

Oracle® Fusion Middleware
Upgrade Guide for Java EE

11g Release 1 (11.1.1)

E10126-04

January 2011

Oracle Fusion Middleware Upgrade Guide for Java EE, 11g Release 1 (11.1.1)

E10126-04

Copyright © 2010, 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: Peter LaQuerre

Contributing Author: Reza Shafii

Contributors: Janga Aliminati, Pyounguk Cho, Paul Dickson, Robert Donat, Shail Goel, William Norcott,
Michael Rubino, Robert St. Jean, Gavin Steyn, Sitaraman Swaminathan, Suresh Srinivasan, Zhong Xu, Lixin
Zheng

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

1 Summary of the Java EE Upgrade Process

1.1 Flow Chart of the Java EE Upgrade Process ... 1-1
1.2 Table Describing the Steps in the Java EE Upgrade Process .. 1-2

Part I Preparing for a Java EE Upgrade

2 Supported Starting Point for Java EE Upgrade

3 Introduction to Oracle WebLogic Server for OC4J Users

3.1 Key Oracle WebLogic Server Concepts for OC4J Users.. 3-1
3.1.1 Comparing the OC4J and Oracle WebLogic Server Architectures............................... 3-1
3.1.1.1 Standalone OC4J and Standalone Oracle WebLogic Server................................... 3-2
3.1.1.2 OC4J and Oracle WebLogic Server Integrated With a Web Server 3-2
3.1.1.3 OC4J and Oracle WebLogic Server Clustering Features .. 3-3
3.1.2 Comparing OC4J and Oracle WebLogic Server Directory Structures 3-4
3.1.3 Understanding Oracle WebLogic Server Domains for OC4J Users 3-5
3.1.3.1 Basic Content and Organization of a Domain.. 3-5
3.1.3.2 Additional Facts About Oracle WebLogic Server Domains................................... 3-6
3.1.3.2.1 A WebLogic Server Installation Can be Used to Configure Multiple Domains ..

3-6
3.1.3.2.2 A WebLogic Server Instance Is Always Associated With a Single Java Virtual

Machine Process 3-6
3.1.3.2.3 A WebLogic Server Instance Processes All Application Requests on the Same

Port by Default 3-6
3.1.3.2.4 A WebLogic Server Instance Is Always Configured With an HTTP Listener

and Does Not Support AJP 3-7
3.2 Oracle WebLogic Server Installation and Configuration Tools for OC4J Users................ 3-7
3.3 Oracle WebLogic Server Administration Tools for OC4J Users ... 3-8
3.3.1 Comparison of OC4J and Oracle WebLogic Server Administration Tools 3-8

iv

3.3.2 Typical Oracle WebLogic Server Administration Tasks for OC4J Users 3-9
3.3.2.1 Starting and Stopping Servers .. 3-9
3.3.2.2 Performing Diagnostics on a Domain ... 3-9
3.3.2.3 Viewing Log Files for a Domain.. 3-10
3.3.2.4 Configuring and Tuning Thread Pools .. 3-10
3.4 Standards Support for OC4J and Oracle WebLogic Server ... 3-11

Part II Upgrading Your Java EE Applications and Environment

4 Upgrading Your Java EE Applications

4.1 Task 1: Verify that Your Application Deploys and Works Successfully on OC4J............. 4-1
4.2 Task 2: Select Your Development Tools .. 4-1
4.2.1 General Guidelines for Selecting Your Development Tools.. 4-1
4.2.2 Using the SmartUpgrade Oracle JDeveloper Extension and Command-Line Tool .. 4-2
4.3 Task 3: Verify That Your Application Supports Java Development Kit (JDK) 6 4-2
4.4 Task 4: Upgrade the Application Deployment Descriptors ... 4-2
4.4.1 Comparison of OC4J and Oracle WebLogic Server Deployment Descriptors 4-2
4.4.2 Guidelines and Resources for Upgrading Deployment Descriptors for Oracle

WebLogic Server 4-3
4.4.3 About Security Elements in Deployment Descriptor Files.. 4-4
4.4.4 Upgrading Deployment Plans ... 4-4
4.5 Task 5: Review Oracle WebLogic Server API Support ... 4-4
4.5.1 APIs Available With the Java Required Files (JRF) Domain Template 4-4
4.5.2 Other Oracle WebLogic Server API Requirements... 4-5
4.6 Task 6: Upgrade the Application Web Services ... 4-6
4.6.1 General Guidelines for Upgrading to Oracle WebLogic Server JAX-RPC and JAX-WS

Web Services 4-6
4.6.2 Generating Oracle WebLogic Server Web Services From an OC4J WSDL 4-7
4.6.3 Web Services Specifications Supported by OC4J and Oracle WebLogic Server 4-7

5 Upgrading Your Java EE Environment

5.1 Task 1: Install and Configure an Oracle WebLogic Server Development Domain........... 5-1
5.1.1 Differences Between a Development Environment and a Test or Production

Environment 5-1
5.1.2 Installing and Configuring a Development Domain with Oracle JDeveloper 5-2
5.1.3 Installing and Configuring a Development Domain with Oracle SOA Suite,

WebCenter, or Application Developer 5-2
5.1.3.1 Advantages of Installing an Oracle SOA Suite, WebCenter, or Application

Developer Development Environment 5-3
5.1.3.2 Selecting an Oracle Fusion Middleware Software Suite... 5-3
5.1.3.3 Steps Required to Install and Configure an Oracle SOA Suite, WebCenter, or

Application Developer Domain 5-3
5.1.4 Using the Java Required Files (JRF) Domain Template ... 5-4
5.1.4.1 Creating a New Domain With the JRF Template... 5-4
5.1.4.2 Extending an Existing Domain With the JRF Template.. 5-5
5.2 Task 2: Verify the New Oracle Fusion Middleware 11g Environment 5-5
5.3 Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications 5-5

v

5.3.1 Configuring JDBC Data Sources on Oracle WebLogic Server 5-6
5.3.1.1 General Information About Defining Data Sources for OC4J and Oracle WebLogic

Server 5-6
5.3.1.2 Upgrading Application-Level OC4J Data Sources .. 5-6
5.3.1.3 Upgrading Instance and Group-Level OC4J Data Sources 5-7
5.3.1.4 JDBC Connection Pools and Managed Data Sources in OC4J and Oracle WebLogic

Server 5-7
5.3.2 Configuring OC4J JMS Resources on Oracle WebLogic Server.................................... 5-7
5.3.2.1 Overview of JMS Support in OC4J and Oracle WebLogic Server 5-7
5.3.2.2 Creating and Managing JMS Resources in OC4J and Oracle WebLogic Server . 5-8
5.3.3 Configuring OC4J Remote JMS Resources on Oracle WebLogic Server 5-8
5.3.4 Using Shared Libraries and Class Loading on Oracle WebLogic Server 5-9
5.3.5 Configuring Startup and Shutdown Classes .. 5-10
5.3.6 Configuring Security on Oracle WebLogic Server... 5-10
5.3.7 Configuring Logging on Oracle WebLogic Server .. 5-11
5.4 Task 4: Redeploy the Application on Oracle WebLogic Server .. 5-12
5.5 Task 5: Verify the Redeployed Applications ... 5-12

6 Upgrading Application Clients

6.1 Impact of Upgrade on Java Server Pages and Servlet Clients.. 6-1
6.2 Impact of Upgrade on Java Naming and Directory Interface Clients................................. 6-1
6.2.1 Modifying Clients to Use the Oracle WebLogic Server JNDI Provider....................... 6-2
6.2.2 Understanding the Scope of the Oracle WebLogic Server JNDI Namespace............. 6-2
6.3 Impact of Upgrade on Enterprise Java Bean Clients ... 6-3
6.3.1 Impact on Remote Standalone EJB Clients .. 6-3
6.3.2 Impact on Clients That Use OC4J-Based EJB Interfaces... 6-4
6.4 Impact of Upgrade on JMS Clients... 6-4
6.4.1 Changes Required When the JMS Provider is Upgraded to WebLogic Server 6-4
6.4.2 Changes Required When the JMS Provider Remains in OC4J...................................... 6-5

7 Upgrading a Java EE and Web Server Environment

7.1 Task 1: Understand the Differences Between Using Oracle HTTP Server with OC4J and
Oracle WebLogic Server 7-1

7.1.1 Configuring Web Sites and AJP Connections in Oracle WebLogic Server 7-1
7.1.2 Installing and Configuring Oracle HTTP Server for Oracle WebLogic Server 7-2
7.1.2.1 How Oracle HTTP Server Is Configured for OC4J.. 7-2
7.1.2.2 How Oracle HTTP Server is Configured for Oracle WebLogic Server 7-2
7.1.3 Using Web Servers Other than Oracle HTTP Server with Oracle WebLogic Server. 7-3
7.1.4 Understanding Oracle HTTP Server Interoperability Issues When Upgrading to Oracle

Fusion Middleware 11g 7-3
7.2 Task 2: Install and Configure an Oracle Fusion Middleware Web Tier 7-3
7.2.1 Deciding Upon a Location for Your Web Tier Components .. 7-3
7.2.2 Associating the Web Tier Components with an Oracle WebLogic Server Domain .. 7-4
7.2.3 Locating the Web Tier Installation and Configuration Documentation...................... 7-4
7.3 Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to Oracle

Fusion Middleware 11g 7-5
7.3.1 Task 3a: Start the Upgrade Assistant for an Web Tier Upgrade................................... 7-5

vi

7.3.2 Task 3b: Use the Upgrade Assistant to Upgrade the Web Tier Components............. 7-7
7.3.2.1 Upgrading the Web Tier Components .. 7-7
7.3.2.2 Important Notes When Using the Source Oracle Home Ports in the Destination

Oracle Instance 7-8
7.4 Task 4: Configure the Web Tier To Route Requests to Your Oracle Fusion Middleware

Environment 7-9
7.5 Task 5: Perform Any Required Post-Upgrade Tasks for the Web Tier Components 7-9
7.5.1 Verifying the Location of the Oracle HTTP Server and Oracle Web Cache Wallets

After Upgrade 7-9
7.5.2 Verifying and Updating the Oracle HTTP Server and Oracle Web Cache Ports After

Upgrade 7-10
7.6 Task 6: Verify the Web Tier Upgrade.. 7-10

A orion-web.xml and orion-ejb-jar.xml Upgrade Reference

orion-web.xml .. A-2

<classpath> .. A-3

<contextParamMappingFinding>.. A-4

<mimeMappings> .. A-5

<virtual-directory> ... A-6

<access-mask>... A-7

<servlet-chaining>.. A-8

<request-tracker>.. A-9

<session-tracking>.. A-10

<session-tracker> .. A-11

<resource-ref-mapping>.. A-12

<lookup-context>.. A-13

<resource-env-ref-mapping>.. A-14

<env-entry-mapping>.. A-15

<ejb-ref-mapping>.. A-16

<service-ref-mapping>... A-17

<expiration-setting> ... A-18

<jazn-web-app> .. A-19

<security-role-mapping>... A-20

<web-app-class-loader>... A-21

search-local-classes-first ... A-21

include-war-manifest-class-path ... A-21

autojoin-session.. A-22

default-buffer-size ... A-22

default-charset.. A-22

default-mime-type... A-23

development... A-23

directory-browsing.. A-23

enable-jsp-dispatcher-shortcut .. A-24

vii

file-modification-check-interval .. A-24

jsp-cache-directory .. A-24

jsp-cache-tlds .. A-25

jsp-print-null... A-25

jsp-taglib-locations .. A-25

jsp-timeout.. A-26

persistence-path ... A-26

schema-major-version... A-26

schema-minor-version .. A-27

servlet-webdir .. A-27

simple-jsp-mapping .. A-27

source-directory ... A-28

temporary-directory.. A-28

orion-ejb-jar.xml ... A-30

<session-deployment> ... A-31

copy-by-value... A-31

idletime ... A-31

min-instances ... A-32

max-instances ... A-32

max-instances-threshold... A-32

max-tx-retries ... A-33

resource-check-interval... A-33

passivate-count .. A-33

persistence-filename.. A-34

pool-cache-timeout.. A-34

timeout .. A-34

transaction-timeout ... A-35

<ejb-ref-mapping>.. A-36

<resource-ref-mapping>.. A-37

<resource-env-ref-mapping>.. A-38

<message-destination-ref-mapping>... A-39

<session-type>Stateful</session-type>.. A-40

<message-driven-deployment>.. A-41

connection-factory-location.. A-41

dequeue-retry-count.. A-41

dequeue-retry-interval.. A-42

destination-location... A-42

listener-threads .. A-42

max-delivery-count ... A-43

resource-adapter .. A-43

subscription-name ... A-44

viii

wrapper-class ... A-44

<config-property> .. A-45

Index

ix

Preface

This preface contains the following sections:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for Oracle Fusion Middleware application developers who
are responsible for developing Java EE applications, as well as administrators who
deploy the applications and maintain Oracle Fusion Middleware installations. It is
assumed that the readers of this manual have knowledge of the following:

■ Oracle Fusion Middleware system administration and configuration

■ The configuration and expected behavior of the systems being upgraded

■ Java EE development and best practices

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

x

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following related documentation available in the Oracle
Fusion Middleware 11g documentation library:

■ Related Upgrade Documentation

– Oracle Fusion Middleware Upgrade Planning Guide

– Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter, and
ADF

– Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and
Discoverer

– Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management

■ Oracle Fusion Middleware Installation Planning Guide

■ Oracle Fusion Middleware Administrator's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Summary of the Java EE Upgrade Process 1-1

1Summary of the Java EE Upgrade Process

This chapter provides a high-level overview of how you can upgrade your Java EE
environment and your deployed applications from Oracle Application Server 10g and
Oracle Containers for Java EE (OC4J) to Oracle Fusion Middleware 11g and Oracle
WebLogic Server.

Refer to the following sections for more information:

■ Flow Chart of the Java EE Upgrade Process

■ Table Describing the Steps in the Java EE Upgrade Process

1.1 Flow Chart of the Java EE Upgrade Process
Figure 1–1 provides a flow chart of the Java EE upgrade process. Review this chart to
get familiar with the tasks you will be required to perform.

Table Describing the Steps in the Java EE Upgrade Process

1-2 Oracle Fusion Middleware Upgrade Guide for Java EE

Figure 1–1 Flow Chart of the Java EE Upgrade Process

1.2 Table Describing the Steps in the Java EE Upgrade Process
Table 1–1 describes each of the steps in the upgrade process flow chart, which is
shown in Figure 1–1. The table also provides information on where to get more
information on each step in the process.

Table Describing the Steps in the Java EE Upgrade Process

Summary of the Java EE Upgrade Process 1-3

Table 1–1 Table Describing the Steps in the Java EE Upgrade Process

Step Description More Information

Prepare for Upgrade Before you begin the upgrade of
your Java EE applications and
environment from OC4J to Oracle
WebLogic Server:

■ Review the key concepts of
Oracle WebLogic Server and
how they differ from OC4J.

■ Understand the different
installation and configuration
tasks required for Oracle
WebLogic Server.

■ Review the administration tools
and processes you will have to
use in the Oracle WebLogic
Server environment.

Part I, "Preparing for a Java EE
Upgrade"

Upgrade Your Deployed
Applications

Modify the applications as
necessary so they will deploy and
run successfully on Oracle
WebLogic Server

Note that the SmartUpgrade
command-line tool and Oracle
JDeveloper extension can help you
identify the tasks required to
upgrade your applications, and in
some cases, generate specific
artifacts to help you modify the
application.

Chapter 4, "Upgrading Your Java EE
Applications"

Oracle Fusion Middleware
SmartUpgrade User's Guide

Set up an Oracle WebLogic Server
Environment

After you upgrade your application
source code, you can then install
and configure an Oracle WebLogic
Server environment for the
application.

When you configure the Oracle
WebLogic Server domain, you an
also configure any resources
required by the application.

Note that the SmartUpgrade
command-line tool and Oracle
JDeveloper extension can help you
identify how to configure the
required resources for your
application in Oracle WebLogic
Server.

Chapter 5, "Upgrading Your Java EE
Environment"

Oracle Fusion Middleware
SmartUpgrade User's Guide

Upgrade Your Application Clients Upgrade any client applications that
depend upon the applications you
have upgraded to Oracle WebLogic
Server.

Chapter 6, "Upgrading Application
Clients"

Table Describing the Steps in the Java EE Upgrade Process

1-4 Oracle Fusion Middleware Upgrade Guide for Java EE

Configure a Web Tier Optionally, install and configure a
Web tier to route requests to your
test and production environments.

If you were using Oracle HTTP
Server or Oracle Web Cache in
Oracle Application Server 10g, then
you can upgrade your Oracle HTTP
Server and Oracle Web Cache
configuration using the Oracle
Fusion Middleware Upgrade
Assistant.

Chapter 7, "Upgrading a Java EE
and Web Server Environment"

Table 1–1 (Cont.) Table Describing the Steps in the Java EE Upgrade Process

Step Description More Information

Part I
Part I Preparing for a Java EE Upgrade

Part I contains the following chapters:

■ Chapter 2, "Supported Starting Point for Java EE Upgrade"

■ Chapter 3, "Introduction to Oracle WebLogic Server for OC4J Users"

2

Supported Starting Point for Java EE Upgrade 2-1

2Supported Starting Point for Java EE
Upgrade

This guide provides instructions for upgrading your Java EE applications and
environment from Oracle Application Server 10g Release 3 (10.1.3.1.0) to Oracle Fusion
Middleware 11g.

Note the following about the Oracle Application Server 10g Release 3 (10.1.3) software:

■ Oracle Application Server 10g Release 3 (10.1.3.1.0) included the components of
the Oracle SOA Suite, but provided options for installing only OC4J, or only OC4J
and Oracle HTTP Server. These "Standalone OC4J Instance" and "Integrated Web
Server and OC4J Middle Tier" topologies are the focus of this guide.

For information about upgrading your SOA environment and SOA applications,
see the Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter, and
ADF.

■ Before you begin the upgrade process, you should ensure that you have applied
the latest Oracle Application Server 10g Release 3 (10.1.3) patch set.

The 10.1.3.4 patch set was the latest patch set available at the time this guide was
published.

For a list of the latest patch sets available for your installation, refer to My Oracle
Support (formerly, OracleMetaLink):

http://support.oracle.com

Note: If you are currently running Oracle Fusion Middleware 11g,
refer to the Oracle Fusion Middleware Patching Guide, which provides
information about applying the latest Oracle Fusion Middleware
patches.

This guide, as well as the other upgrade guides available in the Oracle
Fusion Middleware 11g documentation library, provide instructions
for upgrading from Oracle Application Server 10g to the latest Oracle
Fusion Middleware 11g release.

2-2 Oracle Fusion Middleware Upgrade Guide for Java EE

3

Introduction to Oracle WebLogic Server for OC4J Users 3-1

3Introduction to Oracle WebLogic Server for
OC4J Users

In past releases, Oracle Application Server included Oracle Containers for Java EE
(OC4J), which provided an industry-standard container for developing, deploying,
and managing your Java EE applications.

For Oracle Fusion Middleware 11g, OC4J is replaced with Oracle WebLogic Server.

As a result, the core architecture of Oracle Fusion Middleware is built around the
WebLogic Server domain, which consists of an Administration Server and one or more
managed servers.

Refer to the following sections for more information:

■ Key Oracle WebLogic Server Concepts for OC4J Users

■ Oracle WebLogic Server Installation and Configuration Tools for OC4J Users

■ Oracle WebLogic Server Administration Tools for OC4J Users

■ Standards Support for OC4J and Oracle WebLogic Server

3.1 Key Oracle WebLogic Server Concepts for OC4J Users
The following sections provide some key concepts for OC4J users as they prepare to
upgrade to Oracle WebLogic Server:

■ Comparing the OC4J and Oracle WebLogic Server Architectures

■ Comparing OC4J and Oracle WebLogic Server Directory Structures

■ Understanding Oracle WebLogic Server Domains for OC4J Users

3.1.1 Comparing the OC4J and Oracle WebLogic Server Architectures
When comparing the topologies of OC4J and Oracle WebLogic Server, we can consider
two basic topologies:

■ Standalone OC4J and Standalone Oracle WebLogic Server

■ OC4J and Oracle WebLogic Server Integrated With a Web Server

■ OC4J and Oracle WebLogic Server Clustering Features

Key Oracle WebLogic Server Concepts for OC4J Users

3-2 Oracle Fusion Middleware Upgrade Guide for Java EE

3.1.1.1 Standalone OC4J and Standalone Oracle WebLogic Server
Figure 3–1 compares a typical standalone OC4J instance with a standalone Oracle
WebLogic Server domain. In both cases, HTTP requests to each are handled by built-in
HTTP listeners.

In Oracle WebLogic Server, the managed servers are similar to the OC4J instances you
configured in Oracle Application Server 10g. However, Oracle WebLogic Server
always provides a dedicated administration server, which hosts the Oracle WebLogic
Server Administration Console. The Administration Console provides a Web-based
management tool for Oracle WebLogic Server, similar to the Application Server
Control used to manage OC4J.

Note that you can configure a simple Oracle WebLogic Server development domain
with no managed servers. In such an environment, you would deploy your
applications to the administration server. However, more typically, the administration
server is dedicated to hosting the Administration Console and you deploy your
applications to one or more managed servers within the domain.

Figure 3–1 Comparison of Oracle WebLogic Server and OC4J Standalone Architecture

3.1.1.2 OC4J and Oracle WebLogic Server Integrated With a Web Server
Figure 3–2 shows a typical Oracle Application Server 10g Release 2 (10.1.2) Integrated
Web Server and OC4J middle tier installation and how it compares to a similar
topology in Oracle Fusion Middleware 11g.

In Oracle Fusion Middleware, you must install and configure a separate Web tier
installation, using the installation and configuration tools available on the WebTier and
Utilities CD-ROM.

Key Oracle WebLogic Server Concepts for OC4J Users

Introduction to Oracle WebLogic Server for OC4J Users 3-3

Figure 3–2 Comparison of Oracle WebLogic Server and OC4J with a Front-End Web
Server

3.1.1.3 OC4J and Oracle WebLogic Server Clustering Features
Oracle Application Server 10g Release 3 (10.1.3) introduced the following concepts
related to clustering:

■ The Oracle Application Server cluster topology, which enables multiple Oracle
Application Server instances to be managed from a single, active Oracle Enterprise
Manager Application Server Control.

From the Cluster Topology page in Application Server Control, you can view the
multiple Oracle Application Server instances in the cluster topology and perform
management tasks on those instances. The different instances within the cluster
topology communicate via Oracle Notification Service (ONS).

■ OC4J Groups, which provides a mechanism for grouping OC4J instances within
the cluster topology and performing group-wide tasks on all the OC4J instances at
once.

For example, after you created a group of OC4J instances, you can deploy an
application to the group or modify data sources for the group. One key restriction
is that each OC4J within the group must be identical in configuration to the other
OC4J instances in the group.

■ OC4J Application Clustering, which is the habilitate to communicate state
information among applications deployed to different OC4J instances within the
cluster topology.

For more information about how these OC4J features compare to Oracle WebLogic
Server, refer to the following:

■ Table 3–1 compares the OC4J clustering features with those available in Oracle
WebLogic Server.

■ Figure 3–3 illustrates differences between OC4J and Oracle WebLogic Server
clustering.

Key Oracle WebLogic Server Concepts for OC4J Users

3-4 Oracle Fusion Middleware Upgrade Guide for Java EE

Figure 3–3 Comparison of OC4J Groups and Oracle WebLogic Server Clusters

3.1.2 Comparing OC4J and Oracle WebLogic Server Directory Structures
The directory structure of a typical Oracle WebLogic Server domain differs from the
directory structure of an Oracle Application Server 10g instance in several ways.

When you install Oracle Application Server 10g, you create a single Oracle home that
contains the j2ee directory. The OC4J-specific configuration files and log files reside
inside the j2ee directory.

In Oracle WebLogic Server, the installation is enclosed within a Middleware home.
Within the Middleware home, the installer creates the Oracle WebLogic Server home
directory. When you configure a domain, the Oracle WebLogic Server Configuration
Wizard creates a new domain inside the user_projects directory.

Figure 3–4 shows the difference between the Oracle WebLogic Server and OC4J
directory structures.

Table 3–1 Comparing OC4J Clustering Features with Oracle WebLogic Server

OC4J Feature
Oracle WebLogic Server
Equivalent Feature More Information

Oracle Application Server
cluster topology

Oracle WebLogic Server
domain

"Understanding WebLogic
Server Domains" in the Oracle
Fusion Middleware
Understanding Domain
Configuration for Oracle
WebLogic Server

OC4J groups Oracle WebLogic Server
clusters

"Understanding WebLogic
Server Clustering" and
"Cluster Architectures" in
Oracle Fusion Middleware
Using Clusters for Oracle
WebLogic Server

OC4J application clustering Oracle WebLogic Server
HTTP Session State
Replication

"HTTP Session State
Replication" in Oracle Fusion
Middleware Using Clusters for
Oracle WebLogic Server

Key Oracle WebLogic Server Concepts for OC4J Users

Introduction to Oracle WebLogic Server for OC4J Users 3-5

Figure 3–4 Comparison of the Oracle WebLogic Server and OC4J Directory Structures

3.1.3 Understanding Oracle WebLogic Server Domains for OC4J Users
The following sections are designed to help OC4J users learn about the features and
capabilities of Oracle WebLogic Server domains:

■ Basic Content and Organization of a Domain

■ Additional Facts About Oracle WebLogic Server Domains

3.1.3.1 Basic Content and Organization of a Domain
Depending on whether you are using 10g Release 2 (10.1.2) or 10g Release 3 (10.1.3),
you organize your Oracle Application Server 10g environment in one of two ways:

■ In Oracle Application Server 10g Release 3 (10.1.3), you organize your applications
servers and OC4J instances into a cluster topology.

■ In Oracle Application Server 10g Release 2 (10.1.2), you can add multiple Oracle
Application Server instances into a farm and your OC4J instances into Oracle
Application Server Clusters.

Oracle Fusion Middleware 11g uses an entirely different mechanism to organize your
environment. The Oracle WebLogic Server environment is grouped into logical groups
called domains. These domains consist of the following:

■ A single administration server, which is used to manage the domain.

■ One or more managed servers, which are used to deploy the Oracle Fusion
Middleware Java components, as well as your custom Java EE applications.

In previous versions of Oracle Application Server 10g, you installed, created, and
configured OC4J instances, and one or more Java Virtual Machines (JVMs) per OC4J
instance.

In Oracle Fusion Middleware 11g, you configure an Oracle WebLogic Server domain
with one administration server and one or more managed servers to deploy your Java
EE applications.

Key Oracle WebLogic Server Concepts for OC4J Users

3-6 Oracle Fusion Middleware Upgrade Guide for Java EE

3.1.3.2 Additional Facts About Oracle WebLogic Server Domains
The following sections provide more detailed information about Oracle WebLogic
Server domains that can be helpful as you transition from an OC4J environment to an
Oracle WebLogic Server environment:

■ A WebLogic Server Installation Can be Used to Configure Multiple Domains

■ A WebLogic Server Instance Is Always Associated With a Single Java Virtual
Machine Process

■ A WebLogic Server Instance Processes All Application Requests on the Same Port
by Default

■ A WebLogic Server Instance Is Always Configured With an HTTP Listener and
Does Not Support AJP

3.1.3.2.1 A WebLogic Server Installation Can be Used to Configure Multiple Domains As
shown in Figure 3–4, the binary and configuration files associated with the OC4J
instances you create are stored in a subdirectory structure inside the Oracle
Application Server 10g Oracle home (the j2ee directory structure). Not only is this
direct file system association required, but the relationship between the OC4J binaries
and the configuration of instances is at a per instance level.

In contrast, Oracle WebLogic Server provides a clear separation between the installed
software and its different configuration instances. A single Oracle WebLogic Server
installation can be used to create multiple domains, each with a different set of servers.

By default, the Oracle WebLogic Server configuration wizard assumes that you will
place the configuration files for each domain inside the user_projects/domains
directory. However, the files associated with a domain can reside anywhere within the
file system. For a WebLogic Server instance to run from a domain directory, the only
requirement is that the Oracle WebLogic Server directory must be accessible.

Note also that in the WebLogic Server model, the relationship between the WebLogic
Server binaries and the configuration of instances is at a per domain (set of instances)
level.

3.1.3.2.2 A WebLogic Server Instance Is Always Associated With a Single Java Virtual Machine
Process OC4J executes on the Java Virtual Machine (JVM) of the standard Java
Development Kit (JDK). By default, each OC4J instance uses one JVM. However, you
can configure an OC4J instance so it runs on multiple JVMs. You can configure the
OC4J instance in this manner using the numproc property or by using the Application
Server Control console.

When you configure an OC4J instance to run on multiple JVMs, the OC4J instance is
essentially running on multiple processes. This can improve performance and provide
a level of fault tolerance for your deployed applications. However, multiple JVMs also
require additional hardware resources to run efficiently.

There is no equivalent setting or capability in Oracle WebLogic Server. Instead, each
server always runs on a single Java Virtual Machine. However, you can obtain the
same capability as the OC4J numproc setting by increasing the number of managed
servers running on the same host and within the domain.

3.1.3.2.3 A WebLogic Server Instance Processes All Application Requests on the Same Port by
Default An OC4J instance uses a different set of listen ports for each protocol for which
it can accept requests. OC4J uses the concept of OC4J Web sites to configure specific
HTTP, HTTPS, AJP, or AJPS ports (or port range) on each OC4J instance. Similarly,

Oracle WebLogic Server Installation and Configuration Tools for OC4J Users

Introduction to Oracle WebLogic Server for OC4J Users 3-7

dedicated ports (and port ranges) can be configured on an OC4J instance for RMI and
JMS traffic.

The WebLogic Server request port and protocol management model is by default
different from OC4J’s in two important ways:

■ First, an Oracle WebLogic Server instance is configured to have only two listen
ports for incoming application requests: one port for accepting non-encrypted
requests (which has to be set) and the other for accepting SSL encrypted requests
(which is optional).

■ Second, these ports are configured to accept requests for all supported protocols as
opposed to being dedicated to a specific one as is the case with OC4J instances.

Although in general, this default listening port model is sufficient for a majority of use
cases, Oracle WebLogic Server offers a feature called network channels, which allows
you to configure a WebLogic Server instance with additional ports dedicated to
specific protocols. This feature can be used for the special use cases where such a
configuration is required.

3.1.3.2.4 A WebLogic Server Instance Is Always Configured With an HTTP Listener and Does Not
Support AJP One of the supported OC4J configurations is a topology where a front-end
Web server (in most cases, Oracle HTTP Server) is configured to receive incoming
HTTP requests. The requests are then routed from Oracle HTTP Server to the
appropriate OC4J instance via the AJP protocol. In this configuration, the OC4J
instance does not receive HTTP requests directly and no HTTP listener is configured
on the OC4J instance.

In contrast, an Oracle WebLogic Server instance must always accept HTTP requests
and has no support for AJP. However, WebLogic Server domains can be (and
frequently are) fronted by a Web tier for security and scalability purposes. A number
of Web servers, including Oracle HTTP Server, are certified to act as a Web tier to
servers within a WebLogic Server domain.

For more information, see Chapter 7, "Upgrading a Java EE and Web Server
Environment".

3.2 Oracle WebLogic Server Installation and Configuration Tools for
OC4J Users

Unlike Oracle Application Server 10g, Oracle WebLogic Server separates the tasks of
installing and configuring your environment.

In Oracle Application Server 10g, you use Oracle Universal Installer to install and
configure your Oracle Application Server environment, including the OC4J instances
within that environment.

With Oracle WebLogic Server, you use two separate tools to install and configure your
environment:

■ The Oracle WebLogic Server installer, which you use to create the Middleware
home and place the necessary Oracle WebLogic Server files on disk, in preparation
for configuring your Oracle WebLogic Server domains.

■ The Oracle WebLogic Server Configuration Wizard, which you use to create and
configure your Oracle WebLogic Server domains.

This separation of installation and configuration tasks allows you create multiple
domains from a single Oracle WebLogic Server instance, as described in
Section 3.1.3.2.1.

Oracle WebLogic Server Administration Tools for OC4J Users

3-8 Oracle Fusion Middleware Upgrade Guide for Java EE

3.3 Oracle WebLogic Server Administration Tools for OC4J Users
The following sections compare the administrations tools available for managing OC4J
and Oracle WebLogic Server, as well as a summary of how you perform some typical
management tasks in Oracle WebLogic Server:

■ Comparison of OC4J and Oracle WebLogic Server Administration Tools

■ Typical Oracle WebLogic Server Administration Tasks for OC4J Users

3.3.1 Comparison of OC4J and Oracle WebLogic Server Administration Tools
The tools you use to administer an Oracle WebLogic Server domain are different than
those you use to administer an OC4J-based environment:

■ Table 3–2 compares the equivalent administration tools for the two products.

■ Table 3–3 describes additional administration tools not available for OC4J.

For a complete list of the Oracle WebLogic Server administration tools, see "Summary
of System Administration Tools and APIs" in Introduction to Oracle WebLogic Server.

Table 3–2 Comparison of OC4J and Oracle WebLogic Server Administration Tools

10g Release 3 (10.1.3)
Administration Tool

Equivalent Oracle WebLogic
Server Administration Tools More Information

Oracle Enterprise Manager
Application Server Control

Oracle WebLogic Server
Administration Console

Note, that an additional Web-based
management tool called Oracle
Enterprise Manager Fusion
Middleware Control is also
available. You use Fusion
Middleware Control to manage the
farm and the OPMN-managed
components of the farm.

"Overview of Oracle Fusion
Middleware Administration Tools"
in the Oracle Fusion Middleware
Administrator's Guide

admin_client.jar WLST (Oracle WebLogic Server
command-line scripting tool)

"Getting Started Using the Oracle
WebLogic Scripting Tool (WLST)" in
the Oracle Fusion Middleware
Administrator's Guide

opmnctl opmnctl

Note that OPMN is supported in
Oracle Fusion Middleware 11g, but
only for managing specific Oracle
Fusion Middleware system
components.

For other configuration tasks in
Oracle Fusion Middleware 11g, such
as administering the managed
servers in a domain, you use WLST.

"Getting Started Using Oracle
Process Manager and Notification
Server" in the Oracle Fusion
Middleware Oracle Process Manager
and Notification Server
Administrator's Guide

Oracle WebLogic Server Administration Tools for OC4J Users

Introduction to Oracle WebLogic Server for OC4J Users 3-9

3.3.2 Typical Oracle WebLogic Server Administration Tasks for OC4J Users
The following sections describe some typical administration tasks and you perform
them in Oracle WebLogic Server:

■ Starting and Stopping Servers

■ Performing Diagnostics on a Domain

■ Configuring and Tuning Thread Pools

3.3.2.1 Starting and Stopping Servers
You can start and stop OC4J instances using Application Server Control or the OPMN
command line (opmnctl). Similarly, you can start and stop WebLogic server instances
using the Oracle WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST).

Additionally, WebLogic server instances can also be started through the start-up
scripts available in the bin directory of the domain directory. These scripts include the
startWebLogic script for starting the Administration server and the
startManagedWebLogic script for starting the managed servers in a domain.

For more information, see Oracle Fusion Middleware Managing Server Startup and
Shutdown for Oracle WebLogic Server.

3.3.2.2 Performing Diagnostics on a Domain
The diagnostics capabilities of Oracle WebLogic Server are provided through the
WebLogic Diagnostics Framework (WLDF).

For Oracle Fusion Middleware 11g, WLFD is among a variaty of tools and processes
you can use to monitor and perform diagnostics on your Oracle Fusion Middleware
environment. Those tools and processes include the Dynamic Monitoring Service
(DMS) and the Oracle Fusion Middleware Diagnostic Framework. Applications that
currently use DMS can continue to do so in Oracle Fusion Middleware 11g.

The WLDF features for Oracle WebLogic Server include dynamic code
instrumentation, image capture, watches, and notifications. These features provide

Table 3–3 Additional Oracle WebLogic Server Administration Tools

Administration Tool Description

weblogic.Deployer Oracle WebLogic Server provides a packaged deployment tool,
weblogic.Deployer, to provide deployment services for WebLogic Server for ears,
wars, rars, jars and other deployment artifact. Any deployment operation that can be
implemented using the WebLogic deployment API is implemented, either in part or
in full, by weblogic.Deployer.

This tool provides similar capabilities to OC4J admin_client.jar for Java EE artifact
deployment. In earlier OC4J releases deployment to OC4J was provided by admin.jar
and the dcmctl tooling.

Ant tasks Oracle WebLogic Server provides a set of administration Ant tasks that allow for the
execution of WebLogic Server administrative processes within Apache Ant scripts.
These Ant tasks perform a similar type of function as the OC4J Ant tasks.

See also: "Understanding the Diagnostic Framework" in the Oracle
Fusion Middleware Administrator's Guide

"Oracle Dynamic Monitoring Service" in the Oracle Fusion Middleware
Performance and Tuning Guide

Oracle WebLogic Server Administration Tools for OC4J Users

3-10 Oracle Fusion Middleware Upgrade Guide for Java EE

extended application diagnostics capabilities which can greatly reduce the total cost of
ownership of maintaining Java EE applications.

Furthermore, WLDF capabilities can be exposed as custom dashboards within the
Oracle WebLogic Server Administration Console through the WLDF Console
Extension features.

For more information, see Oracle Fusion Middleware Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

Note that if you are using third-party application management tools, your third-party
tools can typically be updated and continue operating against the upgraded
applications running on Oracle WebLogic Server.

3.3.2.3 Viewing Log Files for a Domain
Oracle WebLogic Server Logging Services provides a comprehensive set of logging
features similar to the Oracle Application Server 10g logging capabilities. The
capabilities of the Oracle Diagnostics Logging (ODL) framework can also been
integrated into Oracle WebLogic Server using the Java Required Files (JRF) template
available in Oracle Fusion Middleware 11g.

For more information, see Section 5.1.4, "Using the Java Required Files (JRF) Domain
Template".

As a result, if an application is using the ODL framework directly for logging, it does
not require modification before you deploy it to Oracle WebLogic Server. The JRF ODL
integration into WebLogic Server is as follows:

■ ODL log messages are sent to a log file that is kept on the file system separate from
the Oracle WebLogic Server log files. they are stored in the following location:

domain_directory/servers/server_name/logs/server_name-diagnostic.log

■ Critical messages (errors) are logged both in the ODL and Oracle WebLogic Server
domain log file.

■ ODL log query and configuration JMX MBeans are available from the
Administration server of the domain.

3.3.2.4 Configuring and Tuning Thread Pools
OC4J Server instances use different thread pools for different purposes (system, HTTP,
and JCA are the default startup thread pools). The parameters of each thread pool
(such as maximum and minimum thread counts) can be individually tuned to achieve
an optimal application request throughput for a particular environment.

A Oracle WebLogic Server instance has by default a single thread pool, the thread
count of which is automatically tuned to achieve maximum overall throughput. All
requests are enqueued upon arrival in a common queue and prioritized according to
administratively configured goals such as an application’s desired response time or its
fair-share usage of all available threads relative to other applications.

This Oracle WebLogic Server feature--referred to as WebLogic Work
Managers--effectively allows Oracle WebLogic Server instances to self-tune their
thread counts for optimal request processing.

For more information, see "Using Work Managers to Optimize Scheduled Work" in
Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.

Standards Support for OC4J and Oracle WebLogic Server

Introduction to Oracle WebLogic Server for OC4J Users 3-11

3.4 Standards Support for OC4J and Oracle WebLogic Server
Table 3–4 compares the Java standards supported by OC4J and Oracle WebLogic
Server.

Note that this table is provided for comparison purposes only. For the most up-to-date
information about the standards supported by Oracle WebLogic Server, refer to the
Oracle WebLogic Server documentation and to the Oracle WebLogic Server
information available on the Oracle Technology Network (OTN).

Table 3–4 Comparison of Java Standards Supported by OC4J and Oracle WebLogic Server

Standard Version Supported by OC4J
Version Supported by Oracle
WebLogic Server

Java SE 6.0 6.0

Java EE 1.4/5.0 5.0

JSP 1.1 to 2.0 1.1 to 2.1

JSF 1.1 1.1 and 1.2

Servlet 2.2 to 2.5 2.2 to 2.5

EJB 2.1 and 3.0 2.1 and 3.0

JAX-WS Not Supported 2.1

JAX-RPC 1.1 1.1

JMS 1.0.2b and 1.1 1.0.2b and 1.1

JNDI 1.2 1.2

JCA 1.5 1.5

JTA 1.1 1.1

JMX 1.2 1.2

Java EE Deployment 1.0 1.2

Java EE Management 1.0 1.1

JDBC 3.0 3.0

Standards Support for OC4J and Oracle WebLogic Server

3-12 Oracle Fusion Middleware Upgrade Guide for Java EE

Part II
Part II Upgrading Your Java EE Applications and

Environment

Part II contains the following chapters:

■ Chapter 4, "Upgrading Your Java EE Applications"

■ Chapter 5, "Upgrading Your Java EE Environment"

■ Chapter 6, "Upgrading Application Clients"

■ Chapter 7, "Upgrading a Java EE and Web Server Environment"

4

Upgrading Your Java EE Applications 4-1

4Upgrading Your Java EE Applications

This chapter summarizes the general tasks you will likely need to perform when
upgrading your OC4J applications and redeploying them on Oracle WebLogic Server.

This chapter contains the following sections:

■ Task 1: Verify that Your Application Deploys and Works Successfully on OC4J

■ Task 2: Select Your Development Tools

■ Task 3: Verify That Your Application Supports Java Development Kit (JDK) 6

■ Task 4: Upgrade the Application Deployment Descriptors

■ Task 5: Review Oracle WebLogic Server API Support

■ Task 6: Upgrade the Application Web Services

4.1 Task 1: Verify that Your Application Deploys and Works Successfully
on OC4J

Before you upgrade any Oracle Application Server 10g applications to Oracle Fusion
Middleware 11g, you should first make sure that the application is currently deployed
and running successfully on Oracle Application Server 10g.

Also, make note of any application-specific configuration changes you performed to
the OC4J instance where you deployed the application. For example, if the application
requires any specific data sources, JMS servers, or other resources, you will need to
make similar configuration changes to the Oracle WebLogic Server domain, as
described later in this chapter.

4.2 Task 2: Select Your Development Tools
Refer to the following sections for information that can help you select the best tools
for developing your Java EE applications for the Oracle WebLogic Server and Oracle
Fusion Middleware platform:

■ General Guidelines for Selecting Your Development Tools

■ Using the SmartUpgrade Oracle JDeveloper Extension and Command-Line Tool

4.2.1 General Guidelines for Selecting Your Development Tools
For Java EE applications that do not take advantage of Oracle technologies, such as the
Oracle Application Development Framework (ADF), Oracle Metadata Services (MDS),
Oracle SOA Suite, or Oracle WebCenter, you can make the code changes using any
development tools you are accustomed to using.

Task 3: Verify That Your Application Supports Java Development Kit (JDK) 6

4-2 Oracle Fusion Middleware Upgrade Guide for Java EE

However, if you want to use any Oracle technologies, Oracle recommends the use of
Oracle JDeveloper, an integrated development environment (IDE) that makes it much
easier and efficient to develop, test, and deploy ADF, SOA, and WebCenter
applications for Oracle Fusion Middleware.

4.2.2 Using the SmartUpgrade Oracle JDeveloper Extension and Command-Line Tool
Besides offering the ability to easily develop applications that take advantage of Oracle
techologies, such as Oracle ADF, Oracle SOA, and Oracle WebCenter, Oracle
JDeveloper also provides an extension that can help you upgrade your OC4J
applications to Oracle WebLogic Server.

The SmartUpgrade extension allows you to use Oracle JDeveloper to analyze an
existing enterprise archive (EAR) file and generate a SmartUpgrade report that steps
you through a series of "findings". Each finding provides advice for how to modfiy the
applicatoin so you can successfully deploy it on Oracle WebLogic Server.

For more information, refer to the Oracle Fusion Middleware SmartUpgrade User's Guide.

4.3 Task 3: Verify That Your Application Supports Java Development Kit
(JDK) 6

Oracle Fusion Middleware 11g supports JDK SE 6. Before you redeploy your
application on Oracle WebLogic Server, verify that the Java source code in your
application is compatible with JDK 6.

For more information, refer to the resources available on the following Sun
Microsystems Web site:

http://java.sun.com/javase/6/

4.4 Task 4: Upgrade the Application Deployment Descriptors
Both OC4J and Oracle WebLogic Server support not only the Java EE standard
deployment descriptors, but also corresponding proprietary descriptors. However,
when you redeploy an OC4J application on Oracle WebLogic Server, you must modify
the application descriptors, such as application.xml and web.xml, to comply with
the requirements of Oracle WebLogic Server.

Use the following sections to learn more about upgrading your application
deployment descriptors:

■ Comparison of OC4J and Oracle WebLogic Server Deployment Descriptors

■ Guidelines and Resources for Upgrading Deployment Descriptors for Oracle
WebLogic Server

4.4.1 Comparison of OC4J and Oracle WebLogic Server Deployment Descriptors
If you are familiar with the standard deployment descriptors and the OC4J-specific
descriptors, you can use Table 4–1 to locate the equivalent deployment descriptor files
in the Oracle WebLogic Server environment.

Task 4: Upgrade the Application Deployment Descriptors

Upgrading Your Java EE Applications 4-3

4.4.2 Guidelines and Resources for Upgrading Deployment Descriptors for Oracle
WebLogic Server

To prepare your applications for WebLogic Server deployment, you must remove
OC4J-specific deployment descriptors and replace them with their equivalent
WebLogic Server specific settings.

For a successful deployment, examine each of the deployment descriptors and
perform one the following actions for each deployment descriptor feature used by the
application:

■ If the OC4J deployment descriptor feature has a direct mapping within the
equivalent WebLogic Server specific deployment descriptor, then use the
equivalent WebLogic Server descriptor with the appropriate elements and values.

■ If the OC4J deployment descriptor feature does not have a direct mapping, then
review the appropriate Oracle WebLogic Server documentation.

Features that are not directly mapped to Oracle WebLogic Server deployment
descriptors can often be achieved by configuring the WebLogic domain
accordingly.

Table 4–2 provides a list of documentation resources that will help you upgrade your
deployment descriptors to Oracle WebLogic Server.

Table 4–1 J2EE, OC4J, and WebLogic Server Deployment Descriptors

J2EE Standard Descriptor OC4J Proprietary Descriptor WebLogic Proprietary Descriptor

application.xml orion-application.xml weblogic-application.xml

web.xml orion-web.xml weblogic.xml

ejb-jar.xml orion-ejb-jar.xml weblogic-ejb-jar.xml

application-client.xml orion-application-client.xml weblogic-appclient.xml

ra.xml oc4j-ra.xml weblogic-ra.xml

webservices.xml oracle-webservices.xml weblogic-webservices.xml

Table 4–2 Documentation Resources for Upgrading Deployment Descriptors to Oracle WebLogic Server

When upgrading to this WebLogic-Specific
Deployment Descriptor... Refer to these documentation resources...

weblogic-application.xml "Enterprise Application Deployment Descriptor Elements" in
Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server

weblogic.xml Appendix A, "orion-web.xml and orion-ejb-jar.xml Upgrade
Reference" provides upgrade advice for each of the deployment
descriptor elements in the orion-web.xml and
orion-ejb.jar.xml files.

weblogic-ejb-jar.xml Appendix A, "orion-web.xml and orion-ejb-jar.xml Upgrade
Reference" provides upgrade advice for each of the deployment
descriptor elements in the orion-web.xml and
orion-ejb.jar.xml files.

weblogic-appclient.xml "Client Application Deployment Descriptor Elements" in Oracle
Fusion Middleware Programming Stand-alone Clients for Oracle
WebLogic Server

weblogic-ra.xml "Configuring the weblogic-ra.xml File" in Oracle Fusion Middleware
Programming Resource Adapters for Oracle WebLogic Server

Task 5: Review Oracle WebLogic Server API Support

4-4 Oracle Fusion Middleware Upgrade Guide for Java EE

4.4.3 About Security Elements in Deployment Descriptor Files
If you use the suggested procedures in Section 5.3.6, "Configuring Security on Oracle
WebLogic Server", then the security configurations, including authentication methods,
security constraints, and EJB method permissions, that are contained in standard Java
EE application deployment descriptors, such as web.xml and ejb-jar.xml, can
remain untouched for upgrade and will continue to function when the application is
deployed to Oracle WebLogic Server.

For security configurations specified in OC4J specific descriptors (for example,
security role mappings), see the WebLogic Server Security documentation to map each
configuration to an element within the equivalent Oracle WebLogic Server deployment
descriptor described in Section 4.4.1, "Comparison of OC4J and Oracle WebLogic
Server Deployment Descriptors".

4.4.4 Upgrading Deployment Plans
Deployment plans are a standard Java EE server capability supported by both Oracle
WebLogic Server and OC4J. However, deployment plans are not portable between
application servers. When you upgrade from OC4J to Oracle WebLogic Server, you
must regenerate and save your application deployment plans saved as part of the
deployment process on Oracle WebLogic Server. Alternatively, you can construct new
deployment plans using the weblogic.PlanGenerator command line tool.

For more information, see "Overview of weblogic.PlanGenerator" in Oracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server.

4.5 Task 5: Review Oracle WebLogic Server API Support
Before you can redeploy your Oracle Application Server 10g application on Oracle
WebLogic Server, you must review your applications to identify the application
programming interfaces referenced by the source code.

For more information, refer to the following sections:

■ APIs Available With the Java Required Files (JRF) Domain Template

■ Other Oracle WebLogic Server API Requirements

4.5.1 APIs Available With the Java Required Files (JRF) Domain Template
Oracle Fusion Middleware11g provides an Oracle WebLogic Server domain template,
referred to as the Oracle Java Required Files (JRF) template. You can use this template
to create (or extend) an Oracle WebLogic Server domain. The resulting domain
contains an updated version of some of the key capabilities and features of Oracle
Application Server 10g.

For more information, see Section 5.1.4, "Using the Java Required Files (JRF) Domain
Template".

weblogic-webservices.xml "WebLogic Web Service Deployment Descriptor Element
Reference" in Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server

Table 4–2 (Cont.) Documentation Resources for Upgrading Deployment Descriptors to Oracle WebLogic

When upgrading to this WebLogic-Specific
Deployment Descriptor... Refer to these documentation resources...

Task 5: Review Oracle WebLogic Server API Support

Upgrading Your Java EE Applications 4-5

Specifically, the JRF template enables support for the following Oracle Application
Server features in Oracle Fusion Middleware 11g:

■ Dynamic Monitoring System (DMS)

■ Diagnostics and Logging Framework (ODL)

■ Oracle HTTP Client

■ Oracle Java Object Cache

■ Oracle XML

■ Oracle Security Developer Tools

■ Oracle Platform Security Services (OPSS)

■ Oracle Globalization Development Kit

Applications that use these APIs can take advantage of a JRF-extended domain and
will not require any modification beyond those necessary as a result of potential
updates to the APIs.

For more information, see Chapter 5, "Upgrading Your Java EE Environment".

4.5.2 Other Oracle WebLogic Server API Requirements
Table 4–3 provide a summary of additional Oracle Application Server 10g APIs and a
summary of how they are affected by an upgrade to Oracle Fusion Middleware 11g.

Table 4–3 Other API Changes for Oracle Fusion Middleware 11g

API Description and Actions Required More Information

Oracle JAZN (Java
Authorization)

The JRF domain template provided with
Oracle Fusion Middleware 11g provides an
updated and equivalent set of features
provided by the Oracle Platform Security
Services (OPSS) API.

Applications that currently use the Oracle
JAZN API for security management must be
updated to use OPSS so that they can be
deployed to a JRF-extended Oracle
WebLogic Server domain as part of the
upgrade.

"Introduction to Oracle Platform
Security Services" in the Oracle
Fusion Middleware Application
Security Guide

Oracle TopLink You can continue to use Oracle Toplink by
ensuring that the target Oracle WebLogic
Server domain is configured to use Oracle
TopLink as the JPA persistence provider.

Oracle WebLogic Server is certified by
Oracle to fully support Oracle TopLink.

"Integrating TopLink with Oracle
WebLogic Server" in the Oracle
Fusion Middleware Developer's Guide
for Oracle TopLink

Oracle JSP Tag Libraries
(ojsputil.jar, jstl.jar)

You can continue to use these tag libraries
by ensuring that the Oracle Application
Server 10g TLD and JAR files associated
with the Oracle JSP tag libraries remain (or
if not already there, are placed) in the
following directories of the WAR file:

■ WEB-INF/tld

■ WEB-INF/lib

Not applicable.

Task 6: Upgrade the Application Web Services

4-6 Oracle Fusion Middleware Upgrade Guide for Java EE

4.6 Task 6: Upgrade the Application Web Services
To upgrade your Web services from OC4J to Oracle WebLogic Server, refer to the
following sections:

■ General Guidelines for Upgrading to Oracle WebLogic Server JAX-RPC and
JAX-WS Web Services

■ Generating Oracle WebLogic Server Web Services From an OC4J WSDL

■ Web Services Specifications Supported by OC4J and Oracle WebLogic Server

4.6.1 General Guidelines for Upgrading to Oracle WebLogic Server JAX-RPC and
JAX-WS Web Services

In general, to upgrade your Web services from OC4J to Oracle WebLogic Server, you
must upgrade your application to use the equivalent Java Web services API on
WebLogic Server:

Oracle Web Cache
Invalidation

The Web Cache Invalidation API can
continue to be used by ensuring that the
appropriate OracleAS 10g jar file is available
to the application when deployed to
WebLogic Server.

An updated, but fully backward compatible,
version of this API is also available in as
part of the JRF domain template.

Section 4.5.1, "APIs Available With
the Java Required Files (JRF)
Domain Template"

OracleAS Web Services

Oracle Web Services Proxy

Oracle Web Services SOAP

Oracle Web Services UDDI
Client

Any application using OracleAS Web
Services will require modification to use the
equivalent set of Oracle Fusion Middleware
or WebLogic Server APIs and features. More
specifically:

■ Applications using the OracleAS Web
Services, Oracle Web Services Proxy, or
Oracle Web Services SOAP API must be
modified to use the standard based
(JAX-RPC or JAX-WS) Web Services
APIs of WebLogic Server.

■ Applications using the Oracle Web
Services UDDI Client API must be
modified to use the UDDI v1, v2, or v3
compliant Oracle Service Registry
UDDI client API.

Oracle Fusion Middleware Introducing
WebLogic Web Services for Oracle
WebLogic Server

OC4J Job Scheduler Oracle provides an upgrade and migration
path for the OC4J Job Scheduler to the
Oracle Fusion Middleware Enterprise
Scheduler (ESS).

Oracle Ultra Search vs Oracle Secure
Enterprise Search, Frequently Asked
Questions, which is available in PDF
format on the Oracle Technology
Network (OTN).

OC4J Support for JSP Any application using this API will require
modification to use the equivalent set of
Java Standard Tag Library (JSTL) tags.

Oracle Fusion Middleware Developing
Web Applications, Servlets, and JSPs
for Oracle WebLogic Server

OC4J JMX MBeans Any application using the OC4J JMX
MBeans directly for application and
environment management purposes will
require modification to use the equivalent
set of WebLogic Server JMX MBeans.

Oracle Fusion Middleware Developing
Manageable Applications With JMX for
Oracle WebLogic Server

Table 4–3 (Cont.) Other API Changes for Oracle Fusion Middleware 11g

API Description and Actions Required More Information

Task 6: Upgrade the Application Web Services

Upgrading Your Java EE Applications 4-7

■ For most OC4J Web services applications, this means upgrading from OC4J
JAX-RPC Web services to Oracle WebLogic Server JAX-RPC Web services. In
general, the JAX-RPC upgrade process consists of re-generating the Java artifacts
on Oracle WebLogic Server to the identical underlying Java business logic using
Oracle WebLogic Server Web services tooling.

■ If you are using an older release of OC4J, where Web services standards did not
exist within Java EE, Oracle recommends that you upgrade to the Java EE 5.0
standard JAX-WS on Oracle WebLogic Server.

For more information, see:

■ "How Do I Choose Between JAX-WS and JAX-RPC?" in Oracle Fusion Middleware
Introducing WebLogic Web Services for Oracle WebLogic Server.

4.6.2 Generating Oracle WebLogic Server Web Services From an OC4J WSDL
For absolute fidelity to a specific OC4J Web services public API (its WDSL), you also
can regenerate the Web services on WebLogic Server from the OC4J WSDL and deploy
the resulting Web service on WebLogic Server. This process is referred to as the
"top-down" approach to developing Web services.

After producing the equivalent and deployable Web service artifacts on Oracle
WebLogic Server, you can then apply the equivalent quality of service (QOS)
capabilities, such as WS-Security and WS-ReliableMessaging as a secondary
administrative operation.

4.6.3 Web Services Specifications Supported by OC4J and Oracle WebLogic Server
Table 4–4 compares the Web services standard specifications supported by OC4J and
Oracle WebLogic Server. Note that Oracle WebLogic Server supports all of the Web
services standards and specifications supported by OC4J, except for WS-Reliability.

Note that this table is provided for comparison purposes only. For the most up-to-date
information about the standards supported by Oracle WebLogic Server, refer to the
Oracle WebLogic Server documentation and to the Oracle WebLogic Server
information available on the Oracle Technology Network (OTN).

Table 4–4 Web Services Specifications Supported by OC4J and Oracle WebLogic
Server

Web Services Specification OC4J Support
Oracle WebLogic Server
Support

SOAP 1.1 and 1.2 Yes Yes

WSDL 1.1 Yes Yes

WS-I 1.0 and 1.1 Yes Yes

XML Signature Yes Yes

XML Encryption Yes Yes

SAML Yes Yes

WS-Addressing Yes Yes

WS-Security Yes Yes

WS-Reliability Yes No

WS-SecurePolicy No Yes

WS-Policy No Yes

Task 6: Upgrade the Application Web Services

4-8 Oracle Fusion Middleware Upgrade Guide for Java EE

WS-PolicyAttachment No Yes

WS-Trust No Yes

WS-Conversation No Yes

WS-SecureConversation No Yes

WS-ReliableMessaging No Yes

Table 4–4 (Cont.) Web Services Specifications Supported by OC4J and Oracle
WebLogic Server

Web Services Specification OC4J Support
Oracle WebLogic Server
Support

5

Upgrading Your Java EE Environment 5-1

5Upgrading Your Java EE Environment

This chapter describes how to upgrade a basic Java EE environments. However, you
can use these instructions to develop an understanding of the upgrade process and
apply this knowledge in your planning of other upgrade scenarios.

Upgrading a basic Java EE environment involves the following key tasks:

■ Task 1: Install and Configure an Oracle WebLogic Server Development Domain

■ Task 2: Verify the New Oracle Fusion Middleware 11g Environment

■ Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

■ Task 4: Redeploy the Application on Oracle WebLogic Server

■ Task 5: Verify the Redeployed Applications

5.1 Task 1: Install and Configure an Oracle WebLogic Server
Development Domain

To test and verify your upgraded Java EE applications, you must install Oracle
WebLogic Server. The following sections describe information about installing and
configuring Oracle WebLogic Server:

■ Differences Between a Development Environment and a Test or Production
Environment

■ Installing and Configuring a Development Domain with Oracle JDeveloper

■ Installing and Configuring a Development Domain with Oracle SOA Suite,
WebCenter, or Application Developer

■ Using the Java Required Files (JRF) Domain Template

5.1.1 Differences Between a Development Environment and a Test or Production
Environment

When you are developing and upgrading your Java EE applications, you will likely
want to install a basic Oracle WebLogic Server environment that you can use for
testing your applications quickly and efficiently. This will help you frequently deploy
and test your applications as you make required code changes.

This environment differs from your test or production environment in the following
ways:

■ A development environment is typically a single-node environment. There is no
need for a Web tier or clustering capabilities to provide load-balancing or high
availability. However, the development must include the various resources (such

Task 1: Install and Configure an Oracle WebLogic Server Development Domain

5-2 Oracle Fusion Middleware Upgrade Guide for Java EE

as JDBC data sources, JMS providers, and database instances) required to support
the application during development.

Use the instructions in this chapter to configure a development environment.

■ The Oracle WebLogic Server domain you create in your development environment
can be configured in development mode, which makes it quicker and easier to
configure the resources of the domain and to deploy and redeploy applications to
test code changes. You select development mode or production mode when you
create your domain using the Oracle WebLogic Server Configuration Wizard.

For more information, see "Configure Server Start Mode and JDK" in Oracle Fusion
Middleware Creating Domains Using the Configuration Wizard.

Note that the default tuning parameters of Oracle WebLogic Server are different,
depending upon whether you are configuring a development or production
domain. For more information, see "Development vs. Production Mode Default
Tuning Values" in Oracle Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

5.1.2 Installing and Configuring a Development Domain with Oracle JDeveloper
Oracle WebLogic Server is available as part of Oracle JDeveloper Studio. As a result, if
you are using Oracle JDeveloper Studio as your integrated development environment
(IDE), you can quickly and easily install and configure an Oracle WebLogic Server
development domain as part of the Oracle JDeveloper installation.

The Oracle WebLogic Server domain you create with Oracle JDeveloper can useful as a
local development environment where you can test your applications quickly and
easily. You can also apply the Java Required Files (JRF) template to the development
domain, which will enable you to develop and test applications that take advantage of
Oracle technologies, such as the Oracle Application Development Framework.

Note, however, that an Oracle WebLogic Server domain you create with the Oracle
JDeveloper installer does have some limitations. For example:

■ It is not designed to be associated with the Oracle Fusion Middleware Web tier
components.

■ It cannot be configured to include Oracle Enterprise Manager Fusion Middleware
Control.

For complete instructions for installing and configuring Oracle WebLogic Server with
Oracle JDeveloper Studio, see "Installing the Oracle JDeveloper Studio Edition" in
Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

5.1.3 Installing and Configuring a Development Domain with Oracle SOA Suite,
WebCenter, or Application Developer

As an alternative to installing and configuring an Oracle WebLogic Server as part of a
Oracle JDeveloper installation, you can install Oracle WebLogic Server from the Oracle
WebLogic Server CD-ROM, which is part of the Oracle Fusion Middleware 11g Media
pack, or by downloading Oracle WebLogic Server from the Oracle Technology
Network (OTN).

Refer to the following sections for more information:

■ Advantages of Installing an Oracle SOA Suite, WebCenter, or Application
Developer Development Environment

■ Selecting an Oracle Fusion Middleware Software Suite

Task 1: Install and Configure an Oracle WebLogic Server Development Domain

Upgrading Your Java EE Environment 5-3

■ Steps Required to Install and Configure an Oracle SOA Suite, WebCenter, or
Application Developer Domain

5.1.3.1 Advantages of Installing an Oracle SOA Suite, WebCenter, or Application
Developer Development Environment
Using this alternative, you can:

■ Install your test environment on a separate host and then configure your local
copy of Oracle JDeveloper to connect to and deploy to the remote environment.

■ Ensure that the Oracle Application Development Framework runtime software is
available in your test domain.

■ Take advantage of Oracle Enterprise Manager Fusion Middleware Control, which
is not available as part of a domain configured with Oracle JDeveloper.

■ Use other integrated development environments besides Oracle JDeveloper to
build and test your applications.

5.1.3.2 Selecting an Oracle Fusion Middleware Software Suite
You can choose from several different Oracle Fusion Middleware software suites,
which offer a variety of runtime environments, depending on the types of applications
you plan to deploy.

In particular, you can choose from the following Oracle Fusion Middleware software
suite:

■ Application Developer, which you can use to install and configure Oracle
WebLogic Server domains that take advantage of the Oracle Application
Development Framework (Oracle ADF) and Oracle Enterprise Manager Fusion
Middleware Control.

■ Oracle SOA Suite, which provides runtime technologies required to support
Oracle SOA Suite applications you develop with Oracle JDeveloper, as well as
Oracle ADF and Fusion Middleware Control.

■ Oracle WebCenter, which provides runtime technologies for WebCenter
applications you develop with Oracle JDeveloper, as well as Oracle ADF and
Fusion Middleware Control.

5.1.3.3 Steps Required to Install and Configure an Oracle SOA Suite, WebCenter, or
Application Developer Domain
The following is a summary of the steps for installing and configuring the domain.

Note that the procedures described in this section assume you have downloaded the
latest version of Oracle WebLogic Server. For more information, refer to "Obtaining the
Latest Oracle WebLogic Server and Oracle Fusion Middleware 11g Software" in the
Oracle Fusion Middleware Upgrade Planning Guide.

1. Use the Oracle WebLogic Server installer to install the Oracle WebLogic Server
software on disk and to create the Middleware home.

2. Install the Oracle SOA Suite, WebCenter, or Application Developer Oracle home
inside the Middleware home.

3. Apply any required patches to the Oracle WebLogic Server or Oracle Fusion
Middleware home.

4. Use the Oracle Fusion Middleware Configuration Wizard to configure the domain.

Task 1: Install and Configure an Oracle WebLogic Server Development Domain

5-4 Oracle Fusion Middleware Upgrade Guide for Java EE

While using the wizard, verify that the Oracle ADF and Enterprise Manager
templates are selected.

5. Start the domain.

For complete information on installing and configuring an Oracle SOA Suite,
WebCenter, or Application Development environement, see the one of the following
installation guides:

■ Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business
Process Management Suite

■ Oracle Fusion Middleware Installation Guide for Oracle WebCenter

■ Oracle Fusion Middleware Installation Guide for Application Developer

5.1.4 Using the Java Required Files (JRF) Domain Template
When you configure Oracle WebLogic Server, you configure each domain using
domain templates. One of the domain templates available with Oracle Fusion
Middleware 11g is the Java Required Files (JRF) template.

The JRF template provides important Oracle libraries and other capabilities that
support new versions of APIs that many OC4J applications depend upon.

For information on the types of APIs in the JRF template that are important to
upgraded OC4J applications, see Section 4.5.1, "APIs Available With the Java Required
Files (JRF) Domain Template".

To create or extend a domain using the JRF template, refer to the following:

■ Creating a New Domain With the JRF Template

■ Extending an Existing Domain With the JRF Template

5.1.4.1 Creating a New Domain With the JRF Template
There are two ways to create a new domain using the JRF template:

■ Install and configure a development domain using the Oracle JDeveloper 11g
installer.

The resulting domain is automatically created using the JRF template.

■ Install and configure an Application Developer, Oracle SOA Suite, or Oracle
WebCenter domain.

When you configure any Oracle Fusion Middleware software suite, you have the
option of selecting the JRF template while running the configuration tool.

You also have the option of selecting the Oracle Enterprise Manager template,
which allows you to manage the domain with Oracle Enterprise Manager Fusion
Middleware Control.

For more information, refer to the appropriate Oracle Fusion Middleware
installation guide.

Note: You cannot configure Oracle Enterprise Manager Fusion
Middleware Control in an Oracle WebLogic Server domain created
with Oracle JDeveloper.

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

Upgrading Your Java EE Environment 5-5

5.1.4.2 Extending an Existing Domain With the JRF Template
To extend an existing domain with the JRF template, use one of the following options:

■ Use the Oracle JDeveloper 11g installer.

In the Oracle JDeveloper installer, select a custom installation and select the ADF
Runtime component. This step allows you to install the ADF runtime jar files and
domain templates to the server environment.

For more information, see the Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper.

■ Run the Oracle WebLogic Server configuration wizard from an Application
Developer, Oracle SOA Suite, or Oracle WebCenter Oracle home.

Select the option to extend the domain, and then select the JRF template when
prompted with the list of available templates.

You can also choose to apply the Oracle Enterprise Manager template, which
provides you with the ability to use Fusion Middleware Control to manage the
domain.

For more information, refer to the appropriate Oracle Fusion Middleware
installation guide.

■ Use Fusion Middleware Control or the ApplyJRF WebLogic Scripting Tool
(WLST) command to apply the JRF template to an existing WebLogic server
instance.

For more information, see "Applying Java Required Files to a Managed Server or
Cluster," in the Oracle Fusion Middleware Administrator's Guide.

5.2 Task 2: Verify the New Oracle Fusion Middleware 11g Environment
To verify that the new Oracle Fusion Middleware environment is installed and
configured and ready to use, do the following:

1. Log in to the Oracle WebLogic Administration Console, using the following URL
and the weblogic administration credentials you provided during the
configuration:

http://node_name.domain.com:7001/console

2. In the left pane of the Console, select Environment and then select Servers.

3. Review the servers that were created as part of your domain and verify that the
servers are up and running.

5.3 Task 3: Configure Oracle WebLogic Server Resources to Support
Your Applications

After you have modified your applications, you must then ensure that any services
required by the application are configured on the Oracle WebLogic Server domain.

Note: if you use Oracle JDeveloper to install and configure a Oracle
WebLogic Server domain and to apply the JRF template, Oracle
Enterprise Manager Fusion Middleware Control cannot be configured
in the domain.

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

5-6 Oracle Fusion Middleware Upgrade Guide for Java EE

The following sections provide information on the typical Oracle WebLogic Server
administration tasks that are required before you deploy an application you are
upgrading from Oracle Application Server 10g:

■ Configuring JDBC Data Sources on Oracle WebLogic Server

■ Configuring OC4J JMS Resources on Oracle WebLogic Server

■ Configuring OC4J Remote JMS Resources on Oracle WebLogic Server

■ Using Shared Libraries and Class Loading on Oracle WebLogic Server

■ Configuring Security on Oracle WebLogic Server

■ Configuring Logging on Oracle WebLogic Server

5.3.1 Configuring JDBC Data Sources on Oracle WebLogic Server
The following sections provide information about upgrading OC4J JDBC data sources
to Oracle WebLogic Server:

■ General Information About Defining Data Sources for OC4J and Oracle WebLogic
Server

■ Upgrading Application-Level OC4J Data Sources

■ Upgrading Instance and Group-Level OC4J Data Sources

■ JDBC Connection Pools and Managed Data Sources in OC4J and Oracle WebLogic
Server

5.3.1.1 General Information About Defining Data Sources for OC4J and Oracle
WebLogic Server
In general, you can create the equivalent OC4J data source configuration on WebLogic
Server, based on the database connection information, pooling requirements and JDBC
driver.

When you create a data source for an application deployed on OC4J, you can define
the data source in one of two ways:

■ For a specific OC4J instance or OC4J group where the application will be
deployed.

■ Package the data source definition as part of the application archive in a file
named data-sources.xml.

Both these methods are supported by Oracle WebLogic Server, but you must perform
some configuration tasks, either on the Oracle WebLogic Server domain or within the
application, depending on the method you use.

Just as in OC4J, a WebLogic Server JDBC data source is an object bound to a JNDI
context which provides database connectivity through a pool of JDBC connections.
Applications look up a data source in the JNDI context in order to use a database
connection from this pool.

5.3.1.2 Upgrading Application-Level OC4J Data Sources
Oracle WebLogic Server data sources are typically defined at domain level and applied
across the cluster or to specific managed servers within a domain. However, if you
have defined your OC4J data sources in the OC4J-supported data-sources.xml file
of your application archive, then you can implement a similar configuration in Oracle
WebLogic Server.

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

Upgrading Your Java EE Environment 5-7

For Oracle WebLogic Server, data sources can be packaged as a JDBC module within
the application. This provides the equivalent capability of application-level data
sources in OC4J.

For more information, see "Configuring JDBC Application Modules for Deployment"
in Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server.

5.3.1.3 Upgrading Instance and Group-Level OC4J Data Sources
If you have defined data sources for your OC4J instance or group, you must define an
equivalent set of data sources in your new Oracle WebLogic Server domain.

For each JDBC data source configured within the OC4J environment, create a new
Oracle WebLogic Server JDBC data source with the same JNDI name in the target
domain.

For more information, see "Create a JDBC Data Source" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Online Help.

Note that Oracle WebLogic Server JDBC data sources can be configured to take
advantage of Oracle Real Application Clusters (RAC). For more information, see the
Oracle Fusion Middleware High Availability Guide.

5.3.1.4 JDBC Connection Pools and Managed Data Sources in OC4J and Oracle
WebLogic Server
There are two important differences between OC4J and Oracle WebLogic Server JDBC
data source connection pooling:

■ Oracle WebLogic Server JDBC data sources have an implicit connection pool
associated with them and, therefore, you don not have to create an explicit
connection pool in the domain as you do in the OC4J environment.

■ Oracle WebLogic Server JDBC data sources always behave like managed Oracle
data sources; there is no equivalent to OC4J native data sources.

5.3.2 Configuring OC4J JMS Resources on Oracle WebLogic Server
The following sections provide information on upgrading your OC4J JMS resources to
Oracle WebLogic Server:

■ Overview of JMS Support in OC4J and Oracle WebLogic Server

■ Creating and Managing JMS Resources in OC4J and Oracle WebLogic Server

5.3.2.1 Overview of JMS Support in OC4J and Oracle WebLogic Server
OC4J provided JMS support via a set of services called Oracle Enterprise Messaging
Service (OEMS).

OEMS provides a messaging platform for building and integrating distributed
applications. It provides the framework for Oracle messaging and message integration
solutions, and is based on industry standards, such as the Java Message Service (JMS)
and J2EE Connector Architecture (J2CA).

OEMS supports three types of JMS provider persistence models:

■ In-memory

■ File-based

■ Oracle DB Advanced Queuing (AQ)

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

5-8 Oracle Fusion Middleware Upgrade Guide for Java EE

Oracle WebLogic Server provides direct equivalents for the in-memory and file-based
JMS providers.

For more information, see "Overview of JMS and WebLogic Server" in Oracle Fusion
Middleware Configuring and Managing JMS for Oracle WebLogic Server.

5.3.2.2 Creating and Managing JMS Resources in OC4J and Oracle WebLogic
Server
In OC4J, you configure JMS connection factories and destinations for a JMS server on
an individual OC4J instance. The connection factories and destinations are then
mapped to resource providers or JMS connectors.

In WebLogic Server, you create JMS resources within an WebLogic JMS module. JMS
modules are targeted to a WebLogic JMS Server within a domain. WebLogic JMS
servers provide a central point which allows for the configuration of message
persistence, durable subscribers, message paging, and quotas for their targeted JMS
destinations.

To upgrade the JMS configuration in your OC4J environment to Oracle WebLogic
Server:

1. Create a set of WebLogic JMS servers with configurations that reflect the OC4J
environment’s JMS resource providers, connectors, connection factories and
destination configurations.

2. Create a WebLogic Server JMS module for each set of JMS connection factories and
destinations with common configurations.

3. Populate the module with JMS connection factories and destinations that have the
same JNDI name as their equivalent version in OC4J.

4. Finally, target the JMS modules to the appropriate WebLogic JMS server within the
domain.

For more information, see Oracle Fusion Middleware Configuring and Managing JMS for
Oracle WebLogic Server.

5.3.3 Configuring OC4J Remote JMS Resources on Oracle WebLogic Server
In OC4J, you configure remote destinations and connection factories for third-party
JMS providers such as WebSphereMQ, Tibco, and SonicMQ as part of a JMS connector
configuration.

In Oracle WebLogic Server, you access remote destinations through the WebLogic
Server Foreign Server resources, which enable users to integrate external JMS
providers with WebLogic Server. The Foreign Server resources provide a mapping
between a domain’s JNDI tree and external remote JNDI names of JMS destinations
and connection factories.

To upgrade an OC4J external JMS provider configuration to an Oracle WebLogic
Server domain, create a JMS module that contains a foreign server. Then create a set of
foreign connection factories and foreign destinations that can serve as a proxy to the
remote destinations that need to be accessed from the domain.

For more information, see "Configuring Foreign Server Resources to Access
Third-Party JMS Providers" in the Oracle Fusion Middleware Configuring and Managing
JMS for Oracle WebLogic Server.

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

Upgrading Your Java EE Environment 5-9

5.3.4 Using Shared Libraries and Class Loading on Oracle WebLogic Server
When upgrading to Oracle WebLogic Server, you can construct an Oracle WebLogic
Server target environment that uses a class-loading configuration similar to the one
used in the OC4J source environment.

However, due to the differences between the OC4J and Oracle WebLogic Server class
loading models, it is important to develop a good understanding of Oracle WebLogic
Server application class loading prior to setting up the target Oracle WebLogic Server
configuration.

Table 5–1 summarizes the options available in Oracle WebLogic Server for application
developers who used the class loading configurations available in the OC4J
environment. The table provides a high level mapping of the main OC4J approaches to
making a class available to an application to the most comparable way of achieving
the same outcome within a WebLogic Server environment.

For more information, see "Creating Shared Java EE Libraries and Optional Packages"
in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

Table 5–1 Comparison of OC4J and Oracle WebLogic Server Class-Loading Models

OC4J Approach Comparable Oracle WebLogic Server Approach

Class is made available to the
application’s class loader through
Oracle-specific <library> element of
the deployment descriptor.

Add the class or JAR file to the application's APP-INF/classes or
APP-INF/lib directories, respectively.

For Web applications, add the class or JAR files to the application's
WEB-INF/classes or WEB-INF directories respectively.

Class is exposed to specific applications
as an OC4J shared library.

Deploy the JAR file to the Oracle WebLogic Server instance or cluster as
a WebLogic Server shared library.

Note that there are some important differences in the concept of shared
libraries between OC4J and WebLogic:

■ First, WebLogic Server shared libraries must be referenced from the
applications using them; there is no way of forcing all deployed
applications to use a shared library. (See the information below for
information on how to achieve this in an Oracle WebLogic Server
domain.)

■ Second, this referencing essentially exports the content of the
shared library to the application's class loader's classpath, as
opposed to making it available within a dedicated class loader--as a
child of the system class loader--as is the case in OC4J.

■ Finally, WebLogic Server shared libraries can be an EAR, WAR, or
JAR file and the scope of their inclusion within the application is
controlled by the scope of the deployment descriptor
(weblogic-application.xml or weblogic.xml) that
references the archive.

Class is exposed to all applications on
all OC4J instances by either referencing
the class in the default application's
application.xml within the Oracle
home or by dropping of the JAR file
into the ORACLE_HOME/applib
directory.

Place the JAR file in the domain directory's /lib sub-directory. This
will ensure that the JAR file's class is available (within a separate system
level classloader) to all applications running on WebLogic Server
instances in the domain.

Class is added to the classpath of the
OC4J instance and made available to
the entire server instance through the
system class loader.

Configure the Oracle WebLogic Server instance so either the POST_
CLASSPATH or PRE_CLASSPATH environment variables are set prior to
server start-up.

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

5-10 Oracle Fusion Middleware Upgrade Guide for Java EE

5.3.5 Configuring Startup and Shutdown Classes
Any startup or shutdown class configured within the source OC4J environment
should be converted to a set of Oracle WebLogic Server startup or shutdown classes.
Each class must then be configured within the target Oracle WebLogic Server domain
and targeted to the Oracle WebLogic Server instances corresponding to the associated
OC4J instances in the source environment.

Unlike OC4J startup and shutdown classes, an Oracle WebLogic Server startup or
shutdown class does not require any specific interface or provide pre-deployment or
post-deployment methods. Instead, you implement the custom logic within the
standard main() method of the class.

WebLogic Server allows for pre-deployment and post-deployment execution of this
logic by providing configuration parameters, which must be set accordingly when
configuring a domain with the startup or shutdown class.

To convert an OC4J startup or shutdown class, it might therefore be necessary to create
two WebLogic Server startup and shutdown classes:

■ One that contains the code from the original class pre(Un)deploy method

■ One that contains the code from the post(Un)deploy method.

Although pre-configured parameters can be passed to the main() method of a
WebLogic Server startup or shutdown class, Oracle WebLogic Server startup classes
have no access to arguments in the way that JNDI context and configuration hash table
parameters are passed to an OC4J startup class.

If the custom logic within the startup class makes use of these parameters, then this
logic should be modified to obtain the JNDI context from scratch and access the server
configuration through the Oracle WebLogic Server JMX interfaces.

For more information, see the following:

■ "Programming Application Life Cycle Events" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server

■ "Configure startup classes" and "Configure shutdown classes" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help

5.3.6 Configuring Security on Oracle WebLogic Server
To support the security requirements of your application, you must map the security
features of OC4J to the equivalent security features in Oracle WebLogic Server.

Table 5–2 describes how specific OC4J security configurations can be mapped to a
WebLogic Server environment.

Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications

Upgrading Your Java EE Environment 5-11

5.3.7 Configuring Logging on Oracle WebLogic Server
WebLogic Logging Services provides a comprehensive set of logging features that
provide capabilities similar to OC4J. As with OC4J, the Oracle Diagnostics Logging
(ODL) framework can be integrated into Oracle WebLogic Server through the Oracle
Java Required Files (JRF) domain template.

For more information, see Section 5.1.4, "Using the Java Required Files (JRF) Domain
Template".

Table 5–2 Comparison of OC4J and Oracle WebLogic Server Security Features

For this OC4J Security Feature...
Perform the following task in
Oracle WebLogic Server... More Information

Users and groups are stored in the
system-jazn-data.xml file.

Move the user and group
information contained in the
system-jazn-data.xml file
should be moved to the embedded
LDAP server.

"Managing the Embedded LDAP
Server" in Oracle Fusion Middleware
Securing Oracle WebLogic Server

OC4J is configured to use an
external LDAP provider.

Configure the Oracle WebLogic
Server domain with the same LDAP
server as you were using for OC4J.

"Configuring LDAP Authentication
Providers" in Oracle Fusion
Middleware Securing Oracle WebLogic
Server

Users are authenticated against a
database.

Configure an RDBMS authentication
provider, which can be one of three
types:

■ SQL Authenticator

■ Read-only SQL Authenticator

■ Custom RDBMS Authenticator

"Configuring RDBMS
Authentication Providers" in Oracle
Fusion Middleware Securing Oracle
WebLogic Server

OC4J environment is configured
with Java single sign-on or subject
propagation between multiple OC4J
server instances.

WebLogic Server single sign-on and
subject propagation are automatic
across the server and clusters within
a domain and therefore no special
configuration is required.

Not applicable.

OC4J environment is configured
with custom JAAS login modules.

Create an Oracle WebLogic Server
authentication provider within the
target domain, either out-of-the-box
or a custom provider which wraps
the JAAS login module
functionality.

"Supported Login Modules for
JavaSE Applications" in the Oracle
Fusion Middleware Application
Security Guide

"Configuring Authentication
Providers" in the Oracle Fusion
Middleware Securing Oracle WebLogic
Server

OC4J environment is configured
with Oracle Access Manager.

Configure the Oracle WebLogic
Server domain to use Oracle Access
Manager.

"Integrating the Security Provider
for WebLogic SSPI" in the Oracle
Access Manager Integration Guide in
the Oracle Identity Management 10g
(10.1.4) Identity Management
instancedocumentation library on
the Oracle Technology Network
(OTN).

OC4J server instances are
configured with SSL encryption.

Configure the Oracle WebLogic
Server domain to use SSL.

"Configuring SSL" in Oracle Fusion
Middleware Securing Oracle WebLogic
Server

OC4J environment uses Oracle
Wallet to store security keys.

Store your security keys in a JKS key
store in the WebLogic Server
domain.

"Configuring Identity and Trust" in
Oracle Fusion Middleware Securing
Oracle WebLogic Server

Task 4: Redeploy the Application on Oracle WebLogic Server

5-12 Oracle Fusion Middleware Upgrade Guide for Java EE

As a result, if an application is using the ODL framework for logging, it requires no
modification when deployed to Oracle WebLogic Server. The JRF ODL integration into
Oracle WebLogic Server is as follows:

■ ODL log messages are sent to a separate log file that is kept in a well-known
location on the file system:

domain_directory/servers/server_name/logs/server_name-diagnostic.log

■ Critical messages (errors) are double-logged both in the ODL and WebLogic
domain log file.

■ ODL log queries and configuration JMX MBeans are available in the domain’s
WebLogic administration server.

For more information, see Oracle Fusion Middleware Configuring Log Files and Filtering
Log Messages for Oracle WebLogic Server.

5.4 Task 4: Redeploy the Application on Oracle WebLogic Server
After you have compiled your application successfully, you can then deploy the
application on the Oracle WebLogic Server environment you installed and configured
earlier.

You can redeploy your Java EE applications using any of the following typical tools:

■ Apache Ant

■ WLST, the Oracle WebLogic Server scripting tool

■ The Oracle WebLogic Administration Console

For more information, see Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

5.5 Task 5: Verify the Redeployed Applications
After you have deployed your Java EE applications on Oracle WebLogic Server, you
can verify the applications by doing the following:

■ Log in to the Oracle WebLogic Administration Console and review the
deployments on the domain. You can also perform various monitoring tasks and
post-deployment tasks from the console.

■ Navigate in your browser to the application URL and verify that the features of
the application are working as they did when you verified them on OC4J earlier in
this procedure.

If find any problems with the application, review the domain log files to diagnose the
problem. For more information, see "Configuring Log Files and Filtering Log
Messages" in the Oracle WebLogic Server documentation library.

6

Upgrading Application Clients 6-1

6Upgrading Application Clients

When you upgrade your Java EE applications to Oracle WebLogic Server and Oracle
Fusion Middleware 11g, the external interfaces exposed by your applications can be
affected. In turn, client applications that depend on those interfaces can be affected.

The following sections describe the ramifications of upgrade on application clients, as
well as guidelines for addressing any the resulting client issues:

■ Impact of Upgrade on Java Server Pages and Servlet Clients

■ Impact of Upgrade on Java Naming and Directory Interface Clients

■ Impact of Upgrade on Enterprise Java Bean Clients

■ Impact of Upgrade on JMS Clients

6.1 Impact of Upgrade on Java Server Pages and Servlet Clients
When an application is upgraded to WebLogic Server, JSP and servlet clients can be
affected because of differences in the HTTP session state replication model between
Oracle WebLogic Server and OC4J.

Unlike OC4J clusters, which can support any number of in-memory replicated copies
of the HTTP session state, Oracle WebLogic Server in-memory HTTP session state
replication supports only a primary-secondary, two-copy model.

In most cases, this difference should have no impact on JSP and Servlet clients;
however, for rare cases where an application might explicitly rely on more than two
copies of the HTTP session state to be available for its clients, consider using Oracle
Coherence.

For more information, refer to the information about Oracle Coherence on the Oracle
Technology Network (OTN):

6.2 Impact of Upgrade on Java Naming and Directory Interface Clients
The following sections describe considerations for clients of upgraded applications
that use the OC4J Java Naming and Directory Interface (JNDI) provider:

■ Modifying Clients to Use the Oracle WebLogic Server JNDI Provider

■ Understanding the Scope of the Oracle WebLogic Server JNDI Namespace

Impact of Upgrade on Java Naming and Directory Interface Clients

6-2 Oracle Fusion Middleware Upgrade Guide for Java EE

6.2.1 Modifying Clients to Use the Oracle WebLogic Server JNDI Provider
If any clients of your upgraded applications use the OC4J Java Naming and Directory
Interface (JNDI) provider to lookup application interfaces or resources, then you must
modify those clients so they use the Oracle WebLogic Server JNDI provider instead.

You can change the application's JNDI initial context creation code as follows:

1. Identify all instances of the OC4J JNDI URLs in the client code.

Typically the OC4J URL is structured in the following format:

prefix://host:RMI_or_OPMN_request_port:oc4j_instance/application-name

An example URL for an Oracle Application Server 10g installation with an OC4J
instance named oc4j1 and a deployed application called myapplication would
be as follows:

opmn:ormi://127.0.0.1:6003:oc4j1/myapplication

Note that the prefix can be opmn:ormi for a full Oracle Application Server
installation that is using the Oracle Process Management and Notification
infrastructure, or it can be just ormi: if you are using a standalone OC4J
installation.

2. Change the URL of the provider so it points to the target WebLogic Server
domain's administration server using the t3 protocol.

For example:

t3://127.0.0.1:7001

3. Make sure the security credentials are valid within the target Oracle WebLogic
Server domain.

4. Change the initial context factory to the Oracle WebLogic Server
WLInitialContextFactory class.

This class should also be made available to the client application's class loader
through a Oracle WebLogic Server client jar file. You create the client jar file
(wlfullclient.jar) using the WebLogic JarBuilder tool.

For more information, see the following sections in Oracle Fusion Middleware
Programming Stand-alone Clients for Oracle WebLogic Server:

■ "WebLogic Full Client"

■ "Using the WebLogic JarBuilder Tool"

Note that if the client is itself running within an OC4J server instance, the
environment-naming-url-factory-enabled attribute in the server's
server.xml may have to be set to true to allow the use of multiple JNDI providers
within the same OC4J instance.

6.2.2 Understanding the Scope of the Oracle WebLogic Server JNDI Namespace
Another important difference between the OC4J and Oracle WebLogic Server JNDI
providers that might impact client applications is the scoping of JNDI namespaces.

OC4J JNDI objects can have an explicit application scope. Therefore, when performing
a lookup, OC4J JNDI clients can use a URL which identifies a specific OC4J server
instance and includes the name of the target application.

Impact of Upgrade on Enterprise Java Bean Clients

Upgrading Application Clients 6-3

The Oracle WebLogic Server JNDI objects on the other hand always have a global
namespace. Therefore, a Oracle WebLogic Server JNDI client performing a lookup
cannot specify a URL identifying a target application explicitly.

As a result, as part of the upgrade to WebLogic Server, you must ensure that the JNDI
name of all JNDI resources deployed to the same WebLogic Server domain are unique,
regardless of the application to which they belong. If necessary, JNDI clients must be
modified to use their target object’s unique JNDI name.

6.3 Impact of Upgrade on Enterprise Java Bean Clients
There are two cases where the upgrade of an application to Oracle WebLogic Server
could have impact an impact on EJB client applications. Refer to the following sections
for more information:

■ Impact on Remote Standalone EJB Clients

■ Impact on Clients That Use OC4J-Based EJB Interfaces

6.3.1 Impact on Remote Standalone EJB Clients
EJB clients in this category are either stand-alone or deployed to an OC4J server.

For this category of EJB clients, you must modify the client to use the Oracle WebLogic
Server JNDI provider, as described in Section 6.2.1, "Modifying Clients to Use the
Oracle WebLogic Server JNDI Provider".

The use of the WebLogic Server JNDI provider will lead to the client application
obtaining WebLogic Server EJB client stubs that can potentially impact the client
application as follows:

■ RMI Protocol: Client applications must use one of the Oracle WebLogic Server
RMI transport protocols, rather than the OC4J RMI transport protocol, ORMI.

The default WebLogic RMI transport protocol is the Oracle WebLogic Server T3
protocol, but you can also use IIOP.

■ Load Balancing: In OC4J, client EJB requests can be configured to be
load-balanced through the InitialContext JNDI object (random or sticky)
across the OC4J cluster for each invocation of Context.lookup().

In Oracle WebLogic Server, EJB client request load-balancing is handled
automatically by remote EJB client stubs. The load-balancing behavior of these
stubs is configured through weblogic-ejb-jar.xml deployment descriptor
configurations and can be set to occur at InitialContext creation or EJB
method invocation time.

Note that the considerations mentioned here apply to either stand-alone clients or
clients currently running within an OC4J server instance, and also those being
upgraded to run within a WebLogic Server instance.

For EJB clients that are not deployed as stand-alone applications and that will continue
running within an OC4J server instance and making remote invocations to an
upgraded WebLogic Server EJB application, the following two additional implications
of an upgrade should also be considered:

■ First, the application's security context will not be automatically propagated. If this
security propagation is necessary, the client will require modification in order to
explicitly use the existing security context's credentials at the creation of the
WebLogic Server JNDI initial context.

Impact of Upgrade on JMS Clients

6-4 Oracle Fusion Middleware Upgrade Guide for Java EE

■ Second, JTA transaction propagation and XA recovery within the context of the
remote EJB invocations will not be possible and if needed the client application
itself will require upgrade.

6.3.2 Impact on Clients That Use OC4J-Based EJB Interfaces
Applications that you upgrade might act as remote clients to EJB components that will
continue running within an OC4J server. You must modify clients in this category to
use the OC4J RMIInitialContextFactory JNDI initial context factory located in
the oc4jclient.jar file.

The oc4jclient.jar file must be available to the Oracle WebLogic Server class
loaders for the application. For more information, see Section 5.3.4, "Using Shared
Libraries and Class Loading on Oracle WebLogic Server".

Note that the propagation of security context requires the configuration of the target
OC4J server instance as a Oracle WebLogic Server SSL client. Furthermore, JTA
transaction propagation and XA recovery within the context of the remote EJB
invocations will not be possible. If these features are required, then you must upgrade
the target EJB application.

6.4 Impact of Upgrade on JMS Clients
It should first be noted that the information contained in this section is with regards to
JMS clients that are not Message Driven Beans (MDB). MDBs are usually tightly
coupled to the JMS provider's resources and as such should always be upgraded
together with these resources. Specific WebLogic Server MDB capabilities and
behavior should be considered during the upgrade of MDB applications.

The following sections describe two scenarios where the upgrade of an application to
Oracle WebLogic Server might have an impact on JMS clients:

■ Changes Required When the JMS Provider is Upgraded to WebLogic Server

■ Changes Required When the JMS Provider Remains in OC4J

6.4.1 Changes Required When the JMS Provider is Upgraded to WebLogic Server
In this scenario, the JMS provider--and its related resources such as destinations and
connection factories--is upgraded to Oracle WebLogic Server. You must modify both
the upgraded client applications and the existing OC4J client applications still running
within an OC4J server.

Specifically, you must modify the client applications to use the WebLogic Server JNDI
provider as described in Section 6.2.1, "Modifying Clients to Use the Oracle WebLogic
Server JNDI Provider".

When you modify the clients to use the Oracle WebLogic Server JNDI provider, the
client applications obtain JMS resources from the Oracle WebLogic Server JMS
provider and the following considerations should be taken into account because they
could impact client applications:

■ Message Ordering: Like the OC4J JMS provider, Oracle WebLogic Server provides
the capability to guarantee strictly ordered message processing. Additionally, the
WebLogic Server JMS "Unit of Order" feature allows for additional message order
processing capabilities. For more information, see "Using Message Unit-of-Order"
in Oracle Fusion Middleware Programming JMS for Oracle WebLogic Server.

Impact of Upgrade on JMS Clients

Upgrading Application Clients 6-5

■ Connection Pooling: Unlike the OC4J JMS provider, the Oracle WebLogic Server
JMS provider provides no pooling capability for stand-alone clients. If this feature
is required, stand-alone clients should be modified to implement this capability
through explicit re-use of JMS resources.

■ Network Connections: Clients using the WebLogic Server JMS provider use a
single network connection per client virtual machine, regardless of the number of
JMS connection objects used. This behavior is slightly different from the OC4J JMS
provider, which associates each JMS connection object with a separate network
connection.

JMS clients that are not stand-alone applications and that continue running within an
OC4J server instance while using JMS resources within a WebLogic Server
environment should use the OC4J Oracle Enterprise Messaging Server JMS Connector
feature.

6.4.2 Changes Required When the JMS Provider Remains in OC4J
In this scenario, the JMS provider remains within an OC4J infrastructure and client
applications being upgraded to Oracle WebLogic Server require adjustments. These
types of client applications should treat the OC4J JMS resources as remote JMS
providers and use the Oracle WebLogic Server "foreign server" feature in order to
provide access to the OC4J JMS resources to the WebLogic Server deployed JMS
clients.

For more information, see "Configuring Foreign Server Resources to Access
Third-Party JMS Providers" in Oracle Fusion Middleware Configuring and Managing JMS
for Oracle WebLogic Server.

Impact of Upgrade on JMS Clients

6-6 Oracle Fusion Middleware Upgrade Guide for Java EE

Upgrading a Java EE and Web Server Environment 7-1

7
Upgrading a Java EE and Web Server

Environment

This chapter provides information for users who installed and integrate Oracle HTTP
Server with their Oracle Application Server 10g Release 3 (10.1.3.1.0) OC4J instances.

Specifically, if you are using Oracle HTTP Server or Oracle Web Cache as a front-end
to your deployed applications, use the following sections to upgrade those
components to the Oracle Fusion Middleware 11g Web Tier Suite:

■ Task 1: Understand the Differences Between Using Oracle HTTP Server with OC4J
and Oracle WebLogic Server

■ Task 2: Install and Configure an Oracle Fusion Middleware Web Tier

■ Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to
Oracle Fusion Middleware 11g

■ Task 4: Configure the Web Tier To Route Requests to Your Oracle Fusion
Middleware Environment

■ Task 5: Perform Any Required Post-Upgrade Tasks for the Web Tier Components

■ Task 6: Verify the Web Tier Upgrade

7.1 Task 1: Understand the Differences Between Using Oracle HTTP
Server with OC4J and Oracle WebLogic Server

Review the following information about the differences between using Web servers
with OC4J and using Web servers with Oracle WebLogic Server:

■ Configuring Web Sites and AJP Connections in Oracle WebLogic Server

■ Installing and Configuring Oracle HTTP Server for Oracle WebLogic Server

■ Using Web Servers Other than Oracle HTTP Server with Oracle WebLogic Server

■ Understanding Oracle HTTP Server Interoperability Issues When Upgrading to
Oracle Fusion Middleware 11g

7.1.1 Configuring Web Sites and AJP Connections in Oracle WebLogic Server
OC4J provided users with the ability to define multiple "Web sites" for each OC4J
instance. In other words, you could define a unique listener, with its own port and
protocol. Each Web application deployed to the OC4J instance could be bound to a
specific OC4J web site, which directed any requests to that specific port and protocol
to the desired application.

Task 1: Understand the Differences Between Using Oracle HTTP Server with OC4J and Oracle WebLogic Server

7-2 Oracle Fusion Middleware Upgrade Guide for Java EE

By default, every OC4J instance provided a default Web site that was preconfigured by
the default-web-site.xml configuration file. You could then modify the default
Web site configuration or define additional Web sites for specific applications.

Oracle WebLogic Server does not support the concept of a Web site. Instead, each
Oracle WebLogic Server managed server is assigned a unique listening port. This
listening port can be modified, but it always listens on this port for all supported
protocols, such as HTTP, HTTPS, RMI, and so on. You can also configure a second,
secure (SSL) port for each managed server.

However, unlike OC4J, Oracle WebLogic Server does not support the AJP or AJPS
protocol, which is used in OC4J environments for communications between a
front-end Web server and the OC4J instance. For more information, see Section 7.1.2,
"Installing and Configuring Oracle HTTP Server for Oracle WebLogic Server".

To accommodate multiple listeners in Oracle WebLogic Server, you can do one of the
following:

■ Create multiple Oracle WebLogic Server managed servers and configure them to
listen on unique ports. You can then deploy applications to each server and each
application will listen on the listening port assigned to its host managed server.

■ Configure multiple network channels per managed server. An Oracle WebLogic
Server network channel is a configurable resource that defines the attributes of a
network connection to a managed server. For each network channel, you can
configure a set of attributes that are similar to those provided by OC4J Web sites.

For more information, see "Configuring Network Resources" in Oracle Fusion
Middleware Configuring Server Environments for Oracle WebLogic Server.

7.1.2 Installing and Configuring Oracle HTTP Server for Oracle WebLogic Server
This section includes the following information about using Oracle WebLogic Server
with a Web server:

■ How Oracle HTTP Server Is Configured for OC4J

■ How Oracle HTTP Server is Configured for Oracle WebLogic Server

7.1.2.1 How Oracle HTTP Server Is Configured for OC4J
In previous versions of Oracle Application Server, it is common (and often
recommended) to configure your environment with a front-end Web server. The Web
server receives user requests and routes specific requests, based on the context root of
the URL, to the applications deployed on the OC4J server.

Most OC4J users configure Oracle HTTP Server as the front-end to their Java EE server
environment. Oracle HTTP Server is a component of the Oracle Fusion Middleware
product set. The Advanced installation options in Oracle Application Server 10g
Release 3 (10.1.3) automatically configure the Oracle HTTP Server to serve as a
front-end to the OC4J server.

The connection between Oracle HTTP Server and OC4J is managed by the mod_oc4j
module that is included with the Oracle HTTP Server software, and is transferred over
the AJP protocol.

7.1.2.2 How Oracle HTTP Server is Configured for Oracle WebLogic Server
The same topology can be configured with Oracle WebLogic Server. However, in
Oracle Fusion Middleware 11g, you install Oracle HTTP Server separately from Oracle
WebLogic Server, as part of the Oracle Fusion Middleware Web Tier installation. The

Task 2: Install and Configure an Oracle Fusion Middleware Web Tier

Upgrading a Java EE and Web Server Environment 7-3

Web Tier installation can also include Oracle Web Cache, which adds improved
performance and caching capabilities to the Web tier.

After you install Oracle HTTP Server as part of a Web Tier installation, you can then
configure the new mod_wl_ohs module, which allows requests to be proxied from
Oracle HTTP Server to Oracle WebLogic Server. The mod_wl_ohs module provides
similar capabilities for Oracle WebLogic Server as mod_oc4J did for OC4J.

For more information, see "mod_wl_ohs" in the Oracle Fusion Middleware
Administrator's Guide for Oracle HTTP Server.

Note that Oracle HTTP Server is installed and configured automatically for certain
Oracle Fusion Middleware 11g components that require a Web server. For example,
Oracle HTTP Server is automatically installed and configured with the following
Oracle Fusion Middleware components:

■ Oracle Identity Federation in the Oracle Identity Management software suite

■ Oracle Portal and Oracle Business Intelligence Discoverer in the Oracle Portal,
Forms, Reports and Discoverer suite

However, for a Java EE environment, such as those described in this guide, you must
install and configure Oracle HTTP Server separately from Oracle WebLogic Server.

7.1.3 Using Web Servers Other than Oracle HTTP Server with Oracle WebLogic Server
Oracle WebLogic Server supports other Web servers, as well as Oracle HTTP Server.

For more information, see Oracle Fusion Middleware Using Web Server Plug-Ins with
Oracle WebLogic Server.

7.1.4 Understanding Oracle HTTP Server Interoperability Issues When Upgrading to
Oracle Fusion Middleware 11g

Before you proceed with an Oracle HTTP Server upgrade, be sure to review the
section, "About Oracle HTTP Server Interoperability During Upgrade" in the Oracle
Fusion Middleware Upgrade Planning Guide.

7.2 Task 2: Install and Configure an Oracle Fusion Middleware Web Tier
The following sections describe the options available for installing, configuring, and
upgrading a Web tier environment as a front end to your upgraded Oracle WebLogic
Server environment:

■ Deciding Upon a Location for Your Web Tier Components

■ Associating the Web Tier Components with an Oracle WebLogic Server Domain

■ Locating the Web Tier Installation and Configuration Documentation

7.2.1 Deciding Upon a Location for Your Web Tier Components
Before you install and configure Oracle HTTP Server as part of a Web Tier installation,
consider where you want to install the Oracle HTTP Server. If you plan to use the
Upgrade Assistant to upgrade your configuration settings from a previous version of
Oracle HTTP Server, then you must install the Oracle HTTP Server on the same host as
the Oracle Application Server 10g Oracle HTTP Server Oracle home.

Task 2: Install and Configure an Oracle Fusion Middleware Web Tier

7-4 Oracle Fusion Middleware Upgrade Guide for Java EE

If upgrading the configuration is not a requirement for your environment, then you
can install and configure Oracle HTTP Server on a separate host and configure it later
to send HTTP requests to your Oracle WebLogic Server domain.

For more information, see Task 4: Configure the Web Tier To Route Requests to Your
Oracle Fusion Middleware Environment.

7.2.2 Associating the Web Tier Components with an Oracle WebLogic Server Domain
When you install Oracle HTTP Server as part of a Web Tier installation, you can
choose whether or not to associate the Web Tier components with an Oracle WebLogic
Server domain. Consider the following possible topologies:

■ Configure the Web tier components as part of an Oracle WebLogic Server domain.

With this option, you can add Oracle HTTP Server and (optionally) Oracle Web
Cache to an existing domain.

For example, you can add the Web tier components to the Oracle SOA Suite,
WebCenter, or Application Developer domain you are using to deploy your Java
EE applications.

This can be an advantage because you can then easily configure the Web tier
components as a front end to your deployed applications, and you can then use
Oracle Enterprise Manager Fusion Middleware Control to manage the domain, as
well as the applications you deploy on the domain.

■ Configure the Web tier components without a domain.

With this option, the Oracle HTTP Server and (optionally) the Oracle Web Cache
instances are installed "standalone" in a separate Oracle home and are not
associated with a domain.

Consider this topology if you are installing the Web tier components on a separate
host, you are not planning to upgrade your previous Oracle Application Server
10g configuration settings, and you are not planning to manage your Web tier
components with Oracle Enterprise Manager Fusion Middleware Control.

7.2.3 Locating the Web Tier Installation and Configuration Documentation
When you are ready to install and configure Oracle HTTP Server and (optionally)
Oracle Web Cache, refer to the Oracle Fusion Middleware Installation Guide for Oracle Web
Tier for complete instructions.

If you are not planning to associate the Web tier components with an Oracle WebLogic
Server domain, you can optionally use the Oracle Fusion Middleware Quick Installation
Guide for Oracle Web Tier.

Note: Oracle does not support associating your Web tier components
with a development domain created with Oracle JDeveloper. For more
information, see Section 5.1, "Task 1: Install and Configure an Oracle
WebLogic Server Development Domain".

Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to Oracle Fusion Middleware 11g

Upgrading a Java EE and Web Server Environment 7-5

7.3 Task 3: Upgrade Your Oracle Application Server 10g Web Tier
Components to Oracle Fusion Middleware 11g

If you used Oracle HTTP Server previously, you can use the Oracle Fusion
Middleware Upgrade Assistant to upgrade specific Oracle HTTP Server configuration
settings from Oracle Application Server 10g Release 3 (10.1.3) to your new Oracle
Fusion Middleware 11g Oracle HTTP Server instance.

Alternatively, if you are using a Web server other than Oracle HTTP Server, or if you
have installed Oracle HTTP Server on a separate host from the host where your Oracle
Application Server 10g Release 3 (10.1.3) environment resides, then you must
manually reconfigure your new Oracle Fusion Middleware environment.

Refer to the following sections for information on using the Oracle Fusion Middleware
Upgrade Assistant to upgrade your Oracle HTTP Server configuration to 11g:

■ Task 3a: Start the Upgrade Assistant for an Web Tier Upgrade

■ Task 3b: Use the Upgrade Assistant to Upgrade the Web Tier Components

7.3.1 Task 3a: Start the Upgrade Assistant for an Web Tier Upgrade
To start the Upgrade Assistant using the graphical user interface:

1. Change directory to the ORACLE_HOME/bin directory of the Oracle Fusion
Middleware installation.

2. Enter the following command to start the Upgrade Assistant.

On UNIX system:

./ua

On Windows systems:

ua.bat

The Upgrade Assistant displays the Welcome screen as shown in Figure 7–1

Note: You can also use the Upgrade Assistant command-line
interface to upgrade your Oracle Application Server 10g Oracle
homes. For more information, see "Using the Upgrade Assistant
Command-Line Interface" in the Oracle Fusion Middleware Upgrade
Planning Guide.

Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to Oracle Fusion Middleware 11g

7-6 Oracle Fusion Middleware Upgrade Guide for Java EE

Figure 7–1 Upgrade Assistant Welcome Screen

3. Click Next to display the Specify Operation screen (Figure 7–2).

The options available in the Upgrade Assistant are specific to the Oracle home
from which it started. For example, when you start Upgrade Assistant from an
Web Tier Oracle home, the options shown on the Specify Operation screen are the
valid options for the components in a typical Web Tier Oracle home.

Figure 7–2 Specify Operation Screen When Upgrading a Web Tier Installation

Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to Oracle Fusion Middleware 11g

Upgrading a Java EE and Web Server Environment 7-7

7.3.2 Task 3b: Use the Upgrade Assistant to Upgrade the Web Tier Components
The following sections provide information about upgrading your Oracle HTTP
Server to Oracle Fusion Middleware 11g:

■ Upgrading the Web Tier Components

■ Important Notes When Using the Source Oracle Home Ports in the Destination
Oracle Instance

7.3.2.1 Upgrading the Web Tier Components
To upgrade your Web tier components to Oracle Fusion Middleware 11g:

1. Start the Upgrade Assistant as described in Task 3a: Start the Upgrade Assistant
for an Web Tier Upgrade.

2. Select Middle Tier Instance on the Specify Operation screen (Figure 7–2).

3. Refer to Table 7–1 for a description of the Upgrade Assistant screens that require
input from you during a middle-tier instance upgrade and the options on each
screen.

The Upgrade Assistant performs the following tasks and provides the progress on
each task:

■ Examines the components and schemas to be upgraded and verifies that they
can be upgraded successfully.

■ Provides a summary of the components to be upgraded so you can verify that
the Upgrade Assistant is upgrading the components and schemas you expect.

■ Provides a progress screen so you can see the status of the upgrade as it
proceeds.

■ Alerts you of any errors or problems that occur during the upgrade.

■ Displays the End of Upgrade screen, which confirms that the upgrade was
complete.

See Also: Section B.1, "Troubleshooting Upgrade Assistant Problems
and Issues" in the Oracle Fusion Middleware Upgrade Planning Guide for
specific instructions for troubleshooting problems that occur while
running the Upgrade Assistant

Table 7–1 Upgrade Assistant Screens That Require Input During a Middle-Tier Instance
Upgrade

Upgrade Assistant Screen Description

Specify Source Home Select the 10g Release 2 (10.1.2) or 10g (10.1.4) Identity
Management instance source Oracle home.

If the Oracle home you want to upgrade does not appear in the
drop-down lists, see Section B.1.2.1, "Source Oracle Home Not
Listed by OracleAS Upgrade Assistant" in the Oracle Fusion
Middleware Upgrade Planning Guide.

Specify Destination Instance Enter the complete path to the 11g Oracle instance, or click
Browse to locate the instance directory.

Specify WebLogic Server Enter the host and Administration Server port for the Oracle
WebLogic Server you configured in Task 2: Install and Configure
an Oracle Fusion Middleware Web Tier.

Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to Oracle Fusion Middleware 11g

7-8 Oracle Fusion Middleware Upgrade Guide for Java EE

7.3.2.2 Important Notes When Using the Source Oracle Home Ports in the
Destination Oracle Instance
When you select the source Oracle home ports in destination option in the Oracle
Fusion Middleware Upgrade Assistant, note the following:

■ If you select this option, then you will not be able to run both the 10g and 11g
middle tiers at the same time; otherwise, port conflicts will occur.

■ If you are upgrading to multiple instances of a particular Oracle Fusion
Middleware 11g component, note that you can select this option only once for each
component that you upgrade on a host; otherwise port conflicts will result.

For example, suppose you upgrade and Oracle HTTP Server in one Oracle
instance on MYHOST1.

If you use the option again while upgrading another Oracle HTTP Server instance
in another Oracle instance on MYHOST1, then the same listening ports are
assigned to the second Oracle HTTP Server instance. Two instances of Oracle
HTTP Server on the same host cannot use the same listening ports.

■ If you install and configure both Oracle Web Cache and Oracle HTTP Server 11g as
part of a Web Tier and Utilities installation, and you use this option to upgrade a
10g Oracle home where only Oracle HTTP Server is installed, then you must
modify the Oracle Web Cache instance after the upgrade.

Specifically, since you are now using the 10g ports, you must modify the Oracle
Web Cache instance so it sends requests to the port that was used in 10g, rather

Specify Upgrade Options Select the upgrade options you want to apply to the Oracle
Portal, Forms, Reports, and Discoverer upgrade:

■ Use source Oracle home ports in destination: If you want
to migrate the port assignments used by your Oracle
Application Server 10g Oracle home to your new Oracle
Fusion Middleware Oracle instance.

For more information, see Section 7.3.2.2, "Important Notes
When Using the Source Oracle Home Ports in the
Destination Oracle Instance".

If you do not select this option, and you are upgrading
Oracle Web Cache, see Section 7.5.2, "Verifying and
Updating the Oracle HTTP Server and Oracle Web Cache
Ports After Upgrade"

■ Stop source components before upgrade: By default, this
check box is selected and all the components in the Source
Oracle home will be stopped before the upgrade process
begins. Stopping the source components is necessary to
avoid any port conflicts when you select the Use source
Oracle home ports in destination option.

■ Start destination components after successful upgrade: if
you want the Upgrade Assistant to automatically start the
components in the destination Oracle home after the
upgrade is complete. If you do not select this option, then
you will have to manually start the destination instance
after the upgrade.

Click Help to display more information about the upgrade
options on this screen.

Table 7–1 (Cont.) Upgrade Assistant Screens That Require Input During a Middle-Tier
Instance Upgrade

Upgrade Assistant Screen Description

Task 5: Perform Any Required Post-Upgrade Tasks for the Web Tier Components

Upgrading a Java EE and Web Server Environment 7-9

than the Oracle HTTP Server listening port assigned during the WebTier and
Utilities installation and configuration.

For more information, see the Oracle Fusion Middleware Administrator's Guide for
Oracle Web Cache.

7.4 Task 4: Configure the Web Tier To Route Requests to Your Oracle
Fusion Middleware Environment

To configure Oracle HTTP Server to route requests to Oracle WebLogic Server, use the
instructions in the Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server.

In particular refer to these sections in the Oracle Fusion Middleware Administrator's
Guide for Oracle HTTP Server:

■ "Understanding Oracle HTTP Server Modules"

■ "Configuring the mod_wl_ohs Module"

7.5 Task 5: Perform Any Required Post-Upgrade Tasks for the Web Tier
Components

The following sections describe some configuration tasks that you might have to
perform after upgrading to your Web tier components to 11g:

■ Verifying the Location of the Oracle HTTP Server and Oracle Web Cache Wallets
After Upgrade

■ Verifying and Updating the Oracle HTTP Server and Oracle Web Cache Ports
After Upgrade

7.5.1 Verifying the Location of the Oracle HTTP Server and Oracle Web Cache Wallets
After Upgrade

If you configured a secure socket layer (SSL) wallet for Oracle Web Cache 10g, then
consider the following information about the Oracle Web Cache upgrade process:

■ If you stored the wallet in a directory inside the Oracle Web Cache 10g Oracle
home, then during upgrade, the wallet files in the directory are moved to the
following new directory in the Oracle Fusion Middleware 11g Instance home:

ORACLE_INSTANCE/config/WebCache/component_name/keystores/wallet_dir_name10g

For example:

ORACLE_INSTANCE/config/WebCache/webcache1/keystores/wc_wallets10g

Note: If you configured Oracle HTTP Server and Oracle Web Cache
with Oracle Single Sign-On, then additional post-upgrade tasks are
necessary.

For more information, see "Web Tier Component Post-Upgrade Tasks
When Using Oracle Single Sign-On" in the Oracle Fusion Middleware
Upgrade Guide for Oracle Portal, Forms, Reports, and Discoverer.

Task 6: Verify the Web Tier Upgrade

7-10 Oracle Fusion Middleware Upgrade Guide for Java EE

■ If you stored the wallet in a directory outside of the Oracle Web Cache 10g Oracle
home, then you can continue to use the original pre-upgrade location after you
upgrade to Oracle Web Cache 11g.

If you configured an SSL wallet for Oracle HTTP Server 10g, then the Upgrade
Assistant upgrades the Oracle HTTP Server 10g wallets to the new 11g format. The
Oracle HTTP Server 11g wallets are saved in the following location in the 11g Oracle
instance directory:

ORACLE_INSTANCE/config/OHS/component_name/keystores/default/

If you have defined specific wallets for each user, then the wallets are saved in
subdirectory of the keystores directory. The name of the directory is based on the name
of the directory where you stored the 10g wallets.

For example, if you stored your 10g wallets in a directory called
/home/jones/security/mywallets/, then after the upgrade, you can find the
upgraded wallets in the following directory:

ORACLE_INSTANCE/config/OHS/component_name/keystores/security_mywallets/

7.5.2 Verifying and Updating the Oracle HTTP Server and Oracle Web Cache Ports
After Upgrade

If you did not select Use source Oracle home ports in destination on the Specify
Upgrade Options screen of the Upgrade Assistant, then after the upgrade of the Web
tier components, you should verify the ports used by the upgraded Oracle HTTP
Server and Oracle Web Cache 11g instances.

Specifically, you should verify the listening ports, origin servers, site definitions, and
site-to-server mapping settings, and make changes if appropriate.

If the Oracle HTTP Server and Oracle Web Cache components reside in the same
instance and you upgrade them together, no modifications should be necessary.

However, in the following circumstances, you must re-configure the ports and
connections between your Oracle HTTP Server and Oracle Web Cache instances:

■ If you have upgraded the Oracle HTTP Server and Oracle Web Cache instances
separately--for example, if you upgrade Oracle HTTP Server on one host and later
upgrade an associated Oracle Web Cache instance on another host.

■ If in your Oracle Application Server 10g environment installation you were using
only Oracle HTTP Server and now, in your Oracle Fusion Middleware 11g
environment, you are using both Oracle HTTP Server and Oracle Web Cache.

■ If you are using an Oracle Web Cache cluster, or you typically configure multiple
Oracle Web Cache instances routing to multiple Oracle HTTP Server instances.

For more information about configuring the connections between Oracle HTTP Server
and Oracle Web Cache, see the Oracle Fusion Middleware Administrator's Guide for Oracle
Web Cache.

7.6 Task 6: Verify the Web Tier Upgrade
To verify that your Web Tier upgrade was successful:

1. Run the Upgrade Assistant again and select Verify Instance on the Specify
Operation page.

Task 6: Verify the Web Tier Upgrade

Upgrading a Java EE and Web Server Environment 7-11

Follow the instructions on the screen for information on how to verify that specific
Oracle Fusion Middleware components are up and running.

2. If you associated the Web Tier with an Oracle WebLogic Server domain and the
Oracle Enterprise Manager template was applied to the domain, then use the
Fusion Middleware Control to verify that the Web Tier components are up and
running.

For more information, see "Getting Started Using Oracle Enterprise Manager
Fusion Middleware Control" in the Oracle Fusion Middleware Administrator's Guide.

Task 6: Verify the Web Tier Upgrade

7-12 Oracle Fusion Middleware Upgrade Guide for Java EE

A

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-1

Aorion-web.xml and orion-ejb-jar.xml Upgrade
Reference

This appendix contains reference information you can use when preparing your
Oracle Application Server 10g applications for redeployment on Oracle WebLogic
Server.

Refer to the following sections for more information about upgrading elements of the
following OC4J deployment descriptors:

■ orion-web.xml

■ orion-ejb-jar.xml

orion-web.xml

A-2 Oracle Fusion Middleware Upgrade Guide for Java EE

orion-web.xml

The OC4J-specific application-level Web descriptor, orion-web.xml, is distributed in
the /WEB-INF directory of your WAR files. It is used to add OC4J-specific settings, or
override any settings in web.xml.

In Oracle WebLogic Server, the equivalent vendor specific deployment descriptor is
called weblogic.xml, and it resides within the /WEB-INF directory of the web
module.

When redeploying your 10g applications on Oracle WebLogic Server, you must
convert any specific OC4J settings you have set in your Web module to the WebLogic
Server equivalents in the weblogic.xml file. For more information, refer to the
information provided for each element in the orion-web.xml file in this appendix.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-3

<classpath>

OC4J Definition
Allows OC4J web applications to refer to code sources (for example, JAR or ZIP files),
which are located inside and outside the Web application scope. Any valid code
sources contained in these locations are added to the Web application's class-loader at
runtime.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Two options:

■ Copy the referenced JAR files to the Web application's WEB-INF/lib directory.

OR

■ Package the classes in a JAR file and deploy the JAR file as an Oracle WebLogic
Server shared library, which is referenced by the application through a
<library-ref> element in the application's weblogic-application.xml
deployment descriptor.

More Information
"Creating Shared Java EE Libraries and Optional Packages" in the Oracle Fusion
Middleware Developing Applications for Oracle WebLogic Server

<contextParamMappingFinding>

A-4 Oracle Fusion Middleware Upgrade Guide for Java EE

<contextParamMappingFinding>

OC4J Definition
Overrides the value specified through a corresponding <context-param> element in
web.xml for a servlet context parameter.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
There is no direct equivalent in Oracle WebLogic Server. However, It is possible to
override context parameters via the following from any servlet or filter:

getServletContext().getInitParameter("ContextParam")

More Information
"ServletConfig" Java servlet interface in the Java 2 Platform, Enterprise Edition, v 1.3 API
Specification on the java.sun.com Web site

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-5

<mimeMappings>

OC4J Definition
Defines the path to a file containing MIME mappings.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
There is no direct equivalent in Oracle WebLogic Server. However, it is possible to
override the value specified in the <mimeMappings> element through a
corresponding <mime-mapping> element in web.xml.

More Information
"web.xml Deployment Descriptor Elements" in Oracle Fusion Middleware Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

<virtual-directory>

A-6 Oracle Fusion Middleware Upgrade Guide for Java EE

<virtual-directory>

OC4J Definition
Adds a virtual directory mapping for static content, working in a way that is
conceptually similar to symbolic links on a UNIX system, for example.

The virtual directory enables you to make the contents of the real document root
directory available to the application without physically residing in the Web
application WAR file. This is useful, for example, when linking to an enterprise-wide
error page from multiple WAR files.

Equivalent Entry in weblogic.xml
<virtual-directory-mapping>

Upgrade Advice
Create an equivalent <virtual-directory-mapping> entry in weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-7

<access-mask>

OC4J Definition
Specifies optional access masks for the application. You can use host names or host
domains to filter clients, use IP addresses and subnets to filter clients, or you can use
both.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Create the same filter at either your network firewall or application load-balancer, if
available. Alternatively, consider using an Oracle WebLogic Server network
connection filter to provide a filter for the Oracle WebLogic Server domain.

However, it is important to note that Oracle WebLogic Server network connection
filters can act only on an entire domain and cannot be set on a per application basis.

More Information
"Using Network Connection Filters" in the Oracle Fusion Middleware Programming
Security for Oracle WebLogic Server

<servlet-chaining>

A-8 Oracle Fusion Middleware Upgrade Guide for Java EE

<servlet-chaining>

OC4J Definition
Specifies a servlet to call when the response of the current servlet is set to a specified
MIME type.

The specified servlet is called after the current servlet. Use this for filtering or
transforming certain kinds of output.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Create a standard filter to achieve the same functionality. OC4J servlet chaining is an
older and proprietary mechanism with functionality similar to that of standard servlet
filtering, which was introduced in version 2.3 of the Servlet specification.

More Information
"The Essentials of Filters" on the java.sun.com Web site.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-9

<request-tracker>

OC4J Definition
Specifies a servlet to use as a request tracker, which is invoked for each separate
request sent from a browser to the server, at the same time as the corresponding
response is committed (immediately before the response is actually sent).

Request trackers are useful for logging information.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Create a standard Servlet Request Listener that contains the functionality of the
request tracker servlet.

OC4J servlet request tracker is an older and proprietary mechanism with functionality
similar to that of a standard request listener, which was introduced in version 2.4 of
the Servlet specification.

More Information
"Servlet Life Cycle" in the J2EE 1.4 Tutorial on the java.sun.com Web site.

<session-tracking>

A-10 Oracle Fusion Middleware Upgrade Guide for Java EE

<session-tracking>

OC4J Definition
Specifies the session-tracking settings for this application.

Session tracking is accomplished through cookies, assuming a cookie-enabled browser.

Equivalent Entry in weblogic.xml
<session-descriptor>

Upgrade Advice
Use the <session-descriptor> element in weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-11

<session-tracker>

OC4J Definition
This subelement of <session-tracking> specifies a servlet to use as a session
tracker.

A session tracker is invoked as soon as a session is created; specifically, at the same
time as the invocation of the sessionCreated() method of the HTTP session
listener (an instance of a class implementing the
javax.servlet.http.HttpSessionListener interface).

Session trackers are useful for logging information, for example.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Create a standard HttpSessionListener that contains the functionality of the session
tracker servlet.

More Information
"Servlet Life Cycle" in the J2EE 1.4 Tutorial on the java.sun.com Web site.

<resource-ref-mapping>

A-12 Oracle Fusion Middleware Upgrade Guide for Java EE

<resource-ref-mapping>

OC4J Definition
Declares a JNDI location for an external resource, such as a data source, JMS queue, or
mail session. This is in conjunction with a corresponding <resource-ref> element
in the web.xml file, which declares the resource.

Equivalent Entry in weblogic.xml
<resource-description>

Upgrade Advice
Use the <resource-description> element in weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-13

<lookup-context>

OC4J Definition
This element, through its location attribute, specifies an optional JNDI context that will
be used instead of the default context in looking up the resource mapped in the parent
<resource-ref-mapping> element.

This is useful when you are connecting to third-party modules, such as a third-party
JMS server, for example.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
In Oracle WebLogic Server, the default module context is used to look up the JNDI
name. However, if the third-party JNDI module is a JMS server and the intent is to use
the associated connection factories and destinations, WebLogic JMS enables you to
reference third-party JMS providers within a local WebLogic Server JNDI tree.

More Information
"Configuring Foreign Server Resources to Access Third-Party JMS Providers" in Oracle
Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server

<resource-env-ref-mapping>

A-14 Oracle Fusion Middleware Upgrade Guide for Java EE

<resource-env-ref-mapping>

OC4J Definition
Declares a JNDI location for an environment resource. This is in conjunction with a
corresponding <resource-env-ref> element in the web.xml file, which declares
the resource.

Equivalent Entry in weblogic.xml
<resource-env-description>

Upgrade Advice
Use the <resource-env-description> element in weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-15

<env-entry-mapping>

OC4J Definition
Overrides the value specified through a corresponding <env-entry> element in
web.xml, for an environment entry.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
There is no direct equivalent in Oracle WebLogic Server. However, it is possible to
override the value specified in a corresponding <env-entry> element in web.xml.

More Information
"web.xml Deployment Descriptor Elements" in Oracle Fusion Middleware Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

<ejb-ref-mapping>

A-16 Oracle Fusion Middleware Upgrade Guide for Java EE

<ejb-ref-mapping>

OC4J Definition
Declares a JNDI location for an EJB. This is in conjunction with a corresponding
<ejb-ref> or <ejb-local-ref> element to declare the EJB in the web.xml file.

Equivalent Entry in weblogic.xml
<ejb-reference-description>

Upgrade Advice
Use the <ejb-reference-description> element in weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-17

<service-ref-mapping>

OC4J Definition
Use this element in conjunction with a <service-ref> element that appears in the
web.xml file to declare a Web service.

Equivalent Entry in weblogic.xml
<service-ref-description>

Upgrade Advice
Use the <service-ref-description> element in weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

<expiration-setting>

A-18 Oracle Fusion Middleware Upgrade Guide for Java EE

<expiration-setting>

OC4J Definition
Sets the expiration for a given set of resources; that is, how long before the resources
will expire in the browser. (The browser reloads an expired resource upon the next
request for it.)

This is useful for caching policies, such as not reloading images as frequently as
documents.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
This is performance feature OC4J Servlet container in that this can reduce the requests
to the server by asking the browser to cache certain requests.

There is no equivalent feature in Oracle WebLogic Server.

More Information
None.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-19

<jazn-web-app>

OC4J Definition
Configures the OracleAS JAAS Provider and Single Sign-On (SSO) properties for
servlet execution. You must set these features appropriately to invoke a servlet under
the privileges of a particular security subject.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
In Oracle WebLogic Server, security subject propagation is automatically supported
within the same domain.

However, if the identity is propagated between multiple domains, cross-domain
security or global trust must be enabled.

More Information
Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server

"Enable Cross Domain Security between domains" in the Oracle WebLogic Server
Administration Console online help

<security-role-mapping>

A-20 Oracle Fusion Middleware Upgrade Guide for Java EE

<security-role-mapping>

OC4J Definition
This element maps a security role to specified users and groups, or to all users. It maps
to a security role of the same name specified through a <security-role> element in
the web.xml file. Use either the implies All attribute or an appropriate combination of
subelements—<group>, <user>, or both.

Equivalent Entry in weblogic.xml
<security-role-assignment>

Upgrade Advice
Use the <security-role-assignment> element in weblogic.xml. The security
role name should be created in the destination Oracle WebLogic Server domain.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-21

<web-app-class-loader>

This section describes the attributes supported by the OC4J
<web-app-class-loader> element in the orion-web.xml deployment descriptor.

search-local-classes-first

OC4J Definition
Set this to "true" to search and load WAR file classes before system classes. By default,
system classes are searched and loaded first.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Configure a filtering classloader by adding a <prefer-application-package>
element in the application's weblogic-application.xml, which lists the packages
be loaded explicitly from the application and ensure that the "required" version of the
JAR file is available to the application, either as a application shared library or by
bundling the JAR file in the APP-INF/lib or WEB-INF/lib directories of the
application.

Unlike OC4J, if a WebLogic Server filtered class cannot be resolved through the
application class-loader, Oracle WebLogic Server will not attempt to load it from
parent class-loaders. It is therefore important to ensure that the package names listed
within the <prefer-application-packages> element of
weblogic-application.xml are correct.

More Information
"Using a Filtering Classloader" in Oracle Fusion Middleware Developing Applications for
Oracle WebLogic Server

"Creating Shared Java EE Libraries and Optional Packages" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server

include-war-manifest-class-path

OC4J Definition
Set this attribute to "false" to not ignore the classpath specified in the WAR file
manifest Class-Path attribute when searching and loading classes from the WAR file
(regardless of the search-local-classes-first setting). Otherwise, the classpath
from the WAR file manifest is included.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
WebLogic Server does not read the classpath specified in the WAR file manifest.
However, it is possible to bundle the classes as part of application WEB-INF/lib
directory.

More Information
"Creating Shared Java EE Libraries and Optional Packages" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server

<web-app-class-loader>

A-22 Oracle Fusion Middleware Upgrade Guide for Java EE

autojoin-session

OC4J Definition
Specifies whether users should be assigned a session as soon as they log in to the
application.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
In WebLogic Server, users are automatically assigned a session as soon as they log in to
the application. Unlike OC4J, this behavior cannot be disabled with a deployment
descriptor element.

More Information
None.

default-buffer-size

OC4J Definition
Specifies the default size of the output buffer for servlet responses, in bytes.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
There is no direct equivalent of this configuration element in Oracle WebLogic Server.
However, it is possible to call setBufferSize() using the response object from any
servlet. A JSP page can also include a buffer size directive, <%@ page buffer%>.

More Information
None.

default-charset

OC4J Definition
In OC4J 10g Release 3 (10.1.3.1.0), for JSP pages and for the servlet container, this
attribute specifies the ISO character set to use by default.

In general, for JSP 2.0 users, Oracle instead recommends standard <page-encoding>
functionality (under the web.xml <jsp-config> element, according to the JSP 2.0
specification), to specify character sets according to URL patterns.

However, default-charset may be useful if you have large numbers of JSP pages,
particularly across multiple applications, to avoid the necessity of making numerous
changes in your EAR files.

Also, you can use default-charset to set a base default, then use
<page-encoding> functionality to override the default for particular URL patterns.

Equivalent Entry in weblogic.xml
jsp-descriptor/encoding

Upgrade Advice
Use the jsp-descriptor/encoding configuration in weblogic.xml.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-23

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

default-mime-type

OC4J Definition
Specifies a default content type for servlet responses, for situations where the
setContentType() method is not called from the servlet implementation.

If default-mime-type is not specified, then there is no default content type.

Equivalent Entry in weblogic.xml
container-descriptor/default-mime-type

Upgrade Advice
Use the container-descriptor/default-mime-type configuration in
weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

development

OC4J Definition
Use this OC4J-specific flag during development; it prompts the OC4J server to check a
particular directory for updates to servlet source files.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Oracle WebLogic Server does not auto-compile java sources. However:

■ To enable dynamic class loading for JSP files, configure
jsp-descriptor/page-check-seconds in weblogic.xml.

■ To enable dynamic class loading for servlets, configure
container-descriptor/servlet-reload-check-secs in weblogic.xml.

In development mode, both these flags are set with the default value of one (1) second.
In a production environment, these flags are disabled and need to be set explicitly.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

directory-browsing

OC4J Definition
This attribute specifies whether to allow directory browsing for a URL that ends in "/".

Equivalent Entry in weblogic.xml
container-descriptor/index-directory-enabled

<web-app-class-loader>

A-24 Oracle Fusion Middleware Upgrade Guide for Java EE

Upgrade Advice
Use the container-descriptor/index-directory-enabled configuration in
weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

enable-jsp-dispatcher-shortcut

OC4J Definition
This OC4J-specific flag for performance tuning in conjunction with a "true" setting for
the simple-jsp-mappingattribute.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
No equivalent in Oracle WebLogic Server.

More Information
None.

file-modification-check-interval

OC4J Definition
Determines when to check a static file, such as an HTML file, to see whether its
timestamp has changed and it should therefore be reloaded from the file system.

Equivalent Entry in weblogic.xml
container-descriptor/index-directory-enabled

Upgrade Advice
Use the container-descriptor/resource-reload-check-sec element in
weblogic.xml.

Also consider these related weblogic.xml settings:

■ To use similar setting for JSP, use the jsp-descriptor/page-check-seconds.

■ To use similar setting for servlets, use
container-descriptor/servlet-reload-check-secs.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

jsp-cache-directory

OC4J Definition
Specifies the JSP cache directory, which is used as a base directory for output files from
the JSP translator.

Equivalent Entry in weblogic.xml
jsp-descriptor/workingDir

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-25

Upgrade Advice
Use the workingDir attribute of the <jsp-descriptor> element in
weblogic.xml.

However, note that unlike the jsp-cache-directory configuration in OC4J, this
directory is not relevant for TLDs.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

jsp-cache-tlds

OC4J Definition
Indicates whether persistent TLD caching is enabled for JSP pages.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
There is no need to upgrade this configuration, because Oracle WebLogic Server
supports TLD caching, and TLD caching is ON by default.

Unlike OC4J, TLD caching cannot be disabled with a deployment descriptor element.

More Information
None.

jsp-print-null

OC4J Definition
Set this flag to "false" to print an empty string instead of the default "null" string for
null output from a JSP page.

Equivalent Entry in weblogic.xml
jsp-descriptor/print-nulls

Upgrade Advice
Use the print-nulls attribute of the <jsp-descriptor> element in
weblogic.xml.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

jsp-taglib-locations

OC4J Definition
Use this attribute to provide a semicolon-delimited list of one or more directories to
use as "well-known" locations if persistent TLD caching is enabled for JSP pages
(through the jsp-cache-tlds attribute).

Equivalent Entry in weblogic.xml
None.

<web-app-class-loader>

A-26 Oracle Fusion Middleware Upgrade Guide for Java EE

Upgrade Advice
There is no need to upgrade this configuration, because Oracle WebLogic Server
supports TLD caching, and TLD caching is ON by default.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

jsp-timeout

OC4J Definition
Specifies a period of time after which any JSP page will be removed from memory if it
has not been requested.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
This feature affects applications in which efficient memory utilization is a key factor. It
frees up resources in situations where some JSP pages are called infrequently.

There is no need to upgrade this feature.

More Information
None.

persistence-path

OC4J Definition
Indicates where to store servletHttpSessionobjects for persistence across server
restarts or application redeployments.

Session objects must be serializable (directly or indirectly implementing the
java.io.Serializable interface) or remoteable (directly or indirectly
implementing the java.rmi.Remote interface) for this feature to work.

Equivalent Entry in weblogic.xml
■ persistent-store-type attribute of the session-descriptor element

■ save-sesssions-enables attribute of the container-descriptor element

Upgrade Advice
Set the persistent-store-type attribute of the session-descriptor element
to "memory," and set the save-sessions-enabled attribute of the
container-descriptor element to "true" in weblogic.xml.

This will ensure that sessions are serialized to disk across application redeployments
or server restarts.

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

schema-major-version

OC4J Definition
The major version number of the orion-web.xml XSD.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-27

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Not required in Oracle WebLogic Server.

More Information
None.

schema-minor-version

OC4J Definition
The minor version number of the orion-web.xml XSD.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
None.

More Information
None.

servlet-webdir

OC4J Definition
Use this attribute, in conjunction with a "true" setting for the OC4J system property
http.webdir.enable, to enable servlet invocation by class name in standalone
OC4J.

After the system property is set, any servlet-webdir setting that starts with a slash
("/") enables this feature and specifies a special URL portion to insert after the context
path to instruct OC4J to invoke a servlet by class name. Anything appearing after this
path in a URL is assumed to be a class name, including the package.

This feature is typically used in an OC4J standalone environment during development
and testing; it presents a significant security risk and should not be used in a
production environment.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
Configure standard servlet and servlet-mapping declarations from the servlet
specification to configure weblogic.servlet.ServletServlet.

More Information
"Creating and Configuring Servlets" in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server

simple-jsp-mapping

OC4J Definition
Set this to "true" if "*.jsp" is mapped to only the
oracle.jsp.runtimev2.JspServlet front-end JSP servlet.

<web-app-class-loader>

A-28 Oracle Fusion Middleware Upgrade Guide for Java EE

This would be specified in the <servlet> elements of any Web descriptors affecting
your application (global-web-application.xml, web.xml, and
orion-web.xml).

Enabling this attribute improves performance for JSP pages.

Equivalent Entry in weblogic.xml
None.

Upgrade Advice
This is performance tuning flag for OC4J JSP container and is not required in
WebLogic Server.

More Information
None.

source-directory

OC4J Definition
For situations in which the development attribute is set to "true", the
source-directory setting specifies where to look for servlet source files to
auto-compile.

If you use the default location, OC4J keeps track of the location of the /WEB-INF
directory of your application after deployment. Note that modified source files will be
found anywhere under the source-directory directory, according to package
name.

Equivalent Entry in weblogic.xml
■ page-check-seconds attribute of the jsp-descriptor element

■ servlet-reload-check-secs attribute of the container-descriptor
element

Upgrade Advice
WebLogic Server does not auto-compile java sources.

■ To enable dynamic class loading for JSP files, configure page-check-seconds
attribute of the jsp-descriptor element.

■ To enable dynamic class loading for servlets, configure the
servlet-reload-check-secs attribute of the container-descriptor
element.

In development mode, both these flags are set with the default value 1 second. In
Production environment, these flags are disabled and need to be set explicitly."

More Information
"weblogic.xml Deployment Descriptor Elements" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

temporary-directory

OC4J Definition
This is the path to a temporary directory that can be used by servlets and JSP pages for
scratch files. The path can be either absolute, or relative to the deployment directory.

Equivalent Entry in weblogic.xml
None.

orion-web.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-29

Upgrade Advice
Configure the javax.servlet.context.tempdir attribute from Servlet
Specification.

Note that applications may not work properly, if at all, when using a temporary work
directory that Servlets and other classes can use to store information.

More Information
"ServletContext" Java servlet interface in the Java 2 Platform, Enterprise Edition, v 1.3 API
Specification on the java.sun.com Web site

orion-ejb-jar.xml

A-30 Oracle Fusion Middleware Upgrade Guide for Java EE

orion-ejb-jar.xml

The OC4J-specific application-level EJB descriptor, orion-ejb.xml, is distributed in
the /WEB-INF directory of your WAR files. It is used to add OC4J-specific settings, or
override any settings in ejb-jar.xml.

In Oracle WebLogic Server, the equivalent vendor specific deployment descriptor is
called weblogic-ejb-jar.xml, and it resides in the /WEB-INF directory of the web
module.

When redeploying your 10g applications on Oracle WebLogic Server, you must
convert any specific OC4J settings you have set in your EJB module to the WebLogic
Server equivalents in the weblogic-ejb-jar.xml file. For more information, refer
to the information provided for the key elements and element attributes and in the
orion-ejb.xml file in this appendix.

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-31

<session-deployment>

OC4J Definition
Provides additional, customized deployment information for a session bean deployed
within this JAR file. The existence of this element indicates that the application
contains customized deployment settings for a session bean.

Equivalent Entry in weblogic-ejb-jar.xml
■ stateless-session-descriptor

■ stateful-session-descriptor

Upgrade Advice
Session bean customization in Oracle WebLogic Server is accomplished via the
stateless-session-descriptor and stateful-session-descriptor
elements.

More Information
"stateless-session-descriptor" and "stateful-session-descriptor" in the Oracle Fusion
Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server

copy-by-value

OC4J Definition
This attribute of the <session-deployment> element indicates whether or not to
copy (clone) all the incoming and outgoing parameters in EJB calls. Set to false if you
are certain that your application does not assume copy-by-value semantics for a
speed-up. The default value is true.

Equivalent Entry in weblogic-ejb-jar.xml
enable-call-by-reference

Upgrade Advice
Specify the copy by value semantics in weblogic-ejb-jar.xml using the
enable-call-by-reference element.

More Information
"enable-call-by-reference" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

idletime

OC4J Definition
Use this attribute of the <session-deployment> element to set an idle timeout for
each bean. When this timeout expires, passivation occurs. Set this attribute to the
appropriate number of seconds. Default: 300 seconds. (5 minutes). To disable, specify
any negative number.

Equivalent Entry in weblogic-ejb-jar.xml
stateful-session-cache/idle-timeout-seconds

Upgrade Advice
Use the stateful-session-cache/idle-timeout-seconds element of
stateful-session-descriptor to set the idle timeout in
weblogic-ejb-jar.xml.

<session-deployment>

A-32 Oracle Fusion Middleware Upgrade Guide for Java EE

More Information
"stateful-session-cache" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

min-instances

OC4J Definition
This attribute of the <session-deployment> element is the number of minimum
bean implementation instances to be kept instantiated or pooled. The default is zero.
This setting is valid for stateless session beans only.

The presence of this attribute indicates that the application contains customized bean
pooling settings.

Equivalent Entry in weblogic-ejb-jar.xml
initial-beans-in-free-pool

Upgrade Advice
Set the minimum size of a bean pool in weblogic-ejb-jar.xml using the
initial-beans-in-free-pool element.

More Information
"Pooling for Stateless Session EJBs" Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server

max-instances

OC4J Definition
This attribute of the <session-deployment> element is the presence of this
attribute indicates that the application contains customized bean pooling settings

Equivalent Entry in weblogic-ejb-jar.xml
max-beans-in-free-pool

Upgrade Advice
Set the maximum size of a bean pool in weblogic-ejb-jar.xml using the
max-beans-in-free-pool element

More Information
"Pooling for Stateless Session EJBs" in the Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server

max-instances-threshold

OC4J Definition
Use this attribute of the <session-deployment> element to set the percentage of
max-instances number of beans that can be in memory before passivation occurs.

Equivalent Entry in weblogic-ejb-jar.xml
max-beans-in-cache

Upgrade Advice
Use the stateful-session-cache/max-beans-in-cache element of
stateful-session-descriptor to set the idle timeout in
weblogic-ejb-jar.xml.

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-33

More Information
"stateful-session-cache" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

max-tx-retries

OC4J Definition
This attribute of the <session-deployment> element specifies the number of times
to retry a transaction that was rolled back due to system-level failures. The default is 0.

For a stateful session bean, if a RuntimeException, Error, or RemoteException is
thrown, the OC4J does not do a retry.

Equivalent Entry in weblogic-ejb-jar.xml
retry-methods-on-a-rollback/retry-count

Upgrade Advice
To enable retries for all beans in an EJB module in weblogic-ejb-jar.xml, use the
retry-methods-on-rollback/retry-count element.

Note, however, that the behavior differs between OC4J and Oracle WebLogic Server.
OC4J specifies retries on a per-EJB basis while WebLogic Server configures retries on a
per-EJB module basis.

More Information
"retry-methods-on-rollback" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

resource-check-interval

OC4J Definition
Use this attribute of the <session-deployment> element to check all resources at
this time interval. At this time, if any of the thresholds have been reached, passivation
occurs. Default: 180 sec. (3 min.).

To disable, specify any negative number.

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
Not supported by Oracle WebLogic Server.

More Information
N/A

passivate-count

OC4J Definition
Use this attribute of the <session-deployment> element to define the number of
beans to be passivated if any of the resource thresholds have been reached.

Passivation of beans is performed using the least recently used algorithm. Default:
one-third of the max-instances attribute. You can disable this attribute by setting the
count to zero or a negative number.

Equivalent Entry in weblogic-ejb-jar.xml
None.

<session-deployment>

A-34 Oracle Fusion Middleware Upgrade Guide for Java EE

Upgrade Advice
Not supported in Oracle WebLogic Server.

More Information
N/A

persistence-filename

OC4J Definition
Use this attribute of the <session-deployment> element to define the path to the
file where sessions are stored across restarts.

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
This is not supported by Oracle WebLogic Server; however, you might be able to use
an Oracle WebLogic Server custom persistent store.

More Information
"Specifying the Persistent Store Directory for Passivated Beans" in the Oracle Fusion
Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server

pool-cache-timeout

OC4J Definition
This attribute of the <session-deployment> element specifies how long to keep
stateless sessions cached in the pool.

For stateless session beans, if you specify a pool-cache-timeout, then at every
pool-cache-timeout interval all beans of the corresponding bean type in the pool
are removed. If the value specified is zero or negative, then the
pool-cache-timeout is disabled and beans are not removed from the pool.

Equivalent Entry in weblogic-ejb-jar.xm
idle-timeout-seconds

Upgrade Advice
Set the timeout value of a bean pool in weblogic-ejb-jar.xml using the
idle-timeout-seconds element.

More Information
"Pooling for Stateless Session EJBs" in the Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server

timeout

OC4J Definition
Use this attribute of the <session-deployment> element to set the maximum
number of seconds that a stateful session bean may be inactive before being subject to
pool clean-up. If the value is zero or negative, then all timeouts are disabled.

Every 30 seconds the pool clean up logic is invoked. Within the pool clean up logic,
only the sessions that timed out, by passing the timeout value, are deleted.

Equivalent Entry in weblogic-ejb-jar.xml
stateful-session-cache

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-35

Upgrade Advice
Use the stateful-session-cache/session-timeout-seconds element of
stateful-session-descriptor to set the session timeout in
weblogic-ejb-jar.xml.

More Information
"stateful-session-cache" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

transaction-timeout

OC4J Definition
This attribute of the <session-deployment> element indicates the maximum
number of seconds that OC4J will wait for a transaction started by this stateless or
stateful session bean to commit or rollback. If the value is zero or negative, the timeout
is disabled.

Equivalent Entry in weblogic-ejb-jar.xml
transaction-descriptor element and its trans-timeout-seconds child
element

Upgrade Advice
Set the transaction timeout for an EJB in weblogic-ejb-jar.xml using the
transaction-descriptor/trans-timeout-seconds element and child element.

More Information
"transaction-descriptor" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

<ejb-ref-mapping>

A-36 Oracle Fusion Middleware Upgrade Guide for Java EE

<ejb-ref-mapping>

OC4J Definition
This element maps any EJB references to JNDI names.

Before one enterprise bean, acting in the role of a client (call it the source enterprise
bean), can access another enterprise bean (call it the target enterprise bean), you must
define an EJB reference to the target enterprise bean in the deployment descriptor of
the source enterprise bean.

Equivalent Entry in weblogic-ejb-jar.xml
ejb-reference-description

Upgrade Advice
Set the JNDI location mapping for an EJB reference using the
ejb-reference-description element in weblogic-ejb-jar.xml.

More Information
"ejb-reference-description" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-37

<resource-ref-mapping>

OC4J Definition
This element maps any EJB references to JNDI names.

You can define an environment reference to resource manager connection factories that
provide connections to such services as a JDBC data source, JMS topic or queue, Java
mail, or an HTTP URL. These references are logical names that OC4J binds at
deployment time to the actual resource manager connection factories that it provides.

Equivalent Entry in weblogic-ejb-jar.xml
resource-description

Upgrade Advice
Set the JNDI location mapping for a resource reference using the
resource-description element in weblogic-ejb-jar.xml.

More Information
"resource-description" in the Oracle Fusion Middleware Programming Enterprise JavaBeans
for Oracle WebLogic Server

<resource-env-ref-mapping>

A-38 Oracle Fusion Middleware Upgrade Guide for Java EE

<resource-env-ref-mapping>

OC4J Definition
The <resource-env-ref-mapping> element is used to map an administered object
for a resource.

For example, to use JMS, the bean must obtain both a JMS factory object and a
destination object. These objects are retrieved at the same time from JNDI. The
<resource-ref> element declares the JMS factory and the <resource-env-ref>
element is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object.

Equivalent Entry in weblogic-ejb-jar.xml
resource-env-description

Upgrade Advice
Set the JNDI location mapping for a resource environment reference using the
resource-env-description element in weblogic-ejb-jar.xml.

More Information
"resource-env-description" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-39

<message-destination-ref-mapping>

OC4J Definition
The <message-destination-ref-mapping> element is only used if you are using
JMS 1.1.

Use this element to map the message-destination-ref-name in the client
deployment descriptor to another location that is available in the OC4J environment. It
provides means of linking message consumers and producers to one or more common
logical destinations.

Equivalent Entry in weblogic-ejb-jar.xml
message-destination-descriptor

Upgrade Advice
Set the JNDI location mapping for a message destination mapping using the
message-destination-descriptor element in weblogic-ejb-jar.xml.

More Information
"message-destination-descriptor" in the Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server

<session-type>Stateful</session-type>

A-40 Oracle Fusion Middleware Upgrade Guide for Java EE

<session-type>Stateful</session-type>

OC4J Definition
This value for the session-type element indicates that the application contains a
stateful session bean.

Equivalent Entry in weblogic-ejb-jar.xml
stateful-session-cache/cache-type

Upgrade Advice
The default passivation strategy for stateful session beans differs between OC4J and
WebLogic Server.

By default, WebLogic Server uses a "Not Recently Used" passivation model, where
passivation only occurs when resource limits have been reached. OC4J follows a strict
"Least Recently Used" model where passivation occurs as soon as the idle timeout for a
bean is reached.

If eager passivation semantics are required, then set the
stateful-session-cache/cache-type element to LRU in the
weblogic-ejb-jar.xml stateful-session-descriptor to preserve OC4J semantics.

More Information
"Stateful Session EJB Passivation" in the Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-41

<message-driven-deployment>

OC4J Definition
This section of the orion-ejb-jar.xml provides additional deployment
information for a message driven bean deployed within this JAR file.

The presence of this element indicates that the application contains customized
deployment settings for a message driven bean.

Equivalent Entry in weblogic-ejb-jar.xml
message-driven-descriptor

Upgrade Advice
Use the message-driven-descriptor element in weblogic-ejb-jar.xml.

More Information
"message-driven-descriptor" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

connection-factory-location

OC4J Definition
Use this attribute of the <message-driven-deployment> element to define the
JNDI location of the connection factory to use. The JMS Destination Connection
Factory is specified in this attribute. The syntax is java:comp/resource + resource
provider name + TopicConnectionFactories OR QueueConnectionFactories
+ user defined name. The nnnConnectionFactories details what type of factory is
being defined.

Equivalent Entry in weblogic-ejb-jar.xml
connection-factory-jndi-name

Upgrade Advice
Use connection-factory-jndi-name of the message-driven-descriptor
element in weblogic-ejb-jar.xml.

More Information
"message-driven-descriptor" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

dequeue-retry-count

OC4J Definition
Use this attribute of the <message-driven-deployment> element to specify how
often the listener thread tries to re-acquire the JMS session once database failover has
occurred. This is applicable to only container-managed transactions in an MDB.

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
A dequeue-retry-count is specified for an MDB to configure number of attempts
to restart the listener thread to the destination when OC4J detects the destination is
down.

<message-driven-deployment>

A-42 Oracle Fusion Middleware Upgrade Guide for Java EE

There is no direct equivalent in Oracle WebLogic Server. This feature was intended to
support failover for Oracle AQ and would be a resource-adapter-specific setting in
Oracle WebLogic Server.

More Information
N/A

dequeue-retry-interval

OC4J Definition
Use this attribute of the <message-driven-deployment> element to specify the
interval between retries

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
A dequeue-retry-interval is specified for an MDB to configure the time interval
between attempts to restart the listener thread to the destination when OC4J detects
the destination is down.

There is no direct equivalent in Oracle WebLogic Server. This feature was intended to
support failover for Oracle AQ and would be a resource-adapter-specific setting in
Oracle WebLogic Server.

More Information
N/A

destination-location

OC4J Definition
Use this attribute of the <message-driven-deployment> element to define the
JNDI location of the destination (queue/topic) to use.

The JMS Destination is specified in the destination-location attribute. The
syntax is java:comp/resource + resource provider name + Topics OR Queues +
Destination name. The Topic or Queue details what type of Destination is being
defined. The Destination name is the actual queue or topic name defined in the
database.

Equivalent Entry in weblogic-ejb-jar.xml
destination-jndi-name

Upgrade Advice
Use the destination-jndi-name element of the message-driven-descriptor
in weblogic-ejb-jar.xml.

More Information
"message-driven-descriptor" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

listener-threads

OC4J Definition
Use this attribute of the <message-driven-deployment> element to concurrently
consume JMS messages. The default is one thread. Topics can only have one thread.
Queues can have more than one.

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-43

Equivalent Entry in weblogic-ejb-jar.xml
max-beans-in-free-pool

Upgrade Advice
Oracle WebLogic Server supports a variety of approaches for controlling thread
management depending on the resource adapter in use.

More Information
"Configuring Concurrent Access to Stateful Session Beans" in the Oracle Fusion
Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server

max-delivery-count

OC4J Definition
Use this attribute of the <message-driven-deployment> element to set the
maximum number of times OC4J will attempt the immediate redelivery of a message
to a message-driven bean's onMessage method if that method returns failure (fails to
invoke an acknowledgment operation, throws an exception, or both).

After this number of redeliveries, the message is deemed undeliverable and is handled
according to the policies of your message service provider. For example, OEMS JMS
will put the message on its exception queue (jms/Oc4jJmsExceptionQueue).

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
A max-delivery-count is specified for an MDB to specify the maximum number of
attempts to deliver the same message in the event of failure. Oracle WebLogic Server
does not support setting this option on a per-MDB basis.

More Information
Oracle Fusion Middleware Programming JMS for Oracle WebLogic Server

resource-adapter

OC4J Definition
Use this attribute of the <message-driven-deployment> element to define the
name of the resource adapter instance that this MDB uses. Applicable only if this MDB
is using a J2CA message service provider. In order for the MDB to be activated by
messages received by the resource adapter, the MDB and resource adapter must be
connected.

Equivalent Entry in weblogic-ejb-jar.xml
resource-adapter-jndi-name

Upgrade Advice
Use resource-adapter-jndi-name of message-destination-descriptor
element in weblogic-ejb-jar.xml.

More Information
"message-driven-descriptor" in the Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server

<message-driven-deployment>

A-44 Oracle Fusion Middleware Upgrade Guide for Java EE

subscription-name

OC4J Definition
Use this attribute of the <message-driven-deployment> element to define the
name of the topic to which this message-drive bean subscribes.

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
If a resource adapter is used, and it supports the subscription-name property, then
it must be specified using an activation-config-property element in
ejb-jar.xml. Oracle WebLogic Server does not support setting this property in
weblogic-ejb-jar.xml.

More Information
N/A

wrapper-class

OC4J Definition
Use this attribute of the <message-driven-deployment> element to .

Equivalent Entry in weblogic-ejb-jar.xml

Upgrade Advice
A dequeue-retry-count is specified for MDB to configure number of attempts to
restart the listener thread to the destination when OC4J detects the destination is
down.

There is no direct equivalent in Oracle WebLogic Server. This feature was intended to
support failover for Oracle AQ and would be a resource-adapter-specific setting in
Oracle WebLogic Server.

More Information
N/A

orion-ejb-jar.xml

orion-web.xml and orion-ejb-jar.xml Upgrade Reference A-45

<config-property>

OC4J Definition
The <config-property> element is only used if you are using a J2CA message
service provider. Use this element to set J2CA resource adapter configuration
properties. When OC4J deploys an MDB configured to use a J2CA message service
provider, OC4J provides the MDB's activation specification to the resource adapter.
This specification includes the properties you set in the <config-property>
element.

Alternatively, for an EJB 3.0 message-driven bean, you can set J2CA resource adapter
configuration properties using @MessageDriven attribute configProperty and
@ActivationConfig annotation.

You can use the orion-ejb-jar.xml file <config-property> configuration to
override @MessageDriven configuration.

Equivalent Entry in weblogic-ejb-jar.xml
None.

Upgrade Advice
Oracle WebLogic Server does not support overriding activation config properties via
weblogic-ejb-jar.xml. These settings must be merged with the normal activation
config properties located in the ejb-jar.xml file.

More Information
N/A

<config-property>

A-46 Oracle Fusion Middleware Upgrade Guide for Java EE

Index-1

Index

Numerics
10g Release 3 (10.1.3.1.0)

components included in, 2-1

A
access-mask

element of orion-web.xml, A-7
ADF applications, 4-2
admin_client.jar

equivalent in WebLogic Server, 3-8
Administration Console, 3-2

starting and stopping components, 3-9
administration server, 3-2, 3-5
administration tools

for OC4J and WebLogic Server, 3-8
AJP, 3-6, 7-2

no support in WebLogic Server, 3-7
using to integrate Oracle HTTP Server with

OC4J, 7-1
AJPS, 3-6
Ant

See Apache Ant
Apache Ant

using for WebLogic administration tasks, 3-9
API support

when upgrading to WebLogic Server, 4-4, 4-5
application clients

changes required when JMS provider is upgraded
to WebLogic Server, 6-4

changes required when using OC4J JMS
provider, 6-5

EJB clients, 6-3
modifying to use WebLogic Server JNDI

provider, 6-1
remote standalone EJB clients, 6-3
running in an OC4J server instance, 6-2
upgrade, 6-1
using OC4J-based EJB interfaces

impact of upgrade on, 6-4
Application Server Control, 3-3, 3-6, 3-8, 3-9

compared to WebLogic Server Administration
Console, 3-2

application-client.xml, 4-3
applications

See Java EE applications
application.xml, 4-2, 4-3
architecture

comparing OC4J and Oracle WebLogic
Server, 3-2

autojoin-session
attribute of the web-app-class-loader

element, A-22

C
classpath

element of orion-web.xml, A-3
cluster topology

compared with WebLogic domain, 3-4
compared with WebLogic Server, 3-3

Cluster Topology page
in Application Server Control, 3-3

clustering
comparing OC4J and WebLogic Server, 3-3
comparison of WebLogic and OC4J features, 3-4

clusters
WebLogic Server clusters, 3-4

config-property
element in orion-ejb-jar.xml, A-45

Configuration Wizard
introduction for OC4J users, 3-7

Connection Pooling
when upgrading to WebLogic Server JMS

provider, 6-5
connection-factory-location

attribute of the message-driven-deployment
element, A-41

context-param
element of web.xml, A-4

contextParamMappingFinding
element of orion-web.xml, A-4

copy-by-value
attribute of the session-deployment

element, A-31
custom Java EE applications, 3-5

D
default-buffer-size

attribute of the web-app-class-loader

Index-2

element, A-22
default-charset

attribute of the web-app-class-loader
element, A-22

default-mime-type
attribute of the web-app-class-loader

element, A-23
default-web-site.xml, 7-2
deployment descriptors

comparison beween OC4J and WebLogic
Server, 4-2

guidelines and resources for upgrading, 4-3
security elements in, 4-4

deployment plans
generating with weblogic.PlanGenerator, 4-4
upgrading, 4-4

dequeue-retry-count
attribute of the message-driven-deployment

element, A-41
dequeue-retry-interval

attribute of the message-driven-deployment
element, A-42

destination-location
attribute of the message-driven-deployment

element, A-42
development

attribute of the web-app-class-loader
element, A-23

development tools
selecting for upgrade, 4-1

diagnostics
comparison between OC4J and WebLogic

Server, 3-9
Diagnostics and Logging Framework (ODL), 4-5
directory structures

comparison between OC4J and WebLogic
Server, 3-4

directory-browsing
attribute of the web-app-class-loader

element, A-23
DMS

compared with WebLogic Server diagnostics, 3-9
domain

comparison with 10g cluster topology, 3-4
content and organization of, 3-5
creating in the Middleware home, 3-4

domains
configuring multiple, 3-6
creating multiple, 3-6
default location of domain files, 3-6
introduction for OC4J users, 3-5
viewing domain log files, 3-10

Dynamic Monitoring System (DMS), 4-5

E
EJB

comparison of support in OC4J and WebLogic
Server, 3-11

EJB clients

See also Enterprise Java Bean Clients, 6-3
ejb-jar.xml, 4-3, 4-4
ejb-ref-mapping

element in orion-ejb-jar.xml, A-36
element of orion-web.xml, A-16

enable-jsp-dispatcher-shortcut
attribute of the web-app-class-loader

element, A-24
Enterprise Java Bean clients

impact of upgrade on, 6-3
remote standalone EJB clients, 6-3
running within an OC4J server instance, 6-3

env-entry-mapping
element of orion-web.xml, A-15

environment-naming-url-factory-enabled
server.xml attribute, 6-2
to allow use of multiple JNDI providers, 6-2

expiration-setting
element of orion-web.xml, A-18

F
file-modification-check-interval

attribute of the web-app-class-loader
element, A-24

flow chart
of the Java EE upgrade process, 1-1

foreign server
WebLogic JMS feature, 6-5

Fusion Middleware Control
compared to Application Server Control, 3-8
using to verify a Web tier upgrade, 7-11

H
HTTP, 3-6, 7-2

support in WebLogic Server, 3-7
HTTP session state replication, 6-1

in WebLogic Server, 3-4
HTTPS, 3-6, 7-2

I
idletime

attribute of the session-deployment
element, A-31

include-war-manifest-class-path
attribute of the web-app-class-loader

element, A-21
installation and configuration

separation of in WebLogic server, 3-7
Integrated Web Server and OC4J

10g installation type, 3-2

J
j2ee directory, 3-4, 3-6
Java components, 3-5
Java EE

comparison of support in OC4J and WebLogic
Server, 3-11

Index-3

upgrading your applications, 4-1
Java EE and Web Server

OC4J installation type
upgrading, 7-1

Java EE applications
selecting development tools for, 4-1
upgrading, 4-1
upgrading clients, 6-1
upgrading deployment descriptors, 4-2
upgrading Web services, 4-6
verifying on OC4J before upgrade, 4-1
verifying with supported JDK, 4-2

Java EE Deployment
comparison of support in OC4J and WebLogic

Server, 3-11
Java EE Management

comparison of support in OC4J and WebLogic
Server, 3-11

Java EE upgrade
process summary, 1-1

Java Messaging Service
WebLogic "Unit of Order" feature, 6-4
WebLogic foreign server feature, 6-5

Java Messaging Service clients
upgrading, 6-4

Java Naming and Directory Interface clients
impact of upgrading on, 6-1

Java Required Files domain template
APIs available in, 4-4

Java SE
comparison of support in OC4J and WebLogic

Server, 3-11
Java Server Pages clients

impact of upgrading on, 6-1
Java Standard Tag Library (JSTL), 4-6
Java standards

support in OC4J and WebLogic Server, 3-11
Java Virtual Machine

comparison between JVMs in WebLogic and
OC4J, 3-6

configuring multiple in OC4J, 3-6
JAX-RPC, 4-6

comparison of support in OC4J and WebLogic
Server, 3-11

JAX-WS, 4-6
comparison of support in OC4J and WebLogic

Server, 3-11
jazn-web-app

element of orion-web.xml, A-19
JCA

comparison of support in OC4J and WebLogic
Server, 3-11

JDBC
comparison of support in OC4J and WebLogic

Server, 3-11
JDK

supported version for Oracle Fusion
Middleware, 4-2

JMS, 3-7
comparison of support in OC4J and WebLogic

Server, 3-11
JMS Clients

See also Java Messaging Service clients, 6-4
JMS provider

client impact when upgraded, 6-4
JMX

comparison of support in OC4J and WebLogic
Server, 3-11

JNDI
comparison of support in OC4J and WebLogic

Server, 3-11
JNDI clients

See also Java Naming and Directory Interface
clients, 6-1

JNDI Namespace
understanding scope of WebLogic Server, 6-2

JRF domain template
See also Java Required Files domain template, 4-4

JSF
comparison of support in OC4J and WebLogic

Server, 3-11
JSP

comparison of support in OC4J and WebLogic
Server, 3-11

JSP clients
See also Java Server Pages clients, 6-1

jsp-cache-directory
attribute of the web-app-class-loader

element, A-24
jsp-cache-tlds

attribute of the web-app-class-loader
element, A-25

jsp-print-null
attribute of the web-app-class-loader

element, A-25
jsp-taglib-locations

attribute of the web-app-class-loader
element, A-25

jsp-timeout
attribute of the web-app-class-loader

element, A-26
jstl.jar, 4-5
JTA

comparison of support in OC4J and WebLogic
Server, 3-11

JVM
See Java Virtual Machine

L
library-ref

element of weblogic-application.xml, A-3
listener-threads

attribute of the message-driven-deployment
element, A-42

Load Balancing
when upgrading EJB clients, 6-3

log files
location of domain log files, 3-10
viewing for a domain, 3-10

Index-4

logging
comparison between OC4J and WebLogic

Server, 3-10
lookup-context

element of orion-web.xml, A-13

M
managed servers, 3-5, 7-2

introduction to, 3-2
max-delivery-count

attribute of the message-driven-deployment
element, A-43

max-instances
attribute of the session-deployment

element, A-32
max-instances-threshold

attribute of the session-deployment
element, A-32

max-tx-retries
attribute of the session-deployment

element, A-33
Message ordering

when upgrading to WebLogic Server JMS
provider, 6-4

message-destination-ref-mapping
element in orion-ejb-jar.xml, A-39

message-driven-deployment
element in orion-ejb-jar.xml, A-41

Middle Tier Instance
option in the Upgrade Assistant, 7-7

Middleware home
introduction to, 3-4

mimeMappings
element of orion-web.xml, A-5

min-instances
attribute of the session-deployment

element, A-32
mod_oc4j, 7-2
mod_wl_ohs

using to configure Oracle HTTP Server with
WebLogic, 7-3

My Oracle Support, 2-1

N
network channels, 7-2

WebLogic Server feature, 3-7
Network Connections

when upgrading to WebLogic Server JMS
provider, 6-5

numproc
OC4J configuration property, 3-6

O
OC4J, 1-1

clustering, 3-3
comparing with WebLogic architecture, 3-1
comparison with WebLogic clustering

features, 3-4

introduction to Oracle WebLogic Server for users
of, 3-1

introduction to WebLogic installation and
configuration for users of, 3-7

managing with Application Server Control, 3-2
Oracle WebLogic Server concepts for users of, 3-1
standalone, 3-2
verifying that applications deploy on, 4-1
Web sites

equivalent in WebLogic Server, 7-1
WSDL

generating Web services from, 4-7
OC4J application clustering, 3-3

comparison with WebLogic HTTP session state
replication, 3-4

OC4J groups, 3-3
compared with WebLogic clusters, 3-4

OC4J JMX MBeans, 4-6
OC4J Job Scheduler, 4-6
OC4J Support for JSP, 4-6
OC4J-Based EJB Interfaces, 6-4
oc4jclient.jar, 6-4
oc4j-ra.xml, 4-3
ODL

See Oracle Diagnostics Logging
OEMS JMS Connector, 6-5
ojsputil.jar, 4-5
OPMN, 3-9

See also Oracle Process Management and
Notification, 6-2

opmnctl, 3-8
Oracle Business Intelligence Discoverer, 7-3
Oracle Coherence, 6-1
Oracle Containers for Java EE

See OC4J
Oracle Diagnostics Logging

support in OC4J and WebLogic Server, 3-10
Oracle Enterprise Manager Application Server

Control
See Application Server Control

Oracle Enterprise Manager Fusion Middleware
Control

See Fusion Middleware Control, 3-8
Oracle Fusion Middleware

configuring a Web tier middle tier, 7-3
Java components, 3-5

Oracle Globalization Development Kit, 4-5
Oracle home, 3-4, 3-6
Oracle HTTP Client, 4-5
Oracle HTTP Server, 3-7, 7-8

comparison between using with OC4J and
WebLogic, 7-1

configuring to work with WebLogic Server, 7-2
integrated with OC4J, 7-1
modifying the listening port after upgrade, 7-9
routing requests to OC4J, 3-7
understanding how to configure with Oracle

WebLogic Server, 7-2
upgrading, 7-1
using Web servers other than, 7-3

Index-5

Oracle Identity Federation, 7-3
Oracle Identity Management, 7-3
Oracle Java Object Cache, 4-5
Oracle JAZN (Java Authorization), 4-5
Oracle JSP Tag Libraries, 4-5
Oracle Platform Security Services (OPSS), 4-5
Oracle Portal, 7-3
Oracle Process Management and Notification

(OPMN), 6-2
Oracle Security Developer Tools, 4-5
Oracle Service Registry, 4-6
Oracle Technology Network (OTN), 4-6
Oracle TopLink, 4-5
Oracle Web Cache, 7-3, 7-8

verifying ports after upgrade, 7-10
verifying the location of SSL wallet after

upgrade, 7-9
Oracle Web Cache Invalidation, 4-6
Oracle Web Services Proxy, 4-6
Oracle Web Services SOAP, 4-6
Oracle Web Services UDDI Client, 4-6
Oracle Web Services UDDI Client API, 4-6
Oracle WebLogic Server

additional facts for OC4J users, 3-6
Administration Console, 3-2
administration tools

comparison with OC4J, 3-8
API requirements, 4-5
API support, 4-4
associating a Web tier with, 7-4
clustering, 3-3
command-line scripting tool

See also WLST, 3-8
comparing with OC4J architecture, 3-1
comparison to OC4J clustering features, 3-4
concepts for OC4J users, 3-1
configuration wizard, 3-6
configuring Oracle HTTP Server to work

with, 7-2
configuring with Web tier components, 3-2
directory structure, 3-4
generating Web services from OC4J WSDL, 4-7
HTTP session state replication, 3-4
in-memory HTTP session state replication, 6-1
installation and configuration concepts for OC4J

users, 3-7
introduction for OC4J users, 3-1
introduction to domains for OC4J users, 3-5
JAX-RPC Web services, 4-6
JAX-WS Web Services, 4-6
JMS "Unit of Order" feature, 6-4
JNDI Namespace

understanding scope of, 6-2
JNDI provider, 6-3

modifying clients to use, 6-1
listening ports, 3-6
managed server listening ports, 3-7
managed servers compared to OC4J

instances, 3-2
network channels, 3-7

standards support, 3-11
support for ODL, 3-10
typical administration tasks, 3-9
using Oracle HTTP Server with, 7-1
using with a Web server, 3-2

Oracle WebLogic Server installer
introduction for OC4J users, 3-7

Oracle XML, 4-5
OracleAS Web Services, 4-6
OracleMetaLink, 2-1
oracle-webservices.xml, 4-3
orion-application-client.xml, 4-3
orion-application.xml, 4-3
orion-ejb-jar.xml, 4-3

upgrade reference, A-1, A-30
orion-web.xml, 4-3

upgrade reference, A-1

P
passivate-count

attribute of the session-deployment
element, A-33

patch sets
applying the latest before upgrade, 2-1

persistence-filename
attribute of the session-deployment

element, A-34
persistence-path

attribute of the web-app-class-loader
element, A-26

pool-cache-timeout
attribute of the session-deployment

element, A-34
post-upgrade tasks

for Web tier components, 7-9
verifying the location of the Web Cache SSL

wallet, 7-9
verifying Web Cache ports, 7-10

R
ra.xml, 4-3
request-tracker

element of orion-web.xml, A-9
resource-adapter

attribute of the message-driven-deployment
element, A-43

resource-check-interval
attribute of the session-deployment

element, A-33
resource-env-ref-mapping

element in orion-ejb-jar.xml, A-38
element of orion-web.xml, A-14

resource-ref-mapping
element in orion-ejb-jar.xml, A-37
element of orion-web.xml, A-12

RMI, 3-7, 7-2
RMI Protocol

when upgrading EJB clients, 6-3

Index-6

RMIInitialContextFactory, 6-4

S
SAML, 4-7
schema-major-version

attribute of the web-app-class-loader
element, A-26

schema-minor-version
attribute of the web-app-class-loader

element, A-27
search-local-classes-first

attribute of the web-app-class-loader
element, A-21

security role mappings, 4-4
security-role-mapping

element of orion-web.xml, A-20
service-ref-mapping

element of orion-web.xml, A-17
Servlet

comparison of support in OC4J and WebLogic
Server, 3-11

Servlet clients
impact of upgrading on, 6-1

servlet-chaining
element of orion-web.xml, A-8

servlet-webdir
attribute of the web-app-class-loader

element, A-27
session-deployment

element in orion-ejb-jar.xml, A-31
session-tracker

element of orion-web.xml, A-11
session-tracking

element of orion-web.xml, A-10
session-type

element in orion-ejb-jar.xml
when set to stateful, A-40

simple-jsp-mapping
attribute of the web-app-class-loader

element, A-27
SmartUpgrade, 1-3, 4-2
SOA applications, 4-2
SOAP 1.1 and 1.2, 4-7
source-directory

attribute of the web-app-class-loader
element, A-28

Specify Destination Instance screen
in the Upgrade Assistant, 7-7

Specify Operation screen
of the Upgrade Assistant, 7-6

Specify Source Home screen
in the Upgrade Assistant, 7-7

Specify Upgrade Options screen
in the Upgrade Assistant, 7-8

Specify WebLogic Server screen
in the Upgrade Assistant, 7-7

SSL, 7-2
listening port in WebLogic Server, 3-7

standalone OC4J instances, 3-2

standards
comparison of OC4J and WebLogic Server support

for, 3-10
Start destination components after successful upgrade

in the Upgrade Assistant, 7-8
starting points

for Java EE upgrade, 2-1
starting servers

in OC4J and WebLogic Server, 3-9
startManagedWebLogic

WebLogic server script, 3-9
startWebLogic

WebLogic server script, 3-9
stateful-session-descriptor

in weblogic-ejb-jar.xml, A-31
stateless-session-descriptor

in weblogic-ejb-jar.xml, A-31
Stop source components before upgrade option

in the Upgrade Assistant, 7-8
stopping servers

in OC4J and Oracle WebLogic Server, 3-9
subscription-name

attribute of the message-driven-deployment
element, A-44

T
t3 protocol

used by WebLogic Server, 6-2
temporary-directory

attribute of the web-app-class-loader
element, A-28

thread pools
comparison between OC4J and WebLogic

Server, 3-10
timeout

attribute of the session-deployment
element, A-34

transaction-timeout
attribute of the session-deployment

element, A-35

U
ua

command to start the Upgrade Assistant, 7-5
ua.bat

command to start the Upgrade Assistant, 7-5
UDDI, 4-6
upgrade

summary of the process, 1-1
Upgrade Assistant

screens that require input during Web tier
upgrade, 7-7

Specify Destination Instance screen, 7-7
Specify Operation screen, 7-6
Specify Source Home screen, 7-7
Specify Upgrade Options screen, 7-8
Specify WebLogic Server screen, 7-7
Start destination components after successful

Index-7

upgrade option, 7-8
starting in preparation for a Web tier

upgrade, 7-5
Stop source components before upgrade

option, 7-8
upgrading Web tier components, 7-7
Use source Oracle home ports in destination

option, 7-8
important notes when using, 7-8

Welcome screen, 7-5
Use source Oracle home ports in destination

option, 7-8
important notes when using, 7-8
in the Upgrade Assistant, 7-8

user_projects directory, 3-4
user_projects/domains

default location of WebLogic domain files, 3-6

V
Verify Instance option

in Upgrade Assistant, 7-10
verifying a Web tier upgrade, 7-10
virtual-directory

element of orion-web.xml, A-6

W
Web Server

integrating with OC4J and Oracle WebLogic
Server, 3-2

upgrading, 7-1
Web servers

other than Oracle HTTP Server
configuring with Oracle WebLogic, 7-3

Web services
generating Web service from OC4J WSDL, 4-7
JAX-RPC, 4-6
JAX-WS, 4-6
Oracle recommended upgrade path, 4-7
specifications supported by OC4J and WebLogic

Server, 4-7
upgrading, 4-6

Web sites
in OC4J, 3-6

Web tier
associating with a WebLogic Server domain, 7-4
configuring to route requests to WebLogic

Server, 7-9
configuring without a domain, 7-4
installation and configuration, 7-2
installing and configuring, 7-3
installing and configuring with Oracle WebLogic

Server, 3-2
locating the installation and configuration

documentation, 7-4
post-upgrade tasks, 7-9
selecting components, 7-3
upgrade screens that require input, 7-7
upgrading, 7-5

upgrading Web tier components, 7-1
verifying the upgrade, 7-10

Web Tier and Utilities CD-ROM, 3-2
web-app-class-loader

element of orion-web.xml, A-21
WebCenter applications, 4-2
WEB-INF/lib, 4-5
WEB-INF/tld directory, 4-5
WebLogic Diagnostics Framework

compared with Dynamic Monitoring Server
(DMS), 3-9

WebLogic Server
See Oracle WebLogic Server

WebLogic Server JMX MBeans, 4-6
weblogic-appclient.xml, 4-3

resources for upgrading, 4-3
weblogic-application.xml, 4-3, A-3

resources for upgrading, 4-3
weblogic.deployer, 3-9
weblogic-ejb-jar.xml, 4-3, 6-3

resources for upgrading, 4-3
weblogic.PlanGenerator, 4-4
weblogic-ra.xml, 4-3

resources for upgrading, 4-3
weblogic-webservices.xml, 4-3

resources for upgrading, 4-4
weblogic.xml, 4-3

resources for upgrading, 4-3
webservices.xml, 4-3
web.xml, 4-2, 4-3, 4-4
Welcome screen

of the Upgrade Assistant, 7-5
WLDF

See WebLogic Diagnostics Framework
WLInitialContextFactory class

when upgrading application clients, 6-2
WLST, 3-8, 3-9
wrapper-class

attribute of the message-driven-deployment
element, A-44

WS-Addressing, 4-7
WS-Conversation, 4-8
WSDL 1.1, 4-7
WS-I 1.0 and 1.1, 4-7
WS-Policy, 4-7
WS-PolicyAttachment, 4-8
WS-Reliability, 4-7
WS-ReliableMessaging, 4-8
WS-SecureConversation, 4-8
WS-SecurePolicy, 4-7
WS-Security, 4-7
WS-Trust, 4-8

X
XML Encryption, 4-7
XML Signature, 4-7

Index-8

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Summary of the Java EE Upgrade Process
	1.1 Flow Chart of the Java EE Upgrade Process
	1.2 Table Describing the Steps in the Java EE Upgrade Process

	Part I Preparing for a Java EE Upgrade
	2 Supported Starting Point for Java EE Upgrade
	3 Introduction to Oracle WebLogic Server for OC4J Users
	3.1 Key Oracle WebLogic Server Concepts for OC4J Users
	3.1.1 Comparing the OC4J and Oracle WebLogic Server Architectures
	3.1.1.1 Standalone OC4J and Standalone Oracle WebLogic Server
	3.1.1.2 OC4J and Oracle WebLogic Server Integrated With a Web Server
	3.1.1.3 OC4J and Oracle WebLogic Server Clustering Features

	3.1.2 Comparing OC4J and Oracle WebLogic Server Directory Structures
	3.1.3 Understanding Oracle WebLogic Server Domains for OC4J Users
	3.1.3.1 Basic Content and Organization of a Domain
	3.1.3.2 Additional Facts About Oracle WebLogic Server Domains
	3.1.3.2.1 A WebLogic Server Installation Can be Used to Configure Multiple Domains
	3.1.3.2.2 A WebLogic Server Instance Is Always Associated With a Single Java Virtual Machine Process
	3.1.3.2.3 A WebLogic Server Instance Processes All Application Requests on the Same Port by Default
	3.1.3.2.4 A WebLogic Server Instance Is Always Configured With an HTTP Listener and Does Not Support AJP

	3.2 Oracle WebLogic Server Installation and Configuration Tools for OC4J Users
	3.3 Oracle WebLogic Server Administration Tools for OC4J Users
	3.3.1 Comparison of OC4J and Oracle WebLogic Server Administration Tools
	3.3.2 Typical Oracle WebLogic Server Administration Tasks for OC4J Users
	3.3.2.1 Starting and Stopping Servers
	3.3.2.2 Performing Diagnostics on a Domain
	3.3.2.3 Viewing Log Files for a Domain
	3.3.2.4 Configuring and Tuning Thread Pools

	3.4 Standards Support for OC4J and Oracle WebLogic Server

	Part II Upgrading Your Java EE Applications and Environment
	4 Upgrading Your Java EE Applications
	4.1 Task 1: Verify that Your Application Deploys and Works Successfully on OC4J
	4.2 Task 2: Select Your Development Tools
	4.2.1 General Guidelines for Selecting Your Development Tools
	4.2.2 Using the SmartUpgrade Oracle JDeveloper Extension and Command-Line Tool

	4.3 Task 3: Verify That Your Application Supports Java Development Kit (JDK) 6
	4.4 Task 4: Upgrade the Application Deployment Descriptors
	4.4.1 Comparison of OC4J and Oracle WebLogic Server Deployment Descriptors
	4.4.2 Guidelines and Resources for Upgrading Deployment Descriptors for Oracle WebLogic Server
	4.4.3 About Security Elements in Deployment Descriptor Files
	4.4.4 Upgrading Deployment Plans

	4.5 Task 5: Review Oracle WebLogic Server API Support
	4.5.1 APIs Available With the Java Required Files (JRF) Domain Template
	4.5.2 Other Oracle WebLogic Server API Requirements

	4.6 Task 6: Upgrade the Application Web Services
	4.6.1 General Guidelines for Upgrading to Oracle WebLogic Server JAX-RPC and JAX-WS Web Services
	4.6.2 Generating Oracle WebLogic Server Web Services From an OC4J WSDL
	4.6.3 Web Services Specifications Supported by OC4J and Oracle WebLogic Server

	5 Upgrading Your Java EE Environment
	5.1 Task 1: Install and Configure an Oracle WebLogic Server Development Domain
	5.1.1 Differences Between a Development Environment and a Test or Production Environment
	5.1.2 Installing and Configuring a Development Domain with Oracle JDeveloper
	5.1.3 Installing and Configuring a Development Domain with Oracle SOA Suite, WebCenter, or Application Developer
	5.1.3.1 Advantages of Installing an Oracle SOA Suite, WebCenter, or Application Developer Development Environment
	5.1.3.2 Selecting an Oracle Fusion Middleware Software Suite
	5.1.3.3 Steps Required to Install and Configure an Oracle SOA Suite, WebCenter, or Application Developer Domain

	5.1.4 Using the Java Required Files (JRF) Domain Template
	5.1.4.1 Creating a New Domain With the JRF Template
	5.1.4.2 Extending an Existing Domain With the JRF Template

	5.2 Task 2: Verify the New Oracle Fusion Middleware 11g Environment
	5.3 Task 3: Configure Oracle WebLogic Server Resources to Support Your Applications
	5.3.1 Configuring JDBC Data Sources on Oracle WebLogic Server
	5.3.1.1 General Information About Defining Data Sources for OC4J and Oracle WebLogic Server
	5.3.1.2 Upgrading Application-Level OC4J Data Sources
	5.3.1.3 Upgrading Instance and Group-Level OC4J Data Sources
	5.3.1.4 JDBC Connection Pools and Managed Data Sources in OC4J and Oracle WebLogic Server

	5.3.2 Configuring OC4J JMS Resources on Oracle WebLogic Server
	5.3.2.1 Overview of JMS Support in OC4J and Oracle WebLogic Server
	5.3.2.2 Creating and Managing JMS Resources in OC4J and Oracle WebLogic Server

	5.3.3 Configuring OC4J Remote JMS Resources on Oracle WebLogic Server
	5.3.4 Using Shared Libraries and Class Loading on Oracle WebLogic Server
	5.3.5 Configuring Startup and Shutdown Classes
	5.3.6 Configuring Security on Oracle WebLogic Server
	5.3.7 Configuring Logging on Oracle WebLogic Server

	5.4 Task 4: Redeploy the Application on Oracle WebLogic Server
	5.5 Task 5: Verify the Redeployed Applications

	6 Upgrading Application Clients
	6.1 Impact of Upgrade on Java Server Pages and Servlet Clients
	6.2 Impact of Upgrade on Java Naming and Directory Interface Clients
	6.2.1 Modifying Clients to Use the Oracle WebLogic Server JNDI Provider
	6.2.2 Understanding the Scope of the Oracle WebLogic Server JNDI Namespace

	6.3 Impact of Upgrade on Enterprise Java Bean Clients
	6.3.1 Impact on Remote Standalone EJB Clients
	6.3.2 Impact on Clients That Use OC4J-Based EJB Interfaces

	6.4 Impact of Upgrade on JMS Clients
	6.4.1 Changes Required When the JMS Provider is Upgraded to WebLogic Server
	6.4.2 Changes Required When the JMS Provider Remains in OC4J

	7 7 Upgrading a Java EE and Web Server Environment
	7.1 Task 1: Understand the Differences Between Using Oracle HTTP Server with OC4J and Oracle WebLogic Server
	7.1.1 Configuring Web Sites and AJP Connections in Oracle WebLogic Server
	7.1.2 Installing and Configuring Oracle HTTP Server for Oracle WebLogic Server
	7.1.2.1 How Oracle HTTP Server Is Configured for OC4J
	7.1.2.2 How Oracle HTTP Server is Configured for Oracle WebLogic Server

	7.1.3 Using Web Servers Other than Oracle HTTP Server with Oracle WebLogic Server
	7.1.4 Understanding Oracle HTTP Server Interoperability Issues When Upgrading to Oracle Fusion Middleware 11g

	7.2 Task 2: Install and Configure an Oracle Fusion Middleware Web Tier
	7.2.1 Deciding Upon a Location for Your Web Tier Components
	7.2.2 Associating the Web Tier Components with an Oracle WebLogic Server Domain
	7.2.3 Locating the Web Tier Installation and Configuration Documentation

	7.3 Task 3: Upgrade Your Oracle Application Server 10g Web Tier Components to Oracle Fusion Middleware 11g
	7.3.1 Task 3a: Start the Upgrade Assistant for an Web Tier Upgrade
	7.3.2 Task 3b: Use the Upgrade Assistant to Upgrade the Web Tier Components
	7.3.2.1 Upgrading the Web Tier Components
	7.3.2.2 Important Notes When Using the Source Oracle Home Ports in the Destination Oracle Instance

	7.4 Task 4: Configure the Web Tier To Route Requests to Your Oracle Fusion Middleware Environment
	7.5 Task 5: Perform Any Required Post-Upgrade Tasks for the Web Tier Components
	7.5.1 Verifying the Location of the Oracle HTTP Server and Oracle Web Cache Wallets After Upgrade
	7.5.2 Verifying and Updating the Oracle HTTP Server and Oracle Web Cache Ports After Upgrade

	7.6 Task 6: Verify the Web Tier Upgrade

	A orion-web.xml and orion-ejb-jar.xml Upgrade Reference
	orion-web.xml
	<classpath>
	<contextParamMappingFinding>
	<mimeMappings>
	<virtual-directory>
	<access-mask>
	<servlet-chaining>
	<request-tracker>
	<session-tracking>
	<session-tracker>
	<resource-ref-mapping>
	<lookup-context>
	<resource-env-ref-mapping>
	<env-entry-mapping>
	<ejb-ref-mapping>
	<service-ref-mapping>
	<expiration-setting>
	<jazn-web-app>
	<security-role-mapping>
	<web-app-class-loader>
	search-local-classes-first
	include-war-manifest-class-path
	autojoin-session
	default-buffer-size
	default-charset
	default-mime-type
	development
	directory-browsing
	enable-jsp-dispatcher-shortcut
	file-modification-check-interval
	jsp-cache-directory
	jsp-cache-tlds
	jsp-print-null
	jsp-taglib-locations
	jsp-timeout
	persistence-path
	schema-major-version
	schema-minor-version
	servlet-webdir
	simple-jsp-mapping
	source-directory
	temporary-directory

	orion-ejb-jar.xml
	<session-deployment>
	copy-by-value
	idletime
	min-instances
	max-instances
	max-instances-threshold
	max-tx-retries
	resource-check-interval
	passivate-count
	persistence-filename
	pool-cache-timeout
	timeout
	transaction-timeout

	<ejb-ref-mapping>
	<resource-ref-mapping>
	<resource-env-ref-mapping>
	<message-destination-ref-mapping>
	<session-type>Stateful</session-type>
	<message-driven-deployment>
	connection-factory-location
	dequeue-retry-count
	dequeue-retry-interval
	destination-location
	listener-threads
	max-delivery-count
	resource-adapter
	subscription-name
	wrapper-class

	<config-property>

	Index
	Numerics
	A
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

