table: inlineStyle="width:value1;height:value2"
. Example 26-2 shows the setting of the inlineStyle
attribute that specifies the width of the table as 50 percent of the page size and the height of the table as 400 pixels.
The pivot table autosizes rows, columns, and layers when the pivot table is initially displayed. At runtime, you can change the size of rows, columns, or layers by dragging the row, column, or layer separator to a new location.
To resize rows, columns, and layers at runtime:
When you resize rows, columns, or layers, the new sizes remain until you perform a pivot operation. After a pivot operation, the new sizes are cleared and the pivot table rows, columns, and layers return to their original sizes.
If you do not perform a pivot operation, then the new sizes remain for the life of the session. However, you cannot save these sizes through MDS (Metadata Services) customization.
You can update pivot tables, for example, to display the totals in a pivot table when triggered by a checkbox, by using partial page rendering (PPR). PPR allows only certain components on a page to be rerendered without the need to refresh the entire page. For more information about PPR, see Chapter 7, "Introduction to Partial Page Rendering."
For a component to be rerendered based on an event caused by another component, it must declare which other components are the triggers. Use the partialTriggers
attribute to provide a list of IDs of the components that should trigger a partial update of the pivot table. The pivot table listens on the trigger components and if one of the trigger components receives an event that will cause it to update in some way, the pivot table is also updated.
Example 26-3 shows sample code for updating a pivot table by displaying the totals when a checkbox is triggered. The triggering component uses the ID as the partialTriggers
value.
You can export the data from a pivot table to a Microsoft Excel spreadsheet. Create an action source, such as a command button or command link, and add a dvt:exportPivotTableData
component and associate it with the data you wish to export. You can configure the dvt:exportPivotTableData
component so that the entire pivot table will be exported, or so that only the rows selected by the user will be exported. For example, Figure 26-11 shows a pivot table that includes command button components that allow users to export the data to an Excel spreadsheet.
When the user clicks the command button, by default all the rows and columns are exported in an Excel format written to the file specified in the filename
attribute of the tag. Alternatively, you can configure the dvt:exportPivotTableData
component so that only the rows the user selects are exported, by setting the exportedData
attribute to selected
. Example 26-4 shows the sample code for the Export to Excel command button.
Example 26-4 Sample Code for Export to Excel Command Button
Figure 26-12 shows the resulting Excel spreadsheet.
Note: You may receive a warning from Excel stating that the file is in a different format than specified by the file extension. This warning can be safely ignored. |
All cells in a pivot table are either header cells or data cells. Before rendering a cell, the pivot table calls a method expression. You can customize the content of pivot table header cells and data cells by providing method expressions for the following attributes of the dvt:pivotTable
tag:
headerFormat
: Use to create formatting rules to customize header cell content. headerFormatManager
: Use only if you want to provide custom state saving for the formatting rules of the application's pivot table header cells. dataFormat
: Use to create formatting rules to customize data cell content. dataFormatManager
: Use only if you want to provide custom state saving for the formatting rules of the application's pivot table data cells. To specify customization of the content of a data cell, you must code a method expression that returns an instance of oracle.dss.adf.view.faces.bi.component.pivotTable.CellFormat
.
To create an instance of a CellFormat object for a data cell:
oracle.adf.view.faces.bi.component.pivotTable.DataCellContext
object for the data cells that you want to format. The DataCellContext
method requires the following parameters in its constructor: model
: The name of the dataModel
used by the pivot table. row
: An integer that specifies the zero-based row that contains the data cell on which you are operating. column
: An integer that specifies the zero-based column that contains the data cell that you want to format. qdr
: The QDR
that is a fully qualified reference for the data cell that you want to format. value
: A java.lang.Object
that contains the value in the data cell that you want to format. DataCellContext
to a method expression for the dataFormat
attribute of the pivot table. CellFormat
object. An instance of a CellFormat
object lets you specify the following arguments:
javax.faces.convert.Converter
, which is used to perform number, date, or text formatting of a raw value in a cell. You can apply formatting and text styles to emphasize aspects of the data displayed in the pivot table. Figure 26-13 shows a pivot table with sales totals generated for products and for product categories. In the rows that contain totals, this pivot table displays bold text (a text style change) against a shaded background (a style change). These changes show in both the row header cells and the data cells for the pivot table. The row headers for totals contain the text "Sales Total."
The pivot table also shows stoplight and conditional formatting of data cells. For more information, see Section 26.9.4, "How to Create Stoplight and Conditional Formatting in a Pivot Table."
Example 26-5 shows sample code that produces the required custom formats for the sales totals, but not for the stoplight formatting. The example includes the code for method expressions for both the dataFormat
attribute and the headerFormat
attribute of the dvt:pivotTable
tag. If you want to include stoplight formatting in the pivot table, you might want to include the code from Example 26-6.
Example 26-5 Sample Code to Change Style and Text Style in a Pivot Table
Stoplight and conditional formatting of the cells in a pivot table are examples of customizing the cell content. For this kind of customization, an application might prompt a user for a high value and a low value to be associated with the stoplight formatting. Generally three colors are used as follow:
Figure 26-13 shows data cells with stoplight formatting for minimum, acceptable, and below standards sales for States.
Example 26-6 shows code that performs stoplight formatting in a pivot table that does not display totals. If you want to do stoplight formatting for a pivot table that displays totals, then you might want to combine the code from Example 26-5 (which addresses rows with totals) with the code for stoplight and conditional formatting.
Example 26-6 Sample Code for Stoplight and Conditional Formatting
The content in a pivot table data cell can be stamped using the dvt:dataCell
child component to place a read-only or input component in each data cell. When you use stamping, child components are not created for every data cell in a pivot table. Rather, the content of the dvt:dataCell
component is repeatedly rendered, or stamped, once per data attribute, such as the rows in a pivot table. Only certain types of components are supported, including all components with no activity and most components that implement the EditableValueHolder
or ActionSource
interfaces. You can also use stamping to specify custom CSS styles for the data cell.
Each time a child component is stamped, the data for the current cell is copied into a var
property used by the data cell component in an EL Expression. Once the pivot table has completed rendering, the var
property is removed, or reverted back to its previous value.
Data cell editing is enabled by using an input component as the child component of dvt:dataCell
. At runtime you can open the cell for editing by double-clicking the cell in the pivot table, or by selecting the cell and pressing F2.
Example 26-7 shows sample code for data cell stamping.
Example 26-7 Data Cell Stamping Sample Code
Figure 26-14 shows the resulting pivot table.
Note: In order to temporarily or permanently write values back to a set of cells within a cube, called a writeback, the pivot table must be bound to a data control or data model that supports writeback operations. A row set based data control is transformed into a cube and therefore cannot support writeback operations. |
With data cell stamping you can use the dvt:dataCell
tag to specify a custom image for a data cell using af:image
, af:icon
, or af:commandImageLink
as a child tag. Example 26-8 shows sample code for using an af:commandImageLink
as a custom image in a pivot table data cell.
Example 26-8 Using a Custom Image for a Data Cell
Actions associated with the image are handled through a registered listener, actionListener
. In a bean class you specify the method to be called when the image link is clicked, for example:
In the same way that you use stamping in data cells, you can customize the content in header cells using the dvt:headerCell
child component to place a read-only component in each header cell. Only read-only components or noneditable components are supported, including af:outputText
, af:image
, af:icon
, af:commandImageLink
, and af:commandLink
.
Example 26-9 shows sample code for using an af:commandImageLink
as a custom image and af:icon
as a custom icon in pivot table header cells.
Example 26-9 Using Custom Components in Header Cells
Figure 26-15 shows the resulting pivot table.
You can enhance the data filtering capacity in a pivot table by adding a pivot filter bar. Zero or more layers of data not already displayed in the pivot table row edge or column edge are displayed in the page edge. Figure 26-16 shows a pivot filter bar with Quarter and Month layers that can be used to filter the data displayed in the pivot table.
You can also change the display of data in the pivot table by pivoting layers between the row, column, or page edges. Use the pivot handle to drag the layers between the edges as desired. Figure 26-17 shows the modified pivot table and pivot filter bar when the Channel data layer is pivoted to the page edge.
You associate a pivot filter bar component, dvt:pivotFilterBar
, to work with a pivot table component, dvt:pivotTable
, by configuring the data model and associated properties to work with both components. Example 26-10 shows sample code for associating a pivot filter bar with a pivot table.
Example 26-10 Sample Code for Pivot Filter Bar
You can associate a pivot filter bar with a pivot table in any of the following ways:
When you drag a data collection from the Data Controls Panel to create a pivot table on your page, the Select Display Attributes page of the Create Pivot Table wizard provides the option to create a pivot filter bar to associate with the pivot table. You can choose to specify zero or more attributes representing data layers in the page edge. The data model and associated properties are automatically configured for you. For detailed information, see the "Creating Databound ADF Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
From the ADF Data Visualizations page of the Component Palette, Pivot Table panel, you can drag a dvt:pivotFilterBar
element above a dvt:pivotTable
element that has been bound to a data collection. In this instance, you must configure the data model and associated properties in order for the pivot filter bar to work with the pivot table.
From ADF Data Visualizations page of the Component Palette, Pivot Table panel, you can drag a dvt:pivotFilterBar
element above a dvt:pivotTable
element that has not been bound to a data collection. In this instance, you must configure the data model and associated properties in order for the pivot filter bar to work with the pivot table.
This chapter describes how to use an ADF geographic map component with databound themes to display data, and provides the options for map customization.
This chapter includes the following sections:
For information about the data binding of ADF geographic map themes, see the "Creating Databound ADF Geographic Maps" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
A geographic map component is a data visualization component that provides the functionality of Oracle Spatial within the framework. This component lets users represent business data on a geographic map and superimpose multiple layers of information (known as themes) on a single map.
When you create a map, you are prompted to select a base map that an administrator has already configured using the Map Builder tool of Oracle Spatial. During configuration, the map administrator defines the zoom levels that the map supports. These levels also determine the zoom capability of the ADF geographic map.
Administrators also have the option of creating predefined map themes using the Map Builder tool. For example, a predefined theme might use specific colors to identify regions. In the ADF geographic map component, you can select such a predefined map theme, but you cannot modify it because this theme is part of the base map.
The base map becomes the background on which you build interactive layers of information in JDeveloper using the ADF geographic map component. The ADF geographic map requires that you define at least one layer but you can create as many layers as you wish.
The ADF geographic map provides a variety of map themes, each of which must be bound to a data collection. Figure 27-1 shows a map with several themes. The following kinds of map themes are available:
The following list gives a brief description of the terminology used in a geographic map:
You can customize the location and the initial setting of the zoom control in the dvt:map
tag. The View menu (which appears in the map toolbar just above the sample map) lets you determine the visibility of the zoom control. By default, the initial zoom level for a map is set to 0.
The following tools provide information in the measurement panel:
dvt:map
tag. The following items are part of the overview map:
The geometric map has parent tags, map child tags, and tags that modify map themes.
The map component includes the following parent tags:
dvt:map
: The parent tag for the main map component. Unlike other data visualization parent tags, the map tag is not bound to data. Instead, all the map theme child tags are bound individually to data collections. The map tag contains general information about the map including the identification of the base map, the URL for the remote server that is running Oracle Application Server MapViewer service and the URL for the Geocoder web service that converts street addresses into longitude and latitude coordinates for mapping. For a list and description of the child tags, see Section 27.1.3.2, "Geographic Map Child Tags." dvt:mapToolbar
: A parent tag that allows the map toolbar to be placed in any location on a JSF page that contains a map. This toolbar contains a mapID
attribute that points to the map associated with the toolbar. The toolbar lets you perform significant interaction with the map at runtime including the ability to display the map legend and to perform selection and distance measurement. The map toolbar tag has no child tags. The dvt:map
tag has the following child tags:
dvt:mapColorTheme
: One of the optional map layers that you bind to a data collection. dvt:mapPointTheme
: One of the optional map layers that you bind to a data collection. The point theme identifies individual locations on a map. dvt:mapBarGraphTheme
: One of the optional map layers that you must bind to a data collection. This theme displays a bar graph at points to represent multiple data values related to that location. For example, this tag might be used to display a graph that shows inventory levels at warehouse locations. dvt:mapPieGraphTheme
: One of the optional map layers that you must bind to a data collection. This theme displays a pie graph at specific points to represent multiple values at that location. For example, this tag might be used to display a graph that shows inventory levels at warehouse locations. dvt:mapLegend
: Created automatically when you create a map. Use this tag to customize the map legend. dvt:mapOverview
: Created automatically when you create a map. Use this tag to customize the overview map that appears in the lower right-hand corner of the map. The following tags modify various map themes:
dvt:mapPointStyleItem
: An optional child tag of the dvt:mapPointTheme
tag. Use this tag only if you want to customize the image that represents points that fall in a certain data value range. To define multiple images, create a tag for each image and specify the associated data value range and image. dvt:mapPieSliceSet
: A child of the dvt:mapPieGraphTheme
tag. This is an optional tag that you use to wrap dvt:mapPieSliceItem
tags, if you want to customize the color of the slices in a map pie graph. dvt:mapPieSliceItem
: A child of the dvt:mapPieSliceSet
tag. Each pie slice item tag customizes the color of one slice in a map pie graph. dvt:mapBarSeriesSet
: A child of the dvt:mapBarGraphTheme
tag. This is an optional tag that you use to wrap dvt:mapBarSeriesItem
tags if you want to customize the color of bars in a map bar graph. dvt:mapBarSeriesItem
: A child of the dvt:mapBarSeriesSet
tag. Each bar graph series item tag customizes the color of one bar in a map bar graph. The following data requirements apply to the geographic map:
You can customize the map size, zoom strategy, appearance of selected regions, and the initial display of the information window and the scale bar.
You can control the width and height of the map by using the inlineStyle
attribute in the dvt:map
tag.
To adjust the size of a map:
inlineStyle
attribute. For example, to specify a width of 600 pixels and a height of 400 pixels, use the following setting: inlineStyle="width:600px;height:400px"
.
For a width that uses the entire available width of the page and a height of 400 pixels, use the following setting: inlineStyle="width:600px;height:400px"
.
Several attributes on the dvt:map
tag let you control the initial zoom level, starting location, initial map theme, and zoom strategy.
To control the initial zoom and starting location on a map:
AutoZoomThemeID
, enter the ID of the first theme that will be displayed. ZoomBarStrategy
, select the default value MAXZOOM
to direct the map to zoom down to the maximum level where all objects in the autoZoomThemeId
are visible, or select CENTERATZOOMLEVEL
to direct the map to center on the theme in autoZoomThemeId
and to set the zoom level to the value in the mapZoom
attribute. startingX
and startingY
respectively. MapZoom
, enter the beginning zoom level for the map. This setting is required for the zoom bar strategy CENTERATZOOMLEVEL
. Note: The property |
You can provide a selection listener that totals the values associated with a map area selected with one of the map selection tools such as the rectangular selection. The total is displayed in an area under the map. Provide a class that takes MapSelectionEvent
as an argument in a backing bean method. Example 27-1 shows sample code for a backing bean.
Example 27-1 Sample Code in Backing Bean for Selection Listener
To provide a selection listener to total map values:
SelectionListener
field, enter a method reference that points to the backing bean. For example, You can customize each type of map theme using one or more of the following: the map theme binding dialogs, the attributes of the theme tag, or the child tags of the theme tag.
For all map themes, verify that the theme specifies zoom levels that match the related zoom levels in the base map. For example, if the base map shows counties only at zoom levels 6 through 8, then a theme that displays points or graphs by county should be applied only at zoom levels 6 through 8.
To customize the zoom levels of a map theme:
dvt:mapColorTheme
, dvt:mapPointTheme
, dvt:mapBarGraphTheme
, or dvt:mapPieGraphTheme
) that you want to customize. MinZoom
and the MaxZoom
attributes respectively. By default, the ID
of the map theme is used as the label when that theme is displayed in the legend or in the Theme Selection dialog. However, each map theme tag has the following attributes that serve as optional labels for the theme:
shortLabel
: Specifies a label for the theme when displayed in the map legend. menuLabel
: Specifies a label for the theme in the Theme Selection dialog. Use these attributes to create meaningful labels that identify both the theme type (color, point, bar graph, or pie graph) and the data (such as population, sales, or inventory) so that users can easily recognize the available themes.
To customize the labels of a map theme:
shortLabel
attribute (for display in the legend) and in the menuLabel
attribute (for display in the Theme Selection Dialog). For example, you might want to enter the following text for a color theme that colors New England states according to population:
When you create a color map theme, you can customize the colors used for the coloring of the background layer. You can specify the colors associated with the minimum and maximum ranges, and then specify the number of color ranges for the theme. For example, if the colors relate to the population on the map, the least populated areas display the minimum color and the most populated areas display the maximum color. Graduated colors between the minimum and maximum color are displayed for ranges between these values.
To customize the colors of a color map theme:
MinColor
and MaxColor
attributes respectively. bucketCount
attribute. For example, if <dvt:mapColorTheme minColor="#000000" maxColor= "#ffffff" bucketCount="5"/>
, then the color for the five buckets are: #000000
, #444444
, #888888
, #bbbbbb
, #ffffff
.
Alternatively, you can specify the color for each bucket. To specify colors for multiple buckets, for the colorList
attribute of dvt:mapColorTheme
, bind a color array to the attribute or use a semicolon-separated string. Color can be specified using RGB hexadecimal. For example, if the value is colorList="#ff0000;#00ff00;#0000ff"
, then the value of the first bucket is red, the second bucket is green, and the third bucket is blue.
A map point theme uses a default image to identify each point. However, you can specify multiple custom images for a point theme and identify the range of data values that each image should represent.
You define a dvt:mapPointStyleItem
tag for each custom image that you want to use in a map point theme.
To customize the images for points in a map point theme:
For example, you might want to enter the following text for a custom point that falls in the lowest data value range: Low Inventory.
When you use the Insert Point Style Item wizard to specify a custom image representing a range of data values for a point theme, a child dvt:mapPointStyleItem
tag is defined inside the parent dvt:mapPointTheme
tag. Example 27-2 shows the code generated on a JSF page for a map point theme that has three custom point images that represent ranges of inventory at each warehouse point.
The initial point style setting (ps0
) applies to values that do not exceed 500. This point style displays an image for very low inventory and provides corresponding tooltip information.
The second point style setting (ps1
) applies to values between 500 and 1000. This point style displays an image for low inventory and provides corresponding tooltip information.
The final point style setting (ps2
) applies to values between 1000 and 1600. This point style displays an image for high inventory and provides corresponding tooltip information.
Example 27-2 Map Point Theme Code with Custom Point Images
When you create a map bar graph theme, default colors are assigned to the bars in the graph. You can customize the colors of the bars by using the mapBarSeriesSet
tag and the mapBarSeriesItem
tag.
Use one mapBarSeriesSet
tag to wrap all the mapBarSeriesItem
tags for a bar graph theme and insert a mapBarSeriesItem
tag for each bar in the graph.
To customize the color of the bars in a map bar graph theme:
There are no attributes to set for this tag. It is used to wrap the individual bar series item tags.
To find the sequence of the bars in the graph, examine the Edit Bar Graph Map Theme Binding dialog. The sequence of the entries in the Series Attribute column of that dialog determines the sequence that bars appear in the graph. For example, in Figure 27-6, the first bar in the graph represents Income2000 and the second bar represents Income2005.
When you use the Edit Bar Graph Map Theme Binding dialog to customize the bars in a map bar graph theme, the sequence of the bars reflect the sequence of the entries in the Series Attribute column in the dialog. Example 27-3 shows sample XML code generated when you customize the bars in a map bar graph.
When you create a map pie graph theme, default colors are assigned to the slices in the graph. You can customize the colors of the slices by using the mapPieSlicesSet
tag and the mapPieSliceItem
tag.
Use one mapPieSliceSet
tag to wrap all the mapPieSliceItem
tags for a pie graph theme, and insert a mapPieSliceItem
tag for each slice in the graph.
To customize the color of the slices in a map pie graph theme:
There are no attributes to set for this tag. It is used to wrap the individual pie graph item tags.
To find the sequence of the slices in the graph, examine the Edit Pie Graph Map Theme Binding dialog. The sequence of the entries in the Pie Slices Attribute column of that dialog determines the sequence that slices appear in the graph. For example, in Figure 27-7, the first slice in the graph represents Sales, the second slice represents Profit, and the third slice represents Cost.
When you use the Edit Pie Graph Map Theme Binding dialog to customize the slices in a map pie graph theme, the sequence of the slices reflect the sequence of the entries in the Pie Slices Attribute column of the dialog. Example 27-4 shows sample XML code generated in a JSF page when you customize the slices in a map pie graph.
Example 27-4 Code for Customizing the Slices in a Map Pie Graph
When you create an ADF geographic map, also create a map toolbar if you want to be able to display the legend and the information panel, select themes (if you have multiple themes of the same type), or use any of the distance measurement, area measurement, or selection tools.
Because the map toolbar is a component that is separate from the map, you can position the toolbar on the JSF page above or below the map. The following procedure assumes that a map component exists on the JSF page.
To create a map toolbar:
When you add a toolbar to a map, the following occur:
Example 27-5 shows sample code for a toolbar that is associated with a map with the ID of map_us
. It also shows the location of the code for the map.
This chapter describes how to use a databound ADF Gantt chart component to display data, and provides the options for customizing Gantt charts.
This chapter includes the following sections:
For information about the data binding of ADF Gantt charts, see the "Creating Databound ADF Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
A Gantt chart is a type of horizontal bar graph that you use to plan and track projects. It shows resources or tasks in a time frame with a distinct beginning and end. An ADF Gantt chart component is composed of two regions, one displaying the Gantt chart data in a table, and the other displaying the Gantt chart data graphically with a resizable splitter between the two regions. The table and chart regions share the same data and selection model, supporting and synchronizing scrolling, and expanding and collapsing of rows between the two regions.
At runtime, Gantt charts provide interaction capabilities in the table region to the user such as entering data, expanding and collapsing rows, showing and hiding columns, navigating to a row, and sorting and totaling columns. In the chart region, users can drag a task to a new date, select multiple tasks to create dependencies, and extend the task date. A Gantt chart toolbar is available to support user operations such as changing or filtering the view of the data, and creating, deleting, cutting, copying, and pasting tasks.
Both Gantt chart regions are based on an ADF Faces tree table component. For more information about ADF tree tables, including virtualization of rows, see Chapter 10, "Using Tables and Trees".
The Gantt chart provides the following components:
A Gantt chart consists of the following functional areas:
For example, in Figure 28-1, the table region contains the following columns: Name (of the task), Priority, Orig. Est., Curr. Est., Elapsed (days), Remaining (days), and Resources.
For example, in Figure 28-1, the chart region graphs tasks on a time axis that shows days within weeks.
ShowToolbar
attribute on the Appearance page of the Property Inspector for the Gantt chart. The toolbar consists of the following sections:
ShowMenuBar
attribute in the Appearance page of the Property Inspector for the Gantt chart. You can customize menu items by using the menubar
facet. Note: The View menu items do not require that you write application code to make them functional. However, you must provide application code for any items that you want to use on the other menus. |
You can customize toolbar buttons by using the toolbar
facet.
tablePopupMenu
or chartPopupMenu
facet. Project and scheduling Gantt charts use predefined tasks with a set of formatting properties that describe how the tasks will be rendered in the chart area. All supported tasks must have a unique identifier. The following describes the supported tasks and how they appear in a Gantt chart:
For normal, summary, and milestone tasks, additional attributes are supported that would change the appearance and activity of a task. These style attributes include:
percentComplete
, completedThrough
: An extra bar would be drawn to indicate how far the task is completed. This is applicable to normal and summary task types. critical
: The color of the bar would be changed to red to mark it as critical. This is applicable to normal, summary, and milestone task types. actualStart
and actualEnd
: When these attributes are specified, instead of drawing one bar, two bars are drawn. One bar indicates the base start and end date, the other bar indicates the actual start and end date. This is applicable to normal and milestone task types. Figure 28-6 displays a legend that shows common task types in a project Gantt chart.
The three Gantt chart components beginning with the prefix dvt:
for each Gantt chart tag name indicates that the tag belongs to the ADF Data Visualization Tools (DVT) tag library:
dvt:projectGantt
dvt:resourceUtilizationGantt
dvt:schedulingGantt
All Gantt chart components support the child tag dvt:ganttLegend
to provide an optional legend in the information panel of a Gantt chart. Some menu bar and toolbar functions may or may not be available depending on whether the Gantt legend is specified.
In the Gantt chart table region, the ADF Faces af:column
tag is used to specify the header text, icons and alignment for the data, the width of the column, and the data bound to the column. To display data in hierarchical form, a nodeStamp
facet specifies the primary identifier of an element in the hierarchy. For example, the "Task Name" column might be used as the nodeStamp
facet for a project Gantt chart. Example 28-1 shows sample code for a project Gantt chart with "Task Name" as the nodeStamp
facet, with columns for Resource, Start Date, and End Date.
Example 28-1 Sample Code for Project Gantt Chart Columns
In addition to the nodeStamp
facet, other facets are used for customizations by the Gantt chart components. Table 28-1 shows the facets supported by Gantt chart components.
Table 28-1 Facets Supported by Gantt Chart Components
Name | Description |
---|---|
| Specifies the component to use to identify additional controls to appear in the context menu of the chart region. Must be an |
| Specifies the component to use to identify controls to appear in the custom tab of the task properties dialog. |
| Specifies the component to use to identify the major time axis. Must be a |
| Specifies the component to use to identify additional controls to appear in the Gantt menu bar. Must be an |
| Specifies the component to use to identify the minor time axis. Must be a |
| Specifies the component to use to stamp each element in the Gantt chart. Only certain types of components are supported, including all components with no activity and most components that implement the |
| Specifies the component to use to identify additional controls to appear in the context menu of the table region. Must be an |
| Specifies the component to use to identify additional controls to appear in the Gantt toolbar. Must be an |
For complete descriptions of all the Gantt chart tags, their attributes, and a list of valid values, consult the DVT tag documentation. To access this documentation for a specific tag in JDeveloper, select the tag in the Structure window and press F1. To access the full ADF Data Visualization Tools tag library in JDeveloper Help, expand the Javadoc and Tag Library References node in the online Help Table of Contents and click the link to the tag library in the JDeveloper Tag Library Reference topic.
At runtime, users can perform a wide range of operations on a Gantt chart, including navigation and display, as well as actions that change the data in the table or chart region.
When a user interaction involves a change in data, the Gantt chart processes the change by performing validation, event handling, and update of the data model. Validation ensures that the data submitted meets basic requirements, for example, that a date is valid and does not fall into a nonworking time period. When validation fails, the update of the data model is omitted, and an error message is returned.
When a Gantt chart server-side event is fired, an event with validated information about the change is sent to the registered listener. The listener is then responsible for updating the underlying data model. A customized event handler can be registered by specifying a method binding expression on the dataChangeListener
attribute of the Gantt chart component.
Server-side events supported by the Gantt chart include:
Users can filter the data in a Gantt chart using a dropdown list from the toolbar. You can create a custom filter.
You can browse through Gantt chart regions by scrolling, or you can access a specific date in the chart region. You can also control if columns in the table region are visible.
The Gantt chart design lets you perform horizontal scrolling of the table and the chart regions independently. This is especially helpful when you want to hold specific task or resource information constant in the table region while scrolling through multiple time periods of information in the chart region.
Users can also zoom in and out on the time scale of a Gantt chart by holding the Ctrl key and using the mouse scroll wheel.
In project and scheduling Gantt charts, users can pan the chart area by dragging it vertically and horizontally using the mouse. A move cursor displays when the user clicks inside the chart area, other than on a task.
You can move the chart region of the Gantt chart rapidly to a specific date.
To navigate to a specific date in a Gantt chart:
The display of the chart region of the Gantt chart begins at the date you requested.
By default, all the columns that you define when you create a databound Gantt chart are visible in the table region. You can selectively cause one or more of these columns to be hidden.
To control the display of columns in the table region of a Gantt chart:
Note: You must keep at least one column visible in the table region. |
If a Gantt chart is using a hierarchical data model, then you have the option of displaying all the Gantt chart data in a collapsed form or in an expanded form.
To control the display of Gantt chart data in a list:
You can change the time scale display in a Gantt chart and you can zoom in and out on a time axis to display the chart region in different time units. You can also use a specialized zoom-to-fit feature in which you select the amount of time that you want to display in the chart region without a need to scroll the chart.
To change the settings of a time axis:
To zoom in or out on a time axis:
The data model for a Gantt chart can be either a tree (hierarchical) model or a collection model that contains a row set or flat list of objects. For more information, see the "Creating Databound ADF Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When you bind a Gantt chart to a data control, you specify how the collection in the data control maps to the node definitions of the Gantt chart.
The data model for a project Gantt chart supports hierarchical data and uses TreeModel
to access the data in the underlying list. The specific model class is org.apache.myfaces.trinidad.model.TreeModel
.
The collection of objects returned by the TreeModel
must have, at a minimum, the following properties:
taskId
: The ID of the task. startTime
: The start time of the task. endTime
: The end time of the task. Optionally, the object could implement the oracle.adf.view.faces.bi.model.Task
interface to ensure it provides the correct properties to the Gantt chart.
When binding the data to an ADF data control, the following node definitions are available in a project Gantt chart:
subTask
(available only for project Gantt chart) splitTask
Table 28-2 shows a complete list of data object keys for the project Gantt chart.
Table 28-2 Data Object Keys for Project Gantt Chart
Data Object Key | Data Type and Description |
---|---|
| Date. The actual end time for normal and milestone tasks. |
| Date. The actual start time for normal and milestone tasks. |
| Date. Completed through for normal and summary tasks. |
| Boolean. Specifies whether or not the task is critical for all tasks. |
Dependency (node) | A list of dependencies for a task. Data object keys for dependencies include:
|
| Date. The end time for all tasks. |
| String. The first icon associated with the task bar for all tasks. The icon might change depending on other attributes |
| String. The second icon associated with the tasks bar for all tasks. |
| String. The third icon associated with the tasks bar for all tasks. |
| String. The alignment of the icon in the task bar for all tasks. Valid values are |
| Boolean. Specifies whether or not a node definition is a container. |
| String. The label associated with the task bar for all tasks. |
| String. The alignment of the label in the task bar for all tasks. Valid values are |
| Integer. Percentage completed for normal and summary tasks. |
Recurring tasks (node) | The list of recurring tasks for all tasks. |
Split tasks (node) | The list of tasks without a continuous time line for all tasks. |
| Date. The starting time for all tasks. |
Subtasks (node) | An optional list of subtasks for all tasks. |
| String. The unique identifier for all tasks. |
| Sting. The type of the tasks for all tasks. |
The data model for a resource utilization Gantt chart supports hierarchical data and uses TreeModel
to access the data in the underlying list. The specific model class is org.apache.myfaces.trinidad.model.TreeModel
.
The collection of objects returned by TreeModel
must have, at a minimum, the following properties:
resourceId
: The ID of the task. timeBuckets
: A collection of time bucket objects for this resource. Optionally, the object could implement the oracle.adf.view.faces.bi.model.Resource
interface to ensure it provides the correct properties to the Gantt chart.
The collection of objects returned by the timeBuckets
property must also have the following properties:
time
: The date represented by the time bucket. values
: A list of metrics for this resource. When binding the data to an ADF data control, the following node definitions are available in a Resource Utilization Gantt chart:
subResources
accessor that returns a collection of subresources for the current resource. Table 28-3 shows a complete list of data object keys for the resource utilization Gantt chart.
Table 28-3 Data Object Keys for the Resource Utilization Gantt Chart
Data Object Key | Data Type and Description |
---|---|
| String. The label associated with the task bar. |
| String. The alignment of the label in the task bar. Valid values are |
| String. The unique identifier of a resource. |
| List. The list of tasks associated with a resource. |
| Date. The start time of the time bucket. |
| Double. The values of the metrics. |
The data model for a scheduling Gantt chart supports hierarchical data and uses TreeModel
to access the data in the underlying list. The specific model class is org.apache.myfaces.trinidad.model.TreeModel
.
The collection of objects returned by TreeModel
must have, at a minimum, the following properties:
resourceId
: The ID of the task. tasks
: A collection of task objects for this resource. Optionally, the object could implement the oracle.adf.view.faces.bi.model.ResourceTask
interface to ensure it provides the correct properties to the Gantt chart.
The collection of objects returned by the tasks
property must also have the following properties:
taskId
: The ID of the task. startTime
: The start time of the task. endTime
: The end time of the task. When binding the data to an ADF data control, the scheduling Gantt chart has a Resource node definition. The Resource node has the following types of accessors:
subResources
: Returns a collection of subresources for the current resource. This accessor is optional. tasks
: Returns a collection of tasks for the current resource. This accessor is required. Tasks can also include a splitTask
accessor. Table 28-4 shows a complete list of data object keys for a scheduling Gantt chart.
Table 28-4 Data Object Keys for Scheduling Gantt Charts
Data Object Key | Data Type and Description |
---|---|
Dependency (node) | A list of dependencies for a task. Data object keys for dependencies include:
|
| Date. The end time for the all tasks. |
| String. The first icon associated with the task bar for all tasks. The icon might change depending on other attributes. |
| String. The second icon associated with the task bar for all tasks. |
| String. The third icon associated with the task bar for all tasks. |
| String. The alignment of the icon in the task bar for all tasks. Valid values are |
| Boolean. Specifies whether or not a node definition is a container. |
| String. The label associated with the task bar for all tasks. |
| String. The alignment of the label in the task bar for all tasks. Valid values are |
Recurring tasks (node) | A list of recurring tasks for all tasks. |
| String. The unique identifier of a resource. |
Split tasks (node) | A collection of tasks without a continuous time line for all tasks. |
| Date. The start time for all tasks. |
| Date. The startup time before a task begins. |
Tasks (node) (required) | A list of tasks associated with a resource. |
| String. The unique identifier of the task for all tasks. |
| String. The type of the task for all tasks. |
| Object. A list of the working days of the week. |
| Date. The work end time for the resource. |
| Date. The work start time for the resource. |
You can use any of the following data sources to create an ADF Faces Gantt chart component:
value
attribute of the Gantt tag. You can modify default Gantt chart features including the information panel and legend that are displayed below the Gantt chart, menu bar options and toolbar buttons, and the popup menu that is displayed when you right-click in the Gantt chart table or chart regions.
The optional Gantt chart legend subcomponent includes an area that displays detailed information about the selected task, or metrics about the selected time bucket, and a legend that displays the symbol and color code bar used to represent each type of task in a Gantt chart. At runtime, users can hide or show the information panel using a toolbar button.
The dvt:ganttLegend
tag must be added as a child of the Gantt chart tag in order to provide the legend areas. The content of the legend areas is automatically generated based on the properties for each type of task registered with the taskbarFormatManager
.
You can customize the information displayed when a task or time bucket is selected by using the keys and label attributes on the Gantt chart legend tag. The keys
attribute should specify the data object keys used to retrieve the value to display and the labels
attribute should contain the corresponding labels for the values retrieved with the keys. If these attributes are not specified, the legend will use the entire space of the information panel.
You can also add icons to the legend by using the iconKeys
and iconLabels
attributes on the Gantt chart legend tag. Icons will be automatically resized to 12 by 12 pixels if the icon size is too large.
Example 28-2 show sample code to display information about an On Hold task in the legend of a project Gantt chart.
The Gantt chart toolbar subcomponent allows users to perform operations on the Gantt chart. The left section of the toolbar is a menu bar that contains a set of default menu options for each Gantt chart type. The right section of the toolbar displays a set of default action buttons for working with each Gantt chart type.
You can supply your own menu items and toolbar buttons by using the menu
and toolbar
facets in your Gantt chart. The Gantt chart merges the new menu items with the standard items in the Gantt chart. Example 28-3 shows sample code for specifying a new menu item.
Example 28-3 Sample Code for Custom Menu Item
Example 28-4 shows sample code for specifying a new toolbar button.
Example 28-4 Sample Code for Custom Toolbar Button
Actions initiated on the menu bar and toolbar buttons are handled through a registered listener, DataChangeListener
, on the Gantt chart component. For example, when a user presses the delete button in the toolbar, a DataChangeEvent
with the ID of the task selected for deletion would be fired on the server. The registered listener is then responsible for performing the actual deletion of the task, and the Gantt chart data model is refreshed with the updated information.
You can register DataChangeListener
by specifying a method binding using the dataChangeListener
attribute on the Gantt chart tag. For example, if you put the code in a backing bean in a method called handleDataChange
, then the setting for the dataChangeListener
attribute becomes: "#{myBackingBean.handleDataChange}"
.
Example 28-5 shows sample code in a backing bean.
When users right-click in the Gantt chart table or chart regions, a context menu is displayed to allow users to perform operations on the Gantt chart. A standard set of options is provided for each region.
You can supply your own menu items using the tablePopupMenu
and chartPopupMenu
facets in your Gantt chart. The Gantt chart merges the new menu items with the standard items in the Gantt chart. Example 28-6 shows sample code for specifying a custom menu item in the table region context menu.
Example 28-6 Sample Code for Custom Context Menu Item
You can also dynamically change the context menu at runtime. Example 28-7 shows sample code to update a custom popup menu on a task bar based on which task is selected in the chart region of a project Gantt chart.
Example 28-7 Sample Code for Dynamic Context Menu
The handleTaskSelected
method is specified in a backing bean. Example 28-8 shows sample code for the backing bean.
Example 28-8 Backing Bean for Handling Task Selection
For more information about using the af:popup
components see Chapter 13, "Using Popup Dialogs, Menus, and Windows".
You can customize Gantt chart tasks to create a new task type, specify a custom data filter, and add a double-click event to a task bar.
A task type is represented visually as a bar in the chart region of a Gantt chart. You can create a new task type in one of three ways:
.jspx
file or in a separate CSS file. TaskbarFormat
object and registering the object with the taskbarFormatManager
. TaskbarFormat
object and updating its properties through a set
method. The TaskBarFormat
object exposes the following properties:
For tasks that have more than one bar, such as a split or recurring task, properties are defined for each individual bar.
Example 28-9 shows sample code to define the properties for a custom task type in the .jspx
file.
Example 28-9 Sample Code to Define Custom Task Type Properties
shows sample code to define a TaskbarFormat
object fill and border color and register the object with the taskbarFormatManager
.
Example 28-10 Custom TaskbarFormat Object Registered with TaskbarFormat Manager
You can change the display of data in a Gantt chart using a data filter dropdown list on the toolbar. Gantt charts manage all predefined and user-specified data filters using a FilterManager
. Filter objects contain information including:
You can define your own filter by creating a filter object and then registering the object using the addFilter
method on the FilterManager
. Example 28-11 shows sample code for registering a Resource filter object with the FilterManager
.
Example 28-11 Custom Filter Object Registered with FilterManager
When the user selects a filter, a FilterEvent
is sent to the registered FilterListener
responsible for performing the filter logic. The filterListener
attribute on the Gantt chart component is used to register the listener. When implemented by the application, the data model is updated and the Gantt chart component displays the filtered result. Example 28-12 shows sample code for a FilterListener
.
Example 28-12 FilterListener for Custom Filter
To specify a custom data filter:
FilterListener
field, enter a method reference to the FilterListener
you defined. For example, "#{project.handleFilter}"
. Gantt chart components support a double-click event on a task bar. For example, you may want to display detailed information about a task in a popup window. Figure 28-8 shows a project Gantt chart with a double-click event on a task bar.
Example 28-13 show sample code for adding a double-click event to a task bar.
Example 28-13 Sample Code for Double-Click Event
Implement the handleDoubleClick
method in a backing bean, for example:
You can customize a Gantt chart to display nonworking days of the week, turn off user interaction features, and specify the time axes.
You can specify nonworking days in a Gantt chart. By default, nonworking days are shaded gray, but you can select a custom color to be used for nonworking days.
If certain weekdays are always nonworking days, then you can indicate the days of the week that fall in this category.
To identify weekdays as nonworking days:
NonWorkingDaysOfWeek
field, enter the string of days that you want to identify as nonworking days for each week. For example, to specify that Saturday and Sunday are nonworking days, enter the following string: "sat sun"
. Alternatively, you can create a method in a backing bean to programmatically identify the nonworking days. For example, if you put the code in a backing bean in a method called getNonWorkingDaysOfWeek
, then the setting for the nonWorkingDaysOfWeek
attribute becomes: "#{myBackingBean.nonWorkingDays}"
. Example 28-14 shows sample code in a backing bean.
NonWorkingDaysColor
field. The value you enter for this attribute must be a hexadecimal color string. You can enter specific dates as nonworking days in a Gantt chart when individual weekdays are not sufficient.
To identify specific dates as nonworking days:
nonWorkingDays
field, enter the string of dates that you want to identify as nonworking days. For example: "2008-07-04 2008-11-28 2008-12-25"
. Alternatively, for more flexibility, you can create a method in a backing bean to programmatically identify the nonworking days. For example, if you put the code in a backing bean in a method called getNonWorkingDays
, then the setting for the nonWorkingDays
attribute becomes: "#{myBackingBean.nonWorkingDays}"
.
nonWorkingDaysColor
field. The value you enter for this attribute must be a hexadecimal color string. User interactions with a Gantt chart can be customized to disable features by setting the featuresOff
property to specify read-only values. Table 28-5 shows the valid values and the disabled feature for the Gantt chart types.
Table 28-5 Valid Values for Read-Only Attributes
Value | Feature Disabled |
---|---|
| Cut, copy, and paste tasks for all Gantt charts. |
| Changes to the data model for all Gantt charts. |
| Indent and outdent tasks for project and scheduling Gantts charts. |
| Hide and show legend and task information for all Gantt charts. |
| Link and unlink tasks for scheduling Gantt charts. |
| Print task for all Gantt charts. |
| Show property dialogs for all Gantt charts. |
| Split task for project Gantt. |
| Undo and redo tasks for all Gantt charts. |
| Show as list, Show as hierarchy, Columns, Expand and Collapse tasks for all Gantt charts. |
| Changes to the zoom level for all Gantt charts. |
To set read-only values on Gantt chart features:
featuresOff
attribute, enter one or more String values to specify the Gantt chart features to disable. For example, to disable user interactions for editing the data model, printing, or changing the zoom level of a Gantt chart, use the following setting for the featuresOff
attribute: edit print zoom
Alternatively, you can create a method in a backing bean to programmatically identify the features to be disabled. For example, if you put the code in a backing bean in a method called whatToTurnOff
that returns a String array of the values, then the setting for the featuresOff
attribute becomes: "#{BackingBean.whatToTurnOff}".
Every Gantt chart is created with a major time axis and a minor time axis. Each time axis has a facet that identifies the level of the axis as major or minor. The default time axis settings for all Gantt charts are:
You can customize the settings of a time axis. However, the setting of a major axis must be a higher time level than the setting of a minor axis. The following values for setting the scale
on a dvt:timeAxis
component are listed from highest to lowest:
twoyears
year
halfyears
quarters
twomonths
months
twoweeks
weeks
days
sixhours
threehours
hours
halfhours
quarterhours
Example 28-18 shows sample code to set the time axis of a Gantt chart to use months as a major time axis and weeks as the minor time axis.
Example 28-15 Gantt Chart Time Axis Set to Months and Weeks
The time units you specify for the major and minor axes apply only to the initial display of the Gantt chart. At runtime, the user can zoom in or out on a time axis to display the time unit level at a different level.
You can create a custom time axis for the Gantt chart and specify that axis in the scale
attribute of dvt:timeAxis
. The custom time axis will be added to the Time Scale dialog at runtime.
To create and use a custom time axis:
CustomTimescale.java
interface to call the method getNextDate(Date currentDate)
in a loop to build the time axis. Example 28-16 show sample code for the interface. The customTimeScales
attribute's value is a java.util.Map
object. The specified map object contains pairs of key/values. The key is the time scale name (fiveyears
), and the value is the implementation of the CustomTimeScale.java
interface. For example:
threeyears
minor time axis and a fiveyears
major time axis. The ADF Gantt chart provides a helper class (GanttPrinter
) that can generate a Formatted Object (FO) for use with XML Publisher to produce PDF files.
In general, the GanttPrinter
class prints the Gantt chart content as it appears on your screen. For example, if you hide the legend in the Gantt chart, then the legend will not be printed. Similarly, if you deselect a column in the List Pane section of the View Menu, then that column will not be visible in the Gantt chart and will not appear in the printed copy unless you take advantage of the column visibility print option.
You can use the following print options in the GanttPrinter
class:
setColumnVisible
method lets you control whether individual columns in the list region of the Gantt chart will appear in the printed output. For example, to hide the first column in the list region of a Gantt chart, use the following code, where the first parameter of the method is the zero-based index of the column and the second parameter indicates if the column should be visible in the printed Gantt chart: _printer.setColumnVisible(o, false);
setMargin
method of the GanttPrinter
lets you specify the top, bottom, left, and right margins in pixels as shown in the following code, where _printer
is an instance of the GanttPrinter
class: _printer.setMargin(25, 16, 66, 66);
setPageSize
method of the GanttPrinter
class lets you specify the height and width of the printed page in pixels as shown in the following code, where _printer
is an instance of the GanttPrinter
class: _printer.setPageSize (440, 600);
setStartTime
and setEndTime
methods of the GanttPrinter
class let you identify the time period of the Gantt chart that you want to print. Example 28-18 shows sample code for setting a specific time period in the Gantt chart for printing, where startDate
and endDate
are variables that represent the desired dates and _printer
is an instance of the GanttPrinter
class.
The Gantt chart toolbar includes a print button that initiates a print action. To print a Gantt chart, you must create an ActionListener
to handle the print event. The code in the ActionListener
should include the following processes:
GanttPrinter
class and entering the code for any print options that you want to use. Example 28-19 shows the code for an ActionListener
that handles the print event. This listener includes settings for all the print options available in the GanttPrinter
helper class.
Example 28-19 Sample ActionListener for Handling the Gantt Chart Print Event
You can add drag and drop functionality that allows users to drag an item from a collection, for example, a row from a table, and drop it into another collection component, such as a tree. Project and scheduling Gantt chart components can be enabled as drag sources as well as drop targets for ADF table or tree table components. A resource utilization Gantt chart component can be enabled only as a drop target.
The application must register the Gantt chart component as a drag source or drop target by adding the af:collectionDragSource
or af:collectionDropTarget
behavior tags respectively as a child to the Gantt tag. For example, you can use the af:collectionDragSource
to register a drop listener that would be invoked when a project Gantt chart task is dragged from a table region onto a separate table. shows a project Gantt chart with tasks dragged from the table region onto a table of tasks.
Figure 28-9 Project Gantt Chart as Drag Source
Example 28-20 shows sample code for adding drag and drop functionality to a scheduling Gantt chart.
Example 28-20 Sample Code for Adding Drag and Drop Functionality
Example 28-21 shows sample code for the listener method for handling the drop event.
Example 28-21 Event Handler Code for a dropListener for a Collection
For a detailed procedure about adding drag and drop functionality for collections, see Section 32.4, "Adding Drag and Drop Functionality for Collections".
This chapter describes how to use an ADF hierarchy viewer component to display data, and provides the options for hierarchy view customization.
This chapter includes the following sections:
For information about the data binding of ADF hierarchy viewers, see the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
A hierarchy viewer component can be used to visually display hierarchical data. Hierarchical data contains master-detail relationships within the data. For example, you could create a hierarchy viewer component that renders an organization chart from a data collection that contains information about the relationships between employees in an organization.
JDeveloper generates the following elements in JSF pages when you drag and drop components from the Component Gallery onto a JSF page or when you use the Create Hierarchy Viewer dialog to create a hierarchy viewer component as described in the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
dvt:hierarchyViewer
This element wraps the dvt:node
and the dvt:link
elements.
dvt:node
A node is a shape that references the data in a hierarchy, for example, employees in an organization or computers in a network. You configure the child elements of the dvt:node
element to reference whatever data you want to display. The dvt:node
element supports the use of one or more f:facet
elements that display content at different zoom levels (100%, 75%, 50%, and 25%). The f:facet
element supports the use of many ADF Faces components, such as af:outputText
, af:image
, and af:panelGroupLayout
, in addition to the ADF Data Visualization dvt:panelCard
component.
At runtime, the node contains controls that allow users to navigate between nodes and to show or hide other nodes by default. For information about specifying node content and defining zoom levels, see Section 29.3.1, "How to Specify Node Content."
dvt:link
You set values for the attributes of the dvt:link
element to connect one node with another node. For information about how to customize the appearance of the link and add labels, see Section 29.7.4, "How to Configure the Display of Links and Labels."
dvt:panelCard
The panel card element provides a method to dynamically switch between multiple sets of content referenced by a node element using animation by, for example, horizontally sliding the content or flipping a node over.
The f:facet
tag for each zoom level supports the use of a dvt:panelCard
element that contains one or more af:showDetailItem
elements defining the content to be displayed at the specified zoom level. At runtime, the end user uses the controls on the node to switch dynamically between the content that the af:showDetailItem
elements reference. For more information, see Section 29.6, "Using Panel Cards."
Note: Unlike the other elements, the |
The hierarchy viewer component uses elements such as af:panelGroupLayout
, af:spacer
, and af:separator
to define how content is displayed in the nodes. Example 29-1 shows the code generated when the component is created by insertion from the Component Palette. Code related to the hierarchy viewer elements is highlighted in the example.
Example 29-1 Hierarchy Viewer Sample Code
<dvt:hierarchyViewer id="hierarchyViewer1" layout="hier_vert_top"
inlineStyle="width:100%;height:600px;">
<dvt:link linkType="orthogonalRounded" id="l1"/>
<dvt:node width="233" height="330" id="n1">
<f:facet name="zoom100">
<dvt:panelCard effect="slide_horz"
inlineStyle="border-width:1px;border-color:#CCCCCC;
font-size:16px;font-weight:bold;color:#5a6a7a"
id="pc1">
<af:showDetailItem text="first group title "
inlineStyle="font-weight:bold;font-size:16px;color:#5a6a7a"
id="sdi1">
<af:showDetailItem text="second group title "
</af:showDetailItem>
</dvt:panelCard>
</f:facet>
</dvt:node>
</dvt:hierarchyViewer>
A hierarchy viewer visually displays hierarchical data and the master-detail relationships. Figure 29-1 shows a segment of a hierarchy viewer component at runtime that includes a control panel, a number of nodes, and links that connect the nodes.
The Control Panel provides controls so that a user can manipulate the position and appearance of a hierarchy viewer component at runtime. By default, it appears in a hidden state in the upper left-hand corner of the hierarchy viewer component, as illustrated by Figure 29-2.
You cannot configure the Control Panel to appear in another location. Users click the Hide or Show Control Panel button shown in Figure 29-2 to hide or expand the Control Panel. Figure 29-3 shows the expanded Control Panel.
You can configure the hierarchy viewer component so that the Control Panel does not appear to the user at runtime. For information about the procedure, see Section 29.7.3, "How to Configure the Display of the Control Panel."
Table 29-1 describes the functionality that the controls in the Control Panel provide to users. The Panel Selector is automatically enabled if a node in your hierarchy viewer component contains a dvt:panelCard
element with one or more af:showDetailItem
elements. The Layout Selector appears automatically if the hierarchy viewer component uses one of the following layouts:
For more information about layouts for a hierarchy viewer component, see Section 29.1.3, "Available Hierarchy Viewer Layout Options."
Table 29-1 Elements in the Control Panel
Control | Name | Description |
---|---|---|
 | Pan Control | Allows user to reposition the hierarchy viewer component within the viewport. |
 | Zoom to Fit | Allows user to zoom a hierarchy viewer component so that all nodes are visible within the viewport. |
 | Zoom Control | Allows user to zoom the hierarchy viewer component. |
 | Hide or Show | Hides or shows the Control Panel. |
 | Panel Selector | Displays a list of node panels that you have defined. Users can use the panel selector to show the same panel on all nodes at once. |
 | Layout Selector | Allows a choice of layouts. Users can change the layout of the hierarchy viewer component from the layout you defined to one of the layout options presented by the component. For more information, see Section 29.1.3, "Available Hierarchy Viewer Layout Options." |
Hierarchy viewers support state management for node selection, expansion, and lateral navigation. When a user selects a node, expands a node or navigates to the left or right within the same parent to view the next set of nodes, that state is maintained if the user returns to a page after navigating away, as in a tabbed panel. State management is supported through hierarchy viewer attributes including disclosedRowKeys
, selectedRowKeys
and lateralNavigationRowKeys
.
Hierarchy viewers support bi-directional text in node content, the search panel, and the display of search results. Bi-directional text is text containing text in both text directionalities, both right-to-left (RTL) and left-to-right (LTR). It generally involves text containing different types of alphabets such as Arabic or Hebrew scripts. Hierarchy viewers also support bi-directional support for flipping panel cards from one node view to the next.
The hierarchy viewer can use any of the following layouts, specified by the component's type
attribute:
hier_vert_top
- Vertical top down hier_vert_bottom
- Vertical bottom up hier_horz_left
- Horizontal left to right hier_horz_right
- Horizontal right to left hier_horz_start
- Horizontal, direction depends on the locale hier_horz_end
- Horizontal, direction depends on the locale tree
- Tree, indented tree radial
- Radial, root node in center and successive child levels radiating outward from their parent nodes circle
- Circle, root node in center and all leaf nodes arranged in concentric circle, with parent nodes arranged within the circle Figure 29-4 shows an example of a circle layout for a hierarchy viewer component.
You can define the initial layout of the hierarchy viewer when you insert the component on the page from either the Data Controls panel to bind a data collection to the hierarchy viewer component, or from the Component Palette to insert the component and bind to data later. The available layouts are displayed in the Hierarchy Viewer Types area of the Component Gallery, shown in Figure 29-5.
Note: The circle layout is not available in the Component Gallery. In order to create a hierarchy viewer with a circle layout, you must specify a |
In the Quick Start Layouts area of the Component Gallery you can also choose to generate the dvt:panelCard
element to support multiple sets of content for a node, the selection shown in Figure 29-5.
By default, the hierarchy viewer component renders in a Flash Player. When Flash 10 or higher is not available on the client or for the purpose of printing, the hierarchy viewer is rendered in HTML. While HTML rendering follows Flash rendering as closely as possible, there are some differences. For the most part, hierarchy viewer display and features are supported with the following exceptions:
A hierarchy viewer component requires data collections where a master-detail relationship exists between one or more detail collections and a master detail collection. The hierarchy viewer component uses the same data model as the ADF Faces tree
component. You can test whether it is possible to bind a data collection to a hierarchy viewer component by first binding it to an ADF Faces tree
component. If you can navigate the data collection using the ADF Faces tree
component, it should be possible to bind it to a hierarchy viewer component.
When you add a hierarchy viewer component to a JSF page, JDeveloper adds a tree binding to the page definition file for the JSF page. For information about how to populate nodes in a tree binding with data, see the "Using Trees to Display Master-Detail Objects" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The data collections that you bind to nodes in a hierarchy viewer component must contain a recursive accessor if you want users to be able to navigate downward from the root node of the hierarchy viewer component. For more information about navigating a hierarchy viewer component, see Section 29.4, "Navigating in a Hierarchy Viewer."
A node is a shape that represents the individual elements in a hierarchy viewer component at runtime. Examples of individual elements in a hierarchy viewer component include an employee in an organization chart or a computer in a network diagram. By default, each node in a hierarchy viewer component includes controls that allows users to do the following:
The top of each node contains a single Restore or Isolate button to either display the parent node or single out the node as the anchor node in the hierarchy viewer. One exception is the node at the very top of the hierarchy viewer component, because this node has no parent nodes and may not be isolated.
The single Show or Hide button appears on the bottom of every node that is a not a leaf node. When a user clicks one of these icons, the component generates a RowDisclosureEvent
event. You can register a custom rowDisclosureListener
method to handle any processing in response to the event in the same way as an af:tree
component. For more information, see Section 10.5.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."
If you use a panel card to display different sets of information for the node that the hierarchy viewer component references, controls at the bottom of the node allow the user to change the information set in the active node. For more information, see Section 29.6, "Using Panel Cards."
Figure 29-6 shows an example of a node with controls that allow an end user to isolate the node as the anchor node, show the child nodes, and change the node to show different sets of information in the active node. For information about how to configure the controls on a node, see Section 29.3.2, "How to Configure the Controls on a Node."
There are four basic types of nodes:
The anchor node may be the same as the root node if child nodes are defined for the tree node and if the value of the hierarchy viewer component's displayLevelsAncestor
property is equal to 0
. At runtime, if a user double-clicks another node that has a value specified for its setAnchorListener
property, that node becomes the anchor node. An anchor node may also be an inner or leaf node, depending on whether or not it has child nodes. For information about how to specify an anchor node, see Section 29.3.4, "How to Associate a Node Definition with a Particular Set of Data Rows."
You can specify one or more ancestor levels above the anchor node. For more information, see Section 29.3.5, "How to Specify Ancestor Levels for an Anchor Node."
Figure 29-7 illustrates how a node can be a different type depending on the layout of the hierarchy viewer component.
Although a node contains controls by default that allow you to navigate to a node and show or hide nodes, nodes do not by default include content unless you used a quick start layout when creating the hierarchy viewer component. You must define what content a node renders at runtime. You can specify node content when you associate data bindings with the hierarchy viewer component as described in the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
By default, a hierarchy viewer component that you create contains one node with one facet element that has a zoom level of 100%:
<f:facet name="zoom100"/>
You can insert three more instances of the facet element into the hierarchy viewer component with the following zoom levels:
zoom25
zoom50
zoom75
Use these zoom level definitions to improve readability of node content when the hierarchy viewer is zoomed out to display more nodes and less display room is available in each node. You can define a subset of the available data collection within one or more of the facet elements. For example, if you have a data collection with node attributes that references data about a company department such as its name, location, and number, you can specify a facet element with a zoom level of 50% that references the node attribute for the department's name and number.
At runtime, when a user moves the mouse over a node at any zoom level, a hover window displaying node content at zoom level 100% is automatically displayed, allowing the user to see the full information regardless of zoom level. The controls on the hover window are active when the node has been selected in the hierarchy viewer.
Each of the facet elements that you insert can be used to reference other components. You can use one or more of the following components when you define content for a node in a hierarchy viewer component. The node component facet's support the following components:
af:commandButton
af:commandImageLink
af:commandLink
af:commandMenuItem
af:goButton
af:goLink
af:image
For information about how to use the af:image
component, see Section 29.7.2, "How to Include Images in a Hierarchy Viewer."
af:menu
af:outputFormatted
af:outputText
af:panelFormLayout
af:panelGroupLayout
For information about how to use the panelGroupLayout
component, see Section 8.12.1, "How to Use the panelGroupLayout Component."
af:panelLabelAndMessage
af:separator
af:showDetailItem
af:showPopupBehavior
For information about how to use the af:showPopupBehavior
component, see Section 29.5.3, "How to Configure a Hierarchy Viewer to Invoke a Popup Window."
af:spacer
dvt:panelCard
For more information about how to use the dvt:panelCard
component, see Section 29.6, "Using Panel Cards."
Note: Unsupported components are flagged at design time. |
To add a node to a hierarchy viewer component:
The following entry appears in the JSF page:
For example, set a value for the type
property to associate a node component with an accessor:
For more information, see Section 29.3.3, "How to Specify a Node Definition for an Accessor."
The node component (dvt:node
) exposes a number of properties that allow you to determine if controls such as Restore, Isolate, Show or Hide appear at runtime. It also exposes properties that determine the size and shape of the node at runtime.
To configure the controls on a node:
dvt:node
component and choose Go to Properties. dvt:node
component, as described in Table 29-2. Table 29-2 Node Configuration Properties
To do this: | Set the following value for this property: |
---|---|
Configure the Hide or Show controls to appear or not on a node. | Set |
Configure the Restore or Isolate controls to appear or not on the node. | Set the If the |
Configure the height and width of a node. | Set values for the |
Select the shape of the node. | Select a value from the Shape dropdown list. Available values are:
|
The hover detail window is automatically displayed when the user moves the mouse over the node, reflecting the shape
attribute set for the node. A node with the shape
attribute roundedRect
, for example, will have a detail window with the same attribute, as shown in Figure 29-8.
You can disable the display of the detail window when hovering a node that is not at the 76-100% zoom level. For more information, see Section 29.7.5, "How to Disable the Hover Detail Window."
By default, you associate a node component with an accessor when you use the Create Hierarchy Viewer dialog to create a hierarchy viewer component, as described in the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. The Create Hierarchy Viewer dialog sets the node component's type
property to a specific accessor.
You can configure a node component's type
property to use one or more specified accessors. Alternatively, you can configure a node component's rendered
property to use a node definition across accessors, as described in Section 29.3.4, "How to Associate a Node Definition with a Particular Set of Data Rows." When the hierarchy viewer component determines which node definition to use for a particular data row, it first checks for a match on the type
property:
type
property matches and the rendered
property value is true
(default), the hierarchy viewer component uses the node definition. type
property does not match, the hierarchy viewer component checks for a value of the rendered
property that evaluates to true
. The result of evaluating the rendered
property does not affect the type
property. You can use a node component's rendered
property to associate the node with a particular set of data rows or with a single data row. The rendered
property accepts a boolean value so you can write an EL expression that evaluates to true
or false
to determine what data rows you associate with a node definition. For example, assume that you want a node to display data based on job title. You write an EL expression for the node component's rendered
property similar to the following pseudo EL expression that evaluates to true
when a job title matches the value you specify (in this example, CEO
):
rendered="#{node.title == 'CEO'}"
When you use the node component's rendered
property in this way, you do not define a value for the node component's type
property.
The anchor node of a hierarchy viewer component is the root of the hierarchy returned by the tree binding. Depending on the use case, there can be multiple root nodes, for example, a hierarchy viewer component that renders an organization chart with one or more managers. When a hierarchy viewer component renders at runtime, the node that has focus is the anchor node. If a user double-clicks another node at runtime that has a value specified for its setAnchorListener
property, that node becomes the anchor node.
You can configure the hierarchy viewer to display one or more levels above the anchor node, the ancestor levels. For example, if you search for an employee in a company, you may wish to display the chain of management above the employee. Specify ancestor levels using the displayLevelsAncestor
property.
To specify the number of ancestor levels for an anchor node:
displayLevelsAncestor
property. For example, the following entry appears in the JSF page if you entered 2
as the number of ancestor levels for the anchor node.
displayLevelsAncestor="2"
By default, a hierarchy viewer component has downward navigation configured for root and inner nodes. You can configure the hierarchy viewer component to enable upward navigation and to determine the number of nodes to appear when a user navigates between nodes on the same level.
For more information about node types, see Section 29.3, "Managing Nodes in a Hierarchy Viewer."
If you want to configure upward navigation for a hierarchy view component, you configure a value for the hierarchy viewer component's navigateUpListener
property.
To configure upward navigation for a hierarchy viewer component:
navigateUpListener
property that specifies a method to update the data model so that it references the new anchor node when the user navigates up to a new anchor node. Same-level navigation between the nodes in a hierarchy viewer component is enabled by default. You can configure the hierarchy viewer component to determine how many nodes to display at a time. When you do this, controls appear that enable users to navigate to the following:
To configure same-level navigation in a hierarchy viewer component:
levelFetchSize
). For example, the following entry appears in the JSF page if you entered 3
as the number of nodes:
levelFetchSize="3"
At runtime, the hierarchy viewer component renders the number of nodes that you specified as a value for the hierarchy viewer component's levelFetchSize
property. It also renders controls that allow users to do the following:
Figure 29-9 shows a runtime example where levelFetchSize="3"
. When a user moves the mouse over the control, the control that allows users to navigate to the last set of nodes appears.
You can configure a hierarchy viewer component to invoke popup windows and display menus with functionality and data from other pages in your Oracle Fusion web application.
By default, panning in a hierarchy viewer is accomplished by clicking and dragging the component to reposition the view, or by using the panning control in the Control Panel. In a hierarchy viewer with a large quantity of nodes, instead of browsing through a hierarchy viewer one page at a time, users can initiate a 3D tilt panning effect that animates the hierarchy viewer to visually fly through the hierarchy viewer nodes. Once set in motion toward the edge of a view, the effect continues automatically until it reaches the end of the nodes on an edge. Figure 29-10 shows the tilt panning effect as it reaches the edge of the view.
To use the tilt panning effect you should first adjust the zoom level on the hierarchy view for an acceptable view of the content of the nodes. You can initiate the effect in any of these ways:
Once the tilt panning effect is initiated, you can move the cursor within the view to change the direction of the pan through the view. Exit tilt panning by selecting any node in the view.
You configure 3D tilt panning effect for the hierarchy viewer by setting the panning
property to tilt
.
By default, clicking a hierarchy viewer node at runtime selects the node. You can customize this interaction by setting the clickBehavior
attribute on the dvt:node
component. Valid values for this property include:
focus
- The node receives focus and is selected when clicked (default). expandCollapse
- Child node elements are either expanded or collapsed, depending on their current expansion state. isolateRestore
- The node is either isolated or restored, depending on its current state. none
- Clicking the node does nothing. You can invoke a popup window from a hierarchy viewer node by specifying values for the af:showPopupBehavior
tag and invoking it from a command component, for example, af:commandButton
. You must nest the command component that invokes the popup inside an f:facet
element in a node of the hierarchy viewer component. The triggerType
property of an af:showPopupBehavior
tag used in this scenario supports only the following values:
action
mouseHover
For example, Figure 29-11 shows a modal popup invoked from an HR Detail link in the node. Example 29-2 shows sample code for creating the popup. Example 29-3 shows sample code for the invoking the popup from a command component. For brevity, elements such as <af:panelGroupLayout>
, <af:spacer>
, and <af:separator>
are not included in the sample code.
Example 29-2 Sample Code to Create the Popup
Example 29-3 Sample Code to Invoke Popup from Command Component
<af:commandLink text="Show HR Detail" inlineStyle="font-size:14px;color:#383A47" >
<af:showPopupBehavior popupId="::popupDialog" triggerType="action"
align="endAfter" alignId="pg1" />
</af:commandLink>
For more information about using the af:showPopupBehavior
tag, see Section 13.4, "Invoking Popup Elements."
You can configure a node component (dvt:node
) within a hierarchy viewer to invoke a menu by using the af:menu
component. You can configure one or more af:commandMenuItem
elements for the af:menu
component. Nodes within a hierarchy viewer component do not support the nesting of af:menu
components. Figure 29-12 shows a context menu associated with a node.
Example 29-4 shows sample code for creating the context menu
Example 29-4 Context Menu Sample Code
For more information about using the af:menu
component, see Chapter 13, "Using Popup Dialogs, Menus, and Windows."
You can use the panel card component in conjunction with the hierarchy viewer component to hold different sets of information for the nodes that the hierarchy viewer component references. The panel card component is an area inside the node element that can include one or more af:showDetailItem
elements.
Each of the af:showDetailItem
elements references a set of content. For example, a hierarchy viewer component that renders an organization chart would include a node for employees in the organization. This node could include a panel card component that references contact information using an af:showDetailItem
element and another af:showDetailItem
element that references salary information.
A panel card component displays the content referenced by one af:showDetailItem
element at runtime. The panel card component renders navigation buttons and other controls that allow the user to switch between the sets of data referenced by af:showDetailItem
elements. The controls that allow users to switch between different sets of data can be configured with optional transitional effects. For example, you can configure a panel card to horizontally slide between one set of data referenced by an af:showDetailItem
element to another set of data referenced by another af:showDetailItem
element.
You can insert a panel card component into the JSF page that renders the hierarchy viewer component by using the context menu that appears when you select the Facet zoom element in the Structure window for the JSF page.
To create a panel card:
For example, select f:facet - zoom100.
For example, set a value for the Effect property in the Advanced properties for the panel card component. Valid values are:
Horizontal Slide (default)
Panel Flip
Node Flip
No Animation
In the Structure window, right-click dvt:panelCard and choose Insert inside dvt:panelCard > Show Detail Item.
af:showDetailItem
elements that you insert. At runtime, a node appears and displays one panel card component. Users can click the navigation buttons at the bottom of the panel card to navigate to the next set of content referenced by one of the panel card's af:showDetailItem
child elements.
Figure 29-13 shows a node with a panel card component where two different af:showDetailItem
child elements reference different sets of information (Contact and Address). The controls in the example include arrows to slide through the panel cards as well as buttons to directly select the panel card to display. Tooltips display for both control options.
You can customize the hierarchy viewer component size and appearance including adding images, configuring the display of the control panel, and customizing links and labels.
You can change the appearance of your hierarchy viewer component by changing skins and component style attributes, as described in Chapter 20, "Customizing the Appearance Using Styles and Skins."
You can adjust the size of the hierarchy viewer component by setting values for a number of the hierarchy viewer component's attributes using the Property Inspector.
To adjust the size of a hierarchy viewer:
InlineStyle
property: width
Write a value in percent (%
) or pixels (px
). The default value for width is 100%
.
height
Write a value in percent (%
) or pixels (px
). The default value for height is 600px
.
The final value that you enter for the InlineStyle
property must use this syntax:
width:100%;height:600px;
You can configure a hierarchy viewer component to display images in the nodes of a hierarchy viewer component at runtime. This can be useful where, for example, you want pictures to appear in an organization chart. Insert an af:image
component with the source attribute bound to the URL of the desired image. The following code example renders an image.
For more information about the af:panelGroupLayout
component, see Section 8.12.1, "How to Use the panelGroupLayout Component."
You can configure the hierarchy viewer component so that the Control Panel described in Section 29.1.2, "Hierarchy Viewer Elements and Terminology," acts as follows when the hierarchy viewer component renders at runtime:
To configure the display of the Control Panel:
hidden
Select this value if you do not want the Control Panel to appear at runtime.
initCollapsed
This is the default value. The Control Panel appears in a collapsed or hidden state at runtime.
initExpanded
Select this value if you want the Control Panel to appear in an expanded or show state at runtime.
In a hierarchy viewer the relationships between nodes are represented by lines that link the nodes. The links can be configured to include labels. Figure 29-14 illustrates links and labels in a hierarchy viewer.
You can customize the appearance of links and labels by setting properties of the dvt:link
element in a hierarchy viewer. Figure 29-15 illustrates links with a dashDot
value set for the linkStype
attribute.
To customize the display of links and labels:
linkStyle
- Sets the style of the link, for example, dotted or dashed line. linkColor
- Sets the color of the link. linkWidth
- Sets the width of the link, in pixels. linkType
- Sets the type of link, for example, direct line or smooth curved line fitted to what would have been a single right angle. endConnectorType
- Sets the style of the link connection end to none
(default) or arrowOpen
. label
property. Alternatively, specify an EL expression to stamp out the link label based on the child node. For example, write an EL expression similar to the following where the node var
attribute refers to the child node associated with the link.
rendered
property to stamp the link for a particular relationship between nodes. The property accepts a boolean value so you can write an EL expression that evaluates to true
or false
to determine if the link represents the relationship. For example, assume that you want a link to display based on reporting relationship. You write an EL expression for the link component's rendered
property similar to the following EL expression that evaluates to true
when the relationship matches the value you specify (in this example, CONSULTANT
): By default, the hover window automatically displays when the zoom level is at 76-100%. If your hierarchy viewer uses popups, the hover window can interfere with the popup display. You can use the hierarchy viewer detailWindow
attribute to turn off the display of the hover window when the zoom level is at 76-100%.
To disable the hierarchy viewer hover window:
default
This is the default value. The hover window is always displayed.
none
Select this value if you do not want the hover window to display when the zoom level is at 76-100%.
The hierarchy viewer search functionality looks through the data structure of the hierarchy viewer and presents matches in a scrollable list. Users can double-click a search result to display the matching node as the anchor node in the hierarchy viewer. When enabled, a search panel is displayed in the upper right-hand corner of the hierarchy viewer, and results are displayed below the search panel. Figure 29-16 shows a sample search panel.
Figure 29-17 shows sample search results.
Add the dvt:search
tag as a child of the dvt:hierarchyViewer
tag to enable searching, and dvt:searchResults
as a child of dvt:search
to specify how to handle the results.
To configure search in a hierarchy viewer:
value
: Specify the variable to hold the search text. actionListener
: Enter the listener called to perform the search. initialBehavior
: Specify how the search panel is initially displayed. Valid values are initCollapsed
for initially collapsed, initExpanded
for initially expanded, or hidden
for completely hidden from view. f:facet
with a value of name="end"
to specify a component that will launch an advanced search outside of the hierarchy viewer component. This facet should contain only a single component, for example af:commandLink
, to launch a comprehensive search of a data set. For more information, see Section 12.4, "Using the query Component." value
: Specify the search results data model. This must be an instance of oracle.adf.view.faces.bi.model.DataModel
. var
: Enter the name of the EL variable used to reference each element of the hierarchy viewer collection. Once this component has completed rendering, this variable is removed, or reverted back, to its previous value. varStatus
: Enter the name of the EL variable used to reference the varStatus
information. Once this component has completed rendering, this variable is removed, or reverted back, to its previous value. resultListener
: Specify a reference to an action listener that will be called after a row in the search results is selected. emptyText
: Specify the text to display when no results are returned. fetchSize
: Specify the number of result rows to fetch at a time. from
: Specify the source of the value, a constant or an EL expression. to
: Specify the target of the value. type
: Choose action
as the value. name="content"
. content
node and do the following to specify the components to stamp out the search results: af:panelGroupLayout
element to wrap the output of the search results. Each stamped row references the current row using the var
attribute of the dvt:searchResults
tag.
Example 29-5 shows sample code for configuring search in a hierarchy viewer.
Example 29-5 Sample Hierarchy Viewer Search Code
Search in a hierarchy viewer is based on the searchable attributes or columns of the data collection that is the basis of the hierarchy viewer data model. Using a query results collection defined in data controls in Oracle ADF, JDeveloper makes this a declarative task. For more information, see the "How to Create a Databound Search in a Hierarchy Viewer" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter describes how to create custom ADF Faces rich client components.
This chapter includes the following sections:
The ADF Faces component library provides a comprehensive set of UI components that covers most of your requirements. However, there are situations when you will want to create a custom rich component that is specific to your application. A custom rich component will allow you to have custom behavior and perform actions that best suit the needs of your application.
Note: Creating custom standard JSF components is covered in many books, articles, web sites, and the JavaServer Faces specification, therefore, it is not covered in this guide. This chapter is intended to describe how to create ADF Faces components. |
JSF technology is built to allow self-registering components and other framework parts. The core JSF runtime at web application startup accomplishes this by inspecting all JAR files in the class path. Any JAR files whose /META-INF/faces-config.xml
file contains JSF artifacts will be loaded. Therefore, you can package custom ADF Faces components in a JAR file and simply add it into the web project.
For each ADF Faces component, there is a server-side component and there can also be a client-side component. On the server, for JSPs, a render kit provides a base to balance the complex mixture of markup language and JavaScript. The server-side framework also adds a custom lifecycle to take advantage of the API hooks for partial page component rendering. On the client, ADF Faces provides a structured JavaScript framework for handling various nontrivial tasks. These tasks include state synchronization using partial page rendering. For more information about the ADF Faces architecture, see Chapter 3, "Using ADF Faces Architecture."
ADF Faces components are derived from the Apache MyFaces Trinidad component library. Because of this, many of the classes you extend when creating a custom ADF Faces component are actually MyFaces Trinidad classes. For more information about the history of ADF Faces, including its evolution, see Chapter 1, "Introduction to ADF Faces Rich Client."
Between the JSP and the JSF components is the Application
class. The tag library uses a factory method on the application
object to instantiate a concrete component instance using the mnemonic referred to as the componentType
.
A component can render its own markup but this is not considered to be a best practice. The preferred approach is to define a render kit that focuses on a strategy for rendering the presentation. The component uses a factory method on the render kit to get the renderer associated with the particular component. If the component is consumed in an application that uses Facelets, then a component handler creates the component.
In addition to functionality, any custom component you create must use an ADF Faces skin to be able to be displayed properly with other ADF Faces components. To use a skin, you must create and register the skinning keys and properties for your component. This chapter describes only how to create and register skins for custom components. For more information about how skins are used and created in general, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
Tip: To work with ADF Faces components, your custom component must use at least the ADF Faces |
An ADF Faces component consists of both client-side and server-side resources. On the client side, there is the client component, the component peer (the component presenter), and any events associated with the client component.
On the server side, there is the server component, server component events, and event listeners. Also, there is a component renderer, a component JSP tag, a composite resource loader, a JavaScript resource loader, and a resource bundle.
The component also has several configuration and support files. Together, these classes, JavaScripts, and configuration files are packaged into a JAR file, which can be imported as a library into an application and used like other components.
You can use JDeveloper to set up the application workspace and project in which you develop the custom component. After you have created the workspace and project, you add starter working files for the required classes, JavaScript files, and configuration files that make up the custom component. During development, you edit and add code to each of these files, specific for the custom component.
The development process is as follows:
faces-config.xml
: Used to register many of the artifacts used by the component. trinidad-skins.xml
: Used to register the skins that the component uses. adf-js-features.xml
: Allows the component to become part of a JavaScript partition. For more information about partitions, see Section 1.2.1.2, "JavaScript Library Partitioning." Table 30-1 lists the client-side and server-side component artifacts for a custom component. The configuration and support files are not included in the table.
Table 30-1 Client-Side and Server-Side Artifacts for a Custom Component
Client | Server |
---|---|
Component class:
Extends:
| Component:
Extends:
|
Event:
Extends:
| Event:
Extends:
|
Event Listener:
Extends:
| |
Component Peer:
Extends:
| |
Component Renderer:
Extends:
| |
Component JSP Tag (JSP only):
Extends:
| |
Composite Resource Loader:
Extends:
| |
JavaScript Resource Loader:
Extends:
| |
Resource Bundle:
Extends:
|
To help illustrate creating a custom component, a custom component named tagPane
will be used as an example throughout the procedures. The tagPane
custom component is created for reuse purposes. Although the tagPane
presentation might have been implemented using a variety of existing components, having a single custom component simplifies the work of the page developer. In this case, there may be a trade-off of productivity between the component developer and the page developers. If this particular view composition were needed more than once, the development team would reduce costs by reducing the lines of code and simplifying the task of automating a business process.
The tagPane
component displays a series of tags and their weighted occurrences for a set of files. Tags that are most frequently used are displayed in the largest font size, while the least used tags are displayed in the smallest font size. Each tag is also a link that triggers an event, which is then propagated to the server. The server causes all the files that contain an occurrence of that tag to then be displayed in a table. Figure 30-1 shows how the tagPane
component would be displayed if it was added below the Search pane in the File Explorer application.
The tagPane
component receives a collection of tags in a Java Map
collection. The key of the map is the tag name. The value is a weight assigned to the tag. In the File Explorer application, the weight is the number of times the tag occurs and in most cases, the number of files associated with the tag. The tag name is displayed in the body text of a link and the font size used to display the name represents the weight. Each tag's font size will be proportionally calculated within the minimum and maximum font sizes based upon the upper and lower weights assigned to all tags in the set of files. To perform these functions, the tagPane
custom component must have both client-side and server-side behaviors.
On the server side, the component displays the map of tags by rendering HTML hyperlinks. The basic markup rendering is performed on the server. A custom event on the component is defined to handle the user clicking a link, and then to display the associated files. These server-side behaviors are defined using a value expression and a method expression.
For example, the tagPane
component includes:
tag
property for setting a Map<String, Number>
collection of tags. tagSelectionListener
method-binding event that is invoked on the server when the user clicks the link for the tag. orderBy
property for displaying the sequence of tags from left to right in the order of descending by weight or alternatively displaying the tag links ascending alphabetically. To allow each tag to be displayed in a font size that is proportional to its weight (occurrences), the font size is controlled using an inline style. However, each tag and the component's root markup node also uses a style class.
Example 30-1 shows how the tagPane
component might be used in a JSF page.
Example 30-1 tagPane Custom Component Tag in a JSF Page
Because the tagPane
component must be used with other ADF Faces components, it must use the same skins. Therefore, any styling is achieved through the use of cascading style sheets (CSS) and corresponding skin selectors. For example, the tagPane
component needs skin selectors to specify the root element, and to define the style for the container of the links and the way the hyperlinks are displayed. Example 30-2 shows a sample set of style selectors in the CSS file for the tagPane
component.
Example 30-2 CSS Style Selectors for the Sample Custom Component
You may need to specify the HTML code required for the custom component on the server side.
Example 30-3 shows HTML server-side code used for the tagPane
component.
Example 30-3 HTML Code for the Server Side
On the client side, the component requires a JavaScript component counterpart and a component peer that defines client-side behavior. All DOM interaction goes through the peer (for more information, see Chapter 3, "Using ADF Faces Architecture"). The component peer listens for the user clicking over the hyperlinks that surround the tag names. When the links are clicked, the peer raises a custom event on the client side, which propagates the event to the server side for further processing.
Table 30-2 lists the client-side and server-side artifacts for the tagPane
component. Referencing the naming conventions in Table 30-1, the component_package
is com.adfdemo.acme
and the prefix
is Acme
.
Table 30-2 Client-Side and Server-Side Artifacts for the tagPane Custom Component
Client | Server |
---|---|
Component:
Extends:
| Component
Extends:
|
Event:
Extends:
| Event:
Extends:
|
Event Listener:
Extends:
| |
Component Peer:
Extends:
| |
Component Renderer:
Extends:
| |
Component JSP Tag:
Extends:
| |
Composite Resource Loader:
Extends:
| |
JavaScript Resource Loader:
Extends:
| |
Resource Bundle:
Extends:
|
Use JDeveloper to set up an application and a project to develop the custom component. After your skeleton project is created, you can add a deployment profile for packaging the component into a JAR file.
During the early stages of development, you create starter configuration and support files to enable development. You may add to and edit these files during the process. You create the following configuration files:
META-INF/faces-config.xml
: The configuration file required for any JSF-based application. While the component will use the faces-config.xml
file in the application into which it is eventually imported, you will need this configuration file for development purposes. META-INF/trinidad-skins.xml
: The configuration information for the skins that the component can use. Extend the simple skin provided by ADF Faces to include the new component. META-INF/
package_directory
/styles/
skinName.css
: The style metadata needed to skin the component. META-INF/servlets/resources/
name
.resources
: The render kit resource loader that loads style sheets and images from the component JAR file. The resource loader is aggregated by a resource servlet in the web application, and is used to configure the resource servlet. In order for the servlet to locate the resource loader file, it must be placed in the META-INF/servlets/resources
directory. META-INF/adf-js-features.xml
: The configuration file used to define a feature. The definition usually includes a component name or description of functionality that a component provides, and the files used to implement the client-side component. META-INF/
prefix_name
.tld
(for JSP): The tag definition library for the component. If the consuming web application is using JSP, the custom component requires a defined TLD. The TLD file will be located in the META-INF
folder along with the faces-config.xml
and trinidad-skins.xml
files. META-INF/
prefix_name
.taglib.xml
(for Facelets): The tag library definition for the component when the consuming application uses Facelets. This file defines the handler for the component. For example, for the tagPane
component, the following configuration files are needed:
META-INF/faces-config.xml
META-INF/trinidad-skins.xml
META-INF/acme/styles/acme-simple-desktop.css
META-INF/servlets/resources/acme.resources
META-INF/acme.tld
META-INF/acme.taglib.xml
META-INF/adf-js-features.xml
After the files are set up in JDeveloper, you add content to them. Then, you create the client-side files nd server-side files. For more information, see Section 30.3, "Client-Side Development," and Section 30.4, "Server-Side Development."
This chapter assumes you have experience using JDeveloper and are familiar with the steps involved in creating and deploying an application. For more information about using JDeveloper to create applications, see Chapter 2, "Getting Started with ADF Faces." For more information about deployment, see the "Deploying Fusion Web Applications" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To set up the custom component development environment in JDeveloper:
Note: Do not select any other application template, or add any technologies to your application. Because the custom component will be packaged into a JAR file, you do not need to create unnecessary folders such as |
tagPane
component might use adf-richclient-demo-acme
. The custom component requires several XML configuration files. You can use JDeveloper to register the XML schemas associated with these configuration files. You must add schemas for three configuration files: faces-config.xml
, trinidad-skins.xml
, and trinidad-config.xml
. By preregistering these schemas, you can create a template XML configuration file without having to know the specifics about the markup structure. The names and locations of the schemas are assumed by the base installation of JDeveloper.
Note: In the Add Schema dialog, make sure Extension is set to |
Table 30-3 XML Schema Locations
XML Configuration File | Schema Location |
---|---|
|
|
|
|
|
|
|
|
Although the custom component will be registered in the consuming application's faces-config.xml
file, during development, the workspace requires a faces-config.xml
file.
Note: Do not use any of JDeveloper's declarative wizards or dialogs to create the |
To create a faces-config.xml file for the custom component:
faces-config.xml
. \src\META-INF
to the end of the directory entry. http://java.sun.com/xml/ns/javaee
. faces-config
. Leave the defaults for the other fields, and click Finish.
The new file will automatically open in the XML editor.
Adding a schema provides better WYSIWYG tool support.
Add a MyFaces Trinidad skins file to register the component's CSS file, which is used to define the component's styles.
To create a trinidad-skins.xml file for the custom component:
trinidad-skins.xml.
\
src\META-INF
to the end of the Directory entry. http://myfaces.apache.org/trinidad/skin.
skins
. Add a cascading style sheet to define component's style.
To create a cascading style sheet for the custom component:
acme-simple-desktop.css
. \src\META-INF\
component_prefix
\styles
to the end of the Directory entry, where component_prefix
is the prefix that will be used in the component library. For example, for the tagPane
component, acme
is the prefix, therefore, the string to append would be \META-INF\acme\styles
. Create an empty file and add the fully qualified classpath to the custom resource loader.
To create a resource loader for the custom component:
component_prefix
.resources
for File Name, where component_prefix
will be the prefix used in the component library. For example, for the tagPane
component, acme
is the prefix, therefore, the string to enter is acme.resources
. \src\META-INF\sevlets\resources\
to the end of the Directory entry. You need a JSP TLD file to work with JSF pages.
To create a JavaServer Pages TLD file for the custom component:
acme
. http://oracle.adfdemo.acme
. Add a features file to define the JavaScript files associated with the custom component, including the files for the client component, the client peer, and the client events.
To create an adf-js-features.xml file for the custom component:
adf-js-features.xml.
\
src\META-INF
to the end of the Directory entry. http://xmlns.oracle.com/adf/faces/feature
. features.
If a consuming application uses Facelets, then you must define the handler for the component.
To create a Facelets tag library file:
prefix_name
.taglib.xml
\
src\META-INF
to the end of the Directory entry. Example 30-4 Code for Facelets Tag Library Configuration File
After the JDeveloper workspace and configuration files have been created, you can create and code the client-side JavaScript files. When you have finished with the client-side development, create the server-side files, as described in Section 30.4, "Server-Side Development."
Best Practice: Because JavaScript libraries do not have namespaces, you should create all JavaScript object names for the custom component using the same prefix. You do not need to do this on the server because the server-side Java package names will prevent name collisions. For example, for the |
Client components hold state for properties that are not defined within the corresponding DOM element. These properties are bound to an associated DOM element using the clientId
. The clientId
uniquely defines a server-side component within the component tree representing a page. The DOM element holds the clientId
within the Id
attribute.
Note: Place each JavaScript object in its own separate source file for best practice and consistency. |
Developing the client-side component requires creating a JavaScript file for the component, the peer, and the component event.
In addition to the client component, client-side events must be defined. The tagPane
component's client-side event is fired and propagated to the server when the user clicks one of the three file types. The client event passed to the server is queued so that the target server-side component can take the appropriate action.
Finally, the custom component requires a client peer. The peer is the component presenter. Peers act as the links between a client component and an associated DOM element. Client peers add client behaviors. A peer must be bound to a component through a registration method.
As with the client component, the associated peer is bound to a DOM element using the component's clientId
. There are two types of peers, statefull and stateless.
Peers add behavior to the component by dynamically registering and listening for DOM events. Conceptually, a peer's function is similar to the role of a managed bean. However, the client component is not bound to the peer using EL like the server-side component is bound to a view model (#{backingbean.callback}
). The peer registers client component events in the InitSubclass (AdfRichUIPeer.addComponentEventHandlers("click"))
callback method. The callback is assumed by using a naming convention of (<Peer>.prototype.HandleComponent<Event>
). The peer manages DOM event callbacks where the server-side component handles the linking using EL bindings to managed beans. For more information about client-side architecture, including peers, see Section 3.1, "Introduction to Using ADF Faces Architecture."
The following section assumes you have already set up a custom component development template environment. This development environment includes the setting up of application workspace, projects, deployment profiles, and registering schemas. If you have not done so, see Section 30.2, "Setting Up the Workspace and Starter Files."
Use JDeveloper to create a JavaScript file for the component. In it, you will define the component type for the component.
To create the component JavaScript file:
tagPane
component, you might enter AcmeTagPane.js
. Tip: To prevent naming collisions, start the name with the component prefix. |
src
directory. For example, for the tagPane
component, you might enter adfrichclient-demo-acme\src\oracle\adfdemo\acme\js\component
. tagPane
component. Use JDeveloper to create a JavaScript file for the event. Add code to the JavaScript to perform the functions required when a event is fired, such as a mouse click.
To create the JavaScript for the event:
tagPane
component, you might enter AcmeTagSelectEvent.js
. Tip: To prevent naming collisions, start the name with the component prefix. |
src
directory. For example, for the tagPane
component, you might enter adf-richclient-demo-acme\src\oracle\adfdemo\acme\js\event
. tagPane
component. Example 30-6 tagPane Event JavaScript
Use JDeveloper to create a JavaScript file for the peer. Add code to register the peer and bind it to the component.
To create the peer JavaScript file:
tagPane
component, you might enter AcmeTagPanePeer.js
. Tip: To prevent naming collisions, start the name with the component prefix. |
src
directory. For example, for the tagPane
component, you might enter adf-richclient-demo-acme\src\oracle\adfdemo\acme\js\component
. tagPane
component. Example 30-7 tagPane JavaScript Peer
Now that you have created all the JavaScript files for the component, you can add the component to the adf-js-features.xml file you created. Follow the procedures documented in Section A.9.1, "How to Create a JavaScript Feature," omitting the steps for creating the XML files, as you have already done so. Example 30-8 shows the adf-js-features.xml
file used for the tagPane
component.
Example 30-8 adf-js-features.xml File for the tagPane Component
Server-side development involves creating Java classes for:
After you have created the classes, add the component class and the renderer class to the faces-config.xml
file. Then, complete the configuration files started in Section 30.2, "Setting Up the Workspace and Starter Files."
The ADF Faces event API requires an event listener interface to process the event. The custom component has a dependency with the event and the event has a dependency with an event listener interface. The Java import statements must reflect these dependencies. You also must define the componentType
for the component.
To create the EventListener class:
tagPane
component, you might enter TagSelectListener
. tagPane
component, you might enter oracle.adfdemo.acme.faces.event
. javax.faces.event.FacesListener
interface. import
statement, and import the FacesListener
class and any other classes on which your event is dependent. Example 30-9 shows the code for the tagPane
event listener.
Example 30-9 tagPane Event Listener Java Code
You must create a server-side event that will be the counter representation of the JavaScript event created in Section 30.3.2, "How to Create a Javascript File for an Event." Server-side JSF events are queued by the component during the Apply Request Values lifecycle phase. Events propagate up to the UIViewRoot
class after all the phases but the Render Response phase. Queued events are broadcast to the associated component.
The server-side Java component must raise the server-side event, so you must create the event source file first to resolve the compilation dependency.
To create the server-side event class:
tagPane
component, you might enter TagSelectEvent
. tagPane
component, you might enter oracle.adfdemo.acme.faces.event
. javax.faces.event.FacesEvent
. Example 30-10 shows the code for the event class.
Example 30-10 tagPane Event Java Code
A JSF component can be described as a state holder of properties. These properties define behavior for rendering and how a component responds to user interface actions. When you are developing the component class, you identify the types of the needed properties. You also define the base component that it will extend from the MyFaces Trinidad Framework. For example, the tagPane
component extends the UIXObject
in MyFaces Trinidad.
Most components will have several properties that should be implemented. Some of the properties are inherited from the base class, and some are required for the rich client framework. Other properties are required because they are best practice. And finally, some properties are specific to the functionality of the custom component.
For example, the tagPane
component has the properties shown in Table 30-4.
Table 30-4 Component Properties for the tagPane Custom Component
Origin | Property | Data Type | Description |
---|---|---|---|
Inherited |
|
| The identifier for a component. |
| S | The logical identifier registered as a component renderer. | |
|
| True or false flag that determines if the component is rendered. | |
|
| A binding value expression to store a component instance in a managed bean. | |
Rich Client Framework |
|
| True or false flag that determines whether a client-side component will be generated. |
|
| A binding expression that registers a client listener on a component. | |
|
| A client attribute on a component. The attribute is added both to the server-side JSF component as well as the client-side equivalent. | |
Best Practice |
|
| A CSS style applied to the root component's class attribute. |
|
| A CSS style added to the component's class attribute. | |
|
| True or false flag that returns the visibility of the component. The visible property is not the same as the rendered property. The visible attribute affects the CSS style on the CSS root of the component. | |
|
| The IDs of the components that should trigger a partial page update. | |
Specific to tagPane |
|
| The map of weighted tags. The key represents the tag name and the value as a number. |
|
| The order that the tags are rendered. The valid enumerations are | |
|
| The |
ADF Faces and MyFaces Trinidad component libraries are defined differently from other libraries. A JSF component has a collection called attributes
that provides access to component properties (using the Java simple beans specification) through a MAP
interface. The collection also holds value pairs that do not correspond to a component's properties. This concept is called attribute transparency. The JSF runtimes (both MyFaces Trinidad and the JSF reference implementation) implement this concept using the Java reflection API.
My Faces Trinidad defines its own internal collection, which does not use the Java reflection API. This difference means that it is more efficient than the base implementation. The solution in MyFaces Trinidad collects more metadata about the component properties. This metadata declares state properties, which allows the base class to fully implement the StateHolder
interface in a base class.
My Faces Trinidad extends the javax.faces.component.UIComponent
class with the org.apache.trinidad.component.UIXComponent
class, followed by a complete component hierarchy. To ease code maintenance, the framework has a strategy for generating code based on configuration files and templates.
This component strategy is a trade-off in terms of development. It requires more coding for defining properties, but you will not have to code the two methods (saveState
, restoreState
) for the StateHolder
interface for each component.
Note: Do not have your custom component extend from any ADF Faces implementation packages. These implementations are private and might change. |
Use JDeveloper to create a Java file for the component. Create a Type
bean to hold property information and define a PropertyKey
for each property. Then, generate accessors for the private attributes.
To create the component class:
tagPane
component, you might enter TagPane
. tagPane
component, you might enter oracle.adfdemo.acme.faces.component
. tagPane
component, you would enter org.apache.myfaces.trinidad.component.UIXObject
. Type
bean that contains component property information. This static class attribute shadows an attribute with the same name in the superclass. The type
attribute is defined once per component class. Through the Type
constructor, you pass a reference to the superclass's Type
bean, which copies property information. For example, the tagPane
class would contain the following constructor: PropertyKey
that is used to access the properties state. Use the TYPE
reference to register a new attribute. Specify the property type using the class reference. The component data type should correspond to the component property. There is another overload of the registerKey
method that allows you to specify state information. The default assumes the property is persistent
. Example 30-11 shows the PropertyKey
methods for the tagPane
component. Example 30-11 PropertyKey Definition
get
and set
methods for the private attributes. Then, remove the private attribute and replace with calls to getProperty(PropertyKey)
and getProperty(PropertyKey)
.
Example 30-12 shows the code after replacing the private attribute.
Example 30-12 Component Properties
getBeanType
method, as shown in Example 30-13. Example 30-13
Refer to the ADF Faces JavaDoc
for more information about the class your component extends, and the methods you may need to override.
For the tagPane
component, the component must act on the event fired from the client component. A reference to the source component is passed as a parameter to the event's constructor.
For the tagPane
component, the broadcast
method checks if the event passed in using the formal parameter is a TagSelectEvent
. If it is, the broadcast
method invokes the method expression held by the tagSelectListener
attribute.
Most events have an immediate
boolean property that specifies the lifecycle phase in which the event should be invoked. If the immediate
attribute is true
, the event is processed in the Apply Values phase; otherwise, the event is processed in the Invoke Application phase. For more information, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."
Example 30-14 shows the overwritten broadcast
method for the tagPane
component.
Example 30-14 The broadcast Method in the tagPane Component
After creating the component class, register the component by adding it to the /META-INF/faces-config.xml
file. By defining the component in the faces configuration file packaged with the JAR project, you ensure that component is automatically recognized by the JSF runtime during web application startup.
To register the component, enter the component type, which is a logical name used by the applications factory to instantiate an instance of the component. For example, the tagPane
component's type is oracle.adfdemo.acme.TagPane
. You also need to add the fully qualified class path for the component, for example oracle.adfdemo.acme.faces.component.TagPane
.
To register a custom component:
faces-config.xml
file. Example 30-15 shows the tagPane
component defined within a faces-config.xml
file.
Example 30-15 tagPane Component Added to the faces-config.xml File
Resource bundles are used to store information for the component, such as text for labels and messages, as well as translated text used if the application allows locale switching. Skins also use resource bundles to hold text for components. Because your custom component must use at least the simple skin, you must create at least a resource bundle for that skin. For a custom component, create a Java file for the resource bundle. For more information about resource bundle classes, see Section 20.3, "Defining Skin Style Properties."
Tip: You can also use a properties file for your resources. |
To create the resource bundle class:
AcmeSimpleDesktopBundle
. oracle.adfdemo.acme.faces.resource
. java.util.ListResourceBundle
. Example 30-16 shows the resource bundle code for the tagPane
component.
Example 30-16 tagPane Resource Bundle Java Code
simple.desktop
. Note: JDeveloper adds |
Example 30-17 shows the code for registering the tagPane
resource bundle with the simple skin (you will add the style-sheet-name
element value in a later step).
Example 30-17 Registering a Resource Bundle with a Skin
ADF Faces components delegate the functionality of the component to a component class, and when the consuming application uses JSPs, the display of the component to a renderer. By default, all tags for ADF Faces combine the associated component class with an HTML renderer, and are part of the HTML render kit. HTML render kits are included with ADF Faces for display on both desktop and PDA devices.
Renderers are qualified in a render kit by family and renderer type. The family is a general categorization for a component, and should be the same as the family defined in the superclass. You do not have to override the getFamily()
method in the component because the component will have the method through inheritance.
To create the renderer class:
tagPane
component, you might enter TagPaneRenderer
. tagPane
component, you might enter oracle.adfdemo.acme.faces.render.
oracle.adf.view.rich.render.RichRenderer
. RenderingContext#getStyles
and Styles#getSelectorStyleMap
in the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
. After you create the renderer, register it using the faces-config.xml
configuration file. If you want the custom component to work with the other ADF Faces components, you must use the same render kit ID that ADF Faces components use.
Tip: The most granular level that JSF allows for defining a render kit is at the view root. |
To register the render kit and renderer:
faces-config.xml
file to open it in the editor. oracle.adf.rich
for the render kit ID. tagPane
component, you would enter org.apache.myfaces.trinidad.Object.
tagPane
component, you would enter oracle.adfdemo.acme.TagPane
. This must match the renderer type. tagPane
component, you would enter oracle.adfdemo.acme.faces.render.TagPaneRenderer
. Example 30-18 shows the registration of the tagPane
component render kit and renderer.
Example 30-18 tagPane Renderer Added to the faces-config.xml File
To use the component on a JSP page, you create a custom tag that will instantiate the custom component. The JSP tag has nothing to do with rendering because the component's renderer will actually perform that task. In JSF 1.1, the JSP tag would invoke rendering on the component after creating and adding it to the component tree. This caused problems because the non-JSF/JSP tags were writing to the same response writer. The timing of the interleaving did not work out for components that rendered their own child components.
Note: (An application that uses Facelets uses a handler to instantiate the component. For more information, see Section 30.2.8, "How to Add a Facelets Tag Library Configuration File") |
In JSF 1.2, the target for Java EE 5 (Servlet 2.5, JSP 2.1), most of the JSP problems were fixed. The JSF/JSP component acts as a component factory that is responsible only for creating components. This means that the rendering response phase is divided into two steps. First the component tree is created, and then the tree is rendered, instead of rendering the components as the component tree was being built. This functionality was made possible by insisting that the entire view be represented by JSF components. The non-JSF/JSP generates markup that implicitly becomes a JSF verbatim component.
As a result of changing these mechanics, in JSF 1.2, custom JSP tags extend the javax.faces.webapp.UIComponentELTag
class. The encodeBegin
, encodeChildren,
and encodeEnd
methods in the JSP tag have been deprecated. These methods once made corresponding calls to the component. Because the view root in JSF 1.2 does the rendering, all the work can be done in the doStartTag
and doEndTag
methods. MyFaces Trinidad has its own version of this base class that you will use. The org.apache.myfaces.Trinidad.webapp.UIComponentELTag
hooks into the components property bag and makes coding JSPs simpler.
The tag class includes the creation of the component's properties. You must choose tag properties carefully. There are some properties that you can ignore for tag implementation, but they may be required as TLD attributes.
The following three attributes are implemented by superclasses and shared by many components through Java inheritance:
id
binding
rendered
Do not implement the id
attribute because the id
attribute is implemented by the superclass javax.faces.webapp.UIComponentTagBase
. The superclass javax.faces.webapp.UIComponentELTag
implements the other two attributes, binding
and rendered
. Therefore, you do not need to add these to your tag class.
To add a JSP tag:
tagPane
component, you might enter TagPaneTag
. tagPane
component, you might enter oracle.adfdemo.acme.faces.taglib
. org.apache.myfaces.trinidad.webapp.UIXComponentELTag
. Example 30-19 shows the code for the attributes for the TagPaneTag
class.
Example 30-19 Attributes in the TagPaneTag Class
public
and click OK. createComponent(componentType)
. Example 30-20 shows the code for the TagPane
Tag
class, where both the component type and render type are oracle.adfdemo.acme.TagPane
.
Example 30-20 Component Type and Render Type for the TagPaneTag Class
setProperties
method from the superclass that has a single formal parameter of type FacesBean
. This is a MyFaces Trinidad version on the base UIComponentELTag
, but it is passed the components state holder instead of the component reference. The job of the setProperties
method is to push the JSP tag attribute values to the component. Example 30-21 shows the overridden method for the tagPane
Tag
class.
Example 30-21 Overridden setProperties Method in the TagPaneTag Class
A tag library descriptor (TLD) provides more information on the Java Class to the JSP compilation engine and IDE tools (TLDs are not used in applications that use Facelets).
Before you begin:
Associate the tag library with a URI, assign a version, and give it a name. You should have already performed this step when you created the tag library stub file in Section 30.2.6, "How to Add a JavaServer Pages Tag Library Descriptor File."
To configure the TLD:
tagPane
component, you might enter tagPane
. JSP
. There are three types of elements to define for each attribute. The <id>
element is a simple string. Additionally attributes can be either deferred-value or deferred-method attributes. These allow late (deferred) evaluation of the expression. Now that JSP and JSF share the same EL engine, the compiled EL can be passed directly to the component.
Example 30-22 shows the TLD for the tagPane
component.
Example 30-22 tagPane acme.tld Tag Library Descriptor Code
A resource loader is required only if the custom component has image files needed for the component's skinning. The images files are packaged into the JAR project so that the consumer of the component library will need to include the JAR into the class path of their web project and add a few entries into their web deployment descriptor file (web.xml
). The rich client framework uses a resource servlet to deliver images. You need to register this servlet in the web.xml
file and then create the resource loader class. A component library requires a resource loader that is auto-loaded by the resource servlet. You create a URL pattern folder mapping for the servlet, which will be used to locate and identify resources within your custom component library.
To create a resource loader class:
tagPane
component, you might enter AcmeResourceLoader
. tagPane
component, you might enter oracle.adfdemo.acme.faces.resources
. tagPane
component, you would enter org.apache.myfaces.trinidad.resource.RegexResourceLoader
. Example 30-23 shows the expression for the tagPane
component that maps the /acme/images/
directory located relative to the /META-INF
folder of the custom component JAR. As a result of the registration, the custom component images should be located under /META-INF/acme/images
.
Example 30-23 Resource Loader for the tagPane Component
/META-INF/servlet/resources/
name
.resources
file and adding the fully qualified name of the resource loader class bound to the URI pattern. The MyFaces Trinidad ResourceServlet
uses the servlet context to scan across all JAR files within the class path of the web application. The servlet looks at its own URI mappings in the web deployment descriptor to formulate the location of this resource file. This file must contain the fully qualified name of the Java class bound to the URI pattern. During startup, the ResourceServlet
will locate and use this file in a manner similar to how FacesServlet
locates and uses the faces-config.xml
files.
For the tagPane
component, the acme.resources
file would contain this entry for the composite resource loader:
A skin is a style sheet based on the CSS 3.0 syntax specified in one place for an entire application. Instead of inserting a style sheet on each page, you use one or more skins for the entire application. Every component automatically uses the styles as described by the skin. No design time code changes are required.
ADF Faces provides three skins for use in your applications:
blafplus-rich
: Defines the default styles for ADF Faces components. This skin extends the blafplus-medium
skin. blafplus-medium
: Provides a modest amount of styling. This style extends the simple
skin. simple
: Contains only minimal formatting. Skins provide more options than setting standard CSS styles and layouts. The skin's CSS file is processed by the skin framework to extract skin properties and icons and register them with the Skin
object. Style sheet rules include a style selector, which identifies an element, and a set of style properties, which describes the appearance of the components.
All ADF Faces components use skins. The default skin is the simple skin. Because your custom components will be used in conjunction with other ADF Faces components, you add style selectors to an existing ADF Faces skin. Because the rich and medium skins inherit styles from the simple skin, you can simply add your selectors to the simple skin, and it will be available in all skins. However, you may want to style the selector differently for each skin. You set these styles in the CSS file you created. This file will be merged with other CSS styles in the application in which the component is used.
The text used in a skin is defined in a resource bundle. Create the text by creating a custom resource bundle and declaring the text you want to display. After you create your custom resource bundle, you register it with the skin. Coupling resource bundles with your CSS provides a method to make your components support multiple locales.
The /META-INF/trinidad-skins.xml
file you created is used to register your CSS file and your resource bundle with an ADF Faces skin.
To create styles for your component:
<DIV>
element that establishes the component. tagPane
component. Example 30-24 CSS File for the tagPane component
For more information about creating CSS for components to be used by skins, see Section 20.3, "Defining Skin Style Properties."
/META-INF/trinidad-skins.xm
l file. simple.desktop
skin in order for them to be compatible with ADF Faces components. Note: If there is a possibility that the component will be used in an Oracle WebCenter Portal application, then you must also register the selectors with the |
<bundle-name>
element. Example 30-25 show the code for the tagPane
component.
Example 30-25 tagPane trinidad-skins.xml Code
META-INF
directory. Place any images used by the custom component into this folder. For tagPane
, the image folder is /META-INF/acme/images
.
After creating the custom component library, you must create a deployable artifact that can be used by a web application. Before you can build a Java archive (JAR) file, update the project's deployment profile by adding the many resources you created.
To create the JAR file for deployment:
Note: Some file types, such as |
After the component has been created and you have created an ADF Library, you can proceed to import it and use it in another application. However, before using it in an application under development, you should use it in a test application to ensure it works as expected. To do so, import the custom library into your test application. For procedures, see the "Adding ADF Library Components into Projects" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
After you add the library, you configure the web deployment descriptor to add a resource servlet mapping. When you use the component and run your test application, you may find you need to debug the component. Therefore, it helps to have logging and assertions enabled for the project.
Tip: Importing a library into an application allows the custom component to appear in JDeveloper's Component Palette. |
You configured the component resource loader to assume a servlet resource mapping (for example, for the tagPane
component, the mapping was acme)
. Therefore, you must add the expected resource servlet mappings to the consuming application's web.xml
file.
By default, MyFaces Trinidad skinning compresses the CSS classes when it normalizes CSS 3 into CSS 2. Turn off this compression while you are debugging the component. For a production deployment, toggle off this setting.
To configure the web.xml file:
resources
. org.apache.myfaces.trinidad.webapp.ResourceServlet
. tagPane
component, you might enter the prefix /acme/*
. org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
and for Value enter true
. JavaScript debugging can be a difficult task. To help debug this dynamic language with no type checking, the rich client JavaScript libraries provide a logging mechanism similar to Java logging. There is also an assertion strategy to make the client scripts more type safe. Both of these features are turned on using configuration parameters in the web.xml
file. The logging and assertion routines are browser specific. The client JavaScript libraries will support Gecko, Internet Explorer, Opera, and Safari versions of browser agents. For more information, see Section A.2.3.4, "Resource Debug Mode."
To turn on logging and assertion:
org.apache.myfaces.trinidad.resource.DEBUG
true
This setting prevents MyFaces Trinidad from setting the cache headers for resources like JavaScript. It prevents the browser from caching resources.
oracle.adf.view.rich.LOGGER_LEVEL
ALL
The valid values are OFF
, SEVERE
, WARNING
, INFO
, CONFIG
, FINE
, FINER
, FINEST
and ALL
. The default is OFF
.
oracle.adf.view.rich.ASSERT_ENABLED
true
This setting works together with logging. Toggling this switch to on will make debug information available to the browser. The assertions and logging are displayed differently, depending on the browser. For Internet Explorer, a child browser window will appear beside the active window. For FireFox with the Fire Bug plugin, the debug information will be available through the Fire Bug console.
To add the custom component to a JSF page:
For example, for the tagPane
component, because the tag library's URI is: http://adf-richclient-demo-acme
, you would add:
Tip: If you are developing the application outside of JDeveloper, then on the page, use TLD short name and the component name. Also, add any values for attributes. For example, for the <acme:tagPane> <visible="true"> <orderBy="alpha"> <tagSelectionListener=#(tagBean.onTagSelect) </tagPane> |
If you wish to create the tagPane
component as described in this chapter, and use it in an application, you will need to use backing beans to bind the custom component to the application components.
Example 30-26 shows the backing bean code that is used to bind the tagPane
component to the File Explorer application.
Example 30-26 Backing Bean Logic for the tagPane Custom Component
This chapter describes how changes to certain UI components that the user makes at runtime can persist for the duration of the session.
Alternatively, you can configure your application so that changes persist in a permanent data repository. Doing so means that the changes remain whenever the user reenters the application. To allow this permanent persistence, you need to use the Oracle Metadata Service (MDS), which is part of the full Fusion technology stack. Using MDS and the full Fusion stack also provides the following additional persistence functionality:
For information and procedures for using Oracle MDS, see the "Allowing User Customizations at Runtime" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter includes the following sections:
Many ADF Faces components allow users to change the display of the component at runtime. For example, a user can change the location of the splitter in the panelSplitter
component or change whether or not a panel displays detail contents. By default, these changes live only as long as the page request. If the user leaves the page and then returns, the component displays in the manner it is configured by default. However, you can configure your application so that the changes persist through the length of the user's session. This way the changes will stay in place until the user leaves the application.
Table 31-1 shows the changes by component that provide default personalization capabilities:
Table 31-1 Implicitly Persisted Attribute Values
Component | Attribute | Affect at Runtime |
---|---|---|
|
| Users can display or hide content using an icon in the header. Detail content will either display or be hidden, based on the last action of the user. |
|
| The heights of multiple |
|
| Users can change the size of a panel, and that size will remain. |
|
| Users can collapse either side of the splitter. The collapsed state will remain as last configured by the user. |
|
| The position of the splitter in the panel will remain where last moved by user. |
|
| The editor will display using the mode (either WYSIWYG or source) last selected by the user. |
|
| The day considered active in the current display will remain the active day. |
|
| The view (day, week, month, or list) that currently displays activities will be retained. |
|
| Users can change the height of a |
|
| Users can change the width of a |
|
| When users change the |
|
| When users change the |
|
| ADF Faces columns can be reordered by the user at runtime. The |
|
| ADF Faces columns can be frozen so that they will not scroll. When a column's |
|
| The content of the column will either wrap or not. You need to create code that allows the user to change this attribute value. For example, you might create a context menu that allows a user to toggle the value from |
|
| The selected column is based on the column last selected by the user. |
|
| The column will either be visible or not, based on the last action of the user. You will need to write code that allows the user to change this attribute value. For example, you might create a context menu that allows a user to toggle the value from |
|
| The width of the column will remain the same size as the user last set it. |
|
| ADF Faces tables can contain a component that allows users to filter the table rows by an attribute value. For a table that is configured to use a filter, the filter will either be visible or not, based on the last action of the user. You will need to write code that allows the user to change this attribute value. For example, you might create a button that allows a user to toggle the value from |
|
| This attribute represents the index of the first row in the current range of rows, and is used to control which range of rows to display to the user.The value of this attribute is persisted only in response to a |
In order for the application to persist user changes to the session, you must configure your project to enable customizations.
You configure your application to enable customizations in the web.xml
file.
To implement session change persistence:
When you elect to save changes to the session, JDeveloper adds the CHANGE_PERSISTENCE
context parameter to the web.xml
file, and sets the value to session
. This context parameter registers the ChangeManager
class that will be used to handle persistence. Example 31-1 shows the context parameter in the web.xml
file.
When an application is configured to persist changes to the session, any changes are recorded in a session variable in a data structure that is indexed according to the view ID. Every time the page is requested, in the subsequent view or restore view phase, the tag action classes look up all changes for a given component and apply the changes in the same order as they were added. This means that the changes registered through the session will be applied only during subsequent requests in the same session.
When you use session persistence, changes are recorded and restored on components against the viewId
for the given session. As a result, when the change is applied on a component that belongs to a fragment or page template, it is applicable only in scope of the page that uses the fragment or template. It does not span all pages that consume the fragment or template.For example, say your project has the pageOne.jspx
and pageTwo.jspx
JSF pages, and they both contain the fragment defined in the region.jsff
page fragment, which in turn contains a showDetail
component. When the pageOne.jspx
JSF page is rendered and the disclosed
attribute on the showDetail
component changes, the implicit attribute change is recorded and will be applied only for the pageOne.jspx
page. If the user navigates to the pageTwo.jspx
page, no attribute change is applied.
This chapter describes how to add drag and drop functionality to your pages, which allows users to drag the values of attributes or objects from one component to another, or allows users to drag and drop components.
This chapter includes the following sections:
The ADF Faces framework provides the ability to drag and drop items from one place to another on a page. For example, in the File Explorer application, you can drag a file from the Table tab and drop it into another directory folder, as shown in Figure 32-1.
In this scenario, you are actually dragging an object from one collection (Folder0) and dropping it into another collection (Folder3). This is one of the many supported drag and drop scenarios. ADF Faces supports the following scenarios:
outputText
component onto an inputText
component, which would result in the value of the text
attribute of the outputText
component becoming the value of the text
attribute on the inputText
component. outputText
component onto another outputText
component, which would result in an array of String
objects populating the text
attribute of the second outputText
component. panelBox
component to a new place within a panelGrid
component. panelDashboard
component. When users click on a source and begin to drag, the browser displays the element being dragged as a ghost element attached to the mouse pointer. Once the ghost element hovers over a valid target, the target component shows some feedback (for example, it becomes highlighted). If the user drags the ghost element over an invalid target, the cursor changes to indicate that the target is not valid.
When dragging attribute values, the user can only copy the value to the target. For all other drag and drop scenarios, on the drop, the element can be copied (copy and paste), moved (cut and paste), or linked (copy and paste as a link, for example, copying text and pasting the text as an actual URL).
The component that will be dragged and that contains the value is called the source. The component that will accept the drop is called the target. You use a specific tag as a child to the source and target components that tells the framework to allow the drop. Table 32-1 shows the different drag and drop scenarios, the valid source(s) and target(s), and the associated tags to be used for that scenario.
Table 32-1 Drag and Drop Scenarios
Scenario | Source | Target |
---|---|---|
Dragging an attribute value | An attribute value on a component | An attribute value on another component, as long as it is the same object type |
Tag: | Tag: | |
Dragging an object from one component to another | Any component | Any component |
Tag: | Tag: | |
Dragging an item from one collection and dropping it into another |
|
|
Tag: | Tag: | |
Dragging a component from one container to another | Any component | Any component |
Tag: | Tag: | |
Dragging a calendar activity from one start time or date to another |
|
|
Tag: | Tag: | |
Dragging a |
|
|
Tag: | Tag: | |
Dragging a panelBox component out of a | panelBox component in a | Any component |
Tag: | Tag: | |
Dragging a marker in a DVT graph |
|
|
Tag: | Tag: | |
Dragging an object from a DVT Gantt chart and dropping it on another component | Gantt chart | Any component |
Tag: | Tag: |
You can restrict the type of the object that can be dropped on a target by adding a dataFlavor
tag. This helps when the target can accept only one object type, but the source may be one of a number of different types. The dataFlavor
tag also allows you to set multiple types so that the target can accept objects from more than one source or from a source that may contain more than one type. Both the target and the source must contain the dataFlavor
tag, and the values must be the same in order for the drop to be successful.
Note: Drag and drop functionality is not supported between windows. Any drag that extends past the window boundaries will be canceled. Drag and drop functionality is supported between popup windows and the base page for the popup. Also note that drag and drop functionality is not accessible; that is, there are no keyboard strokes that can be used to execute a drag and drop. Therefore, if your application requires all functionality to be accessible, you must provide this logic. For example, your page might also present users with a method for selecting objects and a Move button or menu item that allows them to move those selected objects. |
You add drag and drop functionality for attributes by defining one component's attribute to be a target and another component's attribute to be a source.
Note: The target and source attribute values must both be the same data type. |
The following procedure assumes you have your target and source components already on the JSF page.
To add drag and drop functionality for attributes:
When you want users to be able to drag things other than attribute values, or you want users to be able to do something other than copy attributes from one component to another, you use the dropTarget
tag. Additionally, use the DataFlavor
object to determine the valid Java types of sources for the drop target. Because there may be several drop targets and drag sources, you can further restrict valid combinations by using discriminant values. You also must implement any required functionality in response to the drag and drop action.
For example, suppose you have an outputText
component and you want the user to be able to drag the outputText
component to a panelBox
component and have that component display an array
, as shown in Figure 32-6.
Figure 32-2 Dragging and Dropping an Array Object
The outputText
component contains an attributeDragSource
tag. However, because you want to drag an array
(and not just the String
value of the attribute), you must use the dropTarget
tag instead of the attributeDropTarget
tag. Also use a dataFlavor
tag to ensure that only an array
object will be accepted on the target.
You can also define a discriminant value for the dataFlavor
tag. This is helpful if you have two targets and two sources, all with the same object type. By creating a discriminant value, you can be sure that each target will accept only valid sources. For example, suppose you have two targets that both accept an EMPLOYEE object, TargetA and TargetB. Suppose you also have two sources, both of which are EMPLOYEE objects. By setting a discriminant value on TargetA with a value of alpha
, only the EMPLOYEE source that provides the discriminant value of alpha
will be accepted.
You also must implement a listener for the drop event. The object of the drop event is called the transferable
, which contains the payload of the drop. Your listener must access the transferable
object, and from there, use the DataFlavor
object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object. More details about this listener are covered in the procedure in Section 32.9.1, "How to Add Drag and Drop Functionality for a DVT Component".
To add drag and drop functionality, first add tags to a component that define it as a target for a drag and drop action. Then implement the event handler method that will handle the logic for the drag and drop action. Last, you define the sources for the drag and drop.
This procedure assumes the source and target components already exist on the page.
To add drag and drop functionality:
dropTarget
tag as a child to the target component by dragging and dropping a Drop Target tag (located in the Operations panel) from the Component Palette. Tip: You can also intercept the drop on the client by populating the |
java.lang.Object
. This selection will be used to create a dataFlavor
tag, which determines the type of object that can be dropped onto the target, for example a String
or a Date
. Multiple dataFlavor
tags are allowed under a single drop target to allow the drop target to accept any of those types. Tip: To specify a typed array in a |
dropTarget
tag. In the Property inspector, select a value for the actions
attribute. This defines what actions are supported by the drop target. Valid values can be COPY
(copy and paste), MOVE
(cut and paste), and LINK
(copy and paste as a link), for example:. If no actions are specified, the default is COPY
.
Example 32-1 shows the code for a dropTarget
component inserted into an panelBox
component that takes an array object as a drop source. Note that because an action was not defined, the only allowed action will be COPY
.
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.
This method must take a DropEvent
event as a parameter and returns a DnDAction
object, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY
, DnDAction.
MOVE
, and DnDAction.LINK
, and were set when you defined the target attribute in Step 5. This method should check the DropEvent
event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE
to indicate that the drop was rejected.
The method must also check for the presence for each dataFlavor
object in preference order.
Tip: If your target has more than one defined |
The DataFlavor
object defines the type of data being dropped, for example java.lang.Object
, and must be as defined in the DataFlavor
tag on the JSP, as created in Step 3.
Tip: To specify a typed array in a
If the drag and drop framework doesn't know how to represent a server |
Example 32-2 shows a private method that the event handler method calls (the event handler itself does nothing but call this method; it is needed because this method also needs a String
parameter that will become the value of the outputText
component in the panelBox
component). This method copies an array object from the event payload and assigns it to the component that initiated the event.
Example 32-2 Event Handler Code for a dropListener
clientAttribute
tag as a child to the source component by dragging a Client Attribute (located in the Operations panel), from the Component Palette. This tag is used to define the payload of the source for the event. Define the following for the clientAttribute
tag in the Property Inspector: Array
that holds the different drink values. name
defined for the clientAttribute
tag created in the previous step. Doing so makes the value of the clientAttribute
tag the source's payload. Example 32-3 shows the code for an outputText
component that is the source of the drag and drop operation. When performing a drag and drop operation, users can press keys on the keyboard (called keyboard modifiers) to select the action they wish to take on a drag and drop. The drag and drop framework supports the following keyboard modifiers:
When a user executes the drag and drop operation, the drop target first determines that it can accept the drag source's data flavor value. Next, if the source and target are collections, the framework intersects the actions allowed between the drag source and drop target and executes the action (one of COPY, MOVE, or LINK) in that order from the intersection. When there is only one valid action, that action is executed. When there is more than one possible action and the user's keyboard modifier matches that choice, then that is the one that is executed. If either no keyboard modifier is used, or the keyboard modifier used does not match an allowed action, then the framework chooses COPY, MOVE, LINK in that order, from the set of allowed actions.
For example, suppose you have a drop target that supports COPY and MOVE. First the drop target determines that drag source is a valid data flavor. Next, it determines which action to perform when the user performs the drop. In this example, the set is COPY and MOVE. If the user holds down the SHIFT
key while dragging (the keyboard modifier for MOVE), the framework would choose the MOVE action. If the user is doing anything other than holding down the SHIFT
key when dragging, the action will be COPY because COPY is the default when no modifier key is chosen (it is first in the order). If the user is pressing the CTRL key, that modifier matches COPY, so COPY would be performed. If the user was pressing the CTRL+SHIFT keys, the action would still be COPY because that modifier matches the LINK action which is not in the intersected set of allowed actions.
Note: Because information is lost during the roundtrip between Java and JavaScript, the data in the drop may not be the type that you expect. For example, all numeric types appear as |
The dropTarget
tag contains the clientDropListner
attribute where you can reference JavaScript that will handle the drop event on the client. The client handler should not take any parameters and returns an AdfDnDContext
action. For example, if the method returns AdfDnDContext.ACTION_NONE
the drop operation will be canceled and no server call will be made; if the method returns AdfDnDContext.ACTION_COPY,
a copy operation will be allowed and a server call will be made which will execute the dropListener
method if it exists.
For example, suppose you want to log a message when the drop event is invoked. You might create a client handler to handle logging that message and then returning the correct action so that the server listener is invoked. Example 32-4 shows a client handler that uses the logger to print a message.
You.use the collectionDropTarget
and dragSource
tags to add drag and drop functionality that allows users to drag an item from one collection (for example, a row from a table), and drop it into another collection component such, as a tree. For example, in the File Explorer application, users can drag a file from the table that displays directory contents to any folder in the directory tree. Figure 32-3 shows the File0.doc
object being dragged from the table displaying the contents of the Folder0
directory to the Folder3
directory. Once the drop is complete, the object will become part of the collection that makes up Folder3
.
As with dragging and dropping single objects, you can have a drop on a collection cause a copy, move, or copy and paste as a link (or a combination of the three), and use dataFlavor
tags to limit what a target will accept.
When the target source is a collection and it supports the move operation, you may also want to also implement a method for the dragDropEndListener
attribute, which is referenced from the source component and is used to clean up the collection after the drag and drop operation. For more information, see Section 32.4.2, "What You May Need to Know About the dragDropEndListener".
To add drag and drop functionality for collections, instead of using the dropTarget
tag, you use the collectionDropTarget
tag. You then must implement the event handler method that will handle the logic for the drag and drop action. Next, you define the source for the drag and drop operation using the dragSource
tag.
This procedure assumes you already have the source and target components on the page.
To add drag and drop functionality:
collectionDropTarget
tag as a child to the target collection component by dragging a Collection Drop Target from the Component Palette. In the Insert Collection Drop Target dialog, enter an expression for the dropListener
attribute that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).
In the Property Inspector, set the following:
actions
: Select the actions that can be performed on the source during the drag and drop operation. If no actions are specified, the default is COPY
.
modelName
: Define the model for the collection. The value of the modelName
attribute is a String
object used to identify the drag source for compatibility purposes. The value of this attribute must match the value of the discriminant
attribute of the dragSource
tag you will use in a Step 6. In other words, this is an arbitrary name and works when the target and the source share the same modelName
value or discriminant value.
In the managed bean inserted into the EL expression in Step 2, implement the handler for the drop event.
This method must take a DropEvent
event as a parameter and return a DnDAction
. This method should use the DropEvent
to get the Transferable
object and from there get the RowKeySet
(the rows that were selected for the drag). Using the CollectionModel
obtained through the Transferable
object, the actual rowData
can be obtained to complete the drop. The method should then check the DropEvent
to determine whether it will accept the drop or not. If the method accepts the drop, it should perform the drop and return the DnDAction it performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK, otherwise it should return DnDAction.NONE to indicate that the drop was rejected.
Example 32-5 shows the event handler method on the CollectionDnd.java
managed bean used in the collectionDropTarget
demo that handles the copy of the row between two tables.
Example 32-5 Event Handler Code for a dropListener for a Collection
With the dragSource
tag selected, in the Property Inspector set the allowed Actions and any needed discriminant, as configured for the target.
There may be cases when after a drop event, you have to clean up the source collection. For example, if the drag caused a move, you may have to clean up the source component so that the moved item is no longer part of the collection.
The dragSource
tag contains the dragDropEndListener
attribute that allows you to register a handler that contains logic for after the drag drop operation ends.
For example, if you allow a drag and drop to move an object, you may have to physically remove the object from the source component once you know the drop succeeded. Example 32-6 shows a handler for a dragDropEndListener
. attribute
Example 32-6 Handler for dragDropEndListener
You can allow components to be moved from one parent to another, or you can allow child components of a parent component to be reordered. For example, Figure 32-4 shows the darker panelBox
component being moved from being the first child component of the panelGrid
component to the last.
Note: If you want to move components into or out of a panelDashboard component, then you need to use procedures specific to that component. For more information, see Section 32.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component." |
Adding drag and drop functionality for components is similar for objects. However, instead of using the attributeDragSource
tag, use the componentDragSource
tag. As with dragging and dropping objects or collections, you also must implement a dropListener
handler.
To add drag and drop functionality:
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).
With the dropTarget
tag still selected, in the Property Inspector, select a valid action set for the action
attribute.
In the managed bean referenced in the EL expression created in Step 2 for the dropListener
attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.
This method must take a DropEvent
event as a parameter and return a DnDAction
, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY
, DnDAction.
MOVE
, and DnDAction.LINK
, and were set when you defined the target attribute in Step 2.
This handler method should use the DropEvent
event to get the transferable
object and its data and then complete the move or copy, and reorder the components as needed. Once the method completes the drop, it should return the DnDAction
it performed. Otherwise, it should return DnDAction.NONE
to indicate that the drop was rejected.
Example 32-7 shows the handleComponentMove
event handler on the DemoDropHandler.java
managed bean used by the componentDragSource
JSF page in the demo application.
Example 32-7 Event Handler Code for a dropListener That Handles a Component Move
componentDragSource
tag to the source component by dragging and dropping a Component Drag Source from the Component Palette as a child of the source component. By default the panelDashboard
component supports dragging and dropping components within itself. That is, you can reorder components in a panelDashboard
component without needing to implement a listener or use additional tags. However, if you want to be able to drag a component into a panelDashboard
component, or to drag a component out of a panelDashboard
component, you do need to use tags and implement a listener. Because you would be dragging and dropping a component, you use the componentDragSource
tag when dragging into the panelDashboard
. However, because the panelDashboard
already supports being a drop target, you do not need to use the dropTarget
tag. Instead, you need to use a dataFlavor
tag with a discriminant. The tag and discriminant notify the framework that the drop is from an external component.
Dragging a component out of a panelDashboard
is mostly the same as dragging and dropping any other component. You use a dropTarget
tag for the target and the componentDragSource
tag for the source. However, you must also use the dataFlavor
tag and a discriminant.
Because the panelDashboard
component has built-in drag and drop functionality used to reorder panelBox
components within the dashboard, you cannot use a dropTarget
tag, but you do need to use a dataFlavor
tag with a discriminant and implement the dropListener
. In that implementation, you need to handle the reorder of the components.
Before you begin:
panelDashboard
component. For more information, see Section 8.7, "Arranging Contents in a Dashboard." panelDashboard
that contains panelBox
components. For more information about panelBox
components, see Section 8.8.3, "How to Use the panelBox Component." To add drag and drop functionality into a panelDashboard component:
In the Structure window, select the panelDashboard
component that is to be the target component.
In the Property Inspector, for DropListener, enter an expression that evaluates to a method on a managed bean that will handle the drop event (you will create this code in Step 6).
panelDashboard
component. javax.faces.component.UIComponent
. In the Property Inspector, set Discriminant to a unique name that will identify the components allowed to be dragged into the panelDashboard
component, for example, dragIntoDashboard
.
In the managed bean referenced in the EL expression created in Step 2 for the dropListener
attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.
This method must take a DropEvent
event as a parameter and return a DnDAction
of NONE
, because the panelDashboard
handles the positioning of its child components.
This handler method should use the dropEvent.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR)
to get the transferable
object and its data. Once the method completes the drop, you can use the org.apache.myfaces.trinidad.change.ReorderChildrenComponent
method to preserve the new ordering of the children and the
ChangedropEvent.getDropSiteIndex()
method to get the location at which the user wants the dragged component. You can also use the dashboardComponent.prepareOptimizedEncodingOfInsertedChild()
method to animate the drop of the component.
Example 32-8 shows the move
event handler and helper methods on the DemoDashboardBean.java
managed bean used by the dashboard
JSF page in the ADF Faces demo application.
Example 32-8 Handler for DropListener on a panelDashboard Component
panelBox
component that will be the source component. panelDashboard
in Step 5. Implementing drag and drop functionality out of a panelDashboard
component is similar to standard drag and drop functionality for other components, except that you must use a dataFlavor
tag with a discriminant.
How to add drag and drop functionality out of a panelDashboard component:
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 5) and enter javax.faces.component.UIComponent as the FlavorClass.
dropTarget
tag still selected, in the Property Inspector, select MOVE as the value action
attribute. In the Structure window, select the dataFlavor
tag and in the Property Inspector, set Discriminant to a unique name that will identify the panelBox
components allowed to be dragged into this component, for example, dragOutOfDashboard
.
In the managed bean referenced in the EL expression created in Step 2 for the dropListener
attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.
This handler method should use the DropEvent
event to get the transferable
object and its data and then complete the move and reorder the components as needed. Once the method completes the drop, it should return a DnDAction
of NONE.
You can use the dashboardComponent.
prepareOptimizedEncodingOfDeletedChild()
method to animate the removal of the panelBox
component.
Example 32-9 shows the handleSideBarDrop
event handler and helper methods on the DemoDashboardBean.java
managed bean used by the dashboard
JSF page in the demo application.
Example 32-9 Event Handler Code for a dropListener That Handles a panelBox Move Out of a panelDashboard Component
panelBox
component within the panelDashboard
component. dataFlavor
tag for the target component in Step 4. The calendar includes functionality that allows users to drag the handle of an activity to change the end time. However, if you want users to be able to drag and drop an activity to a different start time, or even a different day, then you implement drag and drop functionality. Drag and drop allows you to not only move an activity, but also to copy one.
You add drag and drop functionality by using the calendarDropTarget
tag. Unlike dragging and dropping a collection, there is no need for a source tag; the target (that is the object to which the activity is being moved, in this case, the calendar) is responsible for moving the activities. If the source (that is, the item to be moved or copied), is an activity within the calendar, then you use only the calendarDropTarget tag. The tag expects the transferable to be a calendarActivity
object.
However, you can also drag and drop objects from outside the calendar. When you want to enable this, use dataFlavor
tags configured to allow the source object (which will be something other than a calendarActivity
object) to be dropped.
To add drag and drop functionality to a calendar:
calendar
component. In the Insert Calendar Drop Target dialog, enter an expression for the dropListener
attribute that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).
In the Property Inspector, set Actions. This value determines whether the activity (or other source) can be moved, copied, or copied as a link, or any combination of the three. If no action is specified, the default is COPY
.
In the managed bean inserted into the EL expression in Step 2, implement the handler for the drop event.
This method must take a DropEvent
event as a parameter and return a DnDAction
. The DnDAction
is the action that will be performed when the source is dropped. Valid return values are COPY
, MOVE
, and LINK
, and are set when you define the actions
attribute in Step 3. This method should use the DropEvent
to get the transferable
object, and from there, access the CalendarModel
object in the dragged data and from there, access the actual data. The listener can then add that data to the model for the source and then return the DnDAction
it performed: DnDAction.COPY
, DnDAction.MOVE
or DnDAction.LINK
; otherwise, the listener should return DnDAction.NONE
to indicate that the drop was rejected.
The drop site for the drop event is an instance of the oracle.adf.view.rich.dnd.CalendarDropSite
class. For an example of a drag and drop handler for a calendar, see the handleDrop
method on the oracle.adfdemo.view.calendar.rich.DemoCalendarBean
managed bean in the ADF Faces demo application.
If the source for the activity is external to the calendar, drag a Data Flavor and drop it as a child to the calendarDropTarget
tag. This tag determines the type of object that can be dropped onto the target, for example a String
or a Date
object. Multiple dataFlavor
tags are allowed under a single drop target to allow the drop target to accept any of those types.
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object
.
Tip: To specify a typed array in a |
For dragging and dropping activities within a calendar, users can drag and drop only within a view. That is, users can drag an activity from one time slot to another in the day view, but cannot cut an activity from a day view and paste it into a month view.
When the user is dragging and dropping activities in the day or week view, the calendar marks the drop site by half-hour increments. The user cannot move any all-day or multi-day activities in the day view.
In the week view, users can move all-day and multi-day activities, however, they can be dropped only within other all-day slots. That is, the user cannot change an all-day activity to an activity with start and end times. In the month view, users can move all-day and multi-day activities to any other day.
You can configure drag and drop for the DVT bubble and scatter graphs, which allows the user to change the value of a marker by repositioning it. When you want users to be able to drag and drop in a graph, you use the dragSource
and dropTarget
tags. Additionally, you use the DataFlavor
object to determine the valid Java type of the sources for the drop target, in this case a GraphSelection object. You also must implement any required functionality in response to the drag and drop action.
For example, you might have a scatterGraph
component and you want the user to be able to drag a human scatter marker to adjust the performance rating of an employee, as shown in Figure 32-6.
Figure 32-5 Dragging and Dropping an Object
The scatterGraph
component contains both a dragSource
tag and a dropTarget
tag. You also use a dataFlavor
tag to determine the type of object being dropped.
You also must implement a listener for the drop event. The object of the drop event is called the transferable
, which contains the payload of the drop. Your listener must access the transferable
object, and from there, use the DataFlavor
object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object.
To add drag and drop functionality, first add source and target tags to the graph. Then implement the event handler method that will handle the logic for the drag and drop action. For information about what happens at runtime, see Section 32.3.2, "What Happens at Runtime."
To add drag and drop functionality:
oracle.adf.view.faces.bi.component.graph.GraphSelection
, which is the class for the object that can be dropped onto the target. This entry will be used to create a dataFlavor
tag, which determines the type of object that can be dropped onto the target. GraphSelection
object, GraphA and GraphB. You also have two sources, both of which are GraphSelection
objects. By setting a discriminant value on GraphA with a value of alpha
, only the GraphSelection
source that provides the discriminant value of alpha
will be accepted. dropTarget
tag. In the Property inspector, select MOVE
as the value for Actions. dragSource
tag selected, in the Property Inspector set MOVE
as the allowed Action and add any needed discriminant, as configured for the dataFlavor
tag. This method must take a DropEvent
event as a parameter and return a DnDAction
object, which is the action that will be performed when the source is dropped, in this case DnDAction.
MOVE
. This method should check the DropEvent
event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE
to indicate that the drop was rejected. The method must also check for the presence of the dataFlavor
object, in this case oracle.adf.view.faces.bi.component.graph.GraphSelection
.
When you want users to be able to drag and drop between Gantt charts and other components, you use the dragSource
and dropTarget
tags. Additionally, you use the DataFlavor
object to determine the valid Java types of sources for the drop target. You also must implement any required functionality in response to the drag and drop action. Both the projectGantt
and schedulingGantt
components support drag and drop functionality.
For example, suppose you have an projectGantt
component and you want the user to be able to drag one timeline to a treeTable
component and have that component display information about the timeline, as shown in Figure 32-6.
The projectGantt
component contains a dragSource
tag. And because the user will drag the whole object and not just the String
value of the output text that is displayed, you use the dropTarget
tag instead of the attributeDropTarget
tag.
You also use a dataFlavor
tag to determine the type of object being dropped. On this tag, you can define a discriminant value. This is helpful if you have two targets and two sources, all with the same object type. By creating a discriminant value, you can be sure that each target will accept only valid sources. For example, suppose you have two targets that both accept an TaskDragInfo
object, TargetA and TargetB. Suppose you also have two sources, both of which are TaskDragInfo
objects. By setting a discriminant value on TargetA with a value of alpha
, only the TaskDragInfo
source that provides the discriminant value of alpha
will be accepted.
You also must implement a listener for the drop event. The object of the drop event is called the transferable
, which contains the payload of the drop. Your listener must access the transferable
object, and from there, use the DataFlavor
object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object.
To add drag and drop functionality, first add tags to a component that define it as a target for a drag and drop action. Then implement the event handler method that will handle the logic for the drag and drop action. Last, you define the sources for the drag and drop. For information about what happens at runtime, see Section 32.3.2, "What Happens at Runtime." For information about using the clientDropListener
attribute, see Section 32.3.3, "What You May Need to Know About Using the ClientDropListener."
To add drag and drop functionality:
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 6).
Tip: You can also intercept the drop on the client by populating the |
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object
. This selection will be used to create a dataFlavor
tag, which determines the type of object that can be dropped onto the target. Multiple dataFlavor
tags are allowed under a single drop target to allow the drop target to accept any of those types.
Tip: To specify a typed array in a |
In the Structure window, select the dropTarget
tag. In the Property inspector, select a value for Actions. This defines what actions are supported by the drop target. Valid values can be COPY
(copy and paste), MOVE
(cut and paste), and LINK
(copy and paste as a link), for example:.
If no actions are specified, the default is COPY
.
Example 32-10 shows the code for a dropTarget
component that takes a TaskDragInfo
object as a drop source. Note that because COPY was set as the value for the actions
attribute, that will be the only allowed action.
Example 32-10 JSP Code for a dropTarget tag
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.
This method must take a DropEvent
event as a parameter and return a DnDAction
object, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY
, DnDAction.
MOVE
, and DnDAction.LINK
, and were set when you defined the target attribute in Step 5. This method should check the DropEvent
event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE
to indicate that the drop was rejected.
The method must also check for the presence for each dataFlavor
object in preference order.
Tip: If your target has more than one defined |
The DataFlavor
object defines the type of data being dropped, for example java.lang.Object
, and must be as defined in the DataFlavor
tag on the JSP, as created in Step 3.
Tip: To specify a typed array in a
If the drag and drop framework doesn't know how to represent a server |
Example 32-11 shows a handler method that copies a TaskDragInfo
object from the event payload and assigns it to the component that initiated the event.
Example 32-11 Event Handler Code for a dropListener
dragSource
tag selected, in the Property Inspector set the allowed Actions and any needed discriminant, as configured for the target. This chapter describes how you can have your pages display in modes suitable for printing and emailing. Topics include how to use the showPrintablePageBehavior
tag to print page contents and how to create emailable pages with the request parameter org.apache.myfaces.trinidad.agent.email=true
.
This chapter includes the following sections:
ADF Faces allows you to output your page in a simplified mode either for printing or for emailing. For example, you may want users to be able to print a page (or a portion of a page), but instead of printing the page exactly as it is rendered in a web browser, you want to remove items that are not needed on a printed page, such as scroll bars and buttons. If a page is to be emailed, the page must be simplified so that email clients can correctly display it.
Note: By default, when the ADF Faces framework detects that an application is being crawled by a search engine, it outputs pages in a simplified format for the crawler, similar to that for an emailable page. If you want to generate special content for web crawlers, you can use the EL-reachable <c:if test="#{requestContext.agent.type == 'webcrawler'}"> <af:goLink text="This Link is rendered only for web crawlers" destination="http://www.newPage.com"/> </c:if> For more information, see the Trinidad JavaDoc. |
For displaying printable pages, ADF Faces offers the showPrintablePageBehavior
tag that, when used in conjunction with a command component, allows users to view a simplified version of the page in their browser, which they can then print.
For email support, ADF Faces provides an API that can be used to convert a page to one that is suitable for display in either Microsoft Outlook 2007 or Mozilla Thunderbird 2.0.
Tip: The current output mode (<af:activeImage source="/images/stockChart.gif" rendered="#{adfFacesContext.outputMode != "email"}"/> You can determine the current mode using |
You place the showPrintablePageBehavior
tag as a child to a command component. When clicked, the framework walks up the component tree, starting with the component that is the parent to the printableBehavior
tag, until it reaches a panelSplitter
or a panelAccordion
or the root of the tree (whichever comes first). The tree is rendered from there. Additionally, certain components that are not needed in print version (such as buttons, tabs, and scrollbars) are omitted.
For example, in the File Explorer application, you could place a commandButton
component inside the toolbar of the panelCollection
component that contains the table, as shown in Figure 33-1.
When the user clicks the button, the page is displayed in a new browser window (or tab, depending on the browser) in a simplified form, as shown in Figure 33-2.
Only the contents of the table are displayed for printing. All extraneous components, such as the tabs, the toolbar, and the scroll bars, are not rendered.
When the button is clicked, the action
event is canceled. Instead, a request is made to the server for the printable version of the page.
The showPrintablePageBehavior
tag is used as a direct child of a command component.
To use the showPrintablePageBehavior tag:
Note: While you can insert a |
There may be occasions when you need a page in your application to be emailed. For example, purchase orders created on the web are often emailed to the purchaser at the end of the session. However, because email clients do not support external stylesheets which we use to render to web browsers, you can't email the same page, as it would not be rendered correctly.
The ADF Faces framework provides you with automatic conversion of a JSF page so that it will render correctly in the Microsoft Outlook 2007 and Mozilla Thunderbird 2.0 email clients.
Not all components can be rendered in an email client. The following components can be converted so that they can render properly in an email client:
document
panelHeader
panelFormLayout
panelGroupLayout
panelList
spacer
showDetailHeader
inputText
(renders as readOnly
) inputComboBoxListOfValues
(renders as readOnly
) inputNumberSlider
(renders as readOnly
) inputNumberSpinbox
(renders as readOnly
) inputRangeSlider
(renders as readOnly
) outputText
selectOneChoice
(renders as readOnly
) panelLabelAndMessage
image
table
column
goLink
(renders as text
) You notify the ADF Faces framework to convert your page to be rendered in an email client by appending the following the request parameter to the URL of the page to be emailed:
For example, say you have a page that displays a purchase order, as shown in Figure 33-3.
When the user clicks the Emailable Page link at the top, an actionListener
method or another service appends org.apache.myfaces.trinidad.agent.email=true
to the current URL and emails the page. Figure 33-4 shows the page as it appears in an email client.
Tip: If you want to be able to view the email offline, append the following request parameter to the URL of the page to be emailed: org.apache.myfaces.trinidad.agent.email=true&oracle.adf.view.rich.render.emailContentType=multipart/related The framework will convert the HTML to MIME (multipart/related) and inline the images so the email can be viewed offline. |
Before you complete the development of a page, you may want to test how the page will render in an email client. You can easily do this using a goButton
component.
To test an emailable page:
For example, if your page's name is myPage
, the value of the destination attribute should be:
The Configure Default Domain dialog displays the first time your run your application and start a new domain in Integrated WebLogic Server. Use the dialog to define an administrator password for the new domain. Passwords you enter can be eight characters or more and must have a numeric character.
goButton
you added to the page. This will again display the page in the browser, but converted to a page that can be handled by an email client. Tip: Because you are pasting HTML code, you will probably need to use an insert command to insert the HTML into the email body. For example, in Thunderbird, you would choose Insert > HTML. |
Example 33-1 Skin for Emailable Page
For more information about creating skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
When the ADF Faces framework receives the request parameter org.apache.myfaces.trinidad.agent.email=true
in the Render Response phase, the associated phase listener sets an internal flag that notifies the framework to do the following:
Additionally, if you add the parameter oracle.adf.view.rich.render.emailContentType=multipart/related
the framework will convert the HTML to MIME (multipart/related) and inline the images so the email can be viewed offline. The full request parameter would be:
This appendix describes how to configure JSF and ADF Faces features in various XML configuration files, as well as how to retrieve ADF Faces configuration values using the RequestContext
API and how to use JavaScript partitioning.
This chapter includes the following sections:
A JSF web application requires a specific set of configuration files, namely, web.xml
and faces-config.xml
. ADF applications also store configuration information in the adf-config.xml
and adf-settings.xml
files. Because ADF Faces shares the same code base with MyFaces Trinidad, a JSF application that uses ADF Faces components for the UI also must include a trinidad-config.xml
file, and optionally a trinidad-skins.xml
file. For more information about the relationship between Trinidad and ADF Faces, see Chapter 1, "Introduction to ADF Faces Rich Client."
Part of a JSF application's configuration is determined by the contents of its Java EE application deployment descriptor, web.xml
. The web.xml
file, which is located in the /WEB-INF
directory, defines everything about your application that a server needs to know (except the root context path, which is automatically assigned for you in JDeveloper, or assigned by the system administrator when the application is deployed). Typical runtime settings in the web.xml
file include initialization parameters, custom tag library location, and security settings.
The following is configured in the web.xml
file for all applications that use ADF Faces:
javax.faces.STATE_SAVING_METHOD
set to client
Note: JDeveloper automatically adds the necessary ADF Faces configurations to the |
For more information about the required elements, see Section A.2.2, "What You May Need to Know About Required Elements in web.xml."
For information about optional configuration elements in web.xml
related to ADF Faces, see Section A.2.3, "What You May Need to Know About ADF Faces Context Parameters in web.xml."
For information about configuring web.xml outside of ADF Faces, see Developing Web Applications, Servlets, and JSPs for Oracle.
In JDeveloper, when you create a project that uses JSF technology, a starter web.xml
file with default servlet and mapping elements is created for you in the /WEB-INF
directory.
When you use ADF Faces components in a project (that is, a component tag is used on a page rather than just importing the library), in addition to default JSF configuration elements, JDeveloper also automatically adds the following to the web.xml
file for you:
javax.faces.STATE_SAVING_METHOD
with the value of client
When you elect to use JSP fragments in the application, JDeveloper automatically adds a JSP configuration element for recognizing and interpreting .jsff
files in the application.
Example A-1 shows the web.xml
file with the default elements that JDeveloper adds for you when you use JSF and ADF Faces and .jsff
files.
For information about the web.xml
configuration elements needed for working with JSF and ADF Faces, see Section A.2.2, "What You May Need to Know About Required Elements in web.xml."
Example A-1 Generated web.xml File
Note: When you use ADF data controls to build databound web pages, the ADF binding filter and a servlet context parameter for the application binding container are added to the |
Configuration options for ADF Faces are set in the web.xml
file using <context-param>
elements.
To add ADF Faces configuration elements in web.xml:
By default, JDeveloper opens the web.xml
file in the overview editor, as indicated by the active Overview tab at the bottom of the editor window.
When you use the overview editor to add or edit entries declaratively, JDeveloper automatically updates the web.xml
file for you.
web.xml
file, click Source at the bottom of the editor window. When you edit elements in the XML editor, JDeveloper automatically reflects the changes in the overview editor.
For a list of context parameters you can add, see Section A.2.3, "What You May Need to Know About ADF Faces Context Parameters in web.xml."
The required, application-wide configuration elements for JSF and ADF Faces in the web.xml
file are:
javax.faces.STATE_SAVING_METHOD
: Specifies where to store the application's view state. By default this value is server
, which stores the application's view state on the server. It is recommended that you set javax.faces.STATE_SAVING_METHOD
to client
when you use ADF Faces, to store the view state on the browser client. When set to client
, ADF Faces then automatically uses token-based, client-side state saving. You can specify the number of tokens to use instead of using the default number of 15. For more information about state-saving context parameters, see Section A.2.3, "What You May Need to Know About ADF Faces Context Parameters in web.xml." org.apache.myfaces.trinidad.webapp.TrinidadFilter
, which is a servlet filter that ensures ADF Faces is properly initialized, in part by establishing a RequestContext
object. TrinidadFilter
also processes file uploads. The filter mapping maps the JSF servlet's symbolic name to the MyFaces Trinidad filter. The forward and request dispatchers are needed for any other filter that is forwarding to the MyFaces Trinidad filter. Tip: If you use multiple filters in your application, ensure that they are listed in the |
org.apache.myfaces.trinidad.webapp.ResourceServlet
, which serves up web application resources (images, style sheets, JavaScript libraries) by delegating to a resource loader. The servlet mapping maps the MyFaces Trinidad resource servlet's symbolic name to the URL pattern. By default, JDeveloper uses /adf/*
for MyFaces Trinidad Core, and /afr/*
for ADF Faces. javax.faces.webapp.FacesServlet
manages the request processing lifecycle for web applications that utilize JSF to construct the user interface. The mapping maps the JSF servlet's symbolic name to the URL pattern, which can use either a path prefix or an extension suffix pattern. By default JDeveloper uses the path prefix /faces/*
, as shown in the following code:
For example, if your web page is index.jspx
, this means that when the URL http://localhost:8080/MyDemo/faces/index.jspx
is issued, the URL activates the JSF servlet, which strips off the faces
prefix and loads the file /MyDemo/index.jspx
.
ADF Faces configuration options are defined in the web.xml
file using <context-param>
elements. For example:
The following context parameters are supported for ADF Faces.
You can specify the following state-saving context parameters:
org.apache.myfaces.trinidad.CLIENT_STATE_METHOD
: Specifies the type of client-side state saving to use when client-side state saving is enabled by using javax.faces.STATE_SAVING_METHOD
. The values for CLIENT_STATE_METHOD
are: token
: (Default) Stores the page state in the session, but persists a token to the client. The simple token, which identifies a block of state stored back on the HttpSession
object, is stored on the client. This enables ADF Faces to disambiguate the same page appearing multiple times. Failover is supported. all
: Stores all state information on the client in a (potentially large) hidden form field. It is useful for developers who do not want to use HttpSession
. Performance Tip: Because of the potential size of storing all state information, it is recommended that you set client-state saving to |
org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS
: Specifies how many tokens should be stored at any one time per user, when token-based client-side state saving is enabled. The default is 15. When the number of tokens is exceeded, the state is lost for the least recently viewed pages, which affects users who actively use the Back button or who have multiple windows opened at the same time. If you are building HTML applications that rely heavily on frames, you would want to increase this value. org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE
: Specifies whether or not to globally compress state saving on the session. Each user session can have multiple pageState
objects that heavily consume live memory and thereby impact performance. This overhead can become a much bigger issue in clustering when session replication occurs. The default is off
. org.apache.myfaces.trinidad.USE_APPLICATION_VIEW_CACHE
: Enables the Application View Cache (AVC), which can improve scalability by caching the state for the initial renders of the page's UI at an application scope. However, every page in the application must by analyzed for support in the AVC to avoid potential problems with debugging in an unexpected state and information leakage between users. Additionally, development is more difficult since page updates are not noticed until the server is restarted, and although initial render performance is enhanced, session size is not. CAUTION: The Application View Cache is not supported for this release. The feature does not work for any page where the rendering of the component tree causes the structure of the component tree to change temporarily. Since this is often the case, |
You can specify the following debugging context parameters:
org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT
: ADF Faces, by default, obfuscates the JavaScript it delivers to the client, stripping comments and whitespace at the same time. This dramatically reduces the size of the ADF Faces JavaScript download, but it also makes it tricky to debug the JavaScript. Set to true
to turn off the obfuscation during application development. Set to false
for application deployment. org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
: By default this parameter is false
. If it is set to true
, ADF Faces will automatically check the modification date of your JSPs and CSS files, and discard the saved state when the files change. Performance Tip: When set to |
oracle.adf.view.rich.LOGGER_LEVEL
: This parameter enables JavaScript logging when the default render kit is oracle.adf.rich
. The default is OFF
. If you wish to turn on JavaScript logging, use one of the following levels: SEVERE
, WARNING
, INFO
, CONFIG
, FINE
, FINER
, FINEST
, and ALL
. Set to INFO
if you have enabled automated profiler instrumentation code (see oracle.adf.view.rich.profiler.ENABLED
in Section A.2.3.6, "Profiling"). Performance Tip: JavaScript logging will affect performance. Set this value to |
You can specify the following file upload context parameters:
org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY
: Specifies the maximum amount of memory that can be used in a single request to store uploaded files. The default is 100K. org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE
: Specifies the maximum amount of disk space that can be used in a single request to store uploaded files. The default is 2000K. org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR
: Specifies the directory where temporary files are to be stored during file uploading. The default is the user's temporary directory. Note: The file upload initialization parameters are processed by the default |
You can specify the following:
org.apache.myfaces.trinidad.resource.DEBUG
: Specifies whether or not resource debug mode is enabled. The default is false
. Set to true
if you want to enable resource debug mode. When enabled, ADF Faces sets HTTP response headers to let the browser know that resources (such as JavaScript libraries, images, and CSS) can be cached. Tip: After turning on resource debug mode, clear your browser cache to force the browser to load the latest versions of the resources. |
Performance Tip: In a production environment, this parameter should be removed or set to |
You can specify whether or not assertions are used within ADF Faces using the oracle.adf.view.rich.ASSERT_ENABLED
parameter. The default is false
. Set to true
to turn on assertions.
Performance Tip: Assertions will affect performance. Set this value to |
You can specify the following JavaScript profiling context parameters:
oracle.adf.view.rich.profiler.ENABLED
: Specifies whether or not to use the automated profiler instrumentation code provided with the JavaScript Profiler. The default is false
. Set to true
to enable the JavaScript profile. When the profiler is enabled, an extra roundtrip is needed on each page to fetch the profiler data. By default, JDeveloper uses the /WEB-INF/profiler.xml
configuration file. To override the location of the profiler.xml
file, use the ROOT_FILE
context parameter, as described next. You may also want to set DEBUG_JAVASCRIPT
to true
, to turn off JavaScript obfuscation. You also must set the LOGGER_LEVEL
to at least INFO
. oracle.adf.view.rich.profiler.ROOT_FILE
: Specifies the initial profiler.xml
file to load, if automated profiler instrumentation code is turned on. By default, JDeveloper uses the /WEB-INF/profiler.xml
file if ROOT_FILE
is not specified. Specify the following if you intend to use Facelets with ADF Faces:
org.apache.myfaces.trinidad.ALTERNATE_VIEW_HANDLER
: Install FaceletsViewHandler
by setting the parameter value to com.sun.facelets.FaceletViewHandler
javax.faces.DEFAULT_SUFFIX
: Use .xhtml
as the file extension for documents that use Facelets by setting the parameter value to .xhtml
. To change the prefix for launching dialogs, set the org.apache.myfaces.trinidad.DIALOG_NAVIGATION_PREFIX
parameter.
The default is dialog:
, which is used in the beginning of the outcome of a JSF navigation rule that launches a dialog (for example, dialog:error
).
You can set the org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
parameter to determine compression of the CSS class names for skinning keys.
The default is false
. Set to true
if you want to disable the compression.
Performance Tip: Compression will affect performance. In a production environment, set this parameter to |
When you set the oracle.adf.view.rich.automation.ENABLED
parameter to true
and when the component ID attribute is null
, the component testId
attribute is used during automated testing to ensure that the ID is not null. The testId
is an attribute only on the tag. It is not part of the Java component API.
Note: When this context parameter is set to |
Use the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT
parameter to enable or disable UIViewRoot
caching. When token client-side state saving is enabled, MyFaces Trinidad can apply an additional optimization by caching an entire UIViewRoot
tree with each token. (Note that this does not affect thread safety or session failover.) This is a major optimization for AJAX-intensive systems, as postbacks can be processed far more rapidly without the need to reinstantiate the UIViewRoot
tree.
You set the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT
parameter to true
to enable caching. This is the default. Set the parameter to false
to disable caching.
Note: This type of caching is known to interfere with some other JSF technologies. In particular, the Apache MyFaces Tomahawk |
Use the oracle.adf.view.rich.tonalstyles.ENABLED
parameter to turn the use of tonal styles off or on. While the tonal style classes .AFDarkTone
, .AFMediumTone
, .AFLightTone
and .AFDefaultTone
are still available for the purpose of backward compatibility, themes are provided as a replacement style. Themes are easier to author than tonal styles; they rely on fewer selectors, and they avoid CSS containment selectors. For this reason they are less prone to bugs. Due to the limitation on the number of selectors in one CSS file, both tonal styles and themes cannot be supported in the same application. Set to false
to disable tonal styles.
Use the oracle.adf.view.rich.pprNavigation.OPTIONS
parameter to turn partial page navigation on and off. By default, the value is off
. Partial page navigation uses the same base page throughout the application, and simply replaces the body content of the page with each navigation. This processing results in better performance because JavaScript libraries and style sheets do not need to be reloaded with each new page. For more information, see Section 7.4, "Using Partial Page Navigation."
Valid values are:
on
: PPR navigation is turned on for the application. Note: If you set the parameter to on, then you need to set the |
off
: PPR navigation is turned off for the application. onWithForcePPR
: When an action on a command component results in navigation, the action will always be delivered using PPR, as if the component had partialSubmit
set to true
. For more information about partialSubmit
, see Section 5.1.1, "Events and Partial Page Rendering." If the component already has partialSubmit
set to true
, the framework does nothing. If partialSubmit
is not set to true
, the entire document is refreshed to ensure that old page refresh behavior is preserved. The entire document is also refreshed if the action component does not contain navigation. Use the oracle.adf.view.rich.libraryPartitioning.ENABLED
parameter to turn JavaScript partitioning on and off. By default, the value is true
(enabled). JavaScript partitioning allows a page to download only the JavaScript needed by client components for that page.
Valid values are:
true
: JavaScript partitioning is enabled (the default). false
: JavaScript partitioning is disabled. For more information about using and configuring JavaScript partitioning, see Section A.9, "Using JavaScript Library Partitioning."
Use the oracle.adf.view.rich.security.FRAME_BUSTING
context parameter to use framebusting in your application. Framebusting is a way to prevent clickjacking, which occurs when a malicious web site pulls a page originating from another domain into a frame and overlays it with a counterfeit page, allowing only portions of the original, or clickjacked, page (for example, a button) to display. When users click the button, they in fact are clicking a button on the clickjacked page, causing unexpected results.
For example, say your application is a web-based email application that resides in DomainA
, and a web site in DomainB
clickjacks your page by creating a page with an IFrame that points to a page in your email application at DomainA
. When the two pages are combined, the page from DomainB
covers most of your page in the IFrame, and exposes only a button on your page that deletes all email for the account. Users, not realizing they are actually in the email application, may click the button and inadvertently delete all their email.
Framebusting prevents clickjacking by using the following JavaScript to block the application's pages from running in frames:
If you configure your application to use framebusting by setting the parameter to always
, then whenever a page tries to run in a frame, an alert is shown to the user that the page is being redirected, the JavaScript code is run to define the page as topmost, and the page is disallowed to run in the frame.
If your application needs to use frames, you can set the parameter value to differentDomain
. This setting causes framebusting to occur only if the frame is in a page that originates from a different domain than your application. This is the default setting.
Note: The origin of a page is defined using the domain name, application layer protocol, and in most browsers, TCP port of the HTML document running the script. Pages are considered to originate from the same domain if and only if all these values are exactly the same. |
For example, say you have a page named DomainApage1
in your application that uses a frame to include the page DomainApage2
. Say the external DomainBpage1
tries to clickjack the page DomainApage1
. The result would be the following window hierarchy:
DomainBpage1
DomainApage1
DomainApage2
If the application has framebusting set to be differentDomain
, then the framework walks the parent window hierarchy to determine whether any ancestor windows originate from a different domain. Because DoaminBpage1
originates from a different domain, the framebusting JavaScript code will run for the DomainApage1 page, causing it to become the top-level window. And because DomainApage2
originates from the same domain as DomainApage1
, it will be allowed to run in the frame.
Valid values are:
always
: The page will show an error and redirect whenever it attempts to run in a frame. differentDomain
: The page will show an error and redirect only when it attempts to run in a frame on a page that originates in a different domain (the default). never
: The page can run in any frame on any originating domain. Note: This context parameter is ignored and will behave as if it were set to
|
Use the oracle.adf.view.rich.SUPPRESS_IDS
context parameter set to auto
when programmatically adding an af:outputText
or af:outputFormatted
component as a partial target, that is, through a call to addPartialTarget()
.
By default, this parameter is set to explicit
, thereby reducing content size by suppressing both auto-generated and explicitly set component IDs except when either of the following is true:
partialTriggers
attribute is set clientComponent
attribute is set to true
In the case of a call to addPartialTarget()
, the partialTriggers
attribute is not set and the partial page render will not succeed. You can set the parameter to auto
to suppress only auto-generated component IDs for these components.
The ADF Faces Caching Filter (ACF) is a Java EE Servlet filter that can be used to accelerate web application performance by enabling the caching (and/or compression) of static application objects such as images, style sheets, and documents like .pdf
and .zip
files. These objects are cached in an external web cache such as Oracle Web Cache, Oracle Traffic Director, or in the browser cache. The cacheability of content is largely determined through URL-based rules defined by the web cache administrator. Using ACF, the ADF application administrator or author can define caching rules directly in the adf-config.xml
file. For more information about defining caching rules, see Section A.4.2, "Defining Caching Rules for ADF Faces Caching Filter."
ADF Faces tag library JARs include default caching rules for common resource types, such as .js
, .css
, and image file types. These fixed rules are defined in the adf-settings.xml
file, and cannot be changed during or after application deployment. In the case of conflicting rules, caching rules defined by the application developer in adf-config.xml
will take precedence. For more information about settings in adf-settings.xml
, see Section A.5.2, "What You May Need to Know About Elements in adf-settings.xml."
Oracle Web Cache and Oracle Traffic Director must be configured by the web cache administrator to route all traffic to the web application through the web cache. In the absence of the installation of Oracle Web Cache or Oracle Traffic Director, the caching rules defined in adf-config.xml
will be applied for caching in the browser if the <agent-caching>
child element is set to true
. To configure the ACF to be in the URL request path, add the following servlet filter definitions in the web.xml
file:
adf-config.xml
adf-config.xml
Example A-2 shows a sample ACF servlet definition.
Example A-2 ACF Servlet Definition
Note: The ACF servlet filter must be the first filter in the chain of filters defined for the application. |
Use the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION
parameter to enable or disable the end user´s browser to supply a context menu for ADF Faces command components that render a link. The context menu may present menu options that invoke a different action (for example, open a link in a new window) to that specified by the command component.
By default, this parameter is set to yes
, thereby suppressing the rendering of a context menu for ADF Faces command components. By setting the parameter to no
, you can disable this suppression and allow the native browser context menu to appear. For information about the ADF Faces command components for which you can configure this functionality, see Chapter 18, "Configuring a Browser's Context Menu for Command Links."
When a request is sent to the server, a session timeout value is written to the page and the session timeout warning interval is defined by the context parameter oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT
. The user is given the opportunity to extend the session in a warning dialog, and a notification is sent when the session has expired and the page is refreshed. Depending on the application security configuration, the user may be redirected to the log in page when the session expires.
Use the oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT
context parameter to set the number of seconds prior to the session time out when a warning dialog is displayed. If the value of WARNING_BEFORE_TIMEOUT
is less than 120 seconds, if client state saving is used for the page, or if the session has been invalidated, the feature is disabled. The session time-out value it taken directly from the session.
Example A-3 shows configuration of the warning dialog to display at 120 seconds before the time-out of the session.
Example A-3 Configuration of Session Time-out Warning
The default value of this parameter is 120 seconds. To prevent notification of the user too frequently when the session time-out is set too short, the actual value of WARNING_BEFORE_TIMEOUT
is determined dynamically, where the session time-out must be more than 2 minutes or the feature is disabled.
Use the oracle.adf.view.rich.tag.SKIP_EXECUTION
parameter to enable or disable JSP tag execution in HTTP streaming requests during the processing of JSP pages. Processing of facelets is not included.
By default, this parameter is set to streaming
, where JSP tag execution is skipped during streaming requests. You can set the parameter to off
to execute JSP tags per each request in cases where tag execution is needed by streaming requests.
Use the oracle.adf.view.rich.SPLASH_SCREEN
parameter to enable or disable the splash screen that by default, displays as the page is loading, as shown in Figure A-1.
By default, this parameter is set to on
. You can set it to off
, so that the splash screen will not display.
Add the oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT
parameter to change the default output format to HTML5 for graph and gauge components.
By default, this parameter is absent. Valid values are HTML5
and FLASH
.
Other optional, application-wide context parameters are:
javax.faces.CONFIG_FILE
: Specifies paths to JSF application configuration resource files. Use a comma-separated list of application-context relative paths for the value, as shown in the following code. Set this parameter if you use more than one JSF configuration file in your application. javax.faces.DEFAULT_SUFFIX
: Specifies a file extension (suffix) for JSP pages that contain JSF components. The default value is .jsp
. Note: This parameter value is ignored when you use prefix mapping for the JSF servlet (for example, |
javax.faces.LIFECYCLE_ID
: Specifies a lifecycle identifier other than the default set by the javax.faces.lifecycle.LifecycleFactory.DEFAULT_LIFECYCLE
constant. Caution: Setting |
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
: Specifies whether JSP and CSS files require a restart in order to see changes at runtime. By default, set to false
. Set to true
if you want to be able to view changes without restarting the server. The JSF configuration file is where you register a JSF application's resources such as custom validators and managed beans, and define all the page-to-page navigation rules. While an application can have any JSF configuration file name, typically the file name is the faces-config.xml
file. Small applications usually have one faces-config.xml
file.
When you use ADF Faces components in your application, JDeveloper automatically adds the necessary configuration elements for you into faces-config.xml
. For more information about the faces-config.xml
file, see the Java EE 5 tutorial on Sun's web site (http://java.sun.com
).
In JDeveloper, when you create a project that uses JSF technology, an empty faces-config.xml
file is created for you in the /WEB-INF
directory. An empty faces-config.xml
file is also automatically added for you when you create a new application workspace based on an application template that uses JSF technology (for example, the Java EE Web Application template. For more information, see Section 2.2, "Creating an Application Workspace."
When you use ADF Faces components in your application, the ADF default render kit ID must be set to oracle.adf.rich
. When you insert an ADF Faces component into a JSF page for the first time, or when you add the first JSF page to an application workspace that was created using the Fusion template, JDeveloper automatically inserts the default render kit for ADF components into the faces-config.xml
file, as shown in Example A-4.
Example A-4 ADF Default Render Kit Configuration in faces-config.xml
Typically, you would configure the following in the faces-config.xml
file:
Note: If your application uses ADF Controller, these items are configured in the |
In JDeveloper, you can use the declarative overview editor to modify the faces-config.xml
file. If you are familiar with the JSF configuration elements, you can use the XML editor to edit the code directly.
To edit faces-config.xml:
By default, JDeveloper opens the faces-config.xml
file in the overview editor, as indicated by the active Overview tab at the bottom of the editor window.
When you use the overview editor to add for example, managed beans and validators declaratively, JDeveloper automatically updates the faces-config.xml
file for you.
faces-config.xml
file, click Source at the bottom of the editor window. When you edit elements in the XML editor, JDeveloper automatically reflects the changes in the overview editor.
Tip: JSF allows more than one |
The adf-config.xml
file is used to configure application-wide features, like security, caching, and change persistence. Other Oracle components also configure properties in this file.
Before you can provide configuration for your application, you must first create the adf-config.xml
file. Then you can add configuration for any application-wide ADF features that your application will use.
To create and edit adf-config.xml:
META-INF
directory for your project. META-INF
directory, and choose New. Tip: If you don't see the General node, click the All Technologies tab at the top of the Gallery. |
adf-config.xml
as the file name and save it in the META-INF
directory. Caching rules for the ADF Faces Caching Filter (ACF) are defined in the adf-config.xml
file, located in the web-application's .adf/META-INF
directory. You must configure ACF to be in the request path for these URL matching rules. For information about adding the ACF servlet filter definition, see Section A.2.3.17, "ADF Faces Caching Filter."
The single root element for one or more caching rules is <caching-rules>
, configured as a child of the <adf-faces-config>
element in the namespace http://xmlns.oracle.com/adf/faces/config
.
A <caching-rule>
element defines each caching rule, evaluated in the order listed in the configuration file. Example A-6 shows the syntax for defining caching rules in adf-config.xml
.
Example A-6 ACF Caching Rule Syntax
Each caching rule is defined in a <caching-rule>
element. An optional id
attribute can be defined to support rule location. Table A-1 describes the <caching-rule>
child elements used to define the parameters for caching or compressing the objects in the application.
Table A-1 AFC Caching Rule Elements and Attributes
Rule Element Children | Attribute Description and Value |
---|---|
| Specifies whether or not the object must be cached in the web cache. A value of |
| Defines the duration in seconds for which the object will be cached in the web cache. The default is |
| Specify a value of |
| Defines the duration in seconds for which the object is cached in a browser cache. The default is |
| Specifies whether or not the object cached in the web cache must be compressed. The default value is |
| Determines the URLs to match for the rule. One and only one |
| Defines the search keys tagged to the cached object. Each |
| Used for versioning objects cached in the web cache. A Each
The web cache automatically versions request parameters. Multiple version of an object will be stored in web cache based on the request parameter. |
By default, the application uses the output format specified for each component. For example, applications using ADF Data Visualization components can specify a Flash output format to display animation and interactivity effects in a web browser. If the component output format is Flash, and the user's platform doesn't support the Flash Player, as in Apple's iOS operating system, the output format is automatically downgraded to the best available fallback.
You can configure the use of Flash content across the entire application by setting a flash-player-usage
context parameter in adf-config.xml
. The valid settings include:
downgrade
: Specify that if the output format is Flash, but the Flash Player isn't available, then downgrade to the best available fallback. The user will not be prompted to download the Flash Player. disable
: Specify to disable the use of Flash across the application. All components will be rendered in their non-Flash versions, regardless of whether or not the Flash Player is available on the client. Example A-7 shows the syntax for application-wide disabling of Flash in adf-config.xml
.
Example A-7 Flash Disabled in adf-config.xml
The context parameter also supports an EL Expression value. This allows applications to selectively enable or disable Flash for different parts of the application, or for different users, based on their preferences.
Note: Previously Data Visualization |
Content Delivery Networks (CDNs) improve web application performance by providing more efficient network access to content. Applications can use a variety of CDN configurations to optimize the user experience. An increasingly common configuration is to route all requests through a CDN. The CDN acts as a proxy between the client and the application. CDN-specific configuration tools can be used to specify caching and compression rules.
An alternate approach is to limit which requests are routed through the CDN. For example, only requests for auxiliary resources (images, JavaScript libraries, style sheets) might be directed to the CDN, while requests for application-generated HTML content can be served up directly. In this case, it is necessary to convert relative resource URIs to absolute URIs that point to the host that is serviced by the CDN.
For example, say your application-defined images are held in a local directory named images. Your code to reference images might look something like Example A-8:
Example A-8 Default Image Reference
One way to indicate that the image should be retrieved from a CDN is to explicitly specify an absolute URI for the image source, as shown in Example A-9:
Example A-9 Image Reference from a CDN Using an Absolute URI
A downside of this approach is that it requires updating many locations (possibly every image reference) in the application, duplicating the CDN base URI across pages. This can make enabling and disabling CDN usage or switching from one CDN to another prohibitively difficult.
An alternative approach might be to EL bind resource-related attributes, as shown in Example A-10:
Example A-10 EL Binding to a CDN Base URI
This approach allows the CDN base URI to be specified in a single location (for example, in a managed bean). However, it places a burden on application developers to use the correct EL expressions throughout their content.
Rather than repeating references to the CDN location (either directly or through EL expressions) throughout the application, ADF Faces provides a centralized mechanism for modifying resource URIs. This mechanism allows one or more prefixes, or "base resource URIs", to be specified for resources. These base resource URIs are defined in the application's adf-config.xml
file, under the http://xmlns.oracle.com/adf/rewrite/config
namespace.
For example, Example A-11 specifies that all png
images in the images directory should be rewritten to include the http://mycdn.com
prefix.
Example A-11 Specifying a CDN Prefix in adf-config.xml
The regular expression specified by the <match-pattern>
element (^/.*/images/.*\.png$
) is tested against all resource URIs rendered by the application. Any matching URIs are transformed to include the prefix specified by the <base-resource-uri>
element's URI attribute.
One advantage of this solution is that it can be used to modify not just application-defined resource URIs, but URIs for resources that are used by ADF Faces itself. To simplify this task, ADF Faces exposes a small set of aliases that can be used with the <match-alias>
element in place of regular expressions.
For example, the configuration in Example A-12 applies the http://mycdn.com/
prefix to all images defined by ADF Faces components:
Example A-12 Apply Prefix to a Resource
Unlike the regular expressions specified via <match-pattern>
elements, the aliases used with <match-alias>
do not match application-defined resources. So, for example, the af:images
alias in the above configuration will cause images defined by ADF Faces components, such as the default background images and icons that come with ADF Faces, to be prefixed without also prefixing images that are explicitly bundled with the application.
In addition to the af:images
alias, aliases are also provided for targeting the ADF Faces skins (style sheets), JavaScript libraries and resource documents.
To set up URIs for a CDN:
adf-config.xml
file (for more information, see Section A.4.1, "How to Configure ADF Faces in adf-config.xml"). Note: All attribute values may be EL-bound. However, EL-bound attributes are only evaluated once (at parse time). |
Table A-2 CDN URI Rewrite Elements
Element | Definition |
---|---|
| This |
| Defines the rules to rewrite the paths to given resources |
| Defines the base URI for the rewritten path. Multiple
|
| A regular expression that is tested against rendered resource URIs. If a match is found, the resource URI is prefixed with the URI specified by the Note that in order to minimize runtime overhead, the results of resource uri rewriting are cached. To prevent excessive caching, |
| Defines an alias that matches one of the ADF Faces-provided resources. The resource may be one of the following:
Multiple |
The values specified in the match elements are compared against all URIs that pass through ExteralContext.encodeResourceURL()
. If a URI matches, the prefix specified in the enclosing <base-resource-uri>
element is applied.
Example A-13 shows how an application might be configured to use a CDN.
Example A-13 CDN URI Elements
While you can use the af:skins
alias to rewrite skin style sheets to point to the CDN, in cases where the CDN is configured to proxy requests back to the application server, problems can arise if a the application is running in a clustered and/or load-balanced environment.
Skin style sheets are generated and stored on the server that rendered the containing page content. By routing the style sheet request through the CDN, server affinity may be lost (for example, if the CDN lives in a different domain, resulting in a loss of the session cookie). As a result, the style sheet request may be routed to a server that has not yet generated the requested style sheet. In such cases, the style sheet request will not complete successfully.
To avoid potential failures in load-balanced and/or clustered environments you should not rewrite skin style sheet URIs in cases where cookies or session affinity may be lost.
The af:coreScripts
alias can be used to rewrite ADF's "core" JavaScript libraries (that is, the JavaScript libraries that are present on every ADF page) to a CDN. In addition, <match-pattern>
regular expressions can be used to rewrite arbitrary (for example, application-defined) JavaScript library URIs. However, in cases where JavaScript libraries are introduced into the page dynamically (for example, as a result of partial page rendering), some origin policy restrictions apply. As a result, JavaScript library URIs that have been rewritten to a cross-origin host may fail to load.
You should limit JavaScript library URI rewriting to those libraries covered by af:coreScripts
and also in cases where the application-provided libraries are known to be included as part of initial page renders (that is, the libraries are never introduced as part of a PPR request).
The adf-settings.xml
file holds project- and library-level settings such as ADF Faces help providers and caching and compression rules. The configuration settings for the adf-settings.xml
files are fixed and cannot be changed during and after application deployment. There can be multiple adf-settings.xml
files in an application, however the adf-settings.xml
file users are responsible for merging the contents of their configurations.
Before you can provide configuration for your application, you must first create the adf-settings.xml
file. Then you can add the configuration for any project features that your application will use. For more information about configurations in this file, see Section A.5.2, "What You May Need to Know About Elements in adf-settings.xml."
To create and edit adf-settings.xml:
The adf-settings.xml
file must reside in a META-INF
directory. Where you create this directory depends on how you plan on deploying the project that uses the adf-settings.xml
file.
META-INF
directory in the /application_name
/.adf
directory. adf-settings.xml
file, and the project may be deployed separately from the application (for example a bounded task flow deployed in an ADF library), then create the META-INF
directory in the /src
directory of your view project. Tip: If your application uses Oracle ADF Model, then you can create the |
Tip: If you don't see the General node, click the All Technologies tab at the top of the Gallery. |
Example A-14 XML for adf-settings.xml File
adf-settings.xml
to the META-INF directory created in Step 1. The following configuration elements are supported in the adf-settings.xml
file.
You register the help provider used by your help system using the following elements:
<adf-faces-config>
: A parent element that groups configurations specific to ADF Faces. <prefix-characters>
: The provided prefix if the help provider is to supply help topics only for help topic IDs beginning with a certain prefix. This can be omitted if prefixes are not used. <help-provider-class>
: The help provider class. <custom-property>
and <property-value>
: A property element that defines the parameters the help provider class accepts. Example A-15 shows an example of a registered help provider. In this case, there is only one help provider for the application, so there is no need to include a prefix.
Example A-15 Help Provider Registration
Application-specific libraries and JARs contain a variety of resources that may require caching and/or compression of files. In the event of multiple libraries or JARs, an application may include one or more adf-setting.xml
files that contain various caching rules based on matching URLs. The caching rules are merged into an ordered list at runtime. If a request for a resource matches more than one caching rule, the rule encountered first in the list will be honored.
The ADF Faces JAR includes default caching rules for common resource types, such as .js
, .css
, and image file types. These fixed rules are defined in the adf-settings.xml
file, and cannot be changed during or after application deployment. Application developers can define application caching rules in the adf-config.xml
file that take precedence over the rules defined in adf-settings.xml
. Example A-16 shows the adf-settings.xml
file for the ADF Faces JAR.
Example A-16 ADF Faces adf-settings.xml File
When you create a JSF application using ADF Faces components, you configure ADF Faces features (such as skin family and level of page accessibility support) in the trinidad-config.xml
file. Like faces-config.xml
, the trinidad-config.xml
file has a simple XML structure that enables you to define element properties using the JSF Expression Language (EL) or static values.
In JDeveloper, when you insert an ADF Faces component into a JSF page for the first time, a starter trinidad-config.xml
file is automatically created for you in the /WEB-INF
directory. Example A-17 shows a starter trinidad-config.xml
file.
Example A-17 Starter trinidad-config.xml File Created by JDeveloper
By default, JDeveloper configures the blafplus-rich
skin family for a JSF application that uses ADF Faces. You can change this to blafplus-medium
, simple
, or use a custom skin. If you wish to use a custom skin, create the trinidad-skins.xml
configuration file, and modify trinidad-config.xml
file to use the custom skin. For more information about creating custom skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
Typically, you would configure the following in the trinidad-config.xml
file:
You can also register a custom file upload processor for uploading files.
In JDeveloper, you can use the XML editor to modify the trinidad-config.xml
file.
To edit trinidad-config.xml:
In most cases you can enter either a JSF EL expression (such as #{view.locale.language=='en' ? 'minimal' : 'blafplus-rich'}
) or a static value (for example., <debug-output>true</debug-output>
). EL expressions are dynamically reevaluated on each request, and must return an appropriate object (for example, a boolean object).
For a list of the configuration elements you can use, see Section A.6.2, "What You May Need to Know About Elements in trinidad-config.xml."
Once you have configured the trinidad-config.xml
file, you can retrieve the property values programmatically or by using JSF EL expressions. For more information, see Section A.8, "Using the RequestContext EL Implicit Object."
All trinidad-config.xml
files must begin with a <trinidad-config>
element in the http://myfaces.apache.org/trinidad/config
XML namespace. The order of elements inside of <trinidad-config>
does not matter. You can include multiple instances of any element.
Certain ADF Faces components use animation when rendering. For example, trees and tree tables use animation when expanding and collapsing nodes. The following components use animation when rendering:
The type and time of animation used is configured as part of the skin for the application. For more information, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
You can set the animation-enabled
element to either true
or false
, or you can use an EL expression that resolves to either true
or false
.
Note: Enabling animation will have an impact on performance. For more information, see the "Oracle Application Development Framework Performance Tuning" section in the Oracle Fusion Middleware Performance Guide. |
As described in Section A.6.1, "How to Configure ADF Faces Features in trinidad-config.xml," JDeveloper by default uses the blafplus-rich
skin family for a JSF application that uses ADF Faces. You can change the <skin-family>
value to blafplus-medium
, simple
, or to a custom skin definition. For information about creating and using custom skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
You can use an EL expression for the skin family value, as shown in the following code:
To set the time zone used for processing and displaying dates, and the year offset that should be used for parsing years with only two digits, use the following elements:
<time-zone>
: By default, ADF Faces uses the time zone used by the application server if no value is set. If needed, you can use an EL expression that evaluates to a TimeZone
object. This value is used by org.apache.myfaces.trinidad.converter.DateTimeConverter
while converting strings to Date
. <two-digit-year-start>
: This value is specified as a Gregorian calendar year and is used by org.apache.myfaces.trinidad.converter.DateTimeConverter
to convert strings to Date
. This element defaults to the year 1950 if no value is set. If needed, you can use a static, integer value or an EL expression that evaluates to an Integer
object. By default, the <debug-output>
element is false
. ADF Faces enhances debugging output when you set <debug-output>
to true
. The following features are then added to debug output:
<form>
tags inside other <form>
tags or <tr>
or <td>
tags used in invalid locations). Performance Tip: Debugging impacts performance. Set this parameter to |
Use <accessibility-mode>
to define the level of accessibility support in an application. The supported values are:
default
: Output supports accessibility features. inaccessible
: Accessibility-specific constructs are removed to optimize output size. screenReader
: Accessibility-specific constructs are added to improve behavior under a screen reader. Note: Screen reader mode may have a negative effect on other users. For example, access keys are not displayed if the accessibility mode is set to screen reader mode. |
Use <accessibility-profile>
to configure the color contrast and font size used in the application. The supported values are:
high-contrast
: Application displays using high-contrast instead of the default contrast. large-fonts
: Application displays using large fonts instead of the default size fonts. To use more than one setting, separate the values with a space.
By default, ADF Faces page rendering direction is based on the language being used by the browser. You can, however, explicitly set the default page rendering direction in the <right-to-left>
element by using an EL expression that evaluates to a Boolean object, or by using true
or false
, as shown in the following code:
To set the currency code to use for formatting currency fields, and define the separator to use for groups of numbers and the decimal point, use the following elements:
<currency-code>
: Defines the default ISO 4217 currency code used by the org.apache.myfaces.trinidad.converter.NumberConverter
class to format currency fields that do not specify an explicit currency code in their own converter. Use a static value or an EL expression that evaluates to a String
object. For example: <number-grouping-separator>
: Defines the separator used for groups of numbers (for example, a comma). ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. You can use a static value or an EL expression that evaluates to a Character
object. If set, this value is used by the org.apache.myfaces.trinidad.converter.NumberConverter
class while parsing and formatting. For example, to set the number grouping separator to a period when the German language is used in the application, use this code:
<decimal-separator>
: Defines the separator (for example, a period or a comma) used for the decimal point. ADF Faces automatically derives the separator from the current locale, but you can override this default by specifying a value in this element. You can use a static value or an EL expression that evaluates to a Character
object. If set, this value is used by the org.apache.mtfaces.trinidad.converter.NumberConverter
class while parsing and formatting. For example, to set the decimal separator to a comma when the German language is used in the application, use this code:
By default, ADF Faces and MyFaces Trinidad will format dates (including the first day of the week) and numbers in the same locale used for localized text (which by default is the locale of the browser). If, however, you want dates and numbers formatted in a different locale, you can use the <formatting-locale>
element, which takes an IANA-formatted locale (for example, ja, fr-CA) as its value. The contents of this element can also be an EL expression pointing at an IANA string or a java.util.Locale
object.
To change the output mode ADF Faces uses, set the <output-mode>
element, using one of these values:
default
: The default page output mode (usually display). printable
: An output mode suitable for printable pages. email
: An output mode suitable for emailing a page's content. By default ADF Faces sets the maximum number of active PageFlowScope
instances at any one time to 15. Use the <page-flow-scope-lifetime>
element to change the number. Unlike other elements, you must use a static value: EL expressions are not supported.
Most applications do not need to replace the default UploadedFileProcessor
instance provided in ADF Faces, but if your application must support uploading of very large files, or if it relies heavily on file uploads, you may wish to replace the default processor with a custom UploadedFileProcessor
implementation.
For example, you could improve performance by using an implementation that immediately stores files in their final destination, instead of requiring ADF Faces to handle temporary storage during the request. To replace the default processor, specify your custom implementation using the <uploaded-file-processor>
element, as shown in the following code:
ADF Faces validators and converters support client-side validation and conversion, as well as server-side validation and conversion. ADF Faces client-side validators and converters work the same way as the server-side validators and converters, except that JavaScript is used on the client.
The JavaScript-enabled validators and converters run on the client when the form is submitted; thus errors can be caught without a server roundtrip.
The <client-validation-disabled>
configuration element is not supported in the rich client version of ADF Faces. This means you cannot turn off client-side validation and conversion in ADF Faces applications.
By default, JDeveloper uses the blafplus-rich
skin family when you create JSF pages with ADF Faces components. The skin family is configured in the trinidad-config.xml
file, as described in Section A.6.1, "How to Configure ADF Faces Features in trinidad-config.xml." If you wish to use a custom skin for your application, create a trinidad-skins.xml
file, which is used to register custom skins in an application.
For detailed information about creating custom skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."
In ADF Faces, you can use the EL implicit object requestContext
to retrieve values from configuration properties defined in the trinidad-config.xml
file. The requestContext
implicit object, which is an instance of the org.apache.myfaces.trinidad.context.RequestContext
class, exposes several properties of type java.util.Map
, enabling you to use JSF EL expressions to retrieve context object property values.
For example, the EL expression #{requestContext}
returns the RequestContext
object itself, and the EL expression #{requestContext.skinFamily}
returns the value of the <skin-family>
element from the trinidad-config.xml
file.
You can also use EL expressions to bind a component attribute value to a property of the requestContext
implicit object. For example, in the EL expression that follows, the <currency-code>
property is bound to the currencyCode
attribute value of the JSF ConvertNumber
component:
You can use the following requestContext
implicit object properties:
requestContext.accessibilityMode
: Returns the value of the <accessibility-mode>
element from the trinidad-config.xml
file. requestContext.agent
: Returns an object that describes the client agent that is making the request and that is to display the rendered output. The properties in the agent
object are: agentName
: Canonical name of the agent browser, (for example, gecko
and ie
). agentVersion
: Version number of the agent browser. capabilities
: Map of capability names (for example, height, width) and their values for the current client request. hardwareMakeModel
: Canonical name of the hardware make and model (for example, nokia6600
and sonyericssonP900
). platformName
: Canonical name of the platform (for example, ppc
, windows
, and mac)
. platformVersion
: Version number of the platform. type
: Agent type (for example, desktop
, pda
, and phone
). requestContext.clientValidationDisabled
: Returns the value of the <client-validation-disabled>
element from the trinidad-config.xml
file. requestContext.colorPalette
: Returns a Map that takes color palette names as keys, and returns the color palette as a result. Each color palette is an array of java.awt.Color
objects. Provides access to four standard color palettes: web216
: The 216 web-safe colors default49
: A 49-color palette, with one fully transparent entry opaque40
: A 49-color palette, without a fully transparent entry default80
: An 80-color palette, with one fully transparent entry requestContext.currencyCode
: Returns the value of the <currency-code>
element from the trinidad-config.xml
file. requestContext.debugOutput
: Returns the value of the <debug-output>
element from the trinidad-config.xml
file. requestContext.decimalSeparator
: Returns the value of the <decimal-separator>
element from the trinidad-config.xml
file. requestContext.formatter
: Returns a Map
object that performs message formatting with a recursive Map
structure. The first key must be the message formatting mask, and the second key is the first parameter into the message. requestContext.helpSystem
: Returns a Map
object that accepts help system properties as keys, and returns a URL as a result. For example, the EL expression #{requestContext.helpSystem['frontPage']}
returns a URL to the front page of the help system. This assumes you have configured the <oracle-help-servlet-url>
element in the trinidad-config.xml
file. requestContext.helpTopic
: Returns a Map
object that accepts topic names as keys, and returns a URL as a result. For example, the EL expression #{requestContext.helpTopic['foo']}
returns a URL to the help topic "foo". This assumes you have configured the <oracle-help-servlet-url>
element in the trinidad-config.xml
file. requestContext.numberGroupingSeparator
: Returns the value of the <number-grouping-separator>
element from the trinidad-config.xml
file. requestContext.oracleHelpServletUrl
: Returns the value of the <oracle-help-servlet-url>
element from the trinidad-config.xml
file. requestContext.outputMode
: Returns the value of the <output-mode>
element from the trinidad-config.xml
file. requestContext.pageFlowScope
: Returns a map of objects in the pageFlowScope
object. requestContext.rightToLeft
: Returns the value of the <right-to-left>
element from the trinidad-config.xml
file. requestContext.skinFamily
: Returns the value of the <skin-family>
element from the trinidad-config.xml
file. requestContext.timeZone
: Returns the value of the <time-zone>
element from the trinidad-config.xml
file. requestContext.twoDigitYearStart
: Returns the value of the <two-digit-year-start>
element from the trinidad-config.xml
file. For a complete list of properties, refer to the Javadoc
for org.apache.myfaces.trinidad.context.RequestContext
.
Note: One instance of the To retrieve a configuration property programmatically, first call the static RequestContext context = RequestContext.getCurrentInstance(); // Get the time-zone property TimeZone zone = context.getTimeZone(); // Get the right-to-left property if (context.isRightToLeft()) { . . . } |
ADF Faces groups its components' JavaScript files into JavaScript features. A JavaScript feature is a collection of JavaScript files associated with a logical identifier that describes the feature. For example, the panelStretchLayout
client component is comprised of the following two JavaScript files
oracle/adf/view/js/component/rich/layout/
AdfRichPanelStretchLayout.js
oracle/adfinternal/view/js/laf/dhtml/rich/
AdfDhtmlPanelStretchLayoutPeer.js
These two files are grouped into the AdfRichPanelStretchLayout
feature.
JavaScript features are further grouped into JavaScript partitions. JavaScript partitions allow you to group JavaScript features into larger collections with the goal of influencing the download size and number of round trips. For example, since the panelStretchLayout
component is often used with the panelSplitter
component, the features for these two components are grouped together in the stretch partition, along with the other ADF Faces layout components that can stretch their children. At runtime, when a page is loaded, the framework determines the components used on the page, and then from that, determines which features are needed (feature names are the same as the components' constructor name). Only the partitions that contain those features are downloaded. For more information about JavaScript partitioning, see Section 1.2.1.2, "JavaScript Library Partitioning."
Features and partitions are defined using configuration files. ADF Faces ships with a default features and partitions configuration file. You can overwrite the default partitions file by creating your own implementation. When you create custom ADF Faces components, you can create your own features and partition configuration files for those components.
By default, JavaScript partitioning is turned on. Whether or not your application uses JavaScript partitioning is determined by a context parameter in the web.xml
file. For more information about enabling or disabling JavaScript partitioning, see Section A.2.3.14, "JavaScript Partitioning."
You create a JavaScript feature by creating an adf-js-features.xml file
, and then adding entries for the features.
Note: You create JavaScript features when you create custom ADF Faces components. All existing ADF Faces components already have features created for them, and these cannot be changed. |
To create a JavaScript feature:
META-INF
directory for your component. META-INF
directory, and choose New from the context menu. Tip: If you don't see the General node, click the All Technologies tab at the top of the Gallery. |
adf-js-features.xml
as the file name and save it in the META-INF
directory. Example A-18 XML for adf-js-features.xml File
features
: The root element of the configuration file. feature
: Create as a child to the features
element. This element must contain one feature-name
child element and can also contain any number of feature-class
, as well as any number of feature-dependency
elements. feature-name
: Create as a child to the feature
element. Specifies the name of the feature. You must use the client component's constructor name for this value. feature-class
: Create as a child to the feature
element. Specifies the location of the single JavaScript file or class to be included in this feature. There can be multiple feature-class
elements. feature-dependency
: Create as a child to the feature
element. Specifies the name of another feature that this feature depends on. For example, if one component B extends component A, then the feature that represents component A must be listed as a dependency for component B. By noting dependencies, the framework can ensure that any dependent classes are available, even if the two features are not in the same partition. Example A-19 shows the feature
element for a fictitious custom component that uses popup components (and therefore has a dependency to the popup feature).
Example A-19 JavaScript Features Configuration
You create a JavaScript partition by creating an adf-js-partitions.xml file
, and then adding entries for the features.
Note: ADF Faces provides a default |
To create JavaScript partitions:
WEB-INF
directory, and choose New from the context menu. Tip: If you don't see the General node, click the All Technologies tab at the top of the Gallery. |
adf-js-partitions.xml
as the file name and save it in the WEB-INF
directory. Example A-20 XML for adf-js-partitions.xml File
partitions
: The root element of the configuration file. partition
: Create as a child to the partitions
element. This element must contain one partition-name
child element and one or more feature
elements. partition-name
: Create as a child to the partition
element. Specifies the name of the partition. This value will be used to produce a unique URL for this partition's JavaScript library. feature
: Create as a child to the partition
element. Specifies the feature to be included in this partition. There can be multiple feature
elements. Tip: Any feature configured in the |
Example A-21 shows the partition
element for the tree
partition that contains the AdfRichTree
and AdfRichTreeTable
features.
The default ADF Faces adf-js-partitions.xml
file has partitions that you can override by creating your own partitions file. For more information, see Section A.9.2, "How to Create JavaScript Partitions." Example A-22 shows the default ADF Faces adf-js-partitions.xml
file.
Example A-22 The Default adf-js-partitions.xml File
ADF Faces loads the library partitioning configuration files at application initialization time. First, ADF Faces searches for all adf-js-features.xml
files in the META-INF
directory and loads all that are found (including the ADF Faces default feature configuration file).
For the partition configuration file, ADF Faces looks for a single file named adf-js-partitions.xml
in the WEB-INF
directory. If no such file is found, the ADF Faces default partition configuration is used.
During the render traversal, ADF Faces collects information about which JavaScript features are required by the page. At the end of the traversal, the complete set of JavaScript features required by the (rendered) page contents is known. Once the set of required JavaScript features is known, ADF Faces uses the partition configuration file to map this set of features to the set of required partitions. Given the set of required partitions, the HTML <script>
references to these partitions are rendered just before the end of the HTML document.
This appendix lists all the message keys and message setter methods for ADF Faces converters and validators.
This chapter includes the following sections:
The FacesMessage
class supports both summary and detailed messages. The convention is that:
classname
.
MSG_KEY
. classname
.
MSG_KEY
_detail
. In summary, to override a detailed message you can either use the setter method on the appropriate class or enter a replacement message in a resource bundle using the required message key.
Placeholders are used in detail messages to provide relevant details such as the value the user entered and the label of the component for which this is a message. The general order of placeholder identifiers is:
The following information is given for each of the ADF Faces converter and validators:
This section gives the reference details for all ADF Faces converter and validator detail messages.
Converts strings representing color values to and from java.awt.Color
objects. The set of patterns used for conversion can be overriden.
Convert color: Input value cannot be converted to a color based on the patterns set
Set method:
Message key:
Placeholders:
dateStyle
and timeStyle
set in the converterConverts a string to and from java.util.Date
and the converse based on the pattern and style set.
Convert date and time: Date-time value that cannot be converted to Date object when type
is set to both
Set method:
Message key:
Placeholders:
Convert date: Input value cannot be converted to a Date when the pattern or secondary pattern is set or when type
is set to date
Set method:
Message key:
Placeholders:
Convert date: Input value cannot be converted to a Date when the pattern or secondary pattern is set or when type
is set to date
Set method:
Message key:
Placeholders:
Provides an extension of the standard JSF javax.faces.convert.NumberConverter
class. The converter provides all the standard functionality of the default NumberConverter
and is strict while converting to an object.
Convert number: Input value cannot be converted to a Number, based on the pattern set
Set method:
Message key:
Placeholders:
Convert number: Input value cannot be converted to a Number when type
is set to number
and pattern
is null or not set
Set method:
Message key:
Placeholders:
Convert number: Input value cannot be converted to a Number when type
is set to currency
and pattern
is null or not set
Set method:
Message key:
Placeholders:
Convert number: Input value cannot be converted to a Number when type
is set to percent
and pattern
is null or not set
Set method:
Message key:
Placeholders:
Validates the byte length of strings when encoded.
Validate byte length: The input value exceeds the maximum byte length
Set method:
Message key:
Placeholders:
Validates that the date is valid with some given restrictions.
Validate date restriction - Invalid Date: The input value is invalid when invalidDate
is set
Set method:
Message key:
Placeholders:
Validate date restriction - Invalid day of the week: The input value is invalid when invalidDaysOfWeek
is set
Set method:
Message key:
Placeholders:
Validate date restriction - Invalid month: The input value is invalid when invalidMonths
is set
Set method:
Message key:
Placeholders:
Validates that the date entered is within a given range.
Validate date-time range: The input value exceeds the maximum
value set
Set method:
Message key:
Placeholders:
Validate date-time range: The input value is less than the minimum
value set
Set method:
Message key:
Placeholders:
Validate date-time range: The input value is not within the range, when minimum
and maximum
are set
Set method:
Message key:
Placeholders:
Validates that the value entered is within a given range.
Validate double range: The input value exceeds the maximum
value set
Set method:
Message key:
Placeholders:
Validate double range: The input value is less than the minimum
value set
Set method:
Message key:
Placeholders:
Validate double range: The input value is not within the range, when minimum
and maximum
are set
Set method:
Message key:
Placeholders:
Validates that the value entered is within a given range.
Validate length: The input value exceeds the maximum
value set
Set method:
Message key:
Placeholders:
Validate length: The input value is less than the minimum
value set
Set method:
Message key:
Placeholders:
Validate length: The input value is not within the range, when minimum
and maximum
are set
Set method:
Message key:
Placeholders:
Validates an expression using Java regular expression syntax.
Validate regular expression: The input value does not match the specified pattern
Set method:
Message key:
Placeholders:
This appendix describes the keyboard shortcuts that can be used instead of pointing devices.
This appendix includes the following sections:
Keyboard shortcuts provide an alternative to pointing devices for navigating the page. There are five types of keyboard shortcuts that can be provided in BLAF Plus applications:
Keyboard shortcuts are not required for accessibility. Users should be able to navigate to all parts and functions of the application using the Tab and arrow keys, without using any keyboard shortcuts. Keyboard shortcuts merely provide an additional way to access a function quickly.
Tab traversal allows the user to move the focus through different UI elements on a page.
All active elements of the page are accessible by Tab traversal, that is, by using the Tab key to move to the next control and Shift+Tab to move to the previous control. In most cases, when a control has focus, the action can then be initiated by pressing Enter.
Some complex components use arrow keys to navigate after the component receives focus using the Tab key.
Default Tab traversal order for a page is from left to right and from top to bottom, as shown in Figure C-1. Tab traversal in a two-column form layout does not follow this pattern, but rather follows a columnar pattern. On reaching the bottom, the tab sequence repeats again from the top.
Avoid using custom code to control the tab traversal sequence within a page, as the resulting pages would be too difficult to manage and would create an inconsistent user experience across pages in an application and across applications.
To improve keyboard navigation efficiency for users, you should include a skip navigation
link at the top of the page, which should navigate directly to the first content-related tab stop.
The Tab traversals in a table establish a unique row-wise navigation pattern when the user presses the Tab key several times to navigate sequentially from one cell to another. When the user presses Enter, the focus moves to the next row, to follow the same pattern. The navigational sequence begins and ends in the same column as in the previous row.
Figure C-2 shows an example of a tab traversal sequence in a table.
In Figure C-2, the user has navigated the rows in the following way:
Because the Tab key is used to navigate, the inputText column is recognized as the starting column for the navigation pattern.
Pressing the Enter key sets a navigation pattern, based on the first set of Tab keys, which is followed in subsequent rows.
Note: The navigational pattern is not recognized if you use arrow keys to navigate from one cell to another. |
Accelerator keys bypass menu and page navigation and perform actions directly. Accelerator keys are sometimes called hot keys. Common accelerator keys in a Windows application, such as Internet Explorer, are Ctrl+O for Open and Ctrl+P for Print.
Accelerator keys are single key presses (for example, Enter and Esc) or key combinations (for example, Ctrl+A) that initiate actions immediately when activated. A key combination consists of a metakey and an execution key. The metakey may be Ctrl (Command on a Macintosh keyboard), Alt (Option on a Macintosh keyboard), or Shift. The execution key is the key that is pressed in conjunction with the metakey.
BLAF Plus components have some built-in accelerator keys. Custom accelerator keys are supported only in menus, as shown in Figure C-3.
When defining accelerator keys, you must follow these guidelines:
Note: In Windows, users have the ability to assign a Ctrl+Alt+character key sequence to an application desktop shortcut. In this case, the key assignment overrides browser-level key assignments. However, this feature is rarely used, so it can generally be ignored. |
Certain BLAF Plus components have built-in accelerator keys that apply when the component has focus. Of these, some are reserved for page-level components, whereas others may be assigned to menus when the component is not used on a page. Table C-1 lists the accelerator keys that are already built into page-level BLAF Plus components. You must not use these accelerator keys at all.
Table C-1 Accelerator Keys Reserved for Page-Level Components
Accelerator Key | Used In | Function |
---|---|---|
Ctrl+Alt+R | Active Data | Check for updated data |
Ctrl+Alt+W | Menu Messaging Secondary Windows | Toggle focus between popup and primary window |
Ctrl+Alt+P | Splitter | Give focus to splitter bar |
The menu commands take precedence if they are on the same page as page-level components, and have the same accelerator keys. For this reason, you must not use the accelerator keys listed in Table C-2 in menus when the related component also appears on the same page.
Table C-2 Accelerator Keys Assigned to Optional Components
Accelerator Key | Component | Function |
---|---|---|
Ctrl+Alt++ | Rich Text Editor | Superscript |
Ctrl+Alt+- | Rich Text Editor | Subscript |
Ctrl+/ | Hierarchy Viewer | Switch content panel |
Ctrl+Alt+0. . .Ctrl+Alt+5 | Hierarchy Viewer | Switch diagram layout |
Ctrl+5 | Rich Text Editor | Strikethrough |
Ctrl+A | File Upload Multi-Select Choice List Multi-Select List Box Pivot Table Rich Text Editor Spin Box Text Box & Area Table | Select all |
Ctrl+B | Rich Text Editor | Boldface |
Ctrl+Alt+C | Rich Text Editor | Toggle source code editing |
Ctrl+E | Rich Text Editor | Center alignment |
Ctrl+H | Rich Text Editor | Create hyperlink |
Ctrl+Shift+H | Rich Text Editor | Remove hyperlink |
Ctrl+I | Rich Text Editor | Italics |
Ctrl+J | Rich Text Editor | Full-justified alignment |
Ctrl+L | Rich Text Editor | Left alignment |
Ctrl+Alt+L | Rich Text Editor | Numbered list |
Ctrl+M | Rich Text Editor | Increase indentation |
Ctrl+Shift+M | Rich Text Editor | Decrease indentation |
Ctrl+Alt+M | Gantt Pivot Table Table Tree Tree Table | Launch context menu |
Ctrl+R | Rich Text Editor | Right alignment |
Ctrl+Alt+R | Rich Text Editor | Toggle rich text editing |
Ctrl+Shift+S | Rich Text Editor | Clear text styles |
Ctrl+U | Rich Text Editor | Underline |
Ctrl+Y | Rich Text Editor | Redo |
Ctrl+Z | Rich Text Editor | Undo |
Ctrl+Shift+^ | Hierarchy Viewer Tree Tree Table | Go up one level |
Esc | Table | Reverse all edits of the row and disable edit mode |
Enter Shift+Enter | Table | Navigate to the next or previous cell of the column |
ADF Data Visualization components provide graphical and tabular capabilities for displaying and analyzing data. Table C-3 lists the accelerator keys assigned to ADF Data Visualization components: Gantt chart components, hierarchy viewer components, pivot table components, and geographic map components. For more information about ADF Data Visualization components, see Chapter 23, "Introduction to ADF Data Visualization Components."
Table C-3 Accelerator Keys Assigned to ADF Data Visualization Components
Accelerator Key | Components | Function |
---|---|---|
Arrow Left Arrow Right | List region of all Gantt chart types Chart region of project Gantt Chart region of scheduling Gantt Chart region of resource utilization Gantt ADF geographic map ADF hierarchy viewer - nodes Pivot table Pivot filter bar | Moves the focus. If the focus is on the chart region of the scheduling Gantt component, the arrow key navigation selects the previous or next taskbar of the current row. If the focus is on the time bucket of the resource utilization Gantt component, the arrow key navigation selects the previous or next time bucket in the current row. If the focus is on the ADF geographic map, the arrow key navigation pans left or right by a small increment. Press the Home or End key to pan by a large increment. If the focus is on the node component of the ADF hierarchy viewer component, press Ctrl+Arrow keys to move the focus left or right without selecting the component. |
Arrow Up Arrow Down | List region of all Gantt chart types Chart region of project Gantt Chart region of scheduling Gantt Chart region of resource utilization Gantt ADF geographic map ADF hierarchy viewer - nodes Pivot table Pivot filter bar | Moves the focus. If the focus is on the chart region of project Gantt, the arrow key navigation selects previous or next row. If the focus is on the chart region taskbar of the scheduling Gantt component, the arrow key navigation selects the first taskbar of the previous row or the next row. If the focus is on the time bucket of the resource utilization Gantt component, the arrow key navigation selects the time bucket of the previous row or next row. If the focus is on the ADF geographic map component, the arrow key navigation pans up or down by a small increment. If the focus is on the node component of the ADF hierarchy viewer, press the Ctrl+Arrow keys to move the focus up or down without selecting the component. |
Page Up Page Down | ADF geographic map ADF hierarchy viewer - diagram | If the focus is on the ADF geographic map component, the page key navigation pans up or down by a large increment. If the focus is on the diagram of the ADF hierarchy viewer component, press and hold the Page Up or Page Down keys to pan up or down continuously. Press Ctrl+Page Up or Ctrl+Page Down to pan left or right continuously. |
+ | ADF geographic map ADF hierarchy viewer - diagram | Increases the zoom level. If the focus is on the diagram of the ADF hierarchy viewer component, press number keys 1 through 5 to zoom from 10% through 100%. Press 0 to zoom the diagram to fit within available space. |
- | ADF geographic map ADF hierarchy viewer - diagram | Decreases the zoom level. If the focus is on the diagram of the ADF hierarchy viewer component, press number keys 1 through 5 to zoom from 10% through 100%. Press 0 to zoom the diagram to fit within available space. |
Ctrl+Alt+M | All Gantt chart types Pivot table | Launches the context menu. |
Home | ADF hierarchy viewer - nodes | Moves the focus to first node in the current level. |
End | ADF hierarchy viewer - nodes | Moves the focus to last node in the current level. |
Ctrl + Home | ADF hierarchy viewer - nodes | Moves the focus and select the root node. |
< | ADF hierarchy viewer - nodes | Switches to the active node's previous panel |
> | ADF hierarchy viewer - nodes | Switches to the active node's next panel. |
Ctrl + / | ADF hierarchy viewer - nodes | Synchronize all nodes to display the active node's panel. |
Ctrl+Shift+^ | ADF Hierarchy viewer - nodes | Goes up one level. |
Ctrl+/ | ADF hierarchy viewer - nodes | Switches the content panel. |
Ctrl+Alt+0 | ADF hierarchy viewer - diagrams | Centers the active node and zooms the diagram to 100%. |
Tab | ADF hierarchy viewer - nodes Pivot table Pivot filter bar | Moves the focus through the elements. |
Esc | ADF hierarchy viewer - nodes | Returns the focus to the containing node. If the focus is on the search panel, close the panel. Closes the Detail window, if it appears while hovering over a node. |
Spacebar | ADF hierarchy viewer - nodes Pivot table Pivot filter bar | Selects the active node. Press Ctrl+Spacebar to toggle selection of the active node, and to select multiple nodes. |
Enter | ADF hierarchy viewer - nodes Pivot table Pivot filter bar | Isolates and selects the active node. Press Shift+Enter to toggle the state of the node. |
/ | ADF hierarchy viewer - nodes | Toggles control panel state. |
Ctrl+F | ADF hierarchy viewer - nodes | If the ADF hierarchy viewer component is configured to support search functionality, open the search panel. |
Ctrl+Alt+1 through Ctrl+Alt+5 | ADF hierarchy viewer - nodes | Switches diagram layout. |
Ctrl+Alt+Arrow keys | Pivot table Pivot filter bar | Changes the layout by pivoting a row, column, or filter layer to a new location. Use Ctrl+Alt+Arrow keys to perform the following:
|
Some ADF Data Visualization components provide some common functions to the end user through the menu bar, toolbar, context menu, or Task Properties dialog. You may choose to show, hide, or replace these functionalities. If you hide or replace any functionality, you must provide alternate keyboard accessibility to those functions.
Access keys move the focus to a specific UI element.
Access keys relocate cursor or selection focus to specific interface components. Every component on the page with definable focus is accessible by tab traversal (using Tab and Shift+Tab); however, access keys provide quick focus to frequently used components. Access keys must be unique within a page.
The result of pressing an access key depends on the associated element and the browser:
Note that the access key could be different for different browsers on different operating systems. You must refer to your browser's documentation for information about access keys and their behavior. Table C-4 lists access key combinations for button and anchor components in some common browsers.
Table C-4 Access Key For Various Browsers
Browser | Operating System | Key Combination | Action |
---|---|---|---|
Google Chrome | Linux | Alt + mnemonic | Click |
Google Chrome | Mac OS X | Control + Option + mnemonic | Click |
Google Chrome | Windows | Alt +mnemonic | Click |
Mozilla Firefox | Linux | Alt + Shift + mnemonic | Click |
Mozilla Firefox | Mac OS X | Control + mnemonic | Click |
Mozilla Firefox | Windows | Alt + Shift + mnemonic | Click |
Microsoft Internet Explorer 7 | Windows | Alt + mnemonic | Set focus |
Microsoft Internet Explorer 8 | Windows | Alt + mnemonic | Click or set focus |
Apple Safari | Windows | Alt + mnemonic | Click |
Apple Safari | Mac OS X | Control + Option + mnemonic | Click |
Notes:
|
If the mnemonic is present in the text of the component label or prompt (for example, a menu name, button label, or text box prompt), it is visible in the interface as an underlined character, as shown in Figure C-4. If the character is not part of the text of the label or prompt, it is not displayed in the interface.
When defining access keys, you must follow these guidelines:
Note: For translation reasons, you should specify access keys as part of the label. For example, to render the label Cancel with the C access key, it is recommended to use |
The default cursor puts the initial focus on a component so that keyboard users can start interacting with the page without excessive navigation.
Focus refers to a type of selection outline that moves through the page when users press the tab key or access keys. When the focus moves to a field where data can be entered, a cursor appears in the field. If the field already contains data, the data is highlighted. In addition, after using certain controls (such as a list of values (LOV) or date-time picker), the cursor or focus placement moves to specific locations predefined by the component.
During the loading of a standard BLAF Plus page, focus appears on the first focusable component on the page — either an editable widget or a navigation component. If there is no focusable element on the page, focus appears on the browser address field.
When defining default cursor and focus placement, you should follow these guidelines:
The Enter key triggers an action when the cursor is in certain fields or when focus is on a link or button. You should use the Enter key to activate a common commit button, such as in a Login form or in a dialog.
Many components have built-in actions for the Enter key. Some examples include:
This appendix describes how to implement web-based applications for touch devices.
This appendix includes the following sections:
The ADF Faces framework is optimized to run in mobile browsers such as Safari. The framework recognizes when a mobile browser on a touch device is requesting a page, and then delivers only the JavaScript and peer code applicable to a mobile device. However, while a standard ADF Faces web application will run in mobile browsers, because the user interaction is different and because screen size is limited, when your application needs to run in a mobile browser, you should create touch device-specific versions of the pages.
This appendix provides information on how ADF Faces works in mobile browsers on touch devices, along with best practices for implementing web pages specifically for touch devices.
In touch devices, users touch the screen instead of clicking the mouse. The native browser then converts these touch events into mouse events for processing. In ADF Faces. component peers handle the conversion. To better handle the conversion differences between touch devices and desktop devices, for each component that needs one, ADF Faces provides both a touch device-specific peer and a desktop-specific peer (for more information about peers, see Section 1.2.1.1, "Client-Side Components").
These peers allow the component to handle events specific to the device. For example, the desktop peer handles the mouse over and mouse out events, while the touch device peer handles the touch start and touch end events. The base peer handles all common interactions. This separation provides optimized processing on both devices (for more information about the touch event, see Table 5-3, "ADF Faces Client Events").
The touch device peers provide the logic to simulate the interaction on a desktop using touch-specific gestures. Table D-1 shows how desktop gestures are mapped to touch device gestures.
Table D-1 Supported Mobile Browser User Gestures
Mouse Interaction | Touch Gesture | Visual State | Example |
---|---|---|---|
Click | Tap | Mouse down | Execute a button |
Select | Tap | Selected | Select a table row |
Multi select | Tap selects one, tap selects another, tapping a selected object deselects it | Selected | Select multiple graph bars |
Drag and drop in a simple interface | Finger down + drag | Mouse down | Drag a slider thumb or a splitter |
Drag and drop for use cases requiring both drag and drop as well as data tips | Finger down + short hold + drag | Mouse down | Move a task bar in a Gantt chart |
Hover to show data tip | Finger down + hold | Hover (mouseover) | Show graph data tip |
Hover to show popup | Finger down + hold | Hover (mouseover) | Show a popup from a calendar |
Line data cursor on graph | Finger down + hold | Hover | Trace along the x-axis of a graph and at the intersection of the y-axis, the data value is displayed in a tip. |
Right-click to launch a context menu | Finger down + hold or finger down + hold + finger up (when gesture conflict exists with another finger down + hold gesture) | Show graph or calendar activity context menu Context menu on finger up examples: Graph: finger down + hold = data tip; finger up = context menuGraph (bubble): finger down + hold + move = drag and drop; finger up = context menuGantt (task bar): finger down + hold = data tip; finger down + hold + move = drag and drop; finger up = context menu | |
Pan | One finger swipe (when no conflict with other gestures). Otherwise, two finger swipe | Enabled | Pan map |
Zoom in/out | Double tap (browser zoom). When in maximized state, pinch in/out can perform zoom | Enabled | Zoom browser screen Zoom graph or map |
Double-click to set anchor in the Hierarchy Viewer component | Double tap. | When the | Double tap a node within a hierarchy causes it to become the root node. |
Click the isolate icon on the Hierarchy Viewer component | Tap node, then tap isolate icon | Panel card is isolated | Tap the top of the card and then the isolate icon to view only that card and any direct reports. |
Click the collapse icon on the Hierarchy Viewer component | Swipe up on card | Collapsed panel card | Collapse a panel card |
Click the expand icon on the Hierarchy Viewer component | Swipe down on card | Expanded panel card | Expand a collapsed panel card. |
Hover to show fly out buttons on Hierarchy Viewer | Tap card | Fly out buttons display | Tap a card to display the fly out buttons |
Click right or left arrow buttons on Hierarchy Viewer component | Swipe left or right on card | Switch panel cards | Swipe left to view address, or swipe right to view content. |
Click navigation buttons to laterally traverse the hierarchy | Swipe left or right on the lateral navigation line, or tap the arrow, or touch and short hold + finger up to display the navigation buttons | Traverse the hierarchy | View more descendants of the root node. |
Single tap the Maximize icon | Maximizes the component | ||
Double-tap the Maximize icon or double-tab the hierarchy viewer background | Maximizes the component and zooms to fit | ||
Use circle, square, or polygon tool on a map to drag and select a region | Finger down, draw shape | Selected | Use finger to select an area on a map |
Use measurement tool on a map to click start point and end point | Tap measurement tool, finger down, draw line | Line drawn and calculated distance displayed | Use finger to select measurement tool, then tap to select point A and draw line to point B. |
Use area tool on a map to click start point and end point | Tap area tool, finger down, draw line | Line drawn and calculated area displayed | Use finger to select area tool, then tap to select point A and draw line to point B, and so on. |
For further optimization, ADF Faces partitions JavaScript, so that the touch device JavaScript is separated from the desktop JavaScript. Only the needed JavaScript is downloaded when a page is rendered. Also, when a touch device is detected, CSS content specific to touch devices is sent to the page. For example, on a touch device, checkboxes are displayed for items in the shuttle components, so that the user can easily select them. On a desktop device, the checkboxes are not displayed.
Using device-specific peers, JavaScript, and CSS allows components to function differently on desktop and touch devices. Table D-2 shows those differences.
Table D-2 Component Differences in Mobile Browsers
Component | Functionality | Difference from desktop component |
---|---|---|
| Selection | Select boxes are displayed that allow users to select the item(s) to shuttle. |
| Selection | Users select a row by tapping it and unselect a row by tapping it again. Multi-select is achieved simply by tapping the rows to be selected. That is, selecting a second row does not automatically deselect the first row. |
| Scroll | Instead of scroll bars, the table component is paginated, and displays a footer that allows the user to jump to specific pages of rows, as shown below. The number of rows on a page is determined by the |
ADF Faces dialog framework | Windows | When a command component used to launch the dialog framework has its |
| Detachable menus | Detachable menus are not supported. The |
| Geometry management | On touch devices, When the |
Various components | Icons, buttons, and links | Icons and buttons are larger and spaces between links are larger to accommodate fingers |
Because some touch devices do not support Flash, ADF Faces components use HTML5 for animation transitions and the like. This standard ensures that the components will display on all devices.
When you know that your application will be run on touch devices, the best practice is to create pages specific for that device. You can then use code similar to that of Example D-1 to determine what device the application is being run on, and then deliver the correct page for the device.
Example D-1 Determining Platform
While your touch device application can use most ADF Faces components, certain functionality may be limited, or may be frustrating, on touch devices. Table D-3 provides best practices to follow when developing an application for touch devices.
Table D-3 Best Practices for ADF Faces Components in a Mobile Browser
Component/Functionality | Best Practice |
---|---|
Geometry management | For the root panel component on a page, set the |
Partial page navigation | Using partial page navigation means that the JavaScript and other client code will not need to be downloaded from page to page, improving performance. For more information, see Section 7.4, "Using Partial Page Navigation." |
Navigation | Provide more direct access to individual pieces of content. A good rule is to have only one task per page, instead of using many regions on a page, separated by splitters. For example, instead of using a |
This appendix describes common problems that you might encounter when designing the application user interface with the ADF Faces framework and ADF Faces components and explains how to solve them.
This appendix includes the following sections:
In addition to this chapter, review the Oracle Fusion Middleware Error Messages Reference for information about the error messages you may encounter.
This section provides guidelines and a process for using the information in this chapter. Using the following guidelines and process will focus and minimize the time you spend resolving problems.
Guidelines
When using the information in this chapter, please keep the following best practices in mind:
Process
Follow the process outlined in Table E-1 when using the information in this chapter. If the information in a particular section does not resolve your problem, proceed to the next step in this process.
Table E-1 Process for Using the Information in this Chapter
Step | Section to Use | Purpose |
---|---|---|
1 | | Get started troubleshooting the view layer of an ADF application. The procedures in this section quickly address a wide variety of problems. |
2 | | Perform problem-specific troubleshooting procedures for the view layer of an ADF application. This section describes:
|
3 | | Use My Oracle Support to get additional troubleshooting information. The My Oracle Support web site provides access to several useful troubleshooting resources, including links to Knowledge Base articles and Community Forums and Discussion pages. |
4 | | Log a service request if the information in this chapter and My Oracle Support does not resolve your problem. You can log a service request using My Oracle Support at |
Oracle ADF has builtin error messages that enable you to determine which layer of your application may be causing a problem. Error messages are the starting point for troubleshooting and you may research a particular error message on the web. Error messages that originate from your ADF Business Components model layer will have a JBO prefix, where as all other ADF layer components, including the ADF Face view layer, will appear as a Java error message with an Oracle package.
Once you are able to identify the layer, you may run diagnostic tools. You may also view log files for recorded errors. You can look up error messages in the Oracle Fusion Middleware Error Messages Reference. You can also search the technical forums on Oracle Technology Network for discussions related to an error message. Each of the component layers for Oracle ADF has is own dedicated forum. You can access the forum home page for JDeveloper and Oracle ADF under the Development Tools list on Oracle Technology Network at https://forums.oracle.com/forums/main.jspa?categoryID=84
.
Before you begin troubleshooting, you should configure the ADF application to make finding and detecting errors easier. Table E-2 summarizes the settings that you can follow to configure the view layer of an ADF application for troubleshooting.
Table E-2 Configuration Options for Optimizing ADF Faces Troubleshooting
Configuration Recommendation | Description |
---|---|
Enable debug output. | Enable debug output by setting the following in the <adf-faces-config xmlns= "http://xmlns.oracle.com/adf/view/faces/config"> <debug-output>true</debug-output> <skin-family>oracle</skin-family> </adf-faces-config> Improves the readability of HTML markup in the web browser:
|
Disable content compression. | Disable content compression by setting the following in the <context-param> <param-name> org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION </param-name> <param-value>true</param-value> </context-param> Improves readability by forcing the use of original uncompressed styles. Unless content compression is disabled, CSS style names and styles will appear compressed and may be more difficult to read. |
Disable JavaScript compression. | Disable JavaScript compression by setting the following in the <context-param> <param-name> org.apache.myfaces.trinidad.DEBUG_JAVA_SCRIPT </param-name> <param-value>true</param-value> </context-param> Allows normally obfuscated JavaScript to appear uncompressed as the source. |
Enable client side asserts. | Enable client side asserts by setting the following in the <context-param> <param-name> oracle.adf.view.rich.ASSERT_ENABLED </param-name> <param-value>true</param-value> </context-param> Allows warnings of unexpected conditions to be output to the browser console. |
Enable clientside logging. | Enable clientside logging by setting the following in the <context-param> <param-name> oracle.adf.view.rich.ASSERT_ENABLED </param-name> <param-value>true</param-value> </context-param> Allows log messages to be output to the browser console. Unless client side logging is enabled, log messages will not be reported in the client. |
Enable more detailed server side logging. | Enable more detailed server side logging shut down the application server, enter the following setting in the
or Use the WLST command:
or In Oracle Enterprise Manager Fusion Middleware Control, use the Configuration page to set Allows more detailed log messages to be output to the browser console. Unless server side logging is configured with a log level of CONFIG or higher, useful diagnostic messages may go unreported. Allowed log level settings are: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL. Oracle recommends CONFIG level or higher; the default is SEVERE. |
Disable HTTP cache headers. | Disable HTTP cache headers by setting the following in the <context-param> <param-name> org.apache.myfaces.trinidad.resource.DEBUG </param-name> <param-value>true</param-value> </context-param> Forces reloading of patched resources. Unless HTTP cache headers are disabled, the browser will cache resources to ensure fast access to resources. After changing the setting, clear the browser cache to force it to reload resources. |
Optionally, enable performance profiling in the web browser. | Optionally, enable performance profiling in the web browser by setting the following in the <context-param> <param-name> oracle.adf.view.rich.profiler.ENABLED </param-name> <param-value>true</param-value> </context-param> This is normally handled by all recent version browsers. If needed, Oracle recommends setting the log level to INFO level or higher. Output goes to browser console. |
This section describes common problems and solutions. It contains the following topics:
The ADF application has a default skin that displays a simple or minimal look and feel. The background of the default skin will appear white.
Cause
The skin JAR files did not get deployed correctly to all applications.
Solution
To resolve this problem:
The skin application must be packaged as a JAR file that includes the image files.
Cause
The skin JAR files were not packaged correctly.
Solution
To resolve this problem:
Various ADF DVT components rely on Flash to display correctly and unless Flash is supported by the platform and browser, your application may not display visual aspects of the DVT components.
Cause
Not all platforms and browsers support Flash. This will force the application to downgrade to the best available fallback. If the platform is not supported, the application displays according to the flash-player-usage
setting in the adf-config.xml
file.
Solution
To resolve this problem, reinstall the latest Flash version available for your browser.
When you design an application to run in a clustered environment, you must ensure that all managed beans with a life span longer than one request are serializable.
Cause
When the Fusion web application runs in a clustered environment, a portion of the application's state is serialized and copied to another server or a data store at the end of each request so that the state is available to other servers in the cluster. Specifically, beans stored in session scope, page flow scope, and view scope must be serializable (that is, they implement the java.io.Serializable
interface).
Solution
To resolve this problem:
org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION
. The following are Java system properties and you must specify them when you start the application server. -Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree
-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree,beans
-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=all
You run the application in Microsoft Windows Internet Explorer and verify a problem but when you run the application in Mozilla Firefox, the problem does not reproduce. These problems are often visual in nature, such as unintended extra space separating areas within a web page.
Cause
Settings between browsers vary and can lead to differences in the visual appearance of your application.
Solution
To resolve this problem:
The application pages may display areas that appear empty where content is expected.
Cause
The cause depends on the application design. For example, authorization that you enforce in the application may be unintentionally preventing the application from displaying content. Or, when portlets are used, the portlet server may be down.
Solution
To resolve this problem:
The application returns a runtime exception in a place that was not expected and is not handled.
Cause
ADF Faces has received unhandled exception in some phase of the lifecycle and will abort the request handling.
Solution
To resolve this problem:
The application does not navigate to the expected page and displays an HTTP 404 file not found error or an HTTP 500 internal server error.
Cause
The cause may be traced to the application server.
Solution
To resolve this problem:
The application fails to navigate to and open an expected target web page.
Cause
The cause may depend on the application design or the cause may be traced to the application server.
Solution
To resolve this problem:
You can use My Oracle Support (formerly MetaLink) to help resolve Oracle Fusion Middleware problems. My Oracle Support contains several useful troubleshooting resources, such as:
Note: You can also use My Oracle Support to log a service request. |
You can access My Oracle Support at https://support.oracle.com
.
This appendix shows how each of the quick start layouts are affected when you choose to apply themes to them. ADF Faces provides a number of components that you can use to define the overall layout of a page. JDeveloper contains predefined quick start layouts that use these components to provide you with a quick and easy way to correctly build the layout. You can choose from one, two, or three column layouts. When you choose to apply a theme to the chosen quick layout, color and styling are added to some of the components used in the quick start layout.
Figure F-1 and Figure F-2 show each of the layouts with and without themes applied. For more information about themes, see Section 20.3.4, "How to Apply Themes to Components."
 Copyright © 2008, 2012, Oracle and/or its affiliates. All rights reserved. |