

3 Introduction to the Idoc Script Custom Scripting Language

This chapter describes the Idoc Script Custom Scripting Language, which you can use to customize Oracle WebCenter Content Server. Idoc Script is the server-side custom scripting language for the Content Server system. Idoc Script is used primarily for the presentation of HTML templates and configuration settings.

This chapter includes the following sections:

	
Section 3.1, "Idoc Naming Conventions"

	
Section 3.2, "Idoc Script Syntax"

	
Section 3.3, "Idoc Script Uses"

	
Section 3.4, "Special Keywords"

	
Section 3.5, "Operators"

	
Section 3.6, "Metadata Fields"

	
Section 3.7, "Merge Includes for Formatting Results"

	
Section 3.8, "Scoped Local Variables"

3.1 Idoc Naming Conventions

Idoc variables (sometimes called configuration variables or environment variables) can be used in Idoc Script and in configuration files.

In general, if the variable is part of a configuration, it begins with a capital letter. Those variables specified in the config.cfg file or intradoc.cfg file usually have an initial capital letter. For an example, see "DefaultFilterInputFormat" in the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content. Many parameters in service requests also begin with uppercase letters.

Variables defined on a page, such as those that are derived and then used in files such as std_page.htm, begin with a lowercase letter. For an example, see "executeService Function" in Section 6.2.2, "Idoc Script Functions." The variables are calculated from environment variables or service variables, then used for presentation.

If a variable is used to define an object, it begins with lowercase letters designating the type of object it is defining. For an example of a workflow-specific variable, see "wfSet()" in Appendix A, "Idoc Script Functions and Variables." In addition, all functions start with a lowercase letter and many start with a prefix to describe the type of function. For example, most string manipulation functions begin with str, or ResultSet functions begin with rs.

All database column names that are not custom metadata fields begin with the lowercase letter d. All custom metadata database column names created by the Content Server system begin with the lowercase letter x.

3.2 Idoc Script Syntax

Idoc Script follows these basic syntax rules:

	
Section 3.2.1, "Idoc Script Tags"

	
Section 3.2.2, "Idoc Script Comments"

3.2.1 Idoc Script Tags

Idoc Script commands begin with <$ and end with $> delimiters. For example:

<$dDocTitle$>
<$if UseGuiWinLook and isTrue(UseGuiWinLook)$>

If you are using Idoc Script in an HCSP or HCSF page, you must use the syntax <!--$script--> for Idoc Script tags.

3.2.2 Idoc Script Comments

You can use standard HTML comments or Idoc Script comments in Idoc Script code. An Idoc Script comment begins with [[% and closes with %]] delimiters. For example:

<!-- HTML Comment -->
[[%My Comment%]]

An HTML comment is parsed as plain text to the Idoc Script engine. The engine only looks for Idoc Script constructs. If you want the comment to appear in the generated page, use the HTML/XML comment syntax; otherwise, Idoc Script comment syntax is recommended.

If you are writing Idoc Script that generates other Idoc Script and you want the source page to look readable, you can use the comment syntax to comment out dynamichtml constructs and other resource specifiers, such as string resources, in Idoc Script resource files. For example:

[[% Commenting out resource includes
<@dynamichtml myinclude@>
<@end@>
End comment %]]

3.3 Idoc Script Uses

There are six basic uses for Idoc Script:

	
Includes enable you to reuse pieces of Idoc Script and HTML code.

	
Variables enable you to define and substitute variable values.

	
Functions enable you to perform actions, including string comparison and manipulation routines, date formatting, and ResultSet manipulation.

	
Conditionals enable you to evaluate if and else clauses to include or exclude code from an assembled page.

	
Looping enables you to repeat code for each row in a ResultSet that is returned from a query.

	
The Administration Interface enables you to use Idoc Script in Content Server applets and customizations.

3.3.1 Includes

An include defines pieces of code that are used to build the Content Server web pages. Includes are defined once in a resource file and then referenced by as many template files as necessary. The system leverages includes very heavily.

Includes make it easier for you to customize your instance using component architecture and dynamic server pages. For more information on includes and customization, see Section 6.3, "Creating an IDOC File with Custom Includes for Dynamic Server Pages."

	
An include is defined in an HTM resource file using the following format:

<@dynamichtml name@>
 code
<@end@>

	
An include is called from an HTM template file using the following Idoc Script format:

<$include name$>

	
Includes can contain Idoc Script and valid HTML code, including JavaScript, Java applets, cascading style sheets, and comments.

	
Includes can be defined in the same file as they are called from, or they can be defined in a separate file.

	
Standard includes are defined in the IdcHomeDir/resources/core/idoc/std_page.idoc file.

	
HDA and CFG files are not script enabled, therefore using an include statement in either of these types of files is not supported.

The includes are global, available to all parts of the system. Dynamic scripting pages in HCSP files can use includes. The .idoc files can do localized includes that are not global. HCSP files can call both global includes or localized includes with the proper syntax.An include can override an existing include, if one of the same name exists.

For more information, see the following sections:

	
Section 3.3.1.1, "Include Example"

	
Section 3.3.1.2, "Super Tag"

	
Section 3.3.1.3, "Super Tag Example"

3.3.1.1 Include Example

One of the most common includes is the body definition element <@dynamichtml body_def>. This include sets the page background color, the color of hyperlinks, and the background image. The following is an example of code located in the IdcHomeDir/resources/core/idoc/std_page.idoc file:

<@dynamichtml body_def@>
<!--Background image defined as part of body tag--->
<body
 <$if background_image$>
 background="<$HttpImagesRoot$><$background_image$>"
 <$elseif colorBackground$>
 bgcolor="<$colorBackground$>"
 <$endif$>
 <$if xpedioLook$>
 link="#663399" vlink="#CC9900"
 <$else$>
 link="#000000" vlink="#CE9A63" alink="#9C3000"
 <$endif$>
 marginwidth="0" marginheight="0" topmargin="0" leftmargin="0"
>
<@end@>

Most of the standard template resource files (for example, IdcHomeDir/resources/core/templates/pne_home_page.htm) contain the following Idoc Script code near the top of the page:

<$include body_def$>

When the Content Server system resolves a template page containing this code, it looks for the <@dynamichtml body_def@> definition and replaces the placeholder code with the code in the definition.

3.3.1.2 Super Tag

The super tag is used to define exceptions to an existing include. The super tag tells the include to start with an existing include and then add to it or modify it using the specified code.

	
The super tag uses the following syntax:

<@dynamichtml my_resource@>
 <$include super.my_resource$>
 exception code
<@end@>

	
You can use the super tag to refer to a standard include or a custom include. The super tag incorporates the include that was loaded last.

	
The resource name defined after super should match the include name in which you include super. In the preceding syntax example, my_resource is the include name, so the matching call should be super.my_resource.

	
You can specify multiple super tags to call an include that was loaded earlier than the last version. For example, to make an exception to the standard body_def include in two different components, you can use the following syntax in the one that is loaded last:

<$include super.super.body_def$>

	
Caution:

If you use multiple super tags in one include, ensure that you know where the resources are loaded from and the order they are loaded in.

	
The super tag is particularly useful when making small customizations to large includes or when you customize standard code that is likely to change from one software version to the next. When you upgrade to a new version of Content Server software, the super tag ensures that your components are using the most recent version of the include, modifying only the specific code you require to customize your instance.

3.3.1.3 Super Tag Example

In this example, a component defines the my_resource include as follows:

<@dynamichtml my_resource@>
 <$a = 1, b = 2$>
<@end@>

Another component that is loaded later enhances the my_resource include using the super tag. The result of the following enhancement is that a is assigned the value 1 and b is assigned the value 3:

<@dynamichtml my_resource@>
 <$include super.my_resource$>
 <!--Change "b" but not "a" -->
 <$b = 3$>
<@end@>

3.3.2 Variables

A variable enables you to define and substitute variable values.

The following sections describe how to work with Idoc Script variables:

	
Section 3.3.2.1, "Variable Creation"

	
Section 3.3.2.2, "Variable References"

	
Section 3.3.2.3, "Variable Values"

	
Section 3.3.2.4, "Comma Separators"

	
Section 3.3.2.5, "Variable Reference in a Conditional"

	
Section 3.3.2.6, "Variable Reference Search Order"

	
Section 3.3.2.7, "Regular Variables"

3.3.2.1 Variable Creation

Idoc Script variables are created in one of the following ways:

	
Many variables are predefined.

	
You can define your own custom variables.

	
Some variable values must be generated using queries and services. Some variable information is not automatically available from the database, so it must be asked for by defining a query and service.

For more information on the types of Idoc Script variables, see Chapter 4, "Using Idoc Script Variables and Functions with Oracle WebCenter Content."

3.3.2.2 Variable References

You can reference a variable in templates and other resource files with the following Idoc Script tag:

<$variable_name$>

When you reference a variable name like this, the generated page will replace the Idoc Script tag with the value of that variable, at the time it was referenced.

3.3.2.3 Variable Values

	
A value can be assigned to a variable using this structure:

<$variable=value$>

For example, <$i=0$> assigns the value of 0 to the variable i.

	
Variable values can also be defined in an environment resource (CFG) file using the following name/value pair format:

variable=value

For example, standard configuration variables are defined in the IntradocDir/config/config.cfg file.

	
Note:

Not all configuration variable values set by code are listed in the IntradocDir/config/config.cfg file by default.

3.3.2.4 Comma Separators

Idoc Script supports multiple clauses separated by commas in one script block in variable references.

For example, you can use <$a=1,b=2$> rather than two separate statements: <$a=1$> and <$b=2$>.

3.3.2.5 Variable Reference in a Conditional

The following structure can be used to evaluate the existence of a variable:

<$if variable_name$>

If the variable is defined and not empty, this conditional is evaluated as TRUE. If the variable is not defined or it is defined as an empty (null) string, it is evaluated as FALSE.

For an example of how this type of reference is typically used, see Section 3.3.4.1, "Conditional Example."

3.3.2.6 Variable Reference Search Order

When a variable is referenced to fulfill a service request, the substituted value will be the first match found in the DataBinder from the following default order:

	
LocalData

	
Active ResultSets

	
Nonactive ResultSets

	
Environment

For example, if a particular variable exists in the environment but is also the name of a field in the active ResultSet, the value in the current row of the active ResultSet will be used.

3.3.2.7 Regular Variables

A regular variable that does not have special evaluation logic (such as Conditional Dynamic Variables) is equivalent to using the #active keyword prefix.

For example, the tag <$variable$> is equivalent to <$#active.variable$>. However, if #active is not explicitly stated and the variable is not found, an error report is printed to the debug output.

The #active qualifier means that a variable reference searches the DataBinder, as described in Section 3.3.2.6, "Variable Reference Search Order," whereas #env lets you select only from the environment, and #local always references LocalData. The difference between explicitly using #active versus without the prefix is that an error is reported only when (1) you are not using any qualifier and (2) the variable reference is not found in the DataBinder.

3.3.3 Functions

Idoc Script has many built-in global functions. Functions perform actions, including string comparison and manipulation routines, date formatting, and ResultSet manipulation. Some functions also return results, such as the results of calculations or comparisons.

Information is passed to functions by enclosing the information in parentheses after the name of the function. Pieces of information that are passed to a function are called parameters. Some functions do not take parameters; some functions take one parameter; some take several. There are also functions for which the number of parameters depends on how the function is being used.

For a list of Idoc Script functions, see Section 4.1.4, "Global Functions."

3.3.3.1 Personalization Functions

Personalization functions refer to user properties that are defined in personalization files, also called user topic files. Each user's User Profile settings, personal links in the left navigation bar, and workflow in queue information are all defined in user topic files, which are HDA files located in the WC_CONTENT_ORACLE_HOME/data/users/profiles/us/username/ directories.

The following global functions reference user topic files:

	
utGetValue()

	
utLoad()

	
utLoadResultSet()

For example, the Portal Design link in a user's left navigation bar is generated from the following code in the pne_nav_userprofile_links include (located in the WC_CONTENT_ORACLE_HOME/shared/config/resources/std_page.htm resource file). If the portalDesignLink property in the WC_CONTENT_ORACLE_HOME/data/users/profiles/us/username/pne_portal.hda file is TRUE, the link is displayed:

<$if utGetValue("pne_portal", "portalDesignLink") == 1$>
 <$hasUserProfileLinks=1$>
 <tr>
 <td colspan=2 nowrap align="left">
 <a class=pneLink href="<$HttpCgiPath$>?IdcService=GET_PORTAL_PAGE&Action=GetTemplatePage&Page=PNE_PORTAL_DESIGN_PAGE">
 <$lc("wwPortalDesign")$>
 <td>
 </tr>
<$endif$>

3.3.4 Conditionals

A conditional enables you to use if and else clauses to include or exclude code from an assembled page.

	
Use the following Idoc Script keywords to evaluate conditions:

	
<$if condition$>

	
<$else$>

	
<$elseif condition$>

	
<$endif$>

	
Conditional clauses use this general structure:

<$if conditionA$>
 <!--Code if conditionA is true-->
<$elseif conditionB$>
 <!--Code if conditionB is true-->
<$else$>
 <!--Code if neither conditionA nor conditionB is true-->
<$endif$>

	
A condition expression can be any Idoc Script function or variable.

For more information, see Section 3.3.2.5, "Variable Reference in a Conditional."

	
Boolean Operators can be used to combine conditional clauses. For example, you can use the and operator as follows:

<$if UseBellevueLook and isTrue(UseBellevueLook)$>

The first expression tests whether the variable exists and is not empty, and the second expression checks to see if the value of that variable evaluates to 1 or if it starts with t or y (case-insensitive). If you just have the second clause, it may generate an error if the variable is not set, or empty. An equivalent expression follows:

<$if isTrue(#active.UseBellevueLook)$>

	
If the condition expression is the name of a ResultSet available for inclusion in the HTML page, the conditional clause returns true if the ResultSet has at least one row. This ensures that a template page presents information for a ResultSet only if there are rows in the ResultSet.

	
A conditional clause that does not trigger special computation is evaluated using the #active prefix. The result is true if the value is not null and is either a nonempty string or a nonzero integer.

For an example of conditional code, see Section 3.3.4.1, "Conditional Example."

3.3.4.1 Conditional Example

In this example, a table cell <td> is defined depending on the value of the variable xDepartment:

<$if xDepartment$>
 <td><$xDepartment$></td>
<$else$>
 <td>Department is not defined.</td>
<$endif$>
<$xDepartment=""$>

	
If the value of xDepartment is defined, then the table cell contains the value of xDepartment.

	
If the value of xDepartment is not defined or is an empty (null) string, a message is written as the content of the table cell.

	
The last line of code clears the xDepartment variable by resetting it to an empty string.

3.3.5 Looping

Loop structures allow you to execute the same code a variable number of times. Looping can be accomplished in two ways with Idoc Script:

	
Section 3.3.5.1, "ResultSet Looping"

	
Section 3.3.5.3, "While Looping"

For information on exiting and ending a loop structure, see Section 3.3.5.5, "Ending a Loop."

3.3.5.1 ResultSet Looping

ResultSet looping repeats a set of code for each row in a ResultSet that is returned from a query. The name of the ResultSet to be looped is specified as a variable using the following syntax:

<$loop ResultSet_name$>
 code
<$endloop$>

	
The code between the <$loop$> and <$endloop$> tags is repeated once for each row in the ResultSet.

	
When inside a ResultSet loop, you can retrieve values from the ResultSet using the getValue() function. Substitution of values depends on which row is currently being accessed in the loop.

	
When inside a ResultSet loop, that ResultSet becomes active and has priority over other ResultSets when evaluating variables and conditional statements.

	
Infinite loops with ResultSet loops are not possible (finite lists), whereas while loops can cause infinite loops.

	
You cannot use the <$loop$> tag to loop over a variable that points to a ResultSet. Instead you must loop over the ResultSet manually using the rsFirst() and rsNext() functions.

For example, you cannot use the following code to loop over a ResultSet:

<$name="SearchResults"$>
<$loop name$>
 <!--output code-->
<$endloop$>

Instead, you must use the following code:

<$name="SearchResults"$>
<$rsFirst(name)$>
<$loopwhile getValue(name, "#isRowPresent")$>
 <!--output code-->
 <$rsNext(name)$>
<$endloop$>

3.3.5.2 ResultSet Looping Example

In this example, a search results table is created by looping over the SearchResults ResultSet, which was generated by the GET_SEARCH_RESULTS service.

<$QueryText="dDocType <matches> 'ADACCT'"$>
<$executeService("GET_SEARCH_RESULTS")$>
<table>
 <tr>
 <td>Title</td><td>Author</td>
 </tr>
<$loop SearchResults$>
 <tr>
 <td><a href="<$SearchResults.URL$>"><$SearchResults.dDocTitle$></td>
 <td><$SearchResults.dDocAuthor$></td>
 </tr>
<$endloop$>
</table>

3.3.5.3 While Looping

While looping enables you to create a conditional loop. The syntax for a while loop is:

<$loopwhile condition$>
 code
<$endloop$>

	
If the result of the condition expression is true, the code between the <$loopwhile$> and <$endloop$> tags is executed.

	
After all of the code in the loop has been executed, control returns to the top of the loop, where the condition expression is evaluated again.

	
If the result is true, the code is executed again.

	
If the code if the result is false, the loop is exited.

3.3.5.4 While Looping Example

In this example, a variable named abc is increased by 2 during each pass through the loop. On the sixth pass (when abc equals 10), the condition expression is no longer true, so the loop is exited.

<$abc=0$>
<$loopwhile abc<10$>
 <$abc=(abc+2)$>
<$endloop$>

3.3.5.5 Ending a Loop

There are two Idoc Script tags that will terminate a ResultSet loop or while loop:

	
<$endloop$> returns control to the beginning of the loop for the next pass. All loops must be closed with an <$endloop$> tag.

	
<$break$> causes the innermost loop to be exited. Control resumes with the first statement following the end of the loop.

3.3.6 Administration Interface

You can use Idoc Script in several areas of the administration interface, including:

	
Section 3.3.6.1, "Workflow Admin"

	
Section 3.3.6.2, "Web Layout Editor"

	
Section 3.3.6.3, "Batch Loader"

	
Section 3.3.6.4, "Archiver"

	
Section 3.3.6.5, "System Properties"

	
Section 3.3.6.6, "Email"

3.3.6.1 Workflow Admin

In the Workflow Admin tool, you can use Idoc Script to define the following:

	
step events

	
jump messages

	
extra exit conditions

	
tokens

	
custom effects for jumps

For example, the following step entry script sends documents in the Secure security group to the next step in the workflow:

<$if dSecurityGroup like "Secure"$>
 <$wfSet("wfJumpName", "New")$>
 <$wfSet("wfJumpTargetStep", wfCurrentStep(1))$>
 <$wfSet("wfJumpEntryNotifyOff", "0")$>
<$endif$>

For more information, see Section 4.1.8, "Workflows."

3.3.6.2 Web Layout Editor

In the Web Layout Editor, you can use Idoc Script in the page titles, page descriptions, URL descriptions, query result pages, and content queries. For example:

	
You can use Idoc Script tags in the query results page definition to specify the contents of each row in a search results table.

	
To set the search results to return all content items up to 7 days, you could define the search query to be:

dInDate > '<$dateCurrent(-7)$>'

	
To define a report that returns results based on the current user, you could define User Name is <$UserName$> as part of the report query expression.

For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

3.3.6.3 Batch Loader

In the Batch Loader, you can use Idoc Script in a mapping file, which tells the BatchBuilder utility how to determine the metadata for file records. For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

3.3.6.4 Archiver

In Archiver, you can use Idoc Script in the following areas:

	
Export query values. For example, to archive content more than one year old, you could use <$dateCurrent(-365)$> as the Release Date value.

	
Value map output values. For example, to set the expiration date one week in the future for all imported revisions, you could use <dateCurrent(7)$> as the Output Value.

For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

3.3.6.5 System Properties

When you set values in the System Properties utility, in the Admin Server, or in the Local Configuration or Shared Configuration screens of the Oracle WebCenter Content: Inbound Refinery instance, you are actually setting Idoc Script configuration variables. For more information, see the documentation for these applications.

3.3.6.6 Email

You can use Idoc Script to customize the subject line and body of a notification email. For example:

Hello, <$UserName$>. Content item <$dDocName$> requires your review.

3.4 Special Keywords

The following keywords have special meaning in Idoc Script.

	Keyword	Example	Description
	
#active

	
<$#active.variable$>

	
Retrieves the value of the specified variable from the DataBinder, searching in the following default order:

	
Active ResultSets

	
Local data

	
All other ResultSets

	
Environment

Does not send an error report to the debug output if the variable is not found.

	
#local

	
<$#local.variable$>

	
Retrieves the value of the specified variable from the local data. Does not send an error report to the debug output if the variable is not found.

	
#env

	
<$#env.variable$>

	
Retrieves the value of the specified variable from the environment settings. Does not send an error report to the debug output if the variable is not found.

	
exec

	
<$exec expression$>

	
Executes an expression and suppresses the output (does not display the expression on the page).

In earlier versions of Idoc Script, the exec keyword was required to suppress the value of any variable from appearing in the output file. In the current version, the exec keyword is needed only to suppress an expression from appearing in the output file.

	
include

	
<$include ResourceName$>

	
Includes the code from the specified resource. For more information, see Section 3.3.1, "Includes."

	
super

	
<$include super.<include>$>

	
Starts with the existing version of the include code. For more information, see Section 3.3.1.2, "Super Tag."

3.4.1 Keywords Versus Functions

Content Server pages use the include and exec special keywords and the inc and eval functions extensively. This section describes the differences between these commands and gives examples of how to use them.

The include and exec keywords are standalone commands that operate on defined parameters, but cannot take a variable as a parameter. The inc and eval functions have similar purposes, but they can take variables for parameters, which enables you to dynamically create Idoc Script code depending on the value of the variables.

The following sections describe these keywords and functions in detail:

	
Section 3.4.1.1, "exec Keyword"

	
Section 3.4.1.2, "eval Function"

	
Section 3.4.1.3, "include Keyword"

	
Section 3.4.1.4, "inc Function"

3.4.1.1 exec Keyword

The exec keyword executes an Idoc Script expression and suppresses the output (does not display the expression on the page). It is primarily used to set variables without writing anything to the page.

In earlier versions of Idoc Script, the exec keyword was required to suppress the value of any variable from appearing in the output file. In the current version, the exec keyword is needed only to suppress an expression from appearing in the output.

For example, if you used the following expression, the output value, 0 or 1, would appear in the output file:

<$rsFirst(name)$>

Instead, you can use the exec keyword before the expression to suppress the output:

<$exec rsFirst(name)$>

You can also use exec to suppress the output from rsNext:

<$exec rsNext(name)$>

For more information, see exec in Appendix A, "Idoc Script Functions and Variables."

3.4.1.2 eval Function

The eval function evaluates an expression as if it were actual Idoc Script.

In the following example, a variable named one is assigned the string Company Name, and a variable named two is assigned a string that includes variable one.

<$one="Company Name"$>
<$two="Welcome to <$one$>"$>
<one>

<two>

<$eval(two)$>

In the page output, variable one presents the string Company Name, variable two presents the string Welcome to <one>, and the function eval(two) presents the string Welcome to Company Name.

Note that the string to be evaluated must have the Idoc Script delimiters <$ $> around it, otherwise it will not be evaluated as Idoc Script.

Also note that too much content generated dynamically in this manner can slow down page display. If the eval function is used frequently on a page, it may be more efficient to put the code in an include and use the inc function in conjunction with the eval function.

For more information, see eval() in Appendix A, "Idoc Script Functions and Variables.".

3.4.1.3 include Keyword

The include keyword is the standard way in which chunks of code are incorporated into the current page. Because include is a keyword, it cannot take a variable as a parameter-the parameter must be the name of an include that already exists.

For more information, see Section 3.3.1, "Includes," and include in Appendix A, "Idoc Script Functions and Variables."

3.4.1.4 inc Function

The inc function does the same thing as the include keyword, except that it can take a variable as the parameter. This function is most useful for dynamically changing which include will be used depending on the current value of a variable.

For example, say you want to execute some Idoc Script for some, but not all, of your custom metadata fields. You could dynamically create includes based on the field names (such as specific_include_xComments) by executing this Idoc Script:

<$loop DocMetaDefinition$>
 <$myInclude = "specific_include_" & dName$>
 <$exec inc(myInclude)$>
<$endloop$>

Note the use of the exec Keyword, which suppresses the output of the include specified by the inc function. If you do not use exec before the inc function, the HTML inside the specified include will be displayed on the page.

Note that if the specific_include_xComments does not exist, this code will not throw an error because the output is not being displayed.

For more information, see inc() in Appendix A, "Idoc Script Functions and Variables."

3.5 Operators

Idoc Script supports several operators.

	
Section 3.5.1, "Comparison Operators"

	
Section 3.5.2, "Special String Operators"

	
Section 3.5.3, "Numeric Operators"

	
Section 3.5.4, "Boolean Operators"

3.5.1 Comparison Operators

Use the following comparison operators compare the value of two operands and return a true or false value based on the result of the comparison. These operators can be used to compare integers and Boolean values in Idoc Script.

If you are using Idoc Script in an HCSP or HCSF page, you must use special comparison operators. For more information, see Section 6.2.1.2, "Comparison Operators."

	Operator	Description	Example
	
==

	
equality

	
<$if 2 == 3$> evaluates to false

	
!=

	
inequality

	
<$if 2 != 3$> evaluates to true

	
<

	
less than

	
<$if 2 < 2$> evaluates to false

	
<=

	
less than or equal

	
<$if 2 <= 2$> evaluates to true

	
>

	
greater than

	
<$if 3 > 2$> evaluates to true

	
>=

	
greater than or equal

	
<$if 3 >= 2$> evaluates to true

These are numeric operators that are useful with strings only in special cases where the string data has some valid numeric meaning, such as dates (which convert to milliseconds when used with the standard comparison operators).

	
For string concatenation, string inclusion, and simple string comparison, use the Special String Operators.

	
To perform advanced string operations, use strEquals(), strReplace(), or other string-related global functions.

3.5.2 Special String Operators

Use the following special string operators to concatenate and compare strings:

	Operator	Description	Example
	
&

	
The string join operator performs string concatenation. Use this operator to create script that produces Idoc Script for a resource include.

	

<$"<$include " & VariableInclude & "$>"$>

evaluates to:

<$include VariableName$>

	
like

	
The string comparison operator compares two strings.

	
The first string is compared against the pattern of the second string. (The second string can use asterisk and question mark characters as wildcards.)

	
This operator is not case sensitive.

	
	
Evaluates to FALSE:

<$if "cart" like "car"$>

	
Evaluates to TRUE:

<$if "cart" like "car?"$>

	
Evaluates to TRUE:

<$if "carton" like "car*"$>

	
Evaluates to TRUE:

<$if "Carton" like "car*"$>

	
|

	
The string inclusion operator separates multiple options, performing a logical OR function.

	
Evaluates to TRUE:

<$if "car" like "car|truck|van"$>

For example, to determine whether the variable a has the prefix car or contains the substring truck, this expression could be used:

<$if a like "car*|*truck*"$>

	
Important:

To perform advanced string operations, use strEquals(), strReplace(), or other string-related global functions.

The like operator recognizes the following wildcard symbols:

	Wildcard	Description	Example
	
*

	
Matches 0 or more characters.

	
	
grow* matches grow, grows, growth, and growing

	
*car matches car, scar, and motorcar

	
s*o matches so, solo, and soprano

	
?

	
Matches exactly one character.

	
	
grow? matches grows and growl but not growth

	
grow?? matches growth but not grows or growing

	
b?d matches bad, bed, bid, and bud

3.5.3 Numeric Operators

Use the following numeric operators to perform arithmetic operations. These operators are for use on integers evaluating to integers or on floats evaluating to floats.

	Operator	Description	Example
	
+

	
Addition operator.

	

<$a=(b+2)$>

	
-

	
Subtraction operator.

	

<$a=(b-2)$>

	
*

	
Multiplication operator.

	

<$a=(b*2)$>

	
/

	
Division operator.

	

<$a=(b/2)$>

	
%

	
Modulus operator. Provides the remainder of two values divided into each other.

	

<$a=(b%2)$>

3.5.4 Boolean Operators

Use the following Boolean operators to perform logical evaluations.

	Operator	Description	Example
	
and

	
	
If both operands have nonzero values or are true, the result is 1.

	
If either operand equals 0 or is false, the result is 0.

	

<$if 3>2 and 4>3$>

evaluates to 1

	
or

	
	
If either operand has a nonzero value or is true, the result is 1.

	
If both operands equal 0 or are false, the result is 0.

	

<$if 3>2 or 3>4$>

evaluates to 1

	
not

	
	
If the operand equals 0 or is false, the result is 1.

	
If the operand has a nonzero value or is true, the result is 0.

	

<$if not 3=4$>

evaluates to 1

Boolean operators evaluate from left to right. If the value of the first operand is sufficient to determine the result of the operation, the second operand is not evaluated.

3.6 Metadata Fields

This section includes these topics:

	
Section 3.6.1, "Metadata Field Naming"

	
Section 3.6.2, "Standard Metadata Fields"

	
Section 3.6.3, "Option Lists"

	
Section 3.6.4, "Metadata References in Dynamic Server Pages"

3.6.1 Metadata Field Naming

Each metadata field has an internal field name, which is used in code. In addition, many fields have descriptive captions which are shown on web pages.

	
Use field captions when displaying metadata to the user.

	
Use internal field names when batch loading files or scripting dynamic server pages (.hcst,.hcsp, and .hcsf pages).

	
All internal metadata field names begin with either a d or an x:

	
Predefined or core field names begin with a d. For example, dDocAuthor.

	
Custom or add-on field names begin with an x. For example, xDepartment.

	
Note:

Add-on components from Oracle and custom components made by customers all start with x.

	
When you create a custom metadata field in the Configuration Manager, the x is automatically added to the beginning of your field name.

	
Important:

In all cases, internal metadata field names are case sensitive.

3.6.2 Standard Metadata Fields

This section describes the standard metadata fields that the Content Server system stores for each content item. The fields are grouped as follows:

	
Section 3.6.2.1, "Common Metadata Fields"

	
Section 3.6.2.2, "Other Fields"

3.6.2.1 Common Metadata Fields

The following metadata fields are the most commonly used in customizing the interface. These fields appear by default on checkin and search pages.

	
Note:

Add-on components, of which there are many, are not listed here. For example, the FrameworkFolders component is enabled in many configurations of Content Server, but FrameworkFolders fields are not in the list.

Do not confuse the Content ID (dDocName) with the dID. The dID is an internally generated integer that refers to a specific revision of a content item.

	Internal Field Name	Standard Field Caption	Description
	
dDocAccount

	
Account

	
Security account.

	
dDocAuthor

	
Author

	
User who checked in the revision.

	
xComments

	
Comments

	
Explanatory comments.

	
dDocName

	
Content ID

	
Unique content item identifier.

	
dOutDate

	
Expiration Date

	
Date the revision becomes unavailable for searching or viewing.

	
dInDate

	
Release Date

	
Date the revision is scheduled to become available for searching and viewing (see also dCreateDate and dReleaseDate).

	
dRevLabel

	
Revision

	
Revision label (see also dRevisionID).

	
dSecurityGroup

	
Security Group

	
Security group.

	
dDocTitle

	
Title

	
Descriptive title.

	
dDocType

	
Type

	
Content type.

3.6.2.2 Other Fields

In addition to the Common Metadata Fields, the following metadata is stored for content items:

	Internal Field Name	Standard Field Caption	Description
	
dCheckoutUser

	
Checked Out By (Content Information page)

	
User who checked out the revision.

	
dCreateDate

	
None

	
Date the revision was checked in.

	
dDocFormats

	
Formats (Content Information page)

	
File formats of the primary and alternate files.

	
dDocID

	
None

	
Unique rendition identifier.

	
dExtension

	
None

	
File extension of the primary file.

	
dFileSize

	
None

	
File size of the primary file (in kilobytes).

	
dFlag1

	
None

	
Not used.

	
dFormat

	
Format (checkin page, Allow override format on checkin enabled)

	
File format of the primary file.

	
dID

	
None

	
Unique revision identifier.

	
dIndexerState

	
None

	
State of the revision in an Indexer cycle. Possible values are:

X: The revision has been processed by the rebuild cycle.

Y: The revision has been processed by the rebuild cycle.

A, B, C, or D: Values generated at run time that can be assigned to any of the following states:

	
Loading the revision for the active update cycle.

	
Indexing the revision for the active update cycle.

	
Loading the revision for the rebuild cycle.

	
Indexing the revision for the rebuild cycle.

The specific definitions of these values are stored in the file DomainHome/ucm/cs/search/cyclesymbols.hda.

	
dIsCheckedOut

	
None

	
Indicates whether the revision is checked out.

0: Not checked out

1: Checked out

	
dIsPrimary

	
None

	
Indicates the type of file, primary or alternate.

0: Alternate file

1: Primary file

	
dIsWebFormat

	
None

	
Indicates whether the file is the web-viewable file in the weblayout directory.

0: Not web-viewable file

1: Web-viewable file

	
dLocation

	
None

	
Not used.

	
dMessage

	
None (Content Information page)

	
Indicates the success or reason for failure for indexing or conversion.

	
dOriginalName

	
Get Native File (Content Information page)

Original File (revision checkin page)

	
Original file name of the native file.

	
dProcessingState

	
None

	
Conversion status of the revision. Possible values are:

I: Incomplete Conversion; an error occurred in the conversion after a valid web-viewable file was produced and the file was full-text indexed.

Y: Converted; the revision was converted successfully and the web-viewable file is available.

P: Refinery PassThru; the Inbound Refinery system failed to convert the revision and passed the native file through to the web.

F: Failed; the revision is deleted, locked, or corrupted, or an indexing error occurred.

C: Processing; the revision is being converted by Inbound Refinery.

M: MetaData Only; full-text indexing was bypassed and only the revision's metadata was indexed.

	
dReleaseDate

	
None

	
Date that the revision was actually released.

	
dReleaseState

	
None

	
Release status of a revision.

N: New, not yet indexed

E: In a workflow

R: Processing, preparing for indexing

I: Currently being indexed; the file has been renamed to the released name

Y: Released

U: Released, but needs to be updated in the index

O: Old revision

	
dRendition1

	
None

	
Indicates whether the file is a thumbnail rendition. Possible values are:

null: File is not a thumbnail rendition

T: File is a thumbnail rendition

	
dRendition2

	
None

	
Not used.

	
dRevClassID

	
None

	
Internal integer that corresponds to the Content ID (dDocName). Used to enhance query response times.

	
dRevisionID

	
None

	
Internal revision number that increments by 1 for each revision of a content item, regardless of the value of dRevLabel.

	
dStatus

	
Status (Content Information page)

	
State of a revision in the system. Possible values are:

GENWWW: The file is being converted to web-viewable format or is being indexed, or has failed conversion or indexing.

DONE: The file is waiting to be released on its specified Release Date.

RELEASED: The revision is available.

REVIEW: The revision is in a workflow and is being reviewed.

EDIT: The revision is at the initial contribution step of a workflow.

PENDING: The revision is in a Basic workflow and is waiting for approval of all revisions in the workflow.

EXPIRED: The revision is no longer available for viewing. The revision was not deleted, but it can be accessed only by an administrator.

DELETED: The revision has been deleted and is waiting to be completely removed during the next indexing cycle.

	
dWebExtension

	
None

	
File extension of the web-viewable file.

3.6.3 Option Lists

An option list is a set of values that can be selected for a metadata field. Option lists can be formed from queries (dynamically built from the DB), or they can be hard coded and stored in Content Server files (HDA) on the file system.

The following topics describe the use of option lists:

	
Section 3.6.3.1, "Internal Option Lists"

	
Section 3.6.3.2, "Option List Script"

	
Section 3.6.3.3, "Methods for Creating an Option List"

3.6.3.1 Internal Option Lists

The Content Server system maintains the following internal option lists by default:

	Metadata Field	Option List
	
Author (dDocAuthor)

	
docAuthors

	
Security Group (dSecurityGroup)

	
securityGroups

	
Type (dDocType)

	
docTypes

	
Account (dDocAccount)

	
docAccounts

	
Role (dRole)

	
roles

The securityGroups and docAccounts option lists are filtered according to the current user's permissions.

3.6.3.2 Option List Script

The following Idoc Script variables and functions are used to generate and enable option lists:

	Variable or Function	Description
	
optList() function

	
Generates the option list for a metadata field.

	
optionListName variable

	
Specifies the name of an option list.

	
fieldIsOptionList variable

	
Specifies that a metadata field has an option list.

	
fieldOptionListType variable

	
Specifies the type of option list (strict, combo, multi, or access).

	
hasOptionList variable

	
Set to the value of the fieldIsOptionList variable. This variable is used in conditional statements.

	
defaultOptionListScript variable

	
Defines a piece of Idoc Script that displays a standard option list field.

	
optionListScript variable

	
Overrides the standard implementation of option list fields (as defined by the defaultOptionListScript variable).

	
optionsAllowPreselect variable

	
Specifies that a metadata field option list can be prefilled with its last value.

	
addEmptyOption variable

	
Specifies that the first value in the option list is blank.

	
optionListResultSet variable

	
Specifies a ResultSet that contains option list values.

	
optionListKey variable

	
Specifies the name of a ResultSet column that contains option list values.

	
optionListValueInclude variable

	
Specifies an include that defines the values for an option list.

3.6.3.3 Methods for Creating an Option List

To create an option list, you can use one of the following methods:

	
Use the optList() function to generate a basic option list. This function produces output only when used with a service that calls loadMetaOptionsList.

For example, this code displays a list of possible authors as an HTML option list:

<select name="dDocAuthors">
 <$optList docAuthors$>
</select>

	
Use the rsMakeFromList() function to turn the option list into a ResultSet, and then loop over the ResultSet.

For example, this code creates a ResultSet called Authors from the docAuthors option list, and loops over the ResultSet to create an HTML option list. (Because the column name is not specified as a parameter for rsMakeFromList, the column name defaults to row.)

<$rsMakeFromList("Authors","docAuthors")$>
<select name="dDocAuthors">
 <$loop Authors$>
 <option><row>
<$endloop$>
</select>

This code sample is equivalent to the sample produced by using the optList function. Typically, you would use the rsMakeFromList function when you want to parse or evaluate the list options.

	
Use the Configuration Manager applet to create an option list, without writing any code.

3.6.4 Metadata References in Dynamic Server Pages

For dynamic server pages, several metadata values are stored with a ref: prefix, which makes them available to the page but does not replace ResultSet values. (This prevents pollution of ResultSets by dynamic server pages.)

When you reference any of the following metadata values on a dynamic server page, you must include the ref: prefix:

	
hasDocInfo

	
dDocName

	
dExtension

	
dSecurityGroup

	
isLatestRevision

	
dDocType

	
dID

For example, the following statement determines if the document type is Page:

<$if strEquals(ref:dDocType,"Page"))$>

For more information, see Section 6.2, "Altering the Appearance and Navigation of Web Pages".

3.7 Merge Includes for Formatting Results

You can use a MergeInclude to format your results from an Content Server request based on an Idoc Script include, rather than an entire template page.

A MergeInclude is a feature often used to integrate ASP pages using the IdcCommandX ActiveX module. The Content Server architecture is essentially a modular, secure, service-based application with multiple interfaces, although its architecture was designed to optimize the web interface. Services such as GET_SEARCH_RESULTS will generate response data based on the QueryString passed, and the user's security credentials. This response data is internally represented in the form of a HDA file. To see this in action, simply perform a search and then add 'IsJava=1' or 'IsSoap=1' (for XML-formatted data) to the URL. You can now see how data is internally represented for the response.

Because this HDA representation is not particularly useful for web-based users, we use Idoc Script includes and templates to format the response into a readable HTML page. A user can modify how this HTML is displayed by changing the template or a few resource includes with a component.

However, to retrieve only a small portion of this search result (for example, to display it on an ASP, JSP, or PHP page where the majority of the code is not Idoc Script), or have an IFRAME or DIV element pop up and display the results, or to dynamically change how to display the results, you can simply add these parameters to your URL:

MergeInclude=my_custom_include&IsJava=1

This will cause the Content Server system to bypass formatting the response according to the template that is specified in the service. It will instead format the response based on the Idoc Script in my_custom_include. For example, if you executed a search, then added the above line to the URL, and the include looked like this in your component:

<@dynamichtml my_custom_include@>
<html>
<table width=300>
<tr>
 <td>Name</td>
 <td>Title (Author)</td>
</tr>
<$loop SearchResults$>
<tr><td><a href="<URL>"><$dDocName$></td>
 <td><$dDocTitle$> (<$dDocAuthor$>)</td></tr>
<$endloop$>
</table>
</html>
<@end@>

This would display a search result page devoid of all images and formatting that you may not need. Consequently, you can format any Content Server response with any Idoc Script include that you want. In theory, the Idoc Script include can contain any kind of formatting that you want: XML, WML, or simply plain text.

For example, if you wanted to return search results in a format that can be read in an Excel Spreadsheet, you could create a resource include that returns a comma-delimited list of entries. You could then save the returned file to your hard drive, and then open it up in Excel. Another useful trick would be to create a resource include that formats the response into a record set that can be read in as a file by the IdcCommandX utility, or the BatchLoader. Such an include could be used with a search result, or an Active Report created with the Web Layout Editor, to build up batch files specific to arbitrary queries against the database or against the search index.

	
MergeInclude variables are cached differently than normal resource includes. Therefore, you must restart the Content Server instance if you make changes to the resource include. This can be bypassed if you execute a docLoadResourceInclude() function to dynamically load different includes from within the MergeInclude.

	
The content type of the returned data is 'text/plain' and not 'text/html' for data returned by a MergeInclude. Some clients (such as Internet Explorer and many versions of Netscape) still display plain text as html if you have valid HTML in the response, others clients may not. If you experience problems, you may need to manually set the content type when you link to it.

3.8 Scoped Local Variables

Scoped local variables are a special kind of local variable, used to override how metadata is drawn to the page. These variables are scoped to a specific metadata field by separating them with a colon.

For example, to hide the title and comments fields, you would set the following flags:

dDocTitle:isHidden=1
xComments:isHidden=1

These flags must be set early in the page in the URL or by overriding the include std_doc_page_definitions.

In the following list, all flags affect the display of the field xFieldName:

	
xFieldName:groupHeader: This is set in Content Profiles if this field is the first field in a group. It contains the HTML and Idoc Script to use for the group header.

	
xFieldName:hasOptionList: Allows the field to contain a custom option list, instead of using the default option list. Must be used with the xFieldName:optionListName variable or xFieldName:optionListScript variable.

	
xFieldName:include: Used to set the value for fieldInclude to the name of a custom resource include. This resource will be used throughout the page, including the JavaScript and the HTML. This flag is used rarely. If needed, use the std_namevalue_field include file as a guide for making a custom include.

	
xFieldName:isExcluded: Set to true to exclude a field from the page completely. It will not be displayed as a field, or as a hidden input field. The field will be completely absent from the page.

	
xFieldName:isHidden: Set to TRUE to hide a field on the page. On pages with form posts, the field will still be present. However, it will only exist as a hidden INPUT field. The value of the field will be blank, unless xFieldName or fieldValue is defined. This will enable you to create pages with default values that cannot be changed.

	
xFieldName:isInfoOnly: Set to TRUE to display only the value of a field. This is used instead of xFieldName:isHidden to show the user what default values are being submitted.

	
xFieldName:isRelocated: Set to TRUE to stop the automatic display of a field on the HTML page. By default, all fields on the page have a specific order. To reorder them, you must set this flag, then display the field manually.

<!-- hide the comments field -->
<$xComments:isRelocated = 1$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>
<!-- now turn off relocation, and display it -->
<$xComments:isRelocated = ""$>
<$fieldName="xComments", fieldCaption="Comments", fieldType="Memo"$>
<$include std_display_field$>

	
xFieldName:isRequired: Set to TRUE to turn this field into a required field. This flag must be set in std_doc_page_definitions, before the JavaScript validation code is drawn to the page.

	
xFieldName:maxLength: Similar to fieldWidth, this sets the maximum length of a text input field. This is usually greater than fieldWidth, and must be less than the width of the field in the database.

	
xFieldName:noSchema: Set to TRUE to disable a schema option list for a field. Required if you want to generate option lists in a custom, dynamic way.

	
xFieldName:optionListName: This flag can only be set if a field is an option list. You can override which option list to use to display values:

<$xCountry:hasOptionList = 1$>
<$xCountry:noSchema = 1$>
<$xCountry:optionListName = "securityGroups"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

	
xFieldName:optionListScript: Similar to optionListName, except it can be used to render Idoc Script instead of explicitly defined option lists. This allows the option list to be drawn with a ResultSet instead:

<$xCountry:hasOptionList = 1$>
<$xCountry:noSchema = 1$>
<$xCountry:optionListScript =
"<$rsMakeFromList('GROUPS', 'securityGroups')$>" &
"<select>\n" &
"<$loop GROUPS$>" &
" <option><row>" &
"<$endloop$>\n" &
"</select>"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

	
xFieldName:rowClass: Used in std_nameentry_row. It sets a Cascading Style Sheet class for the table row that contains this field.

<$xComments:rowClass="xuiPageTitleText"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

	
xFieldName:rowStyle: Same as rowClass, but this can be used to create inline styles. For example, to hide the Comments field with DHTML, use the following code:

<$xComments:rowStyle="display:none"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

This is useful when you want to hide and display fields dynamically without a page reload.

Part III

Changing the Look and Feel of the Content Server Interface

This part provides information about the several different methods that you can use to change the appearance and navigation of the Oracle WebCenter Content Server interface.

Part III contains the following chapters:

	
Chapter 5, "Customizing the Content Server Interface"

	
Chapter 6, "Creating Dynamic Server Pages"

5 Customizing the Content Server Interface

This chapter provides information about the several different methods that you can use to customize the look and feel of the Oracle WebCenter Content Server interface. You can use skins and layouts to change the appearance of the user interface and dynamic server pages to change the navigation.

This chapter includes the following sections:

	
Section 5.1, "About Customizing the Content Server Interface"

	
Section 5.2, "Choosing a Different Skin or Layout"

	
Section 5.3, "Configuring a Default Skin and Layout for New Users and Guests"

	
Section 5.4, "Modifying the Template for a Skin or Layout"

	
Section 5.5, "Altering the Anonymous User Interface"

	
Section 5.6, "Changing the URL of the Login Page"

	
Section 5.7, "Creating and Publishing a New Layout"

	
Section 5.8, "Optimizing the Use of Published Files"

	
Tip:

In addition to using the methods discussed in this chapter, you can alter the metadata fields that are presented to users and modify the types of presentations used for check-in pages, search pages, and other user interfaces. For information about creating and modifying metadata fields and creating content profiles, see "Customizing Repository Fields and Metadata" and "Managing Content Profiles" in Oracle Fusion Middleware Managing Oracle WebCenter Content.

5.1 About Customizing the Content Server Interface

Skins and layouts provide alternate color schemes and alternate navigation designs.

5.1.1 Types of Skins and Layouts

Some skins and layouts are provided by default with Content Server. In addition, you can design custom skins and layouts. When you change the skin or layout, you change the look and feel of the interface. You can select a skin and layout from the options provided on the User Profile page.

The only skills required to create and modify skins or layouts is an understanding of HTML, Cascading Style Sheets, and JavaScript. After altering the appearance, the edited layouts and skins are published so that others in your environment can use them.

	
Note:

Only administrators can make new or custom skins. For more information about setting the default look and feel of the user interface, see Section 5.3, "Configuring a Default Skin and Layout for New Users and Guests."

5.1.2 Skins

Skins define the color scheme and other aspects of appearance of the layout such as graphics, fonts, or font size. (the default skin is Oracle). You can design custom skins or modify the existing skins.

5.1.3 Layouts

Layouts define the navigation hierarchy display (the default layout is Trays) and custom layouts can be designed. Custom layouts change behavior and the look-and-feel systemwide. If you want your changes to apply only in limited situations, you might want to consider dynamic server pages.These layouts are provided:

	
Trays: This layout with the standard Oracle skin is the default interface. High-level navigation occurs through the navigation trays.

	
Top Menus: This layout provides an alternate look with top menus providing navigation.

5.2 Choosing a Different Skin or Layout

You can choose a different skin to provide an alternate color scheme or a different layout to provide an alternate navigation design, or both.

5.2.1 How to Choose a Different Skin or Layout

The User Personalization settings available on the User Profile page enable users to change the layout of Content Server or the skin.

	
Important:

This personalization functionality works with Internet Explorer 7+ or Mozilla Firefox 3+ and later versions.

To choose a different skin or layout:

	
On the Content Server Home page, click your_user_name in the top menu bar.

The User Profile page appears.

	
Choose the desired skin and layout.

	
Click Update, and view the changes.

5.2.2 What Happens at Runtime

After you choose a different skin or layout, it becomes the user interface for Content Server whenever you log in.

5.3 Configuring a Default Skin and Layout for New Users and Guests

These values can be placed in the IntradocDir/config/config.cfg file to alter the default behavior for the Content Server instance:

	
LmDefaultSkin: The name of the skin used by guests, and new users. The default is Oracle.

	
LmDefaultLayout: The name of the layout used by guests, and new users. The default is Trays, but it can be set to Top Menus.

5.4 Modifying the Template for a Skin or Layout

The Top Menus and Trays layouts are included by default with the system. The two layouts have two skin options (Oracle and Oracle2). The layouts are written in JavaScript, and the look of the skins is created using Cascading Style Sheets.

You can modify skins and layouts by altering the template files provided with Content Server or design new skins and layouts by creating components that can be shared with other users.

5.4.1 About Dynamic Publishing

When Content Server starts, or when the PUBLISH_WEBLAYOUT_FILES service is run, the PublishedWeblayoutFiles table in the std_resource.htm file is used to publish files to the weblayout directory. To have your custom component use this publishing mechanism, create a template, and then merge a custom row that uses that template into the PublishedWeblayoutFiles table.

Other users who want to modify or customize your file can override your template or your row in the PublishedWeblayoutFiles table. If your template uses any resource includes, other users can override any of these includes or insert their own Idoc Script code using the standard super notation. When your component is disabled, the file is no longer published or modified and Content Server returns to its default state.

In addition to giving others an easy way to modify and add to your work, you can also construct these former static files using Idoc Script. For example, you can have the files change depending on the value of a custom configuration flag. You can use core Content Server objects and functionality by writing custom Idoc Script functions and referencing them from inside your template.

Because this Idoc Script is evaluated once during publishing, you cannot use Idoc Script as you would normally do from the IdcHomeDir/resources/core/idoc/std_page.idoc file. When a user requests that file, it has already been created, so the script that was used to create it did not have any access to the current service's DataBinder object or to any information about the current user.

This does limit the type of Idoc Script you can write in these files. If you are writing CSS or JavaScript that needs information that dynamically changes with users or services, consider having the pages that need this code include the code inline. This increases the size of pages delivered by your web server and so increases the amount of bandwidth used.

5.5 Altering the Anonymous User Interface

The ExtranetLook component can be used to change the interface for anonymous, random users. An example of this is when a website based on Content Server must be available to external customers without a login, but you want employees to be able to contribute content to that website.

When Content Server is running on Oracle WebLogic Server, the ExtranetLook component alters privileges for certain pages so that they require write privilege to access. The component also makes small alterations to the static portal page to remove links that anonymous, random users should not see.

	
Note:

The ExtranetLook component does not provide form-based authentication for Oracle WebLogic Server or provide customizable error pages.

The ExtranetLook component is installed (disabled) with Content Server. To use the component, you must enable it with the Component Manager.

You can customize your web pages to make it easy for customers to search for content, and then give employees a login that permits them to see the interface on login. To do the customization, modify the ExtranetLook.idoc file, which provides dynamic resource includes that can be customized based on user login. The IDOC file is checked in to the Content Server repository so it can be referenced by the Content Server templates.

5.5.1 How to Alter the Anonymous User Interface

You can update the look and feel of the anonymous user interface for the Content Server website by altering the following files in the IntradocDir/data/users/ directory:

	
prompt_login.htm

	
access_denied.htm

	
report_error.htm

To alter the anonymous user interface:

	
Display the Web Layout Editor.

	
From the Options menu, choose Update Portal.

	
Modify the portal page as you want to. You can use dynamic resource includes to customize this page.

	
Click OK.

	
Customize the ExtranetLook.idoc file as you want to.

	
Check out the ExtranetLook content item from Content Server.

	
Check in the revised ExtranetLook.idoc file to Content Server.

5.5.2 What Happens at Runtime

After you modify the portal page and customize theExtranetLook.idoc file, your design becomes the user interface for Content Server whenever a user goes to the website without logging in.

5.6 Changing the URL of the Login Page

You can change the URL of the Login page for Content Server by changing its context root, which is normally /cs/. You cannot change the URL by setting a relative context root with the HttpRelativeWebRoot property because the value of this property does not apply to the Login page. If you need to change the web location where users log in, you can redeploy the WebCenter Content application with a deployment plan.

To change the URL of the Login page:

	
Log in to the Oracle WebLogic Server Administration Console as the administrator of the domain where WebCenter Content is deployed.

	
Click Deployments under the name of your domain, in the Domain Structure area on the left.Click Oracle WebCenter Content - Content Server in the Deployments table on the Control tab of the Summary of Deployments page.

This application may be on the second or third page of the table.

	
Note the path to the deployment plan.

If no plan is specified for your WebCenter Content instance, you can create one:

	
Click Configuration on the Settings for Oracle WebCenter Content - Content Server page.

	
Change the value of any parameter on the Configuration tab.

	
Click Save.

	
Confirm the path to the deployment plan on the Save Deployment Plan Assistant page, or change the path.

	
Click OK.

	
In a text editor, add lines at two places in the deployment plan:

	
Add the original_loginpage_path and original_loginerror_path variables, each in a <variable> element of a <variable-definition> element, as in this example:

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
 http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd">
 <application-name>ServletPlugin</application-name>
 <variable-definition>
 <variable>
 <name>original_loginpage_path</name>
 <value>/content/login/login.htm</value>
 </variable>
 <variable>
 <name>original_loginerror_path</name>
 <value>/content/login/error.htm</value>
 </variable>
 <variable>
 <name>SessionDescriptor_timeoutSecs_12996472139160</name>
 <value>3600</value>
 </variable>

	
In the <module-descriptor> element of web.xmlin the cs.war file, add two <variable-assignment> elements that assign the following values to the original_loginpage_path and original_loginerror_path variables, respectively:

	
/web-app/login-config/form-login-config/form-login-page

	
/web-app/login-config/form-login-config/form-error-page

For example:

 <module-override>
 <module-name>cs.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>original_loginpage_path</name>

 <xpath>/web-app/login-config/form-login-config/form-login-page</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>original_loginerror_path</name>

 <xpath>/web-app/login-config/form-login-config/form-error-page</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
 <module-override>

	
Stop the WebCenter Content Managed Server (UCM_server1 by default), with the stopManagedWebLogic script.

	
UNIX script:

DomainHome/bin/stopManagedWebLogic.sh UCM_server1

	
Windows script:

DomainHome\bin\stopManagedWebLogic.cmd UCM_server1

	
In the Administration Console, click Deployments under the name of your domain.

	
Select Oracle WebCenter Content - Content Server in the Deployments table, and click Update.

	
Select Redeploy this application using the following deployment files, make sure the path to the deployment plan is correct, and then click Finish.

	
After the redeployment completes successfully, click Apply Changes.

	
Start the WebCenter Content Managed Server with the startManagedWebLogic script.

	
UNIX script:

DomainHome/bin/startManagedWebLogic.sh UCM_server1

	
Windows script:

DomainHome\bin\startManagedWebLogic.cmd UCM_server1

	
In the Administration Console, click Deployments.

	
Select Oracle WebCenter Content - Content Server in the Deployments table, and from the Start menu, choose Servicing all requests.

	
After the WebCenter Content application is launched, verify that the URL of the login page has changed.

5.7 Creating and Publishing a New Layout

The following general steps are necessary to create and publish new layouts:

	
Merge a table into the LmLayouts table in IdcHomeDir/resources/core/tables/std_publishing.htm to define the new layout. Define the layout ID, label, and whether it is enabled (set to 1) or not.

	
Merge a table into the PublishedWeblayoutFiles table in IdcHomeDir/resources/core/tables/std_publishing.htm. This new table describes the files that are created from Content Server templates and then pushed out to the weblayout directory. Specify the necessary skin.css files to push out to each skin directory.

	
Merge a table with the PublishedStaticFiles table in std_publishing.htm. This lists the directories that contain files, such as images, that should be published to the weblayout directory.

5.8 Optimizing the Use of Published Files

You can direct Content Server to bundle published files so that they can be delivered as one, minimizing the number of page requests to the server. In addition, you can optimize file use by referencing published pages using Idoc Script.

5.8.1 Bundling Files

Multiple resources may be packaged together into units called bundles. A bundle is a single file containing one or more published resources. Only JavaScript and css resources should be bundled and only with other resources of the same type. Bundling helps reduce the client overhead when pages are loaded but increases client parse, compile, and execute overhead. Generally, it is recommended to bundle resources that have some thematic similarity or are expected to be included at similar times. For example, if you know that resources A, B, and C are needed on every page, and resources D, E, and F are needed rarely but are all needed together, it is recommended to bundle A, B, and C together and to put D, E, and F into a separate bundle.

Almost all JavaScript resources for the Content Server core are bundled into one of two bundles: yuiBundle.js, which contains script provided by the third-party Yahoo User Interface library, and bundle.js, which contains the rest of the resources.

The PublishedBundles table is used for determining how resources are bundled. Essentially a bundle is identified by its target bundlePath, which is the path name to the bundle (relative to the weblayout directory), and a list of rules detailing which resource classes are included or excluded. A loadOrder value in this table applies only to the order in which the filtering rules are applied, not the order in which the resources appear in the bundle.

	
Note:

The bundling has changed since Oracle Universal Content Management 10g, which used a different table and had a loadOrder value that determined the order of resources in each bundle.

Static weblayout file contents are cached on client machines and on web proxies, significantly lowering the amount of server bandwidth they use. Therefore, the best practice is to use these types of files wherever possible.

However, each static weblayout file requested by the client's browser requires a round-trip to the server just to verify that the client has the most up-to-date version of the file. This occurs even if the file is cached. As the number of these files grows, so does the number of downloads from the server for each page request.

To help minimize the number of round-trips, Content Server can bundle multiple published files so that they are delivered as one. You can disable this feature by setting the following configuration in the server's IntradocDir/config/config.cfg file:

BundlePublishedWeblayoutFiles=false

Bundling is accomplished by using the PublishedBundles table in the

std_publishing.htm file, which Example 5-1 shows.

Example 5-1 PublishedBundles Table in std_publishing.htm File

<@table PublishedBundles@>
<table border=1><caption>
 <tr>
 <td>bundlePath</td>
 <td>includeClass</td>
 <td>excludeClass</td>
 <td>loadOrder</td>
 </tr>
 <tr>
 <td>resources/bundle.js</td>
 <td>javascript:common</td>
 <td></td>
 <td>128</td>
 </tr>
. . .
</table>
<@end@>

The columns in this table are as follows:

	
bundlePath: The eventual location where the bundle is published. This path is relative to the weblayout directory.

	
includeClass: This is used to determine which resources to include in a bundle.

	
excludeClass: This is used to determine which resources to exclude from a bundle.

	
loadOrder: The order in which the includeClass and excludeClass filters are applied.

In the previous example, files of the javascript:common class are published to a single bundle located at resources/layouts/commonBundle.js. The contents of all bundled files that match this class are appended to form a single file to be stored at that location.

5.8.2 Referencing Published Files

Most published files (both bundled and unbundled) must be directly referenced from within HTML to be included in a page. It can therefore be difficult to know exactly which files to include for a given situation, especially when bundling can be enabled or disabled by server administrators. A simple Idoc Script method can be used to easily and transparently include all of the files you need on a given page.

For example, if you write a page that includes all files associated with the javascript:common bundle (as described previously), then do not write HTML that includes all of the files mentioned in the first table in addition to the bundle mentioned in the second, the server is asked for each file. This negates the purpose of bundling because the server is pinged for each file whether it actually exists or not.

Example 5-2 shows Idoc Script code, within the HEAD section for a page, to correctly include these files on the page.

Example 5-2 Idoc Script to Reference a Bundle of Files

<$exec createPublishedResourcesList("javascript:common")$>
<$loop PublishedResources$>
<script language="JavaScript" src="<$HttpWebRoot$><$PublishedResources.path$>" />
</script>
<$endloop$>

This code fragment includes all javascript:common files even if bundling is switched off. If javascript instead of javascript:common is passed, all files whose class starts with javascript are included.

This PublishedResources ResultSet is sorted by loadOrder, so files and bundles with the lowest loadOrder are included first. Files with a greater loadOrder can override JavaScript methods or CSS styles that were declared earlier.

7 Changing System Settings

This chapter describes how to change the basic functionality of Oracle WebCenter Content Server.

This chapter includes the following sections:

	
Section 7.1, "About Changing System Settings"

	
Section 7.2, "Changing System Settings Through the Admin Server"

	
Section 7.3, "Changing System Settings Through the System Properties Application"

	
Section 7.4, "Customizing the Library and System Home Page with the Web Layout Editor"

	
Section 7.5, "Defining Security and Accounts for Users with the User Admin Application"

The instructions in this chapter are for changing system settings on Oracle WebLogic Server. Oracle WebCentr Content can also be deployed to an IBM WebSphere Application Server. For more information, see the Oracle Fusion Middleware Third-Party Application Server Guide.

7.1 About Changing System Settings

Content Server has a number of features that you can set up to change features systemwide according to your needs. For example, you can use the following administration tools within Content Server to customize your content management system settings:

	
Admin Server

	
System Properties utility

	
Web Layout Editor

	
User Admin application

	
Other administration customizations

In addition to changing system setting with these tools, you can change other settings in different ways to meet the needs of your site:

	
Workflows can be designed, customized, and implemented using the Workflow Admin tool available from the Admin Applets menu

	
New custom metadata fields can be created and default values set using the Configuration Manager

	
Customized action screens (such as check-in, search, and check-out) can be created using Content Profiles

7.2 Changing System Settings Through the Admin Server

The Admin Server is a collection of web pages that you can use to configure systemwide settings for Oracle WebCenter Content Server. To access these web pages, choose Admin Server from the Administration tray in the portal navigation bar, which displays the Admin Server main page. From this page, you can check the status of each server that is running, and you can check console output.

For more information about changing system settings through the Admin Server, see "Configuring System Properties" in Oracle Fusion Middleware Administering Oracle WebCenter Content.

7.3 Changing System Settings Through the System Properties Application

The System Properties administration application is used to configure systemwide Oracle WebCenter Content settings for content security, Internet settings, localization, and other types of settings. In the System Properties application, you can set these options:

	
Optional functionality for Content Server

	
Options related to content item security

	
Options related to the Internet and web interaction

	
JDBC connectivity options

	
Functionality such as time zones and IP filters

	
Localization features

	
Directory paths

The application server is the primary tool for setting system properties for Oracle WebCenter Content; however, for some purposes you must use the System Properties application. You do not need administrative-level permissions to set these options; just access to the directory where the instance is installed.

For more information about changing system settings through the System Properties application, see "Running Administration Applications in Standalone Mode" in the Oracle Fusion Middleware Administering Oracle WebCenter Content.

7.4 Customizing the Library and System Home Page with the Web Layout Editor

The Web Layout Editor is used to customize the Library and system home (portal) page. To access this editor, click Web Layout Editor on the Admin Applets page. With the Web Layout Editor, you can change the organization of local web pages in the Library and build new portal pages for your site. You can create links to websites outside your local site.

For more information, see Appendix B, "Building a Website."

7.5 Defining Security and Accounts for Users with the User Admin Application

You can define security groups, aliases, roles, and accounts for the users at your site using the User Admin function. To access this screen, choose Admin Applets from the Administration tray or menu, then click User Admin on the Administration Applets for user page. Options on this screen are used to create aliases, set permissions for security groups, establish roles and permissions associated with those roles, and customize information that is stored about users.

For more information, see "Managing Logins and Aliases" in the Oracle Fusion Middleware Administering Oracle WebCenter Content.

11 Getting Started with Content Server Components

This chapter describes how to work with Oracle WebCenter Content Server components, which are programs used to modify Content Server functionality.

This chapter includes the following sections:

	
Section 11.1, "About Standard, System, and Custom Components"

	
Section 11.2, "Tools for Managing Components"

	
Section 11.3, "Component Files"

	
Section 11.4, "Resources for Assembling Web Pages"

11.1 About Standard, System, and Custom Components

Components are modular programs designed to interact with Content Server at runtime. Standard components, system components, and custom components are included with Content Server to add or change the standard core functionality of Content Server.

11.1.1 Component Files Overview

When you define a custom component, you create or make changes to the following files:

	
The idcshort-product-id_components.hda file, which tells Content Server what components are enabled and where to find the definition file for each component.

	
The component definition (or glue) file, which tells Content Server where to find the resources for the custom component.

	
Different custom resource files, which define your customization to standard Content Server resources.

	
Template files, which define custom template pages.

	
Other files which contain customization to Content Server graphics, Java code, help files, and so on.

For more detailed information about these files, see Section 11.1.3, "About Directories and Files."

Any type of file can be included in a component, but the following file formats are used most often:

	
HDA

	
HTM

	
CFG

	
Java CLASS

If you build or unpackage components in the Component Wizard, or upload and download components in the Component Manager, you work with the following files:

	
A compressed ZIP file used to deploy a component on other Content Server instances.

	
A manifest.hda file that tells Content Server where to place the files that are unpackaged or uploaded from a component ZIP file.

11.1.2 Using Components

Components are modular programs that are designed to interact with Oracle WebCenter Content Server at runtime. The component architecture model is derived from object-oriented technologies, and encourages the use of small modules to customize Oracle WebCenter Content Server as necessary, rather than creation of a huge, all-inclusive (but cumbersome) application.

	
Note:

You can create custom components by manually creating the necessary files and resources. However, the Component Wizard has no limitations compared to the manual method, and using it prevents many common mistakes.

Any type of file can be included in a component, but the following file formats are used most often:

	
HDA

	
HTM

	
CFG

	
Java CLASS

Components are typically used to alter the core functionality of Oracle WebCenter Content Server. For example, you could use a component to perform any of these tasks:

	
Modify the standard security features

	
Change the way search results are requested and returned

	
Enable Oracle WebCenter Content Server to work with a particular system (such as a Macintosh client or a proprietary CAD program)

Using component architecture with Oracle WebCenter Content Server gives you these advantages:

	
You can modify source code without compromising the integrity of the product.

Oracle WebCenter Content Server loads many of its resources from external text files, so you can view the files to analyze how the system works, and then copy and modify the files to your requirements.

	
You can use a custom component on multiple instances across multiple platforms.

When you have created a custom component, you can package it as a ZIP file and load it on other Oracle WebCenter Content Server instances. Many custom components can work on Oracle WebCenter Content Server platforms other than the original development platform.

	
You can turn individual components on and off for troubleshooting purposes.

You can group customizations so that each component customizes a specific Oracle WebCenter Content Server function or area. If you have problems, disabling components one at a time can help you quickly isolate the trouble.

	
You can reinstall or upgrade an Oracle WebCenter Content Server instance without compromising customizations.

Custom components override existing product resources rather than replace them. Replacing the standard Oracle WebCenter Content Server files might not affect your customizations.

Keep the following constraints in mind when deciding whether to use custom components:

	
Custom components change behavior and look-and-feel systemwide. If you want your changes to apply only in limited situations, you might want to consider dynamic server pages.

	
Custom components can be affected by changes to the Oracle WebCenter Content Server core functionality. Because new functionality may change the way your components behave, customizations are not guaranteed to work for future Oracle WebCenter Content Server releases. Whenever you upgrade, you should review and test your custom components.

	
A component may not be necessary for simple customizations. A large number of simple components could become difficult to manage.

Components must be installed and enabled to be used by Oracle WebCenter Content Server. Components provided with Oracle WebCenter Content Server are automatically installed, and they are enabled or disabled by default. Custom components must be installed and enabled to be usable. Several tools are available for working with components:

	
The Component Wizard automates the process of creating custom components. You can use the Component Wizard to create new components, modify existing components, and package components for use on other Oracle WebCenter Content Server instances. For more information, see Section 11.2.1, "Component Wizard."

	
The Advanced Component Manager provides a way to manage custom components in Oracle WebCenter Content Server. By using the Advanced Component Manager, you can add new components and enable or disable components for Oracle WebCenter Content Server. For more information, see Section 11.2.2, "Advanced Component Manager."

	
The ComponentTool is a command-line utility for installing, enabling, and disabling components for Oracle WebCenter Content Server.

For information about component architecture and creation, see Chapter 11, "Getting Started with Content Server Components."

11.1.3 About Directories and Files

The following files are used in component creation:

	
HDA files

	
Custom resource files

	
Manifest file

	
Other files, such as customized site files, the component ZIP file, and custom installation parameter files

In the typical directory structure for WebCenter Content, the files for a component are stored in a component directory, in the DomainHome/ucm/short-product-id/custom/ directory.

Content Server uses a data binder to cache data, such as variable values and lookup keys.

11.1.3.1 HDA Files

A HyperData File (HDA) is used to define properties and tabular data in a simple, structured ASCII file format. It is a text file that is used by Content Server to determine which components are enabled and disabled and where to find the definition files for that component.

The HDA file format is useful for data that changes frequently because the compact size and simple format make data communication faster and easier for Content Server.

The HDA file type is used to define the following component files:

	
Components file (idcshort-product-id_components.hda)

	
Component definition file

	
Manifest file

	
Dynamic table resource file

	
Template resource file

Example 11-1 shows an idccs_components.hda file that points to a component called customhelp.

Example 11-1 idccs_components.hda File for a Component

<?hda charset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name
location
customhelp
custom/customhelp/customhelp.hda
@end

11.1.3.1.1 Elements in HDA Files

Each HDA file contains a header line and one or more sections. The header line identifies the Content Server version, character set, and Java encoding for the HDA file. If an HDA file contains double-byte (Asian language) characters, the correct character set and encoding must be specified so that Content Server can read the file properly. The header line is not required for single-byte characters, but it is a good practice to include it in your HDA files.

Two types of sections, Properties and ResultSet, are relevant to component development. These sections are used to define the properties of the file (name, location, and so on) and the ResultSet, which defines a table or columns and rows of data. A ResultSet often represents the results of a query. All other sections tags are for internal application use only.

Comments are not allowed within a section of an HDA file. However, you can place comments in the HDA file before the first section, between sections, or after the last section. Blank lines within a section of an HDA file are interpreted as a NULL value. Blank lines before the first section, between sections, or after the last section are ignored. None of the section types are mandatory in an HDA file, so unused sections can be deleted.

	
The Properties section contains a group of name/value pairs. For a custom component, the most common name for a Properties section is LocalData, which means that the name/value pairs are valid only for the current HDA file.

You can also define global name/value pairs in a Properties section called Environment, but this section is rarely used. The recommended practice is to define global environment variables in a configuration file, such as config.cfg.

Example 11-2 shows a Properties section from an HDA file.

Example 11-2 Properties Section of an HDA File

@Properties LocalData
PageLastChanged=952094472723
LocationInfo=Directory,Public,
IsJava=1
refreshSubMonikers=
PageUrl=/intradoc/groups/public/pages/index.htm
LastChanged=-1
TemplatePage=DIRECTORY_PAGE
IdcService=PAGE_HANDLER
LinkSelectedIndex=0
PageName=index
HeaderText=This is a sample page. The Page Name must remain index. The Page Properties for this index page should be customized.
PageFunction=SavePage
dSecurityGroup=Public
restrictByGroup=1
PageType=Directory
PageTitle=Content Server Index Page
@end

	
Each ResultSet section of an HDA file defines a table or columns and rows of data. A ResultSet can be used to pass information to a database or to represent the result of a database query. A ResultSet section has the following structure:

	
The first line defines the name of the ResultSet table, using the format @ResultSet resultset_name.

	
The second line defines the number of columns.

	
The next n lines define the column names.

	
The remaining lines define the values in each cell of the table.

	
The last line of the section ends the table, using the format @end.

Example 11-3 shows a ResultSet called Scores that has 4 columns and 3 rows.

Example 11-3 ResultSet Section of an HDA File

@ResultSet Scores
4
name
match1
match2
match3
Margaret
68
67
72
Sylvia
70
66
70
Barb
72
71
69
@end

The following table shows the ResultSet data in a columnar form. A ResultSet can be given any name.

	name	match1	match2	match3
	
Margaret

	
68

	
67

	
72

	
Sylvia

	
70

	
66

	
70

	
Barb

	
72

	
71

	
69

Content Server uses some predefined ResultSets with the following names, which should not be used for the custom component table.

	ResultSet Name	Location	Purpose
	
Components

	
IntradocDir/data/components/

idcshort-product-id_components.hda

	
Defines the name and location of any custom components you have created. You must specify the short product ID (cs, ibr, urm) for short-product-id.

	
IntradocReports

	
IdcHomeDir/resources/core/reports/

reports.hda

	
Specifies the default report templates for Content Server.

	
IntradocTemplates

	
IdcHomeDir/resources/core/templates/

templates.hda

	
Specifies all of the default templates for Content Server (except for search results and report templates).

	
ResourceDefinition

	
DomainHome/ucm/short-product-id/custom/

component_name/component_name.hda

	
Defines resources for a custom component.

	
SearchResultTemplates

	
IdcHomeDir/resources/core/templates/

templates.hda

	
Specifies the default search results templates for Content Server.

11.1.3.1.2 The idccs_components.hda, idcibr_components.hda, or idcurm_components.hda File

The idcshort-product-id_components.hda file is a text file that tells Content Server which components are enabled and where to find the definition file for each component.

The idcshort-product-id_components.hda file is always stored in the IntradocDir/data/components/ directory. You can use Component Wizard, Component Manager, or ComponentTool to make changes to this file if needed.

	
Note:

As of release 11gR1, the components.hda file and edit_components.hda file have been combined into one file called idcshort-product-id_components.hda. If the Admin Server does not find the idcshort-product-id_components.hda file but does find the legacy files, then it will migrate the data from the legacy file and create an idcshort-product-id_components.hda file containing the appropriate data.

Example 11-4 shows an idccs_components.hda file that lists several enabled components, such as schema, configuration migration, and SOAP components.

Example 11-4 idccs_components.hda File for Multiple Enabled Components

@properties LocalData
blDateFormat=M/d/yy
@end
@ResultSet Components
2
name
location
SchemaDCL
custom/SchemaDCL/SchemaDCL.hda
ConfigMigrationUtility
custom/ConfigMigrationUtility/Cmu.hda
Soap
custom/Soap/Soap.hda
@end

11.1.3.1.3 Component Definition Files

A component definition file points to the custom resources that you have defined. This file specifies information about custom resources, ResultSets, and merge rules. Because it serves as the "glue" that holds a component together, the component definition file is sometimes called the glue file.

The definition file for a component is typically named component_name.hda, and it is located in the DomainHome/ucm/short-product-id/custom/component_name/ directory.

	
Note:

Do not confuse the idcshort-product-id_components.hda file with the component_name.hda file. The idcshort-product-id_components.hda file is used to track all installed components. The component_name.hda file contains information that is specific to a single component.

11.1.3.2 Custom Resource Files

Custom resource files define your Content Server customization. They are usually HDA files but some are HTM files.

The custom resource files for a component are typically located in the DomainHome/ucm/short-product-id/custom/component_name/ directory. Some resource files may be placed in subdirectories, such as resources/core/templates/.

Table 11-1 describes these resources.

Table 11-1 Custom Resource Files

	Resource Type	File Type	Contents
	
HTML include

	
HTM

	
Definitions of includes

	
String

	
HTM

	
Localized string definitions

	
Dynamic table

	
HDA

	
Tables for data that changes often

	
Static table

	
HTM

	
Tables for data that seldom changes

	
Query

	
HTM

	
Tables that define queries

	
Service

	
HTM

	
Tables that define service scripts

	
Template

	
HDA

	
Tables that specify location and file name for template pages

	
Environment

	
CFG

	
Configuration variable name/value pairs

For more detailed information about these files, see Section 11.4, "Resources for Assembling Web Pages."

In addition, a template.htm page is used by Content Server to assemble web pages. For more detailed information about the template.hdm file, see Section 17.2.8, "Templates."

A ResultSet HTM table file is used by other resources. A ResultSet table in an HTM file is similar to the ResultSet of an HDA file, except that it uses HTML table tags to lay out the data. Static table resources, service resources, and query resources all use this table format.

A ResultSet table in an HTM file begins with <@table table_name@> and ends with <@end@>. The markup between the start and end tags is an HTML table. Unlike a ResultSet in an HDA file, the number of columns is implied by the table tags.

Any HTML syntax that does not define the data structure is ignored when the table is loaded. Therefore, HTML comments are allowed within tables in an HTM file, and HTML style attributes can be used to improve the presentation of the data in a web browser.

11.1.3.3 Data Binder

Content Server caches data (such as variable values and lookup keys) internally in a data binder. All data in the data binder is categorized according to where it came from and how it was created. When a value is required to fulfill a service request, the data in the data binder is evaluated in the following default order:

	
LocalData

	
ResultSets

	
Environment

This precedence can be changed using Idoc Script functions. For more information, see Appendix A, "Idoc Script Functions and Variables."

11.1.3.3.1 LocalData

The @Properties LocalData section in an HDA file maps to the LocalData category of the data binder. The LocalData information consists of name/value pairs.

LocalData information is maintained only during the lifetime of the Content Server request and response. Unlike information about the server environment, which rarely changes, the LocalData information for each request is dynamic.

From the point of view of an HTTP request, the initial LocalData information is collected from the REQUEST_METHOD, CONTENT_LENGTH, and QUERY_STRING HTTP environment variables. As the service request is processed, the LocalData name/value pairs can be added and changed.

11.1.3.3.2 ResultSets

Each @ResultSet section of an HDA file maps to a named result in the DataBinder object. Some ResultSet can be made active, taking precedence over other ResultSets during a value search. A ResultSet becomes active when the ResultSet is looped on during page assembly. An active ResultSet take precedence over any other ResultSets during a value search of the DataBinder object. When a service request requires data and the value is not found in the LocalData or an active ResultSet, the remaining ResultSets (those that are not active) are searched next.

11.1.3.3.3 Environment

Environment values are placed in the DataBinder object as name/value pairs, which are defined in configuration files such as IntradocDir/config/config.cfg, intradoc.cfg, and environment-type resource files.

11.1.3.4 Manifest File

Manifest files are used to upload or unpackage a component ZIP file on Content Server. This file tells Content Server where to place the individual files that are included in the component ZIP file. A manifest file is created automatically when you build a component in the Component Wizard, or when you download a component using the Admin Server Advanced Component Manager.

All manifest files must be called manifest.hda. The manifest.hda file is included in the component ZIP file along with the other component files. It must be at the top level of the ZIP file directory structure.

The manifest.hda file contains a ResultSet table called Manifest, which consists of two columns:

	
The entryType column defines the type of entry in the manifest file.

	Entry Type	Description	Default Path
	
Classes

	
Java class files

	
DomainHome/ucm/short-product-id/classes/

	
Common

	
Common files

	
DomainHome/ucm/short-product-id/weblayout/common/

	
Component

	
Component resource files

	
DomainHome/ucm/short-product-id/custom/

	
ComponentExtra

	
Associated files, such as a readme

	
DomainHome/ucm/short-product-id/custom/

	
Help

	
Online help files

	
DomainHome/ucm/short-product-id/weblayout/help/

	
Images

	
Graphics files

	
DomainHome/ucm/short-product-id/weblayout/images/

	
Jsp

	
JavaServer Pages

	
DomainHome/ucm/short-product-id/weblayout/jsp/

	
Caution:

Avoid using the entry types Common, Help, Images, and Jsp because they are deprecated in WebCenter Content 11g. WebCenter Content has a publishing engine that pushes files into the weblayout directory from components. If you want the same behavior as in a previous release, use the publishing engine; otherwise, the publishing engine may place files directly into the weblayout directory from a custom component, overwriting existing files. The overwritten files could be permanently lost.

	
The location column defines the directory where the files associated with the entry are installed and specifies the file name for some entry types.

	
For a Component entry type, the location is the path and file name for the definition file. The definition file then tells Content Server which resource files are included in the component.

	
For other entry types, the location can be a path without a file name (to specify all files in a particular subdirectory) or a path with a file name (to specify an individual file).

	
The location should be a path relative to the DomainHome/ucm/short-product-id/custom/ directory. You can use an absolute path, but then the component can be installed only on Content Server instances with the same installation directory path.

Example 11-5 shows a manifest.hda file.

Example 11-5 manifest.hda File

@ResultSet Manifest
2
entryType
location
component
MyComponent/MyComponent.hda
componentExtra
MyComponent/readme.txt
images
MyComponent/
@end

11.1.3.5 Other Files

Your custom components can include any type of file that Content Server uses for functionality or to generate its look and feel.

11.1.3.5.1 Customized Site Files

You can add customized files for your site to change the look or actions of Content Server. For example, the following types of files are often referenced in custom resources:

	
Graphics

Replace the icons, backgrounds, and logos that constitute the standard Content Server interface.

	
Help

With the assistance of Consulting Services, you can customize help files for your content management system.

	
Classes

Java code can change or extend the functionality of Content Server. Java class files must be packaged into directories for placement in the DomainHome/ucm/short-product-id/classes/ directory.

	
Caution:

Avoid placing Graphics and Help files in the weblayout directory manually because your files may be overwritten by the WebCenter Content 11g publishing engine, which pushes files into the weblayout directory from components. If you want the same behavior as in a previous release, use the publishing engine; otherwise, the publishing engine may place files in this directory directly from a custom component, overwriting existing files. The overwritten files could be permanently lost. If you need to place these files in the weblayout directory manually, contact Oracle Consulting Services.

11.1.3.5.2 Component ZIP File

A component ZIP file contains all files that define a Content Server component. It can be unpackaged to deploy the component on other Content Server instances.

11.1.3.5.3 Custom Installation Parameter Files

When you define one or more custom installation parameters, several additional files are created in addition to the files that compose the basic component file structure.

If installation parameters are created for the component, then during the component installation process the component installer automatically places two files in the directory for the component within the data/components/ directory. These files hold the preference data as follows:

	
The config.cfg file: Contains the parameters that can be reconfigured after installation.

	
The install.cfg file: Contains the preference data definitions and prompt answers.

	
Backup ZIP file: A backup file that is created if the component is currently installed and is being reinstalled.

11.1.3.6 Typical Directory Structure

If you use the Component Wizard to create custom components, your files are stored in the appropriate directory.

Different component directories are established for each custom component in the DomainHome/ucm/short-product-id/custom/ directory. Within each component directory, separate subdirectories are established for reports, templates, and resources, all named appropriately (for example, component_name/resources/). The component_name.hda file (the definition file) is stored in the component_name directory.

11.1.4 Development Recommendations

The following sections provide some guidelines to assist you in developing custom components:

	
Section 11.1.4.1, "Creating a Component"

	
Section 11.1.4.2, "Working with Component Files"

	
Section 11.1.4.3, "Using a Development Content Server"

	
Section 11.1.4.4, "Component File Organization"

	
Section 11.1.4.5, "Naming Conventions"

For more detailed information about creating or modifying components, see Oracle Fusion Middleware Administering Oracle WebCenter Content or online help.

11.1.4.1 Creating a Component

If your site needs some functionality in Content Server that the existing components do not provide, you can create a custom component for your Content Server instance.

11.1.4.1.1 How to Create a Custom Component

You can create a custom component in a definition file, then enable the component and apply it to Content Server.

To create and enable a custom component:

	
Create a definition file.

	
Add a reference to the definition file in the idcshort-product-id_components.hda file to enable the component.

	
Restart Content Server to apply the component.

	
Create resources and other files to define your customization. A good approach is to copy, rename, and modify standard Content Server files to create your custom resource files.

	
Test and revise your customization as necessary. You may need to restart Content Server to apply your changes.

	
If you want to package the component for later use or for deployment on other Content Servers instances, build the component and create a component ZIP file.

11.1.4.2 Working with Component Files

Two tools are available for working with component files:

	
Component Wizard

The Component Wizard is a Content Server utility that can help you create and edit component files. You can also use the Component Wizard to package, unpackage, enable, and disable components. For more information about using this utility, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

	
Text editor

Because most component files are plain text files, you can create and edit the files in your favorite text editor.

You should use the Component Wizard as much as possible when working with custom components.

The Component Wizard does several tasks for you and minimizes the amount of work you need to do in a text editor. Using the Component Wizard helps you follow the recommended file structure and naming conventions. The Component Wizard automatically adds a readme text file when you build a component, which helps you document your customization. You should also include comments within your component files.

For information about using the Component Wizard to create components, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

11.1.4.3 Using a Development Content Server

Whenever you are customizing Content Server, you should isolate your development efforts from your production system. Remember to include the same custom metadata fields on your development Content Server as you have defined for your production Content Server.

When you have successfully tested your modifications on a development Content Server, use the Component Wizard to build a component ZIP file and then unpackage the component on your production system.

Remember to restart Content Server after enabling or disabling a component.

If you are having problems with Content Server after you have installed a custom component, disable the component and restart Content Server. If this fixes the problem, you probably need to troubleshoot your component. If the problem is not fixed, you may need to remove the component completely, using the Component Wizard, to determine whether there is a problem with the component or with Content Server.

11.1.4.4 Component File Organization

To keep your custom components organized, follow these file structure guidelines. For more information, see Section 11.1.3.6, "Typical Directory Structure."

	
Note:

If you use the Component Wizard, it creates component directories for you and places the component files in the correct directories.

Place each custom component in its own directory within a directory called DomainHome/ucm/short-product-id/custom/. If your custom component includes resource-type or template-type resources, or both, the component directory should have subdirectories that follow the structure of the IdcHomeDir/data/resources/core/ directory:

	
resources/ to hold HTML include and table resource files

	
resources/lang/ to hold string resource files

	
templates/ to hold template files

	
reports/ to hold report files

When considering files and their organization, keep the following points in mind:

	
Place the definition file for each custom component at the top level of the component's directory.

	
When referring to other files within a component, use relative path names instead of absolute path names. Using relative path names enables you to move the component to a different location without having to edit all of the files in the component.

	
Content Server is a Java-based application, so forward slashes must be used in all path names.

	
Custom components do not have to be stored on the same computer as Content Server, but all component files must be accessible to your Content Server instance.

	
Images and other objects that are referenced by Content Server web pages must reside somewhere in the DomainHome/ucm/short-product-id/weblayout/ directory (so that the web server can access the objects).

11.1.4.5 Naming Conventions

To keep your component files organized and ensure that the files work properly in Content Server, follow these naming conventions for directories, individual files, and file contents:

	
You should give all of your component directories and files unique and meaningful names. Keep in mind that as each component is loaded into Content Server, it overrides any resources with the same file names, so you should use duplicate file names only if you want certain components to take precedence.

	
If you are copying a standard Content Server file, a common practice is to place the prefix custom_ in front of the original file name. This ensures that you do not overwrite any default templates, and your customization is easy to identify.

	
HTM file types should have the .htm extension, and HDA file types should have the .hda extension.

	
If you are creating a new component file with a text editor, like WordPad, place the file name within quotation marks in the Save dialog box so that the proper file extension is assigned to it (for example, myfile.hda). Failure to use quotation marks to define the file name may result in a file name such as myfile.hda.txt.

	
Content Server is case sensitive even if your file system is not. For example, if a file is named My_Template, Content Server does not recognize case variations such as my_template or MY_TEMPLATE.

	
For localized string resources, you must follow the standard file naming conventions for Content Server to recognize the strings. You should also use the standard two-character prefix (cs, sy, ap, or ww) when naming your custom strings. For more information, see Section 1.5.5, "Localized String Resolution."

11.2 Tools for Managing Components

You can use the following tools to manage components:

	
Component Wizard

	
Component Manager

	
Advanced Component Manager

	
ComponentTool

11.2.1 Component Wizard

The Component Wizard utility automates the process of creating custom components, including creating and editing all the files necessary for custom components. You can also use the Component Wizard to modify existing components and to package and unpackage components for use on Content Server instances.

Figure 11-1 shows the interface to the Component Wizard. For more information, see "Creating Components Using the Component Wizard" in Oracle Fusion Middleware Administering Oracle WebCenter Content.

Figure 11-1 Component Wizard Interface

[image: This figure shows the Component Wizard interface screen.]

To access the Component Wizard

	
UNIX operating system: Run ComponentWizard, stored in DomainHome/ucm/short-product-id/bin/.

The Component Wizard main page is displayed.

	
Windows operating system: From the Start menu, choose the instance name, then Utilities, and then Component Wizard.

The Component Wizard main page is displayed.

11.2.2 Advanced Component Manager

The Advanced Component Manager provides a way to manage custom components in Content Server. With the Advanced Component Manager, you can easily enable or disable components or add new components to Content Server.

To use the Advanced Component Manager:

	
In the Administration tray or menu, choose Admin Server.

The Admin Server displays the Component Manager page.

	
In the first paragraph on the Component Manager page, click advanced component manager.

The Admin Server displays the Advanced Component Manager page, which Figure 11-2 shows. This page has lists of enabled and disabled components.

Figure 11-2 Advanced Component Manager Page

[image: This figure shows the Advanced Component Manager screen.]

	
On the Advanced Component Manager page, you can do these tasks:

	
View lists of enabled and disabled components by categories and other filters

	
View details about a selected component

	
Enable components

	
Disable components

	
Install custom components

	
Uninstall custom components

For more information, see "Managing Components" in Oracle Fusion Middleware Administering Oracle WebCenter Content.

11.2.3 ComponentTool

ComponentTool is a command-line utility for installing, enabling, and disabling components in Oracle WebCenter Content Server. After installing a component, ComponentTool automatically enables it. ComponentTool is located in the DomainHome/ucm/cs/bin/ directory.

11.3 Component Files

The idcshort-product-id_components.hda file tells Oracle WebCenter Content which components are enabled and where to find the component definition (glue) file for each component. In 11g Release 1 (11.1.1), this file has three forms, one for each of the WebCenter Content applications: idccs_components.hda (for Content Server), idcibr_components.hda (for Inbound Refinery), and idcurm_components.hda (for Records). The file is always stored in the IntradocDir/data/components/ directory.

You should not create these files manually. Always use the Component Wizard to create your component files.

11.3.1 The idc Product _components.hda File

The idcshort-product-id_components.hda file always includes a ResultSet called Components that defines the name and file path of each definition file. You can use the Component Wizard or the Component Manager to make changes to the components HDA file. For more information, see Chapter 12, "Enabling and Disabling Components for Content Server."

Example 11-6 shows an idccs_components.hda file that specifies two enabled components, MyComponent and CustomHelp, for Content Server.

Example 11-6 idccs_components.hda File

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet Components
2
name
location
MyComponent
custom/MultiCheckin/my_component.hda
CustomHelp
custom/customhelp/customhelp.hda
@end

11.3.2 Components ResultSet

The order that components are listed in the Components ResultSet determines the order that components are loaded when you start Content Server. If a component listed later in the ResultSet has a resource with the same name as an earlier component, the resource in the later component takes precedence.

A Components ResultSet has two columns:

	
The name column provides a descriptive name for each component, which is used in the Component Wizard, Component Manager, and Content Server error messages.

	
The location column defines the location of the definition file for each component. The location can be an absolute path or can be a path relative to the Content Server installation directory.

	
Note:

Always use forward slashes in the location path.

11.3.3 Component Definition (Glue) File

A component definition file, or glue file, points to the custom resources that you have defined. The definition file for a component is named component_name.hda, and it is typically located in the DomainHome/ucm/short-product-id/custom/component_name directory. The Component Wizard can be used to create and make changes to a definition file.

A definition file contains a ResourceDefinition ResultSet and may contain a MergeRules ResultSet, a Filters ResultSet, a ClassAliases ResultSet, or any combination of these ResultSets. Example 11-7 shows a typical component definition file.

Example 11-7 Component Definition File

<?hda jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
classpath=$COMPONENT_DIR/classes.jar
ComponentName=Custom DCL Component
serverVersion=7.3
version=2010_10_22
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

@ResultSet MergeRules
3
fromTable
toTable
column
DCLCustomTemplates
IntradocTemplates
name
DCLColumnTranslationTable
ColumnTranslation
alias
DCLDataSources
DataSources
name
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
@end

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

11.3.3.1 ResourceDefinition ResultSet

The ResourceDefinition ResultSet table defines the type, file name, table names, and load order of custom resources. Example 11-8 shows the structure of a ResourceDefinition ResultSet:

Example 11-8 ResourceDefinition ResultSet

@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

11.3.3.1.1 ResourceDefinition ResultSet Columns

A ResourceDefinition ResultSet consists of four columns:

	
The type column defines the resource type, which must be one of the following values:

	
resource, which points to an HTML include (HTM), string (HTM), dynamic table (HDA), or static table (HTM) resource file.

	
environment, which points to an environment resource (CFG) file.

	
template, which points to a template resource (HDA) file.

	
query, which points to a query resource (HTM) file.

	
service, which points to a service resource (HTM) file.

	
The filename column defines the path and file name of the custom resource file. This can be an absolute path or a relative path. Relative paths are relative to the DomainHome/ucm/short-product-id/custom/component_name directory.

	
The tables column defines the ResultSet tables to be loaded from the resource file. ResultSet names are separated with a comma. If the resource file does not include ResultSets, this value is null. For example, HTML include resources do not include table definitions, so the value for the tables column is always null for an HTML include file.

	
The loadOrder column defines the order in which the resource is loaded. Resources are loaded in ascending order, starting with resources that have a loadOrder of 1. If multiple resources have the same loadOrder, the resources are loaded in the order they are listed in the ResourceDefinition ResultSet. If there are multiple resources with the same name, the last resource loaded is the one used by the system. Normally, you should set the loadOrder to 1, unless there is a particular reason to always load one resource after the others.

11.3.3.2 MergeRules ResultSet

The MergeRules ResultSet table identifies new tables that are defined in a custom component, and specifies which existing tables the new data is loaded into. MergeRules are required for custom template resources but are optional for custom dynamic table and static table resources. MergeRules are not required for custom service, query, HTML include, string, and environment resources.

Example 11-9 shows a MergeRules ResultSet.

Example 11-9 MergeRules ResultSet

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
DCLCustomTemplates
IntradocTemplates
name
1
DCLColumnTranslationTable
ColumnTranslation
alias
1
DCLDataSources
DataSources
name
1
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
1
@end

11.3.3.2.1 MergeRules ResultSet Columns

A MergeRules ResultSet consists of three columns:

	
The fromTable column specifies a table that was loaded by a custom resource and contains new data to be merged with the existing data. To properly perform a merge, the fromTable table must have the same number of columns and the same column names as the toTable table.

	
The toTable column specifies the name of the existing table into which the new data is merged. Usually, the toTable value is one of the standard Content Server tables, such as IntradocTemplates or QueryTable.

	
The column column specifies the name of the table column that Content Server uses to compare and update data.

	
Content Server compares the values of column in fromTable and toTable. For each fromTable value that is identical to a value currently in toTable, the row in toTable is replaced by the row in fromTable. For each fromTable value that is not identical to a value currently in toTable, a new row is added to toTable and populated with the data from the row of fromTable.

	
The column value is usually name. Setting this value to null defaults to the first column, which is generally a name column.

11.3.3.3 Filters ResultSet

The Filters ResultSet table defines filters, which are used to execute custom Java code when certain Content Server events are triggered, such as when new content is checked in or when the server first starts. Example 11-10 shows a typical Filters ResultSet.

Example 11-10 Filters ResultSet

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

11.3.3.4 ClassAliases ResultSet

The ClassAliases ResultSet table points to custom Java class files, which are used to extend the functionality of an entire Content Server Java class. Example 11-11 shows a typical ClassAliases ResultSet.

Example 11-11 ClassAliases ResultSet

@ResultSet ClassAliases
2
classname
location
WorkflowDocImplementor
WorkflowCheck.CriteriaWorkflowImplementor
@end

11.4 Resources for Assembling Web Pages

Resources are the files that define and implement the actual customization you make to Content Server. Resources can be snippets of HTML code, dynamic page elements, queries that gather data from the database, services that perform Content Server actions, or special code to conditionally format information.

The custom resource files for a component are typically located in the DomainHome/ucm/short-product-id/custom/component_name directory. If your component has more than a few resources, it is easier to maintain the files if you place them in subdirectories (such as component_name/resources or component_name/templates) within the component directory.

Always use the Component Wizard to create your resource files.You should not create a resource file manually. There are two ways to edit a resource file after it is created:

	
Component Wizard

You can add, edit, or remove a resource file from a component using the Component Wizard. The Component Wizard provides code for predefined resources that you can use as a starting point for creating custom resources. You can also open resource files in a text editor from within the Component Wizard.

	
Manual editing in a text editor

After creating a resource file with the Component Wizard, you can open the resource file in a text editor and edit the code manually, if necessary.

For more information, see Section 17.2, "Creating Resources for a Component."

	
Note:

You must restart Content Server after changing a resource file.

12 Enabling and Disabling Components for Content Server

This chapter describes how to enable components that have been installed in Oracle WebCenter Content Server and how to disable components.

This chapter includes the following sections:

	
Section 12.1, "About Enabling and Disabling Components"

	
Section 12.2, "Enabling a Component"

	
Section 12.3, "Disabling a Component"

12.1 About Enabling and Disabling Components

By definition, a component is enabled when it is properly defined in the Components ResultSet in the idcshort-product-id_components.hda file. A component is disabled if there is no entry or the entry is not formatted correctly.

12.2 Enabling a Component

There are several ways to enable a component:

	
ComponentTool: Run DomainHome/ucm/short-product-id/bin/ComponentTool to enable a component. For example:

ComponentTool -enable component_name

	
Component Wizard: Choose Enable from the Options menu. For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

	
Component Manager: Select the checkbox next to a component name to enable a server component specified on the Component Manager screen. For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

	
Advanced Component Manager: On the Advanced Component Manager page, select a component name, and then click Enable to enable the component.

12.3 Disabling a Component

There are several ways to disable a component:

	
ComponentTool: Run DomainHome/ucm/short-product-id/bin/ComponentTool to disable a component. For example:

ComponentTool -disable component_name

	
Component Wizard: Choose Disable from the Options menu. For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

	
Component Manager: Clear the checkbox next to a component name to disable a server component on the Component Manager screen. For more information, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

	
Advanced Component Manager: On the Advanced Component Manager page, select a component name, and then click Disable to disable the component.

13 Updating Component Configurations

This chapter provides information about updating the configuration of components in Oracle WebCenter Content Server.

This chapter includes the following sections:

	
Section 13.1, "About Updating Component Configurations"

	
Section 13.2, "Updating a Component Configuration with the Advanced Component Manager"

	
Section 13.3, "Updating a Component Configuration Through the Configuration for instance Screen"

13.1 About Updating Component Configurations

You can update, or modify, the configuration of some Content Server components with the Advanced Component Manager or the Configure for Instance screen, whether the component is enabled or disabled. The Advanced Component Manager has a list of the components whose configuration you can modify in the Update component configuration field. From the Configure for Instance screen, the Update Component Configuration screen is displayed for the specified component if you can modify its configuration, or if you cannot modify it, a message is displayed.

Content Server has Update Component Configuration screens for these components:

	
Folders_g

	
PDF Watermark

	
Content Tracker

	
Content Tracker Reports

	
Site Studio

	
DesktopIntegrationSuite

	
DesktopTag

	
EmailMetadata

13.2 Updating a Component Configuration with the Advanced Component Manager

For information about updating a component configuration with the Advanced Component Manager, see "Modifying a Component Configuration Using the Admin Server" in Oracle Fusion Middleware Administering Oracle WebCenter Content.

13.3 Updating a Component Configuration Through the Configuration for instance Screen

For information about updating a component configuration through the Configuration for instance screen, see "Modifying a Component Configuration Using the Admin Server" in Oracle Fusion Middleware Administering Oracle WebCenter Content.

16 Downloading Custom Components

This chapter describes how to download packaged custom components to Oracle WebCenter Content Server.

This chapter includes the following sections:

	
Section 16.1, "About Downloading Custom Components"

	
Section 16.2, "Downloading a Component from the Advanced Component Manager"

	
Section 16.3, "Downloading a Component from Oracle Technology Network"

16.1 About Downloading Custom Components

You can download custom components for Content Server with the Advanced Component Manager or from Oracle Technology Network.

16.2 Downloading a Component from the Advanced Component Manager

You can use the Advanced Component Manager to download a component for Content Server.

To download a component from the advanced component manager:

	
In the Administration tray or menu, choose Admin Server.

The Admin Server displays the Component Manager page.

	
In the first paragraph on the Component Manager page, click advanced component manager.

This displays the Advanced Component Manager page, which has a list of components available for downloading.

	
Choose the component to be packaged from the Download Component list

	
Click Download to display the File Download screen.

	
Select Save this file to disk, and click OK.

	
In the Save As dialog box, navigate to a directory, change the file name if necessary, and click Save.

16.3 Downloading a Component from Oracle Technology Network

You can download a component for Content Server from Oracle Technology Network (OTN).

To download a component from OTN:

	
In a web browser, go to the OTN website at http://www.oracle.com/technetwork/middleware/downloads/index.html.

	
On the Oracle Fusion Middleware 11g Software Downloads page, click WebCenter Content on the left.

	
On the Oracle WebCenter Content page, click Core Capabilities.

	
On the Oracle WebCenter Content Core Capabilities page, click Download.

	
On the Downloads page, click Individual UCM Component Downloads, and download the component you want.

20 Customizing Disposition Actions

This chapter describes how to customize disposition actions for Oracle WebCenter Content: Records. Disposition actions are used in disposition instructions, which define the sequence of actions to be performed on content during its life cycle.

This chapter includes the following sections:

	
Section 20.1, "About Customizing Disposition Actions"

	
Section 20.2, "Managing Custom Dispositions"

	
Section 20.3, "Disabling Custom Disposition Actions"

	
Section 20.4, "Creating a Custom Disposition Action"

	
Section 20.5, "Creating Disposition Rules for Physical Content"

20.1 About Customizing Disposition Actions

	
Important:

If custom dispositions were previously created using an older version of the Records system, those dispositions should be re-examined and updated to use the newest services and actions. The Action Service parameters have changed from previous versions of this software and any changes to existing custom dispositions are not mapped automatically.

A large number of built-in disposition actions are included, including Cutoff, Destroy, Transfer, Move, Declassify. Your environment may require disposition actions other than the predefined options. Disposition actions can be designed to reflect your organization's specific needs.

Custom disposition actions are based on Oracle WebCenter Content services, which can be called with specific parameters to define the behavior of the disposition actions. For example, you could create a disposition action to automatically retain the last three revisions of content items using the DELETE_ALL_BUT_LAST_N_REVISIONS_SERVICE service with the NumberOfRevisions=3 parameter.

	
Important:

Custom disposition features are available only to users with the Rma.Admin.Customization right. By default, this right is not assigned to any of the predefined roles. You must assign it to a role before this functionality is exposed.

20.2 Managing Custom Dispositions

The following tasks are for managing dispositions:

	
Section 20.2.1, "Creating or Editing a Custom Disposition Action"

	
Section 20.2.2, "Viewing Custom Disposition Action Information"

	
Section 20.2.3, "Deleting a Custom Disposition Action"

20.2.1 Creating or Editing a Custom Disposition Action

To create a custom disposition action:

	
Important:

Creating custom disposition actions requires in-depth technical knowledge of Oracle WebCenter Content. Contact Consulting Services to define custom disposition actions.

	
Permissions:

The Rma.Admin.Customization right is required to perform this task. This right is not assigned by default to any of the predefined roles, which means it must be assigned to a role for this functionality to be exposed.

	
Choose Records then Configure from the Top menu. Choose Disposition Actions then Custom.

	
On the Configure Dispositions page, click Add in the Custom Disposition Action section.

	
On the Create or Edit Disposition Action page, enter a unique ID for the custom disposition action in the Action ID text box.

	
Enter a name for the custom disposition action in the Action Name text box.

	
Enter a description for the custom disposition action in the Brief Description text box.

	
Enter a group name for the custom disposition action in the Group Name text box. The default value for this field is stored in the ww_strings.htm file in the wwOptGroupLabelCustomDispositionActionsList. It is set to Custom Actions by default.

To use a different group name than Custom Actions, modify the string value in the resource file and restart Content Server. Do not change the suggested default value in the Group Name field.

	
Choose the service to be used for the custom disposition action from the Action Service list.

	
(Optional) Specify one or more parameters for the selected action service.

	
(Optional) Select any of the checkboxes as required. Selections include Must Be First, Must Be Last, Require Approval. These actions determine when the custom disposition action will be used and how.

	
Click Create.

A message is displayed saying the disposition action was created successfully, with the action information.

	
Click OK.

The following Action Service Parameters are required for the specific Action Service.

	Disposition/Event	Service Parameters
	
Superseded

	
isScrub=1

	
Delete All Revisions (Destroy Metadata)

	
NumberOfRevisions=0, isDestroy=1, dRevRank=0

	
Delete Revision

	
NumberOfRevisions=0, isDestroy=1

	
Mark Transfer Completed

	
NumberOfRevisions=0, isDestroy=1, dRevRank=0

	
Mark Move Completed

	
NumberOfRevisions=0, isDestroy=1, dRevRank=0

	
Mark Accession Completed

	
NumberOfRevisions=0, isDestroy=1, dRevRank=0

	
Delete Previous Revision

	
NumberOfRevisions=1

	
Delete Old Revision

	
NumberOfRevisions=1

	
Mark Archive Completed

	
NumberOfRevisions=0, isDestroy=1, dRevRank=0

	
Archive Leave Metadata

	
isScrub=1

	
Mark Accession Completed (leave metadata)

	
isScrub=1

	
Mark Move Completed (leave metadata)

	
isScrub=1

	
Mark Transfer Complete (leave metadata)

	
isScrub=1

	
Mark Delete Revision Completed

	
NumberOfRevisions=0, isDestroy=1

	
Delete Complete

	
NumberOfRevisions=0, isDestroy=1

	
Mark Transfer Completed (prompt to keep or delete metadata)

	
NumberOfRevisions=0, isDestroy=1

	
Mark Move Complete (prompt to keep or delete metadata)

	
NumberOfRevisions=0, isDestroy=1

	
Mark Accession Complete (prompt to keep or delete metadata)

	
NumberOfRevisions=0, isDestroy=1

	
Mark Archive Complete (prompt to keep or delete metadata)

	
NumberOfRevisions=0, isDestroy=1

	
Mark Related Content

	
IsMarkAllRelations=1

To edit a custom disposition action:

	
Choose Records then Configure from the Top menu. Choose Disposition Actions then Custom.

	
On the Configure Dispositions page, choose Edit Action from a disposition Actions menu.

	
Make modifications as required on the Create or Edit Disposition Action page, and click Submit Update when done.

A message is displayed saying the disposition action was created successfully, with the action information.

	
Click OK.

20.2.2 Viewing Custom Disposition Action Information

To view the information about a custom disposition action:

	
Permissions:

The Rma.Admin.Customization right is required to perform this task. This right is not assigned by default to any of the predefined roles, which means you must assign it to a role before this functionality is exposed.

	
Choose Records then Configure from the Top menu. Choose Disposition Actions then Custom.

	
On the Configure Dispositions page, click the disposition name to view.

	
When done viewing, click OK.

20.2.3 Deleting a Custom Disposition Action

	
Permissions:

The Rma.Admin.Customization right is required to perform this task. This right is not assigned by default to any of the predefined roles, which means you must assign it to a role before this functionality is exposed.

Custom disposition actions can be deleted only if they are no longer used in the disposition instructions for any category.

To delete a custom disposition action:

	
Choose Records then Configure from the Top menu. Choose Disposition Actions then Custom.

	
On the Configure Dispositions page, choose Delete Action from a disposition's item Actions menu. You can also select the checkbox by the action name and choose Delete from the Table menu.

A message is displayed saying the disposition action was deleted successfully.

	
Click OK.

To delete multiple dispositions, select the checkbox for the dispositions to delete on the Configure Dispositions page, and choose Delete from the Table menu.

20.3 Disabling Custom Disposition Actions

	
Permissions:

The Rma.Admin.Customization right is required to perform this task. This right is not assigned by default to any of the predefined roles, which means you must assign it to a role before this functionality is exposed.

	
Important:

Some dispositions are required for processing of instructions to occur. Disabling a disposition could interfere with the processing of disposition instructions. Always verify ahead of time that it is acceptable to disable a disposition.

To disable a custom disposition action:

	
Choose Records then Configure from the Top menu. Choose Disposition Actions then Disable.

	
On the Disposition Actions Configuration page, select the checkbox next to the actions that should be disabled.

	
Click Submit Update when done.

20.4 Creating a Custom Disposition Action

This example creates a custom disposition action that automatically retains the last three revisions of a content item.

	
Permissions:

The Rma.Admin.Customization right is required to perform this task. This right is not assigned by default to any of the predefined roles, which means you must assign it to a role before this functionality is exposed.

	
Choose Records then Configure from the Top menu. Choose Disposition Actions then Custom.

	
On the Configure Dispositions page, in the Custom Disposition Action section, click Add.

	
Complete the metadata fields as follows on the Create or Edit Disposition Action page:

	
In the Action ID field, type RetainLast3Rev.

	
In the Action Name field, type Retain Last 3 Revisions.

	
In the Brief Description field, type Only keep the last 3 revisions of a content item.

	
In the Group Name field, type Custom.

	
From the Action Service list, choose the wwString name of a disposition action; for example, Notify Author.

	
In the Action Service Parameters field, type NumberOfRevisions=3.

	
Click Create.

The newly created disposition action can now be selected from the list of available disposition actions when creating disposition rules.

20.5 Creating Disposition Rules for Physical Content

Physical items can be assigned retention schedules, which define their life cycle. When creating a physical item you can assign a retention schedule to it. This links the physical item to a set of retention and disposition rules, which specify how long an item should be stored and when and how it should be disposed.

The same retention schedules and disposition rules may be used for physical items as for electronic items, but disposition rules used only for physical items can also be defined.

22 Adding a Mobile Bar Code Reader

This chapter describes how to add a bar code reader for a mobile device.

This chapter includes the following sections:

	
Section 22.1, "About Adding a Mobile Bar Code Reader"

	
Section 22.2, "Installing Bar Code Scanner Software on a Mobile Device"

	
Section 22.3, "Verifying Installation of the Mobile Bar Code Reader"

22.1 About Adding a Mobile Bar Code Reader

You can install bar code scanner software on a mobile device that can be enabled for that functionality. Consult the device documentation for complete details about installing and enabling software on the device.

22.2 Installing Bar Code Scanner Software on a Mobile Device

The following files are needed for installation. Note that Windows Mobile version 5.0 is currently the only supported version:

	
BarcodeUtilityMobile.cab: Installed with the PCM software and usually found at IntradocDir\ucm\urm\config\MobileEdition. This must be installed on the mobile device.

	
The following files to be installed on the computer:

	
Microsoft ActiveSync, version 4.1 or later

	
The .NET Compact Framework 2.0 sp2 Redistributable file. This should already be installed.

	
The Symbol Managed Class Libraries. Download the Symbol Mobility Developer Kit v1.7 for .NET for from the following location:

http://support.symbol.com/support/search.do?cmd=displayKC&docType=kc&externalId=11683&sliceId=&dialogID=485552565&stateId=0%200%207340740

Install the file. After installation, the file is stored on the local disk in C:\Program Files\Symbol Mobility Developer Kit for .NET\v1.7\SDK\Smart Devices\wce500\armv4i.

22.3 Verifying Installation of the Mobile Bar Code Reader

Depending on the type of device and the software downloaded, usage instructions may vary. Some general instructions for use follow. For details about using default scanner wands and for background information about bar codes, see Oracle Fusion Middleware Managing Oracle WebCenter Content.

	
Start the application on the mobile device.

	
A login page opens. After logging in, a Direct Scan window opens on the device.

	
Scan items and click the Process icon.

	
A Results page opens, showing the effects of scanning.

The following menu options are available from the main menu on the Direct Scan window:

	
Real-time processing: Used to process and immediately upload data.

	
Save transaction code: Used to temporarily save a transaction.

	
Options: Used to set different defaults (for example, upload time out or the application locale).

On the Results page, two different views are available: List, to display a text list of all transactions and Detail, a table list of all transactions.

Part VII

Integrating WebCenter Content into Your Environment

This part describes how to integrate Oracle WebCenter Content with enterprise applications.

	
Note:

Content Integration Suite (CIS) has been deprecated. Developers and system integrators are directed to use Remote Intradoc Client (RIDC), which provides a thin communication API for communication with Oracle WebCenter Content Server. For details, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC). For more information, see Section 29, "Using RIDC to Access Content Server."

Part VII contains the following chapters:

	
Chapter 24, "Getting Started with Integrating WebCenter Content into Your Environment"

	
Chapter 25, "Configuring WebCenter Content Web Services for Integration"

	
Chapter 26, "Integrating JavaServer Pages with Content Server"

	
Chapter 27, "Using the IdcCommand Utility to Access Content Server"

	
Chapter 28, "Using the COM API for Integration"

	
Chapter 29, "Using RIDC to Access Content Server"

	
Chapter 30, "Using the Content Server JCR Adapter"

	
Chapter 31, "Configuring Web Services with WSDL, SOAP, and the WSDL Generator"

	
Chapter 32, "Customizing the DesktopTag Component"

24 Getting Started with Integrating WebCenter Content into Your Environment

This chapter describes how to integrate Oracle WebCenter Content with enterprise applications.

This chapter includes the following sections:

	
Section 24.1, "About Integration Methods"

	
Section 24.2, "Overview of Web Services"

	
Section 24.3, "Virtual Folders and WebDAV Integration"

24.1 About Integration Methods

Several methods are available for integrating Oracle WebCenter Content with enterprise applications, such as application servers, catalog solutions, personalization applications, enterprise portals, and client-side software. In general, these integration methods serve to translate or pass methods and associated parameters with the goal of executing Oracle WebCenter Content Server services.

A Content Server service is a window for accessing the content and content management functions within Oracle WebCenter Content. For example, one simple integration option is to reference content that is managed within WebCenter Content by a persistent URL. Some other integration options enable you to use the Java API, the Microsoft Component Object Model (COM) interface, or the ActiveX control.

The focus of this chapter is to present the available integration options, suggest an approach, (like IdcCommand X, or persistent URL, or SOAP), and provide information about where to get the detailed documentation on that approach. Specifically, this chapter provides basic conceptual information about the integration of Oracle WebCenter Content within network system environments using various protocols, interfaces, and mapping services.

For information about using the IdcCommand utility to access Content Server services from other applications, see Chapter 27, "Using the IdcCommand Utility to Access Content Server."

For information about the COM interface, see Chapter 28, "Using the COM API for Integration."

For information about Remote Intradoc Client (RIDC) integration, see Chapter 29, "Using RIDC to Access Content Server."

24.2 Overview of Web Services

Web services reside as a layer on top of existing software systems, such as application servers, .NET servers, and Content Server. Adapted to the Internet as the model for communication, web services rely on the HyperText Transfer Protocol (HTTP) as the default network protocol. You can use web services as a bridge between dissimilar operating systems or programming languages to build applications with a combination of components.

	
Note:

The web services information in this document applies to Oracle WebLogic Server. For information about IBM WebSphere web services, see the Oracle Fusion Middleware Third-Party Application Server Guide.

WebCenter Content supports two ways of using web services to build applications that are integrated with Content Server:

	
WebCenter Content web services together with Oracle WebLogic Server web services, with security configuration and Security Assertion Markup Language (SAML) support (introduced in WebCenter Content 11g)

Content Server provides some web services built into the core product. Oracle WebLogic Server provides SOAP capabilities, and Oracle WebCenter Content Server supports several SOAP requests through Oracle WebLogic Server. For more information, see Chapter 25, "Configuring WebCenter Content Web Services for Integration."

	
Web Services Definition Language (WSDL) and SOAP (Simple Object Access Protocol) files, with or without the WSDL generator component of Content Server (introduced in Oracle Universal Content Management 10g)

The WSDL Generator component, WsdlGenerator, provides integration technologies for accessing the functionality of Content Server. This Content Server system component is installed and enabled by default. The WSDL Generator can create WSDLs for the services of Content Server, or the service calls can be written in SOAP. For more information, see Chapter 31, "Configuring Web Services with WSDL, SOAP, and the WSDL Generator."

With either way of using web services, you can use Oracle Web Services Manager (Oracle WSM) for security. For more information about Oracle WSM, see Chapter 25, "Configuring WebCenter Content Web Services for Integration," and the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

24.3 Virtual Folders and WebDAV Integration

Oracle WebCenter Content Server provides a hierarchical folder interface, the Folders feature, for organizing and managing content in the repository. Content Server also provides the legacy hierarchical folder interface, Contribution Folders. Oracle recommends Folders (the FrameworkFolders component) as the folder interface for WebCenter Content because it resolves performance issues that occur with Contribution Folders (the Folders_g component) and includes other enhancements.

To use a folder interface, you need to enable either the FrameworkFolders component or the Folders_g component. You cannot have both enabled on a Content Server instance. Having both the Folders and Contribution Folders features enabled is not a supported configuration because some other features, such as the CoreWebdav system component, would not work correctly with both enabled. If you have both features enabled after an upgrade, you need to disable one of them.

The CoreWebdav component is installed with Oracle WebCenter Content Server and enabled by default. You can use the CoreWebdav component to author and manage your content remotely, using clients that support the WebDAV (Web-Based Distributed Authoring and Versioning) protocol.

	
A folders interface is required for WebDAV functionality and the WebDAV Client product.

	
The CoreWebdav component enables WebDAV functionality for remotely authoring and managing your content using clients that support the WebDAV protocol. For example, you can use Microsoft Windows Explorer to check out content from the repository, modify the content, and check it in rather than using a web browser interface.

24.3.1 Virtual Folders

The Folders component sets up an interface to Oracle WebCenter Content Server in the form of virtual folders (also called hierarchical folders). Virtual folders enable you to create a multilevel folder structure.

Virtual folders provide two main benefits:

	
Users can find content by drilling down through a familiar folder-type interface.

	
Users can apply default metadata to content items by checking them in through a particular folder.

The following structure is used for the Folders component:

	
Each Oracle WebCenter Content Server instance has a common set of virtual folders. Any change to the folders is applied systemwide.

	
There is one default system-level folder, called Contribution Folders. If you are using a custom folders interface, folders for these products may also appear at the system level of the Folders hierarchy.

	
The system administrator can change the name of a system-level folder, but cannot delete it or add a custom system-level folder except through changes to the database. (Deleting a system-level folder disables it, but does not remove it from the system.)

	
Each folder in the hierarchy contains content items that have the same numeric Folder value, which is assigned automatically upon creation of the folder. Changing the value of the Folder field for a content item places it in a different folder.

	
The number of folders and number of files in each folder can be limited by the system administrator so that virtual folder functions do not affect system performance.

For detailed information about configuring Content Server for WebDAV integration, see Oracle Fusion Middleware Managing Oracle WebCenter Content.

24.3.2 WebDAV Integration

WebDAV (Web-Based Distributed Authoring and Versioning) provides a way to remotely author and manage your content using clients that support the WebDAV protocol. For example, you can use Microsoft Windows Explorer to check in, check out, and modify content in the repository rather than using a web browser interface.

WebDAV is an extension to the HTTP/1.1 protocol that allows clients to perform remote web content authoring operations. The WebDAV protocol is specified by RFC 2518.0.

For more information, see the WebDAV Resources website at

http://www.webdav.org

WebDAV provides support for the following authoring and versioning functions:

	
Version management

	
Locking for overwrite protection

	
Web page properties

	
Collections of web resources

	
Name space management (copy or move pages on a web server)

	
Access control

When WebDAV is used with a content management system such as Content Server, the WebDAV client serves as an alternate user interface to the native files in the content repository. The same versioning and security controls apply, whether an author uses the Content Server web browser interface or a WebDAV client.

In Content Server, the WebDAV interface is based on the hierarchical Folders interface. For more information, see Section 24.3.1, "Virtual Folders."

24.3.2.1 WebDAV Clients

A WebDAV client is an application that can send requests and receive responses using a WebDAV protocol (for example, Microsoft Windows Explorer, Word, Excel, and PowerPoint). Check the current WebDAV client documentation for supported versions. The WebCenter Content WebDAV Client is a different product that enhances the WebDAV interface to Oracle WebCenter Content Server.

You can use WebDAV virtual folders in Windows Explorer to manage files that were created in a non-WebDAV client, but you cannot use the native application to check content in to and out of the Oracle WebCenter Content Server repository.

The Desktop software package also includes a WebDAV Client component and a Check Out and Open component.

24.3.2.2 WebDAV Servers

A WebDAV server is a server that can receive requests and send responses using WebDAV protocol and can provide authoring and versioning capabilities. Because WebDAV requests are sent over HTTP protocol, a WebDAV server typically is built as an add-on component to a standard web server. In Content Server, the WebDAV server is used only as an interpreter between clients and Content Server.

24.3.2.3 WebDAV Architecture

WebDAV is implemented in Oracle WebCenter Content Server by the WebDAV component. The architecture of a WebDAV request follows these steps:

	
The WebDAV client makes a request to Oracle WebCenter Content Server.

	
The message is processed by the web server (through a DLL in IIS).

	
On Oracle WebCenter Content Server, the WebDAV component performs these functions:

	
Recognizes the client request as WebDAV.

	
Maps the client request to the appropriate WebDAV service call on Oracle WebCenter Content Server.

	
Converts the client request from a WebDAV request to the appropriate Oracle WebCenter Content Server request.

	
Connects to the core Oracle WebCenter Content Server and executes the Oracle WebCenter Content Server request.

	
The WebDAV component converts the Oracle WebCenter Content Server response into a WebDAV response and returns it to the WebDAV client.

27 Using the IdcCommand Utility to Access Content Server

This chapter describes how to use the IdcCommand utility to access Oracle WebCenter Content Server services from other applications

This chapter includes the following sections:

	
Section 27.1, "About the IdcCommand Utility"

	
Section 27.2, "Setting Up IdcCommand"

	
Section 27.3, "Running IdcCommand"

	
Section 27.4, "Using the Launcher"

	
Section 27.5, "Calling Services Remotely"

27.1 About the IdcCommand Utility

The IdcCommand utility is a standalone Java application that executes Content Server services. Almost any action you can perform from the Content Server browser interface or administration applets can be executed from IdcCommand.

The program reads a Specifying a Command File, which contains service commands and parameters, and then calls the specified services. A log file can record the time that the call was executed, whether the service was successfully executed, and if there were execution errors.

	
Note:

The IdcCommand utility returns only information about the success or failure of the command. To retrieve information from Oracle WebCenter Content Server in an interactive session, use the Java COM wrapper IdcCommandX, available on Microsoft Windows platforms.

To run the IdcCommand utility, you must specify the following parameters on the command line or in the intradoc.cfg configuration file:

	
A command file containing the service commands and parameters

	
A Content Server user name for a user who has permission to execute the services being called

	
A path and file name for a log file

	
The connection mode (auto, server, or standalone)

Certain commands that cannot be executed in standalone mode. In general, the server performs these commands asynchronously in a background thread. This happens in the update or rebuild of the search index.

For information about using services in custom components, see Chapter 11, "Getting Started with Content Server Components," and the Oracle Fusion Middleware Services Reference for Oracle WebCenter Content.

27.2 Setting Up IdcCommand

To set up IdcCommand, you must specify the following two things:

	
A Specifying a Command File, which specifies the services to be executed and any service parameters.

	
Specifying Configuration Options, which specify the command file and other IdcCommand information. You can set IdcCommand configuration options in two places:

	
In a configuration file, using name/value pairs, as Example 27-1 shows.

Example 27-1 IdcCommand Options in a Configuration File

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt
ConnectionMode=server

	
On the command line, when running IdcCommand, specifying option flags such as these:

Example 27-2 IdcCommand Options on the Command Line

-f newfile.hda -u admin -l C:/domain/newlog.txt -c server

	
Note:

Command-line configuration options override the settings in the configuration file.

IdcCommand is run from a command line. You can specify the Specifying Configuration Options either from the command line or in a configuration file. For more information, see Section 27.3, "Running IdcCommand."

27.2.1 Specifying a Command File

The command file defines the service commands and parameters that are executed by the IdcCommand utility. Command files must follow rules for syntax, precedence, and special tags and characters.

27.2.1.1 Command File Syntax

The command file uses the HDA (hyperdata file) syntax to define service commands.

	
Each service to be executed, along with its parameters, is specified in a @Properties LocalData section.

	
For some services, a @ResultSet section is used to specify additional information.

	
Data from one section of the command file is not carried over to the next section. Each section must contain a complete set of data for the command.

	
Service names and parameters are case sensitive.

Example 27-3 shows a command file that executes the ADD_USER service and defines attributes for two new users.

Example 27-3 Command File for the ADD_USER Service

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
Add users
@Properties LocalData

IdcService=ADD_USER
dName=jsmith
dUserAuthType=Local
dFullName=Jennifer Smith
dPassword=password
dEmail=email@example.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
jsmith
role,contributor,15
@end
<<EOD>>
@Properties LocalData
IdcService=ADD_USER
dName=pwallek
dUserAuthType=Local
dFullName=Peter Wallek
dPassword=password
dEmail=email@example.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
pwallek
role,contributor,15,account,marketing,7
@end
<<EOD>>

27.2.1.2 Precedence

IdcCommand uses precedence to resolve conflicts among the name/value pairs within the LocalData section of the command file. When normal name/value pairs are parsed, they are assumed to be within the @Properties LocalData tag. If the section contains HDA tags, the normal name/value pairs take precedence over name/value pairs within the @Properties LocalData tag.

For example, if foo=x is in a normal name/value pair and foo=y is within the @Properties LocalData tag, the name/value pair foo=x takes precedence because it is outside the tag.

27.2.1.3 Special Tags and Characters

These special tags and characters can be used in a command file.

	Special Character	Description
	
IdcService=service_name

	
Each section of the command file must specify the name of the service it is calling.

	
<<EOD>>

	
The end of data marker. The command file can include one or more sections separated with an end of data marker. For an example, see Section 27.2.1.1, "Command File Syntax."

	
#

	
The pound character placed at the beginning of a line indicates that the line is a comment.

	
\

	
The backslash is an escape character.

	
@Include filename

	
This tag enables you to include content from another file at the spot where the @Include tag is placed. This tag can be used to include a complete HDA file or to include shared name/value pairs. This inclusion takes the exact content of the specified file and places it in the location of the @Include tag. A file can be included as many times as desired and an included file may include other files. However, circular inclusions are not allowed.

27.2.2 Specifying Configuration Options

To run the IdcCommand utility, specify the following parameters on the command line or in the DomainHome/ucm/cs/bin/intradoc.cfg configuration file.

	Parameter	Required?	Command Line Syntax	Configuration File Syntax
	
Command File

	
Yes

	

-f name.txt

	

IdcCommandFile=name.txt

	
User

	
Yes

	

-u sysadmin

	

IdcCommandUserName=sysadmin

	
Log File

	
No

	

-l C:/logs/log.txt

	

IdcCommandLog=C:/logs/log.txt

	
Connection Mode

	
No

	

-c auto

	

ConnectionMode=auto

	
Note:

Command-line configuration options override the settings in the configuration file.

27.2.2.1 Command File

You must specify the name of the command file that contains the service commands and parameters. The command file parameter can specify a full path (such as C:/command_files/command.txt), or it can specify a relative path. For more information, see Section 27.2.1, "Specifying a Command File."

27.2.2.2 User

You must specify an Oracle WebCenter Content Server user name. This user must have permission to execute the services being called.

27.2.2.3 Log File

You can specify a path and file name for an IdcCommand log file. As each command is executed, a message is sent to the log file, which records the time the command was executed and its success or failure status. If the log file already exists, it is overwritten with the new message. The log file can be used to display processing information to the user.

	
If the action performed is successful, a "success" message is written to the log file.

	
If the action performed is not successful, an error message is written to the log file.

	
If no log file is specified, information is logged only to the screen.

27.2.2.4 Connection Mode

You can specify the connection mode for executing the IdcCommand services.

	Connection Mode	Description
	
auto

	
IdcCommand attempts to connect to the Oracle WebCenter Content Server instance. If this fails, services are executed in standalone mode.

This is the default connection mode.

	
server

	
IdcCommand executes services only through Content Server.

	
standalone

	
IdcCommand executes services in a standalone session.

There are certain services that cannot be executed in standalone mode. In general, these services are performed asynchronously by the server in a background thread. For example, this happens during update or rebuild of the search index.

27.3 Running IdcCommand

To run IdcCommand:

	
Create a new IdcCommand working directory.

Use this directory for your command file and configuration file.

	
Create a Specifying a Command File in the working directory to specify the desired service commands.

	
Copy the intradoc.cfg configuration file from the DomainHome/ucm/cs/bin directory into the working directory.

	
Important:

Do not delete the IntradocDir or WebBrowserPath information.

	
Add IdcCommand options to the intradoc.cfg file in the working directory, as Example 27-4 shows.

Example 27-4 IdcCommand Options in the intradoc.cfg File

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt

For more information, see Section 27.2.2, "Specifying Configuration Options."

	
Run the IdcCommand utility from the DomainHome/ucm/cs/bin directory:

IdcCommand.exe

27.4 Using the Launcher

The Launcher is a native C++ application used to manage services in Windows environments and to construct command line arguments and environment settings for the Java VM.

The main operation of the Launcher is to find and read its configuration files, compute any special values, then launch an executable with a command line that it constructs. Configuration files support Bourne Shell-like substitutions, all of which start with the dollar sign ($) followed by an alphanumeric identifier or expression inside

braces ({}).

The Launcher executable is installed in

DomainHome/ucm/native/platform/bin/Launcher. On UNIX systems, symlinks are created in the bin directory to Launcher.sh, a Bourne Shell wrapper that executes the Launcher executable. The purpose of this wrapper is to locate the correct binary Launcher executable for the platform. The term Launcher is used here to refer to the native Launcher executable or to the Launcher.sh Bourne Shell script.

The Launcher or the symlink to Launcher.sh must reside in a directory with a valid intradoc.cfg configuration file and must have the same name as the Java class file to be launched (case sensitive). The Launcher uses this name to set the environment variable STARTUP_CLASS.

On Windows this name is computed by calling GetModuleFileName(). On UNIX systems, it is computed by inspecting argv[0]. The PLATFORM variable is set to the Content Server identifier for the platform. The variable BIN_DIR is set to the directory where the Launcher is located.

The Launcher reads a file named intradoc.cfg from BIN_DIR. This file should contain a value for IntradocDir. The IntradocDir directory is used as the base directory for resolving relative paths. Any unqualified path in this document should be taken as relative to the IntradocDir. Future releases of Content Server may change or remove these variable names.

If the intradoc.cfg file does not contain a value for IdcResourcesDir, the Launcher sets IdcResourcesDir to $IntradocDir/resources. If the Launcher is starting a Windows service, it sets IS_SERVICE to 1. If it is unset, the Launcher also sets PATH_SEPARATOR to the correct character for the platform.

The Launcher reads the intradoc.cfg file first to find the locations of configuration files, then reads all available configuration files in this order:

	
$IdcResourcesDir/core/config/launcher.cfg

	
$BIN_DIR/../config/config.cfg

	
$IntradocDir/config/config.cfg

	
$IntradocDir/config/config-$PLATFORM.cfg

	
$IntradocDir/config/state.cfg

	
$IdcResourcesDir/core/config/launcher-$PLATFORM.cfg

	
$BIN_DIR/intradoc.cfg

	
$BIN_DIR/intradoc-$PLATFORM.cfg

	
All files specified on the command line, using the -cfg option.

	
Tip:

You can assign variable values directly on the command line by using the -cfg option NAME=VALUE.

27.4.1 Quotation Rules

The Launcher uses Bourne Shell-like quotation rules. A string can be inside double quotation marks (") to escape spaces. A backslash (\) can precede any character to provide that character. After a final command line is computed, the Launcher separates it into spaces without quotation marks. Each string is then used without quotation marks as an entry in the argv array for the command.

27.4.2 Computed Settings

After reading the configuration files, the Launcher processes variable substitutions. Some variables can have extra computations to validate directories or files, build command-line argument lists, or construct PATH-like variables.

These special computations are performed for variables based on their type. To set a type for a variable, set TYPE_variable_name=typename in any of the configuration files listed previously.

The following list describes Launcher variable types:

	
file

Example 27-5 shows some file type variables.

Example 27-5 file Launcher Variables

TYPE_PASSWD_FILE=file
PASSWD_FILE_sys5=/etc/passwd
PASSWD_FILE_bsd=/etc/master.passwd

This type looks for a file. If the value of variable_name is a path to an existing file, it is kept. If not, every variable beginning with variable_name_ is checked. The last value, which is a path to an existing file, is used for the new value of variable_name.

In this example PASSWD_FILE is set to /etc/master if /etc/master.passwd exists, or it is set to /etc/passwd if /etc/passwd exists. Otherwise, PASSWD_FILE is undefined.

	
directory

Example 27-6 shows some directory type variables.

Example 27-6 directory Launcher Variables

TYPE_JDK=directory
JDK_java_home=$JAVA_HOME
IdcNativeDir=$IdcHomeDir/native
DEFAULT_JDK_DIR=$OS_DIR/$PLATFORM
JDK_legacy142=$DEFAULT_JDK_DIR/j2sdk1.4.2_04
JDK_default=$DEFAULT_JDK_DIR/jdk1.5.0_07

In this example JDK is set to the same value as the last of the JDK_ variables that is a directory. Typically, this would point at the JDK installed with Oracle Fusion Middleware. Note that JDK_java_home references $JAVA_HOME; if a variable is not defined in any configuration file but is in the environment, the environment value is used.

	
executable

Example 27-7 shows some executable type variables.

Example 27-7 executable Launcher Variables

TYPE_JAVA_EXE=executable
JAVA_EXE_default=java$EXE_SUFFIX
JAVA_EXE_jdk_default=$JDK/bin/java$EXE_SUFFIX

The executable type looks for an executable. It works very much like the file type, but looks through every directory in $PATH for each candidate value. In this example JAVA_EXE is set to the Java executable in the JDK if it exists. Otherwise it is set to the first Java executable in the PATH.

	
list

Example 27-8 shows some list type variables.

Example 27-8 list Launcher Variables

TYPE_JAVA_OPTIONS=list
JAVA_MAX_HEAP_SIZE=384
DEFINE_PREFIX=-D
JAVA_OPTIONS_BIN_DIR=${DEFINE_PREFIX}idc.bin.dir=$BIN_DIR
JAVA_OPTIONS_maxheap=${JAVA_MAX_HEAP_SIZE+-Xmx${JAVA_MAX_HEAP_SIZE\}m}
JAVA_OPTIONS_service=${IS_SERVICE+$JAVA_SERVICE_EXTRA_OPTIONS}

The list type computes a list of options for an executable. Each value that begins with variable_name_ becomes a quoted option, and variable_name is set to the entire list. In this example, JAVA_OPTIONS is set to the string:

"-Didc.bin.dir=/intradocdir/bin/" "-Xmx384m"

	
path

Example 27-9 shows some path type variables.

Example 27-9 path Launcher Variables

IdcResourcesDir=${IdcResourcesDir-$IdcHomeDir/resources}
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

The path type computes a path-like value.The value of each variable starting with variable_name_ is appended to the value of variable_name separated by the value of PATH_SEPARATOR. In this example, BASE_JAVA_CLASSPATH is set to a very long class path.

	
lookupstring

Example 27-10 shows some lookupstring type variables.

Example 27-10 lookupstring Launcher Variables

TYPE_VDK_PLATFORM=lookupstring
PARAMETER_VDK_PLATFORM=${PLATFORM}_${UseVdkLegacySearch+vdk27}
VDK_PLATFORM_aix_vdk27=_rs6k41
VDK_PLATFORM_aix_=_rs6k43
VDK_PLATFORM_hpux_vdk27=_hpux11
VDK_PLATFORM_hpux_=_hpux11
VDK_PLATFORM_freebsd_vdk27=_ilnx21
VDK_PLATFORM_freebsd_=_ilnx21
VDK_PLATFORM_linux_vdk27=_ilnx21
VDK_PLATFORM_linux_=_ilnx21
VDK_PLATFORM_solaris_vdk27=_ssol26
VDK_PLATFORM_solaris_=_ssol26
VDK_PLATFORM_win32_vdk27=_nti40
VDK_PLATFORM_win32_=_nti40

The lookupstring type uses a second parameter to construct a lookup key for the final value. The second parameter is the value of $PARAMETER_variable_name. If this value is undefined, the current value of variable_name is used as the lookup key. In this example, PARAMETER_VDK_PLATFORM has the value of ${PLATFORM}_ or ${PLATFORM}_vdk27 depending on the value of UseVdkLegacySearch.

This value is then used to look up the value of the variable VDK_PLATFORM_${PARAMETER_VDK_PLATFORM} which is then enclosed in quotation marks and assigned to VDK_PLATFORM.

	
lookuplist

Example 27-11 shows some lookuplist type variables.

Example 27-11 lookuplist Launcher Variables

TYPE_STARTUP_CLASS=lookuplist
STARTUP_CLASS_version=Installer --version
STARTUP_CLASS_installer=Installer
STARTUP_CLASS_WebLayoutEditor=IntradocApp WebLayout
STARTUP_CLASS_UserAdmin=IntradocApp UserAdmin
STARTUP_CLASS_RepositoryManager=IntradocApp RepositoryManager
STARTUP_CLASS_Archiver=IntradocApp Archiver
STARTUP_CLASS_WorkflowAdmin=IntradocApp Workflow
STARTUP_CLASS_ConfigurationManager=IntradocApp ConfigMan

The lookuplist type uses a second parameter to construct a lookup key for the final value. The second parameter is the value of $PARAMETER_variable_name. If this value is undefined, the current value of variable_name is used as the lookup key.

Unlike lookupstring, lookuplist does not enclose the final value in quotation marks. For this example, the current value of STARTUP_CLASS is version. STARTUP_CLASS is replaced with the value Installer --version.

27.4.3 Launcher Environment Variables

After processing the computed settings, the Launcher iterates over all variables that begin with the string EXPORT_. The value of each variable is used as an environment variable name, which has the value of the second half of the EXPORT_ variable assigned. For example, EXPORT_IDC_LIBRARY_PATH=LD_LIBRARY_PATH exports the value of the IDC_LIBRARY_PATH variable with the name LD_LIBRARY_PATH.

The variable JAVA_COMMAND_LINE is used to get the command line. Any command line arguments to the Launcher that have not been consumed are appended to the command line. On UNIX systems, the command line is parsed and quoting is undone and then execv is called. On Windows, a shutdown mutex is created and CreateProcess is called with the command line. Care should be taken because CreateProcess does not undo backslash-quoting.

The principal mechanism for debugging the Launcher is to add the flag -debug before any arguments for the final command. You can also create a file named $BIN_DIR/debug.log which triggers debug mode and contain the debug output.

The Launcher has knowledge of the following configuration entries, which it either sets or uses to control its behavior. Note that these configuration variables might change or be removed in future releases of Content Server:

	
IDC_SERVICE_NAME: the name of the win32 service used for service registration, unregistration, startup, and shutdown.

	
IDC_SERVICE_DISPLAY_NAME: the display name of the win32 used for service registration.

	
IntradocDir: the base directory for relative path names.

	
IdcBaseDir: an alternate name for IntradocDir.

	
IdcResourcesDir: set to $IdcHomeDir/resources if otherwise undefined.

	
IdcNativeDir: defaults to $IdcHomeDir/native if otherwise unset.

	
PATH_SEPARATOR: set to either colon (:) or semi-colon (;) if otherwise unset.

	
STARTUP_CLASS: set to the name of the Launcher executable.

	
MUTEX_NAME: the name used to create a shutdown mutex on win32.

	
BEFORE_WIN_SERVICE_START_CMD: if set, is a command line that is executed before a win32 service starts.

	
UseRedirectedOutput: if set tells the Launcher on win32 to redirect the output from the Java VM to a file.

	
ServiceStartupTimeout: the time out used for waiting for a Java process to successfully start on win32.

	
Tip:

By using Launcher.exe, changing the status.dat file, and altering the value of the JVM command line, you could theoretically run any Java program as a Windows service. This is not recommended for normal use, but it does explain some ways you could configure the Launcher.

27.4.4 User Interface

The UI for the Launcher is the same as the application it launches. For example, if the Launcher is renamed to IntradocApp, the following command-line arguments are specified to launch the Web Layout Editor:

IntradocApp WebLayout

This launches the Web Layout Editor as a standalone application.

By default, the application is launched without console output. However, when launching IdcServer, IdcAdmin, IdcCommandX, or the Installer, Java output is printed to the screen. In all other cases, the output is suppressed for a cleaner interface.

For some applications, such as the Batch Loader and the Repository Manager, it is desirable to view the Java output from the application. To force the Launcher to dump the Java output to the screen, use the -console flag in this manner:

IntradocApp RepMan -console

The output is now written to the console from which the Repository Manager was launched.

If the Launcher is renamed IdcServer, BatchLoader, SystemProperties, or any other Java class that requires no additional parameters, it can be launched with a simple double-click. In other cases, a shortcut can be used to launch them by double-clicking.

27.4.5 Configuring the Launcher

To use the Launcher, you must first rename the Launcher.exe file to an executable with the same name as the class file to be launched. Typical examples include IdcServer.exe and IntradocApp.exe.

	
Note:

If you want to make a custom application, you must create a custom directory and rename the Launcher.exe file to the service that is to be launched. A valid intradoc.cfg file must be in the same directory as the executable. The only required parameter is IntradocDir; however, you can include other entries to alter the way the Java application is launched.

27.4.6 Configuration File Example

You can modify the configuration file for the applications you need to run. Example 27-12 shows configuration file entries that are sufficient to launch nearly all Content Server applications.

Example 27-12 Configuration File Entries for Content Server Applications

<?cfg jcharset="Cp1252"?>
#Content Server Directory Variables
IntradocDir=C:/domain/idcm1/
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

Other applications, such as Oracle WebCenter Content: Inbound Refinery, require additional classes in the class path. This file can also be modified to enable Content Server to be run with different Java Virtual Machines.

The CLASSPATH is designed to look for class files in order of the listed entries. In other words, the Launcher will search the entire DomainHome/ucm/idc/native directory before it looks in the resources directory or server.zip file. This is desirable if the users want to overload Java classes without patching the ZIP file.

Additionally, the Launcher can be used to install, uninstall, and run Java applications as Windows Services, if they follow the correct API for communicating back to the Launcher. For more details on how to make any Java application run as a Windows service with the Launcher, see the source code for IdcServer.java or IdcAdmin.java.

The COMPUTEDCLASSPATH is used to add class files to the CLASSPATH that the Launcher uses. To add class files, override this flag.

	
Note:

The intradoc.cfg file is usually altered to include the locations of JDBC drivers for particular databases upon installation. If you want to use an alternate JDBC driver, place it outside of the IdcHomeDir directory for Content Server, and alter the JDBC_JAVA_CLASSPATH_customjdbc entry in the intradoc.cfg file with the location of the driver.

Example 27-13 shows a command to run Content Server with the IBM virtual machine on a Windows operating system.

Example 27-13 Command for Running Content Server with a Custom JVM

#customized for running the IBM VM
JAVA_EXE=full path

When using a custom JVM, specify the full path to the Java executable file to be used.

	
Caution:

Avoid overriding the JVM command line. Customization is more complicated because of the custom class loader. If you do override the JVM command line, start with the $IdcHomeDir/resources/core/config/launcher.cfg file.

You can set JAVA_COMMAND_LINE_SELECTION entry in the configuration file to idcclassloader or traditional.

If you choose to change which JVM you are using, and if that VM has all the standard Sun SDK JAR files, then it is better to use the J2SDK configuration entry to relocate the root directory of the SDK directory rather than use JAVA_EXE to specify the location of the Java executable. (This is not applicable for the IBM VM.)

The J2SDK variable changes the directory where the Sun SDK libraries are found (such as tools.jar). If you change this entry without setting the JAVA_EXE entry, then Java executables are assumed to be in the bin directory of the path in J2SDK. The default value for J2SDK is ...\shared\os\win32\j2sdk1.4.2_04.

To add a value to JAVA_OPTIONS, use JAVA_OPTIONS_server=-server or another similar value.

The following table describes commonly used command-line options. Those options noted with an asterisk (*) are available on a Windows operating system only. Unmarked options are available for a Windows or UNIX operating system.

	Option	Description
	
-console

	
* Forces the Launcher to keep a Windows console window open so that the Java output and error streams are printed to the console.

	
-debug

	
Shows paths and variables in use at startup, and startup errors. Also enables Java debugging in Content Server; when repeated, this increases verbosity.

	
-fileDebug

	
Similar to the -debug option but this option dumps debug data to the debug.log file. It is usually only set in JAVA_OPTIONS or JAVA_SERVICE_EXTRA_OPTIONS in the intradoc.cfg file to debug Windows services.

	
-install

	
* Used to install the Java application referred to by the Launcher as a Windows Service.

	
-install_autostart

	
* Similar to the -install option but this option installs the application to start when the server starts.

	
-uninstall

	
* Used to uninstall the Java application referred to by the Launcher as a Windows Service.

	
-remove

	
* Same as -uninstall.

	
-dependent service-name

	
* Makes the Windows service dependent on whether the service-name service is also running.

This command is useful when you want to make a dependent call for each service.

For example, if you want to launch a database before starting Content Server, you can specify the Content Server startup to be dependent on the database startup.

	
-dependent user password

	
* Used with -install, installs the service with the credentials of the user specified by user with password password.

This command will check the user regardless of the credentials, but may not install the service. The credentials of the user need to extend to the service for the auto-start to run the service automatically.

For certain services, such as Inbound Refinery, the last flag is required so that the service can run with higher permissions. The user name must be in the typical Microsoft format DOMAIN\User. Once users change passwords, the service will not be able to log in, and therefore will not run.

	
-help

	
Provides verbose output on Launcher use.

	
-version

	
Displays the version number for the Launcher and exits.

	
-asuser user password

	
* Used during an install to install a service as a specified user with a specific password.

	
-exec path _name

	
Overrides the argv[0] setting. Used by the Launcher.sh to specify the target path_name because the target of the symlink does not know its source.

	
-cfg configfilename

	
Specifies additional config files to read before determining computed settings.

	
-idcServiceName servicename

	
* Specifies the name of the Windows service. This can used with -remove to uninstall another Content Server service without using that Content Server Launcher (for example, if an entire installation directory has been removed).

	
Tip:

To customize the class path to alter the system path to load Oracle .dll files, you can set the path as follows:

IDC_LIBRARY_PATH_customfiles=/path-to-customfiles

Custom shared objects and .dll files must not be installed into IdcHomeDir.

If you want to load custom .dll files, you should put them in the IdcHomeDir/native/win32/lib directory.

27.5 Calling Services Remotely

To use services remotely, you must have these files on the remote system:

	
DomainHome/ucm/cs/bin/IdcCommand.exe

	
DomainHome/ucm/cs/bin/intradoc.cfg (same file as on Oracle WebCenter Content Server)

	
IntradocDir/config/config.cfg

In addition, the following configuration entries must be defined in the #Additional Variables section of the config.cfg file on the remote system:

	
IntradocServerPort=4444

	
IntradocServerHostName=IP or DNS

29 Using RIDC to Access Content Server

This chapter describes how to initialize and use Remote Intradoc Client (RIDC), which provides a thin communication API for communication with Oracle WebCenter Content Server. For more information, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

The Remote Intradoc Client (RIDC) can be downloaded from the Oracle Technology Network (OTN) at http://www.oracle.com/technetwork/index.html.

	
Note:

Remote Intradoc Client (RIDC) 11gR1 (11.1.1.6.0 or later) requires Java Runtime Environment (JRE) 1.6 or later. The current Java JRE/JDK can be downloaded from the Oracle Technology Network (OTN) at http://www.oracle.com/technetwork/index.html.

This chapter includes the following sections:

	
Section 29.1, "About Remote Intradoc Client"

	
Section 29.2, "Initializing Connections"

	
Section 29.3, "Configuring Clients"

	
Section 29.4, "Authenticating Users"

	
Section 29.5, "Using Services"

	
Section 29.6, "Handling Connection Pooling"

	
Section 29.7, "Sending and Receiving Streams"

	
Section 29.8, "Reusing Binders for Multiple Requests"

	
Section 29.9, "Setting User Security"

	
Section 29.10, "Using RIDC Filters"

29.1 About Remote Intradoc Client

Remote Intradoc Client (RIDC) is a thin communication API for talking to Content Server. It's main functionality is to provide the ability to remotely execute Content Server services. In addition, RIDC handles things like connection pooling, security, and protocol specifics.

Key Features

Remote Intradoc Client (RIDC) has these features:

	
Supports Intradoc socket-based communication and the HTTP and JAX-WS protocols.

	
Supports Secure Socket Layer (SSL) communication with Content Server.

	
Provides client configuration including setting the socket time outs, connection pool size, and so on.

	
RIDC objects follow the standard Java Collection paradigms.

Supported Protocols

Remote Intradoc Client (RIDC) 11gR1 (11.1.1.7.0) supports the idc, idcs, http, https, and jax-ws protocols.

Intradoc: The Intradoc protocol communicates to the Content Server over the over the Intradoc socket port (typically 4444). This protocol requires a trusted connection between the client and Content Server and will not perform any password validation. Clients that use this protocol are expected to perform any required authentication themselves before making RIDC calls. The Intradoc communication can also be configured to run over SSL.

HTTP: RIDC can create an HTTP connection to Content Server using one of three supported HTTP client packages:

	
Oracle HTTPClient

	
Apache HttpClient version 3 (the default)

	
Apache HttpClient version 4

Unlike Intradoc, this protocol requires valid user name and password authentication credentials for each request.For details, see Section 29.1.1, "HttpClient Libraries". For additional information, see the Jakarta Commons HttpClient documentation on the HttpClient Home page of the Apache HttpClient website at

http://hc.apache.org/

JAX-WS: The JAX-WS protocol is supported only in Oracle WebCenter Content 11g with a properly configured Content Server instance and the RIDC client installed. JAX-WS is not supported outside this environment.

For more information about JAX-WS, see Oracle Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server and Oracle Fusion Middleware Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server. Also see the Java API for XML Web Services (JAX-WS) documentation on the Java Community Process website:

http://www.jcp.org/

Supported URL Formats

The following table shows the URL formats that are supported.

	URL	Description
	
idc://localhost:4444

	
Uses the Intradoc port; requires only the hostname and the port number.

	
idcs://localhost:4443

	
Uses SSL over the Intradoc port; requires extra configuration to load the SSL certificates.

	
http://localhost:16200/cs/idcplg

	
Specifies the URL to the Content Server CGI path.

	
https://localhost:16200/cs/idcplg

	
Uses SSL over HTTP; requires extra configuration to load the SSL certificates.

	
http://wlsserver:16200/idcnativews

	
Uses the JAX-WS protocol to connect to the Content Server.

Required Environments

The following table summarizes the environment RIDC needs to support each connection type.

	URL	Description
	
idc://

	
	
oracle.ucm.ridc-11.1.1.jar

	
idcs:/

	
	
oracle.ucm.ridc-11.1.1.jar

	
SSL certificate configuration

	
http:/

	
	
oracle.ucm.ridc-11.1.1.jar

	
HttpClient libraries

	
https:/

	
	
oracle.ucm.ridc-11.1.1.jar

	
HttpClient libraries

	
SSL certificate configuration

	
jax-ws

	
	
Oracle shiphome having WLS and JRF stacks

29.1.1 HttpClient Libraries

RIDC requires supporting HTTP client libraries to communicate with the web server attached to the Content Server instance using an HTTP connection. Currently three libraries are supported:

	
Oracle HTTPClient

	
Apache (Jakarta Commons) HttpClient version 3

	
Apache (HttpComponents) HttpClient version 4

Apache HttpClient version 3 is the default.

To request the Oracle HttpClient in Java code:

IdcClient idcClient = manager.createClient("http://localhost/cs/idcplg");
idcClient.getConfig ().setProperty ("http.library", "oracle");

To request Apache HttpClient version 4 in Java code:

IdcClient idcClient = manager.createClient("http://localhost/cs/idcplg");
idcClient.getConfig ().setProperty ("http.library", "apache4");

If you are creating a new RIDC application using the JDeveloper extension, you can add to your connection, in the Configuration Parameters section, the parameter http.library with an appropriate value, such as apache4. For additional information, see the Jakarta Commons HttpClient documentation on the HttpClient Home page of the Apache HttpClient website at

http://hc.apache.org/

If you are in a Site Studio for External Applications (SSXA) application in JDeveloper, because there is no user interface, you need to create your connection and save it without testing the connection first. Then open the connections.xml file in the Connections > Descriptors > ADF META-INF node. Add the StringRefAddr section (shown in Example 29-1) to the connections.xml file, and save the file.

Example 29-1 Connection Example in connections.xml

<Reference name="sample"
 className="oracle.stellent.ridc.convenience.adf.mbeans.IdcConnection" xmlns="">
 <Factory className=
 "oracle.stellent.ridc.convenience.adf.mbeans.IdcConnectionFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="oracle.stellent.idc.connectionUrl">
 <Contents>idc://localhost:4444</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="oracle.stellent.idc.idcServerURL">
 <Contents>http://localhost/cs/idcplg</Contents>
 </StringRefAddr>

 <StringRefAddr addrType="oracle.stellent.idc.http.library">
 <Contents>apache4</Contents>
 </StringRefAddr>

 </RefAddresses>
</Reference>

Note that the connection types for SSXA and RIDC are similar:

	
When you are using SSXA connections in JDeveloper, the addrType value in the connections.xml file is oracle.stellent.idc.http.library.

	
When you are using RIDC connections in JDeveloper the addrType value in the connections.xml file is oracle.stellent.ridc.http.library.

29.1.2 Convenience Classes

There are some patterns of actions that many applications perform using RIDC. The convenience package supplies some of these for reuse. The classes in the convenience package space are consumers of the RIDC code and as such don't add any new functionality. They can be thought of as a new layer on top of RIDC.

For information about using convenience classes, see Section 29.9, "Setting User Security."

29.2 Initializing Connections

This section provides sample code to initialize an Intradoc connection, an HTTP connection, and code that initializes a JAX-WS client.

The code in Example 29-2 initializes an Intradoc connection.

Example 29-2 Intradoc Connection Initialization

// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the intradoc protocol
IdcClient idcClient = manager.createClient("idc://localhost:4444");

The code in Example 29-3 initializes an HTTP connection. The only difference from an Intradoc connection is the URL.

Example 29-3 HTTP Connection Initialization

// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the HTTP protocol
IdcClient idcClient = manager.createClient("http://localhost:16200/cs/idcplg");

The code in Example 29-4 initializes a JAX-WS client. The URL includes the idcnativews web context root. This web context root (by default) is used by two web services exposed by Content Server: the login service and the request service.

Example 29-4 JAX-WS Client Initialization

// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the JAXWS protocol
IdcClient idcClient = manager.createClient
 ("http://wlsserver:16200/idcnativews");

29.3 Configuring Clients

Configuration of the clients can be done after they are created. Configuration parameters include setting the socket timeouts, connection pool size, and so on. The configuration is specific to the protocol; if you cast the IdcClient object to the specific type, then you can retrieve the protocol configuration object for that type.

29.3.1 Configuring Clients for Intradoc Connections

The code in Example 29-5 sets the socket time-out and wait time for Intradoc connections.

Example 29-5 Client Configuration for Intradoc Connections

// build a client as cast to specific type
IntradocClient idcClient =
 (IntradocClient)manager.createClient("http://localhost/cs/idcplg");

// get the config object and set properties
idcClient.getConfig().setSocketTimeout(30000); // 30 seconds
idcClient.getConfig().setConnectionSize(20); // 20 connections

29.3.2 Configuring SSL

Remote Intradoc Client (RIDC) allows Secure Socket Layer (SSL) communication with Content Server using the Intradoc communication protocol. The typical port used is 4444. For more information about configuring SSL and enabling ports, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

For SSL communication, you must install and enable the SecurityProviders component in the Content Server instance that you want to access. You must configure Content Server for SSL communication with a new incoming provider, and specify the truststore or keystore information. You must have a valid keystore or trust manager with signed, trusted certificates on both the client and Content Server.

Oracle does not provide signed certificates. For most implementations, you will want a certificate signed by a universally recognized Certificate Authority.

To configure SSL communication with Content Server, you need to do these tasks:

	
Install and enable the SecurityProviders component. The SecurityProviders component must be installed and enabled in the Content Server instance that you want to access with SSL communication.

This component is installed and enabled by default in Oracle WebCenter Content Server 11gR1.

	
Configure an incoming provider for SSL communication.

For more information about configuring SSL, see Oracle Fusion Middleware Administering Oracle WebCenter Content.

	
Create self-signed key pairs and certificates.

The code in Example 29-6 uses the IDC protocol over a Secure Socket (SSL).

Example 29-6 IDC Protocol over SSL

// build a secure IDC client as cast to specific type
IntradocClient idcClient = (IntradocClient)
 manager.createClient("idcs://localhost:4443");

// set the SSL socket options
config.setKeystoreFile("ketstore/client_keystore"); //location of keystore file
config.setKeystorePassword ("password"); // keystore password
config.setKeystoreAlias("SecureClient"); //keystore alias
config.setKeystoreAliasPassword("password"); //password for keystore alias

29.3.3 Configuring JAX-WS

To make a JAX-WS connection, the RIDC client and Oracle WebCenter Content Server must be configured with compatible client and service web service policies, respectively.

For the RIDC client, you can either set an explicit client policy (LPA mode) using jaxwsConfig.setClientSecurityPolicy(...) or inherit a GPA client policy, provided the application consuming RIDC is deployed to an Oracle WebLogic Server domain with a GPA policy for ws-client correctly configured and targeted.

A service policy can be directly attached to the Oracle WebCenter Content web services (IdcWebLoginPort) end-point (LPA mode), or a GPA ws-service policy can be configured for the domain and inherited by the service.

29.3.3.1 Setting LPA Mode for a Service

You can set LPA mode for a service with Oracle Enterprise Manager Fusion Middleware Control.

To set LPA mode for a service with Fusion Middleware Control:

	
Log in to Oracle Enterprise Manager 11g Fusion Middleware Control.

	
In the navigation tree on the left, expand Application Deployments, and click Oracle UCM Native Web Services.

	
From the Application Deployment drop-down menu on the Oracle UCM Native Web Service page, choose Web Services.

	
Under Web Service Details on the Web Services (Oracle Infrastructure Web Services) page, click the Web Service Endpoints tab.

	
Click IdcWebLoginPort in the Endpoint Name column.

	
On the IdcWebLoginPort (Web Service Endpoint) page, click the OWSM Policies tab.

	
Under Directly Attached Policies , click Attach/Detach, and choose an appropriate available policy; for example, oracle/wss_saml_or_username_token_service_policy.

29.3.3.2 Setting a GPA Service Policy for a Domain

You can configure inheritance of a GPA policy with WebLogic Scripting Tool (WLST) commands.

To set a GPA ws-service policy for a domain with WLST:

	
Initialize the WebLogic Scripting Tool (WLST), using the WebLogic Server Administration Scripting Shell:

(/u01/app/oracle/product/Middleware/oracle_common/common/bin)% ./wlst.sh

...

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

	
Invoke a sequence of commands similar to the following ones, which are for a domain named base_domain:

$MW_HOME/Oracle_ECM1/common/bin/wlst.sh
connect(username='weblogic',password='welcome1',url='t3://localhost:7001')
beginRepositorySession()
createPolicySet('base_domain-ws-service','ws-service','Domain("base_domain")')
attachPolicySetPolicy('oracle/wss_saml_or_username_token_service_policy')
validatePolicySet()
commitRepositorySession()
listPolicySets()
exit()

	
Verify that the GPA service policy has been set:

	
Wait a few minutes for the GPA service policy to be picked up by IdcWebLoginPort.

	
Inspect the WSDL and look for wsp:PolicyReference to see if changes have been applied:

http://server:16200/idcnativews/IdcWebLoginPort?WSDL

For more information about setting a GPA web service client policy, see Example 29-7 and Example 29-8.

29.3.3.3 Setting a GPA Client Policy for a Domain

To determine GPA policy for a ws-client that will be leveraged by RIDC over JAX-WS should no explicit LPA be set, initialize the WebLogic Scripting Tool (WLST) and use the WebLogic Server Administration Scripting Shell.

The code in Example 29-7 provides an example.

Example 29-7 Determining GPA Policy with the WebLogic Scripting Tool

(/u01/app/oracle/product/Middleware/oracle_common/common/bin)% ./wlst.sh

...

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline> connect('weblogic','welcome1','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain 'base_domain'.

wls:/base_domain/serverConfig> help('wsmManage')

Operations that provide support to manage the global policy attachments and
Oracle MDS repository.

 help('abortRepositorySession')
 Abort the current repository session,
 discarding the changes made to repository.
 help('attachPolicySet')
 Attach a policy set to the specified resource scope.
 help('attachPolicySetPolicy')
 Attach a policy to a policy set using the policy's URI.
 help('beginRepositorySession')
 Begin a session to modify the repository.
 help('clonePolicySet')
 Clone a new policy set from an existing policy set.
 help('commitRepositorySession')
 Write the contents of the current session to the repository.
 help('createPolicySet')
 Create a new, empty policy set.
 help('deletePolicySet')
 Delete a specified policy set.
 help('describeRepositorySession')
 Describe the contents of the current repository session.
 help('detachPolicySetPolicy')
 Detach a policy from a policy set using the policy's URI.
 help('displayPolicySet')
 Display the configuration of a specified policy set.
 help('enablePolicySet')
 Enable or disable a policy set.
 help('enablePolicySetPolicy')
 Enable or disable a policy attachment
 for a policy set using the policy's URI.
 help('exportRepository')
 Export a set of documents from the repository into a supported ZIP archive.
 help('importRepository')
 Import a set of documents from a supported ZIP archive into the repository.
 help('listPolicySets')
 Lists the policy sets in the repository.
 help('migrateAttachments')
 Migrates direct policy attachments to global policy attachments
 if they are identical.
 help('modifyPolicySet')
 Specify an existing policy set for modification in the current session.
 help('resetWSMPolicyRepository')
 Clean the Oracle MDS repository and re-seed with the current set
 of WSM policies.
 help('setPolicySetDescription')
 Specify a description for the policy set selected within a session.
 help('upgradeWSMPolicyRepository')
 Add newly introduced WSM policies to the Oracle MDS repository.
 help('validatePolicySet')
 Validate an existing policy set in the repository or in a session.

wls:/base_domain/serverConfig> listPolicySets()
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the root.
For more help, use help(domainRuntime)

Global Policy Sets in Repository:
 base-domain-ws-client

wls:/base_domain/serverConfig> displayPolicySet('base-domain-ws-client')

Policy Set Details:

Name: base-domain-ws-client
Type of Resources: Web Service Client
Scope of Resources: Domain("base_domain")
Description: Global policy attachments for Web Service Client resources.
Enabled: true
Policy Reference: security : oracle/wss10_saml_token_client_policy, enabled=true

The code in Example 29-8 sets the ws-client GPA policy.

Example 29-8 Add GPA for the Web Service Client

add GPA for the web service client assuming domain name is base_domain
beginRepositorySession()
createPolicySet('base_domain-ws-client','ws-client','Domain("base_domain")')

assuming service policy is hardcoded to
oracle/wss11_saml_token_with_message_protection_service_policy
and that we want the RIDC client to leverage client policy:
oracle/wss11_saml_token_with_message_protection_client_policy
attachPolicySetPolicy
 ('oracle/wss11_saml_token_with_message_protection_client_policy')
validatePolicySet()
commitRepositorySession()

confirm policy set created
listPolicySets()

add GPA for the web service client assuming domain name is base_domain
beginRepositorySession()
createPolicySet('base_domain-ws-client','ws-client','Domain("base_domain")')

assuming service policy is hardcoded to
oracle/wss11_saml_token_with_message_protection_service_policy
and that we want the RIDC client to leverage client policy:
oracle/wss11_saml_token_with_message_protection_client_policy
attachPolicySetPolicy
 ('oracle/wss11_saml_token_with_message_protection_client_policy')
validatePolicySet()
commitRepositorySession()

confirm policy set created
listPolicySets()

29.3.4 Changing Default Settings

There are several JAX-WS specific configurations that can be done after you have created the client. However, in most cases, you should use the default settings.

This code builds a client as a cast for a JAX-WS type:

JaxWSClient jaxwsClient = (JaxWSClient) manager.createClient
 ("http://wlsserver:7044/idcnativews");
JaxWSClientConfig jaxwsConfig = jaxwsClient.getConfig();

You can set the instance name of the Content Server that you would like to connect to. This is set to "/cs/" by default which is the default webcontext for UCM installation. If the server webcontext is different than the default, then you may set it as:

// set the property
jaxwsConfig.setServerInstanceName("/mywebcontext/");

Setting the JPS configuration file location. A JPS configuration file is required for most policies such SAML and/or Message Token.

jaxwsConfig.setJpsConfigFile("/my/path/to/the/jps-config.xml");

Setting the security policy:

jaxwsConfig.setClientSecurityPolicy("policy:oracle/wss11_username_token_with_message_protection_client_policy");

Changing the Login Port WSDL URL

RIDC uses the default values for the installed web services. If, for some reason, the web services have been modified and do not conform to the default URI/URLs, you may need to modify the default values.

Changing the login port WSDL URL:

jaxwsConfig.setLoginServiceWSDLUrl
 (new URL("http://server:7044/webservices/loginPort?WSDL"));

Change the request service URL:

jaxwsConfig.setRequestServiceWSDLUrl
 (new URL("http://server:7044/anotherservice/myrequestport?WSDL"));

The default streaming chunk size is 8192. This example changes the chunk size:

jaxwsConfig.setStreamingChunkSize(8190);

29.4 Authenticating Users

All calls to Remote Intradoc Client (RIDC) require some user identity for authentication. Optionally, this identity credential can be accompanied by other parameters such as a password as required by the protocol. The user identity is held in the IdcContext object; once created, it can be reused for all subsequent calls. To create a context, you pass in the user name and, optionally, some credentials.

Create a simple context with no password (for idc:// URLs):

IdcContext userContext = new IdcContext("weblogic");

Create a context with a password:

IdcContext userPasswordContext = new IdcContext("weblogic", "welcome1");

For Intradoc URLs, no password is required in the credentials because the request is trusted between Content Server and the client.

For JAX-WS URLs, the requirement for credentials will be dependent on the service policy that the web service is configured to use by the server.

29.5 Using Services

To invoke a service use the IdcClient class method:

public ServiceResponse sendRequest (IdcContext userContext, DataBinder dataBinder) throws IdcClientException

For more information, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

The code in Example 29-9 executes a service request and gets back a data binder of the results.

Example 29-9 Executing a Service Request

// get the binder
DataBinder binder = idcClient.createBinder();

// populate the binder with the parameters
binder.putLocal ("IdcService", "GET_SEARCH_RESULTS");
binder.putLocal ("QueryText", "");
binder.putLocal ("ResultCount", "20");

// execute the request
ServiceResponse response = idcClient.sendRequest (userContext, binder);

The ServiceResponse contains the response from Content Server. From the response, you can access the stream from the Content Server directly, or you can parse it into a DataBinder and query the results.

The code in Example 29-10 takes the ServiceResponse and gets the search results, printing out the title and author value.

Example 29-10 Get the Binder and Loop Over the Results

// get the binder
DataBinder binder = response.getResponseAsBinder ();
DataResultSet resultSet = binder.getResultSet ("SearchResults");

// loop over the results
for (DataObject dataObject : resultSet.getRows ()) {
 System.out.println ("Title is: " + dataObject.get ("dDocTitle"));
 System.out.println ("Author is: " + dataObject.get ("dDocAuthor"));
}

If you consume a stream, your code is responsible for closing the stream. The code in Example 29-11 closes a stream.

Example 29-11 Closing a Stream

IdcContext user = new IdcContext ("weblogic", "welcome1");
IdcClientManager manager = new IdcClientManager ();
IdcClient idcClient = manager.getClient ("some url");
DataBinder binder = idcClient.createBinder ();
binder.putLocal ("IdcService", "GET_FILE");
binder.putLocal ("dID", "12345");
ServiceResponse response = idcClient.sendRequest (user, binder);

InputStream stream = null;
try {
 stream = response.getResponseStream ();
 int read = 0;
 int total = 0;
 byte[] buf = new byte[256];
 while ((read = stream.read (buf)) != -1) {
 total += read;
 }
} finally {
 if (stream != null) {
 stream.close ();
 }
}

For information about connection pooling and closing through the stream, see Section 29.6, "Handling Connection Pooling"

29.6 Handling Connection Pooling

The IdcClientConfig#getConnectionPool property determines how RIDC will handle pooling of connections. There are two options, simple and pool.

	
The simple option is the default. The simple option does not enforce a connection maximum and rather lets every connection proceed without blocking and does not enforce a connection maximum. In most cases this option should be used.

	
The pool option specifies the use of an internal pool that allows a configurable number of active connections at a time (configurable through the IdcClientConfig#getConnectionSize property), with the default active size set to 20.

Usually, when the RIDC library is used to communicate from an application that itself is in an application container (such as a web application), the inbound requests have already been throttled. Thus, the simple option is the correct choice to use. The only scenario to use the pool option is if you are creating a standalone server and you are manufacturing a large number of concurrent calls to Content Server, which may cause Content Server to become overwhelmed.

A different pool implementation can be registered through the IdcClientManager#getConnectionPoolManager()#registerPool() method, which maps a name to an implementation of the ConnectionPool interface. The name can then be used in the IdcClientConfig object to select that pool for a particular client.

29.7 Sending and Receiving Streams

Streams are sent to the Content Server through the TransferFile class. This class wraps the actual stream with metadata about the stream (length, name, and so on). For information about methods that allow check-ins of files and streams, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

The code in Example 29-12 performs a check-in to the Content Server:

Example 29-12 Content Server Check-In

// create request
DataBinder binder = idcClient.createBinder();
binder.putLocal ("IdcService", "CHECKIN_UNIVERSAL");

// get the binder
binder.putLocal ("dDocTitle", "Test File");
binder.putLocal ("dDocName", "test-checkin-6");
binder.putLocal ("dDocType", "ADACCT");
binder.putLocal ("dSecurityGroup", "Public");

// add a file
binder.addFile ("primaryFile", new TransferFile ("test.doc"));

// check in the file
idcClient.sendRequest (userContext, binder);

Response from Content Server

Streams are received from the Content Server through the ServiceResponse object. For a summary of available methods, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

The response is not converted into a DataBinder unless specifically requested. If you just want the raw HDA data, you can get that directly, along with converting the response to a String or DataBinder.

The code in Example 29-13 executes a service, gets the response as a string, and parses it into a data binder.

Example 29-13 Parsing a String into a DataBinder

// create request
DataBinder binder = idcClient.createBinder ();

// execute the service
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// get the response stream
InputStream stream = response.getResponseStream ();

// get the response as a string
String responseString = response.getResponseAsString ();

// parse into data binder
DataBinder dataBinder = response.getResponseAsBinder ();

Most Content Server service requests return a structured HDA payload that is modeled on the client using a DataBinder. The HDA payload is essentially a map-like structure optionally containing some ResultSets, which resemble tables.

Download-style service requests (such as GET_FILE) generally are expected to return the requested document's contents as a raw stream of bytes. However, if the parameters supplied to a GET_FILE request are invalid, or if the end user does not have sufficient privileges, and so on, Content Server can respond with an HDA payload containing the error information. Therefore, when performing a request such as GET_FILE, you should interrogate ServiceResponse to determine the response type returned, as Example 29-14 illustrates.

Example 29-14 Response Type Returned

DataBinder binder = idcClient.createBinder ();
binder.putLocal ("IdcService", "GET_FILE");
binder.putLocal ("dID", "12345");
ServiceResponse response = idcClient.sendRequest (user, binder);
if (response.getResponseType().equals(ServiceResponse.ResponseType.BINDER))
{
DataBinder responseBinder = response.getResponseAsBinder(false); // do not check for errors
int statusCode = m_binder.getLocalData ("StatusCode").getInteger("StatusCode");
String statusMessage = m_binder.getLocal ("StatusMessage");
throw new IllegalStateException("Download response was not a stream - Error: " + statusCode + " - " + statusMessage);
}

29.8 Reusing Binders for Multiple Requests

Binders can be reused among multiple requests. A binder from one request can be sent in to another request. Note that if you reuse a binder from one call to the next you need to be very careful there is nothing leftover in the binder that could impact your next call. RIDC does not clean the binder after each call.

The code in Example 29-15 provides an example that pages the search results by reusing the same binder for multiple calls to Content Server.

Example 29-15 Reusing Binders

// create the user context
IdcContext idcContext = new IdcContext ("sysadmin", "idc");

// build the search request binder
DataBinder binder = idcClient.createBinder();
binder.putLocal("IdcService", "GET_SEARCH_RESULTS");
binder.putLocal("QueryText", "");
binder.putLocal("ResultCount", "20");

// send the initial request
ServiceResponse response = idcClient.sendRequest (binder, idcContext);
DataBinder responseBinder = response.getResponseAsBinder();

// get the next page
binder.putLocal("StartRow", "21");
response = idcConnection.executeRequest(idcContext, binder);
responseBinder = response.getResponseAsBinder();

// get the next page
binder.putLocal("StartRow", "41");
response = idcConnection.executeRequest(binder, idcContext);
responseBinder = response.getResponseAsBinder();

29.9 Setting User Security

The Content Server has several security models that are controlled by settings on the Content Server. To resolve if a particular user has access to a document, three things are needed: The user's permission controls, the document's permission controls, and Content Server security environment settings.

It is assumed that the Application Program calling the UserSecurity module will fetch documents and the DOC_INFO metadata (in the document's binder, typically the result of a Search) as some superuser and cache this information. When the Application needs to know if a particular user has access to the document, a call is made to the Content Server as that user to fetch that user's permissions. Once the user's permission controls are known, then they can matched to the information in the document's metadata to resolve the access level for that user. (Access level is READ or READ/WRITE or READ/WRITE/DELETE). The need therefore is to reduce the number of calls to the Content Server (with a cache) and to provide a default implementation for matching the user's permissions information with the document's permission information. One further complication is that the Content Server controls which types of security are used in some server environment properties: UseAccounts=true and UseCollaboration=true or UseEntitySecurity=1. Additionally, a method allows testing to see if admin rights are assigned to a security type for that document.

The user security convenience is accessed through the IUserSecurityCache interface. There classes implement the optional Content Server security:

	
The UserSGAcctAclCache class should always be called. This class will check the Content Server for security configuration and internally adjust itself to match.

	
The UserSecurityGroupsCache class keeps a cache of user permissions and will match documents considering only Security Group information. Do not call this class directly. The UserSGAcctAclCache class will check the Content Server for security configuration and internally adjust itself to match.

	
The UserSGAccountsCache class adds a resolver to also consider Account information if the Content Server has the UseAccounts=true setting. Do not call this class directly. The UserSGAcctAclCache class will check the Content Server for security configuration and internally adjust itself to match.

For more information, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

The code in Example 29-16 provides an example of setting user security.

Example 29-16 Setting User Security

IdcClientManager m_clientManager = new IdcClientManager ();
IdcClient m_client = m_clientManager.createClient
 ("http://localhost/scs/idcplg");

//RIDC superuser context
IdcContext m_superuser = new IdcContext("sysadmin", "idc");

//This class will self-adjust (downwards) to match the security model
// on Content Server.
IUserSecurityCache m_userSecurityCache = new UserSGAcctAclCache
 (m_client, 20, 1000, 20000, m_superuser);
ITrace trace = null;

//Example test
testDocPermission () {
 //If you don't want to do any logging, you can leave trace as null
 if (m_log.isLogEnabled(ILog.Level.TRACE)) {
 trace = new Trace ();
 }
 DataBinder m_doc1 = getDataBinder ("TEST");
 //Get the document information (typically in the first row of DOC_INFO)
 DataObject docInfo = m_doc1.getResultSet ("DOC_INFO").getRows ().get (0);
 //Get the cache id for this user
 //This makes a live call to content server to get the user ID for "Acme1"
 //CacheId acme1 = m_userSecurityCache.getCacheIdForUser
 // (new IdcContext("Acme1", "idc"), trace);
 IdcContext context = new IdcContext("Acme1", "idc");
 CacheId acme1 = new CacheId (context.getUser (), context);
 //Get the access level for this document by this user
 int access = m_userSecurityCache.getAccessLevelForDocument
 (acme1, docInfo, trace);
 //Check if user has ACL admin permissions
 boolean aclAdmin = m_userSecurityCache.isAdmin
 (acme1, docInfo, IUserSecurityCache.AdminType.ACL, trace);
 if (m_log.isLogEnabled(ILog.Level.TRACE)) {
 m_log.log (trace.formatTrace (), ILog.Level.TRACE);
 }
}
//Example code to get a Document's DOC_INFO databinder
DataBinder getDataBinder (String dDocName) throws IdcClientException {
 DataBinder dataBinder = m_client.createBinder ();
 dataBinder.putLocal ("IdcService", "DOC_INFO_BY_NAME");
 dataBinder.putLocal ("dDocName", dDocName);
 ServiceResponse response = m_client.sendRequest (m_superuser, dataBinder);
 return response.getResponseAsBinder ();
}
//Example code to create a DataObject
DataObject dataObject = m_client.getDataFactory ().createDataObject ();
dataObject.put ("dSecurityGroup", "public");
dataObject.put ("dDocAccount", "Eng/Acme");

Internally, these fields from the document are examined during getAccessLevelForDocument():

	
For the AccessResolverSecurityGroups class: dSecurityGroup.

	
For the AccessResolverAccounts class: dDocAccount.

	
For the AccessResolverSecurityGroups class: xClbraUserList, xClbraAliasList, and xClbraRoleList.

The IAccessResolver classes determine if they should participate based on cached information from the Content Server, if they do participate, the access levels are ANDed together. You can use the hasAdmin() method to determine if there is admin access. For more information, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

29.10 Using RIDC Filters

Remote Intradoc Client (RIDC) 11gR1 (11.1.1.4.0 or later), enables your application code to add a filter before the DataBinder is processed and sent to Content Server. You can create a filter by extending one of the IdcFilterAdapter classes, and then register that filter to execute with the IdcFilterManager class. Filters are executed in the order specified when registered. You can also get and remove previously registered filters.

The code in Example 29-17 extends an adapter and overrides a method to perform an action.

Example 29-17 Calling RIDC Filter Before Service Request

public class IdcFilterAddComment extends BeforeServiceRequestFilter {
 @Override
 public void beforeServiceRequest
 (IdcClient client, IdcContext context, DataBinder binder)
 throws IdcClientException {
 String existingComments = binder.getLocal("xComments");
 if (existingComments != null) {
 binder.putLocal("xComments", String.format
 ("%s %s", existingComments, "--DGT WAS HERE--"));
 } else {
 binder.putLocal("xComments", "--DGT WAS HERE--");
 }
 }
}

Remote Intradoc Client (RIDC) 11gR1 (11.1.1.5.0 or later) provides two more filter locations in the JAX-WS processing area. To use these filters, extend the BeforeJaxwsServiceFilter class.

The code in Example 29-18 extends the BeforeJaxwsServiceFilter class.

Example 29-18 Calling RIDC Filter Before JAX-WS Call

/**
 * RIDC filter called just before jaxws call is made to
 * loginPort.contentServerLogin () in authenticateUser ()
 **/
public void beforeJaxwsAuthenticateUser (IdcContext context, DataBinder binder,
 Map<String, Object> requestContext) throws IdcClientException {
 requestContext.put(oracle.wsm.security.util.SecurityConstants.
 ClientConstants.WSM_SUBJECT_PRECEDENCE, “false”);
}

/**
 * RIDC filter called just before jaxws call is made to
 * loginPort.contentServerRequest () in performServiceRequest ()
 **/
public void beforeJaxwsServiceRequest (IdcContext context, DataBinder binder,
 Map<String, Object> requestContext) throws IdcClientException {
 //Override this class and implement your filter here
}

The code in Example 29-19 registers your filter class(es).

Example 29-19 Register Filer Classes

// If you are at the start of a pure RIDC application, you typically
// will create a ClientManager, for example:
IdcClientManager m_clientManager = new IdcClientManager();

// New method added to IdcClient to get the ClientManager
// if you do not have the ClientManager instance:
IdcClient client = myClient;
client.getClientManager();

// From the ClientManager, you can get the FilterManager:
IdcFilterManager fmanager = m_clientManager.getFilterManager();

// Then register your filter:
IIdcFilter addCommentFilter = new IdcFilterAddComment();
int slot = fmanager.registerFilter(100, addCommentFilter);

// Optionally, you can deregister. However, it might not be in the slot you
// assigned because there might have already been a filter in that slot.
// When registering, the next available higher slot will be used. You also need
// to pass in the instance currently in the slot you want to remove:
fmanager.deRegisterFilter(slot, addCommentFilter);

// Here is an example to remove all the filters,
// including the ones you did not register
for (Integer slot:fmanager.getUsedSlots()) {
 fmanager.deRegisterFilter(slot, fmanager.getFilter (slot));
}

31 Configuring Web Services with WSDL, SOAP, and the WSDL Generator

This chapter describes how to integrate Oracle WebCenter Content into a client application with WSDL and SOAP files by using them to manage Oracle WebCenter Content Sever. It also describes how to use the WSDL Generator component, which provides integration technologies to access the functionality of Content Server.

This chapter includes the following sections:

	
Section 31.1, "About Configuring Web Services with WSDL, SOAP, and the WSDL Generator"

	
Section 31.2, "Accessing Content Server with a SOAP Client"

	
Section 31.3, "Calling Content Server Services with SOAP"

	
Section 31.4, "Using SOAP Packets in Active Server Pages"

	
Section 31.5, "Generating WSDL Files to Access WebCenter Content"

	
Section 31.6, "Customizing WSDL Files"

For general information about web services that you can use with Content Server, see Section 24.2, "Overview of Web Services." The way to use web services described in this chapter was introduced in Oracle Universal Content Management 10g. If you want to use WebCenter Content web services with security configuration and Security Assertion Markup Language (SAML) support, introduced in Oracle WebCenter Content 11g, see Chapter 25, "Configuring WebCenter Content Web Services for Integration."

With either way of using web services, you can use the Oracle Web Services Manager (Oracle WSM) for security. For more information about Oracle WSM, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

31.1 About Configuring Web Services with WSDL, SOAP, and the WSDL Generator

You can use Web Services Definition Language (WSDL) and SOAP (Simple Object Access Protocol) files to manage Content Server from a client application. SOAP is a lightweight, XML-based messaging protocol for encoding the information in web service request and response messages before sending them over a network.

The WSDL Generator component, WsdlGenerator, which is installed and enabled by default in Content Server, generates WSDLs for the services of Content Server. You can take the WSDLs and plug them into APIs to create web services for use with Content Server.

Some SOAP functionality has been built into the core Content Server. The WSDL Generator component is not essential for using SOAP. Administrators can still write service calls to Content Server in SOAP if needed. The WSDL Generator provides flexibility in altering existing client applications.

WebCenter Content has a WSDL 1.1 implementation that exposes the WebCenter Content IDCService (Internet Distributed Content Service), which in turn extends all of the capabilities of Content Server. With IDCService, you can do any of these tasks:

	
Check in or check out content

	
Create, run, or approve workflows

	
Make content available for publishing

	
Search content by category (metadata), content (full text), or a combination of both

You can use WSDL files to map to WebCenter Content and SOAP to access content and content management functions within WebCenter Content and to deploy your content management capabilities as a web service. Alternatively, you can write service calls to Content Server in SOAP.

31.1.1 Web Services Framework

The core enabling technologies for web services follow:

	
XML Data

	
WSDL Interface

	
SOAP Communication

	
UDDI Registry

31.1.1.1 XML Data

The eXtensible Markup Language (XML) is a bundle of specifications that provides the foundation of all web services technologies. Using the XML structure and syntax as the foundation allows for the exchange of data between different programming languages, middleware, and database management systems.

The XML syntax incorporates instance data, typing, structure, and semantic information associated with data. XML describes data independently and also provides information for mapping the data to software systems or programming languages. Because of this flexibility, any software program can be mapped to web services.

When web services are invoked, the underlying XML syntax provides the data encapsulation and transmission format for the exchanged data. The XML elements and attributes define the type and structure information for the data. XML provides the capability to model data and define the structure specific to the programming language (such as Java, C#, or Visual Basic), the database management system, or the software application. Web services use the XML syntax to specify how data is represented, how the data is transmitted, and how the service interacts with the referenced application.

31.1.1.2 WSDL Interface

The Web Services Description Language (WSDL) provides the interface that is exposed to web services. The WSDL layer enables web services to be mapped to underlying programs and software systems. A WSDL file is an XML file that describes how to connect to and use a web service.

31.1.1.3 SOAP Communication

The Simple Object Access Protocol (SOAP) provides Content Server communications for web services interfaces to communicate with each other over a network. SOAP is an XML-based communication protocol used to access web services. The web services receive requests and return responses using SOAP packets that are encapsulated within an XML document.

31.1.1.4 UDDI Registry

The Universal Description Discovery and Integration (UDDI) service provides registry and repository services for storing and retrieving web services interfaces. UDDI is a public or private XML-based directory for registering and looking up web services.

Content Server currently does not publish to any public or private UDDI sources. However, this does not prevent users from integrating Content Server with other applications using web services.

31.1.1.5 DIME Message Format

DIME is a lightweight, binary message format that can be used to encapsulate one or more application-defined groups of file content, of arbitrary type and size, into a single message construct. You can use this format for uploading or downloading content. The payloads consist of the SOAP message and one or more groups of file content.

31.1.1.6 How the Enabling Technologies Work Together

The XML, WSDL, SOAP, and UDDI technologies work together as layers on the web services protocol stack. As Figure 31-1 shows, the web services protocol stack consists of these layers:

	
The service transport layer between applications (HTTP)

	
The messaging layer, which provides a common communication method (XML and SOAP)

	
The service description layer, which describes the public interface to a specific web service (WSDL)

	
The service discovery layer, which provides registry and repository services for storing and retrieving web services interfaces (UDDI)

Figure 31-1 Layers of the Web Services Protocol Stack

[image: Surrounding text describes Figure 31-1 .]

	
Note:

While several protocols are available for a transport layer (such as HTTP, SMTP, FTP, and BEEP), the HTTP protocol is most commonly used. The WSDL Generator component relies on the HTTP protocol as the transport layer.

To help grasp the connection between these technologies, consider this simple analogy: Think of HTTP as the telephone wire (transport between applications) and UDDI as a telephone book (where a developer can browse a UDDI registry to locate a registered service). SOAP could be described as the voices of the people talking on the telephone (the exchange of information), and XML as the language they are speaking in (the underlying structure for the exchange of data). To continue with the telephone analogy, WSDL would be the phone number that calls a specific web service (of course, WSDL is more than just a phone number because it includes information such as the available functions and data types).

31.1.1.7 Implementation Architecture

Web services are not executable, but rather they exchange data within the development environment. So, web services are a means to exchange information with an application server or software package that is performing the communication between the programs exchanging data.

Figure 31-2 shows the web services implementation architecture for the Content Server application. The primary value of this architecture remains in the features and functions of Content Server. Web services access Content Server through the WSDL Generator and use the exposed Content Server services to execute actions and provide data transactions between the user employing web services and Content Server.

Figure 31-2 Web Services Implementation Architecture

[image: Surrounding text describes Figure 31-2 .]

31.1.1.8 Implementation on .NET

The Microsoft .NET products, including the .NET platform, .NET Framework, and Visual Studio .NET, all support the XML schema, WSDL, and SOAP specifications:

	
The .NET platform is designed as a programming model that enables developers to build XML web services and applications. The platform provides a set of servers that integrates, executes, and manages XML web services and applications.

	
The .NET Framework product enables developers to build and deploy web services and applications. It provides a structured environment for integrating web services, consists of a common language runtime and unified class libraries, and includes the ASP .NET server.

	
The Visual Studio .NET product provides tools for developers to write application software according to the XML-based web service specifications.

Using the .NET architecture, development and deployment of a web service are integrated as a single step. Because every program written in a .NET language is designed to function as a web service, the .NET server is able to create and deploy the program as a web service.

31.1.1.9 The SOAP Protocol

SOAP is an XML-based messaging protocol consisting of these parts:

	
An envelope that defines what is in a message and how to process it

	
A set of encoding rules for defining application data types

	
A convention for representing remote procedure calls and responses

Employing a SOAP integration provides a standardized interface for executing Content Server services using the Java API (IdcCommand) and provides XML and non-XML content managed by Content Server.

Because SOAP uses the Hypertext Transfer Protocol (HTTP) for data transmission, it can be invoked across the Web, and it can enable content to be accessible over a network in a platform-independent and language-neutral way.

31.2 Accessing Content Server with a SOAP Client

Using SOAP to access content management capabilities as a web service enables real-time programmatic interaction between applications, enables the integration of business processes, and facilitates information exchange.

	
Note:

If you are developing SOAP client implementations, make sure that chunking is disabled in your client API code.

Web services are modular components that are contained in an XML wrapper and defined by the WSDL specifications. The UDDI) Web-based registry system is used to locate these services.

	
Tip:

While .NET servers support WSDL and integrate with the SOAP Toolkit, you must specify that a SOAP packet is sending a Remote Procedure Call (RPC). The default is to evaluate SOAP messages as document-style SOAP messages, rather than RPC-style SOAP messages. Using the SOAP Toolkit client with a .NET-developed web service returns a read error for the WSDL document. To permit the SOAP Toolkit to read the generated WSDL and call your .NET web service, you must specify the SoapRpcService() attribute in your web service class.

31.2.1 Using a Java SOAP Client

With a Java SOAP client, you can use the command-line parameters that Table 31-1 describes.

Table 31-1 Command-Line Parameters for Java SOAP Clients

	Parameter	Description
	
-c config file

	
The configuration file containing server settings (host, port, and so on)

	
-x xml file

	
The XML file containing the SOAP request to pass to Content Server

	
-p primary file

	
The file name of the primary file to upload

	
-a alternate file

	
The file name of the alternate file to upload (optional)

	
-l log file

	
The file name of the file containing the request and response data (optional)

31.3 Calling Content Server Services with SOAP

You can execute various Content Server IdcCommand services with the SOAP interface. Your user ID must have appropriate permissions to execute the commands. Some commands require administrative access, and other commands require only write permission.

The WSDL Generator component is installed and enabled by default with Content Server, and it must remain enabled to call services. For lists of available services and the required parameters, see the Oracle Fusion Middleware Services Reference for Oracle WebCenter Content.

31.3.1 SOAP Packet Format

A SOAP request is an XML-based Remote Procedure Call (RPC) sent using the HTTP transport protocol. The payload of the SOAP packet is an XML document that specifies the call being made and the parameters being passed.

31.3.1.1 HTTP Headers

This entry is required in the HTTP header of a SOAP request:

Content-Type: text/xml; charset="utf-8"

This SOAPAction header is suggested, but not required:

SOAPAction: "http://www.oracle.com/IdcService"

31.3.1.2 Namespaces

Within the body of a SOAP message, XML namespaces are used to qualify element and attribute names in the parts of the document. Element names can be global (referenced throughout the SOAP message) or local. A local element name is provided by a namespace, and the name is used in the particular part of the message where it is located. So, SOAP messages use namespaces to qualify element names in the separate parts of a message. Application-specific namespaces qualify application-specific element names. Namespaces also identify the envelope version and encoding style.

Content Server defines a namespace called idc that explains the schema and allowable tags for the SOAP content.

31.3.1.3 Nodes

A SOAP node is the entity that processes a SOAP message according to the rules for accessing the services provided by the underlying protocols through the SOAP bindings. So, message processing involves mapping to the underlying services. The SOAP specification defines a correlation between the parts of a SOAP message and the software handlers that will process each part of the message.

The following nodes might be required for a service request or might be returned in the response:

	
Service Node

	
Document Node

	
User Node

	
Optionlist Node

	
Option Subnode in an IDC Optionlist Node

	
Resultset Subnode

	
Row Subnode

	
Field Subnode

	
Note:

In requests, Content Server services are lenient regarding where data is specified. If you specify a data field in a field node and it is supposed to be a document attribute, or vice versa, the service still processes the data correctly. The response puts the data in the correct node.

31.3.1.3.1 Service Node

As the main node in the IDC namespace, the <idc:service> node has these requirements:

	
This node must exist for a request to be processed.

	
The required attribute IdcService defines the service you are requesting.

	
The subnodes of <idc:service> are not required to carry the namespace in their tags.

For example, you can use <document> rather than <idc:document>. However, if you do define the namespace identifier in the child nodes, it must match the identifier specified in the service tag.

Example 31-1 shows an <idc:service> node with a PING_SERVER service request.

Example 31-1 Service Node in the IDC Namespace

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
</idc:service>

31.3.1.3.2 Document Node

The <document> node contains all content-item information and is the parent node of all data nodes.

Attributes that are valid for your content items are defined by your particular Content Server. For example, dID, dDocTitle, and dDocType are common attributes. These rules apply to the <document> node:

	
Custom content-item information, such as xSpec, is valid if it is defined as metadata.

	
All known document fields can be used as attributes.

Example 31-2 shows a <document> node that uses the CHECKOUT_BY_NAME service.

Example 31-2 Document Node in an IDC Service Node

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>

31.3.1.3.3 User Node

The <user> node contains all user information. These rules apply to the <user> node:

	
Attributes that are valid for users are defined by a specific Content Server. For example, dName, dFullName, and dEmail are common attributes.

	
Custom user information is valid if it is defined as metadata.

	
All known user fields can be used as attributes.

Example 31-3 shows a <user> node that specifies a user for the GET_USER_INFO service request.

Example 31-3 User Node in an IDC Service Node

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_INFO">
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>

31.3.1.3.4 Optionlist Node

The <optionlist> node contains any option lists. The name attribute specifies the name of the option list. Each <option> subnode contains a value in the <optionlist> node.

Example 31-4 shows an <optionlist> node with an <option> subnode that has a locale value.

Example 31-4 Optionlist Node for Locale

<idc:optionlist name="Users_UserLocaleList">
<idc:option>
English-US
</idc:option>
</idc:optionlist>

31.3.1.3.5 Option Subnode in an IDC Optionlist Node

The <option> subnode is specified within the <optionlist> node. The option attribute specifies the name of the option for the option list.

Example 31-5 shows <option> nodes with dDocType values.

Example 31-5 Option Subnodes of an Optionlist Node

<idc:optionlist name="dDocType">
<idc:option>ADACCT</idc:option>
<idc:option>ADHR</idc:option>
<idc:option>ADSALES</idc:option>
</idc:optionlist>

31.3.1.3.6 Resultset Subnode

The <resultset> subnode can be specified within a <document> or <user> node. This subnode contains ResultSet information in a request or response. The name attribute specifies the name of the ResultSet.

Example 31-6 specifies a <resultset> subnode for a ResultSet that contains a revision history.

Example 31-6 Resultset Subnode for a Revision History

<idc:resultset name="REVISION_HISTORY">
<idc:row dFormat="text/plain" dInDate="4/12/02 1:27 PM" dOutDate="" dStatus="RELEASED" dProcessingState="Y" dRevLabel="1" dID="6" dDocName="stellent" dRevisionID="1">
</idc:row>
</idc:resultset>

31.3.1.3.7 Row Subnode

The <row> subnode is specified within a <resultset> subnode, which can have multiple <row> subnodes. Each <row> subnode specifies a row in the ResultSet.

Attributes that are valid are defined by your specific Content Server. Valid attributes are the same fields that can appear as attributes in a <document> or <user> node.

Example 31-7 specifies a row in a ResultSet of user attributes.

Example 31-7 Row Subnode of a Resultset Subnode

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15">
</idc:row>
</idc:resultset>

31.3.1.3.8 Field Subnode

The <field> subnode can be specified within a <document>, <user>, or <row> node. The name attribute specifies the name of the field. A <field> subnode often represents data, such as refreshSubjects or dSubscriptionID.

A <field> subnode can represent document or user metadata that a user can configure, or it can represent custom metadata, such as xComments. Example 31-8 specifies a field subnode that represents subscription ID data.

Example 31-8 Field Node to Represent Metadata

<idc:field name="dSubscriptionID">
stellent
</idc:field>

Another use for a <field> subnode is to pass search result values for fields such as QueryText and OriginalQueryText, as Example 31-9 shows.

Example 31-9 Field Subnode to Pass a Value

	

<idc:field name="QueryText">
dDocType <Substring> "ADSALES&"
</idc:field>

31.3.2 Special Characters

When passing special characters, such as a left angle bracket (<) or right angle bracket (>), to WebCenter Content, you must use the XML-encoding format, which Table 31-1 shows.

Table 31-2 Special Character Formats

	Standard Format	XML-Encoding Format
	
<

	
<

	
>

	
>

	
"

	
"

` (use back quotation mark if you are using universal query syntax)

	
&

	
&

	
\

	
'

	
Note:

Some search result values, such as the QueryText and OriginalQueryText values, are URL-encoded in the response.

You can pass a string to Content Server for a content-item query (using universal query syntax) in either format. Example specifies a string in standard format

Example 31-10 Parameter with a Standard-Format String

QueryText=dDocType <Substring> "ADSALES"

Example specifies a string in XML-encoded format.

Example 31-11 Parameter with an XML-Encoded String:

<idc:field name="QueryText">
dDocType <Substring> `ADSALES`
</idc:field>

31.3.3 Sample Service Calls with SOAP Response/Request

Using service calls with SOAP response/request, you can execute Content Server services in a SOAP request. For a list of available services and the required parameters, see the Oracle Fusion Middleware Services Reference for Oracle WebCenter Content

These IdcCommand services are used as SOAP request examples.

	IdcCommand	Description
	
PING_SERVER

	
This service evaluates whether a connection to the server exists. See Section 31.3.3.1, "Ping the Server,".

	
ADD_USER

	
This service adds a new user to the system. See "Add a New User".

	
EDIT_USER

	
This service edits an existing user. See "Edit Existing User".

	
GET_USER_INFO

	
This service retrieves the user list. See "Get User Information".

	
DELETE_USER

	
This service deletes an existing user. See "Delete User".

	
CHECKIN_UNIVERSAL

	
This service performs a Content Server controlled check-in. See "Check In Content Item".

	
CHECKOUT_BY_NAME

	
This service marks the latest revision of the specified content item as locked. See "Check out Content Item".

	
UNDO_CHECKOUT_BY_NAME

	
This service reverses a content item checkout using the Content ID. See "Undo Content Item Checkout".

	
DOC_INFO

	
This service retrieves content item revision information. See "Get Content Item Information".

	
GET_FILE

	
This service retrieves a copy of a content item without performing a check out. See "Get File".

	
GET_SEARCH_RESULTS

	
This service retrieves the search results for the passed query text. See "Get Search Results".

	
GET_TABLE

	
This service exports the specified table from the WebCenter Content database. See "Get Table Data".

	
GET_CRITERIA_WORKFLOWS_FOR_GROUP

	
This service returns criteria workflow information. See "Get Criteria Workflow Information".

31.3.3.1 Ping the Server

The PING_SERVER service evaluates whether a connection to the server exists.

	
This service returns status information for Content Server.

	
If this service is unable to execute, this message is displayed to the user: Unable to establish connection to the server.

	
Tip:

Execute a PING_SERVER request before calling other services to ensure that there is a connection to Content Server and that you are logged in as a user authorized to execute commands.

31.3.3.1.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
IdcService

	
Must be set to PING_SERVER.

31.3.3.1.2 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope

31.3.3.1.3 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
<idc:document>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="StatusMessage">
You are logged in as 'sysadmin'.
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.2 Add a New User

The ADD_USER service adds a new user to the system.

	
Given a user name, the service determines if the user is in the system. If the user does not exist, the service will add the user.

	
The most likely error is when the user name is not unique. If this service is unable to execute, an error message is displayed to the user.

31.3.3.2.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dName

	
The unique name.

	
dUserAuthType

	
The user authorization type. This value must be set to either LOCAL or GLOBAL.

	
IdcService

	
Must be set to ADD_USER.

31.3.3.2.2 Optional Parameters

These optional parameters may be specified.

	Parameter	Description
	
dEmail

	
The email address for the user.

	
dFullName

	
The full name of the user.

	
dPassword

	
The password for the user.

31.3.3.2.3 Optional Attribute Information

This optional data defines the user's attribute information, the roles the user belongs to, and the accounts the user has access to. Attribute information consists of a list of three comma-delimited strings. The first string indicates the type of attribute, the second the name of the attribute, and the third is the access number.

	
Important:

The user attribute information is not predefined. The user by default will belong to no roles or accounts, and will become a guest in the system.

	Attribute Information	Description
	
Access Number

	
The access number determines the level of access or privileges assigned to the user

	
Attribute Name

	
The attribute name is the name of the role or account to be assigned. For example, admin, contributor, or editor may be assigned.

	
Attribute Type

	
The attribute types consists of role or account.

Access Number

These access numbers can be assigned to the user.

	Access Level Flags	Description
	
1

	
Read only.

	
3

	
Read and write.

	
7

	
Read, write, and delete.

	
15

	
Administrative privileges.

Attribute Name

A user can belong to multiple roles and accounts, there may be multiple role and account information strings separated by commas in the attribute information column.

	
If the user is to have the admin role, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15">

	
If the user is to belong to both the contributor and editor roles and has read privilege on the account books, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15,role,editor,15,account,books,1">

Attribute Type

When defining a role, the first string specifies that this is a role attribute, the second string is the name of the role, and the third is the default entry of 15.

When defining an account, the first string specifies that this is an account attribute, the second string is the name of the account, and the third is the access level.

	
For an attribute role, the information is in this form:

role,contributor,15

	
For an attribute account where the access level determines the user's rights to the named account, the information is in this form:

account,books,1

31.3.3.2.4 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="ADD_USER">
<idc:user dName="Jennifer" dFullName="Jennifer Anton" dPassword="password" dEmail="email@example.com" dUserAuthType="local">
<idc:resultset name="UserAttribInfo">
<idc:row dUserName="Jennifer" AttributeInfo="role,contributor,3">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.2.5 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="ADD_USER">
<idc:document>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="isAdd">
1
</idc:field>
<idc:field name="copyAll">
1
</idc:field>
<idc:field name="alwaysSave">
1
</idc:field>
<idc:field name="dAttributeName">
contributor
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="doAdminFields">
1
</idc:field>
<idc:field name="dAttributePrivilege">
3
</idc:field>
<idc:field name="dAttributeType">
role
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
userlist,1018884022874
</idc:field>
</idc:document>
<idc:user dUserAuthType="local" dEmail="email@example.com" dFullName="Jennifer Anton" dUser="sysadmin" dPassword="password" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.3 Edit Existing User

The EDIT_USER service edits the information for an existing user.

	
Given a user name and user authorization type, the service determines if the user is in the system. If the user does not exist, the service fails. Otherwise the user information is updated and replaced.

	
The most likely error is the user does not have the security level to perform this action. If this service is unable to execute, an error message is displayed to the user.

	
Note:

The user attribute information replaces the current attributes. It does not add to the list. Consequently, if the user attribute information is not defined, the user will become a guest in the system.

31.3.3.3.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dName

	
The unique name.

	
dUserAuthType

	
The user authorization type. This value must be set to either LOCAL or GLOBAL.

	
IdcService

	
Must be set to EDIT_USER.

31.3.3.3.2 Optional Parameters

These optional parameters can be specified.

	Parameter	Description
	
dEmail

	
The email address of the user.

	
dFullName

	
The full name of the user.

	
dPassword

	
The password for the user.

	
dUserLocale

	
The locale designation, such as English-US, English-UK, Deutsch, Français, Español.

	
dUserType

	
The defined user type.

31.3.3.3.3 Optional Attribute Information

A ResultSet containing the user's attribute information and referencing the roles to which the user belongs and the accounts to which the user has access. Attribute information consists of a list of three comma-delimited strings. The first string indicates the type of attribute, the second the name of the attribute, and the third is the access number.

	
Important:

The user attribute information is not predefined. The user by default will belong to no roles or accounts, and will become a guest in the system.

	Attribute Information	Description
	
Access Number

	
The access number determines the level of access or privileges assigned to the user

	
Attribute Name

	
The attribute name is the name of the role or account to be assigned. For example, admin, contributor, or editor may be assigned.

	
Attribute Type

	
The attribute types consist of role or account.

Access Number

These access numbers can be assigned to the user.

	Access Level Flags	Description
	
1

	
Read only.

	
3

	
Read and write.

	
7

	
Read, write, and delete.

	
15

	
Administrative privileges.

A user can belong to multiple roles and accounts, there may be multiple role and account information strings separated by commas in the attribute information column.

	
If the user is to have the admin role, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contribut
or,15">

	
If the user is to belong to both the contributor and editor roles and has read privilege for the account books, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15,role,editor,15,account,books,1">

Attribute Type

In the definition of a role, the first string specifies that this is a role attribute, the second string is the name of the role, and the third is the default entry of 15.

In the definition of an account, the first string specifies that this is an account attribute, the second string is the name of the account, and the third is the access level.

	
For an attribute role, the information is in this form:

role,contributor,15

	
For an attribute account where the access level determines the user's rights to the named account, the information is in this form:

account,books,1

31.3.3.3.4 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="EDIT_USER">
<idc:user dName="Jennifer" dFullName="Jennifer Anton" dPassword="password" dEmail="jennifer@example.com" dUserAuthType="local">
<idc:resultset name="UserAttribInfo">
<idc:row dUserName="Jennifer" AttributeInfo="role,guest,1">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.3.5 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="EDIT_USER">
<idc:document>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="alwaysSave">
1
</idc:field>
<idc:field name="dAttributeName">
guest
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="doAdminFields">
1
</idc:field>
<idc:field name="dAttributePrivilege">
1
</idc:field>
<idc:field name="dAttributeType">
role
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
userlist,1018884022877
</idc:field>
</idc:document>
<idc:user dUserAuthType="local" dEmail="jennifer@example.com" dFullName="Jennifer Anton" dUser="sysadmin" dPassword="password" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.4 Get User Information

The GET_USER_INFO service retrieves the user list.

	
Given a defined user, the service retrieves the user list.

	
If this service is unable to execute, this message is displayed to the user: Unable to retrieve user list.

31.3.3.4.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dUser

	
The defined user.

	
IdcService

	
Must be set to GET_USER_INFO.

31.3.3.4.2 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_INFO">
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.4.3 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_INFO">
<idc:document>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:optionlist name="Users_UserLocaleList">
<idc:option>
English-US
</idc:option>
</idc:optionlist>
</idc:document>
<idc:user dUser="sysadmin" dName="sysadmin">
<idc:resultset name="UserMetaDefinition">
<idc:row umdName="dFullName" umdType="BigText" umdCaption="apTitleFullName" umdIsOptionList="0" umdOptionListType="0" umdOptionListKey="" umdIsAdminEdit="0" umdOverrideBitFlag="1">
</idc:row>
<idc:row umdName="dEmail" umdType="BigText" umdCaption="apTitleEmailAddress" umdIsOptionList="0" umdOptionListType="" umdOptionListKey="" umdIsAdminEdit="0" umdOverrideBitFlag="2">
</idc:row>
<idc:row umdName="dUserType" umdType="Text" umdCaption="apTitleUserType" umdIsOptionList="1" umdOptionListType="combo" umdOptionListKey="Users_UserTypeList" umdIsAdminEdit="0" umdOverrideBitFlag="4">
</idc:row>
<idc:row umdName="dUserLocale" umdType="Text" umdCaption="apTitleUserLocale" umdIsOptionList="1" umdOptionListType="choice,locale" umdOptionListKey="Users_UserLocaleList" umdIsAdminEdit="0" umdOverrideBitFlag="8">
</idc:row>
</idc:resultset>
<idc:resultset name="USER_INFO">
<idc:row dName="sysadmin" dFullName="System Administrator" dEmail="" dPasswordEncoding="" dPassword="-----" dUserType="" dUserAuthType="LOCAL" dUserOrgPath="" dUserSourceOrgPath="" dUserSourceFlags="0" dUserArriveDate="" dUserChangeDate="" dUserLocale="" dUserTimeZone="">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.5 Delete User

The DELETE_USER service deletes an existing user.

	
Given a user name, the service deletes the user from the system.

	
The most likely error is when the user has been assigned to an alias.If this service is unable to execute, an error message is returned.

31.3.3.5.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dName

	
The unique name.

	
IdcService

	
Must be set to DELETE_USER.

31.3.3.5.2 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DELETE_USER">
<idc:user dName="Jennifer" >
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.5.3 Response

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DELETE_USER">
<idc:document>
<idc:field name="changedSubjects">
userlist,1018884022876
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="dUserName">
Jennifer
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
</idc:document>
<idc:user dUser="sysadmin" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.6 Check In Content Item

The CHECKIN_UNIVERSAL service performs a controlled check-in to Content Server:

	
This service determines if the content item is new or already exists in the system by querying the database using the content ID (dDocName) as the key.

	
If the content item exists in the system, the publish state (dPublishState) must be empty.

	
If a revision label (dRevLabel) is specified, this service will check if the content revision exists in the system; an exception is thrown if the revision exists.

	
This service will dispatch this request to one of these subservices:

	
CHECKIN_NEW_SUB - If the content item does not exist in the server.

	
CHECKIN_SEL_SUB - If the content item exists on the system and no valid revision was specified and the content item is checked out.

	
WORKFLOW_CHECKIN_SUB - If the content item exists and is part of a workflow.

	
The most likely errors are mismatched parameters or when the content item was not successfully checked in. If this service is unable to execute, this message is displayed to the user: Content item ''{dDocName}'' was not successfully checked in.

The CHECKIN_UNIVERSAL service is a controlled check-in to Content Server. The check-in will fall into either a new, selected, or workflow check-in process and follow the same logic as a check-in through the browser or Repository Manager application. If the content item to be checked in already exists in the system, the content item must be checked out for the check in to succeed.

These are essentially the same subservices used during a controlled check-in to Content Server. However, these subservices are not called during a BatchLoad or Archive import. This service will check security to determine if the user has sufficient privilege to perform a check in on the content item and if the content item (if it exists) has been checked out. Also, it will determine if the content item matches a workflow criteria or belongs to an active basic workflow.

If the content item is not found the content item is checked in using the CHECKIN_NEW_SUB subservice. This subservice validates the check in data and determines if this content item belongs to a criteria workflow. If the content item already exists in the system and the content item does not belong to a workflow, the CHECKIN_SEL_SUB is used. Otherwise the content item exists and belongs to a workflow and the WORKFLOW_CHECKIN_SUB is used.

	
Note:

All paths use the slash (/) as the file separator, because the backslash (\) is an escape character. For example, primaryFile=d:/temp/myfile.txt should point to the primary file to check in.

31.3.3.6.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dDocAuthor

	
The content item author (contributor).

	
dDocName

	
The content item identifier (Content ID).

	
This field is optional if the system has been configured with IsAutoNumber set to TRUE. In this scenario, if the dDocName is not specified, the check in will always be new, and the system will generate a new name for the content item.

	
Otherwise, if dDocName is specified, the service will use this key to do a look up to determine what type of check in to perform.

	
dDocTitle

	
The content item title.

	
dDocType

	
The content item type.

	
doFileCopy

	
Set this flag to TRUE (1) or the file will be removed from your hard drive.

	
dSecurityGroup

	
The security group such as PUBLIC or SECURE.

	
IdcService

	
Must be set to CHECKIN_UNIVERSAL.

	
primaryFile

	
The absolute path to the location of the file as seen from the server. Use the slash as the file separator.

A primary file must be specified unless checking in metadata only. If an alternate file is specified with the primary file, Oracle WebCenter Content: Inbound Refinery will convert the alternate file. Otherwise, the primary file will be converted.

	
If a primary file is not specified, a metafile can be used in its place. Only one metafile can exist though for each content item (that is, a primary AND alternate meta file cannot coexist).

	
If both a primary and alternate file is specified, their extensions must be different.

	
Important:

Custom metadata fields that are defined must also be specified.

31.3.3.6.2 Additional Parameters

This parameter may be required.

	Parameter	Description
	
dDocAccount

	
The security account for the content item.

If you have accounts enabled, you must pass this parameter.

31.3.3.6.3 Optional Parameters

These optional parameters may be specified.

	Parameter	Description
	
alternateFile

	
The alternate file for conversion.

	
Only one metafile can exist though for each content item (a primary AND alternate meta file cannot coexist.)

	
If an alternate file is specified with the primary file, Inbound Refinery will convert the alternate file. Otherwise, the primary file will be converted.

	
dCreateDate

	
The date the content item was created. By default, this is the current date.

	
dInDate

	
The content release date. The date the content item is to be released to the web. By default, this is the current date.

If the content release date (dInDate) is not specified, the creation date (dCreateDate) is used. This value is auto generated if it is not supplied.

	
dOutDate

	
The content expiration date. By default, this is blank and does not specify an expiration date.

If the content expiration date (dOutDate) is not entered, the value remains empty. This is a valid state.

	
dRevLabel

	
The revision label for the content item. If set, the label will be used to locate the specified revision.

	
isFinished

	
Set to TRUE (1) if this is a workflow check-in and you have finished editing it.

See WORKFLOW_CHECKIN for additional information.

	
Note:

Do not confuse the Content ID (dDocName) with the internal content item revision identifier (dID). The dID value is a generated reference to a specific rendition of a content item

31.3.3.6.4 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKIN_UNIVERSAL">
<idc:document dDocName="SoapUpload2" dDocAuthor="sysadmin" dDocTitle="Soap Upload 2 Document" dDocType="ADACCT" dSecurityGroup="Public" dDocAccount="">
<idc:file name="primaryFile" href="C:/stellent/custom/Soap/JavaSamples/SoapClientUpload/soaptest.doc">
</idc:file>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.6.5 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKIN_UNIVERSAL">
<idc:document dDocAuthor="sysadmin" dDocName="SoapUpload2" dExtension="doc" dDocAccount="" dIsPrimary="1" dRevisionID="1" dPublishType="" dInDate="4/22/02 1:31PM" dReleaseState="N" dRevClassID="12" dCreateDate="4/22/02 1:31 PM" dIsWebFormat="0" dPublishState="" dLocation="" dStatus="DONE" dOriginalName="12.doc" dOutDate="" dDocID="24" dRevLabel="1" dProcessingState="Y" dDocTitle="Soap Upload 2 Document" dID="12" dDocType="ADACCT" dSecurityGroup="Public" dFileSize="19456" dFormat="application/msword">
<idc:field name="primaryFile:path">
c:/stellent/vault/~temp/1230750423.doc
</idc:field>
<idc:field name="dRawDocID">
23
</idc:field>
<idc:field name="changedSubjects">
documents,1019482656706
</idc:field>
<idc:field name="StatusCode">
0
</idc:field>
<idc:field name="soapFile:path">
c:/stellent/vault/~temp/1230750422.xml
</idc:field>
<idc:field name="xComments">

</idc:field>
<idc:field name="soapStartContentID">
SoapContent
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 1:31 PM
</idc:field>
<idc:field name="dActionMillis">
30263
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="WebfilePath">
c:/stellent/weblayout/groups/public/documents/adacct/soapupload2~1.doc
</idc:field>
<idc:field name="StatusMessage">
Successfully checked in content item 'SoapUpload2'.
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="dConversion">
PASSTHRU
</idc:field>
<idc:field name="primaryFile">
C:/stellent/custom/Soap/JavaSamples/SoapClientUpload/soaptest.doc
</idc:field>
<idc:field name="dAction">
Checkin
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="VaultfilePath">
c:/stellent/vault/adacct/12.doc
</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.7 Check out Content Item

The CHECKOUT_BY_NAME checks out the latest revision of the specified content item.

	
Given a content item revision ID, this service attempts to locate the content item in the system and undo the checkout.

	
The service fails if the content item does not exist in the system, if the content item is not checked out, or the user does not have sufficient privilege to undo the checkout.

	
The most likely error is a content item name that does not exist. If this service is unable to execute, an error message is displayed to the user.

	
Note:

This service only marks the content item as locked. It does not perform a download.

31.3.3.7.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dDocName

	
The content item identifier (Content ID).

	
IdcService

	
Must be set to CHECKOUT_BY_NAME.

	
Note:

Do not confuse the Content ID (dDocName) with the internal content item revision identifier (dID). The dID value is a generated reference to a specific rendition of a content item.

31.3.3.7.2 Optional Parameters

This optional parameter may be specified.

	Parameter	Description
	
dDocTitle

	
The content item title.

31.3.3.7.3 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.7.4 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_BY_NAME">
<idc:document dDocTitle="soap_sample" dID="10" dRevLabel="1" dDocAccount="" dRevClassID="10" dDocName="soap_sample" dOriginalName="soap_sample.txt" dSecurityGroup="Public">
<idc:field name="dActionMillis">
39964
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 12:20 PM
</idc:field>
<idc:field name="latestID">
10
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="CurRevID">
10
</idc:field>
<idc:field name="CurRevIsCheckedOut">
0
</idc:field>
<idc:field name="dAction">
Check out
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="CurRevCheckoutUser">
sysadmin
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
documents,1019482656687
</idc:field>
<idc:resultset name="DOC_INFO">
<idc:row dID="10" dDocName="soap_sample" dDocType="ADACCT" dDocTitle="soap_sample" dDocAuthor="sysadmin" dRevClassID="10" dRevisionID="1" dRevLabel="1" dIsCheckedOut="1" dCheckoutUser="sysadmin" dSecurityGroup="Public" dCreateDate="4/22/02 12:18 PM" dInDate="4/22/02 12:18 PM" dOutDate="" dStatus="RELEASED" dReleaseState="Y" dFlag1="" dWebExtension="txt" dProcessingState="Y" dMessage="" dDocAccount="" dReleaseDate="4/22/02 12:19 PM" dRendition1="" dRendition2="" dIndexerState="" dPublishType="" dPublishState="" dDocID="19" dIsPrimary="1" dIsWebFormat="0" dLocation="" dOriginalName="soap_sample.txt" dFormat="text/plain" dExtension="txt" dFileSize="12">
<idc:field name="xComments">

</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.8 Undo Content Item Checkout

The UNDO_CHECKOUT_BY_NAME service reverses a content item checkout using the Content ID.

	
Given a content item name, this service attempts to locate the content item in the system and undo the checkout.

	
The service fails if the content item does not exist in the system, if the content item is not checked out, or if the user does not have sufficient privilege to undo the checkout.

	
This service is used by an applet or application.

	
If this service is unable to execute, this message is displayed to the user: Unable to undo checkout for ''{dDocName}''.

31.3.3.8.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dDocName

	
The content item identifier (Content ID).

	
IdcService

	
Must be set to UNDO_CHECKOUT_BY_NAME.

	
Note:

Do not confuse the Content ID (dDocName) with the internal content item revision identifier (dID). The dID value is a generated reference to a specific rendition of a content item.

31.3.3.8.2 Optional Parameters

This optional parameter may be specified.

	Parameter	Description
	
dDocTitle

	
The content item title.

31.3.3.8.3 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="UNDO_CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.8.4 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="UNDO_CHECKOUT_BY_NAME">
<idc:document dCheckoutUser="sysadmin" dPublishState="" dDocTitle="soap_sample" dID="10" dRevLabel="1" dDocAccount="" dDocName="soap_sample" dRevClassID="10" dOriginalName="soap_sample.txt" dSecurityGroup="Public">
<idc:field name="dActionMillis">
5317
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 12:23 PM
</idc:field>
<idc:field name="latestID">
10
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="CurRevID">
10
</idc:field>
<idc:field name="CurRevIsCheckedOut">
1
</idc:field>
<idc:field name="dAction">
Undo Checkout
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="CurRevCheckoutUser">
sysadmin
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
documents,1019482656689
</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.9 Get Content Item Information

The DOC_INFO service retrieves content item revision information.

	
Given a content item revision ID, the service retrieves content item revision information

	
The most likely errors are when the content item no longer exists in the system or when the user does not have the security level to perform this action. If this service is unable to execute, an error message is displayed to the user.

31.3.3.9.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dID

	
The generated content item revision ID.

	
IdcService

	
Must be set to DOC_INFO.

31.3.3.9.2 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DOC_INFO">
<idc:document dID="6">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.9.3 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DOC_INFO">
<idc:document dStatus="RELEASED" dDocFormats="text/plain" dID="6" DocUrl="HTTP://wharristest/stellent/groups/public/documents/adacct/stellent.txt" dDocTitle="stellent">
<idc:field name="dSubscriptionAlias">
sysadmin
</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="dSubscriptionID">
stellent
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dSubscriptionType">
Basic
</idc:field>
<idc:resultset name="REVISION_HISTORY">
<idc:row dFormat="text/plain" dInDate="4/12/02 1:27 PM" dOutDate="" dStatus="RELEASED" dProcessingState="Y" dRevLabel="1" dID="6" dDocName="stellent" dRevisionID="1">
</idc:row>
</idc:resultset>
<idc:resultset name="WF_INFO">
</idc:resultset>
<idc:resultset name="DOC_INFO">
<idc:row dID="6" dDocName="stellent" dDocType="ADACCT" dDocTitle="stellent" dDocAuthor="sysadmin" dRevClassID="6" dRevisionID="1" dRevLabel="1" dIsCheckedOut="0" dCheckoutUser="" dSecurityGroup="Public" dCreateDate="4/12/02 1:27 PM" dInDate="4/12/02 1:27 PM" dOutDate="" dStatus="RELEASED" dReleaseState="Y" dFlag1="" dWebExtension="txt" dProcessingState="Y" dMessage="" dDocAccount="" dReleaseDate="4/12/02 1:27 PM" dRendition1="" dRendition2="" dIndexerState="" dPublishType="" dPublishState="" dDocID="11" dIsPrimary="1" dIsWebFormat="0" dLocation="" dOriginalName="stellent.txt" dFormat="text/plain" dExtension="txt" dFileSize="8">
<idc:field name="xComments">
stellent
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.10 Get File

The GET_FILE service returns a specific rendition of a content item, the latest revision, or the latest released revision. A copy of the file is retrieved without performing a check out.

	
This command computes the dID (content item revision ID) for the revision, and then determines the file name of a particular rendition of the revision with the computed dID. A specified dID or a dDocName (content item name) along with a RevisionSelectionMethod parameter can be used.

	
Given a dID or a dDocName along with a RevisionSelectionMethod parameter, the service determines the file name of a particular rendition of the revision and returns that file to the client.

	
The most likely errors are some form of mismatched parameters or a request for a revision or rendition that does not exist. If this service is unable to execute, an error message is displayed to the user.

	
Note:

Use dDocName in all requests for content items where the requester knows the dDocName value. Error messages in Content Server are based on the assumption that the dDocName value is present, as are other features, such as forms.

31.3.3.10.1 Required Parameters

	
Important:

Either the content item revision ID (dID) must be specified or a content item name (dDocName) along with a RevisionSelectionMethod parameter must be defined.

	Parameter	Description
	
dDocName

	
The content item identifier (Content ID).

	
If dDocName is not present, dID must be present, and RevisionSelectionMethod must not be present.

	
If RevisionSelectionMethod is present, a rendition of a revision of the content item with this name will be returned, if it exists.

	
If RevisionSelectionMethod is not present, dDocName can be used in error messages.

	
dID

	
The generated content item revision ID.

	
If dID is not specified, dDocName, and RevisionSelectionMethod must specified.

	
A rendition of the revision of the content item with this ID will be returned, if it exists, and the RevisionSelectionMethod parameter does not exist or has the value Specific.

	
RevisionSelectionMethod

	
The revision selection method.

If present, dDocName must be present. The value of this variable is the method used to compute a dID from the specified dDocName. Its value can be Specific, Latest, or LatestReleased.

	
If the value is Specific, dDocName is ignored, and dID is required, and it is used to get a rendition.

	
If the value is Latest, the latest revision of the content item is used to compute the dID.

	
If the value is LatestReleased, the latest released revision of the content item is used to compute the dID.

	
IdcService

	
Must be set to GET_FILE.

31.3.3.10.2 Optional Parameter

This optional parameters may be specified.

	Parameter	Description
	
Rendition

	
The content item rendition. This parameter specifies the rendition of the content item and can be set to Primary, Web, or Alternate. If Rendition is not present, it defaults to Primary.

	
If the value is Primary, the primary rendition of the selected revision is returned.

	
If the value is Web, the web viewable rendition of the selected revision is returned.

	
If the value is Alternate, the alternate rendition of the selected revision is returned.

	
Note:

Do not confuse the Content ID (dDocName) with the internal content item revision identifier (dID). The dID value is a generated reference to a specific rendition of a content item.

31.3.3.10.3 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.10.4 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Receving response...
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Connection: keep-alive
Date: Mon, 29 Apr 2002 16:09:42 GMT
Content-type: Multipart/Related; boundary=-----------------4002588859573015789;
type=text/xml; start="<SoapContent>"
Content-Length: 1717

-------------------4002588859573015789
Content-Type: text/xml; charset=utf-8
Content-ID: <SoapContent>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10" dExtension="txt">
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="FILE_DOC_INFO">
<idc:row dID="10" dDocName="soap_sample" dDocType="ADACCT" dDocTitle="soap_sample" dDocAuthor="sysadmin" dRevClassID="10" dRevisionID="1" dRevLabel="1" dIsCheckedOut="0" dCheckoutUser="" dSecurityGroup="Public" dCreateDate="4/22/02 12:18PM" dInDate="4/22/02 12:18 PM" dOutDate="" dStatus="RELEASED" dReleaseState="Y" dFlag1="" dWebExtension="txt" dProcessingState="Y" dMessage="" dDocAccount="" dReleaseDate="4/22/02 12:19 PM" dRendition1="" dRendition2="" dIndexerState="" dPublishType="" dPublishState="" dDocID="19" dIsPrimary="1" dIsWebFormat="0" dLocation="" dOriginalName="soap_sample.txt" dFormat="text/plain" dExtension="txt" dFileSize="12">
<idc:field name="xComments">

</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

-------------------4002588859573015789
Content-Type: text/html
Content-ID: <soap_sample.txt>

...File content...
-------------------4002588859573015789--

31.3.3.11 Get Search Results

The GET_SEARCH_RESULTS service retrieves the search results for the passed query text.

	
Used to display the search results to a user making a content item query.

	
You can append values for Title, Content ID, and so on, in the QueryText parameter, to refine this service.

The QueryText parameter defines the query. For use in a SOAP message, this query must be XML-encoded. This example passes a string submitted for a content item query in both standard format and XML-encoded format:

	
Parameter with standard formatted string:

QueryText=dDocType <Substring> "ADSALES"

	
Parameter with XML-encoded string:

<idc:field name="QueryText">
dDocType <Substring> `ADSALES`
</idc:field>

For more information about formatting XML-encoded strings, see Section 31.3.2, "Special Characters."

	
If this service is unable to execute, it displays the following message: Unable to retrieve search results.

31.3.3.11.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
IdcService

	
Must be set to GET_SEARCH_RESULTS.

	
QueryText

	
The user supplied text submitted for the content item query.

31.3.3.11.2 Optional Parameters

These parameters may be specified.

	Parameter	Description
	
resultCount

	
The number of results to return, defaults to 25.

	
sortField

	
The name of the metadata field to sort on.

	
Examples: dInDate, dDocTitle, Score.

	
Defaults to dInDate.

	
sortOrder

	
The sort order. Allowed values are ASC (ascending) and DES (descending).

	
startRow

	
The row to begin the search results. For example, if a result returns 200 rows, and resultCount is 25, set startRow to 26 to obtain the second set of results.

31.3.3.11.3 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_RESULTS">
<idc:document>
<idc:field name="QueryText">
dDocType <Substring> "ADSALES"
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.11.4 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_RESULTS">
<idc:document StartRow="1" TotalDocsProcessed="6" TotalRows="0" QueryText="dDocType+%3cSubstring%3e+%22ADSALES%22" EndRow="25" SearchProviders="Master_on_wharristest" NumPages="0" PageNumber="1">
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="EnterpriseSearchMaxRows">
4
</idc:field>
<idc:field name="FullRequest">
&QueryText=dDocType+%3cSubstring%3e+%22ADSALES%22
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="Text2">
<$dDocTitle$>
</idc:field>
<idc:field name="Text1">
<$dDocName$>
</idc:field>
<idc:field name="OriginalQueryText">
dDocType+%3cSubstring%3e+%22ADSALES%22
</idc:field>
<idc:resultset name="SearchResults">
</idc:resultset>
<idc:resultset name="NavigationPages">
</idc:resultset>
<idc:resultset name="Master_on_wharristest">
</idc:resultset>
<idc:resultset name="EnterpriseSearchResults">
<idc:row ProviderName="Master_on_wharristest" IDC_Name="Master_on_wharristest" TotalRows="0" TotalDocsProcessed="6">
<idc:field name="ProviderDescription">
!csProviderLocalContentServerLabel
</idc:field>
<idc:field name="InstanceMenuLabel">
Master_on_wharristest
</idc:field>
<idc:field name="InstanceDescription">
Master_on_wharristest
</idc:field>
<idc:field name="IntradocServerHostName">
wharristest
</idc:field>
<idc:field name="HttpRelativeWebRoot">
/stellent/
</idc:field>
<idc:field name="IsImplicitlySearched">

</idc:field>
<idc:field name="UserAccounts">
#all
</idc:field>
<idc:field name="IsLocalCollection">
true
</idc:field>
<idc:field name="Selected">

</idc:field>
<idc:field name="StatusMessage">
Success
</idc:field>
<idc:field name="ResultSetName">
Master_on_wharristest
</idc:field>
<idc:field name="SearchCgiWebUrl">
/idcplg/idc_cgi_isapi.dll/stellent/pxs
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.12 Get Table Data

The GET_TABLE service exports the specified table in the WebCenter Content database.

	
Exports the specified table by creating a ResultSet and adding it to the serialized HDA file. If the table is not found, the service will fail. It is up to the calling program that is receiving the serialized HDA file to store this ResultSet for later use.

	
The most likely error is a table name that does not exist. If this service is unable to execute, an error message is displayed to the user.

31.3.3.12.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
IdcService

	
Must be set to GET_TABLE.

	
tableName

	
The name of table to export.

31.3.3.12.2 SOAP Request

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_TABLE">
<idc:document>
<idc:field name="tableName">
DocTypes
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.12.3 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_TABLE">
<idc:document>
<idc:field name="tableName">
DocTypes
</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="DocTypes">
<idc:row dDocType="ADACCT" dDescription="Acme Accounting Department" dGif="adacct.gif">
</idc:row>
<idc:row dDocType="ADCORP" dDescription="Acme Corporate Department" dGif="adcorp.gif">
</idc:row>
<idc:row dDocType="ADENG" dDescription="Acme Engineering Department" dGif="adeng.gif">
</idc:row>
<idc:row dDocType="ADHR" dDescription="Acme Human Resources Department" dGif="adhr.gif">
</idc:row>
<idc:row dDocType="ADMFG" dDescription="Acme Manufacturing Department" dGif="admfg.gif">
</idc:row>
<idc:row dDocType="ADMKT" dDescription="Acme Marketing Department" dGif="admkt.gif">
</idc:row>
<idc:row dDocType="ADSALES" dDescription="Acme Sales Department" dGif="adsales.gif">
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.13 Get Criteria Workflow Information

The GET_CRITERIA_WORKFLOWS_FOR_GROUP service returns criteria workflow information.

	
Given a named security group, this service returns a list of workflows and related steps.

	
Returns the Resultset WorkflowsForGroup and WorkflowStepsForGroup:

	
WorkflowsForGroup lists all of the workflows for this group (dWfID, dWfName).

	
WorkflowStepsForGroup lists all of the steps in all of the workflows for this group (dWfID, dWfName, dWfStepID, dWfStepName).

	
Criteria workflows and subworkflows can be added, edited, enabled, disabled, and deleted from the Criteria tab of the Workflow Admin administration applet.

	
The most likely error is a named security group that does not exist or a user failing the security check. The service throws reasonable exceptions for display to the user in these situations.

31.3.3.13.1 Required Parameters

These parameters must be specified.

	Parameter	Description
	
dSecurityGroup

	
The security group such as PUBLIC or SECURE.

	
IdcService

	
Must be set to GET_CRITERIA_WORKFLOWS_FOR_GROUPS.

31.3.3.13.2 SOAP Request

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_CRITERIA_WORKFLOWS_FOR_GROUP">
<idc:document dSecurityGroup="Public" />
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.13.3 Response

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_CRITERIA_WORKFLOWS_FOR_GROUP">
<idc:document dSecurityGroup="Public">
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="WorkflowStepsForGroup">
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
<idc:field name="dWfStepID">
1
</idc:field>
<idc:field name="dWfStepName">
contribution
</idc:field>
</idc:row>
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
<idc:field name="dWfStepID">
2
</idc:field>
<idc:field name="dWfStepName">
StepOne
</idc:field>
</idc:row>
</idc:resultset>
<idc:resultset name="WorkflowsForGroup">
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.4 Using SOAP Packets in Active Server Pages

You can execute Content Server IdcCommand services from an Active Server Page by encapsulating a SOAP packet that defines the service to execute and the required parameters. You must have appropriate permissions to execute the commands. Some commands require administrative access, other commands may require only write permission.

31.4.1 Sample SOAP Request

An Active Server Page can call a service from Content Server. The following description of a sample service includes the required and optional parameters. It also provides an XML-formatted version of the embedded SOAP request.

For more information about service calls, including required and optional parameters, see Section 31.3.3, "Sample Service Calls with SOAP Response/Request."

In the following example, an XML-formatted SOAP request uses the GET_SEARCH_RESULTS service to retrieve the search results for the passed query text.

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_RESULTS">
<idc:document>
<idc:field name="QueryText">
dDocType <Substring> "ADSALES"
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.4.2 Sample Active Server Page

The embedded SOAP request forms the basis of the Active Server Page. The following sample executes GET_SEARCH_RESULTS.

For more information about service calls and examples of SOAP response/request messages, see Section 31.3.3, "Sample Service Calls with SOAP Response/Request."

<%

' Sample ASP page of sending a DOC_INFO Soap request.

Option Explicit

Response.Write("Search Results")

%>

<%

' Construct the Soap request.
Dim strSoapRequest, strQueryText

strQueryText = Request.Form("QueryText")
strQueryText = Server.HtmlEncode(strQueryText)

strSoapRequest = "<?xml version='1.0' ?>" _
& "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"">" _
& "<SOAP-ENV:Body>" _
& "<idc:service xmlns:idc=""http://www.oracle.com/IdcService/"" IdcService=""GET_SEARCH_RESULTS"">" _
& "<idc:document>" _
& "<idc:field name=""QueryText"">" & strQueryText & "</idc:field>" _
& "<idc:field name=""SortField"">" & Request.Form("SortField") & "</idc:field>" _
& "<idc:field name=""SortOrder"">" & Request.Form("SortOrder") & "</idc:field>" _
& "<idc:field name=""ResultCount"">" & Request.Form("ResultCount") & "</idc:field>" _
& "<idc:field name=""Auth"">Internet</idc:field>" _
& "</idc:document>" _
& "</idc:service>" _
& "</SOAP-ENV:Body>" _
& "</SOAP-ENV:Envelope>"

' Send the Soap request.
Dim objXmlHttp
Set objXmlHttp = Server.CreateObject("MSXML2.ServerXMLHTTP")
objXmlHttp.open "POST", "http://localhost/stellent/idcplg", False, "sysadmin", "idc"
objXmlHttp.setRequestHeader "Content-Type", "text/xml; charset=utf-8"
objXmlHttp.send(strSoapRequest)

' Parse the Soap response.
Dim objXmlDoc
Set objXmlDoc = Server.CreateObject("Msxml2.DOMDocument")
objXmlDoc.async = False
objXmlDoc.Load objXmlHttp.responseXml

' Check for errors.
Dim strResponseError
strResponseError = objXmlDoc.parseError.reason
If strResponseError <> "" Then
Response.Write(objXmlHttp.ResponseText)
DisplayBackButton()
Response.End
End If

' Check for a fault string.
Dim objXmlFaultNode
Set objXmlFaultNode = objXmlDoc.documentElement.selectSingleNode("//SOAP-ENV:Fault/faultstring")
If (Not (objXmlFaultNode Is Nothing)) Then
Response.Write(objXmlFaultNode.Text)
DisplayBackButton()
Response.End
End If

' Check the status code.
Dim objXmlStatusCodeNode, objXmlStatusMessageNode, strStatusCode, nStatusCode, strStatusMessage
Set objXmlStatusCodeNode = objXmlDoc.documentElement.selectSingleNode("//idc:field[@name='StatusCode']")
If (Not objXmlStatusCodeNode Is Nothing) Then
nStatusCode = CInt(objXmlStatusCodeNode.Text)
If (nStatusCode < 0) Then
Response.Write(objXmlDoc.documentElement.selectSingleNode("//idc:field[@name='StatusMessage']").Text)
DisplayBackButton()
Response.End
End If
End If

' Display search results
Dim strDocName, strDocTitle, strDocType, strInDate, strComments, nCurRow, nTotalRows
Dim objXmlResultNodeList, objXmlCommentNode

Set objXmlResultNodeList = objXmlDoc.documentElement.selectNodes("//idc:resultset[@name='SearchResults']/idc:row")
nTotalRows = objXmlResultNodeList.Length

%>
<table>
<tr>
<td>Content ID</td>
<td> </td>
<td>Title</td>
<td> </td>
<td>Type</td>
<td> </td>
<td>Release Date</td>
<td> </td>
<td>Comments</td>
</tr>

<%
For nCurRow = 0 To (nTotalRows - 1)
strDocName = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocName")
strDocTitle = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocTitle")
strDocType = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocType")
strInDate = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dInDate")
strComments = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "xComments")

%>

<tr>
<td><%=strDocName%></td>
<td> </td>
<td><%=strDocTitle%></td>
<td> </td>
<td><%=strDocType%></td>
<td> </td>
<td><%=strInDate%></td>
<td> </td>
<td><%=strComments%></td>
</tr>
<%
Next
%>

</table>

<%

DisplayBackButton()
'----------------------------
Function GetXmlNodeValue(objXmlRowNode, strNodeName)
'----------------------------
Dim objXmlNode, objXmlNodeValue

Set objXmlNode = objXmlRowNode.selectSingleNode("@" & strNodeName)
If (objXmlNode Is Nothing) Then
Set objXmlNode = objXmlRowNode.selectSingleNode("idc:field[@name='" & strNodeName & "']")
End If

If (Not (objXmlNode Is Nothing)) Then
GetXmlNodeValue = objXmlNode.Text
End If
'----------------------------
End Function
'----------------------------

'----------------------------
Sub DisplayBackButton()
'----------------------------
%>
<form method=POST action="request.asp">
<table>
<tr>
<td><input type=submit value="Back"></td>
</tr>
</table>
</form>
<%
'----------------------------
End Sub
'---------------------------
%>

31.5 Generating WSDL Files to Access WebCenter Content

You can generate WSDL files for interfacing with WebCenter Content services.

31.5.1 Understanding WSDL Files

WSDL files provide the ability to pass data that can be understood by Content Server services, which enables access to the content and content management functions within WebCenter Content. The WSDL files provided with the component are stored in the IntradocDir/weblayout/groups/secure/wsdl/custom directory.

These WSDL files are provided with the WSDL Generator component:

	
CheckIn.wsdl

	
DocInfo.wsdl

	
GetFile.wsdl

	
MetaData.wsdl

	
PortalInfo.wsdl

	
Search.wsdl

	
Subscription.wsdl

	
Workflow.wsdl

Additional WSDL files can be generated using the Soap Custom WSDL administrative pages. See Section 31.5.2, "Sample WSDL File," for additional information.

31.5.1.1 WSDL File Structure

WSDL files are formally structured with elements that contain a description of the data to be passed to the web service. This structure enables both the sending application and the receiving application to interpret the data being exchanged.

WSDL elements contain a description of the operation to perform on the data and a binding to a protocol or transport. This permits the receiving application to both process the data and interpret how to respond or return data. Additional subelements may be contained within each WSDL element.

The WSDL file structure includes these major elements:

	
Data Types: Generally in the form of XML schema to be used in the messages.

	
Message: The definition of the data in the form of a message either as a complete document or as arguments to be mapped to a method invocation.

	
Port Type: A set of operations mapped to an address. This defines a collection of operations for a binding.

	
Binding: The actual protocol and data formats for the operations and messages defined for a particular port type.

	
Service and Port: The service maps the binding to the port and the port is the combination of a binding and the network address for the communication exchange.

	
Note:

The following code fragments are from the DocInfo.wsdl file provided with the WSDL Generator component. For a complete WSDL file, see Section 31.5.2, "Sample WSDL File."

31.5.1.1.1 Data Type

The Data Type <types> defines the complex types and associated elements. Web services supports both simple data types (such as string, integer, or boolean) and complex data types. A complex type is a structured XML document that contains several simple types or an array of subelements.

The following code fragment for the ContentInfo set defines the Name, Title, Author, and Group elements and specifies that they are strings.

<s:complexType name="ContentInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocTitle" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocType" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocAuthor" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string"/>
</s:sequence>
</s:complexType>

31.5.1.1.2 Message

The Message <message> defines the data as arguments to be mapped to a method invocation.

<message name="DocInfoByIDSoapIn">
<part name="parameters" element="s0:DocInfoByID" />
</message>
<message name="DocInfoByIDSoapOut">
<part name="parameters" element="s0:DocInfobyIDResponse" />
</message>

31.5.1.1.3 Port Type

The Port Type <portType> defines a collection of operations for a binding. The DocInfo.wsdl file provides the DocInfoSoap and the DocInfo operation name (method name) with I/O information for processing the message.

<portType name="DocInfoSoap">
<operation name="DocInfoByID">
<input message="s0:DocInfoByIDSoapIn" />
<output message="s0:DocInfoByIDSoapOut" />
</operation>
</portType>

	
Note:

While a port type is a collection of operations (like classes in Java), WSDL is an independent data abstraction that provides more functionality than simply mapping to .NET, EJB, or CORBA objects.

31.5.1.1.4 Binding

The binding <binding> defines the actual protocol and data formats for the operations and messages for the particular port type.

<binding name="DocInfoSoap" type="s0:DocInfoSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="DocInfoByID">
<soap:operation soapAction="http://wwww.oracle.com/Soap/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>

31.5.1.1.5 Service and Port

The service <service> maps the binding to the port. The port is the combination of a binding and the network address for the communication exchange. The port is used to expose a set of port types (operations) on the defined transport.

<service name="DocInfo">
<port name="DocInfoSoap" binding="s0:DocInfoSoap">
<soap:address location="http://myhost.example.com:16200/_dav/cs/idcplg" />
</port>
</service>

	
Tip:

You can add &IsSoap=1 to the URL of a Content Server browser window to view the underlying SOAP code for that page.

31.5.2 Sample WSDL File

This sample code presents the complete DocInfo.wsdl file. This file and the CheckIn.wsdl, GetFile.wsdl, and Search.wsdl files are found in the IntradocDir/weblayout/groups/secure/wsdl/custom directory for the Content Server instance.

<?xml version='1.0' encoding='utf-8' ?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://wwww.oracle.com/DocInfo/"
targetNamespace="http://wwww.oracle.com/DocInfo/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://www.oracle.com/DocInfo/">
<s:element name="DocInfoByID">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="extraProps" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="DocInfoByIDResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="DocInfoByIDResult" type="s0:DocInfoByIDResult" />
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="DocInfoByIDResult">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="ContentInfo" type="s0:ContentInfo" />
<s:element minOccurs="0" maxOccurs="unbounded" name="Revisions" type="s0:Revisions" />
<s:element minOccurs="0" maxOccurs="unbounded" name="WorkflowInfo" type="s0:WorkflowInfo" />
<s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s0:StatusInfo" />
</s:sequence>
</s:complexType>
<s:element name="DocInfoByName">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="extraProps" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="DocInfoByNameResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="DocInfoByNameResult" type="s0:DocInfoByNameResult" />
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="DocInfoByNameResult">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="ContentInfo" type="s0:ContentInfo" />
<s:element minOccurs="0" maxOccurs="unbounded" name="Revisions" type="s0:Revisions" />
<s:element minOccurs="0" maxOccurs="unbounded" name="WorkflowInfo" type="s0:WorkflowInfo" />
<s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s0:StatusInfo" />
</s:sequence>
</s:complexType>
<s:complexType name="ContentInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocTitle" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocAuthor" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocAccount" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevClassID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevisionID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevLabel" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIsCheckedOut" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dCheckoutUser" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dCreateDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dInDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOutDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dReleaseState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFlag1" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWebExtension" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProcessingState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dMessage" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dReleaseDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRendition1" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRendition2" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIndexerState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dPublishType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dPublishState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dIsPrimary" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dIsWebFormat" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dLocation" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOriginalName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFormat" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dExtension" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFileSize" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="CustomDocMetaData" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
<s:complexType name="Revisions">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dFormat" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dInDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOutDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProcessingState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRevLabel" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRevisionID" type="s:int" />
</s:sequence>
</s:complexType>
<s:complexType name="WorkflowInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dWfID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDocState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfComputed" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfCurrentStepID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDirectory" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dClbraName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDescription" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dCompletionDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProjectID" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIsCollaboration" type="s:boolean" />
</s:sequence>
</s:complexType>
<s:complexType name="StatusInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="statusCode" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="statusMessage" type="s:string" />
</s:sequence>
</s:complexType>
<s:complexType name="IdcPropertyList">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="property" type="s0:IdcProperty" />
</s:sequence>
</s:complexType>
<s:complexType name="IdcProperty">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="name" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="value" type="s:string" />
</s:sequence>
</s:complexType>
</s:schema>
</types>
<message name="DocInfoByIDSoapIn">
<part name="parameters" element="s0:DocInfoByID" />
</message>
<message name="DocInfoByIDSoapOut">
<part name="parameters" element="s0:DocInfoByIDResponse" />
</message>
<message name="DocInfoByNameSoapIn">
<part name="parameters" element="s0:DocInfoByName" />
</message>
<message name="DocInfoByNameSoapOut">
<part name="parameters" element="s0:DocInfoByNameResponse" />
</message>
<portType name="DocInfoSoap">
<operation name="DocInfoByID">
<input message="s0:DocInfoByIDSoapIn" />
<output message="s0:DocInfoByIDSoapOut" />
</operation>
<operation name="DocInfoByName">
<input message="s0:DocInfoByNameSoapIn" />
<output message="s0:DocInfoByNameSoapOut" />
</operation>
</portType>
<binding name="DocInfoSoap" type="s0:DocInfoSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="DocInfoByID">
<soap:operation soapAction="http://www.oracle.com/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="DocInfoByName">
<soap:operation soapAction="http://www.oracle.com/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="DocInfo">
<port name="DocInfoSoap" binding="s0:DocInfoSoap">
<soap:address location="http://myhost.example.com:16200/_dav/cs/idcplg/idc_cgi_isapi.dll" />
</port>
</service>
</definitions>

31.5.3 Generating WSDL Files

When the WSDL Generator component is installed and enabled during Oracle WebCenter Content installation, several folders and related HDA files are generated that expose several services as web services. Two directories are created in the IntradocDir/data/soap directory. The generic directory contains a generic.hda file, and the custom directory contains a wsdl_custom.hda file. Administrators can customize or add WSDL files using the Soap Wsdl administration pages. These pages are accessed by clicking the Soap WSDL link from the Administration section of the Admin Applet page.

	
Note:

The WSDL Generator component must be enabled to generate WSDL files.

For step-by-step instructions on creating and editing a custom WSDL using the Soap Custom Wsdl administration pages, see Section 31.6, "Customizing WSDL Files."

31.5.4 Generating Proxy Class from WSDL Files

Using the WSDL files, developers may choose to create proxy classes to plug into a development tool. A number of software products and tool kits are available for converting WSDL files to programming class files in languages such as Java, Visual Basic, and C#. For example, Apache AXIS provides a SOAP to Java toolkit, and Microsoft .NET Development Environment provides functionality to convert WSDL files to C#.

If you are using Microsoft .NET, you can use utilitywsdl.exe to generate the proxy classes:

wsdl /l:CS DocInfo.wsdl

This utility generates the file DocInfoService.cs (C# class) which contains the class DocInfoService and the function DocInfo with the parameters specified. The return value is the DocInfoSet class, which is all the response parameters specified, along with ErrorCode and ErrorMessage values. If the ErrorCode is less than zero, an error has occurred in the service call, and you can see the specifics of it in the value of ErrorMessage.

	
Note:

In addition to the WSDL files provided with the WSDL Generator component, you can generate WSDL files for any WebCenter Content service. For more information, see Section 31.5.3, "Generating WSDL Files."

31.6 Customizing WSDL Files

The Soap Custom Wsdl administration pages provide an administrator with the ability to edit and customize WSDL files. This chapter provides an administrative tutorial that gives step-by-step instructions on creating and editing a custom WSDL.

The WSDL Generator component must be enabled to generate WSDL files. In addition to the WSDL files provided with the WSDL Generator component, you can generate additional WSDL files for any WebCenter Content service. See Section 31.5.3, "Generating WSDL Files," for additional information.

For a list of available services and the required parameters, see the Oracle Fusion Middleware Services Reference for Oracle WebCenter Content.

To create and edit a custom WSDL file with the Soap Custom WSDL administration pages:

	
In a web browser, log in to Oracle WebCenter Content Server as an administrator.

	
From the Administration tray or menu, choose Soap Wsdls.

This option displays the Wsdl List page, which Figure 31-3 shows.

Figure 31-3 Wsdl List Page

[image: Surrounding text describes Figure 31-3 .]

	
From the Actions menu, choose Data Lists.

This option displays the Data Lists page, which Figure 31-4 shows.

Figure 31-4 Data Lists Page

[image: Surrounding text describes Figure 31-4 .]

	
Note:

System-specific WSDLs cannot be deleted. You can, however, edit the WSDL and enable or disable the complex type elements for that WSDL.

Data Lists are global lists of data that can be used with complex types, service parameters, or other Data Lists. When a Data List is specified as a parameter or a subtype of a complex type, all the subtypes of the Data List will appear as data types. Data Lists are defined once but can be referenced multiple times with different WSDLs and services. All the Data Lists have a prefix of "d:" in the data type list.

	
Choose Add Data List from the Actions menu.

The Add Data List page is displayed.

	
Enter the following information:

Name: UserMetaFields

Description: User Metadata Fields

	
Click Add.

	
In the Data List Elements Name column, enter the following names for user metadata fields:

	
dName

	
dFullName

	
dPassword

	
dEmail

	
dUserAuthType

For each name, choose field:string from the menu in the Type column, and make sure Enabled is selected, as Figure 31-5 shows.

Figure 31-5 Data List Elements

[image: Surrounding text describes Figure 31-5 .]

	
Click Update.

You are returned to the updated Data Lists page. Note that UserMetaFields now appears at the bottom of the list.

	
Choose Wsdl List from the Actions menu.

The Wsdl List page is displayed again, as Figure 31-6 shows.

Figure 31-6 Wsdl List Page Redisplayed

[image: Surrounding text describes Figure 31-6 .]

	
Choose Add Wsdl from the Actions menu.

The Add Wsdl page is displayed.

	
Enter the following information:

Name: UserInfo

Description: User Services

	
Click Add.

The Wsdl Information page is displayed, as Figure 31-7 shows.

Figure 31-7 Wsdl Information Page

[image: Surrounding text describes Figure 31-7 .]

	
Choose Add Complex Type from the Actions menu.

The Add Complex Type page is displayed.

	
Note:

Complex types contain other data types as subtypes. After these are created, any service in the WSDL can use these complex types as parameters.

	
Enter the following Complex Type information:

Name: UserAttribInfo

Type: Choose resultset from the menu.

	
Click Add.

The Wsdl Information page is displayed again, as Figure 31-8 shows.

Figure 31-8 Wsdl Information Page Redisplayed

[image: Surrounding text describes Figure 31-8 .]

	
Click Edit on the UserAttribInfo line.

The Complex Type Information/Complex Type Elements page opens.

	
Enter the following Complex Type Elements, and choose the Type value for each one from the menu.

	Name	Type	Idc Name
	
dUserName

	
field:string

	

	
AttributeInfo

	
field:string

	

	
Click Update in the Complex Type Elements section.

You are returned to the updated Wsdl Information page. Note that User AttribInfo now appears as a complex type.

	
Choose Add Service from the Actions menu.

The Add Service page opens.

	
Enter the following information:

Name: AddUser

IdcService: ADD_USER

	
Click Add.

The Wsdl Information page opens.

	
Choose Edit for the AddUser service.

This option displays the Service Information page, which Figure 31-9 shows.

Figure 31-9 Service Information Page

[image: Surrounding text describes Figure 31-9 .]

	
Note:

When you create a WSDL, you create services that correspond to the IdcServices feature of Content Server. You also specify the request and response parameters that you want the service to pass and receive from the Web Service call.

	
Choose Update Request Parameters from the Actions menu.

The Request Parameters page is displayed.

	
Enter the following information, selecting the Type from the menu.

	Name	Type	Idc Name
	
DataList

	
d:UserMetaFields

	

	
CustomUserData

	
propertylist:CustomUserMeta

	

	
Click Update.

You are returned to the updated Service Information page. Note that DataList and CustomUserData now appear in the Request Parameters section.

	
Click Update.

You are returned to the updated Wsdl Information page, showing the service that you just added.

	
Click Update again.

You are returned to the updated Wsdl List page. UserInfo appears at the bottom of the list.

	
Choose Generate Wsdls from the Actions menu.

A confirmation message displays after the Wsdls are generated successfully.

	
Click Back.

You are returned to the Wsdl List page.

	
Click the UserInfo link in the Name column.

The source code for the generated Wsdl file is displayed (a portion is shown in Example 31-12).

Example 31-12 Partial Source Code, Wsdl File

 <?xml version="1.0" encoding="utf-8" ?>
- <definitions xmins:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.smlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://www.example.com/UserInfo/"
 targetNamespace="http://www.example.com/UserInfo/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 - <types>
 - <s:schema elementFormDefault="qualified"
 targetNamespace="http://www.example.com/UserInfo/">
 - <s:element name="AddUser">
 - <s:complexType>
 - <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="dName"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dFullName"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dPassword"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dEmail"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dUserAuthType"
 type="s:string: />
 <s:element minOccurs="0" maxOccurs="1" name="CustomUserData"
 type="s0:IdcPropertyList" />
 <s:element minOccurs="0" maxOccurs="1" name="extraProps"
 type="s0:IdcPropertyList" />
 </s:sequence>
 </s:complexType>
 </s:element>

	
Click the browser Back button.

You are returned to the Soap Custom Wsdl page.

	
Tip:

You can right click View and save the WSDL file to your desktop (for use with .NET, and so on). However, be sure to save the file with the .wsdl file extension rather than the default .xml file extension.

A Idoc Script Functions and Variables

This appendix provides information about Idoc Script functions and variables, which you can use for customizing Oracle WebCenter Content.

Idoc Script has many built-in global functions. Functions perform actions, including string comparison and manipulation routines, date formatting, and ResultSet manipulation. Some functions also return results, such as the results of calculations or comparisons.

Information is passed to functions by enclosing the information in parentheses after the name of the function. Pieces of information that are passed to a function are called parameters. Some functions do not take parameters; some functions take one parameter; some take several. There are also functions for which the number of parameters depends on how the function is being used.

In addition to the built-in global functions, you can define new global functions, including custom classes, with Java code. For more information, see Chapter 11, "Getting Started with Content Server Components," and Chapter 17, "Creating Custom Components."

Along with built-in functions, Idoc Script uses a range of variables. Variables which are used within Idoc scripts include dynamic variables, conditional dynamic variables, and page display variables. Many of these variables can be used both within scripts and specified individually in the WebCenter Content config.cfg and intradoc.cfg files, or used in a web browser URL.

For details about variables that are used only in .cfg files or in a web browser URL, see the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content.

abortToErrorPage()

Aborts the current page and displays an error message.

	
This function evaluates the StatusCode variable, and if a negative numeric value (-1) is returned, substitutes the display of the current page with an error page.

	
The StatusMessage variable can be used as the error message string.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.1.5.1, "Page Display Variables"

Parameters

The only parameter is the error message string.

Output

Returns the error message string on an error page.

Example

Aborts the current page and displays Access Denied as an error message:

<$abortToErrorPage("Access Denied")$>

Aborts the current page and displays the value of the StatusMessage variable as an error message:

<$abortToErrorPage("<$StatusMessage$>")$>

See Also

	
executeService()

	
IsRequestError

	
StatusCode

	
StatusMessage

addEmptyOption

Specifies that a metadata field option list has blank value as the first option in the list.

Type and Usage

	
Section 4.1.5.2, "Field Display Variables"

	
Section 4.1.5.2.3, "Other Field Display Variables"

Output

	
Returns TRUE if the first value in the option is blank.

	
Returns FALSE if the first value in the option list is not blank.

Example

Specifies that the first value in the option list is blank:

<$if ForceDocTypeChoice and isTrue(ForceDocTypeChoice)$>
 <$addEmptyOption = 1$>
<$endif$>

See Also

	
fieldIsOptionList

AdminAtLeastOneGroup

Checks if the current user has the admin role for at least one security group.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.2.21.1, "Internal Security"

	
Section 4.2.24, "Users"

Output

	
Returns TRUE if the user is an administrator for at least one security group.

	
Returns FALSE if the user is not assigned the admin role.

Example

Can be used to do an optional presentation for an administrator:

<$if (AdminAtLeastOneGroup)$>
 <a href="<$redirect$>">
<$endif$>

See Also

	
UserAppRights

	
UserIsAdmin

AfterLogin

Specifies whether the current page was created immediately after a login.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.1.5.1, "Page Display Variables"

Output

	
Returns TRUE if the page was created immediately after a login.

	
Returns FALSE if the page was not created immediately after a login.

Example

Displays an alternate URL if the page was not created immediately after a login:

<$if not AfterLogin$>
 <a href="<$redirect$>">
<$endif$>

AllowCheckin

Checks if the current user has checkin permission for the content item's security group.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.2.21.1, "Internal Security"

	
Section 4.2.24, "Users"

Output

	
Returns TRUE if the user has checkin permission.

	
Returns FALSE if the user does not have checkin permission.

Example

Can be used to do an optional presentation for a user with checkin permission:

<$if (AllowCheckin)$>
 <a href="<$redirect$>">
<$endif$>

AllowCheckout

Checks whether current user has checkout permission for the content item's security group.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.2.21.1, "Internal Security"

	
Section 4.2.24, "Users"

Output

	
Returns TRUE if the user has checkout permission.

	
Returns FALSE if the user does not have checkout permission.

Example

Can be used to do an optional presentation for a user with checkout permission:

<$if (AllowCheckout)$>
 <a href="<$redirect$>">
<$endif$>

AllowReview

Checks if the current user is allowed to approve or reject the current workflow item.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.1.8, "Workflows"

Output

	
Returns TRUE if the user is a reviewer for the current workflow step.

	
Returns FALSE if the user is not a reviewer for the current workflow step.

Example

Displays Approve and Reject buttons if the user is a reviewer:

<$if AllowReview$>
 <$include workflow_doc_action_buttons$>
<$endif$>

AuthorAddress

Specifies the e-mail address of the author of a content item.

Type and Usage

	
Section 4.1.9, "Value Variables"

	
Section 4.2.24, "Users"

Output

Returns a string or Boolean value depending on use.

	
Standard use: Returns the e-mail address of the content item's author as a string.

	
Used in a conditional statement:

	
Returns TRUE if the content item author has a defined e-mail address.

	
Returns FALSE if the content item author has no e-mail address.

Example

Can be used to alert the content item author through e-mail when a revision is made.

<$AuthorAddress$>

AuthorDelete

Enables authors of content items to delete their own revisions without having the Delete privilege for the security group.

	
When set to TRUE and Content Server is configured to use Folders (enabled by the FrameworkFolders component), authors can delete their own revisions as long as they have the Read privilege, where normally they would need the Delete privilege for the security group.

	
When set to TRUE and Content Server is configured to use Contribution Folders (enabled by the Folders_g component), authors can delete their own revisions as long as they have the Read privilege, where normally they would need the Delete privilege for the security group.

	
Default is an empty string.

Type and Usage

	
Configuration variables, described in the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content

	
Section 4.2.21.1, "Internal Security"

Location

	
System Properties, Content Security tab, Allow author to delete revision

	
Admin Server, Content Security option, Allow author to delete revision

	
IntradocDir/config/config.cfg

Example

As a configuration entry:

AuthorDelete=true

As Idoc Script:

<$if AuthorDelete$>
 <$AuthorDelete$>
<$else$>
 false
<$endif$>

AutoNumberPrefix

Defines the prefix that will be added to all automatically numbered Content IDs.

	
Returns the automatic numbering prefix (returns value in configuration settings).

	
Returns a string.

Type and Usage

	
Configuration variables, described in the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content

	
Section 4.2.3, "Content Items"

Location

	
System Properties, Options tab, Auto Name Prefix

	
Admin Server, General Configuration, Auto Number Prefix

	
IntradocDir/config/config.cfg

Example

As a configuration setting, defines the automatic numbering prefix:

AutoNumberPrefix=HR

As Idoc Script, returns the value of the configuration setting:

<$AutoNumberPrefix$>

See Also

	
"IsAutoNumber" in the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content

BatchLoaderPath

Defines the path to the default batch load text file.

Returns the file path as a string.

Type and Usage

	
Configuration variables, described in the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content

	
Section 4.2.1, "Batch Loader"

Location

DomainHome/ucm/cs/bin/intradoc.cfg

Example

	
As a Windows configuration entry:

BatchLoaderPath=c:/domain/BatchLoader/batchfile.txt

	
As a Solaris/UNIX configuration entry:

BatchLoaderPath=/u1/intradoc3/batLd/batchfile

	
As Idoc Script, returns the file path as a string:

<$BatchLoaderPath$>

break()

Often used to terminate a loop.

	
The break instruction causes the innermost loop to be exited.

	
Control resumes with the first statement following the end of the loop.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.13, "Idoc Script"

BrowserVersionNumber

Retrieves the version number of the client browser.

Type and Usage

	
Section 4.1.2, "Dynamic Variables"

	
Section 4.2.2, "Clients"

Output

Returns the browser version number as a string.

Example

Can be used to ensure that the user has a browser version compatible with Content Server.

<$BrowserVersionNumber$>

c

Specifies a comment in Idoc Script code.

Type and Usage

	
Section 3.2.2, "Idoc Script Comments"

	
Section 4.2.13, "Idoc Script"

Example

Places a comment in the code:

<$c = "Sets the variables to empty strings."$>

cacheInclude()

This function acts similar to the inc() Idoc Script function. It will evaluate the dynamic html include corresponding to includeName and display it on the page. The difference is that if possible, it will pull the rendered html from a cache, instead of evaluating it again.

For more information, see Section 3.4.1, "Keywords Versus Functions."

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.13, "Idoc Script"

Parameters

Takes three required parameters and two optional parameters. For example:

cacheInclude(includeName, scope, lifeSpan [, cacheName, key])

	Parameter	Description
	
includeName

	
The name of the dynamic html element to evaluate.

	
scope

	
Set to 'session' if each user should see different html, or 'application' if all users will see the same thing.

	
lifeSpan

	
The lifespan of this include in the cache, in seconds.

	
cacheName

	
Optional: if you want to place this data into a named cache instead of the default cache. If an empty string is passed, it will cache the include into the default cache for the session.

	
key

	
Optional: if you do not want automatic name-scoping of your cache to prevent conflicts, you can specify a unique key here.

Example

This will cache the std_page_begin include for each user for ten minutes. This is about 10k per user in the cache.

<$cacheInclude("std_page_begin", "session", 600)$>

See Also

	
inc()

	
forceExpire()

	
setExpires()

	
setHttpHeader()

	
setMaxAge()

captionEntryWidth

Specifies the width of a metadata field, in percent.

Type and Usage

	
Section 4.1.5.2.3, "Other Field Display Variables"

	
Section 4.2.12, "Field Display"

Output

Returns the width of the current metadata field in percent.

Example

Used as script:

<$if isInfo$>
 <$captionFieldWidth="30%"$>
 <$captionEntryWidth="70%"$>
<$elseif isEditMode$>
 <$captionFieldWidth="20%"$>
 <$captionEntryWidth="80%"$>
<$endif$>

See Also

	
captionFieldWidth

captionFieldWidth

Specifies the width of a metadata field caption, in percent.

Type and Usage

	
Section 4.1.5.2.3, "Other Field Display Variables"

	
Section 4.2.12, "Field Display"

Output

Returns the width of the current metadata field caption in percent.

Example

Used as script:

<$if isInfo$>
 <$captionFieldWidth="30%"$>
 <$captionEntryWidth="70%"$>
<$elseif isEditMode$>
 <$captionFieldWidth="20%"$>
 <$captionEntryWidth="80%"$>
<$endif$>

See Also

	
fieldCaptionStyle

	
captionEntryWidth

clearSchemaData()

Clears the data from a schema ResultSet.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.19, "Schemas"

Parameters

This function can take zero, one, or two parameters.

	
If passed zero arguments, it clears the data binder. Returns no value.

	
If passed one argument, the argument is the name of the ResultSet to clear the values from the current row. Returns no value.

	
If passed two arguments, the first argument is the ResultSet name and the second argument is the key identifying the data object to clear. Returns 0 if the data does not exist or 1 if it does exist. The use is True() or False() to conditionally execute scripts based on the return value.

Example

<$clearSchemaData()$>

See Also

	
loadSchemaData()

ClientControlled

Checks if the page was accessed from the ODMA Client.

This value is passed by the string for controlling the update process that is provided by the client.

Type and Usage

	
Section 4.1.7, "Settable Variables"

	
Section 4.2.2, "Clients"

Output

	
Returns TRUE if the page was accessed from the ODMA Client.

	
Returns FALSE if the page was not accessed from the ODMA Client.

Example

Checks if the page was accessed from the ODMA Client:

<$ClientControlled$>

See Also

	
HasLocalCopy

	
IsNotLatestRev

computeDocUrl()

This function computes the URL to a content item based on the data on the page.

For example, this function can be called to generate a URL to an item when looping over a ResultSet of items.

The following information must be present on the page:

	
dDocAccount (optional)

	
dDocName

	
dDocType

	
dProcessingState

	
dRevLabel

	
dSecurityGroup

	
dWebExtension

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.3, "Content Items"

Parameters

The only parameter indicates if the URL is relative, set to TRUE (1) or FALSE (0).

computeRenditionUrl()

Returns the URL of a given rendition.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.3, "Content Items"

Parameters

Takes three parameters:

	
The first parameter is the URL of the content item.

	
The second parameter is the dRevLabel value.

	
The third parameter is the dRendition1 value. Possible values of dRendition1 include:

	
T = Thumbnail rendition

	
X = XML rendition

Output

Returns the complete URL of the rendition as a string.

Example

Returns the URL of the rendition as a string.

<$computeRenditionUrl(url, dRevLabel, dRendition1)$>

CONTENT_LENGTH

Retrieves the length in bytes of the requested content item as supplied by the client.

This variable is specific to the current gateway program request.

	
Important:

This setting is obsolete for Content Server version 7.0 and later. The web server filter no longer sends this information.

Type and Usage

	
Section 4.1.3, "Environment Variables"

	
Section 4.2.3, "Content Items"

	
Section 4.2.25, "Web Servers"

Output

Returns the content length in bytes.

Example

As information output on a page or to a log:

CONTENT_LENGTH=0

As part of an Idoc Script statement or evaluation:

<$if CONTENT_LENGTH$>
<!--statement-->

coreContentOnly

Set this variable in the URL of a service request to display only the form. The std_page_begin and std_page_end include files will not be displayed.

Type and Usage

	
Section 4.1.7, "Settable Variables"

	
Section 4.2.16, "Page Display"

Output

None.

CURRENT_DATE

Returns the current date and time.

This variable is similar to dateCurrent, which is used more frequently.

Type and Usage

	
Section 4.1.2, "Dynamic Variables"

	
Section 4.2.8, "Date and Time"

Output

Returns a string formatted according to the user locale.

Example

Used as script:

<$CURRENT_DATE$>

See Also

	
dateCurrent()

CURRENT_ROW

Evaluates which row of a ResultSet you are in.

The first row in a ResultSet is row zero (0).

Type and Usage

	
Section 4.1.2, "Dynamic Variables"

	
Section 4.2.18, "ResultSets"

Output

Returns the row number.

Example

Used as script:

<$CURRENT_ROW$>

dateCurrent()

Returns the current date and time.

Can be used to return the current date and time to the user or to create commands using date evaluations.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.8, "Date and Time"

Parameters

The only optional parameter is an integer, which adjusts the date by the specified number of days relative to the current date.

Output

Returns a date formatted according to the user locale.

Example

In the following examples, dates are formatted according to the default English-US locale:

m/d/yy h:mm XM

The following returns the current date and the current time (for example, 8/12/01 1:55 PM):

<$dateCurrent()$>

Returns the date ten days in the future and the current time (for example, 8/22/01 1:55 PM):

<$dateCurrent(10)$>

Returns the date ten days in the past and the current time (for example, 8/2/01 1:55 PM):

<$dateCurrent(-10)$>

See Also

	
CURRENT_DATE

dcShowExportLink

This function verifies if the Dynamic Converter has been configured to convert a content item. The returned value is based on the value for dFormat for the item.

This function is typically used on Search Result pages to conditionally display a Dynamic Converter link.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.2.6.2, "Dynamic Converter"

Output

	
Returns TRUE if the Dynamic Converter is configured to convert the content item.

	
Returns FALSE if the Dynamic Converter is not configured.

Example

<$QueryText = "dDocTitle <substring> `test`"$>
<$executeService("GET_SEARCH_RESULTS")$>
<$loop SearchResults$>
 <$if dcShowExportLink()$>
 <a href="<$HttpCgiPath$>?IdcService=
 GET_DYNAMIC_CONVERSION&dID=<dID>">
 HTML Conversion of <$dDocTitle$>
 <$endif$>
<$endloop$>

ddAppendIndexedColumnResultSet()

This function loads a dynamicdata table into a ResultSet. It is very similar to ddLoadIndexedColumnResultSet. The main difference is that if the Idoc Script ResultSet already exists, the new ResultSet created from the dynamicdata table is appended to it. Any fields found in the dynamicdata table, but not in the target ResultSet, are automatically added.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for this function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be appended.

	
indexColumn

	
The name of an indexed column in the dynamicdata table.

	
indexValue

	
The value to use to select a section of the original table. This value will be checked in a case-insensitive manner against the indexColumn value in each row. If it matches, that row is loaded into the ResultSet; otherwise, it is skipped.

	
mappingTableName

	
The name of a dynamicdata table used to rename the columns of the final ResultSet. The renaming is done by mapping the column names in the specified mapping table to the values of the first row in the same table. This is done exactly the same in ddLoadResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldA"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "first value"$>
<$MyResultSet.fieldB = "second value"$>
<$exec ddLoadIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA", "1")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == 'second value') %]]<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '3') %]]

See Also

	
ddLoadIndexedColumnResultSet()

ddAppendResultSet()

This function loads a dynamicdata table into a ResultSet. It is very similar to ddLoadResultSet. The main difference is that if the Idoc Script ResultSet already exists, the new ResultSet created from the dynamicdata table is appended to it. Any fields found in the dynamicdata table, but not in the target ResultSet, are automatically added.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be appended.

	
mappingTableName

	
The name of a dynamicdata table used to rename the columns of the final ResultSet. The renaming is done by mapping the column names in the specified mapping table to the values of the first row in the same table. This is done exactly the same in ddLoadResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
field1, field2, field3
a, b, c
d, e, f
<@end@>

<$exec rsCreateResultSet("MyResultSet", "field1,field2")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.field1 = "first value"$>
<$MyResultSet.field2 = "second value"$>
<$exec ddAppendResultSet("MyDataTable", "MyResultSet")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.field1$> [[% (foo == 'first value') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.field3$> [[% (bar == 'c') %]]

See Also

	
ddLoadResultSet()

	
ddAppendIndexedColumnResultSet()

ddApplyTableSortToResultSet()

This function sorts an existing ResultSet using the rules defined in a particular dynamicdata table.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to use for its sorting rules.

	
resultSetName

	
The name of the ResultSet into which the dynamicdata table should be appended.

Output

If the sorting is successfully performed, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable sortcolumn="order" sortType="int" sortOrder="asc"?>
user, service, order
jane, DOC_INFO, 10
bob, GET_SEARCH_RESULTS, 20
annette, CHECKIN_NEW, 30
<@end@>

<$exec rsCreate("MyResultSet")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.user = "james"$>
<$MyResultSet.service = "GET_FILE"$>
<$MyResultSet.order = 75$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.user = "zoe"$>
<$MyResultSet.service = "DOC_INFO_BY_NAME"$>
<$MyResultSet.order = 20$>
<$exec ddApplyTableSortToResultSet("MyDataTable", "MyResultSet")$>

ddGetFieldList()

This function takes a dynamicdata table and returns a comma-separated string containing the names of the columns in the table. It is expected that many dynamicdata tables consist only of field names without any rows just to supply comma-separated lists of values to code in the Content Server system.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table to load.

Output

If the dynamictable exists, it returns True.

Example

<@dynamicdata MyDataTable@>
foo,bar,baz
<@end@>

<$fieldList = ddGetFieldList("MyDataTable")$>
<$trace(fieldList, "#console")$> [[% Outputs: foo,bar,baz %]]

ddIncludePreserveValues()

This function executes a resource include, but protects values specified by a dynamicdata table from being changed. The column names in the data table are used as the list of variables names that must be protected. These variables are protected by temporarily caching them, calling the include, and then resetting those variables back to the cached values. If a variable was null, it is set to blank.

If one of the column names in the table starts with a dollar symbol ($), then the string that follows is assumed to be the name of a ResultSet. In that case, it is the pointer to the ResultSet that is temporarily cached in memory and then replaced after the resource include has finished executing. If the ResultSet did not exist at the time of caching, then any ResultSet that exists with that key at the end are removed. If the ResultSet is active at the time it has its pointer cached, new ResultSets of the same name can be created during the call of the include and the previously active ResultSet will be recovered appropriately without disturbing the loop. The one side effect is that if a new ResultSet is created that temporarily replaces the active ResultSet, then the algorithm for variable substitution that retrieves values first from active ResultSets can find values for a variable from the cached active ResultSet (assuming the variable is not found as a field in an active ResultSet with higher precedence). The cached active ResultSet maintains its place in the active ResultSet stack,

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
includeName

	
The name of the resource include to execute.

	
dataTableName

	
The name of the dynamicdata table to use for preserving local data and ResultSets.

Output

A string representing the output of the executed resource include.

Example

<@dynamicdata MyPreservedFields@>
foo, bar, $baz
<@end@>

<@dynamichtml my_include@>
 <$foo = "tempValue1"$>
 <$bar = "tempValue2"$>
<@end@>

<$foo = 5$>
<$ddIncludePreserveValues("my_include", "MyPreservedFields")$>
<$trace(foo, "#console")$> [[% Outputs: 5 %]]

ddLoadIndexedColumnResultSet()

This function loads a dynamicdata table into a ResultSet. This function is similar to ddLoadResultSet except that it only loads those rows whose values for indexColumn match indexValue. The comparisons made on this column are case-insensitive.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be loaded.

	
indexColumn

	
The name of an indexed column in the dynamicdata table.

	
indexValue

	
The value to use to select a section of the original table. This value will be checked in a case-insensitive manner against the indexColumn in each row. If it matches, that row is loaded into the ResultSet; otherwise, it is skipped.

	
mappingTableName

	
The name of a dynamicdata table used to rename the columns of the final ResultSet. The renaming is done by mapping the column names in the specified mapping table to the values of the first row in the same table. This is done exactly the same in ddLoadResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldA"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec ddLoadIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA", "1")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == '2') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '9') %]]

See Also

	
ddLoadResultSet()

ddLoadResultSet()

This function loads a dynamicdata table into a ResultSet.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be loaded.

	
mappingTableName

	
The name of a dynamicdata table used to rename the columns of the final ResultSet. The renaming is done by mapping the column names in the specified mapping table to the values of the first row in the same table. This is done exactly the same in ddLoadIndexedColumnResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec ddLoadResultSet("MyDataTable", "MyResultSet")$>
<$exec ddLoadResultSet("MyDataTable", "MyAliasedResultSet")$>
<$exec rsFirst("MyResultSet")$>
<$exec rsFirst("MyAliasedResultSet")$>
<$foo = MyResultSet.field1$> [[% (foo == 'a') %]]
<$bar = MyAliasedResultSet.alias2$> [[% (bar == 'c') %]]

See Also

	
ddMergeIndexedColumnResultSet()

ddMergeIndexedColumnResultSet()

This function merges a dynamicdata table into a ResultSet. This function is similar to ddMergeResultSet except that it only merges those rows whose values for indexColumn match indexValue. The comparisons made on this column are case-insensitive.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be merged.

	
indexColumn

	
The name of an indexed column in the dynamicdata table.

	
indexValue

	
The value to use to select a section of the original table. This value is checked in a case-insensitive manner against the indexColumn in each row. If it matches, that row is loaded into the ResultSet; otherwise it is skipped.

	
mergeType

	
The type of merge to perform. Set this to replace to prevent the merge from appending any new rows. Any other value for this parameter is treated as append.

	
mappingTableName

	
The name of a dynamicdata table which should be used to rename the columns of the final ResultSet. This renaming is done by mapping the column names in this mapping table to the values of the first row in this same table. This is done exactly as it is done in ddLoadResultSet.

Output

If the dynamicdata table is successfully merged, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB,fieldC")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "4"$>
<$MyResultSet.fieldB = "8"$>
<$MyResultSet.fieldB = "23"$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "8"$>
<$MyResultSet.fieldB = "21"$>
<$MyResultSet.fieldB = "59"$>
<$exec ddMergeIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA", "4", "replace")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == '5') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '59') %]]

See Also

	
ddMergeResultSet()

ddMergeResultSet()

This function merges a dynamicdata table into an existing ResultSet. If the target ResultSet does not exist, then this function acts exactly like ddLoadResultSet and the target ResultSet is simply created. Otherwise, the merge is performed using the first column of the new ResultSet as the merge key. By default, the merge appends any rows from the new ResultSet that do not match any rows in the existing Idoc Script table, unless the mergeType parameter is set to replace, in which case no new rows are added to the Idoc Script ResultSet.

Note that this merge does not replace all rows matched by a particular row of the new ResultSet, just the first one that it finds. The matching is case-sensitive. The mergeType parameter is optional and defaults to null.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be merged.

	
mergeType

	
The type of merge to perform. Set this to replace to prevent the merge from appending any new rows. Any other value for this parameter is treated as append.

	
mappingTableName

	
The name of a dynamicdata table which should be used to rename the columns of the final ResultSet. This renaming is done by mapping the column names in this mapping table to the values of the first row in this same table. This is done exactly as it is done in ddLoadResultSet.

Output

If the dynamicdata table is successfully merged, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB,fieldC")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "4"$>
<$MyResultSet.fieldB = "52"$>
<$MyResultSet.fieldC = "18"$>
<$exec ddMergeResultSet("MyDataTable", "MyResultSet", "replace")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == 52) %]]
<$bar = MyResultSet.#numRows$> [[% (bar == 1) %]]

See Also

	
ddLoadResultSet()

ddMergeUsingIndexedKey()

This function pulls selective rows from a dynamicdata table and use them to replace particular row values in a target ResultSet. The values of a particular column in the target ResultSet are used as values for an index look up into the dynamicdata table. The subtable retrieved is used to replace column values in the target ResultSet that have matching column names. The dynamicdata table is assumed to have only one row in the subtable selected out by the index value. If it has more than one row, only the first row is used to merge in values into the target ResultSet.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
idocTableName

	
The name of the ResultSet into which the dynamicdata table should be merged.

	
indexColumn

	
The name of an indexed column in the dynamicdata table and the name of the column in the target ResultSet from which values are retrieved to select out subtables in the dynamicdata table.

	
mappingTableName

	
The name of a dynamicdata table which should be used to rename the columns of the final ResultSet. This renaming is done by mapping the column names in this mapping table to the values of the first row in this same table. This is done exactly as it is done in ddLoadResultSet.

Output

If the dynamicdata table is successfully merged, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldA"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
7, 8, 9
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB,fieldC")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "4"$>
<$MyResultSet.fieldB = "8"$>
<$MyResultSet.fieldB = "23"$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "7"$>
<$MyResultSet.fieldB = "20"$>
<$MyResultSet.fieldB = "41"$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "8"$>
<$MyResultSet.fieldB = "21"$>
<$MyResultSet.fieldB = "59"$>
<$exec ddMergeIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == '5') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '9') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '59') %]]

ddSetLocal()

This function takes a dynamicdata table and iterates over it, setting local data values for each row. The first column of the table is used as the list of keys, while the second column is used as the list of values.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table to load.

Output

If the dynamicdata table exists, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
key, value
foo, 15
bar, 23
baz, 77
<@end@>

<$exec ddSetLocal("MyDataTable")$>
<$tmp1 = #local.foo$> [[% (tmp1 == '15') %]]
<$tmp2 = #local.bar$> [[% (tmp2 == '23') %]]
<$tmp3 = #local.baz$> [[% (tmp3 == '77') %]]

See Also

	
ddSetLocalByColumnsFromFirstRow()

	
ddSetLocalByColumnsFromFirstRowIndexed()

ddSetLocalByColumnsFromFirstRow()

This function takes the first row of a dynamicdata table and, using the column names as keys, sets a local value for each column and its corresponding value. If there is no first row, then this function does nothing. This can be a useful method for quickly setting a lot of local values. The filterInclude and includeColumns properties of the dynamicdata table are ignored.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table to load.

Output

If the dynamicdata table was successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
foo, bar, baz
<@end@>

<$exec ddSetLocalByColumnsFromFirstRow("MyDataTable")$>
<$tmpStr1 = #local.fieldA$> [[% (tmpStr1 == 'foo') %]]
<$tmpStr2 = #local.fieldC$> [[% (tmpStr2 == 'baz') %]]

See Also

	
ddSetLocal()

	
ddSetLocalByColumnsFromFirstRowIndexed()

ddSetLocalByColumnsFromFirstRowIndexed()

This function takes the first row of a dynamicdata table, and, using the column names as keys, sets a local value for each column and its corresponding value. If there is no first row, then this function does nothing. This function is almost identical to ddSetLocalByColumnsFromFirstRow. The only difference is that this function uses the first row given an indexed column and value instead of the very first row of the dynamicdata table. If no indexed row is found then this function does nothing.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

The following table lists parameters for the function.

	Parameters	Description
	
dataTableName

	
The name of the dynamicdata table to load.

	
indexColumn

	
The name of an indexed column in the dynamicdata table.

	
indexValue

	
The value to use to select a row of the original table. This value will be checked in a case-insensitive manner against the indexColumn in each row. If it matches, that row will be used and the rest of the table will be ignored.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldB"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
7, 8, 9
3, 5, 2
<@end@>

<$exec ddSetLocalByColumnsFromFirstRowIndexed("MyDataTable", "fieldB", 5)$>
<$tmpStr1 = #local.fieldA$> [[% (tmpStr1 == '4') %]]
<$tmpStr2 = #local.fieldC$> [[% (tmpStr2 == '6') %]]

See Also

	
ddSetLocal()

	
ddSetLocalByColumnsFromFirstRow()

ddSetLocalEmpty()

This function takes a dynamicdata table and iterates over it, clearing local data. The first column is used as the keys to clear.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table to use.

Output

If the dynamicdata table exists, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
key
foo
bar
baz
<@end@>

<$foo = 1$>
<$bar = 2$>
<$baz = 3$>
<$exec ddSetLocalEmpty("MyDataTable")$>
<$if foo or bar or baz$>
 [[% This will not be executed as foo, bar, and baz are all empty. %]]
<$endif$>

See Also

	
ddSetLocal()

ddSetLocalEmptyByColumns()

This function takes a dynamicdata table and uses the columns to clear values in local data.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.11, "Dynamicdata"

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table to use.

Output

If the dynamicdata table exists, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
foo, bar, baz
<@end@>

<$bar = "asdf"$>
<$exec ddSetLocalEmptyByColumns("MyDataTable")$>
<$if bar$>
 [[% This will not execute as bar will be empty. %]]
<$endif$>

See Also

	
ddSetLocal()

	
ddSetLocalEmpty()

DefaultAccounts

Defines the default accounts for anonymous users.

	
This must be a comma-delimited list of accounts.

	
Permissions for each account must be specified in parentheses after the account name.

	
The #none entry grants privileges to content items that have no account assigned. The #all entry grants privileges to all accounts.

	
Default is #none(RWDA).

	
Returns the list of accounts as a string.

Type and Usage

	
Section 4.1.1, "Conditional Dynamic Variables"

	
Section 4.2.21.1, "Internal Security"

	
Section 4.2.24, "Users"

Location

IntradocDir/config/config.cfg

Example

As a configuration setting, defines default account information:

DefaultAccounts=BOS(R),SEA(RW),MSP/Gen(RWD)

As Idoc Script, returns the account information as a string:

<$DefaultAccounts$>

See Also

	
ExternalUserAccounts

	
SelfRegisteredAccounts

defaultFieldInclude

Specifies the include to use to display the metadata field.

Type and Usage

	
Section 4.1.5.2.3, "Other Field Display Variables"

	
Section 4.2.12, "Field Display"

Example

Sets the default field-display include for a hidden field on a query page to std_query_hidden_field:

<$if isFieldHidden$>
 <$if isQuery and not (fieldType like "Date") and not (fieldType like "Int")$>
 <$defaultFieldInclude = "std_query_hidden_field"$>
 <$endif$>

See Also

	
fieldCaptionInclude

	
fieldEntryInclude

defaultOptionListScript

Defines a piece of Idoc Script that displays a standard option list field.

Type and Usage

	
Section 4.1.5.2.3, "Other Field Display Variables"

	
Section 4.2.12, "Field Display"

Output

None.

Example

Generates an option list using the optList function:

<$if optionsAllowPreselect and fieldValue$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":fieldValue$>"$>
<$else$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":noselected$>"$>
<$endif$>

Loops on the current option list ResultSet to generate an option list:

<@dynamichtml compute_resultset_option_list_script@>
<$if not optionListKey$>
 <$optionListKey = fieldName$>
<$endif$>
<$defaultOptionListScript = "<$loop " & optionListResultSet & "$>" & "<$inc('std_resultset_option_list_item')$>" & "<$endloop$>"$>
<@end@>

See Also

	
optionListScript

	
optList()

DelimitedUserRoles

Retrieves a comma-delimited, colon-delimited list of roles the current user belongs to.

Type and Usage

	
Section 4.2.21.1, "Internal Security"

	
Section 4.2.24, "Users"

Output

Returns the user role list as a string.

Example

Returns a list of roles formatted as follows:

:guest:,:PublicContributor:,:ClassifiedConsumer:

See Also

	
UserRoles

docLoadResourceIncludes()

Loads all the includes in a specified content item for use in the display of the current page.

	
The content item specified must have the file extension idoc.

	
This function sets StatusCode as a side effect. Use the abortToErrorPage function if the specified file must successfully load for the page to correctly display.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.16, "Page Display"

	
Section 4.2.13, "Idoc Script"

Parameters

Takes a CGI-encoded parameter list that specifies a content item that is checked into the Content Server system. The parameter options are listed in the following table.

	Optional Parameters	Description
	
dID

	
If dID is not present, dDocName and RevisionSelectionMethod must be present. A rendition of the revision of the content item with this ID will be returned, if it exists, and the RevisionSelectionMethod parameter does not exist or has the value Specific.

	
dDocName

	
It is recommended that dDocName be present in all requests for content items where the dDocName is known. Error messages assume that it is present, as do other features such as forms.

	
If dDocName is not present, dID must be present and RevisionSelectionMethod must not be present.

	
If RevisionSelectionMethod is present, a rendition of a revision of the content item with this name with be returned, if it exists.

	
If RevisionSelectionMethod is not present, dDocName may be used in error messages.

	
RevisionSelectionMethod

	
If present, dDocName must be present. The value of this variable is the method used to compute a dID from the specified dDocName. The value may be Specific, Latest, or LatestReleased.

	
Specific: The dDocName is ignored, dID is required and is used to get a specific revision.

	
Latest: The latest revision of the content item (including revisions in a workflow) is used to compute the dID.

	
LatestReleased: The latest released revision of the content item is used to compute the dID.

	
Rendition

	
	
If not present, Rendition defaults to Primary. This parameter specifies the rendition of the content item.

	
If the value is Primary, Web, or Alternate, the primary, web-viewable, or alternate rendition of the selected revision is returned.

	
Note:

When used in HCSP pages, the ampersand (&) character in the CGI-encoded parameter list must be changed to the & character.

Output

None.

Example

Loads the resource includes in the primary vault rendition of the latest revision of mydoc.

<$docLoadResourceIncludes("dDocName=mydoc&RevisionSelectionMethod=Latest")$>

See Also

	
abortToErrorPage()

docRootFilename()

Retrieves the file name of a file without the extension or directory path.

	
This function is typically used to extract the Content ID (dDocName) part of a static URL controlled by Content Server.

Type and Usage

	
Section 4.1.4, "Global Functions"

	
Section 4.2.10, "Directories and Paths"

Parameters

Takes one parameter:

	
The only parameter is a path and file name.

Output

Returns the file name as a string.

Example

Returns the value mydoc:

docRootFilename("/groups/public/documents/adacct/mydoc.pdf")

DocTypeSelected

Evaluates whether the Type of the current content item matches the Type in the active ResultSet.

Type and Usage

	
Section 4.1.2, "Dynamic Variables"

	
Section 4.2.3, "Content Items"

Output

	
Returns TRUE if the content item Types match.

	
Returns FALSE if the content item Types do not match.

Example

Returns value based on whether the content item type matches the type for the ResultSet.

<$DocTypeSelected$>

DocUrl

Retrieves the URL of the file in the weblayout/ directory. This variable is evaluated once per content item, not once per service call.

Type and Usage

	
Section 4.1.2, "Dynamic Variables"

	
Section 4.2.3, "Content Items"

Output

Returns the URL of the file as a string.

Example

Used to build URL links to content items.

<$if HasUrl$>
 <a href="<$DocUrl$>"><$dDocName$>
<$else$>
 <$dDocName$>
<$endif$>

Building a Website

B Building a Website

This appendix describes the Web Layout Editor and how it is used to build a website.

The following topics are covered:

	
Section B.1, "Planning a Website"

	
Section B.2, "Working with Web Pages"

	
Section B.3, "Managing Web Pages"

	
Section B.4, "Working with Reports"

	
Section B.5, "Writing Queries"

B.1 Planning a Website

Administrators are responsible for planning the website. Subadministrators with WebLayout rights can create directory pages for groups and accounts if they have permissions for those groups and accounts.

This section covers these topics:

	
Section B.1.1, "The Web Layout"

	
Section B.1.2, "Defining the Site Structure and Displaying Criteria"

	
Section B.1.3, "Task Sequence"

B.1.1 The Web Layout

From the Home page, the Library (Table of Contents) link displays the top level of your Web layout. Although a Web layout is not required and might not be necessary for all applications, it provides an effective means for grouping files and navigating. When a Web layout is not created, the Search function provides the only access to files in the core Oracle WebCenter Content Server. However other products like Site Studio, and extras like Folders and Categorization Folders provide other means of navigation.

Active and Historical reports are other features introduced later in this section. Web viewable files always have lowercase names.

Figure B-1 shows an example of a Web layout using Local Pages, URLs, and Queries as site-building features.

Figure B-1 Web Layout Example

[image: Surrounding text describes Figure B-1 .]

On the Library Web pages, these features are displayed as links with a title next to a file-folder icon. When you click a folder that represents a query, the result produces a set of links to files that match the query's criteria.

B.1.2 Defining the Site Structure and Displaying Criteria

Define the website structure in the Web Hierarchy pane of the Web Layout Editor. Then define criteria to display specific files when the user clicks a folder (or link). The criteria for each link is based on the metadata for each file. Besides executing a query, links can jump to another page of links, go to a URL, or display a report. The following examples demonstrate how links are setup to display files.

	
Example 1: To enable users to access engineering forms from a link named Forms, create a content type named Forms using the Configuration Manager. Then, create a query with Type equal to Forms using the Web Layout Editor.

For information about how to create a content type. For details, see "Defining Content Types" in Oracle Fusion Middleware Managing Oracle WebCenter Content.

	
Example 2: To enable users to access specific Standard Work Procedures, create a content type called SWP, and create a query of Type equal to SWP and Content Name substring of 7200.

B.1.3 Task Sequence

The following steps demonstrate the typical sequence of tasks for creating a website with the Web Layout Editor:

	
Gather information. The first step is to gather information about how your users would intuitively retrieve information; what do they want and how would they typically search for it? How does this impact security?

	
Customize metadata. If necessary, customize your site's metadata by creating any additional fields that might be useful.

For more information, see "Customizing Repository Fields and Metadata" in Oracle Fusion Middleware Managing Oracle WebCenter Content.

	
Define content types. Define the content types to support your site.

For more information, see "Defining Content Types" in Oracle Fusion Middleware Managing Oracle WebCenter Content.

	
Define security groups, users, and roles. Create security groups and users, and assign roles to users to establish their permissions (described in the Oracle WebCenter Content System Administrator's Guide for Content Server).

	
Design the website. Create the website layout. Although a website provides a structure that allows navigation to locate and display files, it is not required. Some companies prefer users to use only the search engine to find files, others prefer to use both a navigation structure and a search engine. To design the website, it is helpful to first draw a website structure as shown in Figure B-2.

Figure B-2 Example Web Structure

[image: Surrounding text describes Figure B-2 .]

B.2 Working with Web Pages

After completing the initial plan, build the website and determine how it functions. Revise it if it does not perform properly or is not manageable. Continue this process until you have a design that is going to work for you and the users.

The links on a page jump to one of these:

	
Local page

	
URL

	
Query

	
Report

The links all look similar and can be combined on the same page as shown on the local page in Figure B-3:

Figure B-3 Links in Example Local Page

[image: Surrounding text describes Figure B-3 .]

A local page is one of two types: a directory or a report. A local page that is a directory can contain links that open another local page, open a URL, or run a query. Only administrators can create a local page that is a report. Administrators or subadministrators with appropriate rights can create a local page that is a directory.

An external URL is a link to a specified URL (Web address). You can link to any URL address or web page on the intranet or Internet.

A search query produces a page containing links to files that meet the criteria of a defined query. The page looks the same as a page resulting from a content search.

	
Important:

Queries can inherit the security group, the account or both that the page links are on. If the security group or account is inherited, it automatically restricts the query to files in that security group or account.

Reports are either Active or Historical. Active reports appear as a file folder link and perform a database query each time they are run, generating a display of current information. Like Active Reports, Historical Reports appear as a file folder link, but they contain information that was queried at the time they were initially run. They do not perform a database query each time they are opened, and the report is only changed if it is updated.

B.3 Managing Web Pages

Subadministrators do not have access to the Query Result Pages function in the Options menu nor to any applications for which they do not have rights. Additionally, subadministrators have viewing, editing, and deleting restricted rights as described in these sections:

	
Section B.3.1, "Adding a New Web Page"

	
Section B.3.2, "Editing Web Page Properties"

	
Section B.3.3, "Creating a Local Page Link"

	
Section B.3.4, "Creating an External URL Link"

	
Section B.3.5, "Editing a Hierarchical Web Page Structure"

B.3.1 Adding a New Web Page

To add a new Web page to the Web layout:

	
In the Web Page Hierarchy Pane, click Add.

The Add Web Page Screen opens.

	
Enter information about the new page.

	
Click OK.

B.3.2 Editing Web Page Properties

To edit the properties of a Web page:

	
Select the page in the Web Page Hierarchy Pane.

	
Click Edit in the Page Properties Pane.

The Edit Page Properties Screen opens.

	
Edit the properties.

	
Click OK.

B.3.3 Creating a Local Page Link

To create a local page link:

	
Select the page in the Web Page Hierarchy Pane under which you want to locate the new local page.

	
In the Page Links Pane, click Add.

The Add Page Link Screen opens.

	
Select Local Page, and click OK.

	
Enter information about the new local page into the Edit Local Page Link Screen.

	
When done, click OK.

B.3.4 Creating an External URL Link

To create an external URL link:

	
Select the page in the Web Page Hierarchy Pane under which you want to locate the new URL.

	
In the Page Links Pane, click Add.

The Add Page Link Screen opens:

	
Select External URL, and click OK.

	
Enter information about the URL into the Edit External URL Screen.

	
When done, click OK.

	
Refresh the browser to display the new page.

B.3.5 Editing a Hierarchical Web Page Structure

To edit a hierarchical Web page structure, the objective is to insert a page, making it the new parent of the hierarchical page.

For example:

	
Create a structure.

	
Select QSTest directory with the Page Link PCTest also selected.

	
Click Page LinksDelete.

	
Select the Index directory and select Page LinksAdd.

	
Create a new page.

	
Title the page NewEngPage.

	
Type a Description as NewEngPage.

	
Click OK.

The NewEngPage opens in the Web Page Hierarchy Pane.

	
Select QSTest and click Page LinksAdd.

	
Select Local Page.

	
Click OK.

The NewEngPage now appears under QSTest.

	
Select NewEngPage and click Page LinksAdd.

	
Select Local PageOK.

Note that the Page name is PCTest.

The NewEngPage has now been entered with PCTest as its child and the External URL in 2ndTest has been preserved.

The following image shows a hierarchical Web page structure created by this example procedure.

[image: Surrounding text describes sa_wb_hierarchy1.gif.]

B.4 Working with Reports

This section covers these topics:

	
Section B.4.1, "About Reports"

	
Section B.4.2, "Defining an Active Report"

	
Section B.4.3, "Defining a Historical Report"

	
Section B.4.4, "Editing a Query Expression in an Active Report"

B.4.1 About Reports

You can define two types of reports with the Web Layout Editor: Active Reports and Historical Reports.

	
Active Reports appear as a file-folder link and perform a database query each time they are run, generating a display of current information. You can define active reports and edit their query expressions.

	
Like Active Reports, Historical Reports appear as a file-folder link, but they contain information that was queried at the time they were initially run. They do not perform a database query each time they are opened, and the report is changed only if the database is updated. The procedure for creating a Historical Report is almost the same as creating an Active Report. The only difference is the Create Historical Report screen has an extra field (Rows Per Page) to specify the number of rows each page of the report can contain.

B.4.2 Defining an Active Report

To define an active report:

	
In the Web Layout Editor, add a new Web page, and select Active Report as the Page Type.

	
In the Active Report Specification pane of the Web Layout Editor, click Edit Report Query.

	
Define the query by entering information on the Edit Active Report Query Screen.

	
Click OK.

B.4.3 Defining a Historical Report

To prepare an Archive Historical Report:

	
In the WebLayout Editor, add a new Web page and select Historical Report as the Page Type.

	
In the Historical Report Specification pane of the Web Layout Editor, click Create Report Data.

	
When you create the report data in the Create Historical Report Screen, specify Archive History for the data source.

	
Write a query for the report that returns the data you want to retrieve. For example, specify the Content ID.

	
When done specifying information for the report, click OK.

B.4.4 Editing a Query Expression in an Active Report

To edit the query expression in an active report:

	
In the Web Page Hierarchy Pane, select the report you want to edit.

	
In the Active Report Specification pane, click Edit Report Query.

	
In the Query Expression window on the Edit Active Report Query Screen, select the query line to edit.

	
Make changes to the query as necessary, and click Update.

	
Caution:

If you clear the Custom Query Expression check box, the expression reverts to its original definition; all modifications are lost.

	
Click OK. If a query is not specified, all values are returned.

B.5 Writing Queries

This section covers these topics:

	
Creating a Query Link

	
Editing the Query Expression in a Query Link

	
Adding a Query Results Page

	
Editing a Query Results Page

	
Deleting a Query Results Page

You can write custom query expressions when you define query links. The method you use to write custom queries varies depending on the kind of query you write.

To write directory custom queries, use Idoc Script, a proprietary scripting language. To write report queries, you can use SQL script and Idoc Script. Idoc Script is described in detail in the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content. Basic SQL script is briefly described below.

	
Note:

Your SQL syntax is dependent on your database. Different databases expect different syntax for items like wildcards, and so forth. See your database documentation for specific syntax information.

SQL script involves operators, which are words that show logical relationships between the words in your query. The following table contains some basic operators and their use.

	Operator	Use
	
AND

	
Returns files that contain the specified words.

	
OR

	
Returns files that contain at least one specified word.

	
=

	
Equal

	
<> or !

	
Not equal

	
<

	
Less than

	
>

	
Greater than

	
<+

	
Less than or equal to

	
>+

	
Greater than or equal to

	
IN

	
Finds a position in a table.

	
BETWEEN

	
Finds a value in a range.

	
NOT

	
Excludes the files that contain the specified condition.

The following are examples of SQL script:

	
Finds all files that have an internal revision ID less than 50000:

dID < '50000'

	
Finds all files that have a Content ID between 10000 and 50000:

dDocName BETWEEN '10000' AND '50000'

B.5.1 Creating a Query Link

To create a query link:

	
In the Web Page Hierarchy Pane, select the page where you want to locate the new query link.

	
In the Page Links pane, click Add.

The Add Page Link Screen opens.

	
Select Query, and click OK.

The Query Link Definition Screen opens.

	
Enter information into the screen.

	
When done, click OK.

When adding Idoc Script variables and HTML tags to the Text 1 and Text 2 fields, keep in mind that any resulting HTML tags can affect the display of the search results page. See the Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content for more information.

B.5.2 Editing the Query Expression in a Query Link

To edit the query expression in a query link:

	
In the Page Links Pane of the Web Layout Editor, select the query you want to edit.

	
Click Edit.

The Query Link Definition Screen opens.

	
In the Query Expression area, select the query line to edit.

	
Make changes to the metadata, Operator, metadata Value fields as necessary, then click Update.

	
Click OK.

	
Caution:

If you clear the Custom Query Expression check box, the expression reverts to its original definition; all modifications are lost.

B.5.3 Adding a Query Results Page

Follow these instructions to add a query results page. This task is available for administrators, not for subadministrators with WebLayout rights:

	
From the Web Layout Editor menu, select Options, then select Query Results Pages.

The Query Result Pages screen opens.

	
Click Add to display the Add Result Page.

	
Enter information for the new page. Observe the field descriptions for Add/Edit Query Results Page.

	
Click OK.

B.5.4 Editing a Query Results Page

Follow these instructions to edit a query results page. This task is available for administrators, not for subadministrators with WebLayout rights:

	
From the Web Layout Editor menu, select Options, then Query Results Pages, then select the name of the page.

	
Click Edit.

The Add/Edit Query Results Page opens.

	
Make the necessary changes, and click OK.

B.5.5 Deleting a Query Results Page

Follow these instructions to delete a query results page. This task is available for administrators, not for subadministrators with WebLayout rights:

	
From the Web Layout Editor menu, select Options, then Query Results Pages, then select the name of the page.

	
Click Delete.

	
When prompted, click OK to verify the deletion.

Index

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Symbols

	- operator, 3.5.3, 3.5.3
	#active, 3.4
	#env, 3.4
	#local, 3.4
	% operator, 3.5.3
	& operator, 3.5.2
	* operator, 3.5.3
	* wildcard, 3.5.2
	+ operator, 3.5.3
	? wildcard, 3.5.2
	| operator, 3.5.2

A

	abortToErrorPage, A
	AboutBox method, IdcClient OCX, 28.2.5.1
	access level attribute, 17.2.7
	access numbers, 31.3.3.2.3
	accessing services, 27
	Account, 3.6.2.1
	action format, 17.2.7
	action menus
	
	customizing, 10.3
	generating, 10.1
	icon in Actions column, 10.3
	overview, 10.1

	actions
	
	control mask, 17.2.7
	error message, 17.2.7
	name, 17.2.7
	parameters, 17.2.7
	service resource, 17.2.7.1.2
	type, 17.2.7

	Actions column
	
	action menu icon, 10.3
	service ResultSet, 17.2.7

	active keyword, 3.4
	Active Reports
	
	defining, B.4.2
	editing query expression, B.4.4
	overview, B.4.1

	Active Server Pages
	
	embedded SOAP request, 31.4.1
	service execution, 31.4

	ActiveX control
	
	IdcClient OCX, 28.2.3.1

	activity metrics
	
	customizing the SQL queries, 14.4
	SQL queries for post-reduction step, 14.4

	ADD_USER service, 31.3.3.2
	addEmptyOption, A
	ADF runtime libraries, installing for JCR adapter, 30.2.1
	AdminAtLeastOneGroup, A
	administration interface, 3.3.6
	Advanced Component Manager
	
	overview, 11.2.2
	page, 11.2.2

	AfterLogin, A
	AllowCheckin, A
	AllowCheckout, A
	AllowReview, A
	ampersand &(amp;) operator, 3.5.2
	and operator, 3.5.4
	anonymous user interface
	
	customization, 5.5
	external customers without login, 5.5
	ExtranetLook component for changing, 5.5

	Apache Jakarta Tomcat Server, 26.1
	APIs, installing for JCR adapter, 30.2
	applets, 1.1.1.2
	architecture
	
	Oracle WebCenter Content, 1.1, 2
	WebDAV, 24.3.2.3

	Archive Historical Report, B.4.3
	Archiver, 3.3.6.4
	Asian language, 11.1.3.1.1
	assembling pages, 1.5.3
	assembly properties, 17.2.2.3.2
	asterisk (*) wildcard, 3.5.2
	attributes
	
	ClientControlledContextValue, 28.2.6.1
	HostCgiUrl, 28.2.6.2
	name, 31.3.3.2.3
	Password, 28.2.6.3
	service resources, 17.2.7.1.1
	type, 31.3.3.2.3, 31.3.3.3.3
	UseBrowserLoginPrompt, 28.2.6.4
	UseProgressDialog, 28.2.6.5
	UserName, 28.2.6.6
	WorkingDir, 28.2.6.7

	audience, Preface
	Author, 3.6.2.1
	AuthorAddress, A
	AuthorDelete, A
	AutoNumberPrefix, A

B

	Back method, IdcClient OCX, 28.2.5.2
	Batch Loader, 3.3.6.3, 4.2.1
	Batch Loader utility, 1.1.1.2
	Batch mode, 15, 15.1
	BatchLoaderPath, A
	beginning form section, 6.2.4.3.1
	behavior, Content Server, 2
	bin directory, 1.1.1.2
	binders for multiple requests, reusing, RIDC, 29.8
	Binding element, WSDL file structure, 31.5.1.1
	Boolean operators, 3.5.4
	break, 3.3.5.5, A
	browsers
	
	multiple, 1.4

	BrowserVersionNumber, A
	building
	
	websites, B

	bundling files, 5.8.1
	
	order of filters, 5.8.1
	overview, 5.8
	PublishedBundles table, 5.8.1

	buttons, form, 6.2.4.3.4

C

	c, A
	-c connection_mode
	
	auto, 27.2.2.4
	server, 27.2.2.4
	standalone, 27.2.2.4

	C# class files, 31.5.4
	cache settings, JCR adapter, 30.4.6
	cacheInclude, A
	caching resources, 1.5.2
	calling services remotely, 27.4
	CancelRequest method, IdcClient OCX, 28.2.5.3
	captionEntryWidth, A
	captionFieldWidth, A
	cascading style sheets, 1.4
	Categorize button, 15, 15.1
	CFG file, 17.2.9
	CgiUrl TextBox properties, edited, 28.2.3.2
	characters, special, command-file syntax, 27.2.1.3
	CHECKIN_UNIVERSAL service, WSDL, 31.3.3.6
	CheckIn.wsdl file, 31.5.1
	CHECKOUT_BY_NAME service, WSDL, 31.3.3.7
	CIS
	
	deprecated, Preface

	CIS. See Remote Intradoc Client (RIDC)
	ClassAliases ResultSet, 11.3.3.4
	clearSchemaData, A
	ClientControlled, A
	ClientControlledContextValue property, 28.2.6.1
	clients, 4.2.2
	
	configuration, 29.3
	WebDAV, 24.3.2.1

	COM integration
	
	API, 28
	introduction, 28.1

	COM interface, 28.1
	Combined output table
	
	change file type logging status, 14.2.1.3
	file types not logged, 14.2.1.3
	set file types with SctIgnoreFileTypes, 14.2.1.3

	command file
	
	IdcCommand parameters, 27.2.1
	IdcCommand service commands, 27.2.1
	IdcCommand utility option, 27.2.2.1
	syntax
	
	precedence, 27.2.1.2
	service commands, 27.2.1.1
	special characters, 27.2.1.3, 27.2.1.3

	command file syntax, special tags, 27.2.1.3
	Command TextBox properties, edited, 28.2.3.2
	command-file
	
	syntax
	
	special characters, 27.2.1.3

	command-line utility
	
	ComponentTool
	
	description of, 11.2.3
	installing component with, 18.5

	options, 27.2.1

	commands, verifying, 28.2.3.2
	commas, using as separators, 3.3.2.4
	Comments, 3.6.2.1
	comments
	
	Idoc Script, 3.2.2

	common code forms, 6.6.1
	common field display variables, 4.1.5.2.2
	communication
	
	JCR adapter configuration, 30.4
	method, JCR adapter, 30.4.1

	comparison operators, 3.5.1
	comparison operators, dynamic server pages, 6.2.1, 6.2.1.2
	component definition file, 11.1.3.1.3, 11.1.3.1.3, 11.3.3
	Component Manager
	
	Advanced, 11.1.2, 11.2.2, 11.2.2
	custom components, 11.1.2
	disabling components, 12.3
	enabling components, 12.3
	installing components with, 18.3

	Component Wizard
	
	creating a dynamic table, 17.2.4
	custom components, 11.1.2, 11.1.4.2
	description of, 11.2.1
	disabling components, 12.3
	editing dynamic tables, 17.2.4.2
	editing environment resources, 17.2.9.2
	editing HTML includes, 17.2.1.2, 17.2.2.2, 17.2.3.2
	editing service resources, 17.2.7.2
	editing static tables, 17.2.5.2
	editing template resources, 17.2.8.2
	enabling components, 12.3
	installing component, 18.4
	interface, 11.2.1
	overview of, 11.2.1
	tool for working with component files, 11.1.4.2
	WebCenter Content utility, 1.1.1.2
	working with resources, 11.4

	Components
	
	operational summary, 14

	components
	
	Advanced Component Manager, 11.2.2
	Component Manager, 11.2.2
	ComponentTool command-line utility, 11.2.3
	creating, 11.1.4.1, 11.1.4.1
	custom
	
	Component Wizard, 11.1.2, 11.1.4.2
	development recommendations, 11.1.4
	managing, 11.1.2
	working with, 11

	directories, 11.1.3, 11.1.4
	disabling, 12.1
	enabling, 12.1
	files
	
	changing, 1.5.2
	component creation, 11.1.3
	Component Wizard, 11.1.4.2
	development recommendations, 11.1.4
	organization, 11.1.4.4
	overview, 11.1.1
	text editor, 11.1.4.2
	working with, 11.1.4.2

	functionality, 11.1.2
	HDA file, 11.1.3.5, 11.3, 11.3
	IdcClient OCX, 28.2.3.1
	installation
	
	ComponentTool utility, 18.5
	overview, 18.1

	limitations, 11.1.2
	loading, 1.5.1.1
	naming conventions, 11.1.4.5
	overview, 11.1
	standard, 11
	system, 11
	using, 11.1.2
	working with, 11
	working with files, 11.1.4.2
	ZIP file for deployment, 11.1.3.5.2

	components directory, 1.1.1.4
	Components ResultSet, 11.1.3.1.1, 11.3.2
	components, custom
	
	directories and files, 11.1.3

	ComponentTool command-line utility
	
	description of, 11.2.3
	installing component, 18.5, 18.5

	computed settings, Launcher, 27.4.2
	computeDocUrl, A
	computeRenditionUrl, A
	conditional dynamic variables, 4.1.1
	conditionals, 3.3.4
	
	example, 3.3.4.1
	referencing variables, 3.3.2.5

	config directory, 1.1.1.3, 1.1.1.5
	config.cfg configuration file, 5.3
	configuration
	
	changing information, 8.1
	clients, 29.3
	config.cfg file, 5.3
	entries in configuration file, 5.3
	JCR adapter communication, 30.4
	JSP support, 26.2
	Launcher, 27.4.5
	options, idcCommand utility, 27.2.2

	configuration files
	
	environment resources, 17.2.9
	example, 27.4.6
	load order, 1.5.1.2

	Configuration settings
	
	default values for Content Tracker, 14.2.1
	SctAutoTruncateDataStrings, 14.2.1
	SctComponentDir, 14.2.1
	SctDebugLogEnabled, 14.2.1
	SctDebugLogFilePath, 14.2.1
	SctDebugServiceBinderDumpEnabled, 14.2.1
	SctFilterPluginLogDir, 14.2.1
	SctIdcAuthExtraConfigParams, 14.2.1
	SctIgnoreDirectories, 14.2.1
	SctIgnoreFileTypes, 14.2.1
	SctLogDir, 14.2.1
	SctLogEnabled, 14.2.1
	SctLogSecurity, 14.2.1
	SctMaxRecentCount, 14.2.1
	SctMaxRereadTime, 14.2.1
	SctPostReductionExec, 14.2.1
	SctProxyNameMaxLength, 14.2.1
	SctReductionAvailableDatesLockback, 14.2.1
	SctReductionLogDir, 14.2.1
	SctReductionRequireEventLogs, 14.2.1
	SctScheduledReductionEnable, 14.2.1
	SctSnapshotEnable, 14.2.1
	SctSnapshotLastAccessEnable, 14.2.1
	SctSnapshotLastAccessField, 14.2.1
	SctSnapshotLongCountEnable, 14.2.1
	SctSnapshotLongCountField, 14.2.1
	SctSnapshotLongCountInterval, 14.2.1
	SctSnapshotShortCountEnable, 14.2.1
	SctSnapshotShortCountField, 14.2.1
	SctSnapshotShortCountInterval, 14.2.1
	SctUrlMaxLength, 14.2.1
	SctUseGMT, 14.2.1
	setting values for Content Tracker, 14.2.2

	configuration variables, loading, 1.5.1.1
	connections
	
	handling with RIDC, 29.6
	mode, IdcCommand utility option, 27.2.2.4

	content attribute, metadata tag, 6.2.4.2.3
	Content Categorizer, 15, 15.1
	
	overview, 15.1

	Content Check In Form, 15.1
	Content ID, 3.6.2.1
	Content Integration Suite (CIS)
	
	deprecated, Preface

	Content Integration Suite (CIS). See Remote Intradoc Client (RIDC)
	content items, 4.2.3
	
	example, HelloWorld displayed in web browser, 6.7
	finding information for
	
	JCR, 30.5

	tables
	
	JCR, 30.5

	Content Publisher, 6.2.3.1, 15.1, 15.1
	
	dynamic server pages, 6.2
	nested tags, 6.2.4.2.4
	repeated ResultSet tags, 6.2.4.2.7

	Content Server, 15.1
	
	behavior, 2
	configuration variables, loading, 1.5.1.1
	configuring JCR adapter communication, 30.4
	custom components, loading, 1.5.1.1
	development mode, 11.1.4.3
	interface, 28.3.2
	
	changing look and feel, 5
	changing navigation, 5
	customizing, 5.4
	ODMA files, 28.3.2

	interface, Content Server
	
	anonymous user interface, changing, 5.5
	modifying, 5

	internal initialization, 1.5.1.1
	JCR adapter data model, 30.1.2
	modifying system functionality, 7
	reports, loading, 1.5.1.1
	resources, loading, 1.5.1.1
	startup behavior, 1.5.1
	startup steps, 1.5.1.1
	templates, loading, 1.5.1.1

	content server, 4.2.5
	Content Tracker
	
	default configuration setting values, 14.2.1
	setting configuration variables, 14.2.2

	Content Tracker logging service
	
	calling from an application, 14.3.3.3
	calling from Idoc Script, 14.3.3.4
	service call overview, 14.3.2

	CONTENT_LENGTH, A
	context roots, 25.1.2
	Contribution Folders, default system-level folder, 24.3.1
	control mask, 17.2.7
	controls, IdcClient OCX, 28.2.2
	conventions
	
	naming, 6.2.3.1, 11.1.4.5

	conversion, 4.2.6
	
	Dynamic Converter, 4.2.6.2
	Inbound Refinery, 4.2.6.1

	core/config directory, 1.1.1.5
	coreContentOnly, A
	creating
	
	option lists, 3.6.3.3
	variables, 3.3.2.1

	creating and executing IdcCommand parameters, 27.3, 27.3
	CSS, 1.4
	CURRENT_DATE, A
	CURRENT_ROW, A
	custom components
	
	Advanced Component Manager, 11.1.2
	Component Wizard, 11.1.2, 11.1.4.2
	development recommendations, 11.1.4
	directories and files, 11.1.3
	loading, 1.5.1.1
	understanding, 11.1.3, 11.1.4
	working with, 11

	custom includes
	
	examples of, 6.3
	HCSP file references, 6.5
	HCST file references, 6.4
	IDOC files, 6.6

	custom installation parameter files, 11.1.3.5.3
	custom resource files, 11.1.3.2, 11.1.3.5
	customization
	
	Content Server interface, 5, 5.4
	Content Server navigation, 5
	popup menus, 10.3
	services, 9.1
	site files, 11.1.3.5.1
	skills recommended for, 1.4
	stages, 1.3
	system settings, 7.1
	tips, 1.3
	tools recommended for, 1.4
	types, 1.2
	WebCenter Content instance, 1

D

	data binder, 11.1.3.3
	Data collection
	
	change file type logging status Data reduction
	
	change file type logging status, 14.2.1.3

	file types not logged, 14.2.1.3
	set file types with SctIgnoreFileTypes, 14.2.1.3

	Data reduction
	
	file types not logged, 14.2.1.3
	set file types with SctIgnoreFileTypes, 14.2.1.3

	data section
	
	overview of, 6.2.4.2
	structure, 6.2.4.2.1

	Data Types element, WSDL file structure, 31.5.1.1
	database, 4.2.7
	database interaction, 1.5.4
	date and time, 4.2.8
	dateCurrent, A
	dCheckoutUser, 3.6.2.2
	dcShowExportLink, A
	dDocAccount, 3.6.2.1
	dDocAuthor, 3.6.2.1
	dDocFormats, 3.6.2.2
	dDocID, 3.6.2.2
	dDocName, 3.6.2.1, 3.6.4
	dDocName parameter, 6.2.2.1.2
	dDocTitle, 3.6.2.1
	dDocType, 3.6.2.1, 3.6.4
	debug trace, C.3
	debugging, 4.2.9
	Default Accounts, A
	default suffix, 6.2.4.2.5
	defaultFieldInclude, A
	defaultOptionListScript, A
	DefaultTaskPaneUrl property, DesktopTag, 32.5.8
	defining
	
	Active Report for Web Layout Editor, B.4.2
	form fields, 6.6.1.4
	form information, 6.6.1.3
	hidden fields, 6.6.1.5

	definition file, 11.1.3.1.3
	DELETE_USER service, 31.3.3.5
	DelimitedUserRoles, A
	deployment
	
	JCR adapter, 30.3
	JCR API for JCR adapter, 30.2.3
	JCR integration libraries for JCR adapter, 30.2.4, 30.2.5
	RIDC for JCR adapter, 30.2.2

	DesktopTag
	
	check-in, 32.3.2
	check-out, 32.3
	configuration file, 32.1, 32.5
	configuring, 32.5
	custom fields, 32.5.4
	ExtendedUserAttributes component and, 32.5.7
	fields, 32.5.2
	File Check-In operation, 32.3.2
	File Get operation, 32.3.1
	log, 32.5.9
	metadata fields
	
	MicroSoft Office file properties, 32.5.3
	processing, 32.5.5

	properties
	
	DefaultTaskPaneUrl, 32.5.8
	DesktopTagFields, 32.5.3
	DesktopTagFieldsCustom, 32.5.5
	DesktopTagFieldsExtended, 32.5.7
	DesktopTagFormats, 32.5.1
	DesktopTagFormatsExclude, 32.5.10
	DesktopTagLog, 32.5.9
	DesktopTagPrefix, 32.5.2
	DesktopTagPrefixCustom, 32.5.4
	DesktopTagPrefixExtended, 32.5.6
	DISProperties, 32.5.3
	DISTaskPaneUrl property, 32.5.8

	DesktopTagFields property, 32.5.3
	DesktopTagFieldsCustom property, 32.5.5
	DesktopTagFieldsExtended property, 32.5.7
	DesktopTagFormats property
	
	description, 32.5.1
	DesktopTagFormatsExclude and, 32.5.10

	DesktopTagFormatsExclude property
	
	description, 32.5.10
	DesktopTagFormats and, 32.5.10

	DesktopTagLog property, 32.5.9
	DesktopTagPrefix property, 32.5.2
	DesktopTagPrefixCustom property, 32.5.4
	DesktopTagPrefixExtended property, 32.5.6
	development
	
	Content Server, 11.1.4.3
	dynamic server pages, 6.2.3
	HCSF pages, 6.2.3.2

	dExtension, 3.6.2.2, 3.6.4
	dFileSize, 3.6.2.2
	dFlag1, 3.6.2.2
	dFormat, 3.6.2.2
	dID, 3.6.2.2, 3.6.4
	dID parameter, 6.2.2.1.2
	DIME message format, 31.1.1.5
	dInDate, 3.6.2.1
	dIndexerState, 3.6.2.2
	directories, 1.1.1
	
	bin, 1.1.1.2
	components, 1.1.1.4
	config, 1.1.1.3
	core/config, 1.1.1.5
	groups, 1.1.1.6
	idoc, 1.1.1.5
	images, 1.1.1.6
	install, 1.1.1.5
	javascript, 1.1.1.5
	jspserver, 1.1.1.5
	lang, 1.1.1.5
	naming conventions, 11.1.4.5
	organization, 11.1.4.4
	reports, 1.1.1.5
	resources, 1.1.1.5, 1.1.1.6
	structure, 11.1.3.6
	templates, 1.1.1.5, 1.1.1.5, 1.1.1.5
	terminology, 1.1.1.1
	WebCenter Content, 1.1.1
	weblayout, 1.1.1.6

	directories and paths, 4.2.10
	directory queries, B.5
	disabling components, 12.1
	dIsCheckedOut, 3.6.2.2
	display tables, creating, 10.2
	dIsPrimary, 3.6.2.2
	DISProperties custom property, 32.5.3
	DISTaskPaneUrl property and DesktopTag, 32.5.8
	dIsWebFormat, 3.6.2.2
	divide (/) operator, 3.5.3
	dLocation, 3.6.2.2
	dMessage, 3.6.2.2
	DOC_INFO service
	
	content item information retrieval, 31.3.3.9
	example, 17.2.7.1

	DOC_INFO_SIMPLE service, 6.6.1.1
	docAccounts list, 3.6.3.1
	docAuthors list, 3.6.3.1
	DoCheckoutLatestRev method, IdcClient OCX, 28.2.5.4
	DocInfo.wsdl file, 31.5.1
	docLoadResourceIncludes, A
	docLoadResourceIncludes function
	
	description, 6.2.2.1
	HCSF pages, 6.2.4.1.2
	parameters, 6.2.2.1.2
	requirements for calling, 6.2.2.1.1

	docRootFilename, A
	docTypes list, 3.6.3.1
	DocTypeSelected, A
	document node, 31.3.1.3.2
	document node, SOAP, 31.3.1.3.2
	DocUrl, A
	docUrlAllowDisclosure, A
	dOriginalName, 3.6.2.2
	double-byte characters, 11.1.3.1.1
	dOutDate, 3.6.2.1
	DownloadApplet, A
	DownloadFile method, IdcClient OCX, 28.2.5.5
	DownloadNativeFile method, IdcClient OCX, 28.2.5.6
	DownloadSuggestedName, A
	dpGet, A
	dpPromote, A
	dpPromoteRs, A
	dProcessingState, 3.6.2.2
	dpSet, A
	Drag method, IdcClient OCX, 28.2.5.7
	dReleaseState, 3.6.2.2
	dRendition1, 3.6.2.2
	dRendition2, 3.6.2.2
	dRevClassID, 3.6.2.2
	dRevLabel, 3.6.2.1
	dSecurityGroup, 3.6.2.1, 3.6.4
	dStatus, 3.6.2.2
	dWebExtension, 3.6.2.2
	dWfName, A
	dWfStepName, A
	Dynamic Converter, 4.2.6.2
	dynamic data table resources, 1.1.2, 17.2.2
	dynamic server pages
	
	altering navigation of web pages, 6
	comparison operators, 6.2.1, 6.2.1.2
	Content Publisher, 6.2
	creating, 6.2, 6.2
	development recommendations, 6.2.3
	docLoadResourceIncludes function, 6.2.2.1
	examples, 6.3, 6.4, 6.5, 6.7
	Idoc Script
	
	functions, 6.2.2
	tags, 6.2.1, 6.2.1.1

	naming conventions, 6.2.3.1
	overview, 6.1
	page types, 6.1.1
	process, 6.1
	referencing metadata, 3.6.4, 6.2.1, 6.2.1.4
	special characters, 6.2.1, 6.2.1.3
	syntax, 6.2.1
	tips, 6.2.3.1
	types, 6.1.1

	dynamic table resources
	
	creating, 17.2.4, 17.2.4
	editing, 17.2.4.2
	HDA file format, 17.2.4
	merge rules, 17.2.4.1
	overview, 1.1.2

	dynamic variables, 4.1.9
	dynamic web pages, assembly, 1.5.3
	Dynamicdata Idoc Script functions, 17.2.2.4
	dynamicdata includes, 1.1.2
	dynamichtml, 3.3.1

E

	Edit Active Report Query screen, B.4.2
	EDIT_USER service, 31.3.3.3
	EditDocInfoLatestRev method, IdcClient OCX, 28.2.5.8
	editing
	
	dynamic data table resource, 17.2.2.2
	dynamic table resource, 17.2.4.2
	environment resource, 17.2.9.2
	HTML include resource, 17.2.1.2
	ResultSet, 6.2.4.2.7
	service resource, 17.2.7.2
	static table, 17.2.5.2
	string resource, 17.2.3.2
	template resource, 17.2.8.2

	elements in HDA files, 11.1.3.1.1
	else conditional, 3.3.4
	elseif conditional, 3.3.4
	e-mail, 3.3.6.6
	embedded SOAP request, 31.4.1
	EmptyAccountCheckinAllowed, A
	EnableDocumentHighlight, A
	enabling components, 12.1
	encodeHtml, A
	end of form, 6.2.4.3.5
	endif conditional, 3.3.4
	ending a loop, 3.3.5.5
	endloop, 3.3.5.5
	enterprise application integration, 24
	entryCount, A
	env keyword, 3.4
	environment, 11.1.3.3, 11.1.3.3.3
	environment resources
	
	description, 17.2.9
	editing, 17.2.9.2
	example, 17.2.9.1
	file contents, 17.2.9.1
	overview, 1.1.2

	environment variables, Launcher, 27.4.3
	EOD
	
	command-file tag, 27.2.1.3
	end of data marker, 27.2.1.3

	error message section, service resource, 17.2.7
	error message service attribute, 17.2.7
	errors, server, C.2
	eval, 3.4.1.2, A
	events
	
	IdcClient OCX, 28.2.2.1
	IntradocBeforeDownload, 28.2.4.1
	IntradocBrowserPost, 28.2.4.2
	IntradocBrowserStateChange, 28.2.4.3
	IntradocRequestProgress, 28.2.4.4
	IntradocServerResponse, 28.2.4.5

	example
	
	conditionals, 3.3.4.1
	field information variables, 4.1.5.2.1
	includes, 3.3.1.1
	other field display variables, 4.1.5.2.3
	ResultSet looping, 3.3.5.2
	super tag, 3.3.1.3
	while looping, 3.3.5.4

	examples
	
	changing a foreign key value, 6.2.4.3.3
	ClassAliases ResultSet, 11.3.3.4
	code for HCSF pages, 6.6.1
	component definition file, 11.3.3, 17.3
	components HDA file, 11.3.1
	configuration file, 27.4.6
	content item displayed in web browser, 6.7
	dynamic server pages, 6.3, 6.4, 6.5, 6.7
	environment resource, 17.2.9.1
	Filters ResultSet, 11.3.3.3
	form fields, 6.6.1.4
	Form_Load code, edited, 28.2.3.2
	glue file, 11.3.3, 17.3
	HCSF page, 6.6
	HCSP page, 6.4
	HCST page, 6.4
	HDA file, 1.1.1.4, 11.1.3.1
	HelloWorld displayed in web browser, 6.7
	HTML includes, 17.2.1.1
	IdcClient OCX component
	
	methods, 28.2.2.2
	properties, 28.2.2.3

	IDOC pages, 6.4, 6.5, 6.6, 6.7
	JSP pages, loading, 26.3
	LocalData section, 11.1.3.1.1
	MergeRules ResultSet, 11.3.3.2, 17.2.8
	OCX methods, 28.2.2.2
	OCX properties, 28.2.2.3
	Properties section, 11.1.3.1.1
	query resource, 17.2.6.1
	report page, 17.2.8.1.2, 17.2.8.1.2
	ResourceDefinition ResultSet, 11.3.3.1
	ResultSet section, 11.1.3.1.1
	SendPostCommand_Click code, edited, 28.2.3.2
	services
	
	actions, 17.2.7.1.2
	attributes, 17.2.7.1.1
	definition, 17.2.7
	resource, 17.2.7, 17.2.7.1

	super tag, 17.2.1.1
	template page, 17.2.8.1.1, 17.2.8.1.1, 17.2.8.1.1

	ExclusiveCheckout, A
	exec, 3.4, 3.4.1.1, A
	executeService, A
	Expiration Date, 3.6.2.1
	Extended service logging
	
	overview, 14.3.1.2

	ExtendedUserAttributes component and DesktopTag, 32.5.7
	eXtensible Markup Language, 15.1
	external security, 4.2.21.2
	external URL
	
	creating link, B.3.4

	ExternalUserAccounts, A
	ExternalUserRoles, A
	ExtranetLook component
	
	changing anonymous user interface, 5.5
	overview, 5.5

	ExtraRootNodes form element, 6.2.4.2.5, 6.2.4.2.6

F

	features
	
	JSP, 26.1.3

	field display, 4.2.12
	field display variables, 4.1.5.2
	
	common, 4.1.5.2.2
	other, 4.1.5.2.3

	field information variables, 4.1.5.2.1
	field subnode, SOAP, 31.3.1.3.8
	fieldCaption, A
	fieldCaptionInclude, A
	fieldCaptionStyle, A
	fieldDefault, A
	fieldEditWidth, A
	fieldEntryInclude, A
	fieldExtraScriptInclude, A
	fieldInclude, A
	fieldIsOptionList, A
	fieldMaxLength, A
	fieldName, A
	fieldOptionListType, A
	fields
	
	metadata, 3.6.1
	option lists, 3.6.3
	standard metadata, 3.6.2

	fields, form input, 6.2.4.3.3
	fieldType, A
	fieldValue, A
	fieldValueStyle, A
	fieldWidth, A
	file extension, referencing, 6.6.1.2
	file store provider, using
	
	JCR, 30.7

	file store tables
	
	JCR, 30.5

	files
	
	bundling, 5.8.1
	command, 27.2.2.1
	command file, IdcCommand utility, 27.2.1.1
	component definition, 11.1.3.1.3, 11.3.3
	component ZIP, 11.1.3.5.2
	components HDA, 11.1.3.5, 11.3
	config.cfg, 5.3
	configuration, 17.2.9
	custom installation parameter, 11.1.3.5.3
	custom resource, 11.1.3.2, 11.1.3.5
	customized for site, 11.1.3.5.1
	environment, 17.2.9
	glue, 11.1.3.1.3
	HCSF
	
	description, 6.1.1.4
	product description form, 6.6

	HCSP
	
	custom include references, 6.5
	description, 6.1.1.3

	HCST
	
	custom include references, 6.4
	description, 6.1.1.2

	HDA
	
	description, 11.1.3.1

	IDOC
	
	custom includes, 6.6
	description, 6.1.1.1

	information retrieval, 6.6.1.1
	log, IdcCommand utility option, 27.2.2.3
	manifest, 11.1.3.4
	naming conventions, 11.1.4.5
	optimizing published files, 5.8
	organization, 11.1.4.4
	referencing published, 5.8.2
	search_results.htm, 17.2.8
	types, 11.1.1
	usage, 5.8.2
	WebCenter Content, 1.1.1
	working with in components, 11.1.4.2

	fileUrl, A
	filter properties, 17.2.2.3.4
	Filters ResultSet, 11.3.3.3
	FIRSTREV, A
	Flexiondoc, 15, 15.1
	Folders component
	
	benefits of virtual folders, 24.3.1
	structure, 24.3.1
	virtual folders interface, 24.3.1

	ForcedConversionRules, A
	forceExpire, A
	foreign key, changing value of, 6.2.4.3.3
	form properties, 6.2.4.3.2
	form section, 6.2.4.3
	
	begin, 6.2.4.3.1
	form buttons, 6.2.4.3.4
	form end, 6.2.4.3.5
	properties, 6.2.4.3.2

	Form_Load code, edited, 28.2.3.2
	formatDate, A
	formatDateDatabase, A
	formatDateDisplay, A
	formatDateOnly, A
	formatDateOnlyDisplay, A
	formatDateOnlyFull, A
	formatDateWithPattern, A
	formats
	
	action, 17.2.7
	table specification, 17.2.2.1

	formatTimeOnly, A
	formatTimeOnlyDisplay, A
	forms
	
	buttons, 6.2.4.3.4
	common code, 6.6.1
	defining form information, 6.6.1.3
	elements, 6.2.4.2.6
	end of form section, 6.2.4.3.5
	fields
	
	defining, 6.6.1.4
	for input, 6.2.4.3.3

	properties, 6.6.1.3
	submitting, 6.6.1.6

	Forward method, IdcClient OCX, 28.2.5.9
	functionality, modifying, 7
	functions, 3.3.3
	
	docLoadResourceIncludes, 6.2.2.1
	Dynamicdata Idoc Script, 17.2.2.4
	eval, 3.4.1.2
	Idoc Script, 6.2.2
	inc, 3.4.1.4
	personalization, 3.3.3.1
	vs. keywords, 3.4.1
	workflow, 4.1.8.1, 4.2.26.2

	Fusion Order Demo application
	
	description, 2.1
	setting up, 2.2

G

	GATEWAY_INTERFACE, A
	generateUniqueId, A
	generating action menus, 10.1
	generating proxy class from WSDL files, 31.5.4
	generating WSDL files, 31.5.3
	GenericSoapService, 25.1.2
	GET_CRITERIA_WORKFLOWS_FOR_GROUP service, 31.3.3.13
	GET_FILE service, 31.3.3.10
	GET_SEARCH_RESULTS service, 31.3.3.11
	GET_TABLE service, 31.3.3.12
	GET_USER_INFO service, 31.3.3.4
	getCookie, A
	GetCopyAccess, A
	getDebugTrace, A
	getErrorTrace, A
	getFieldConfigValue, A
	getFieldViewDisplayValue, A
	getFieldViewValue, A
	GetFile.wsdl file, 31.5.1
	getFreeMemory, A
	getHelpPage, A
	getOptionListSize, A
	getParentValue, A
	getRequiredMsg, A
	getTextFile, A
	getTotalMemory, A
	getUserValue, A
	getValue, A
	getValueForSpecifiedUser, A
	getViewValue, A
	getViewValueResultSet, A
	global functions, 4.1.4
	glue file, 11.1.3.1.3
	GoCheckinPage method, IdcClient OCX, 28.2.5.10
	groups directory, 1.1.1.6

H

	hasAppRights, A
	hasDocInfo, 3.6.4
	HasExternalUsers, A
	HasLocalCopy, A
	hasOptionList, A
	HasOriginal, A
	HasPredefinedAccounts, A
	HasUrl, A
	HCSF files
	
	description, 6.1.1.4
	product description form, 6.6
	syntax, 6.2.1

	.hcsf files. See HCSF files
	HCSF pages
	
	common code, 6.6.1
	creating, 6.6
	data section, 6.2.4.2, 6.2.4.2.1
	defining form fields, 6.6.1.4
	defining form information, 6.6.1.3
	defining hidden fields, 6.6.1.5
	description, 6.2.4
	docLoadResourceIncludes function, 6.2.4.1.2
	example, 6.6
	form buttons, 6.2.4.3.4
	form elements, 6.2.4.2.6
	form end, 6.2.4.3.5
	form properties, 6.2.4.3.2
	form section, 6.2.4.3
	form to create in web browser, 6.6
	HTML declaration, 6.2.4.1.1
	HTML includes, 6.2.4.1.4
	isFormFinished attribute, 6.2.4.2.2
	load section, 6.2.4.1
	meta tag, 6.2.4.1.3
	metadata tags, 6.2.4.2.3
	nested tags, 6.2.4.2.4
	referencing file extensions, 6.6.1.2
	referencing XML tags, 6.2.4.2.5
	ResultSets, 6.2.4.2.7
	resultsets attribute, 6.2.4.2.2
	retrieving file information, 6.6.1.1
	submitting forms, 6.6.1.6
	tips, 6.2.3.2
	variables, 6.2.4.1.4

	HCSP files
	
	custom include reference, 6.5
	description, 6.1.1.3
	syntax, 6.2.1

	.hcsp files. See HCSP files
	HCSP pages
	
	creating, 6.4, 6.5, 6.7
	example, 6.4
	link to display, 6.6

	HCST files
	
	custom include reference, 6.4
	description, 6.1.1.2
	syntax, 6.2.1

	.hcst files. See HCST files
	HCST pages
	
	creating, 6.4, 6.5, 6.7
	examples, 6.4

	HDA files
	
	component definition, 11.3
	description, 11.1.3.1
	elements, 11.1.3.1.1
	example, 1.1.1.4, 11.1.3.1
	idc file for components, 11.1.3.1.2
	idc for components, 11.3
	idc_components.hda, 11.3.1
	ResultSet section, 11.1.3.1.1

	.hda files. See HDA files
	HEAD section, HCSF page, 6.2.4.1.4
	Headline View tables, 10.2.1
	HeavyClient, A
	HelloWorld content item displayed in web browser, 6.7
	hidden fields, defining, 6.6.1.5
	hierarchical folders, 24.3.1
	Historical Reports, B.4.1
	Home method, IdcClient OCX, 28.2.5.11
	HostCgiUrl property, IdcClient, 28.2.6.2
	HTML declaration, HCSF pages, 6.2.4.1.1
	HTML editor, 1.4
	HTML in templates, 1.4
	HTML includes, 17.2.1
	
	creating, 17.2.3.2, 17.2.3.2
	editing, 17.2.1.2, 17.2.2.2, 17.2.3.2
	example, 17.2.1.1
	HCSF pages, 6.2.4.1.4
	overview, 1.1.2
	standard, 17.2.1, 17.2.2, 17.2.3
	super tag, 17.2.1.1, 17.2.1.1

	htmlRefreshTimeout, A
	htmlRefreshUrl, A
	HTTP headers, 31.3.1.1
	HTTP_ACCEPT, A
	HTTP_ACCEPT_ENCODING, A
	HTTP_ACCEPT_LANGUAGE, A
	HTTP_COOKIE, A
	HTTP_HOST, A
	HTTP_INTERNETUSER, A
	HTTP_REFERER, A
	HTTP_USER_AGENT, A
	HttpAbsoluteCgiPath, A
	HttpAdminCgiPath, A
	HttpBrowserFullCgiPath, A
	HttpCgiPath, A
	HttpCommonRoot, A
	HttpEnterpriseCgiPath, A
	HttpHelpRoot, A
	HttpImagesRoot, A
	HttpLayoutRoot, A
	HttpRelativeAdminRoot, A
	HttpRelativeWebRoot, A
	HttpServerAddress, A
	HttpSystemHelpRoot, A
	HttpWebRoot, A

I

	idc HDA file for components, 1.1.1.4, 11.1.3.1.2
	idc namespace, 31.3.1.2
	idc_components.hda file, 11.3.1, 11.3.1
	IdcAnalyze WebCenter Content utility, 1.1.1.2
	IdcAuthExtraRequestParams, A
	idcbegindata tag, 6.2.4.2.1
	IdcClient ActiveX Control module, 28.2.3.1
	IdcClient events, 28.2.4
	IdcClient OCX component
	
	Content server functions, 28.2.2.1
	control setup, 28.2.3
	description, 28.2.2
	interface, 28.2.2.4
	methods, 28.2.2.2
	
	AboutBox, 28.2.5.1
	Back, 28.2.5.2
	CancelRequest, 28.2.5.3
	DoCheckoutLatestRev, 28.2.5.4
	DownloadFile, 28.2.5.5
	DownloadNativeFile, 28.2.5.6
	Drag, 28.2.5.7
	EditDocInfoLatestRev, 28.2.5.8
	Forward, 28.2.5.9
	GoCheckinPage, 28.2.5.10
	Home, 28.2.5.11
	InitiateFileDownload, 28.2.5.12
	InitiatePostCommand, 28.2.5.13
	Move, 28.2.5.14
	Navigate, 28.2.5.15
	NavigateCgiPage, 28.2.5.16
	RefreshBrowser, 28.2.5.17
	SendCommand, 28.2.5.18
	SendPostCommand, 28.2.5.19
	SetFocus, 28.2.5.20
	ShowDMS, 28.2.5.21
	ShowDocInfoLatestRev, 28.2.5.22
	ShowWhatsThis, 28.2.5.23
	StartSearch, 28.2.5.24
	Stop, 28.2.5.25
	UndoCheckout, 28.2.5.26
	ViewDocInfo, 28.2.5.27
	ViewDocInfoLatestRev, 28.2.5.28
	ZOrder, 28.2.5.29

	properties
	
	example, 28.2.2.3
	overview, 28.2.2.3

	setting up, 28.2.3.1

	IdcClient OCX control
	
	description, 28.2.2
	events, 28.2.2.1

	IdcClient OCX methods, 28.2.5
	IdcClient properties
	
	edited, 28.2.3.2
	overview, 28.2.6

	IdcCommand utility
	
	accessing services, 27
	calling services remotely, 27.4
	command-file syntax, 27.2.1, 27.2.1.1
	command-line options, 27.2.1
	configuration options, 27.2.2
	execution, 27.2
	options
	
	command file, 27.2.2.1
	connection mode, 27.2.2.4
	log file, 27.2.2.3
	user, 27.2.2.2

	overview, 27.1
	repository server, 27.3
	setup, 27.2
	using the Launcher, 27.5
	WebCenter Content, 1.1.1.2

	idccs_components.hda file, 11.1.3.5
	idcenddata tag, 6.2.4.2.1
	idcformrules tag, 6.2.4.2.2
	idcibr_components.hda file, 11.1.3.5
	IdcServer service, 1.1.1.2, 1.1.1.2
	IdcServerNT service, 1.1.1.2, 1.1.1.2
	IdcService command-file syntax tag, 27.2.1.3
	idcurm_components.hda file, 11.1.3.5
	IdcWebLoginService web service, 25.1.2
	IdcWebRequestService web service, 25.1.2
	IDE, 1.4
	idoc directory, 1.1.1.5
	IDOC files
	
	custom includes, 6.6
	description, 6.1.1.1
	syntax, 6.2.1

	.idoc files. See IDOC files
	IDOC pages
	
	creating, 6.4, 6.5, 6.6, 6.7
	examples, 6.4, 6.5, 6.6, 6.7

	idoc resource type, 1.1.1.5
	Idoc Script, 4.2.13
	
	comments, 3.2.2
	description, 1.4
	functions, dynamic server pages, 6.2.2
	syntax, 3.2
	tags, 3.2.1
	tags, dynamic server pages, 6.2.1, 6.2.1.1
	uses, 3.3

	if conditional, 3.3.4
	images directory, 1.1.1.6
	implementation architectures, web services mapped to Content Server, 31.1.1.7
	Inbound Refinery, 4.2.6.1
	inc, 3.4.1.4, A
	incDynamicConversionByRule, A
	incGlobal, A
	include, 3.4, A
	include keyword, 3.4.1.3
	includes, 3.3.1
	
	custom
	
	examples of, 6.3
	IDOC file, 6.6

	example, 3.3.1.1
	properties, 17.2.2.3.4

	incTemplate, A
	indexerSetCollectionValue, A
	indexing, 4.2.14
	initialization
	
	RIDC, 29.2

	InitiateFileDownload method, IdcClient OCX, 28.2.5.12
	InitiatePostCommand method, IdcClient OCX, 28.2.5.13
	install directory, 1.1.1.5
	installation
	
	Component Manager, 18.3
	Component Wizard, 18.4
	components
	
	ComponentTool utility, 18.5, 18.5
	overview, 18.1

	JCR adapter
	
	ADF runtime libraries, 30.2.1
	APIs required, 30.2
	runtime libraries required, 30.2

	Installer, 1.1.1.2
	InstanceDescription, A
	Integrated Development Environment, 1.4
	integration
	
	COM API, 28
	enterprise applications with WebCenter Content, 24
	JSP, 26.1
	methods, overview, 24.1
	ODMA, 28.3
	WebCenter Content with enterprise applications, 24
	WebDAV, 24.3.2

	Interactive mode, 15.1
	interface, administration, 3.3.6
	interface, Content Server
	
	anonymous user interface, changing, 5.5
	changing look and feel, 5
	changing navigation, 5
	customizing
	
	layouts and skins, 5.4
	overview, 5

	modifying, 5

	internal initialization, 1.5.1.1
	internal security, 4.2.21.1
	IntradocApp applet, 1.1.1.2
	IntradocBeforeDownload event, IdcClient, 28.2.4.1
	IntradocBrowserPost event, IdcClient, 28.2.4.2
	IntradocBrowserStateChange event, IdcClient, 28.2.4.3
	IntradocClient OCX component, 28.2.1
	IntradocReports ResultSet, 11.1.3.1.1
	IntradocRequestProgress event, IdcClient, 28.2.4.4
	IntradocServerResponse event, IdcClient, 28.2.4.5
	IntradocTemplates ResultSet, 11.1.3.1.1
	isActiveTrace, A
	isCheckin, A
	IsCheckinPreAuthed, A
	isComponentEnabled, A
	IsContributor, A
	IsCriteriaSubscription, A
	IsCurrentNav, A
	isDocPage, A
	IsDynamic, A
	IsDynamicConverterEnabled, A
	isEditMode, A
	isEditMode variable, 6.6.1.3
	IsEditRev, A
	isExcluded, A
	IsExternalUser, A
	IsFailedConversion, A
	IsFailedIndex, A
	isFalse, A
	isFieldExcluded, A
	isFieldHidden, A
	isFieldInfoOnly, A
	isFieldMemo, A
	IsFilePresent, A
	isFormFinished attribute, 6.2.4.2.2
	isFormSubmit, A
	isFormSubmit variable, 6.6.1.3
	IsFullTextIndexed, A
	isHidden, A
	isInfo, A
	isInfoOnly, A
	IsJava, A
	IsJava setting, C.3
	isLatestRevision, 3.6.4
	isLayoutEnabled, A, A
	IsLocalSearchCollectionID, A
	IsLoggedIn, A
	IsMac, A
	IsMaxRows, A
	isMultiOption, A
	IsMultiPage, A
	isNew, A
	IsNotLatestRev, A
	IsNotSyncRev, A
	IsOverrideFormat, A
	IsPageDebug, A
	IsPageDebug setting, C.3
	IsPromptingForLogin, A
	isQuery, A
	isRelocated, A
	IsRequestError, A
	isRequired, A
	IsSavedQuery, A
	IsSoap, A
	isStrictList, A
	IsSubAdmin, A
	IsSun, A
	IsSysManager, A
	isTrue, A
	isUpdate, A
	isUploadFieldScript, A
	IsUploadSockets, A
	IsUserEmailPresent, A
	isUserOverrideSet, A
	isValidateFile, A
	isVerboseTrace, A
	IsWindows, A
	IsWorkflow, A
	IsXml, A
	isZoneField, A

J

	Java Content Repository Adapter
	
	introduction, 30.1
	using, 30

	Java SOAP Client, 31.2.1
	JavaScript
	
	Content Server use of, 1.4
	debugger, 1.4

	javascript directory, 1.1.1.5
	JavaServer Pages. See JSP
	JCR
	
	content items
	
	finding information for, 30.5
	tables, 30.5

	file store provider, using, 30.7
	file store tables, 30.5
	search index
	
	tables, 30.5
	using, 30.6

	tables
	
	content items, 30.5
	file store, 30.5
	search index, 30.5

	JCR adapter
	
	communication
	
	configuring, 30.4
	configuring socket communication, 30.4.2
	configuring SSL, 30.4.3
	listener port, 30.4.2, 30.4.3
	method, 30.4.1
	provider, 30.4.1

	configuration, 30.4.4
	
	cache settings, 30.4.6
	user agent, 30.4.5

	data model
	
	code, 30.1.2
	Content Server, 30.1.2

	deploying, 30.3
	deploying JCR API, 30.2.3
	deploying RIDC, 30.2.2
	installing ADF runtime libraries, 30.2.1
	installing required APIs and runtime libraries, 30.2
	JCR integration libraries, 30.2.4, 30.2.5
	web communication, 30.4.4

	JCR API, deploying for JCR adapter, 30.2.3
	JCR data model, 30.1.1
	JCR integration libraries, deploying for JCR adapter, 30.2.4, 30.2.5
	js, A
	jsFilename, A
	Json, A
	JSP
	
	access to Content Server, 26.1
	execution, 26.1, 26.1.1
	features, 26.1.3
	integration
	
	configuring JSP support, 26.2
	loading example pages, 26.3
	overview, 26.1

	support, configuration, 26.2

	jspserver directory, 1.1.1.5

K

	keywords, 3.4, 4.2.13.1
	
	exec, 3.4.1.1
	include, 3.4.1.3
	vs. functions, 3.4.1

L

	labels, visual interface, 28.2.3.2
	lang directory, 1.1.1.5
	lastEntryTs, A
	Launcher
	
	computed settings, 27.4.2
	configuration, 27.4.5
	environment variables, 27.4.3
	quotation rules, 27.4.1
	user interface, 27.4.4
	using the, 27.5

	layouts
	
	creating new, 5.7
	description, 5.1.3
	overview, 5.1
	selection, 5.2
	Top Menus, 5.1.3
	Trays, 5.1.3
	types, 5.1.1

	lc, A
	lcCaption, A
	like operator, 3.5.2
	
	wildcards, 3.5.2

	link, HCSP page display, 6.6
	listener port, JCR adapter communication, 30.4.2, 30.4.3
	lists, option, 3.6.3, 3.6.3.1
	
	creating, 3.6.3.3
	functions, 3.6.3.2
	variables, 3.6.3.2

	LMDefaultLayout, A
	LMDefaultSkin, A
	lmGetLayout, A
	lmGetSkin, A
	load section, 6.2.4.1
	loadCollectionInfo, A
	loadDocMetaDefinition, A
	loadDocumentProfile, A
	loading
	
	configuration variables, 1.5.1.1
	custom components, 1.5.1.1
	monitoring resources, C.4
	standard reports, 1.5.1.1
	standard resources, 1.5.1.1
	standard templates, 1.5.1.1

	loadSchemaData, A
	loadSearchOperatorTables, A
	loadUserMetaDefinition, A
	local keyword, 3.4
	local page
	
	creating link, B.3.3

	local pages, B.2
	LocalData, 11.1.3.3.1
	
	data binder evaluation of, 11.1.3.3
	properties section name, 11.1.3.1.1

	localization, 4.2.15
	localization, resolving strings, 1.5.5
	localPageType, A
	log file, IdcCommand utility option, 27.2.2.3
	look and feel, customizing Content Server, 5
	looping, 3.3.5
	
	ending, 3.3.5.5
	ResultSet, 3.3.5.1
	ResultSet example, 3.3.5.2
	while, 3.3.5.3
	while example, 3.3.5.4

M

	MajorRevSeq, A
	manifest file, 11.1.3.4
	Manifest ResultSet, 11.1.3.4
	manifest.hda file, 11.1.3.4
	marker, trace, C.3
	MaxCollectionSize, A
	maxLength, A
	menus, action, generation of, 10.1
	merge properties, 17.2.2.3.1
	merge rules
	
	dynamic table resources, 17.2.4.1
	static tables, 17.2.5.1

	MergeInclude, 3.7
	MergeRules ResultSet, 11.3.3.2
	
	columns, 11.3.3.2.1
	example, 11.3.3.2
	template resource, 17.2.8
	toTable column, 11.3.3.2.1

	Message element, WSDL file structure, 31.5.1.1
	messaging protocol, 31.1.1.9
	meta tag, 6.2.4.1.3
	metadata, 15.1
	
	option lists, 3.6.3
	referencing, 6.2.1, 6.2.1.4
	referencing in dynamic server pages, 3.6.4
	standard fields, 3.6.2
	tags
	
	content attribute, 6.2.4.2.3
	form field values, 6.2.4.2.3

	metadata fields, 3.6
	
	naming, 3.6.1

	MetaData.wsdl file, 31.5.1
	methods
	
	CancelRequest, 28.2.5.3
	DoCheckoutLatestRev, 28.2.5.4
	DownloadFile, 28.2.5.5
	DownloadNativeFile, 28.2.5.6
	Drag, 28.2.5.7
	EditDocInfoLatestRev, 28.2.5.8
	Forward, 28.2.5.9
	GoCheckinPage, 28.2.5.10
	IdcClient OCX
	
	AboutBox, 28.2.5.1
	Back, 28.2.5.2, 28.2.5.2
	CancelRequest, 28.2.5.3
	DoCheckoutLatestRev, 28.2.5.4
	DownloadFile, 28.2.5.5
	DownloadNativeFile, 28.2.5.6
	Drag, 28.2.5.7
	EditDocInfoLatestRev, 28.2.5.8
	Forward, 28.2.5.9
	GoCheckinPage, 28.2.5.10
	Home, 28.2.5.11
	InitiateFileDownload, 28.2.5.12
	InitiatePostCommand, 28.2.5.13
	Move, 28.2.5.14
	Navigate, 28.2.5.15
	NavigateCgiPage, 28.2.5.16
	RefreshBrowser, 28.2.5.17
	SendCommand, 28.2.5.18
	SendPostCommand, 28.2.5.19
	SetFocus, 28.2.5.20
	ShowDMS, 28.2.5.21
	ShowDocInfoLatestRev, 28.2.5.22
	ShowWhatsThis, 28.2.5.23
	StartSearch, 28.2.5.24
	Stop, 28.2.5.25
	UndoCheckout, 28.2.5.26
	ViewDocInfo, 28.2.5.27
	ViewDocInfoLatestRev, 28.2.5.28
	ZOrder, 28.2.5.29

	InitiateFileDownload, 28.2.5.12
	InitiatePostCommand, 28.2.5.13
	Move, 28.2.5.14
	Navigate, 28.2.5.15
	NavigateCgiPage, 28.2.5.16
	RefreshBrowser, 28.2.5.17
	SendCommand, 28.2.5.18
	SendPostCommand, 28.2.5.19
	SetFocus, 28.2.5.20
	ShowDocInfoLatestRev, 28.2.5.22
	ShowWhatsThis, 28.2.5.23
	StartSearch, 28.2.5.24
	Stop, 28.2.5.25
	UndoCheckout, 28.2.5.26
	ViewDocInfo, 28.2.5.27
	ViewDocInfoLatestRev, 28.2.5.28
	Zorder, 28.2.5.29

	Microsoft .NET, 31.1.1.8, 31.1.1.8
	Microsoft Visual Basic, 28.2.3, 28.2.3.1
	MinorRevSeq, A
	minus (-) operator, 3.5.3
	modes, 15.1
	modulus (%) operator, 3.5.3
	monitoring resource loading, C.4
	Move method, IdcClient OCX, 28.2.5.14
	MSIE, A
	multiply (*) operator, 3.5.3
	MultiUpload, A

N

	namespaces, 31.3.1.2
	name/value pair, 17.2.9
	naming conventions, 3.1
	
	directories, 11.1.4.5, 11.1.4.5
	dynamic server pages, 6.2.3.1
	files, 11.1.4.5

	naming, metadata fields, 3.6.1
	Navigate method, IdcClient OCX, 28.2.5.15
	NavigateCgiPage method, IdcClient OCX, 28.2.5.16
	navigation
	
	customizing Content Server, 5
	dynamic server pages, 6

	nested tags
	
	ResultSets, 6.2.4.2.7
	XML nodes, 6.2.4.2.4

	.NET architecture, 31.1.1.8
	.NET Framework, 31.1.1.8
	.NET platform, 31.1.1.8
	newlink soap, 31.1.1.3
	newlink uddi, 31.1.1.4
	nodes, SOAP
	
	packet format, 31.3.1.3
	service, 31.3.1.3.1

	NoMatches, A
	noMCPrefill, A
	nonactive ResultSets, 11.1.3.3
	Non-secure mode reports
	
	values for preference variable, 14.2.1.2

	not operator, 3.5.4
	NotificationQuery, A
	numeric operators, 3.5.3

O

	OCX Component. See IdcClient OCX component
	OCX control, Visual Basic form, 28.2.3.2
	OCX events, 28.2.2.1
	OCX examples
	
	methods, 28.2.2.2
	properties, 28.2.2.3

	OCX interface, 28.2.1
	ODMA Client, 28.3.1
	ODMA Client Interface, 28.3.2, 28.3.2
	ODMA Desktop Shell Interface, 28.3.2, 28.3.2
	ODMA integration, 28.3
	ODMA interfaces, 28.3.2
	OneMatch, A
	operating modes, 15.1
	Operational summary
	
	Content Tracker components, 14

	operators, 3.5
	
	ampersand &(amp;), 3.5.2
	and, 3.5.4
	Boolean, 3.5.4
	comparison, 3.5.1
	divide (/), 3.5.3
	like, 3.5.2
	minus (-), 3.5.3
	modulus (%), 3.5.3
	multiply (*), 3.5.3
	not, 3.5.4
	numeric, 3.5.3
	or, 3.5.4
	pipe (|), 3.5.2
	plus (+), 3.5.3
	special string, 3.5.2

	operators, dynamic server pages, 6.2.1
	optimization, published files, 5.8
	option lists, 3.6.3
	
	creating, 3.6.3.3
	Idoc Script, 3.6.3.2
	internal, 3.6.3.1

	option subnode, SOAP, 31.3.1.3.5
	optionlist node, 31.3.1.3.4
	
	SOAP, 31.3.1.3.4

	optionListKey, A
	optionListName, A
	optionListResultSet, A
	optionListScript, A
	optionListValueInclude, A
	optionsAllowPreselect, A
	optList, 3.6.3.3, A
	or operator, 3.5.4
	Oracle Web Services Manager, 24.2, 25.1.1, 31
	Oracle WebCenter Content
	
	architecture, 1.1, 2
	customization, 1
	directories, 1.1.1
	
	components, 1.1.1.4
	terminology, 1.1.1.1

	files, 1.1.1
	integration with enterprise applications, 24

	Oracle WebCenter Content Server. See Content Server
	organization, component files, 11.1.4.4
	other field display variables, 4.1.5.2.3
	overview, 15.1
	
	Content Categorizer, 15.1

P

	page display, 4.2.16
	
	variables, 4.1.5.1

	page variables, 4.1.5
	PageParent, A
	pages
	
	dynamic server, types, 6.1.1
	dynamic web, assembly, 1.5.3
	HCSF
	
	description, 6.2.4
	form to create in web browser, 6.6

	HCSP, link to display, 6.6
	report, 17.2.8, 17.2.8.1
	template, 17.2.8, 17.2.8.1

	parameters
	
	action, 17.2.7
	docLoadResourceIncludes function, 6.2.2.1.2
	string, 17.2.3.1

	parseDataEntryDate, A
	parseDate, A
	parseDateWithPattern, A
	password, 28.2.6.3
	PATH_INFO, A
	PATH_TRANSLATED, A
	paths and directories, 4.2.10
	personalization, 4.2.17
	
	functions, 3.3.3.1

	PING_SERVER service, 31.3.3.1
	pipe (|) operator, 3.5.2
	planning
	
	websites, B.1.1

	plus (+) operator, 3.5.3
	pneNavigation, A
	popup menus. See action menus
	Port element, WSDL file structure, 31.5.1.1
	Port Type element, WSDL file structure, 31.5.1.1
	PortalInfo.wsdl, 31.5.1
	Post-reduction processing
	
	SQL queries for activity metrics, 14.4

	precedence, 27.2.1.2
	predefined ResultSets, 11.1.3.1.1
	presentation pages, 17.2.8.1
	product description form, HCSF file, 6.6
	programming
	
	Java, 1.4
	other, 1.4

	properties
	
	assembly, 17.2.2.3.2
	CgiUrl TextBox, edited, 28.2.3.2
	Command TextBox, edited, 28.2.3.2
	filter, 17.2.2.3.4
	forms, 6.2.4.3.2, 6.6.1.3
	IdcClient OCX component, 28.2.2.3
	idcClient, edited, 28.2.3.2
	include, 17.2.2.3.4
	merge, 17.2.2.3.1
	Response TextBox, edited, 28.2.3.2
	SendPostCommand CommandButton, edited, 28.2.3.2
	sort, 17.2.2.3.3
	table, specification, 17.2.2.3

	provider
	
	JCR adapter communication, 30.4.1

	public files, bundling for optimization, 5.8
	published files
	
	optimizing use of, 5.8
	referencing, 5.8.2

	PublishedBundles table, 5.8.1, 5.8.1
	PublishedResources, 5.8.2

Q

	QDocInfo query, standard, 17.2.6.1
	queries
	
	writing directory, B.5
	writing report, B.5

	queries, QDocInfo, standard, 17.2.6.1
	query expression
	
	editing Active Reports, B.4.4
	editing Query link, B.5.2

	Query link
	
	creating, B.5.1
	editing query expression, B.5.2

	query resources, 17.2.6
	
	editing, 17.2.6.2
	example, 17.2.6.1
	overview, 1.1.2

	query results page
	
	adding, B.5.3
	deleting, B.5.5
	editing, B.5.4

	QUERY_STRING, A
	question mark (?) wildcard, 3.5.2
	quotation rules, Launcher, 27.4.1

R

	read-only variables, 4.1.6
	
	template, 4.1.6.1
	user, 4.1.6.2

	recommended skills, 1.4
	ref
	
	prefix, 3.6.4

	ref prefix
	
	referencing file extensions, 6.6.1.2, 6.6.1.2
	referencing metadata, 6.2.1.4

	referencing a variable, 3.3.2.2
	
	in conditionals, 3.3.2.5

	referencing metadata
	
	dynamic server pages, 6.2.1, 6.2.1.4
	ref prefix, 6.2.1.4

	referencing metadata in dynamic server pages, 3.6.4
	referencing XML tags, 6.2.4.2.5
	RefreshBrowser method, IdcClient OCX, 28.2.5.17
	regexMatches, A
	regexReplaceAll, A
	regexReplaceFirst, A
	regular variables, 3.3.2.7
	Release Date, 3.6.2.1
	Remote Intradoc Client (RIDC)
	
	binders for multiple requests, reusing, 29.8
	convenience classes, 29.1.2
	deploying for JCR adapter, 30.2.2
	handling connections, 29.6
	initialization, 29.2
	Introduction, 29.1
	services, 29.5
	streams
	
	receiving, 29.7
	sending, 29.7

	user authentication, 29.4, 29.4
	user security, providing, 29.9
	using, 29

	Remote Procedure Call, 31.2
	REMOTE_ADDR, A
	REMOTE_HOST, A
	Rendition parameter, 6.2.2.1.2
	repeated tags in ResultSets, 6.2.4.2.7
	report pages
	
	example, 17.2.8.1.2, 17.2.8.1.2
	location, 17.2.8
	presentation pages, 17.2.8.1
	results of web page request, 17.2.8.1

	report queries
	
	writing, B.5

	reports
	
	Archive Historical, B.4.3
	defined with Web Layout Editor, B.4
	directory, 1.1.1.5
	loading, 1.5.1.1, 1.5.1.1

	REQUEST_METHOD, A
	requiredMsg, A
	resource categories, 17.2
	resource loading, monitoring, C.4
	resource types
	
	idoc, 1.1.1.5
	tables, 1.1.1.5
	templates, 1.1.1.5

	ResourceDefinition ResultSet
	
	columns, 11.3.3.1.1
	description, 11.3.3.1
	example, 11.3.3.1
	location, 11.1.3.1.1
	purpose, 11.1.3.1.1

	resources, 11.4
	
	caching, 1.5.2
	changing, 1.5.2
	custom
	
	other files, 11.1.3.5

	directory, 1.1.1.5
	dynamic table, 17.2.4
	environment, 17.2.9
	overview, 1.1.2
	query
	
	editing, 17.2.6.2
	overview, 17.2.6

	service, 17.2.7
	standard, 1.1.2
	static table, 17.2.5
	string, 17.2.3

	resources directory, 1.1.1.6
	Response TextBox properties, edited, 28.2.3.2
	ResultSet looping, 3.3.5.1
	
	example, 3.3.5.2

	ResultSet section, HDA file, 11.1.3.1.1
	resultset subnode, SOAP, 31.3.1.3.6, 31.3.1.3.6
	ResultSets, 4.2.18, 11.1.3.3.2
	
	ClassAliases, 11.3.3.4
	Components, 11.1.3.1.1, 11.3.2
	defined by XML tags, 6.2.4.2.7
	editing, 6.2.4.2.7
	Filters, 11.3.3.3
	IntradocReports, 11.1.3.1.1
	IntradocTemplates, 11.1.3.1.1
	Manifest, 11.1.3.4
	MergeRules, 11.3.3.2
	nested tags, 6.2.4.2.7
	nonactive, 11.1.3.3
	predefined, 11.1.3.1.1
	repeated tags, 6.2.4.2.7
	ResourceDefinition, 11.1.3.1.1, 11.3.3.1
	SearchResultTemplates, 11.1.3.1.1
	XML tags, 6.2.4.2.7

	resultsets attribute, 6.2.4.2.2
	resultsets form element, 6.2.4.2.5, 6.2.4.2.6
	ResultsTitle, A
	retrieving file information, 6.6.1.1
	reverse proxy server
	
	web beacon feature, 14.5.1

	Revision, 3.6.2.1
	RevisionSelectionMethod parameter, 6.2.2.1.2
	RIDC. See Remote Intradoc Client (RIDC)
	roles list, 3.6.3.1
	row subnode, SOAP, 31.3.1.3.7
	RPC, 31.2
	rptDisplayMapValue, A
	rsAddFields, A
	rsAddRowCountColumn, A
	rsAppend, A
	rsAppendNewRow, A
	rsAppendRowValues, A
	rsCopyFiltered, A
	rsCreateResultSet, A
	rsDeleteRow, A
	rsDocInfoRowAllowDisclosure, A
	rsExists, A
	rsFieldByIndex, A
	rsFieldExists, A
	rsFindRowPrimary, A
	rsFirst, A
	rsInsertNewRow, A
	rsIsRowPresent, A
	rsMakeFromList, 3.6.3.3, A
	rsMakeFromString, A
	rsMerge, A
	rsMergeDelete, A
	rsMergeReplaceOnly, A
	rsNext, A
	rsNumFields, A
	rsNumRows, A
	rsRemove, A
	rsRename, A
	rsRenameField, A
	rsSetRow, A
	rsSort, A
	rsSortTree, A
	runtime libraries
	
	ADF, installing for JCR adapter, 30.2.1
	installing for JCR adapter, 30.2

S

	SafeDir, A
	SAML, 25.1.1
	sample service calls, GET_USER_INFO, 31.3.3.4
	Sample WSDL File, 31.5.2
	Schema, 4.2.19
	Schema Publisher, 4.2.19
	SCRIPT_NAME, A
	scriptable services, 6.2.2.2
	SctAutoTruncateDataStrings
	
	Content Tracker configuration setting, 14.2.1

	SctComponentDir
	
	Content Tracker configuration setting, 14.2.1

	SctDebugLogEnabled
	
	Content Tracker configuration setting, 14.2.1

	SctDebugLogFilePath
	
	Content Tracker configuration setting, 14.2.1

	SctDebugServiceBinderDumpEnabled
	
	Content Tracker configuration setting, 14.2.1

	SctFilterPluginLogDir
	
	Content Tracker configuration setting, 14.2.1

	SctIdcAuthExtraConfigParams
	
	Content Tracker configuration setting, 14.2.1

	SctIgnoreDirectories
	
	Content Tracker configuration setting, 14.2.1

	SctIgnoreFileTypes
	
	Content Tracker configuration setting, 14.2.1

	SctLogDir
	
	Content Tracker configuration setting, 14.2.1

	SctLogEnabled
	
	Content Tracker configuration setting, 14.2.1

	SctLogSecurity
	
	Content Tracker configuration setting, 14.2.1

	SctMaxRecentCount
	
	Content Tracker configuration setting, 14.2.1

	SctMaxRereadTime
	
	Content Tracker configuration setting, 14.2.1

	SctPostReductionExec
	
	Content Tracker configuration setting, 14.2.1

	SctProxyNameMaxLength
	
	Content Tracker configuration setting, 14.2.1

	SctReductionAvailableDatesLookback
	
	Content Tracker configuration setting, 14.2.1

	SctReductionLogDir
	
	Content Tracker configuration setting, 14.2.1

	SctReductionRequireEventLogs
	
	Content Tracker configuration setting, 14.2.1

	SctScheduledReductionEnable
	
	Content Tracker configuration setting, 14.2.1

	SctServiceFilter
	
	configuration file, 14.3.1
	contents, 14.3.1.3
	editing entries, 14.3.3.1

	SctSnapshotEnable
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotLastAccessEnable
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotlastAccessField
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotLongCountEnable
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotLongCountField
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotLongCountInterval
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotShortCountEnable
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotShortCountField
	
	Content Tracker configuration setting, 14.2.1

	SctSnapshotShortCountInterval
	
	Content Tracker configuration setting, 14.2.1

	SctUrlMaxLength
	
	Content Tracker configuration setting, 14.2.1

	SctUseGMT
	
	Content Tracker configuration setting, 14.2.1

	SctWebBeaconIDList
	
	Content Tracker configuration setting, 14.2.1

	search index
	
	tables
	
	JCR, 30.5

	using
	
	JCR, 30.6

	search_results.htm file, 17.2.8
	searching, 4.2.20
	SearchML, 15.1
	SearchResultTemplates ResultSet, 11.1.3.1.1
	Search.wsdl, 31.5.1
	Search.wsdl file, 31.5.1
	sections
	
	data, 6.2.4.2, 6.2.4.2.1
	form, 6.2.4.3
	HEAD, HCSF page, 6.2.4.1.4
	load, 6.2.4.1
	LocalData, 11.1.3.1.1
	ResultSet, 11.1.3.1.1

	Secure mode reports
	
	values for preference variable, 14.2.1.2

	secure socket communication (SSL)
	
	JCR adapter, 30.4.3

	secure socket communication (SSL), JCR adapter, 30.4.2
	security, 4.2.21
	
	external, 4.2.21.2
	internal, 4.2.21.1

	Security Assertion Markup Language, 25.1.1
	Security checks
	
	values for preference variable, 14.2.1.2

	Security Group, 3.6.2.1
	securityGroups list, 3.6.3.1
	SelfRegisteredAccounts, A
	SelfRegisteredRoles, A
	SendCommand method, IdcClient OCX, 28.2.5.18
	SendPostCommand CommandButton properties, edited, 28.2.3.2
	SendPostCommand method, IdcClient OCX, 28.2.5.19
	SendPostCommand_Click code, edited, 28.2.3.2
	server errors, viewing, C.2
	SERVER_NAME, A
	SERVER_PORT, A
	SERVER_PROTOCOL, A
	SERVER_SOFTWARE, A
	servers, WebDAV, 24.3.2.2
	service attributes
	
	access level, 17.2.7
	error message, 17.2.7
	service class, 17.2.7
	service type, 17.2.7
	subjects notified, 17.2.7
	template page, 17.2.7

	Service Calls
	
	ADD_USER, 31.3.3.2
	CHECKIN_UNIVERSAL, 31.3.3.6
	CHECKOUT_BY_NAME, 31.3.3.7
	DELETE_USER, 31.3.3.5
	DOC_INFO, 31.3.3.9
	EDIT_USER, 31.3.3.3
	GET_CRITERIA_WORKFLOWS_FOR_GROUP, 31.3.3.13
	GET_FILE, 31.3.3.10
	GET_SEARCH_RESULTS, 31.3.3.11
	GET_TABLE, 31.3.3.12
	UNDO_CHECKOUT_BY_NAME, 31.3.3.8

	Service calls
	
	logging, 14.3.1.1

	service calls
	
	PING_SERVER, 31.3.3.1
	samples, 31.3.3
	SOAP response/request, 31.3.3

	service class attribute, 17.2.7
	service definition table, 17.2.7
	Service element, WSDL file structure, 31.5.1.1
	Service handler filter
	
	configuration file contents, 14.3.1.3
	configuration file overview, 14.3.1
	editing entries, 14.3.3.1

	service node, 31.3.1.3.1
	service node, SOAP, 31.3.1.3.1
	service resource attributes, 17.2.7.1.1
	service resources, 17.2.7
	
	actions, 17.2.7.1.2
	editing, 17.2.7.2
	example, 17.2.7, 17.2.7.1
	overview, 1.1.2

	service ResultSet, Actions column, 17.2.7
	service type attribute, 17.2.7
	services
	
	accessing, IdcCommand Utility, 27
	actions, 17.2.7
	add user, 31.3.3.2
	customizing, 9.1
	DOC_INFO, 17.2.7.1, 31.3.3.9
	DOC_INFO_SIMPLE, 6.6.1.1
	examples
	
	actions, 17.2.7.1.2
	attributes, 17.2.7.1.1
	definition, 17.2.7
	resource, 17.2.7

	executables, 1.1.1.2
	RIDC, 29.5
	scriptable, 6.2.2.2
	startup error, 1.1.1.2

	Services tab
	
	adding and editing service entries, 14.3.4.1
	adding field map ResultSets, 14.3.4.2

	setContentType, A
	setCookie, A
	setExpires, A
	SetFocus method, IdcClient OCX, 28.2.5.20
	setHttpHeader, A
	setMaxAge, A
	setResourceInclude, A
	settable variables, 4.1.7
	settings
	
	IsJava, C.3
	TraceResourceConflict, C.4
	TraceResourceOverride, C.4

	setValue, A
	ShowDMS method, IdcClient OCX, 28.2.5.21
	ShowDocInfoLatestRev method, IdcClient OCX, 28.2.5.22
	ShowWhatsThis method, IdcClient OCX, 28.2.5.23
	Simple Object Access Protocol, 25.1.1
	Simple Object Access Protocol. See SOAP
	SingleGroup, A
	Site Builder, 15.1, 15.1
	site structure, B.1.2
	Site Studio
	
	web beacon feature, 14.5.1

	skills for customization, 1.4
	skins
	
	description, 5.1.2
	overview, 5.1
	selection, 5.2
	types, 5.1.1

	SOAP
	
	communication, 31.1.1.3, 31.1.1.3
	Data List Elements page, 31.6
	definition, 31.1
	messages, 31.2
	nodes
	
	packet format, 31.3.1.3
	service, 31.3.1.3.1

	packet format
	
	document, 31.3.1.3.2
	field, 31.3.1.3.8
	HTTP headers, 31.3.1.1
	idc namespace, 31.3.1.2
	namespaces, 31.3.1.2
	nodes, 31.3.1.3
	optionlist, 31.3.1.3.4
	overview, 31.3.1
	resultset, 31.3.1.3.6
	service, 31.3.1.3.1
	user, 31.3.1.3.3

	request, 31.3.1
	web services, accessing, special characters, 31.3.2

	sort properties, 17.2.2.3.3
	SourceID, A
	Special Characters, 31.3.2
	special characters
	
	command file syntax
	
	#, 27.2.1.3

	command-file syntax
	
	\;, 27.2.1.3
	description, 27.2.1.3
	EOD, 27.2.1.3

	dynamic server pages, 6.2.1, 6.2.1.3
	EOD command-file tag, 27.2.1.3
	IdcService command-file tag, 27.2.1.3
	in strings, 17.2.3
	SOAP
	
	passing with XML format, 31.3.2
	web services, accessing, 31.3.2

	special keywords, 3.4
	special string operators, 3.5.2
	special tags, command-file syntax, 27.2.1.3
	SQL queries
	
	customizing for activity metrics, 14.4
	post-reduction step for activity metrics, 14.4

	standard components, 11
	standard metadata fields, 3.6.2
	standard page beginning, 1.5.3
	standard page ending, 1.5.3
	standard page header, 1.5.3
	standard report pages, 17.2.8.1
	standard resources
	
	examples, 1.1.2
	loading, 1.5.1.1

	standard template pages, 17.2.8.1
	StandardResults template, 17.2.8
	StartSearch method, IdcClient OCX, 28.2.5.24
	startup behavior, Content Server, 1.5.1, 1.5.1
	startup steps, Content Server, 1.5.1.1
	static table resource, 1.1.2
	static tables, 17.2.5
	
	editing, 17.2.5.2
	merge rules, 17.2.5.1

	StatusCode, A
	StatusMessage, A
	stdSecurityCheck, A
	Stop method, IdcClient OCX, 28.2.5.25
	strCenterPad, A
	strCommaAppendNoDuplicates, A
	strConfine, A
	StrConfineOverflowChars, A
	streams
	
	receiving, RIDC, 29.7
	sending, RIDC, 29.7

	strEquals, A
	strEqualsIgnoreCase, A
	strGenerateRandom, A
	strIndexOf, A
	string parameters, 17.2.3.1
	strings, 4.2.22
	
	overview, 1.1.2
	resolving, 1.5.5
	resource files, 17.2.3
	special characters, 17.2.3
	special operators, 3.5.2
	structure, 17.2.3

	strLeftFill, A
	strLeftPad, A
	strLength, A
	strLower, A
	strRemoveWs, A
	strReplace, A
	strReplaceIgnoreCase, A
	strRightFill, A
	strRightPad, A
	strSubstring, A
	strTrimWs, A
	structure, files and directories, 11.1.4.4
	strUpper, A
	subjects notified attribute, 17.2.7
	submitting forms, 6.6.1.6
	subnodes, SOAP
	
	field, 31.3.1.3.8
	option, 31.3.1.3.5
	resultset, 31.3.1.3.6
	row, 31.3.1.3.7

	substitution order, variables, 3.3.2.6
	super, 3.4
	super tag, 3.3.1.2, 17.2.1.1
	
	example, 3.3.1.3

	Suppliers module
	
	description, 2.1

	syntax
	
	dynamic server pages, 6.2.1
	HCSF file, 6.2.1
	HCSP file, 6.2.1
	HCST file, 6.2.1
	IDOC file, 6.2.1
	Idoc Script, 3.2
	service action, 17.2.7

	SysAdminAddress, A
	system components, 11
	system functionality, modifying, 7
	System Properties utility, 1.1.1.2, 7.1
	system settings, changing, 7.1

T

	tables
	
	content items
	
	JCR, 30.5

	display, creating, 10.2
	dynamic data, 17.2.2
	file store
	
	JCR, 30.5

	formats, specification, 17.2.2.1
	Headline View, 10.2.1
	properties, specification, 17.2.2.3
	resource types, 1.1.1.5
	search index
	
	JCR, 30.5

	Thumbnail View, 10.2.2

	tables directory, 1.1.1.5
	tags
	
	idcformrules, 6.2.4.2.2
	Idoc Script, 3.2.1, 6.2.1
	ResultSets
	
	nested in, 6.2.4.2.7
	repeated in, 6.2.4.2.7

	special, command-file syntax, 27.2.1.3
	super, 3.3.1.2
	XML definitions of ResultSets, 6.2.4.2.7

	template pages
	
	attributes, 17.2.7
	example, 17.2.8.1.1, 17.2.8.1.1
	location of standard, 17.2.8
	presentation pages, 17.2.8.1
	results of web page request, 17.2.8.1

	template read-only variable, 4.1.6.1
	template resources, 17.2.8
	
	editing, 17.2.8.2
	MergeRules ResultSet, 17.2.8
	overview, 1.1.2

	TemplateClass, A
	TemplateFilePath, A
	TemplateName, A
	templates, 4.2.23
	
	loading, 1.5.1.1
	page, example, 17.2.8.1.1
	resource types, 1.1.1.5

	templates directory, 1.1.1.5
	TemplateType, A
	terminology, WebCenter Content directories, 1.1.1.1
	text editor, 1.4
	text editor, editing component files, 11.1.4.2
	Thumbnail View tables, 10.2.2
	time and date, 4.2.8
	tips
	
	dynamic server pages, 6.2.3.1
	HCSF pages, 6.2.3.2

	Title, 3.6.2.1
	toInteger, A
	Tomcat server, 26.1, 26.1.2
	tools, customization, 1.4
	toTable column, 11.3.3.2.1
	trace, A
	trace marker, C.3
	TraceResourceConflict setting, C.4
	TraceResourceOverride setting, C.4
	troubleshooting, C.1
	Type, 3.6.2.1
	types
	
	customization, 1.2
	dynamic server pages, 6.1.1
	layouts, 5.1.1
	skins, 5.1.1

U

	UDDI service registry, 31.1.1.4, 31.2
	understanding workflows, 4.1.8
	UNDO_CHECKOUT_BY_NAME service, 31.3.3.8
	UndoCheckout method, IdcClient OCX, 28.2.5.26
	UploadApplet, A
	URL
	
	creating external link, B.3.4

	url, A
	URL encoding
	
	, XML format, 31.3.2

	urlEscape7Bit, A
	UseBrowserLoginPrompt property, 28.2.6.4
	UseHtmlOrTextHighlightInfo, A
	user administration, 7.1
	user agent, JCR adapter configuration, 30.4.5
	user authentication, RIDC, 29.4, 29.4
	user interface, Launcher, 27.4.4
	user node
	
	SOAP, 31.3.1.3.3

	user node, SOAP, 31.3.1.3.3
	User Personalization settings, 5.2
	user profile personalization settings, 5.2.1
	user read-only variable, 4.1.6.2
	user security, providing, RIDC, 29.9
	user topics, 3.3.3.1
	user, IdcCommand utility option, 27.2.2.2
	UserAccounts, A
	UserAddress, A
	UserAppRights, A
	UserDefaultAccount, A
	UserFullName, A
	userHasAccessToAccount, A
	userHasGroupPrivilege, A
	userHasRole, A
	UserIsAdmin, A
	UserLanguageID, A
	UserLocaleId, A
	UserName, A
	UserName property, IdcClient OCX, 28.2.6.6
	UserRoles, A
	users, 4.2.24
	uses
	
	Idoc Script, 3.3

	UseSSL, A
	UseXmlUrl, A
	using commas as separators, 3.3.2.4
	Using Merge Includes to Format Responses, 3.7
	utGetValue, A
	utilities, 1.1.1.2
	
	IdcCommand
	
	accessing services, 27

	utLoad, A
	utLoadDocumentProfiles, A
	utLoadResultSet, A

V

	value variables, 4.1.9
	valueStyle, A
	variables, 3.3.2
	
	assigning a value, 3.3.2.3
	common field display, 4.1.5.2.2
	conditional dynamic, 4.1.1
	configuration, 17.2.9
	creating, 3.3.2.1
	dynamic, 4.1.2, 4.1.9
	environment, 17.2.9
	field display, 4.1.5.2, 4.1.5.2.3
	field information, 4.1.5.2.1
	functions, 3.6.3.2
	HCSF pages, 6.2.4.1.4
	option lists, 3.6.3.2
	page, 4.1.5
	page display, 4.1.5.1
	read-only, 4.1.6
	referencing, 3.3.2.2
	regular, 3.3.2.7
	settable, 4.1.7
	substitution order, 3.3.2.6
	template read-only, 4.1.6.1
	user read-only, 4.1.6.2
	using commas as separators, 3.3.2.4
	value, 4.1.9
	web server, 4.1.3
	workflow, 4.1.8.2

	verify command, 28.2.3.2
	ViewDocInfo method, IdcClient OCX, 28.2.5.27
	ViewDocInfoLatestRev method, IdcClient OCX, 28.2.5.28
	virtual folders, 24.3.1
	Visual Basic, 28.2.3.1
	Visual Basic environment
	
	visual interface for development, 28.2.3

	Visual Basic form, OCX control, 28.2.3.2
	visual interface
	
	command defined, 28.2.3.2
	creating, 28.2.3.2
	descriptive label, 28.2.3.2
	returned results, 28.2.3.2
	testing, 28.2.3.2

	Visual Studio .NET, 31.1.1.8

W

	web beacon
	
	design guidelines, 14.5.6.2
	design limitations, 14.5.6.1
	embedded HTML example, 14.5.7.1
	embedded JavaScript example, 14.5.7.2
	examples of embedding, 14.5.7
	implementation considerations, 14.5.6
	operational overview, 14.5.2
	overview, 14.5
	references - overview, 14.5.4
	served JavaScript example, 14.5.7.3
	with reverse proxy server, 14.5.1
	with Site Studio, 14.5.1

	web beacon references
	
	data capture, 14.5.4.3
	embedding, 14.5.4.2
	format structure, 14.5.4.1
	formatting examples, 14.5.4.1
	overview, 14.5.4

	Web Layout Editor, 3.3.6.2, 17.2.8
	
	about, B
	Active Reports, B.4.1
	adding
	
	query results page, B.5.3
	web pages, B.3.1

	creating
	
	external URL link, B.3.4
	local page link, B.3.3
	Query link, B.5.1
	websites, B.1.3

	defining
	
	Active Reports, B.4.2
	criteria to display files, B.1.2
	site structure, B.1.2

	deleting
	
	query results page, B.5.5

	editing
	
	Active Report query expression, B.4.4
	Query link query expression, B.5.2
	query results page, B.5.4
	web page properties, B.3.2
	web page structure, B.3.5

	Historical Reports, B.4.1
	planning websites, B.1
	tasks, B.1.3
	using the, B.3
	working with reports, B.4
	working with web pages, B.2
	writing
	
	report queries, B.5

	web pages
	
	adding in Web Layout Editor, B.3.1
	altering navigation with dynamic ser