Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Audience</td>
<td>vii</td>
</tr>
<tr>
<td>Documentation Accessibility</td>
<td>vii</td>
</tr>
<tr>
<td>Related Documents</td>
<td>vii</td>
</tr>
<tr>
<td>Conventions</td>
<td>viii</td>
</tr>
<tr>
<td>1 Overview of Oracle Data Integrator SAP BW Knowledge Modules</td>
<td>1-1</td>
</tr>
<tr>
<td>2 Setting Up the Environment</td>
<td>2-1</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>2-1</td>
</tr>
<tr>
<td>System Requirements and Certification</td>
<td>2-1</td>
</tr>
<tr>
<td>Getting the Right Privileges</td>
<td>2-2</td>
</tr>
<tr>
<td>Gathering SAP Connection Information</td>
<td>2-2</td>
</tr>
<tr>
<td>Validating the Shared Folder Setup</td>
<td>2-3</td>
</tr>
<tr>
<td>Validating the FTP Setup</td>
<td>2-4</td>
</tr>
<tr>
<td>Validating SAP Privileges</td>
<td>2-5</td>
</tr>
<tr>
<td>Validating SAP Transport Layer Name</td>
<td>2-5</td>
</tr>
<tr>
<td>Installing Oracle Data Integrator</td>
<td>2-6</td>
</tr>
<tr>
<td>Installing and Configuring the Oracle DB Target</td>
<td>2-6</td>
</tr>
<tr>
<td>Installing and Configuring JCo</td>
<td>2-9</td>
</tr>
<tr>
<td>Setting Up an FTP Server</td>
<td>2-10</td>
</tr>
<tr>
<td>Configuring Oracle Data Integrator</td>
<td>2-10</td>
</tr>
<tr>
<td>Set Up the Topology</td>
<td>2-10</td>
</tr>
<tr>
<td>Add the Open Tool</td>
<td>2-11</td>
</tr>
<tr>
<td>3 Configuring the Topology</td>
<td>3-2</td>
</tr>
<tr>
<td>Configuring the Target Data Server</td>
<td>3-2</td>
</tr>
<tr>
<td>Configuring the SAP Source Server</td>
<td>3-5</td>
</tr>
<tr>
<td>Configuring the Data Server</td>
<td>3-5</td>
</tr>
<tr>
<td>Configuring the Logical Schema</td>
<td>3-7</td>
</tr>
<tr>
<td>4 Creating a New Project</td>
<td>4-1</td>
</tr>
</tbody>
</table>
5 Reverse-Engineering Data Models

Reverse-Engineering the Oracle Target ... 5-1
Reverse-Engineering the SAP BW Source Datastores .. 5-3
 Creating the Data Model .. 5-3
 Validating the SAP Connection ... 5-4
 Starting the Reverse-Engineering Process ... 5-5
 Using the SAP Metadata Browser ... 5-7
 The Tree View ... 5-8
 The Search Panel .. 5-9
 Reverse-Engineering Without GUI .. 5-9

6 Creating and Running the Integration Interface

Creating the Integration Interface ... 6-1
 Info Cube Extraction .. 6-2
 Create the Interface .. 6-2
 Define the Source and Target Datastores ... 6-3
 Create the Mappings .. 6-4
 Define the Interface Flow .. 6-5
 Info Object Extraction ... 6-6
 Create the Interface .. 6-6
 Define the Source and Target Datastores ... 6-7
 Define Joins between Info Object's Main table and Text Table 6-8
 Create the Mappings .. 6-9
 Define the Interface Flow .. 6-10
 Info Object Hierarchy Extraction .. 6-11
 Create the Interface .. 6-11
 Define the Source and Target Datastores ... 6-13
 Create the Mappings .. 6-15
 Define the Interface Flow .. 6-15
 Info Object Interval Hierarchy Extraction .. 6-16
 Create the Interface .. 6-16
 Define the Source and Target Datastores ... 6-16
 Define Joins between Sources (Info Object Main table and InfoObject Hierarchy Table) 6-18
 Create the Mappings .. 6-19
 Define the Interface Flow .. 6-20
 ODS/DSO Extraction ... 6-22
 Create the Interface .. 6-22
 Define the Source and Target Datastores ... 6-23
 Create the Mappings .. 6-24
 Define the Interface Flow .. 6-25
 Info Cube & Related Info Object Extraction ... 6-26
 Create the Interface .. 6-26
 Define the Source and Target Datastores ... 6-27
 Define Joins between Sources (Info Cube & Object) 6-29
 Create the Mappings .. 6-31
 Define the Interface Flow .. 6-32
Info Cube Extraction with Navigational Attributes .. 6-33
Create the Interface .. 6-33
Define the Source and Target Datastores .. 6-34
Define Joins Between Sources (Info Cube & Info Object) ... 6-35
Create the Mappings .. 6-36
Define the Interface Flow .. 6-37
Open Hub Extraction .. 6-39
Create the Interface .. 6-39
Define the Source and Target Datastores .. 6-40
Create the Mappings .. 6-41
Define the Interface Flow .. 6-42
Running the Integration Interface .. 6-43
Running the Interface .. 6-43
Review the Interface Execution ... 6-44
Review the Resulting Data ... 6-45

7 Creating a Package for Delta Extraction
Modify the Interface Flow .. 7-1
Creating the MIN_REQUEST_ID Variable ... 7-2
Creating a Package for Delta Extraction .. 7-4
Running the Package ... 7-5

8 Going Further with Oracle Data Integrator
Going further with Oracle Data Integrator .. 8-1

A SAP ABAP BW Required Privileges
Authorizations Required for RKM SAP BW Setup ... A-1
Authorizations Required for RKM Execution .. A-3
Authorizations Required for LKM Execution .. A-3
Authorizations Required for LKM Execution for Production .. A-4
Privileges for Testing ODI Generated Extraction RFCs .. A-4

B Installing the librfc32/librfc64 Library
Installing the librfc32/librfc64 Library .. B-1

C SAP Stand-Alone Connection Test
SAP Stand-Alone Connection Test .. C-1

D Uninstalling ODI SAP Components
Uninstalling ODI SAP Components .. D-1
Preface

The purpose of this document is to provide you with an overview of the possibilities offered by SAP BW Knowledge Modules and how to use them in Oracle Data Integrator.

This document provides examples to help you understand how to approach an ETL project with Oracle Data Integrator, loading a Data Warehouse with data from SAP BW systems, while validating data quality.

This project should take approximately 90 minutes to complete. You may save your work in order to pause and resume at any point in the project.

It is recommended that you use Oracle Data Integrator before proceeding with this guide. A good introduction to Oracle Data Integrator is the guide Oracle Fusion Middleware Getting Started with Oracle Data Integrator.

It is recommended that you also review the SAP ABAP - BW chapter of the Oracle Fusion Middleware Knowledge Module Developer’s Guide for Oracle Data Integrator for more information about the SAP BW KMs.

Audience

This document is intended for developers and administrators who want to use Oracle Data Integrator Application Adapters with SAP BW systems using SAP JCo libraries, as a development tool for their integration processes.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following Oracle resources:
Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Overview of Oracle Data Integrator SAP BW Knowledge Modules

This chapter provides an overview of Oracle Data Integrator SAP BW Knowledge Modules.

Overview

The Oracle Data Integrator SAP BW Knowledge Modules provide integration from SAP BW systems using SAP JCo libraries. This set of KMs has the following features:

- Reads SAP data from SAP BW system
- Loads this SAP data into Oracle / non-Oracle Staging Area
- Reverse-engineers metadata of warehouse and proposes a tree browser to pick up only the required metadata

This adapter includes two knowledge modules:

- **RKM SAP BW**: Its main role is to perform customized reverse-engineering of SAP BW data targets into ODI datastores (Models). The SAP BW RKM is in charge of connecting to the SAP BW System, which provides the SAP BW data target’s metadata information, and transforming and writing the resulting metadata into Oracle Data Integrator’s repository.

- The **LKM SAP BW to Oracle (SQLLDR)/LKM SAP BW to SQL** connects to SAP BW and retrieves data targets defined in the SAP Model. It is used in the interfaces. The LKM is in charge of loading source data from a SAP BW System to an Oracle/non-Oracle staging area.
Setting Up the Environment

This chapter describes how to set up your SAP BW environment for use with Oracle Data Integrator.

It includes the following topics:

- Before You Begin
- Validating the Shared Folder Setup
- Validating the FTP Setup
- Validating SAP Privileges
- Validating SAP Transport Layer Name
- Installing Oracle Data Integrator
- Installing and Configuring the Oracle DB Target
- Installing and Configuring JCo
- Setting Up an FTP Server
- Configuring Oracle Data Integrator

Before You Begin

Before you begin, consider the following:

- System Requirements and Certification
- Getting the Right Privileges
- Gathering SAP Connection Information

System Requirements and Certification

Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.

The Oracle Data Integrator requirements are listed in the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator.

The requirements specific to the Oracle Data Integrator SAP ABAP - BW Adapter are:

- Oracle Data Integrator 11.1.1.7.0 or above.
A Java Connector (JCo) version compatible with adapter must be used. The list of supported JCo versions is available in the Compatibility Matrix available from the Oracle Technology Network (OTN). A minimum version of JCo 3.0.2 is required.

A JVM version compatible with both Oracle Data Integrator and JCo must be used. A minimum version of JVM 1.5 is required due to JCo pre-requisites.

The connector supports two transfer modes for transferring data from SAP system to the ODI agent: data transfer using a Shared Directory and data transfer through FTP. For details and restrictions see Section 8.7.1, "File Transfer Considerations" of Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator. Depending on the chosen file transfer mode the following requirements must be met:

- **Data transfer through a Shared Directory (recommended transfer method)**
 The LKM SAP BW to Oracle (SQLLDR) requires a folder that is shared between the SAP system and the ODI agent. The SAP application server transfers the data by writing it out into a folder that is accessible from the SAP system and the ODI agent machine. This is typically done by sharing a folder of the ODI agent machine with the SAP system. Note that the shared folder does not necessarily have to be located on the ODI agent machine. A shared folder on a third machine is also possible, as long as the shared folder is accessible to both the ODI agent machine and the SAP system.

 Note: For security reasons, the SAP folders should not be shared with the ODI agent. Share only folders of the ODI agent machine with the SAP system.

 The shared folder must be accessible to SAP system and not just to the underlying operating system. This means that the folder needs to be declared in SAP transaction AL11 and the folder opens successfully in AL11.

- **Data transfer through FTP** LKM SAP BW to Oracle (SQLLDR) requires a FTP server to upload data from the SAP BW system. This data is either read locally by the agent executing the interface (when this agent runs on the FTP server machine), or remotely (when this agent is located on a different machine than the FTP server). This FTP server must be accessible over the network from both the SAP BW machine and the agent machine.

 For LKM SAP BW to Oracle (SQLLDR) only: SQLLoader is required on the machine running the agent. SQLLoader is used for loading data extracted from SAP BW system to the Oracle staging area.

Getting the Right Privileges

The SAP Adapter requires privileges to perform set up and execution operations. Please provide your administrators with the list of privileges listed in Appendix A, "SAP ABAP BW Required Privileges."

These privileges are required for the SAP BW user which will be used to connect SAP BW system by the ODI SAP BW Adapter

Please note that a developer key is mandatory for the SAP user.

Gathering SAP Connection Information

In order to connect to the SAP BW system, you must request the following information from your SAP administrators:
Validating the Shared Folder Setup

Validating the Shared Folder Setup applies only if you plan to transfer data using a Shared Directory. This section can be skipped, if the FTP transfer is used. The validation of the shared folder setup needs to be performed before any subsequent steps in this guide can be performed. This validation is typically performed by your SAP Basis team.

Step 1: Validating folder access from the SAP application server

1. Start the SAPGUI.
2. Use the ODI SAP user and password to connect to the SAP system and client.
3. Go to transaction AL11.
4. Select the shared folder.

- **SAP BW System IP Address or Hostname**: IP address/Hostname is the technical name given to the host on which SAP is running.
- **SAP User**: SAP User is the unique user name given to a user for logging on the SAP BW System.
- **SAP Password**: Case-sensitive password used by the user to log in.
- **SAP Language**: Code of the language used when logging in. For example: EN for English, DE for German.
- **SAP Client Number**: The three-digit number assigned to the self-contained unit which is called Client in SAP. A Client can be a training, development, testing or production client or represent different divisions in a large company.
- **SAP System Number**: The two-digit number assigned to a SAP instance which is also called Web Application Server or WAS.
- **SAP System ID**: The three-character, unique identifier of a SAP system in a landscape.
- **SAP SNC Connection Properties (optional)**: SAP is enhancing security through SNC and SAP router. It is used when these securities are implemented.
- **SAP Transport Layer Name**: This string uniquely identifies a transport layer in a SAP landscape. It allows ODI to create transport requests for later deployment in SAP. Even though there is a default value here, this transport layer name must be provided by your SAP Basis team. Not doing so may result in significant delays during installation.
- **SAP BW Version**: BW 3.5 or BI 7.0.
- **SAP Character Set**: The character set is only required if your SAP system is not a UNICODE system. For a complete list of character sets, see "Locale Data" in the Oracle Database Globalization Support Guide. For example, E8B1308859F2 for Croatian Data. For UNICODE systems, use UTF8.

Note: All the connection data listed above (except SAP SNC Connection Properties and SAP Router String) are mandatory and should be requested from the SAP Administrators. You may consider requesting support during connection setup from your SAP administrators.
Validating the FTP Setup

5. Double-click the shared folder to test the directory declaration.
This should report a successful connection. If not, please contact your SAP basis team. Do not continue until this test passes.

Note: SAP uses the OS user <sid>adm to connect to the directories declared in AL11.

6. Print screen.

Step 2: Validating folder access from the ODI agent machine
1. Log in to the ODI agent machine using the Windows user ID used for executing the ODI agent.
2. Open shared directory path in Windows Explorer.
 This should list the content of the shared folder. Please make sure that you do NOT need to enter any credentials. If this does not work or you had to enter credentials, please contact your windows administrator or the system administrator of the system your shared folder is physically located on. Do not continue until this test passes.
3. Print screen.

Validating the FTP Setup

Validating an FTP setup applies only, if you plan to transfer data using FTP. This section can be skipped, if you use a Shared Directory for the data transfer. The validation of the FTP setup needs to be performed before any subsequent steps in this guide can be performed. This validation is typically performed by your SAP Basis team.

Step 1: Validating SAPFTPA destination
1. Start the SAPGUI.
2. Use the ODI SAP user and password to connect to the SAP system and client.
3. Go to transaction SM59.
4. Expand TCP/IP connections.
5. Open the SAPFTPA destination.
6. Click Test connection.
 This should report a successful connection. If not, please contact your SAP basis team. Do not continue until this test passes.
7. Print screen.

Step 2: Testing FTP connection
1. Go to transaction SE38.
2. View the function module RSFTP002.
3. Hit F8 to run the ABAP program.
4. Enter the FTP userID and password.
5. Enter the FTP server host name or IP address.
6. Enter `cd / or cd <ODI target directory>.

7. In the RFC_DESTINATION field, enter SAPFTP.

8. Hit F8 to run the test.

 This should report a successful connection. The message should be similar to the following:

 250 CWD successful.

 If this test is not successful, please contact your SAP basis team. Do not continue until this test passes.

Validating SAP Privileges

This section describes how to test some of the key SAP privileges. Proceed with the subsequent steps in this guide only after successful validation of these tests. This validation is typically performed by your SAP Basis team.

Perform the following steps to validate whether a SAP user has appropriate dev rights and owns a dev license key:

1. Start SAPGUI.

2. Use the ODI SAP user and password to connect to the SAP system and client.

3. Go to transaction SE38.

4. Enter any sample program name like ZSAP_TEST in the program name field.

5. Click Create.

6. Perform similar tests for the transaction SE37 and SE11.

If a transaction allows the creation of a program without asking for any key or other authorization message, then the SAP user has validated that it has the appropriate dev rights and license key. Otherwise your SAP basis team needs to register the SAP user in service.sap.com to get the license key and a Basis person can help him with dev rights.

Validating SAP Transport Layer Name

As the SAP connector creates SAP objects, such as, for example, function modules, into the SAP development system, these changes need to be transported into QA and production systems once the development is done. The SAP’s change and transport system uses the **SAP Transport Layer Name** to identify the route a change has to take. A transport layer is assigned to each development class and thus to all objects in that class. The transport layer determines:

- In which SAP System developments or changes to the repository objects are made
- If objects are transported to other systems within the group when development work has been completed

A consolidation route is created from the development system to the quality assurance system through the transport layer `Z<SID>`. It then becomes the standard transport layer for customer development and customizing.

A consolidation route is created from the development system to the quality assurance system through the transport layer `SAP` for the transport of SAP Standard objects.
It is important to specify the correct transport layer name before running the RKM SAP BW for the first time. Perform the following steps to identify the list of defined transport layers in your SAP landscape:

1. Log on in client 000 in the SAP System serving as the transport domain controller via transaction STMS.
2. Select Overview > Transport Routes. The Display Transport Routes dialog is displayed.
3. Select Goto > Graphical Editor.
4. To switch the mode, select Configuration > Display <-> Change.
5. Position the cursor on the SAP System.
7. Select the Standard Transport Layer tab.
8. Change the transport layer of the SAP System.
9. The result is the list of the different transport layers.

By default, the RKM option SAP_TRANSPORT_LAYER_NAME is set to SAP. Ask your SAP basis admin which transport layer you should use. This transport layer name must be set on the SAP_TRANSPORT_LAYER_NAME RKM option. A wrong or invalid transport layer name will cause serious delays during the installation process.

Installing Oracle Data Integrator

Before starting with this project, you need to install and configure Oracle Data Integrator. See the Oracle Fusion Middleware Getting Started with Oracle Data Integrator and the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator for more information.

Installing and Configuring the Oracle DB Target

This project uses an Oracle database engine as the target and as the staging area for the integration interfaces. You can download for example an Oracle XE database from the Oracle Technology Network (OTN). Install and configure this database.

This project targets an Oracle table that can be created using the following script:

```sql
-- Create demo target schema

CREATE USER ODI_SAP_DEMO IDENTIFIED BY ODI_SAP_DEMO DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP;
GRANT CONNECT, RESOURCE TO ODI_SAP_DEMO;

-- Create demo target tables
-- For ODS/DSO

CREATE TABLE ODI_SAP_DEMO.W_PURCH_DS (
    PO_GUID VARCHAR2(100),
    ORDER_ITEM_GUID VARCHAR2(100),
    ACC_ASS_GUID VARCHAR2(100),
    GUIDE_CONTRCT VARCHAR2(100),
    ORDER_QUANT NUMBER,
    NET_PRICE NUMBER,
    ...
);```
PRICE_UNIT CHAR(5),
NO_OF_PURCH_ODR NUMBER);
ALTER TABLE ODI_SAP_DEMO.W_PURCH_DS ADD CONSTRAINT PK_W_PURCH_DS PRIMARY KEY (PO_GUID);

-- For INFO OBJECT

CREATE TABLE ODI_SAP_DEMO.W_ACCNT_VENDR_DS (VENDOR CHAR(10),
PCOMPANY CHAR(10),
PHONE CHAR(20),
PLANT CHAR(10),
STREET VARCHAR(50),
MED_DESC VARCHAR(100));
ALTER TABLE ODI_SAP_DEMO.W_ACCNT_VENDR_DS ADD CONSTRAINT PK_W_ACCNT_VENDR_DS PRIMARY KEY (VENDOR);

-- For INFO OBJECT HIERARCHY

CREATE TABLE ODI_SAP_DEMO.W_GL_ACCOUNT_HIER_DS (HIER_NAME CHAR(50),
NODEID NUMBER(20),
INFOOBJECT_NAME CHAR(80),
NODENAME CHAR(80),
TLEVEL NUMBER(5),
PARENTID NUMBER(20),
CHILDID NUMBER(20),
NEXTID NUMBER(20));
ALTER TABLE ODI_SAP_DEMO.W_GL_ACCOUNT_HIER_DS ADD CONSTRAINT PK_W_GL_ACCOUNT_HIER_DS PRIMARY KEY (HIER_NAME, NODEID);

-- For INFO CUBE

CREATE TABLE ODI_SAP_DEMO.W_VENDR_BAL_DS (OCOMP_CODE CHAR(6),
OCREDITOR CHAR(10),
ORC_ACCOUNT CHAR(10),
TOT_DEBT_POST NUMBER,
TOT_CR_POST NUMBER,
CUMULATIVE_BAL NUMBER);

ALTER TABLE ODI_SAP_DEMO.W_VENDR_BAL_DS ADD CONSTRAINT PK_W_VENDR_BAL_DS PRIMARY KEY (OCOMP_CODE);

-- For INFO CUBE & INFO OBJECT Join

CREATE TABLE ODI_SAP_DEMO.W_VENDER_CUBE_OBJ_DS (
COMP_CODE CHAR(10),
VENDOR CHAR(10),
GL_ACCOUNT CHAR(10),
SALES_FOR_PERIOD NUMBER,
CUM_BALANCE NUMBER,
PLANT CHAR(10),
MEDIUM_DESC VARCHAR2(100));

ALTER TABLE ODI_SAP_DEMO.W_VENDER_CUBE_OBJ_DS ADD CONSTRAINT PK_W_VENDER_CUBE_OBJ_DS PRIMARY KEY (COMP_CODE);

CREATE TABLE "TARGET_NAVIGATIONAL_ATTRIBUTES"
(
IOPK_CUSTOMER VARCHAR2(10 BYTE),
IOPK_CUST_GROUP VARCHAR2(2 BYTE),
IOPK_CUSTOMER VARCHAR2(10 BYTE),
IOPK_PK_PLANT VARCHAR2(4 BYTE),
IOPK_CALMONTH NUMBER(6),
IOPK_CALWEEK NUMBER(6),
IOPK_THIP_POINT VARCHAR2(4 BYTE),
REQUID VARCHAR2(30 BYTE),
KF_ODEL_VOL NUMBER(17,3),
KF_OSHIPDATE NUMBER(17),
KF_OLOADDATEK NUMBER(17),
KF_OMATAV_DATK NUMBER(17),
KF_OLATE_QTY NUMBER(17,3),
CUSTOMER VARCHAR2(10 BYTE),
PLANT VARCHAR2(4 BYTE),
PHONE VARCHAR2(16 BYTE),
P_COMPANY VARCHAR2(6 BYTE),
OUTL_TYPE VARCHAR2(4 BYTE),
NIELSEN_ID VARCHAR2(2 BYTE),
LOGSYS VARCHAR2(10 BYTE),
VISIT_RYT VARCHAR2(4 BYTE),
USAGE_IND VARCHAR2(3 BYTE),
SRCID VARCHAR2(4 BYTE),
PRECISION NUMBER(4),
POSTCD_BOX VARCHAR2(10 BYTE),
CUS_P_CONS VARCHAR2(1 BYTE),
COUNTRY VARCHAR2(3 BYTE),
BPARTNER VARCHAR2(10 BYTE),
ACNT_GRP VARCHAR2(4 BYTE),
LANG VARCHAR2(2 BYTE),
KEYACCOUNT VARCHAR2(1 BYTE)
);

-- For OPEN HUB DESTINATION

CREATE TABLE ODI_SAP_DEMO.W_OPENHUB_SALES_DS {
Installing and Configuring JCo

The SAP adapter uses Java Connector (JCo) to connect to the SAP system. JCo must be configured before proceeding with the project.

To install and configure JCo:

1. Download a supported JCo version for your configuration from http://service.sap.com/connectors. Check the supported JCo version in the Certification Matrix available at Oracle Technology Network. Note that a minimum version of JCo 3.0.2 is required.

2. Unzip the appropriate distribution package into an arbitrary directory <sapjco-install-path>.

3. Follow the installation instructions in <sapjco-install-path>/javadoc/installation.html for the respective platform.

4. Copy sapjco3.jar and sapjco3.dll:
   - For ODI 10g: Copy sapjco3.jar and sapjco3.dll (or respective binary like libsapjco3.so) into the oracledi/drivers directory.
   - For ODI 11g: Copy sapjco3.jar and sapjco3.dll (or respective binary like libsapjco3.so) into the <ODI_HOME>/odi_misc directory (ODI Studio) and into the <ODI_HOME>/oracledi/agent/drivers directory (Standalone Agent).

5. Restart ODI Studio and any agents.

6. Check the JCo installation. This will be also checked later in this guide.

Notes:

- Choose the SAP JCo package matching your operating system and your system architecture (32/64Bit). E.g. if you are running ODI inside a 32-Bit JVM, you must download the 32-Bit SAP JCo, even if the CPU and OS are 64-Bit. Mixing 32-bit and 64-bit architecture is not possible due to native libraries required by SAP JCo and will result in connection failure.

- odi.conf contains the JDK path used for ODI Studio.
Setting Up an FTP Server

The SAP adapter extracts SAP data and uploads it to an FTP server. Configure an FTP server or use an existing FTP server. You must create a user in this FTP server and a directory into which this user will be able to upload files.

Configuring Oracle Data Integrator

Perform the following steps to configure Oracle Data Integrator:

1. Set Up the Topology
2. Add the Open Tool

Set Up the Topology

Perform the following operations after installing or upgrading your Oracle Data Integrator version:

1. Connect to Topology Manager.
2. If this SAP ABAP technology does not exist in your Master Repository, import the SAP ABAP technology in Synonym INSERT_UPDATE mode from the /impexp folder.
4. In Topology Manager, open the JavaBeanShell technology and check on the Language tab that the JYTHON language is listed. If not, add it.
5. Create a File data server pointing to an existing FTP server into which the extraction file will be pushed from SAP and picked up for SQL*Loader. Set the parameters for this data server as follows:
   - **Host (Data Server):** FTP server IP host name or IP address.
   - **User:** Username to log into FTP server.
   - **Password:** Password for the user.
6. For use with "LKM SAP BW to SQL" these additional parameters must be configured:
   - **JDBC driver class:** com.sunopsis.jdbc.driver.file.FileDriver

Caution: Changing the JCo library installed in the \system32 directory of a machine running other SAP tools or components may cause issues with these components. Please check with your machine administrator before performing this change.

Note: The SAP JCo software requires the librfc32/librfc64 library, but does not include it. It is included e.g. with the SAP GUI software. In case this library is not yet installed, it has to be downloaded and installed following the steps outlined in Appendix B, "Installing the librfc32/librfc64 Library."
■ JDBC URL: jdbc:snsps:dbfile?ENCODING=UTF8

The above URL is for SAP UNICODE systems. For non-UNICODE systems, please see details on ENCODING parameter in section 3.3.1, "Creating a File Data Server" of Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator. The encoding chosen on this URL must match the code page used by the SAP Application Server.

7. In this File data server create a Physical Schema representing the folder in the FTP host where the extraction file will be pushed. Specify the Data and Work Schemas as follows:

■ **Data Schema**: Path on the FTP server to upload or download extraction files from the remote location. This path is used when uploading extraction files from the SAP BW system into the FTP server. It is also used by a remote agent to download the extraction files. Note that this path must use slashes and must end with a slash character.

■ **Work Schema**: Local path on the FTP server's machine. This path is used by an agent installed on this machine to access the extraction files without passing via the FTP server. This access method is used if the FTP_TRANSFER_METHOD parameter of the LKM SAP BW to Oracle (SQLLDR)/ LKM SAP BW to SQL is set to NONE. As Work Schema is an OS file name, slashes/backslashes should be used according to OS.

Path names given on Data and Work schemas are not necessarily the same: the FTP service may provide access to a FTP directory named `/sapfiles` while the files can be stored locally in `c:\inetpub\ftproot\sapfiles`.

Refer to Section 7.7.1, "File Transfer Considerations" of Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator.

8. If the corresponding Logical Schema called File Server for SAP ABAP does not exist yet, create it. This Logical Schema name is fixed and must be mapped to the Physical Schema created in the previous step.

**Add the Open Tool**

The complete process of installing and adding an Open Tool to ODI is described in Appendix A, "Oracle Data Integrator Tools Reference" of Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator. This section details only the SAP ABAP specific steps.

1. Connect to Designer.

2. Select File > Add/Remove Open Tools...

3. In the Add/remove Open Tools window, enter the following name in the Open Tool class name field: `oracle.odi.sap.km._OdiSapAbapExecute`

4. Click Add Open Tool.

5. The Open Tool appears as shown below.
Add Open Tools window. An Open Tool class name is shown in a field with lookup and search buttons. Below is the name of the Class, followed by a section describing the Open Tool. This section contains a Delete button for deleting this Open Tool. At the bottom are buttons marked OK and Cancel.

6. Click OK.
This chapter describes how to configure the topology by using a practical example. This project demonstrates how to extract data from the SAP BW data targets listed below:

- **ODS/DSO:**
  
  Source data target `0BBP_PO` from SAP BW is the ODS containing vendor information.
  
  Target `W_PURCH_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains purchase order info.

- **Info Object:**
  
  Source data target `0CREDITOR` is the Info object from SAP BW containing Account number of supplier/vendor.
  
  Target `W_ACCNT_VENDR_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains account number info of supplier/vendor.

- **Info Object Hierarchy:**
  
  Source data target `0GL_ACCOUNT` is the Info object from SAP BW containing General Ledger Information.
  
  Target `W_GL_ACCOUNT_HIER_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains account number info of supplier/vendor.

- **Info Cube:**
  
  Source data target `0FIAP_C20` is the Info cube from SAP BW containing vendor balances.
  
  Target `W_VENDR_BAL_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains vendor balances.

- **Info Cube & related Info Objects:**
  
  Source data targets `0FIAP_C20` and `0CREDITOR` are the Info Cube & Info Object respectively both containing the vendor related information.
  
  Target `W_VENDER_CUBE_OBJ_DS` is a table in an Oracle database that needs to be loaded from the SAP BW Sources as per join condition.

- **Open Hub:**
  
  Source data target `ZOHD_SALE` is an Open Hub destination name and its associated table is `/BIC/OHZOHD_SALE` which contains the sales information.
Target W_OPENHUB_SALES_DS is a table in an Oracle database that needs to be loaded from the SAP BW Sources. This table contains sales information.

- **Delta Extraction:**
  For delta Extraction you need to pass the value for two KM options i.e. FIRST_REQ_ID and LAST_REQ_ID from any above said data targets except Info Object after full load. The FIRST_REQ_ID is the start point of Delta Extraction and LAST_REQ_ID is the end point of Delta Extraction.

This chapter contains the following topics:

- Configuring the Target Data Server
- Configuring the SAP Source Server

## Configuring the Target Data Server

This section describes how to setup an Oracle Data Server. Please use respective settings when configuring a non-Oracle Target Data Server for use with LKM SAP BW to SQL.

1. Connect to Topology Manager.
2. In the Physical Architecture tree view, expand the Technologies node and select the Oracle technology.
3. Right-click and select **Insert Data Server**.
4. Enter the data server Definition as shown below:
Configuring the Target Data Server

Configuring the Topology

The Data Server: New window is shown. The Definition tab is selected. At the top are Name, Technology, and Instance/dblink (Data Server) fields. A box labeled Connection contains User and Password fields and a check box labeled JNDI Connection. Below are Array Fetch Size and Batch Update Size fields. At the bottom of the window are the following buttons: OK, Cancel, Apply, Help, and Test.

***********************************************************************************************

5. Select the JDBC tab, and enter the JDBC connection information to your data server as shown below:
The JDBC tab of the Data Server: ORACLE_TARGET window is shown. The JDBC Driver field is set to "oracle.jdbc.driver.OracleDriver" and the JDBC Url field is set to "jdbc:oracle:thin:@localhost:1521:XE".

***********************************************************************************************

Make sure to change the URL to match your Oracle instance configuration.

6. Click **Test** to test the connection to this data server.

7. Click **OK** to save your data server.

8. In the Physical Schema windows that appears, select the **ODI_SAP_DEMO** for both Schema and Work Schema, as shown below:

![Physical Schema:ORACLE_TARGET.Schema window](image)

The Physical Schema:ORACLE_TARGET.Schema window is shown, with the Definition tab selected. The title displayed is "Data Server:ORACLE_TARGET". The Name field contains the value "ORACLE_TARGET.ODI_SAP_DEMO". The Schema (Schema) field contains the value "ODI_SAP_DEMO". The Schema (Work Schema) field contains the value "ODI_SAP_DEMO".

***********************************************************************************************

If you already have a Work Schema for ODI defined for this data server, you can use it instead of the **ODI_SAP_DEMO** Schema.

9. Go to the Context tab.

10. Click **Add** and enter in the Logical Schema field the value **ODI_SAP_DEMO**.

![Context tab of Physical Schema:ORACLE_TARGET.Schema window](image)

The Context tab of the Physical Schema:ORACLE_TARGET.Schema window is shown. A table with columns labeled "Context" and "Logical Schema" has a single row: the Context is "Global" and the Logical Schema is "ODI_SAP_DEMO".

***********************************************************************************************

11. Click **OK** to save.
Configuring the SAP Source Server

The following topics describe how to configure the SAP source server:

- Configuring the Data Server
- Configuring the Logical Schema

Configuring the Data Server

1. In the Physical Architecture tree view, expand the Technologies node, select the SAP ABAP technology.
2. Right-click and select Insert Data Server.
3. Enter the data server definition. Set the parameters for this data server as follows:
   - Name: SAP_BW. The name of the data server as it will appear in ODI.
   - Host (Data Server): SAP BW System IP Address or Hostname.
   - User: SAP User, as provided by the SAP Administrator.
   - Password: This user's SAP Password. This password is case-sensitive.

The Data Server: New window is shown, with the Definition tab selected. The window displays fields for Name, Technology, Host (Data Server), and (in a section labeled "Connection") User, Password, and a check box labeled JNDI Connection.

4. Set the Flexfield values for this data server in the Flexfields tab:
The Data Server: New window is shown, with the FlexFields tab selected. A table is displayed with three columns: Name, Defa..., and Value.

- **SAP Language**: Code of the language used when logging in. For example EN for English, DE for German.
- **SAP Client Number**: The three-digit number assigned to the self-contained unit which is called Client in SAP. A Client can be a training, development, testing or production client or represent different divisions in a large company.
- **SAP System Number**: The two-digit number assigned to a SAP instance which is also called Web Application Server or WAS.
- **SAP System ID**: The three-character, unique identifier of a SAP system in a landscape.
- **SAP SNC Connection Properties**: SNC Connection Properties. This parameter is optional and can be left empty.
- **SAP Router String**: Router String. This parameter is optional and can be left empty.
- **SAP Character Set**: The character set is only required if your SAP system is not a UNICODE system. For a complete list of character sets, see "Locale Data" in the Oracle Database Globalization Support Guide. For example, EE8ISO8859P2 for Croatian Data. For UNICODE systems, use UTF8.

**Note**: This FlexField is only used with "LKM SAP BW to Oracle (SQLLDR)". For use with "LKM SAP BW to SQL" please define the character set using the ENCODING parameter in the file driver URL, as described in "Set Up the Topology" on page 2-10 for non-UNICODE SAP systems.

- **SAP BW Version**: Enter the SAP BW Version as follows:
  
  For SAP BW 7.0 and higher systems enter 700
  
  For SAP BI 3.5 systems enter 350
- **SAP ERP Version & SAP ABAP Version**: unused in SAP BW Connector.

5. Click OK.
Configuring the SAP Source Server

Configuring the Logical Schema

1. In the Physical Schema window, do not edit the Definition tab.
2. Select the Context tab, click Add and enter the Logical Schema name LOGICAL_SAP_BW.

The Context tab of the Physical Schema:SAP_BW_Default window is shown. A table is displayed with two columns: Context and Logical Schema. A single row has the value "Development" for Context and the value "LOGICAL_SAP_BW" for Logical Schema.

3. Click OK.

Note: The Test button for validating SAP Connection definition is not supported for this connection.

Except for the data server name, all the parameters that you provide while defining the SAP Data server should be provided by the SAP Administrators. See "Getting the Right Privileges" on page 2-2 for more information.

The SAP Adapter requires privileges to perform set up and execution operations. Please provide your administrators with the list of privileges listed in Appendix A, "SAP ABAP BW Required Privileges." These privileges are required for the SAP user that they will provide you to login the SAP System.

See "Gathering SAP Connection Information" on page 2-2 for more information about these parameters.
Creating a New Project

This chapter describes how to create a new Project for SAP.

In order to work with the data servers you have created, you must create a project and import the appropriate knowledge modules for reverse-engineering the data structures and integrating the data.

Creating a New Project

To create a new Project for SAP BW:

1. Connect to Designer.
2. In the Projects tree view click **Insert Project**.
3. In the Definition tab, enter **SAP BW Demo** for the Project name.
4. Click **OK** to save your project.
5. Expand the **SAP Demo** Project, select the **First Folder** node.
6. Rename this folder to **SDE_BW_DataTargets**.
7. Right-click the **SAP Demo Project** in the Projects tree view.
8. Right-click and select **Import Knowledge Modules**.
9. Select in the File import directory the directory containing your BW KMs. By default, they are located in the ../impexp directory.
10. Select the following KMs:
    - IKM Oracle Incremental Update
    - LKM SAP BW to Oracle (SQLLDR)
    - LKM SAP BW to SQL
    - RKM SAP BW
    - RKM SAP ERP Connection Test
11. Click **OK** to perform the import.
This chapter describes how to reverse-engineer the Oracle target and SAP source data models.

It contains the following topics:

- Reverse-Engineering the Oracle Target
- Reverse-Engineering the SAP BW Source Datastores

Reverse-Engineering the Oracle Target

To reverse-engineer the Oracle data model:

1. Connect to Designer.
2. In the Models tree view, click Insert Model.
3. In the Definition tab, enter the model parameters as shown below:

The Model: New window is shown, with the Definition tab selected. The Name field has the value "Oracle Target". The Code field has the value "ORACLE_TARGET". The Technology field has the value "Oracle". The Logical Schema field has the value "ODI_SAP_DEMO". The Action Group field has the value "<Generic Action>". There is no value entered for the Default Folder field. The Display the Metadata Changes in the Mode tree check box is not checked.
4. In the Reverse tab, select the **Global** context.

The Model: New window is shown, with the Reverse tab selected. The Standard/Customized radio button is set to Standard. In the Parameters box, the Context field is set to "Global". The value for Logical Agent is greyed out. In the Types of objects to reverse-engineer box, the Table check box is checked; all other boxes are empty. The Mask field has the value "%" (percent sign). The remaining fields are empty.

5. Click **Reverse**, then **OK** to save your model.

6. The \_\_PURCH\_DS, \_\_ACCNT\_VENDR\_DS, \_\_GL\_ACCOUNT\_HIER\_DS, \_\_VENDR\_BAL\_DS, \_\_VENDER\_CUBE\_OBJ\_DS, \_\_OPENHUB\_SALES\_DS, \_\_DELTA\_DS datastore appears in your Oracle model, as shown below.
A tree diagram is displayed. The root is "Oracle Target", which has been expanded. Several data stores are listed as branches from this tree.

***********************************************************************************************

Reverse-Engineering the SAP BW Source Datastores

To reverse-engineer the SAP BW Source data targets you need to perform the following tasks:

1. Creating the Data Model
2. Validating the SAP Connection
3. Starting the Reverse-Engineering Process

This section also includes the following topics:

- Using the SAP Metadata Browser
- Reverse-Engineering Without GUI

Creating the Data Model

1. In the Models tree view, click Insert Model.
2. In the Definition tab, enter the model parameters as shown below. You must select the SAP ABAP technology and the Logical Schema previously created (in our example it is the LOGICAL_SAP_BW Logical Schema).

![Model: New](image)

The Model: New window is shown, with the Definition tab selected. The Name field has the value "SAP BW Source". The Code field has the value "SAP_BW_SOURCE". The Technology field has the value "SAP ABAP". The Logical Schema field has the value "LOGICAL_SAP_BW". The Action Group field has the value "<Generic Action>". The Default Folder field has no value. The Display the Metadata changes in the Model tree check box is unchecked.

***********************************************************************************************

3. In the Reverse tab:

1. Select the Global context.
2. Select Customized option.

3. Select the RKM SAP Connection Test you have imported in the SAP DW Demo project.

**Validating the SAP Connection**

1. In the Models tree view, open the SAP BW Source Model.

2. Click Reverse and confirm the start of the reverse-engineering process. This process runs two tests:
   - Establish a test connection to the SAP BW system and
   - Validate the proper setup of SAP JCo by displaying the About dialog.

3. In a few seconds, you should see the SAP JCo-About dialog as shown here:

   ![SAP Java Connector (JCo)](image)

   The SAP Java Connector (JCo) window is shown. Values are shown for Java Runtime Operating System, Java VM, and Java Codepage: Versions for JCo API, JCo middleware name, JCo middleware, and JCo middleware native; and Paths for JCo classes and JCo library. At the bottom of the window is a Close button.

   Please verify the JCo version number (see "System Requirements and Certification" on page 2-1 for more details) and verify that a path for the JCo
Library is given (.dll for Windows). If this is not the case or you see any error message in this about dialog, please review the SAP JCo installation, as described in your SAP JCo package, and run this test again.

**Note:** Closing the JCo-About-Dialog will also close ODI.

4. Once you have validated SAP JCo installation, open ODI Operator.
5. In the Operator, expand the Reverse-Engineering session down to the task level.
6. Verify whether the task "Test SAP Connection" has been executed successfully. If not, view the task details to identify the connection problem. The output of this task must contain `Successfully connected to SAP System`. If not, the connection test has failed and the connection problem must be analyzed before you continue.

**Do not continue until you have successfully validated the SAP connection!**

**Note:** If you want to validate the SAP connectivity independent of ODI, please see Appendix C, "SAP Stand-Alone Connection Test."

**Starting the Reverse-Engineering Process**

To start the reverse-engineering process of the SAP BW datastores:

1. In the Models tree view, open the SAP BW Source Model.
2. In the Reverse tab:
   a. Select the Global context.
   b. Select the Customized option.
   c. Select the RKM SAP BW you have imported in the SAP BW Demo project.
   d. Set the USE_GUI KM option to Yes.
   e. For first time RKM use only: Set `SAP_TRANSPORT_LAYER_NAME` to the name of the transport layer your SAP basis admin has provided you with.
   f. For first time RKM use only: If you are using a custom value for KM option `SAP_FUNCTION_GROUP_NAME`, this function group must not exist prior the first execution of the RKM (`ABAP_UPLOAD=true`).
   g. For first time RKM use only: Set `UPLOAD_ABAP_CODE` to Yes. **After the first execution this value must be set back to No.**
   h. Set other parameters according to your SAP configuration. See the *Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator* for more information on the RKM options.

**Caution:** Pay particular attention to provide the correct value for the `SAP_TRANSPORT_LAYER_NAME` option. If an invalid value is used during the first time installation, a significant delay in the connector installation may be caused.
The Model: SAP BW Source window is shown, with the Reverse tab selected. In the lower half of the window, the Select your KM field has the value "RKM SAP BW.SAP Demo". A table with the column headings "Option" and "Value" has numerous rows with option/value pairs.

3. Click **Apply** to save your changes.
4. Click **Reverse** to start the reverse-engineering process.
5. Click **OK**.
6. The Sessions Started Dialog is displayed.
7. Click **OK**.
8. Set UPLOAD_ABAP_CODE back to **No**.
9. For first time RKM use only: Validate in Operator that the session is now in status running. If session has failed, please validate settings. Do not move on until all installation steps have been completed successfully.
Using the SAP Metadata Browser

As you have set the USE_GUI option to \textit{Yes}, the RKM displays in the \textbf{SAP BW Metadata Browser} the SAP objects organized in the tree view as shown below.

\begin{center}
\includegraphics[width=\textwidth]{SAP_BW_Metadata_Browser.png}
\end{center}

\textbf{Note:} In case that the below dialog does not show up, see ODI Operator for details and read the log file <System Temp Dir>/sap_rkm_bw_<ODI Session Number>.log.

Refer to Section 7.7.4, "Log Files," in \textit{Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator} for more details.

The SAP BW Meta Data Browser window is shown. The upper portion of the window has a Search function with fields for Name, Description, and Data Target (which has the options InfoCube (selected), InfoObject, ODS/DSO, and OpenHub). Buttons are
The lower portion of the window has an expanded tree view. A single object, “SAP BW Metadata”, is expanded with four child objects: InfoAreas, InfoObjects, ODS/DSO, and OpenHub. At the bottom of the window are buttons labeled Cancel and Reverse.

The Tree View

The SAP BW Data targets are organized into a tree view. Only the SAP BW Data targets available in the SAP BW system are displayed. By expanding the tree view, you can see Info Cubes, Info Objects, ODS/DSO, Open Hub, and select those that you want to reverse-engineer.

Note that only the data targets selected in the tree view are reverse-engineered.
The SAP BW Meta Data Browser window is shown. In the Search box at the top, the Name field has the value "0FIAP_C20". For Data Target, InfoCube is selected. In the expanded tree view, a complex tree of objects is shown. The tree is expanded to show the table 0FIAP_C20, with two child columns: Dimensions and Key Figures.

The Search Panel

The Search option group allows you search specific objects in the browser, based on:

- Info Cube Name
- Info Object Name
- ODS/DSO
- Open Hub

For the example project for Info Cube, the data target 0FIAP_C20 is used:

1. Enter 0FIAP_C20 in the Name field.
2. Select the InfoCube data target.
3. Click Search to find the object to reverse-engineer. The results are highlighted in the tree view.
4. Click Reverse.
5. Oracle Data Integrator starts the reverse-engineering process on the selected data target. The reverse-engineered data targets appear under the Model.
6. Perform steps 1 to 5 to reverse-engineer the following objects:
   a. InfoCube 0SD_C04
   b. InfoObject 0SOLD_TO
   c. InfoObject 0CREDITOR
   d. InfoObject 0GL_ACCOUNT
   e. ODS/DSO 0BBP_PO
   f. Open Hub destination ZOHD_SALE (/BIC/OHZOHD_SALE)

Reverse-Engineering Without GUI

If you want to perform a reverse-engineering without using the SAP BW Metadata Browser, you set the corresponding parameters in the SAP BW KM. For example, for Info Cube, enter the following parameters in the SAP BW KM options:

- USE_GUI: No
- INFOCUBE_NAME: 0FIAP_C20

With this configuration, the Info Cube data target will be reverse-engineered without displaying the SAP BW Metadata Browser.

By using the appropriate KM options, you can also select a filter for the reversed data targets based on for example an Info object, or a ODS/DSO, or an Open Hub table.

Refer to the Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator for more information on the RKM options.
Reverse-Engineering the SAP BW Source Datastores

---

**Note:** It is not possible to view the data in the SAP BW data targets from Oracle Data Integrator.

---

**What happens when you reverse-engineer SAP BW data targets?**

First, Oracle Data Integrator uploads ABAP code in the SAP BW system allowing for retrieving the SAP BW data targets metadata. This RFC is uploaded only if the UPLOAD_ABAP_CODE option is selected (this option is typically activated only once). The ABAP programs are generated in the SAP function group given in the SAP_FUNCTION_GROUP_NAME RKM option.

Once this code is set up on SAP BW, Oracle Data Integrator is able to retrieve the SAP BW metadata and to display it in the SAP BW Metadata Browser. Selected metadata is then reverse-engineered from SAP BW into the Oracle Data Integrator repository. The repository only contains the description of the SAP BW metadata, and no data at all.

In addition to the data targets definitions organized and enriched with user-friendly information, the keys definitions are also retrieved. The model appearing in Oracle Data Integrator shows all the information required for performing integration tasks on the SAP BW Model.
Creating and Running the Integration Interface

This chapter describes how to create and run the integration interface. It contains the following topics:

- Creating the Integration Interface
- Running the Integration Interface

Creating the Integration Interface

Now that the ODI source and target data models have been created, it is possible to create the ODI interfaces to extract data from the following SAP BW data targets:

- The Info Cube 0PIAP_C20 data target to W_VENDR_BAL_DS Oracle table.
- The Info Object 0CREDITOR data target to W_ACCNT_VENDR_DS Oracle table.
- The Hierarchy data from Info Object 0GL_ACCOUNT to W_GL_ACCOUNT_HIER_DS Oracle table.
- The Interval Hierarchy data from InfoObject 0GL_ACCOUNT to TARGET_INTERVAL_HIERARCHY Oracle table.
- The ODS/DSO 0BBP_PO data target to W_PURCH_DS Oracle table.
- The Info Cube 0PIAP_C20 and Info Object 0CREDITOR data targets join to W_VENDER_CUBE_OBJ_DS Oracle table.
- The InfoCube and Navigation Attribute data from IC 0SD_C04 / IO 0SOLD_TO to TARGET_NAVIGATIONAL_ATTRIBUTES Oracle table.
- The Open Hub destination ZOHD_SALE (/BIC/OHZOHD_SALE) to W_OPENHUB_SALES_DS Oracle table.
- Delta Extraction can be done on any above said interface except Info Object. How to perform delta extraction is described in Chapter 7, "Creating a Package for Delta Extraction."

To create the integration interface, perform the following steps:

- Info Cube Extraction
- Info Object Extraction
- Info Object Hierarchy Extraction
- Info Object Interval Hierarchy Extraction
Info Cube Extraction

This section describes how to create an integration interface in ODI in order to load data from the SAP BW source model representing the InfoCube 0FIAP_C20 data target to the W_VENDR_BAL_DS Oracle target model.

Create the Interface

To create the interface:

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Interfaces node.
5. Right-click and select Insert Interface.
6. In the Interface Definition tab, enter the interface name: InfoCube_SAP_BW_VendorBal.W_VENDR_BAL_DS.
7. Select the Diagram tab.
8. Click OK if the following information window appears.

The interface diagram looks as follows:
Creating and Running the Integration Interface

6-3

***********************************************************************************************

Define the Source and Target Datastores
To define the source and target datastores:

1. In the Models tree view, select the W_VENDR_BAL_DS datastore from the Oracle_Target Model.

2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:

***************************************************************************
Creating the Integration Interface

3. In the Models tree view, select the 0FIAP_C20 Vendor Balances datastore from the SAP BW Source model.

4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).

5. If a popup window prompting “Do you want to perform Automatic Mapping?” appears, click No.

6. The Sources diagram should look as shown below:

Create the Mappings

To create the mappings of the target datastore:

1. Select the 0COMP_CODE column from the target datastore.

2. Drag the IOPK_0FIAP_C201_0COMP_CODE_PK_COMP_CODE column from the 0FIAP_C20 Vendor Balances source data target into the Implementation field of the Properties panel.

3. Make sure that the Execution On is set to Source. The mapping should look as shown below:
4. Repeat this operation to perform the following simple mappings:
   - W_VENDR_BAL_DS.OCREDITOR = OFIAP_C20.IOPK_OFIAP_C202_OCREDITOR_PK_VENDOR
   - W_VENDR_BAL_DS.ORC ACCOUNT = OFIAP_C20.IOPK_OFIAP_C202_ORC_ACCOUNT_PK_GL_ACCOUNT
   - W_VENDR_BAL_DS.TOTAL DEBIT POSTING = OFIAP_C20.KF_0DEBIT
   - W_VENDR_BAL_DS.TOTAL CREDIT POSTING - OFIAP_C20.KF_0DEBIT
   - W_VENDR_BAL_DS.CUMULATIVE BALANCE - OFIAP_C20.KF_0BALANCE

**Define the Interface Flow**
To define the interface flow:
1. Select the Flow tab. The Flow diagram looks as shown below;
2. Select the source set \textit{SS\_0 (SAP\_BW)} that contains Info Cube \textit{0FIAP\_C20} data targets. This source set represents the source dataset made up of SAP BW data target.

3. In the LKM Selection box, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL.

4. Select the \textbf{Target + Staging Area} box. This represents the target Oracle database, which is also used as the staging area for this interface.

5. In the LKM Selection, select LKM SAP BW to Oracle (SQLLDR).

6. In the IKM Selection, select IKM Oracle Incremental Update.

7. Set the IKM options as follows:
   \begin{enumerate}
   \item Select No for the \textit{FLOW\_CONTROL} option.
   \item Leave other options as it is. The flow should look as shown below:
   \end{enumerate}

8. Click \textbf{OK} to save and close your interface.

\section*{Info Object Extraction}

This section describes how to create an integration interface in ODI in order to load data from a SAP BW source model representing the Info Object \textit{0CREDITOR} data target to the \textit{W\_ACCNT\_VENDR\_DS} Oracle target model.

\subsection*{Create the Interface}

1. Open Designer.

2. In the Projects tree view, expand the \textit{SAP BW Demo Project}.

3. Expand the \textit{SAP\_BW\_DataTargets} folder.

4. Select the Interfaces node.

5. Right-click and select \textbf{Insert Interface}.
6. In the Interface Definition tab, enter the interface name: InfoObject_SAP_BW_VendorAcc.W_ACCNT_VENDR_DS.

7. Select the Diagram tab.

8. Click OK if the following information window appears.

***********************************************************************************************
The interface diagram looks as follows:
***********************************************************************************************

Define the Source and Target Datastores
To define the source and target datastores:
1. In the Models tree view, select the `W_ACCNT_VENDR_DS` datastore from the Oracle Target Model.

2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:

   ![Target Datastore Panel](image)

3. In the Models tree view, select the Info Object's main table `OCREDITOR Vendor` datastore from the SAP BW Source model.

4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).

5. If a popup window prompting "Do you want to perform Automatic Mapping?" appears, click No.

6. Perform the same operation for the Info Object text table `TXT_OCREDITOR Texts: Char. Vendor` datastore from the SAP BW Source model.

   The Sources diagram should look as shown below:

   ![Sources Diagram](image)

---

**Define Joins between Info Object's Main table and Text Table**

To create joins between the source datastores of Info Object's main table and text table in the interface:

1. In the Sources diagram when you drag the Info Object's text table `TXT_OCREDITOR Texts: Char. Vendor` the join will be automatically created on column `vendor`
from the 0CREDITOR Vendor Info object's main table datastore and the Vendor column of Info Object's text table TXT_0CREDITOR Texts: Char. Vendor. This defines the first join on the vendor Key identifier, as shown below:

2. In the Properties panel, select Ordered join and make sure that this join is executed on the Source as shown below:

3. Make sure that table number of main table 0CREDITOR is smaller than that of text table TXT_0CREDITOR. In 1:n relationships the parent table has to be the first in a join.

4. Change join type to left outer join (All rows from 0CREDITOR and matching ones from TXT_0CREDITOR).

Create the Mappings
To create the mappings of the target datastore:

1. Select the 0COMP_CODE column from the target datastore.
2. Drag the `IOPK_0FIAP_C201_0COMP_CODE_PK_COMP_CODE` column from the `0FIAP_C20` Vendor Balances source data target into the Implementation field of the Properties panel.

3. Make sure that the Execution On is set to Source. The mapping should look as shown below:

4. Repeat this operation to perform the following simple mappings:
   - `W_ACCT_VENDR_DS.PCOMPANY = 0CREDITOR.PCOMPANY`
   - `W_ACCT_VENDR_DS.PHONE = 0CREDITOR.PHONE`
   - `W_ACCT_VENDR_DS.PLANT = 0CREDITOR.PLANT`
   - `W_ACCT_VENDR_DS.STREET = 0CREDITOR.STREET`
   - `W_ACCT_VENDR_DS.MED_DESC = TXT_0CREDITOR.TXTMD`

Define the Interface Flow
To define the interface flow:
1. Select the Flow tab. The Flow diagram looks as shown below;
2. Select the source set SS_0 (SAP_BW) that contains both the Info Object’s main table OCREDITOR and text table TXT_OCREDITOR. This source set represents the source dataset made up of Info Object’s main table & text table joined SAP BW data targets.

3. In the LKM Selection box, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL.

4. Select the Target + Staging Area box. This represents the target Oracle database, which is also used as the staging area for this interface.

5. In the IKM Selection, select IKM Oracle Incremental Update.

6. Set the IKM options as follows:
   a. Select No for the FLOW_CONTROL option.
   b. Leave other options as it is. The flow should look as shown below:

7. Click OK to save and close your interface.

Info Object Hierarchy Extraction

This section describes how to create an integration interface in ODI in order to load data from a SAP BW source model representing the hierarchy data for Info Object 0GL_ACCOUNT data target to the W_GL_ACCOUNT_HIER_DS Oracle target model.

Create the Interface

1. Open Designer.

2. In the Projects tree view, expand the SAP_BW Demo Project.

3. Expand the SAP_BW_DataTargets folder.
4. Select the Interfaces node.
5. Right-click and select **Insert Interface**.
7. Select the Diagram tab.
8. Click **OK** if the following information window appears.

The interface diagram looks as follows:
Define the Source and Target Datastores
To define the source and target datastores:

1. In the Models tree view, select the \texttt{W\_GL\_ACCOUNT\_DS} datastore from the Oracle Target Model.
2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:

3. In the Models tree view, select the Info Object's hierarchy table \texttt{HIER\_0GL\_ACCOUNT} datastore from the SAP BW Source model.
4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).
5. If a popup window prompting "Do you want to perform Automatic Mapping?" appears, click \textbf{No}.
6. Add the following filter condition on the RSHIENM source column: \texttt{HIER\_0GL\_ACCOUNT.RSHIENM = 'ACI1'}

Please note that \texttt{ACI1} is the name of a hierarchy defined for \texttt{0GL\_ACCOUNT}. A list of defined hierarchies is available when opening the hierarchy data store:
Creating the Integration Interface

7. After adding the filter condition the Sources diagram should look as shown below:

![Diagram of DataStore: HIER_OGL_ACCOUNT Hierarchy: InfoObject G/L Account](image)

**********************************************************************************************

**********************************************************************************************
Create the Mappings
To create the mappings of the target datastore:

1. Select the `HIER_NAME` column from the target datastore.
2. Drag the `RSHIENM` column from the `HIER_0GL_ACCOUNT` source data target into the Implementation field of the Properties panel.
3. Make sure that the **Execution On** is set to **Source**. The mapping should look as shown below:

   ![Mapping Diagram](image)

4. Repeat this operation to perform the following simple mappings:
   - `W_GL_ACCOUNT_HIER_DS.NODEID = HIER_0GL_ACCOUNT.NODEID`
   - `W_GL_ACCOUNT_HIER_DS.INFOOBJECT_NAME = HIER_0GL_ACCOUNT.IOBJNM`
   - `W_GL_ACCOUNT_HIER_DS.NODENAME = HIER_0GL_ACCOUNT.NODENAME`
   - `W_GL_ACCOUNT_HIER_DS.TLEVEL = HIER_0GL_ACCOUNT.TLEVEL`
   - `W_GL_ACCOUNT_HIER_DS.PARENTID = HIER_0GL_ACCOUNT.PARENTID`
   - `W_GL_ACCOUNT_HIER_DS.CHILDID = HIER_0GL_ACCOUNT.CHILDID`
   - `W_GL_ACCOUNT_HIER_DS.NEXTID = HIER_0GL_ACCOUNT.NEXTID`

Define the Interface Flow
To define the interface flow:

1. Select the Flow tab. The Flow diagram looks as shown below:
2. Select the source set SS_0 (SAP BW) that contains both the Info Object’s main table 0CREDITOR and text table TXT_0CREDITOR. This source set represents the source dataset made up of Info Object’s main table & text table joined SAP BW data targets.

3. In the LKM Selection box, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL.

4. Select the Target + Staging Area box. This represents the target Oracle database, which is also used as the staging area for this interface.

5. In the IKM Selection, select IKM Oracle Incremental Update.

6. Set the IKM options as follows:
   a. Select No for the FLOW_CONTROL option.
   b. Leave other options as it is.

7. Click OK to save and close your interface.

Info Object Interval Hierarchy Extraction

This section describes how to extract data from InfoObject and InfoObject hierarchy table containing an interval hierarchy. The data is extracted from InfoObject 0GL_ACCOUNT and InfoObject hierarchy table HIER_0GL_ACCOUNT.

Create the Interface

1. Open Designer.

2. In the Projects tree view, expand the SAP BW Demo Project.

3. Expand the SAP_BW_DataTargets folder.

4. Select the Interfaces node.

5. Right-click and select Insert Interface.

6. In the Interface Definition tab, enter the interface name: InfoObject_InfoObjectHierarchy_join.0GL_ACCOUNT.

7. Select the Diagram tab.

Define the Source and Target Datastores

To define the source and target datastores:
1. In the Models tree view, select the `TARGET_INTERVAL_HIERARCHY` datastore from the Oracle_Target Model `W_SD_DELIVERY_CUBE_SOLDTO`.

2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:

   **Target Datastore**

<table>
<thead>
<tr>
<th>Ind</th>
<th>Name</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSHIENN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDRTID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARENTID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERVAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAFFROM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSLAPTO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHART ACCTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GL ACCOUNT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GL ACCOUNT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAL_FLAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLACCREX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INCREX</td>
<td></td>
</tr>
</tbody>
</table>

3. In the Models tree view, select the InfoObject `0GL_ACCOUNT` from the SAP BW Source model.

4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).

5. If a popup window prompting "Do you want to perform Automatic Mapping?" appears, click No.

6. Perform the same operation for the InfoObject hierarchy table `HIER_0GL_ACCOUNT` datastore from the SAP BW Source model. The Sources diagram should look as shown below:
Define Joins between Sources (Info Object Main table and InfoObject Hierarchy Table)

The join between InfoObject and InfoObject Hierarchy table may automatically be added by ODI. - There may be situations when more than one join shows up. E.g. when the same InfoObject is referenced more than once in different characteristics. Such unwanted extra joins have to be removed.

Apply **source-side** Filters on RSHIENM and VERSION:

Add joins: all joins must be executed on **staging** area. Not on source.

The join expression looks like this:
The final join and filter setup should look like this:

---

Create the Mappings

To create the mappings of the target datastore:

1. Drag the HIER_0GL_ACCOUNT.NODEID column from the HIER_0GL_ACCOUNT Delivery service Source data target into the Implementation field of the Properties panel.

2. Make sure that the Execution On is set to Source. The mapping should look as shown below:
3. Repeat this operation to perform the following simple mappings:

<table>
<thead>
<tr>
<th>Target Datastore</th>
<th>TARGET_INTERVALHIERARCHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind</td>
<td>Name</td>
</tr>
<tr>
<td>0</td>
<td>PSHIENM</td>
</tr>
<tr>
<td>1</td>
<td>NODEID</td>
</tr>
<tr>
<td>2</td>
<td>PARENTID</td>
</tr>
<tr>
<td>3</td>
<td>INTERVAL</td>
</tr>
<tr>
<td>4</td>
<td>LEAFFROM</td>
</tr>
<tr>
<td>5</td>
<td>LEAFTO</td>
</tr>
<tr>
<td>6</td>
<td>VERSION</td>
</tr>
<tr>
<td>7</td>
<td>CHRT ACCTS</td>
</tr>
<tr>
<td>8</td>
<td>CL ACCOUNT</td>
</tr>
<tr>
<td>9</td>
<td>BAL FLAG</td>
</tr>
<tr>
<td>10</td>
<td>GLACCEXT</td>
</tr>
<tr>
<td>11</td>
<td>INCST FLAG</td>
</tr>
</tbody>
</table>

Define the Interface Flow
To define the interface flow:
1. Select the Flow tab and verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set for every ODI Source Set. The Flow diagram looks as shown below;
2. Verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set for every ODI Source Set.
3. Verify that "IKM SQL Control Append" has been set for ODI Target+Staging Area.
Creating the Integration Interface

4. Execute Interface. Verify that data got populated into the target datastore.

**ODS/DSO Extraction**

This section describes how to create an integration interface in ODI in order to load data from a SAP BW source model representing the ODS/DSO 0BBP_PO data target to the W_PURCH_DS Oracle target model.

**Create the Interface**

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Interfaces node.
5. Right-click and select Insert Interface.
6. In the Interface Definition tab, enter the interface name: ODS_SAP_BW_PurchOrdl.W_PURCH_DS.
7. Select the Diagram tab.
8. Click OK if the following information window appears.
The interface diagram looks as follows:

Define the Source and Target Datastores
To define the source and target datastores:

1. In the Models tree view, select the W_PURCH_DS datastore from the Oracle_Target Model.
2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:
Creating the Integration Interface

**Create the Integration Interface**

3. In the Models tree view, select the 0BBP_PO Purchase Order - Single Documents datastore from the SAP BW Source model.

4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).

5. If a popup window prompting “Do you want to perform Automatic Mapping?” appears, click No.

6. The Sources diagram should look as shown below:

---

Create the Mappings

To create the mappings of the target datastore:

1. Select the PO_GUID column from the target datastore.

2. Drag the BBP_POGUID column from the 0BBP_PO Purchase Order - Single Documents source data target into the Implementation field of the Properties panel.

3. Make sure that the Execution On is set to Source. The mapping should look as shown below:
4. Repeat this operation to perform the following simple mappings:
   - W_PURCH_DS.ORDER_ITEM_GUID = 0BBP_PO.BBP_POITGU
   - W_PURCH_DS.ACC_ASS_GUID = 0BBP_PO.BBP_ACGUID
   - W_PURCH_DS.GUIDE_CONTRACT = 0BBP_PO.BBP_CTGUID
   - W_PURCH_DS.ORDER_QUANT = 0BBP_PO.BBP_ASPQOU
   - W_PURCH_DS.NET_PRICE = 0BBP_PO.BBP_NETPRC
   - W_PURCH_DS.PRICE_UNIT = 0BBP_PO.BBP_PRCUNT
   - W_PURCH_DS.NO_OF_PURCH_ODR = 0BBP_PO.BBP_POCT

Define the Interface Flow
To define the interface flow:
1. Select the Flow tab. The Flow diagram looks as shown below;

2. Select the source set SS_0 (SAP_BW) that contains ODS/DSO 0BBP_PO data targets. This source set represents the source dataset made up of SAP BW data target.
3. In the LKM Selection box, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL.

4. Select the Target + Staging Area box. This represents the target Oracle database, which is also used as the staging area for this interface.

5. In the IKM Selection, select IKM Oracle Incremental Update.

6. Set the IKM options as follows:
   a. Select No for the FLOW_CONTROL option.
   b. Leave other options as it is. The flow should look as shown below:

   ![Diagram showing LKM and IKM options]

7. Click OK to save and close your interface.

**Info Cube & Related Info Object Extraction**

This section describes how to create an integration interface in ODI in order to load data from a SAP BW source model representing the Info Cube OPTAP_C20 and Info Object 0CREDITOR data targets join to the W_VENDER_CUBE_OBJ_DS Oracle target model.

**Create the Interface**

1. Open Designer.

2. In the Projects tree view, expand the SAP BW Demo Project.

3. Expand the SAP_BW_DataTargets folder.

4. Select the Interfaces node.

5. Right-click and select **Insert Interface**.
6. In the Interface Definition tab, enter the interface name: `InfoCube_InfoObject_join.W_VENDER_CUBE_OBJ_DS`.

7. Select the Diagram tab.

8. Click OK if the following information window appears.

***********************************************************************************************
The interface diagram looks as follows:
***********************************************************************************************

The interface diagram looks as follows:

***********************************************************************************************

**Define the Source and Target Datastores**

To define the source and target datastores:
1. In the Models tree view, select the `W_VENDER_CUBE_OBJ_DS` datastore from the Oracle_Target Model.

2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:

   ![Target Datastore Panel](image)

3. In the Models tree view, select the Info Cube `0FIAP_C20 Vendor Balances` datastore from the SAP BW Source model.

4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).

5. If a popup window prompting “Do you want to perform Automatic Mapping?” appears, click No.

6. Perform the same operation for the Info Object’s main table `0CREDITOR Vendor` and text table `TXT_0CREDITOR Texts: Char. Vendor` datastore from the SAP BW Source model.

   The Sources diagram should look as shown below:
Define Joins between Sources (Info Cube & Object)

To create joins between the source datastores of an interface:

1. In the Sources diagram drag the IOPK_0FIAP_C202_0CREDITOR_PK_VENDOR column from the Info Cube 0FIAP_C20 Vendor Balances datastore onto the VENDOR column in the Info Object's main table 0CREDITOR Vendor. This defines the first join on the Vendor Key identifier, as shown below:
2. In the Properties panel, you can see the join clause: `OFIAP_C20.IOPK_OFIAP_C20_0CREATOR_PK_VENDOR=0CREATOR.VENDOR`

3. In the Properties panel, select Ordered join and make sure that this join is executed on the Source as shown below:
4. Make sure that table number of 0FIAP_C20 is smaller than that of OCREDBOR. In 1:n relationships the parent data target has to be the first in a join.

5. Change join between 0FIAP_C20 and OCREDBOR to left outer join (All rows from 0FIAP_C20 and matching ones from OCREDBOR.

6. Change join between OCREDBOR and TXT_OCREDBOR to left outer join (All rows from OCREDBOR and matching ones from TXT_OCREDBOR.

Create the Mappings
To create the mappings of the target datastore:

1. Select the COMP_CODE column from the target datastore.

2. Drag the IOPK_0FIAP_C201_0COMP_CODE_PK_COMP_CODE column from the 0FIAP_C20 Vendor Balances source data target into the Implementation field of the Properties panel.

3. Make sure that the Execution On is set to Source. The mapping should look as shown below:
Creating the Integration Interface

4. Repeat this operation to perform the following simple mappings:

- \text{W\_VENDER\_CUBE\_OBJ\_DS.VENDOR} = \text{0FIAP\_C20.IOPK\_0FIAP\_C202\_0CREDITOR\_PK\_VENDOR}
- \text{W\_VENDER\_CUBE\_OBJ\_DS.GL\_ACCOUNT} = \text{0FIAP\_C20.IOPK\_0FIAP\_C202\_0RC\_ACCOUNT\_PK\_GL\_ACCOUNT}
- \text{W\_VENDER\_CUBE\_OBJ\_DS.SALES\_FOR\_PERIOD} = \text{0FIAP\_C20.KF\_0SALES}
- \text{W\_VENDER\_CUBE\_OBJ\_DS.CUM\_BALANCE} = \text{0FIAP\_C20.KF\_0BALANCE}
- \text{W\_VENDER\_CUBE\_OBJ\_DS.PLANT} = \text{0CREDITOR.PLANT}
- \text{W\_VENDER\_CUBE\_OBJ\_DS.MEDIUM\_DESC} = \text{TXT\_0CREDITOR.TXTMD}

Define the Interface Flow

To define the interface flow:

1. Select the Flow tab. The Flow diagram looks as shown below;
2. Select the source set SS_0 (SAP_BW) that contains both the Info Cube and Info Object tables. This source set represents the source dataset made up of two joined SAP BW data targets.

3. In the LKM Selection box, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL.

4. Select the Target + Staging Area box. This represents the target Oracle database, which is also used as the staging area for this interface.

5. In the IKM Selection, select IKM Oracle Incremental Update.

6. Set the IKM options as follows:
   a. Select No for the FLOW_CONTROL option.
   b. Leave other options as it is. The flow should look as shown below:

   ![Flow Diagram]

7. Click OK to save and close your interface.

**Info Cube Extraction with Navigational Attributes**

This section describes how to create an integration interface in ODI in order to load data from a SAP InfoCube and its navigation attributes. The data is extracted from Info Cube 0SD_C04 and InfoObject 0SOLD_TO.

**Create the Interface**

1. Open Designer.

2. In the Projects tree view, expand the SAP_BW Demo Project.

3. Expand the SAP_BW_DataTargets folder.
4. Select the Interfaces node.
5. Right-click and select **Insert Interface**.
6. In the Interface Definition tab, enter the interface name: `InfoCube_InfoObject_Nav_join.OSD_C04`.
7. Select the Diagram tab.

**Define the Source and Target Datastores**

To define the source and target datastores:

1. In the Models tree view, select the `OSD_C04` datastore from the Oracle Target Model `W_SD_DELIVERY_CUBE_SOLDTO`.
2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). The following panel appears:

```
<table>
<thead>
<tr>
<th>Ind</th>
<th>Name</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOPK CUST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOPK CUST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOPK PK C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOPK PK P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOPKCALMONT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOPK CAIWBK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOPKTHFL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REQUID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KF ODEL VOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KF OSHINDATR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KF OLOAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KF OACT G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KF OMATAV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KF OLADE QTY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUSTOMER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POBOX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLANT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCOMPANY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTL TYPE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIILEN ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOGSYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VISIT RTV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USEIOB IND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRCRCD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRECISTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POSTCD BOX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUS # CONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUNTRY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BPARTNER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCNT ORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KEYACCOUNT</td>
<td></td>
</tr>
</tbody>
</table>
```

3. In the Models tree view, select the Info Cube `OSD_C04 Delivery service` datastore from the SAP BW Source model.
4. Drag this datastore into the Sources diagram panel (left area of the Diagram tab).
5. If a popup window prompting “Do you want to perform Automatic Mapping?” appears, click **No**.
6. Perform the same operation for the Info Object main table O SOLD_TO Customer datastore from the SAP BW Source model.

The Sources diagram should appear as follows:

---

Define Joins Between Sources (Info Cube & Info Object)

The join between InfoCube and InfoObject will automatically be added by ODI. There may be situations when more than one join shows up. E.g. when the same InfoObject is referenced more than once in different characteristics. Such unwanted extra joins have to be removed.

The final join setup with its join expression should look like this:

---

All InfoObject joins for retrieving navigation attributes must be executed on *staging* area. Not on source:
Create the Mappings

To create the mappings of the target datastore:

1. Drag the `0SD_C04.IOPK_0SD_C041_0SOLD_TO_PK_CUSTOMER` column from the `0SD_C041 Delivery service` source data target into the Implementation field of the Properties panel.

2. Make sure that the Execution On is set to Source. The mapping should look as shown below:
3. Repeat this operation to perform the following simple mappings:

![Diagram of Target Datastore]

**Define the Interface Flow**

To define the interface flow:

1. Select the Flow tab and verify that "LKM SAP BW to Oracle (SQLLDR)" has been set for every ODI Source Set. The Flow diagram appears as follows:
2. Verify that LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL has been set for every ODI Source Set.

**Note:** This interface will generate several SAP ABAP extraction programs. One for retrieving any display attributes and key figures from the InfoCube and one for each InfoObject containing navigation attributes.

3. Verify that "IKM SQL Control Append" has been set for ODI Target+Staging Area.
4. Execute Interface. Verify that Info Cube and Navigational attributes got populated into the target datastore.

Open Hub Extraction

This section describes how to create an integration interface in ODI in order to load data from a SAP BW source model representing the Open Hub destination ZOHD_SALE (/BIC/OHZOHD_SALE) to the %OPENHUB_SALES_DS Oracle target model.

Create the Interface

1. Open Designer.
2. In the Projects tree view, expand the SAP BW Demo Project.
3. Expand the SAP_BW_DataTargets folder.
4. Select the Interfaces node.
5. Right-click and select Insert Interface.
6. In the Interface Definition tab, enter the interface name: OpenHub_Sales.W_OPENHUB_SALES_DS.
7. Select the Diagram tab.
8. Click OK if the following information window appears.

---

The interface diagram looks as follows:

---

Define the Source and Target Datastores

To define the source and target datastores:

1. In the Models tree view, select the W_OPENHUB_SALES_DS datastore from the Oracle_Target Model.

2. Drag this datastore into the Target Datastore panel (right area of the Diagram tab). This panel appears now as shown below:
3. In the Models tree view, select the ZOHD_SALE datastore from the SAP BW Source model.

4. Drag this datastore into the Sources diagram panel (left area of the diagram tab).

5. If a popup window prompting "Do you want to perform Automatic Mapping?" appears, click No.

6. The Sources diagram should look as shown below:

Create the Mappings
To create the mappings of the target datastore:

1. Select the OHREQUID column from the target datastore.

2. Drag the OHREQUID column from the ZOHD_SALE source data target into the Implementation field of the Properties panel.

3. Make sure that the Execution On is set to Source. The mapping should look as shown below:
Creating the Integration Interface

4. Repeat this operation to perform the following simple mappings:
   - W_OPENHUB_SALES_DS.DATA_PACKAGE = ZOHD_SALE.DATAPAKID
   - W_OPENHUB_SALES_DS.DATA_RECORD = ZOHD_SALE.RECORD
   - W_OPENHUB_SALES_DS.CUSTOMER = ZOHD_SALE.D_CUSTOMER
   - W_OPENHUB_SALES_DS.MATERIAL = ZOHD_SALE.D_MATERIAL
   - W_OPENHUB_SALES_DS.MATERIAL_PRICE = ZOHD_SALE.PRICE_MAT
   - W_OPENHUB_SALES_DS.CURRENCY = ZOHD_SALE.CURRENCY
   - W_OPENHUB_SALES_DS.QUANTITY = ZOHD_SALE./BIC/ZQTY
   - W_OPENHUB_SALES_DS.TOTAL_REVENUE = ZOHD_SALE./BIC/ZREV

Define the Interface Flow
To define the interface flow:
1. Select the Flow tab. The Flow diagram looks as shown below;

   ![Flow Diagram]

2. Select the source set SS_0 (SAP_BW) that contains Open Hub Destination Table ZOHD_SALE. This source set represents the source dataset made up of SAP_BW Open Hub table.
3. In the LKM Selection box, select LKM SAP BW to Oracle (SQLLDR) or LKM SAP BW to SQL.

4. Select the **Target + Staging Area** box. This represents the target Oracle database, which is also used as the staging area for this interface.

5. In the IKM Selection, select IKM Oracle Incremental Update.

6. Set the IKM options as follows:
   a. Select No for the **FLOW_CONTROL** option.
   b. Leave other options as it is. The flow should look as shown below:

![Diagram of integration interface flow]

7. Click **OK** to save and close your interface.

**Running the Integration Interface**

This section contains the following topics:
- Running the Interface
- Review the Interface Execution
- Review the Resulting Data

**Running the Interface**

To run the integration interface:
1. In the Projects tree view, expand the SAP Demo Project
2. Expand the SAP_BW_DataTargets folder.
3. Expand the Interfaces node.
4. Select the **InfoCube_SAP_BW_VendorBal.W_VENDR_BAL_DS** interface.
5. Right-click and select **Execute**.

6. In the Execution window that appears, click **OK**.

7. Click **OK** in the Session Started window.

**What happens when you run the interface?**

First, Oracle Data Integrator creates an ABAP program that does the following:

1. It performs the extraction of the data on the SAP BW system. In this example, the extraction will be done on Info Cube source data targets and then returns the resultset in an extraction file.

2. It uploads the extraction file into a FTP data server. This FTP host is specified via the File Logical Schema called File Server for SAP ABAP. This Logical Schema is mapped to a Physical Schema and therefore a data server in the given context. This data server contains the connection information for the FTP host.

Then, the ABAP code is uploaded using the *OdiSapAbapExecute* tool. The ABAP program is pushed into the SAP Function group given in the SAP_FUNCTION_GROUP_NAME LKM option. This phase can be suppressed by setting the UPLOAD_ABAP_CODE LKM option to No.

The ABAP code is executed also by the *OdiSapAbapExecute* tool. At the end of the ABAP code execution, the extraction file is available in the FTP host.

The Oracle Data Integrator agent is able to download this extraction file from the FTP host, or directly access it, depending on the FTP_TRANSFER_METHOD specified in the IKM option.

Finally, when the agent accesses the extraction file, it uses SQL*Loader or a JDBC Connection to load this file into the Oracle/non-Oracle staging area. The rest of the integration process takes place within the Oracle/non-Oracle engine.

**Review the Interface Execution**

To review the interface execution:

1. Connect to Operator.

2. In the Operator, select the Session List tree view.

3. Expand the All Executions node in this tree view.

4. The latest session is the first entry of this list and appears as shown below.
5. Double click the `InfoCube_SAP_BW_VendorBal.W_VENDR_BAL_DS` node to see the session details and the number of lines processed.

**Review the Resulting Data**

To review the resulting data:

1. In the Designer, in the Models tree view, expand the `Oracle Target Model`.

2. Select the `W_VENDR_BAL_DS` datastore, right-click and select `Data` to view the data integrated into the target Oracle table.

3. Repeat the same steps for remaining interfaces:
   - `InfoObject_SAP_BW_VendorAcc.W_ACNT_VENDR_DS`
   - `ODS_SAP_BW_PurchOrdl.W_PURCH_DS`
   - `InfoCube_InfoObject_join.W_VENDER_CUBE_OBJ_DS`
   - `OpenHub_Sales.W_OPENHUB_SALES_DS`
Creating a Package for Delta Extraction

This chapter describes how to create a package for delta extraction.
So far we have seen examples of extracting data from BW data targets. The
instructions in this chapter explain how the interfaces introduced in the previous
chapters can be turned into delta extraction interfaces.
In delta extraction interfaces only the data, which was changed after last extraction, is
extracted. Delta extraction interfaces are only supported for InfoCubes, ODS/DSO and
Open Hub objects, but not for InfoObjects.
This chapter includes the following topics:
- Modify the Interface Flow
- Creating the MIN_REQUEST_ID Variable
- Creating a Package for Delta Extraction
- Running the Package

Modify the Interface Flow
The first step is to modify the interface:
1. Select the desired Interfaces.
2. Double click the interface.
3. Select the Flow tab.
4. Click the ODI source set.
5. Set KM option values for FIRST_REQ_ID and LAST_REQ_ID KM as shown below.
Creating the MIN_REQUEST_ID Variable

The second step consists of creating an ODI variable that stores the last extracted request ID. This request ID serves as the starting point for the next extraction run:

1. Create a MIN_REQUEST_ID variable to hold the last request id. The MIN_REQUEST_ID variable has to be a numeric variable with a Historize or Last-value Action as shown below.

6. Click OK to save and close your interface.

Creating the MIN_REQUEST_ID Variable

The second step consists of creating an ODI variable that stores the last extracted request ID. This request ID serves as the starting point for the next extraction run:

1. Create a MIN_REQUEST_ID variable to hold the last request id. The MIN_REQUEST_ID variable has to be a numeric variable with a Historize or Last-value Action as shown below.
Creating the MIN_REQUEST_ID Variable

2. The value of this variable is updated at the end of the delta extraction package described in the third step. It happens once delta extraction is finished and the MAX REQUEST ID will be fetched from SAP BW system and will be stored into the ODI Variable (MIN_REQUEST_ID). The refresh expression shown here is used to update the variable:
Creating a Package for Delta Extraction

In the third step the building blocks created in the previous steps are put together: Variable and Interfaces are arranged into a Package:

1. Open the SAP Demo Project.
2. Create a new Package named SAP Demo.
3. Insert a Declare Variable step to this Package:
   Drag and Drop the MIN_REQUEST_ID variable and select the "Declare Variable" step type.
4. Insert a Flow step to this Package:
   Drag and drop the Interface created in the previous sections for InfoCube/ODS or OpenHub-Extraction in the Package.
5. Insert a Refresh Variable step to this Package.
   Drag and Drop the MIN_REQUEST_ID variable and select the "Refresh Variable" step type.
6. Define the step sequence.
   a.
   b. Define the Refresh Variable step as the First Step.
   c. Link it to the Flow step that is the next step upon success.
Running the Package

To run the integration Package:

- In the Projects tree view, expand the SAP Demo Project.
- Select the SAP Demo Package.
- Right-click and select Execute.
- In the Execution window, click OK.
- In the Session Started window, click OK.

What happens when you execute the delta extraction Package?
First, Oracle Data Integrator initializes the variable MIN_REQUEST_ID with the last historized value (declare variable step). This value is then passed into ABAP extraction program to specify where to start the data extraction. The KM queries the SAP system for the highest assigned request ID. All data between min and max request ID will be extracted (interface).

After the execution of the interface the refresh variable step stores the highest request ID into MIN_REQUEST_ID for next extraction run.
This chapter describes what steps to take next with Oracle Data Integrator.

You have now completed a Project extracting data from a SAP BW system.

In this Project, you have:

- Set up the environment and topology to work with SAP BW.
- Created and reverse-engineered a SAP BW data model.
- Created different interfaces to load the data from Info Cube, Info Object, ODS/DSO, Info Cube & Info Object join, Open Hub destination table, Delta SAP BW data targets & tables into the Oracle database.

Refer to the Oracle Fusion Middleware Knowledge Module Developer’s Guide for Oracle Data Integrator for more information on the SAP BW KM features and options.

**Note:** In case the execution did not complete successfully, please check the Operator details for the error message. In addition to this, the following log files will contain execution information:

- `<System Temp Dir>/ODI_<Interface Id>_<SrcSet>.genlog`
- `<System Temp Dir>SAPAbapExecuteOpenTool_<Interface Id>.log`
- `<System Temp Dir>ODI_<Delta interface Id>_<Interface Id>.log`
- `<System Temp Dir or local FTP dir>/ ZODI_<Interface Id>_<SrcSet>_<Context>.log`
- `<System Temp Dir or local FTP dir>/ ZODI_<Interface Id>_<SrcSet>_<Context>.out`
- `<System Temp Dir or local FTP dir>/ ZODI_<Interface Id>_<SrcSet>_<Context>.err`

Refer to section 7.7.4, "Log Files," in Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator for more details.

**Going further with Oracle Data Integrator**

Use the demonstration environment to familiarize yourself with Oracle Data Integrator. You can go further with Oracle Data Integrator by taking advantage of the samples available on the Oracle Technology Network.
This appendix lists the required privileges for accessing the SAP system using Oracle Data Integrator.

For connecting to the SAP system a SAP dialog user is required for RKM installation and LKM execution during development. A SAP RFC user is not sufficient.

This user has to have a developer license key. License keys can be retrieved from http://service.sap.com.

Later for RKM execution and LKM execution in production a SAP RFC user is sufficient.

These SAP user types can be used for the following operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Required SAP User Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RKM: Setup</td>
<td>SAP Dialog user</td>
</tr>
<tr>
<td>RKM: Reverse Engineering</td>
<td>SAP Dialog user or SAP RFC user</td>
</tr>
<tr>
<td>LKM: Development</td>
<td>SAP Dialog user or SAP RFC user</td>
</tr>
<tr>
<td>LKM: Production</td>
<td>SAP Dialog user or SAP RFC user</td>
</tr>
<tr>
<td>Testing ODI Generated Extraction RFCs</td>
<td>SAP Dialog user or SAP RFC user</td>
</tr>
</tbody>
</table>

The following tables list the privileges required for using SAP BW Knowledge Modules:

- Authorizations Required for RKM SAP BW Setup
- Authorizations Required for RKM Execution
- Authorizations Required for LKM Execution
- Authorizations Required for LKM Execution for Production
- Privileges for Testing ODI Generated Extraction RFCs

**Authorizations Required for RKM SAP BW Setup**

The following authorizations are required for setting up the configuration for the RKM SAP BW and install the required RFC programs to retrieve the metadata about SAP tables.
<table>
<thead>
<tr>
<th>Object</th>
<th>Field Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_ADMI_FCD</td>
<td>S_ADMI_FCD</td>
<td>NADM</td>
</tr>
<tr>
<td>S_ADMI_FCD</td>
<td>S_ADMI_FCD</td>
<td>PADM</td>
</tr>
<tr>
<td>S_ADMI_FCD</td>
<td>S_ADMI_FCD</td>
<td>SM21</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>FILENAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>PROGRAM</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>ACTVT</td>
<td>01, 02, 03</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>DEVCLASS</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>OBJNAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>OBJTYPE</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>_GROUP</td>
<td>*</td>
</tr>
<tr>
<td>S_GUI</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RFC</td>
<td>ACTVT</td>
<td>16</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_NAME</td>
<td>*</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_TYPE</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ADMWB</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ADMWB</td>
<td>RSADMWBOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_AUTH</td>
<td>BIAUTH</td>
<td>*1</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>RSICUBEOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>RSINFOAREA</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>RSINFOCUBE</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJCAT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJPART</td>
<td>*</td>
</tr>
<tr>
<td>S_RZL_ADM</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_TABU_DIS</td>
<td>ACTVT</td>
<td>02, 03</td>
</tr>
<tr>
<td>S_TABU_DIS</td>
<td>DICBERCLS</td>
<td>*</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>AL11</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE10</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE11</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE16</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE37</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE38</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE80</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE91</td>
</tr>
</tbody>
</table>
### Authorizations Required for LKM Execution

The following authorizations are required for using the **LKM SAP BW to Oracle** (SQLLDR). This set of authorization is needed to install the ABAP code generated by the LKM and execute it.

<table>
<thead>
<tr>
<th>Object</th>
<th>Field Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SM21</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SM50</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SM58</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SM59</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>ST22</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SU53</td>
</tr>
<tr>
<td>S_TRANSPRT</td>
<td>ACTVT</td>
<td>01, 02, 03</td>
</tr>
<tr>
<td>S_TRANSPRT</td>
<td>TTYPE</td>
<td>*</td>
</tr>
</tbody>
</table>

1 For SAP BW 7.0 only. Not for SAP BW 3.5.

### Authorizations Required for RKM Execution

The following authorizations are required for running a reverse-engineering using the **RKM SAP BW**.

<table>
<thead>
<tr>
<th>Object</th>
<th>Field Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_RFC</td>
<td>ACTVT</td>
<td>16</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_NAME</td>
<td>*</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_TYPE</td>
<td>*</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE16</td>
</tr>
<tr>
<td>S_RS_AdMWB</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_AdMWB</td>
<td>RSADMWBOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>ACTVT</td>
<td>03</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>RSICUBEOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>RSINFOAREA</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_ICUBE</td>
<td>RSINFOCUBE</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJCAT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJPART</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_AUTH</td>
<td>BIAUTH</td>
<td>*¹</td>
</tr>
</tbody>
</table>

1 For SAP BW 7.0 only. Not for SAP BW 3.5.
Authorizations Required for LKM Execution for Production

The following authorizations are required for using the LKM SAP BW to Oracle (SQLLDR) in a production environment. In such environment, the ABAP code generated by the LKM is not installed by the LKM but simply executed.

<table>
<thead>
<tr>
<th>Object</th>
<th>Field Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_CTS_ADMI</td>
<td>CTS_ADMFCT</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>ACTVT</td>
<td>06, 33, 34</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>FILENAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>PROGRAM</td>
<td><em>ZODI</em></td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>ACTVT</td>
<td>01, 02, 03</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>DEVCLASS</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>OBJNAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>OBJTYPE</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>P_GROUP</td>
<td>*</td>
</tr>
<tr>
<td>S_RFC</td>
<td>ACTVT</td>
<td>16</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_NAME</td>
<td>*</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_TYPE</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJCAT</td>
<td>*</td>
</tr>
<tr>
<td>S_RS_IOBJ</td>
<td>RSIOBJPART</td>
<td>*</td>
</tr>
<tr>
<td>S_TRANSPRT</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_TRANSPRT</td>
<td>TTYPE</td>
<td>*</td>
</tr>
</tbody>
</table>

Privileges for Testing ODI Generated Extraction RFCs

The following authorizations are required for manual testing of ODI generated extraction RFCs e.g. in SE37.

<table>
<thead>
<tr>
<th>Object</th>
<th>Field Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_DATASET</td>
<td>ACTVT</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>FILENAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>PROGRAM</td>
<td><em>ZODI</em></td>
</tr>
<tr>
<td>S_RFC</td>
<td>ACTVT</td>
<td>16</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_NAME</td>
<td>*</td>
</tr>
<tr>
<td>S_RFC</td>
<td>RFC_TYPE</td>
<td>*</td>
</tr>
<tr>
<td>Object</td>
<td>Field Name</td>
<td>Value</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>ACTVT</td>
<td>33</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>FILENAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DATASET</td>
<td>PROGRAM</td>
<td>*</td>
</tr>
<tr>
<td>S_TCODE</td>
<td>TCD</td>
<td>SE37</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>ACTVT</td>
<td>03, 16</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>RSICUBEOBJ</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>RSINFOAREA</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>RSINFOCUBE</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>DEVCLASS</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>OBJNAME</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>OBJTYPE</td>
<td>*</td>
</tr>
<tr>
<td>S_DEVELOP</td>
<td>P_GROUP</td>
<td>*</td>
</tr>
</tbody>
</table>
This appendix describes how to install the librfc32 or librfc64 library. The SAP JCo software requires the librfc32/librfc64 library, but does not include it. It is included for example with the SAP GUI software. In case this library is not yet installed, this section describes how to download and install it. These steps are only required, if librfc32/librfc64 is not yet installed.

**Installing the librfc32/librfc64 Library**

Perform the following steps to install the librfc32/librfc64 library:

2. Go to SAP support portal.
3. Go to Software Downloads.
4. Go to the SAP Software Download Center.
5. Select Support Packages and Patches.
6. Select Browse Our Download Catalog.
7. Select Additional Components.
8. Download appropriate RFCSDK version (SAP NW RFC SDK, SAP RFC SDK, SAP RFC SDK UNICODE)
9. Use SAPCAR extractor to extract the content of the downloaded SAR file
10. For JCo installed on Windows:
    
    Copy the file librfc[u][32|64].dll located in folder rfcsdk/bin to c:\windows\system32 (exact folder name depends on windows version).
    
    For JCo installed on Unix:
    
    Copy the file librfccm[u].so to the folder containing the sapjco3.jar and libsapjco3.so. This directory may need to be addeded to LD_LIBRARY_PATH.
This appendix describes how to perform an SAP stand-alone connection test.

In addition to the Connection Testing described above, a test can be performed outside of ODI using a standalone java utility:

**SAP Stand-Alone Connection Test**

To use a standalone java utility to test the connection:

1. Open a command window.
2. Change to oracledi/drivers directory.
3. Make sure that JAVA_HOME points to a JVM (at least 1.5).
4. Make sure that you have installed SAP Java Connector and that the sapjco3.jar and the sapjco3 library are in the oracledi/drivers directory.
5. Launch the utility using the following command:
   
   **On Windows:**
   ```sh
 java -cp sapjco3.jar;odi-sap.jar oracle.odi.sap.km.test.JCoTest
   ```
   
   **On Linux/UNIX:**
   ```sh
 java -cp sapjco3.jar:odi-sap.jar oracle.odi.sap.km.test.JCoTest
   ```
   
   This should result in an output similar to this:

   ![Error message example]

   A command-line console is shown with text output. The output includes an error message "Error: com.sap.conn.jco.JCoException: (102) RFC_ERROR_COMMUNICATION: Connect to SAP gateway failed", with connection parameters.
Following is a list of details including location, error, time, release number, component, version, RC, module, line, detail, system call, and counter.

***********************************************************************************************

6. Use a text editor to open the ODI_SAP_CON_POOL.jcoDestination file in the 
oracledi/drivers directory. The file should look like this:

```
for tests only!
jco.client.lang=EN
jco.destination.peak_limit=10
jco.client.client=800
jco.client.passwd=<SAP Password>
jco.client.user=<SAP User>
jco.client.sysnr=00
jco.destination.pool_capacity=5
jco.client.ashost=<SAP Application Server>
```

7. Enter your SAP connection information, which you have received from your SAP 
administrator. The file will then look similar to this (use your connection 
information!):

```
for tests only !
jco.client.lang=EN
jco.destination.peak_limit=10
jco.client.client=800
jco.client.passwd=ODI123
jco.client.user=ODI
jco.client.sysnr=00
jco.destination.pool_capacity=5
jco.client.ashost=123.123.123.123.
```

8. Launch the utility again using the following command:

On Windows:

```
java -cp sapjco3.jar;odi-sap.jar oracle.odi.sap.km.test.JCoTest
```

On Linux/UNIX:

```
java -cp sapjco3.jar;odi-sap.jar oracle.odi.sap.km.test.JCoTest
```

This should result in an output similar to this:
Command-line output results from running the java command in this step is shown. The console reports creating a connection pool, lists connection pool attributes such as host, client, IDs, language, and so forth; and then reports "Successfully Connected to SAP system..." with lines reporting the existence of four Function Modules in the specified SAP System.

In addition to just testing the SAP connection, the utility will also validate the existence of certain Function Modules required for the RKM. These are installed during first execution of the RKM (UPLOAD_ABAP = Yes).

9. Delete the ODI_SAP_CON_POOL.jcoDestination file after execution, as it contains the SAP login credentials.
Uninstalling ODI SAP Components

This appendix describes how to uninstall ODI components from your SAP system. In case of upgrading to a newer ODI SAP Connector release or for permanently removing ODI connectivity, please follow the steps described in this section. Please note that this will delete ALL components including generated extractor programs.

Uninstalling ODI SAP Components

To upgrade to a newer ODI SAP Connector release or to permanently remove the ODI connectivity:

1. Start the SAP GUI.
2. Connect to the SAP systems you want to uninstall.
3. Go to the transaction SE80.
4. Select the package or development class option from the drop down box.
5. Enter ZODIBW_PCKG in the package or development class field.
6. Right-click the ZODIBW_PCKG object below the object name tab.
7. Select Delete in the drop down menu and delete the development class.
   If it does not allow deleting the development class individually, delete all the objects one by one and then delete the development class.
8. Go to transaction SE10. Select Modifiable and Workbench Requests. Click Display.
9. Select the transport requests which have the ODI Objects and Release them.
10. Now repeat the steps 3 to 7 to delete Development Class.
11. Go to transaction SE01. Select Modifiable and Workbench Requests. Click Display. Release the Transport Request which has ZODIBW_PCKG.