

Oracle® Fusion Middleware
Web User Interface Developer's Guide for Oracle Application
Development Framework

11g Release 1 (11.1.1.7.0)

B31973-19

March 2014

Documentation for developers that describes how to create
web-based applications using ADF Faces components and
the supporting architecture.

Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework, 11g Release 1 (11.1.1.7.0)

B31973-19

Copyright © 2008, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Authors: Robin Whitmore (lead), Peter Jew, Kathryn Munn, Walter Egan, Himanshu Marathe,
Ralph Gordon, Michele Whittaker, Cindy Hall

Contributing Author: Poh Lee Tan

Contributors: ADF Faces development team, Frank Nimphius, Laura Akel, Katia Obradovic-Sarkic, Denis
Tyrell

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

v

Contents

Preface ... xxxi

Audience... xxxi
Documentation Accessibility ... xxxi
Related Documents ... xxxi
Conventions .. xxxii

What's New in This Guide for Release 11.1.1.7.0 .. xxxiii

Part I Getting Started with ADF Faces

1 Introduction to ADF Faces Rich Client

1.1 Introduction to ADF Faces Rich Client ... 1-1
1.1.1 History of ADF Faces ... 1-1
1.1.2 ADF Faces as Rich Client Components .. 1-2
1.2 Architecture of ADF Faces Components .. 1-3
1.2.1 Client-Side Architecture ... 1-3
1.2.1.1 Client-Side Components .. 1-4
1.2.1.2 JavaScript Library Partitioning .. 1-4
1.2.2 ADF Faces Architectural Features .. 1-5
1.3 ADF Faces Components ... 1-6
1.4 ADF Faces Demonstration Application .. 1-8
1.4.1 How to Download and Install the ADF Faces Demo Application 1-8
1.4.2 Using the ADF Faces Demo Application ... 1-8
1.4.3 Overview of the File Explorer Application .. 1-14
1.4.4 Viewing the Source Code In JDeveloper .. 1-17

2 Getting Started with ADF Faces

2.1 Developing Declaratively in JDeveloper .. 2-1
2.2 Creating an Application Workspace ... 2-2
2.2.1 How to Create an Application Workspace ... 2-2
2.2.2 What Happens When You Create an Application Workspace 2-3
2.3 Defining Page Flows ... 2-5
2.3.1 How to Define a Page Flow ... 2-5
2.3.2 What Happens When You Use the Diagrammer to Create a Page Flow 2-7
2.4 Creating a View Page ... 2-7

vi

2.4.1 How to Create JSF JSP Pages ... 2-9
2.4.2 What Happens When You Create a JSF JSP Page .. 2-10
2.4.3 What You May Need to Know About Automatic Component Binding 2-14
2.4.4 How to Create a Facelets XHTML Page ... 2-17
2.4.5 What Happens When You Create a JSF XHTML Page .. 2-18
2.4.6 How to Add ADF Faces Components to JSF Pages ... 2-21
2.4.7 What Happens When You Add Components to a Page .. 2-23
2.4.8 How to Set Component Attributes .. 2-24
2.4.9 What Happens When You Use the Property Inspector .. 2-26
2.5 Creating EL Expressions .. 2-26
2.5.1 How to Create an EL Expression ... 2-27
2.5.2 How to Use EL Expressions Within Managed Beans ... 2-28
2.6 Creating and Using Managed Beans .. 2-29
2.6.1 How to Create a Managed Bean in JDeveloper .. 2-30
2.6.2 What Happens When You Use JDeveloper to Create a Managed Bean 2-31
2.6.3 What You May Need to Know About Component Bindings and Managed Beans . 2-32
2.7 Viewing ADF Faces Source Code and Javadoc .. 2-33

Part II Understanding ADF Faces Architecture

3 Using ADF Faces Architecture

3.1 Introduction to Using ADF Faces Architecture .. 3-1
3.2 Listening for Client Events ... 3-3
3.3 Adding JavaScript to a Page ... 3-4
3.3.1 How to Use Inline JavaScript ... 3-4
3.3.2 How to Import JavaScript Libraries ... 3-5
3.3.3 What You May Need to Know About Accessing Client Event Sources 3-5
3.4 Instantiating Client-Side Components ... 3-6
3.5 Locating a Client Component on a Page .. 3-7
3.5.1 What You May Need to Know About Finding Components in Naming Containers . 3-7
3.6 Determining the User’s Current Location .. 3-8
3.6.1 How to Determine the User’s Current Location .. 3-9
3.7 Accessing Component Properties on the Client ... 3-10
3.7.1 How to Set Property Values on the Client ... 3-14
3.7.2 How to Unsecure the disabled Property .. 3-14
3.7.3 What Happens at Runtime: How Client Properties Are Set on the Client 3-15
3.8 Using Bonus Attributes for Client-Side Components ... 3-15
3.8.1 How to Create Bonus Attributes .. 3-16
3.8.2 What You May Need to Know About Marshalling Bonus Attributes 3-16
3.9 Understanding Rendering and Visibility ... 3-16
3.9.1 How to Set Visibility Using JavaScript .. 3-18
3.9.2 What You May Need to Know About Visible and the isShowing Function 3-19

4 Using the JSF Lifecycle with ADF Faces

4.1 Introduction to the JSF Lifecycle and ADF Faces ... 4-1
4.2 Using the Immediate Attribute .. 4-4

vii

4.3 Using the Optimized Lifecycle ... 4-9
4.3.1 What You May Need to Know About Using the Immediate Attribute and the

Optimized Lifecycle ... 4-10
4.3.2 What You May Need to Know About Using an LOV Component and the Optimized

Lifecycle ... 4-11
4.4 Using the Client-Side Lifecycle ... 4-13
4.5 Using Subforms to Create Regions on a Page ... 4-14
4.6 Object Scope Lifecycles ... 4-15
4.7 Passing Values Between Pages ... 4-16
4.7.1 How to Use the pageFlowScope Scope Within Java Code 4-17
4.7.2 How to Use the pageFlowScope Scope Without Writing Java Code 4-18
4.7.3 What Happens at Runtime: Passing Values ... 4-18

5 Handling Events

5.1 Introduction to Events and Event Handling ... 5-1
5.1.1 Events and Partial Page Rendering .. 5-2
5.1.2 Client-Side Event Model .. 5-3
5.2 Using ADF Faces Server Events ... 5-4
5.3 Using JavaScript for ADF Faces Client Events ... 5-5
5.3.1 How to Use Client-Side Events .. 5-8
5.3.2 How to Return the Original Source of the Event ... 5-10
5.3.3 How to Use Client-Side Attributes for an Event .. 5-11
5.3.4 How to Block UI Input During Event Execution .. 5-11
5.3.5 How to Prevent Events from Propagating to the Server .. 5-12
5.3.6 What Happens at Runtime: How Client-Side Events Work 5-13
5.3.7 What You May Need to Know About Using Naming Containers 5-13
5.4 Sending Custom Events from the Client to the Server ... 5-14
5.4.1 How to Send Custom Events from the Client to the Server 5-15
5.4.2 What Happens at Runtime: How Client and Server Listeners Work Together 5-16
5.4.3 What You May Need to Know About Marshalling and Unmarshalling Data 5-17
5.5 Executing a Script Within an Event Response .. 5-18
5.6 Using Client Behavior Tags .. 5-20
5.6.1 How to Use the scrollComponentIntoViewBehavior Tag .. 5-21
5.7 Using Polling Events to Update Pages ... 5-22
5.7.1 How to Use the Poll Component ... 5-22

6 Validating and Converting Input

6.1 Introduction to ADF Faces Converters and Validators .. 6-1
6.2 Conversion, Validation, and the JSF Lifecycle .. 6-2
6.3 Adding Conversion .. 6-2
6.3.1 How to Add a Standard ADF Faces Converter .. 6-3
6.3.2 How to Set Attributes on a Standard ADF Faces Converter 6-4
6.3.3 What Happens at Runtime: How Converters Work .. 6-5
6.3.4 What You May Need to Know About Date Converters ... 6-5
6.3.5 How to Add oracle.jbo.domain Converters ... 6-5
6.4 Creating Custom JSF Converters .. 6-6

viii

6.4.1 How to Create a Custom JSF Converter ... 6-6
6.4.2 What Happens When You Use a Custom Converter ... 6-10
6.5 Adding Validation ... 6-10
6.5.1 How to Add Validation ... 6-11
6.5.1.1 Adding ADF Faces Validation .. 6-11
6.5.1.2 Using Validation Attributes .. 6-11
6.5.1.3 Using ADF Faces Validators ... 6-11
6.5.2 What Happens at Runtime: How Validators Work ... 6-12
6.5.3 What You May Need to Know About Multiple Validators 6-13
6.6 Creating Custom JSF Validation ... 6-13
6.6.1 How to Create a Backing Bean Validation Method ... 6-14
6.6.2 What Happens When You Create a Backing Bean Validation Method 6-14
6.6.3 How to Create a Custom JSF Validator .. 6-14
6.6.4 What Happens When You Use a Custom JSF Validator .. 6-16

7 Rerendering Partial Page Content

7.1 Introduction to Partial Page Rendering .. 7-1
7.2 Enabling Partial Page Rendering Declaratively .. 7-2
7.2.1 How to Enable Partial Page Rendering .. 7-4
7.2.2 What You May Need to Know About Using the Browser Back Button 7-6
7.2.3 What You May Need to Know About PPR and Screen Readers 7-6
7.3 Enabling Partial Page Rendering Programmatically .. 7-6
7.4 Using Partial Page Navigation ... 7-8
7.4.1 How to Use Partial Page Navigation ... 7-8
7.4.2 What You May Need to Know About PPR Navigation ... 7-9

Part III Using ADF Faces Components

8 Organizing Content on Web Pages

8.1 Introduction to Organizing Content on Web Pages ... 8-1
8.2 Starting to Lay Out a Page .. 8-5
8.2.1 Geometry Management and Component Stretching ... 8-6
8.2.2 Nesting Components Inside Components That Allow Stretching 8-9
8.2.3 Using Quick Start Layouts ... 8-12
8.2.4 Tips for Using Geometry-Managed Components .. 8-13
8.2.5 How to Configure the document Tag .. 8-14
8.3 Arranging Contents to Stretch Across a Page ... 8-15
8.3.1 How to Use the panelStretchLayout Component .. 8-16
8.3.2 What You May Need to Know About Geometry Management and the

panelStretchLayout Component .. 8-19
8.4 Using Splitters to Create Resizable Panes .. 8-20
8.4.1 How to Use the panelSplitter Component ... 8-22
8.4.2 What You May Need to Know About Geometry Management and the panelSplitter

Component .. 8-25
8.5 Arranging Content in a Grid .. 8-26
8.5.1 How to Use the panelGridLayout, gridRow, and gridCell Components to Create a

Grid-Based Layout ... 8-28

ix

8.5.2 What You May Need to Know About Geometry Management and the
panelGridLayout Component .. 8-31

8.6 Arranging Page Contents in Predefined Fixed Areas ... 8-32
8.6.1 How to Use the panelBorderLayout Component ... 8-34
8.7 Arranging Content in Forms .. 8-34
8.7.1 How to Use the panelFormLayout Component ... 8-35
8.7.2 What You May Need to Know About Using the group Component with the

panelFormLayout Component ... 8-39
8.8 Arranging Contents in a Dashboard ... 8-43
8.8.1 How to Use the panelDashboard Component ... 8-47
8.8.2 What You May Need to Know About Geometry Management and the panelDashboard

Component .. 8-50
8.9 Displaying and Hiding Contents Dynamically .. 8-50
8.9.1 How to Use the showDetail Component ... 8-56
8.9.2 How to Use the showDetailHeader Component .. 8-58
8.9.3 How to Use the panelBox Component ... 8-61
8.9.4 What You May Need to Know About Disclosure Events .. 8-63
8.10 Displaying or Hiding Contents in Accordion Panels and Tabbed Panels 8-64
8.10.1 How to Use the panelAccordion Component .. 8-68
8.10.2 How to Use the panelTabbed Component ... 8-70
8.10.3 How to Use the showDetailItem Component to Display Content in panelAccordion or

panelTabbed Components .. 8-72
8.10.4 What You May Need to Know About Geometry Management and the showDetailItem

Component .. 8-75
8.10.5 What You May Need to Know About showDetailItem Disclosure Events 8-77
8.10.6 What You May Need to Know About Skinning and the panelTabbed Component 8-78
8.11 Displaying Items in a Static Box ... 8-79
8.11.1 How to Use the panelHeader Component ... 8-82
8.11.2 How to Use the decorativeBox Component ... 8-84
8.11.3 What You May Need to Know About Geometry Management and the decorativeBox

Component .. 8-86
8.12 Displaying a Bulleted List in One or More Columns .. 8-87
8.12.1 How to Use the panelList Component ... 8-87
8.12.2 What You May Need to Know About Creating a List Hierarchy 8-88
8.13 Grouping Related Items ... 8-89
8.13.1 How to Use the panelGroupLayout Component ... 8-91
8.13.2 What You May Need to Know About Geometry Management and the

panelGroupLayout Component ... 8-93
8.14 Separating Content Using Blank Space or Lines ... 8-93
8.14.1 How to Use the spacer Component ... 8-94
8.14.2 How to Use the Separator Component .. 8-94

9 Using Input Components and Defining Forms

9.1 Introduction to Input Components and Forms .. 9-1
9.2 Defining Forms ... 9-4
9.2.1 How to Add a Form to a Page .. 9-5
9.2.2 How to Add a Subform to a Page .. 9-5
9.2.3 How to Add a Reset Button to a Form ... 9-6

x

9.3 Using the inputText Component .. 9-6
9.3.1 How to Add an inputText Component .. 9-7
9.3.2 How to Add the Ability to Insert Text into an inputText Component 9-10
9.4 Using the Input Number Components ... 9-11
9.4.1 How to Add an inputNumberSlider or an inputRangeSlider Component 9-12
9.4.2 How to Add an inputNumberSpinbox Component .. 9-13
9.5 Using Color and Date Choosers ... 9-13
9.5.1 How to Add an inputColor Component .. 9-15
9.5.2 How to Add an InputDate Component ... 9-16
9.5.3 What You May Need to Know About Selecting Time Zones Without the inputDate

Component .. 9-18
9.6 Using Selection Components ... 9-19
9.6.1 How to Use Selection Components .. 9-23
9.6.2 What You May Need to Know About the contentDelivery Attribute on the

SelectManyChoice Component .. 9-25
9.7 Using Shuttle Components .. 9-26
9.7.1 How to Add a selectManyShuttle or selectOrderShuttle Component 9-28
9.7.2 What You May Need to Know About Using a Client Listener for Selection Events 9-29
9.8 Using the richTextEditor Component .. 9-31
9.8.1 How to Add a richTextEditor Component .. 9-33
9.8.2 How to Add the Ability to Insert Text into a richTextEditor Component 9-34
9.8.3 How to Customize the Toolbar .. 9-35
9.9 Using File Upload .. 9-36
9.9.1 How to Use the inputFile Component ... 9-39
9.9.2 How to Configure the inputFile Component to Upload Multiple Files 9-40
9.9.3 What You May Need to Know About Temporary File Storage 9-41
9.9.4 What You May Need to Know About Uploading Multiple Files 9-42
9.10 Using Code Editor .. 9-43
9.10.1 How to Add a codeEditor Component .. 9-47

10 Using Tables, Trees, and Other Collection-Based Components

10.1 Introduction to Using Collection-Based Components .. 10-1
10.1.1 Content Delivery ... 10-5
10.1.2 Row Selection .. 10-8
10.1.3 Editing Data in Tables, Trees, and Tree Tables .. 10-9
10.1.4 Using Popup Dialogs in Tables, Trees, and Tree Tables .. 10-11
10.1.5 Accessing Client Collection Components .. 10-13
10.1.6 Geometry Management for Table, Tree, and Tree Table Components 10-13
10.2 Displaying Data in Tables .. 10-15
10.2.1 Columns and Column Data ... 10-16
10.2.2 Formatting Tables .. 10-17
10.2.3 Formatting Columns .. 10-19
10.2.4 How to Display a Table on a Page ... 10-20
10.2.5 What Happens When You Add a Table to a Page ... 10-30
10.2.6 What Happens at Runtime: Data Delivery .. 10-31
10.2.7 What You May Need to Know About Programmatically Enabling Sorting for Table

Columns .. 10-32

xi

10.2.8 What You May Need to Know About Performing an Action on Selected Rows in
Tables ... 10-32

10.2.9 What You May Need to Know About Dynamically Determining Values for Selection
Components in Tables ... 10-33

10.2.10 What You May Need to Know About Using the Iterator Tag 10-34
10.3 Adding Hidden Capabilities to a Table .. 10-34
10.3.1 How to Use the detailStamp Facet ... 10-35
10.3.2 What Happens at Runtime: Disclosing Row Data ... 10-36
10.4 Enabling Filtering in Tables .. 10-37
10.4.1 How to Add Filtering to a Table .. 10-38
10.5 Displaying Data in Trees .. 10-39
10.5.1 How to Display Data in Trees .. 10-41
10.5.2 What Happens When You Add a Tree to a Page ... 10-44
10.5.3 What Happens at Runtime: Tree Component Events .. 10-44
10.5.4 What You May Need to Know About Programmatically Expanding and Collapsing

Nodes ... 10-45
10.5.5 What You May Need to Know About Programmatically Selecting Nodes 10-47
10.6 Displaying Data in Tree Tables .. 10-47
10.6.1 How to Display Data in a Tree Table ... 10-48
10.7 Displaying Table Menus, Toolbars, and Status Bars ... 10-49
10.7.1 How to Add a panelCollection with a Table, Tree, or Tree Table 10-51
10.8 Displaying a Collection in a List ... 10-52
10.8.1 How to Display a Collection in a List .. 10-55
10.9 Displaying Images in a Carousel .. 10-57
10.9.1 How to Create a Carousel .. 10-62
10.9.2 What You May Need to Know About the Carousel Component and Different

Browsers .. 10-66
10.10 Passing a Row as a Value ... 10-66
10.11 Exporting Data from Table, Tree, or Tree Table ... 10-67
10.11.1 How to Export Table, Tree, or Tree Table Data to an External Format 10-69
10.11.2 What Happens at Runtime: How Row Selection Affects the Exported Data 10-71
10.12 Accessing Selected Values on the Client from Collection-Based Components 10-71
10.12.1 How to Access Values from a Selection in Stamped Components. 10-71
10.12.2 What You May Need to Know About Accessing Selected Values 10-74

11 Using List-of-Values Components

11.1 Introduction to List-of-Values Components ... 11-1
11.2 Creating the ListOfValues Data Model ... 11-7
11.2.1 How to Create the ListOfValues Data Model ... 11-8
11.3 Using the inputListOfValues Component .. 11-9
11.3.1 How to Add the InputListOfValues Component ... 11-9
11.3.2 What You May Need to Know About Skinning the Search and Select Dialogs in the

LOV Components .. 11-11
11.4 Using the InputComboboxListOfValues Component .. 11-12
11.4.1 How to Add the InputComboboxListOfValues Component 11-12

xii

12 Using Query Components

12.1 Introduction to Query Components ... 12-1
12.2 Implementing the Model for Your Query .. 12-3
12.3 Using the quickQuery Component .. 12-10
12.3.1 How to Add the quickQuery Component Using a Model 12-11
12.3.2 How to Use a quickQuery Component Without a Model 12-12
12.3.3 What Happens at Runtime: How the Framework Renders the quickQuery Component

and Executes the Search ... 12-13
12.4 Using the query Component .. 12-13
12.4.1 How to Add the Query Component .. 12-17

13 Using Popup Dialogs, Menus, and Windows

13.1 Introduction to Using Popup Elements .. 13-1
13.2 Declaratively Creating Popup Elements .. 13-2
13.2.1 How to Create a Dialog ... 13-4
13.2.2 How to Create a Panel Window .. 13-8
13.2.3 How to Create a Context Menu ... 13-10
13.2.4 How to Create a Note Window ... 13-11
13.2.5 What Happens at Runtime: Popup Component Events .. 13-13
13.3 Programmatically Invoking a Popup ... 13-15
13.3.1 How to Programatically Invoke a Popup .. 13-16
13.3.2 What Happens When You Programmatically Invoke a Popup 13-17
13.4 Invoking Popup Elements .. 13-17
13.4.1 How to Use the af:showPopupBehavior Tag ... 13-17
13.5 Displaying Contextual Information ... 13-19
13.5.1 How to Create Contextual Information ... 13-20
13.6 Controlling the Automatic Cancellation of Inline Popups ... 13-21
13.6.1 How to Disable the Automatic Cancellation of an Inline Popup 13-22
13.6.2 What Happens When You Disable the Automatic Cancellation of an Inline Popup

13-22

14 Using Menus, Toolbars, and Toolboxes

14.1 Introduction to Menus, Toolbars, and Toolboxes ... 14-1
14.2 Using Menus in a Menu Bar ... 14-2
14.2.1 How to Create and Use Menus in a Menu Bar ... 14-7
14.3 Using Toolbars ... 14-13
14.3.1 How to Create and Use Toolbars ... 14-15
14.3.2 What Happens at Runtime: Determining the Size of Menu Bars and Toolbars 14-19
14.3.3 What You May Need to Know About Toolbars ... 14-19

15 Creating a Calendar Application

15.1 Introduction to Creating a Calendar Application ... 15-1
15.2 Creating the Calendar .. 15-4
15.2.1 Calendar Classes .. 15-4
15.2.2 How to Create a Calendar ... 15-5
15.3 Configuring the Calendar Component ... 15-6

xiii

15.3.1 How to Configure the Calendar Component ... 15-6
15.3.2 What Happens at Runtime: Calendar Events and PPR .. 15-9
15.4 Adding Functionality Using Popup Components .. 15-9
15.4.1 How to Add Functionality Using Popup Components .. 15-10
15.5 Customizing the Toolbar .. 15-12
15.5.1 How to Customize the Toolbar .. 15-13
15.6 Styling the Calendar ... 15-15
15.6.1 How to Style Activities .. 15-16
15.6.2 What Happens at Runtime: Activity Styling .. 15-18
15.6.3 How to Customize Dates ... 15-18

16 Using Output Components

16.1 Introduction to Output Text, Image, Icon, and Media Components 16-1
16.2 Displaying Output Text and Formatted Output Text ... 16-2
16.2.1 How to Display Output Text ... 16-3
16.2.2 What You May Need to Know About Allowed Format and Character Codes in the

outputFormatted Component .. 16-4
16.3 Displaying Icons ... 16-5
16.4 Displaying Images .. 16-6
16.5 Using Images as Links .. 16-6
16.6 Displaying Application Status Using Icons .. 16-7
16.7 Playing Video and Audio Clips .. 16-8
16.7.1 How to Allow Playing of Audio and Video Clips .. 16-8

17 Displaying Tips, Messages, and Help

17.1 Introduction to Displaying Tips and Messages .. 17-1
17.2 Displaying Tips for Components ... 17-5
17.3 Displaying Hints and Error Messages for Validation and Conversion 17-5
17.3.1 How to Define Custom Validator and Converter Messages 17-7
17.3.2 What You May Need to Know About Overriding Default Messages Globally 17-9
17.3.3 How to Display Component Messages Inline .. 17-9
17.3.4 How to Display Global Messages Inline .. 17-9
17.4 Grouping Components with a Single Label and Message .. 17-10
17.5 Displaying Help for Components .. 17-12
17.5.1 How to Create Resource Bundle-Based Help ... 17-14
17.5.2 How to Create XLIFF-Based Help .. 17-16
17.5.3 How to Create Managed Bean Help .. 17-18
17.5.4 How to Use JavaScript to Launch an External Help Window 17-21
17.5.5 How to Create a Java Class Help Provider .. 17-22
17.5.6 How to Access Help Content from a UI Component ... 17-23
17.5.7 What You May Need to Know About Combining Different Message Types 17-23

18 Working with Navigation Components

18.1 Introduction to Navigation Components ... 18-1
18.2 Using Buttons and Links for Navigation .. 18-2
18.2.1 How to Use Command Buttons and Command Links ... 18-4

xiv

18.2.2 How to Use Go Buttons and Go Links ... 18-5
18.3 Configuring a Browser’s Context Menu for Command Links .. 18-6
18.3.1 How to Configure a Browser’s Context Menu for Command Links 18-7
18.3.2 What Happens When You Configure a Browser’s Context Menu for Command Links .

18-7
18.4 Using Buttons or Links to Invoke Functionality ... 18-8
18.4.1 How to Use a Command Component to Download Files .. 18-8
18.4.2 How to Use a Command Component to Reset Input Fields 18-10
18.5 Using Navigation Items for a Page Hierarchy .. 18-10
18.6 Using a Menu Model to Create a Page Hierarchy .. 18-14
18.6.1 How to Create the Menu Model Metadata .. 18-15
18.6.2 What Happens When You Use the Create ADF Menu Model Wizard 18-22
18.6.3 How to Bind to the XMLMenuModel in the JSF Page ... 18-24
18.6.4 How to Use the breadCrumbs Component ... 18-27
18.6.5 What Happens at Runtime .. 18-29
18.6.6 What You May Need to Know About Using Custom Attributes 18-30
18.7 Creating a Simple Navigational Hierarchy .. 18-32
18.7.1 How to Create a Simple Page Hierarchy ... 18-34
18.7.2 How to Use the breadCrumbs Component ... 18-37
18.7.3 What You May Need to Know About Removing Navigation Tabs 18-38
18.7.4 What You May Need to Know About Navigation Tabs in a Compressed Layout . 18-39
18.8 Using Train Components to Create Navigation Items for a Multi-Step Process 18-40
18.8.1 How to Create the Train Model ... 18-43
18.8.2 How to Configure Managed Beans for the Train Model .. 18-45
18.8.3 How to Bind to the Train Model in JSF Pages .. 18-49

19 Creating and Reusing Fragments, Page Templates, and Components

19.1 Introduction to Reusable Content .. 19-1
19.2 Using Page Fragments .. 19-2
19.2.1 How to Create a Page Fragment .. 19-5
19.2.2 What Happens When You Create a Page Fragment .. 19-6
19.2.3 How to Use a Page Fragment in a JSF Page ... 19-7
19.2.3.1 Adding a Page Fragment Using the Component Palette 19-7
19.2.3.2 Adding a Page Fragment Using the Application Navigator 19-7
19.2.4 What Happens at Runtime: Resolving Page Fragments .. 19-7
19.3 Using Page Templates .. 19-7
19.3.1 How to Create a Page Template .. 19-11
19.3.2 What Happens When You Create a Page Template ... 19-15
19.3.3 How to Create JSF Pages Based on Page Templates .. 19-15
19.3.4 What Happens When You Use a Template to Create a Page 19-17
19.3.5 What Happens at Runtime: How Page Templates Are Resolved 19-18
19.3.6 What You May Need to Know About Page Templates and Naming Containers .. 19-18
19.4 Using Declarative Components .. 19-18
19.4.1 How to Create a Declarative Component .. 19-21
19.4.2 What Happens When You Create a Declarative Component 19-25
19.4.3 How to Deploy Declarative Components .. 19-27
19.4.4 How to Use Declarative Components in JSF Pages ... 19-28

xv

19.4.5 What Happens When You Use a Declarative Component on a JSF Page 19-29
19.4.6 What Happens at Runtime ... 19-30
19.5 Adding Resources to Pages .. 19-30
19.5.1 How to Add Resources to Page Templates and Declarative Components 19-31
19.5.2 What Happens at Runtime: Adding Resources to the Document Header 19-31

20 Customizing the Appearance Using Styles and Skins

20.1 Introduction to Skins, Style Selectors, and Style Properties .. 20-1
20.1.1 ADF Faces Skins ... 20-2
20.1.2 Skin Style Selectors .. 20-6
20.1.3 Component Style Properties .. 20-11
20.2 Applying Custom Skins to Applications .. 20-12
20.2.1 How to Add a Custom Skin to an Application .. 20-13
20.2.2 How to Register the XML Schema Definition File for a Custom Skin 20-13
20.2.3 How to Register a Custom Skin ... 20-14
20.2.4 How to Configure an Application to Use a Custom Skin 20-17
20.3 Defining Skin Style Properties .. 20-18
20.3.1 How to Apply Skins to Text ... 20-19
20.3.2 How to Apply Skins to Icons ... 20-21
20.3.3 How to Apply Skins to Messages .. 20-22
20.3.4 How to Apply Themes to Components ... 20-22
20.3.5 How to Create a Custom Alias ... 20-23
20.3.6 How to Configure a Component for Changing Skins Dynamically 20-24
20.4 Changing the Style Properties of a Component ... 20-24
20.4.1 How to Set an Inline Style .. 20-25
20.4.2 How to Set a Style Class ... 20-26
20.5 Referring to URLs in a Skin’s CSS File .. 20-26
20.6 Versioning Custom Skins ... 20-27
20.6.1 How to Version a Custom Skin .. 20-27
20.6.2 What Happens When You Version Custom Skins ... 20-27
20.7 Deploying a Custom Skin File in a JAR File ... 20-28

21 Internationalizing and Localizing Pages

21.1 Introduction to Internationalization and Localization of ADF Faces Pages 21-1
21.2 Using Automatic Resource Bundle Integration in JDeveloper 21-3
21.2.1 How to Set Resource Bundle Options .. 21-4
21.2.2 What Happens When You Set Resource Bundle Options .. 21-5
21.2.3 How to Create an Entry in a JDeveloper-Generated Resource Bundle 21-6
21.2.4 What Happens When You Create an Entry in a JDeveloper-Generated Resource

Bundle .. 21-6
21.3 Manually Defining Resource Bundles and Locales .. 21-7
21.3.1 How to Define the Base Resource Bundle .. 21-8
21.3.2 How to Edit a Resource Bundle File .. 21-10
21.3.3 How to Register Locales and Resource Bundles in Your Application 21-12
21.3.4 How to Use Resource Bundles in Your Application .. 21-14
21.3.5 What You May Need to Know About Custom Skins and Control Hints 21-15

xvi

21.3.6 What You May Need to Know About Overriding a Resource Bundle in a Customizable
Application .. 21-15

21.4 Configuring Pages for an End User to Specify Locale at Runtime 21-15
21.4.1 How to Configure a Page for an End User to Specify Locale 21-15
21.4.2 What Happens When You Configure a Page to Specify Locale 21-17
21.4.3 What Happens at Runtime When an End User Specifies a Locale 21-18
21.5 Configuring Optional ADF Faces Localization Properties ... 21-18
21.5.1 How to Configure Optional Localization Properties ... 21-19

22 Developing Accessible ADF Faces Pages

22.1 Introduction to Accessible ADF Faces Pages .. 22-1
22.2 Exposing Accessibility Preferences .. 22-2
22.2.1 How to Configure Accessibility Support in trinidad-config.xml 22-2
22.3 Specifying Component-Level Accessibility Properties ... 22-3
22.3.1 ADF Faces Component Accessibility Guidelines ... 22-4
22.3.2 Using ADF Faces Table components in Screen Reader mode 22-6
22.3.3 ADF Data Visualization Components Accessibility Guidelines 22-7
22.3.4 How to Define Access Keys for an ADF Faces Component 22-9
22.3.5 How to Define Localized Labels and Access Keys ... 22-10
22.4 Creating Accessible Pages .. 22-11
22.4.1 How to Use Partial Page Rendering .. 22-11
22.4.2 How to Use Scripting ... 22-11
22.4.3 How to Use Styles .. 22-12
22.4.4 How to Use Page Structures and Navigation .. 22-13
22.4.5 How to Use WAI-ARIA Landmark Regions .. 22-13
22.5 Running Accessibility Audit Rules .. 22-14

Part IV Using ADF Data Visualization Components

23 Introduction to ADF Data Visualization Components

23.1 Introduction to ADF Data Visualization Components ... 23-1
23.2 Defining the ADF Data Visualization Components ... 23-1
23.2.1 Graph ... 23-1
23.2.2 Gauge .. 23-5
23.2.3 Pivot Table ... 23-7
23.2.4 Geographic Map .. 23-8
23.2.5 Gantt Chart .. 23-9
23.2.6 Timeline ... 23-9
23.2.7 Hierarchy Viewer .. 23-10
23.2.8 Treemap and Sunburst .. 23-12
23.3 Providing Data for ADF Data Visualization Components ... 23-14
23.4 Downloading Custom Fonts for Flash Images ... 23-14

24 Using ADF Graph Components

24.1 Introduction to the Graph Component .. 24-1
24.2 Understanding the Graph Tags .. 24-4

xvii

24.2.1 Graph-Specific Tags .. 24-4
24.2.2 Common Graph Child Tags ... 24-5
24.2.3 Graph-Specific Child Tags ... 24-6
24.2.4 Child Set Tags .. 24-7
24.3 Understanding Data Requirements for Graphs .. 24-7
24.3.1 Area Graph Data Requirements ... 24-8
24.3.2 Bar Graph Data Requirements ... 24-9
24.3.3 Bubble Graph Data Requirements ... 24-9
24.3.4 Combination Graph Data Requirements .. 24-10
24.3.5 Funnel Graph Data Requirements ... 24-10
24.3.6 Line Graph Data Requirements ... 24-10
24.3.7 Pareto Graph Data Requirements .. 24-11
24.3.8 Pie Graph Data Requirements .. 24-11
24.3.9 Polar Graph Data Requirements .. 24-11
24.3.10 Radar Graph Data Requirements ... 24-12
24.3.11 Scatter Graph Data Requirements .. 24-12
24.3.12 Sparkchart Data Requirements .. 24-12
24.3.13 Stock Graph Data Requirements .. 24-13
24.3.13.1 Stock Graphs: High-Low-Close ... 24-13
24.3.13.2 Stock Graphs: High-Low-Close with Volume ... 24-14
24.3.13.3 Stock Graphs: Open-High-Low-Close ... 24-14
24.3.13.4 Stock Graphs: Open-High-Low-Close with Volume 24-14
24.3.13.5 Candle Stock Graphs: Open-Close .. 24-14
24.3.13.6 Candle Stock Graphs: Open-Close with Volume .. 24-14
24.3.13.7 Candle Stock Graphs: Open-High-Low-Close .. 24-15
24.3.13.8 Candle Stock Graphs: Open-High-Low-Close with Volume 24-15
24.4 Creating a Graph ... 24-15
24.4.1 How to Add a Graph to a Page .. 24-15
24.4.2 How to Create a Graph Using Tabular Data .. 24-18
24.4.2.1 Storing Tabular Data for a Graph in a Managed Bean 24-18
24.4.2.2 Creating a Graph Using Tabular Data ... 24-19
24.4.3 What Happens When You Create a Graph Using Tabular Data 24-20
24.4.4 What You May Need to Know About Graph Image Formats 24-20
24.5 Changing the Graph Type .. 24-21
24.6 Customizing the Appearance of Graphs .. 24-21
24.6.1 Changing the Color, Style, and Display of Graph Data Values 24-22
24.6.1.1 How to Specify the Color and Style for Individual Series Items 24-23
24.6.1.2 How to Enable Hiding and Showing Series Items ... 24-23
24.6.2 Formatting Data Values in Graphs .. 24-24
24.6.2.1 How to Format Categorical Data Values ... 24-24
24.6.2.2 How to Format Numerical Data Values .. 24-25
24.6.2.3 What You May Need to Know About Automatic Scaling and Precision 24-27
24.6.3 Formatting Text in Graphs ... 24-27
24.6.3.1 How to Globally Set Graph Font Using a Skin .. 24-28
24.6.4 Changing Graph Size and Style .. 24-30
24.6.4.1 How to Specify the Size of a Graph at Initial Display 24-30
24.6.4.2 How to Provide for Dynamic Resizing of a Graph .. 24-30

xviii

24.6.4.3 How to Use a Specific Style Sheet for a Graph .. 24-31
24.6.5 Changing Graph Background, Plot Area, and Title ... 24-31
24.6.5.1 How to Customize the Background and Plot Area of a Graph 24-31
24.6.5.2 How to Specify Titles and Footnotes in a Graph ... 24-32
24.6.6 Customizing Graph Axes and Labels .. 24-33
24.6.6.1 How to Specify the Title, Appearance, and Scaling of an Axis 24-33
24.6.6.2 How to Specify Scrolling on an Axis ... 24-34
24.6.6.3 How to Control the Appearance of Tick Marks and Labels on an Axis 24-34
24.6.6.4 How to Format Numbers on an Axis .. 24-36
24.6.6.5 How to Set Minimum and Maximum Values on a Data Axis 24-36
24.6.7 Customizing Graph Legends ... 24-36
24.6.8 Customizing Tooltips in Graphs .. 24-37
24.7 Customizing the Appearance of Specific Graph Types .. 24-38
24.7.1 Changing the Appearance of Pie Graphs ... 24-39
24.7.1.1 How to Customize the Overall Appearance of Pie Graphs 24-39
24.7.1.2 How to Customize an Exploding Pie Slice .. 24-39
24.7.2 Changing the Appearance of Lines in Graphs ... 24-40
24.7.2.1 How to Display Either Data Lines or Markers in Graphs 24-40
24.7.2.2 How to Change the Appearance of Lines in a Graph Series 24-40
24.7.3 Customizing Pareto Graphs ... 24-40
24.7.4 Customizing Scatter Graph Series Markers ... 24-41
24.8 Adding Specialized Features to Graphs ... 24-42
24.8.1 Adding Reference Lines or Areas to Graphs ... 24-42
24.8.1.1 How to Create Reference Lines or Areas During Design 24-43
24.8.1.2 What Happens When You Create Reference Lines or Areas During Design .. 24-44
24.8.1.3 How to Create Reference Lines or Areas Dynamically 24-44
24.8.2 Using Gradient Special Effects in Graphs .. 24-45
24.8.2.1 How to Add Gradient Special Effects to a Graph .. 24-45
24.8.2.2 What Happens When You Add a Gradient Special Effect to a Graph 24-46
24.8.3 Specifying Transparent Colors for Parts of a Graph .. 24-47
24.8.4 Adding Data Marker Selection Support for Graphs .. 24-47
24.8.4.1 How to Add Selection Support to Graphs .. 24-48
24.8.4.2 What You May Need to Know About Graph Data Marker Selection 24-50
24.8.5 Adding Context Menus to Graphs ... 24-50
24.8.5.1 How to Configure Graph Context Menus ... 24-50
24.8.5.2 What You May Need to Know About Flash Rendering Format 24-54
24.8.6 How to React to Changes in the Zoom and Scroll Levels 24-55
24.8.7 How to Provide Marker and Legend Dimming ... 24-56
24.8.8 Providing an Interactive Time Axis for Graphs ... 24-57
24.8.8.1 How to Define a Relative Range of Time Data for Display 24-57
24.8.8.2 How to Define an Explicit Range of Time Data for Display 24-57
24.8.8.3 How to Add a Time Selector to a Graph ... 24-58
24.8.9 Adding Alerts and Annotations to Graphs .. 24-61
24.9 Animating Graphs .. 24-63
24.9.1 How to Configure Graph Components to Display Active Data 24-63
24.9.2 How to Specify Animation Effects for Graphs ... 24-64

xix

25 Using ADF Gauge Components

25.1 Introduction to the Gauge Component .. 25-1
25.1.1 Types of Gauges ... 25-3
25.1.2 Gauge Terminology ... 25-5
25.2 Understanding Data Requirements for Gauges .. 25-6
25.3 Creating a Gauge .. 25-6
25.3.1 How to Add a Gauge to a Page .. 25-7
25.3.2 Creating a Gauge Using Tabular Data ... 25-10
25.3.2.1 Storing Tabular Data for a Gauge in a Managed Bean 25-10
25.3.2.2 Structure of the List of Tabular Data ... 25-10
25.3.3 How to Create a Gauge Using Tabular Data .. 25-11
25.3.4 What Happens When You Create a Gauge Using Tabular Data 25-12
25.3.5 What You May Need to Know About Gauge Image Formats 25-12
25.4 Customizing Gauge Type, Layout, and Appearance .. 25-13
25.4.1 How to Change the Type of the Gauge .. 25-13
25.4.2 How to Determine the Layout of Gauges in a Gauge Set 25-13
25.4.3 Changing Gauge Size and Style ... 25-14
25.4.3.1 Specifying the Size of a Gauge at Initial Display ... 25-14
25.4.3.2 Providing Dynamic Resizing of a Gauge ... 25-14
25.4.3.3 Using a Custom Style Class for a Gauge ... 25-15
25.4.4 How to Add Thresholds to Gauges ... 25-15
25.4.4.1 Adding Static Thresholds to Gauges ... 25-15
25.4.5 How to Format Numeric Values in Gauges ... 25-16
25.4.5.1 Formatting the Numeric Value in a Gauge Metric or Tick Label 25-16
25.4.6 What Happens When You Format the Numbers in a Gauge Metric Label 25-17
25.4.7 What You May Need to Know About Automatic Scaling and Precision 25-17
25.4.8 How to Format Text in Gauges .. 25-17
25.4.9 How to Specify an N-Degree Dial .. 25-18
25.4.10 How to Customize Gauge Labels ... 25-18
25.4.10.1 Controlling the Position of Gauge Labels .. 25-18
25.4.10.2 Customizing the Colors and Borders of Gauge Labels 25-18
25.4.11 How to Customize Indicators and Tick Marks .. 25-19
25.4.11.1 Controlling the Appearance of Gauge Indicators .. 25-19
25.4.11.2 Specifying Tick Marks and Labels .. 25-19
25.4.11.3 Creating Exterior Tick Labels .. 25-20
25.4.12 Specifying Transparency for Parts of a Gauge ... 25-20
25.5 Adding Gauge Special Effects and Animation ... 25-21
25.5.1 How to Use Gradient Special Effects in a Gauge ... 25-21
25.5.1.1 Adding Gradient Special Effects to a Gauge ... 25-21
25.5.2 What Happens When You Add a Gradient Special Effect to a Gauge 25-22
25.5.3 How to Add Interactivity to Gauges .. 25-22
25.5.4 How to Animate Gauges .. 25-23
25.5.5 How to Animate Gauges with Active Data .. 25-24
25.5.5.1 Configuring Gauge Components to Display Active Data 25-24
25.5.5.2 Adding Animation to Gauges ... 25-25
25.6 Using Custom Shapes in Gauges .. 25-25
25.6.1 How to Create a Custom Shapes Graphic File ... 25-25

xx

25.6.2 How to Use a Custom Shapes File ... 25-28
25.6.3 What You May Need to Know About Supported SVG Features 25-28
25.6.4 How to Set Custom Shapes Styles ... 25-29

26 Using ADF Geographic Map Components

26.1 Introduction to Geographic Maps .. 26-1
26.1.1 Available Map Themes .. 26-1
26.1.2 Geographic Map Terminology ... 26-2
26.1.3 Geographic Map Component Tags .. 26-4
26.1.3.1 Geographic Map Parent Tags .. 26-5
26.1.3.2 Geographic Map Child Tags ... 26-5
26.1.3.3 Tags for Modifying Map Themes .. 26-5
26.2 Understanding Data Requirements for Geographic Maps ... 26-6
26.3 Customizing Map Size, Zoom Control, and Selection Area Totals 26-6
26.3.1 How to Adjust the Map Size .. 26-6
26.3.2 How to Specify Strategy for Map Zoom Control ... 26-7
26.3.3 How to Total Map Selection Values ... 26-7
26.4 Customizing Map Themes ... 26-8
26.4.1 How to Customize Zoom Levels for a Theme ... 26-8
26.4.2 How to Customize the Labels of a Map Theme ... 26-8
26.4.3 How to Customize Color Map Themes ... 26-9
26.4.4 How to Customize Point Images in a Point Theme ... 26-9
26.4.5 What Happens When You Customize the Point Images in a Map 26-10
26.4.6 How to Customize the Bars in a Bar Graph Theme ... 26-11
26.4.7 What Happens When You Customize the Bars in a Map Bar Graph Theme 26-12
26.4.8 How to Customize the Slices in a Pie Graph Theme .. 26-12
26.4.9 What Happens When You Customize the Slices in a Map Pie Graph Theme 26-13
26.5 Adding a Toolbar to a Map .. 26-14
26.5.1 How to Add a Toolbar to a Map .. 26-14
26.5.2 What Happens When You Add a Toolbar to a Map .. 26-14

27 Using ADF Pivot Table Components

27.1 Introduction to the ADF Pivot Table Component .. 27-1
27.1.1 Pivot Table Elements and Terminology ... 27-2
27.2 Understanding Data Requirements for a Pivot Table ... 27-3
27.3 Pivoting Layers .. 27-3
27.4 Displaying Large Data Sets in Pivot Tables .. 27-4
27.5 Using Selection in Pivot Tables .. 27-6
27.6 Sorting in a Pivot Table .. 27-7
27.7 Sizing in a Pivot Table .. 27-7
27.7.1 How to Set the Overall Size of a Pivot Table .. 27-8
27.7.2 How to Resize Rows, Columns, and Layers .. 27-8
27.7.3 What You May Need to Know About Resizing Rows, Columns, and Layers 27-9
27.8 Updating Pivot Tables with Partial Page Rendering .. 27-9
27.9 Exporting from a Pivot Table ... 27-9
27.10 Displaying Pivot Tables in Printable Mode .. 27-11
27.11 Customizing the Cell Content of a Pivot Table .. 27-11

xxi

27.11.1 How to Create a CellFormat Object for a Data Cell ... 27-11
27.11.2 How to Construct a CellFormat Object .. 27-12
27.11.3 How to Change Format and Text Styles .. 27-12
27.11.4 How to Create Stoplight and Conditional Formatting in a Pivot Table 27-14
27.12 Pivot Table Data Cell Stamping and Editing .. 27-15
27.12.1 How to Specify Custom Images for Data Cells .. 27-16
27.12.2 How to Specify Images, Icons, Links, and Read-Only Content in Header Cells 27-16
27.13 Using a Pivot Filter Bar with a Pivot Table ... 27-18
27.13.1 How to Associate a Pivot Filter Bar with a Pivot Table .. 27-18

28 Using ADF Timeline Components

28.1 Introduction to ADF Timeline Components ... 28-1
28.1.1 Timeline Use Cases and Examples ... 28-1
28.1.2 End User and Presentation Features .. 28-3
28.1.2.1 Layout Options .. 28-4
28.1.2.2 Timeline Item Selection ... 28-4
28.1.2.3 Timeline Grouping and Sorting ... 28-4
28.1.2.4 Drag and Drop Support ... 28-5
28.1.2.5 Content Delivery ... 28-6
28.1.2.6 Timeline Image Formats .. 28-6
28.1.2.7 Timeline Display in Printable or Emailable Modes ... 28-6
28.1.2.8 Active Data Support (ADS) ... 28-7
28.1.3 Additional Functionality for Timeline Components .. 28-7
28.2 Using Timeline Components .. 28-8
28.2.1 Timeline Component Data Requirements .. 28-8
28.2.2 Configuring Timelines ... 28-10
28.2.3 How to Add a Timeline to a Page .. 28-11
28.2.4 What Happens When You Add a Timeline to a Page .. 28-13
28.3 Adding Data to Timeline Components ... 28-13
28.3.1 How to Add Data to a Timeline ... 28-13
28.3.2 What You May Need to Know About Configuring Data for a Dual Timeline 28-16
28.3.3 What You May Need to Know About Adding Data to Timelines 28-16
28.4 Customizing Timeline Display Elements ... 28-16
28.4.1 Configuring Timeline Items ... 28-16
28.4.2 How to Add a Custom Time Scale to a Timeline ... 28-17
28.5 Adding Interactive Features to Timelines .. 28-18
28.5.1 How to Add Popups to Timeline Items ... 28-18
28.5.2 How to Configure Timeline Context Menus .. 28-18
28.5.3 How to Add Drag and Drop to a Timeline .. 28-19

29 Using ADF Gantt Chart Components

29.1 Introduction to the ADF Gantt Chart Components .. 29-1
29.1.1 Types of Gantt Charts .. 29-2
29.1.2 Functional Areas of a Gantt Chart ... 29-3
29.1.3 Description of Gantt Chart Tasks ... 29-4
29.2 Understanding Gantt Chart Tags and Facets .. 29-5

xxii

29.3 Understanding Gantt Chart User Interactivity ... 29-6
29.3.1 Navigating in a Gantt Chart .. 29-7
29.3.1.1 Scrolling and Panning the List Region or the Chart Region 29-7
29.3.1.2 How to Navigate to a Specific Date in a Gantt Chart .. 29-7
29.3.1.3 How to Control the Visibility of Columns in the Table Region 29-8
29.3.2 How to Display Data in a Hierarchical List or a Flat List .. 29-8
29.3.3 How to Change the Gantt Chart Time Scale .. 29-8
29.4 Understanding Data Requirements for the Gantt Chart .. 29-9
29.4.1 Data for a Project Gantt Chart .. 29-9
29.4.2 Data for a Resource Utilization Gantt Chart .. 29-10
29.4.3 Data for a Scheduling Gantt Chart ... 29-11
29.5 Creating an ADF Gantt Chart ... 29-12
29.6 Customizing Gantt Chart Legends, Toolbars, and Context Menus 29-13
29.6.1 How to Customize a Gantt Chart Legend .. 29-13
29.6.2 Customizing Gantt Chart Toolbars .. 29-13
29.6.3 Customizing Gantt Chart Context Menus ... 29-14
29.7 Working with Gantt Chart Tasks and Resources ... 29-16
29.7.1 How to Create a New Task Type ... 29-16
29.7.2 How to Specify Custom Data Filters .. 29-17
29.7.3 How to Add a Double-Click Event to a Task Bar ... 29-17
29.8 Specifying Nonworking Days, Read-Only Features, and Time Axes 29-18
29.8.1 Identifying Nonworking Days in a Gantt Chart .. 29-18
29.8.1.1 How to Specify Weekdays as Nonworking Days .. 29-18
29.8.1.2 How to Identify Specific Dates as Nonworking Days 29-19
29.8.2 How to Apply Read-Only Values to Gantt Chart Features 29-19
29.8.3 Customizing the Time Axis of a Gantt Chart ... 29-20
29.8.3.1 How to Create and Use a Custom Time Axis .. 29-21
29.9 Using Page Controls in Gantt Charts ... 29-22
29.10 Printing a Gantt Chart .. 29-22
29.10.1 Print Options ... 29-23
29.10.2 Action Listener to Handle the Print Event ... 29-23
29.11 Using Gantt Charts as a Drop Target or Drag Source .. 29-24

30 Using ADF Treemap and Sunburst Components

30.1 Introduction to Treemaps and Sunbursts ... 30-1
30.1.1 Treemap and Sunburst Use Cases and Examples .. 30-1
30.1.2 End User and Presentation Features of Treemaps and Sunbursts 30-3
30.1.2.1 Treemap and Sunburst Layouts .. 30-3
30.1.2.2 Attribute Groups ... 30-4
30.1.2.3 Legend Support ... 30-5
30.1.2.4 Pattern Support ... 30-5
30.1.2.5 Node Selection Support ... 30-6
30.1.2.6 Tooltip Support ... 30-6
30.1.2.7 Popup Support .. 30-7
30.1.2.8 Context Menus .. 30-8
30.1.2.9 Drilling Support .. 30-8
30.1.2.10 Other Node Support .. 30-11

xxiii

30.1.2.11 Drag and Drop Support ... 30-12
30.1.2.12 Sorting Support ... 30-13
30.1.2.13 Treemap and Sunburst Image Formats ... 30-14
30.1.2.14 Advanced Node Content ... 30-14
30.1.2.15 Printing and Email Support ... 30-15
30.1.2.16 Active Data Support (ADS) ... 30-16
30.1.2.17 Isolation Support (Treemap Only) ... 30-16
30.1.2.18 Treemap Group Node Header Customization (Treemap Only) 30-17
30.1.3 Additional Functionality for Treemap and Sunburst Components 30-18
30.2 Using the Treemap and Sunburst Components .. 30-19
30.2.1 Treemap and Sunburst Data Requirements ... 30-19
30.2.2 Using the Treemap Component ... 30-26
30.2.2.1 Configuring Treemaps .. 30-26
30.2.2.2 How to Add a Treemap to a Page ... 30-28
30.2.2.3 What Happens When You Add a Treemap to a Page 30-30
30.2.3 Using the Sunburst Component ... 30-30
30.2.3.1 Configuring Sunbursts .. 30-30
30.2.3.2 How to Add a Sunburst to a Page ... 30-31
30.2.3.3 What Happens When You Add a Sunburst to a Page 30-33
30.3 Adding Data to Treemap and Sunburst Components .. 30-34
30.3.1 How to Add Data to Treemap or Sunburst Components 30-34
30.3.2 What You May Need to Know about Adding Data to Treemaps and Sunbursts ... 30-36
30.4 Customizing Treemap and Sunburst Display Elements ... 30-36
30.4.1 Configuring Treemap and Sunburst Display Size and Style 30-37
30.4.2 Configuring Pattern Display .. 30-37
30.4.3 Configuring Treemap and Sunburst Attribute Groups .. 30-38
30.4.3.1 How to Configure Treemap and Sunburst Discrete Attribute Groups 30-38
30.4.3.2 How to Configure Treemap or Sunburst Continuous Attribute Groups 30-41
30.4.3.3 What You May Need to Know About Configuring Attribute Groups 30-43
30.4.4 How to Configure Treemap and Sunburst Legends .. 30-43
30.4.5 Configuring the Treemap and Sunburst Other Node .. 30-44
30.4.5.1 How to Configure the Treemap and Sunburst Other Node 30-44
30.4.5.2 What You May Need to Know About Configuring the Treemap and Sunburst

Other Node .. 30-47
30.4.6 Configuring Treemap and Sunburst Sorting .. 30-47
30.4.7 Configuring Treemap and Sunburst Advanced Node Content 30-48
30.4.7.1 How to Add Advanced Node Content to a Treemap 30-48
30.4.7.2 How to Add Advanced Root Node Content to a Sunburst: 30-49
30.4.7.3 What You May Need to Know About Configuring Advanced Node Content on

Treemaps ... 30-49
30.4.8 How to Configure Animation in Treemaps and Sunbursts 30-49
30.4.9 Configuring Labels in Treemaps and Sunbursts .. 30-51
30.4.9.1 How to Configure Treemap Leaf Node Labels .. 30-51
30.4.9.2 How to Configure Sunburst Node Labels ... 30-52
30.4.10 Configuring Treemap Node Headers and Group Gap Display 30-53
30.4.10.1 How to Configure Treemap Node Headers .. 30-53
30.4.10.2 What You May Need to Know About Treemap Node Headers 30-54

xxiv

30.4.10.3 How to Customize Treemap Group Gaps ... 30-54
30.5 Adding Interactive Features to Treemaps and Sunbursts .. 30-54
30.5.1 Configuring Treemap and Sunburst Tooltips .. 30-55
30.5.2 Configuring Treemap and Sunburst Popups ... 30-55
30.5.2.1 How to Add Popups to Treemap and Sunburst Components 30-56
30.5.2.2 What You May Need to Know About Adding Popups to Treemaps and Sunburst

Components .. 30-58
30.5.3 Configuring Treemap and Sunburst Selection Support ... 30-58
30.5.3.1 How to Add Selection Support to Treemap and Sunburst Components 30-58
30.5.3.2 What You May Need to Know About Adding Selection Support to Treemaps and

Sunbursts ... 30-61
30.5.4 Configuring Treemap and Sunburst Context Menus ... 30-61
30.5.4.1 How to Configure Treemap and Sunburst Context Menus 30-61
30.5.4.2 What You May Need to Know About Configuring Treemap and Sunburst Context

Menus .. 30-66
30.5.5 Configuring Treemap and Sunburst Drilling Support ... 30-67
30.5.5.1 How to Configure Treemap and Sunburst Drilling Support 30-67
30.5.5.2 What You May Need to Know About Treemaps and Drilling Support 30-68
30.5.6 How to Add Drag and Drop to Treemaps and Sunbursts 30-68
30.5.7 Configuring Isolation Support (Treemap Only) .. 30-74
30.5.7.1 How to Disable Isolation Support ... 30-74
30.5.7.2 What You May Need to Know About Treemaps and Isolation Support 30-75

31 Using ADF Hierarchy Viewer Components

31.1 Introduction to Hierarchy Viewers .. 31-1
31.1.1 Understanding the Hierarchy Viewer Component .. 31-1
31.1.2 Hierarchy Viewer Elements and Terminology .. 31-4
31.1.3 Available Hierarchy Viewer Layout Options .. 31-7
31.1.4 What You May Need to Know About Hierarchy Viewer Rendering and HTML 31-8
31.2 Data Requirements for Hierarchy Viewers .. 31-9
31.3 Creating a Hierarchy Viewer .. 31-9
31.3.1 How to Add a Hierarchy Viewer to a Page ... 31-9
31.4 Managing Nodes in a Hierarchy Viewer .. 31-11
31.4.1 How to Specify Node Content ... 31-13
31.4.2 How to Configure the Controls on a Node .. 31-15
31.4.3 How to Specify a Node Definition for an Accessor .. 31-16
31.4.4 How to Associate a Node Definition with a Particular Set of Data Rows 31-16
31.4.5 How to Specify Ancestor Levels for an Anchor Node ... 31-17
31.5 Navigating in a Hierarchy Viewer ... 31-17
31.5.1 How to Configure Upward Navigation in a Hierarchy Viewer 31-17
31.5.2 How to Configure Same-Level Navigation in a Hierarchy Viewer 31-18
31.5.3 What Happens When You Configure Same-Level Navigation in a Hierarchy Viewer ...

31-18
31.6 Adding Interactivity to a Hierarchy Viewer Component ... 31-19
31.6.1 How to Configure 3D Tilt Panning .. 31-19
31.6.2 How to Configure Node Selection Action ... 31-20
31.6.3 How to Configure a Hierarchy Viewer to Invoke a Popup Window 31-21
31.6.4 How to Configure a Hierarchy View Node to Invoke a Context Menu 31-22

xxv

31.6.5 Configuring Hierarchy Viewer Drag and Drop ... 31-23
31.6.5.1 How to Configure Hierarchy Viewer Drag and Drop 31-27
31.6.5.2 What You May Need to Know About Configuring Hierarchy Viewer Drag and

Drop .. 31-34
31.7 Using Panel Cards .. 31-34
31.7.1 How to Create a Panel Card ... 31-34
31.7.2 What Happens at Runtime When a Panel Card Component Is Rendered 31-35
31.8 Customizing the Appearance of a Hierarchy Viewer ... 31-35
31.8.1 How to Adjust the Size of a Hierarchy Viewer .. 31-36
31.8.2 How to Include Images in a Hierarchy Viewer .. 31-36
31.8.3 How to Configure the Display of the Control Panel .. 31-37
31.8.4 How to Configure the Display of Links and Labels ... 31-37
31.8.5 How to Disable the Hover Detail Window .. 31-38
31.9 Adding Search to a Hierarchy Viewer .. 31-39
31.9.1 How to Configure Searching in a Hierarchy Viewer ... 31-39
31.9.2 What You May Need to Know About Configuring Search in a Hierarchy Viewer 31-41

Part V Advanced Topics

32 Creating Custom ADF Faces Components

32.1 Introduction to Custom ADF Faces Components ... 32-1
32.1.1 Developing a Custom Component with JDeveloper .. 32-2
32.1.2 An Example Custom Component .. 32-5
32.2 Setting Up the Workspace and Starter Files ... 32-8
32.2.1 How to Set Up the JDeveloper Custom Component Environment 32-9
32.2.2 How to Add a Faces Configuration File ... 32-11
32.2.3 How to Add a MyFaces Trinidad Skins Configuration File 32-11
32.2.4 How to Add a Cascading Style Sheet ... 32-12
32.2.5 How to Add a Resource Kit Loader .. 32-12
32.2.6 How to Add a JavaServer Pages Tag Library Descriptor File 32-12
32.2.7 How to Add a JavaScript Library Feature Configuration File 32-13
32.2.8 How to Add a Facelets Tag Library Configuration File ... 32-13
32.3 Client-Side Development ... 32-14
32.3.1 How to Create a JavaScript File for a Component ... 32-15
32.3.2 How to Create a Javascript File for an Event ... 32-16
32.3.3 How to Create a JavaScript File for a Peer ... 32-18
32.3.4 How to Add a Custom Component to a JavaScript Library Feature Configuration File .

32-19
32.4 Server-Side Development ... 32-19
32.4.1 How to Create a Class for an Event Listener .. 32-20
32.4.2 How to Create a Class for an Event ... 32-21
32.4.3 Creating the Component .. 32-22
32.4.4 How to Create a Class for a Component .. 32-24
32.4.5 How to Add the Component to the faces-config.xml File 32-26
32.4.6 How to Create a Class for a Resource Bundle .. 32-27
32.4.7 How to Create a Class for a Renderer .. 32-29
32.4.8 How to Add the Renderer to the faces-config.xml File .. 32-29

xxvi

32.4.9 How to Create JSP Tag Properties ... 32-30
32.4.10 How to Configure the Tag Library Descriptor ... 32-33
32.4.11 How to Create a Resource Loader ... 32-35
32.4.12 How to Create a MyFaces Trinidad Cascading Style Sheet 32-36
32.5 Deploying a Component Library ... 32-37
32.6 Adding the Custom Component to an Application ... 32-38
32.6.1 How to Configure the Web Deployment Descriptor ... 32-38
32.6.2 How to Enable JavaScript Logging and Assertions ... 32-39
32.6.3 How to Add a Custom Component to JSF Pages ... 32-40
32.6.4 What You May Need to Know About Using the tagPane Custom Component 32-40

33 Allowing User Customization on JSF Pages

33.1 Introduction to User Customization ... 33-1
33.2 Implementing Session Change Persistence .. 33-4
33.2.1 How to Implement Session Change Persistence .. 33-4
33.2.2 What Happens When You Configure Your Application to Use Change Persistence

33-4
33.2.3 What Happens at Runtime .. 33-5
33.2.4 What You May Need to Know About Using Change Persistence on Templates and

Regions .. 33-5

34 Adding Drag and Drop Functionality

34.1 Introduction to Drag and Drop Functionality .. 34-1
34.2 Adding Drag and Drop Functionality for Attributes ... 34-4
34.3 Adding Drag and Drop Functionality for Objects .. 34-5
34.3.1 How to Add Drag and Drop Functionality for a Single Object 34-6
34.3.2 What Happens at Runtime .. 34-8
34.3.3 What You May Need to Know About Using the ClientDropListener 34-9
34.4 Adding Drag and Drop Functionality for Collections .. 34-9
34.4.1 How to Add Drag and Drop Functionality for Collections 34-10
34.4.2 What You May Need to Know About the dragDropEndListener 34-12
34.5 Adding Drag and Drop Functionality for Components ... 34-12
34.5.1 How to Add Drag and Drop Functionality for Components 34-13
34.6 Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

34-15
34.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component .. 34-15
34.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component

34-18
34.7 Adding Drag and Drop Functionality to a Calendar .. 34-19
34.7.1 How to Add Drag and Drop Functionality to a Calendar 34-20
34.7.2 What You May Need to Know About Dragging and Dropping in a Calendar 34-21
34.8 Adding Drag and Drop Functionality for DVT Graphs ... 34-21
34.8.1 How to Add Drag and Drop Functionality for a DVT Graph 34-21
34.9 Adding Drag and Drop Functionality for DVT Gantt Charts 34-22
34.9.1 How to Add Drag and Drop Functionality for a DVT Gantt Component 34-23
34.10 Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and

Treemaps .. 34-26

xxvii

34.10.1 Drag and Drop Example for DVT Hierarchy Viewers ... 34-26
34.10.2 Drag and Drop Example for DVT Sunbursts ... 34-27
34.10.3 Drag and Drop Example for DVT Treemaps ... 34-28
34.10.4 How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer, Sunburst, or

Treemap Component ... 34-29

35 Using Different Output Modes

35.1 Introduction to Using Different Output Modes .. 35-1
35.2 Displaying a Page for Print ... 35-2
35.2.1 How to Use the showPrintablePageBehavior Tag ... 35-2
35.3 Creating Emailable Pages ... 35-3
35.3.1 How to Create an Emailable Page .. 35-4
35.3.2 How to Test the Rendering of a Page in an Email Client ... 35-5
35.3.3 What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable Pages ...

35-6

36 Using the Active Data Service with an Asynchronous Backend

36.1 Introduction to Using the Active Data Service ... 36-1
36.1.1 Active Data Service Use Cases and Examples .. 36-2
36.2 Process Overview for Using Active Data Service ... 36-2
36.3 Implement the ActiveModel Interface in a Managed Bean .. 36-3
36.3.1 What You May Need to Know About Read Consistency ... 36-6
36.4 Pass the Event Into the Active Data Service ... 36-6
36.5 Register the Data Update Event Listener .. 36-7
36.6 Configure the ADF Component to Display Active Data .. 36-8

Part VI Appendixes

A ADF Faces Configuration

A.1 Introduction to Configuring ADF Faces ...A-1
A.2 Configuration in web.xml ..A-1
A.2.1 How to Configure for JSF and ADF Faces in web.xml ...A-2
A.2.2 What You May Need to Know About Required Elements in web.xmlA-3
A.2.3 What You May Need to Know About ADF Faces Context Parameters in web.xml ...A-4
A.2.3.1 State Saving ...A-4
A.2.3.2 Debugging ...A-5
A.2.3.3 File Uploading ...A-6
A.2.3.4 Resource Debug Mode ..A-6
A.2.3.5 Assertions ..A-6
A.2.3.6 Enabling the Application for Real User Experience InsightA-6
A.2.3.7 Facelets Support ..A-7
A.2.3.8 Dialog Prefix ..A-7
A.2.3.9 Compression for CSS Class Names ...A-7
A.2.3.10 Test Automation ..A-7
A.2.3.11 UIViewRoot Caching ...A-8
A.2.3.12 Themes and Tonal Styles ...A-9

xxviii

A.2.3.13 Partial Page Navigation ...A-9
A.2.3.14 JavaScript Partitioning ..A-9
A.2.3.15 Framebusting ..A-10
A.2.3.16 Version Number Information ..A-11
A.2.3.17 Suppressing Auto-Generated Component IDs ..A-11
A.2.3.18 ADF Faces Caching Filter ..A-12
A.2.3.19 Configuring Native Browser Context Menus for Command LinksA-13
A.2.3.20 Internet Explorer Compatibility View Mode ...A-13
A.2.3.21 Session Timeout Warning ...A-13
A.2.3.22 JSP Tag Execution in HTTP Streaming ..A-14
A.2.3.23 Splash Screen ...A-14
A.2.3.24 Graph and Gauge Image Format ...A-14
A.2.3.25 Geometry Management for Layout and Table ComponentsA-14
A.2.4 What You May Need to Know About Other Context Parameters in web.xmlA-15
A.3 Configuration in faces-config.xml ..A-16
A.3.1 How to Configure for ADF Faces in faces-config.xml ..A-16
A.4 Configuration in adf-config.xml ...A-17
A.4.1 How to Configure ADF Faces in adf-config.xml ..A-17
A.4.2 Defining Caching Rules for ADF Faces Caching Filter ..A-18
A.4.3 Configuring Flash as Component Output Format ...A-19
A.4.4 Using Content Delivery Networks ..A-20
A.4.4.1 What You May Need to Know About Skin Style Sheets and CDNA-23
A.4.4.2 What You May Need to Know About JavaScript and CDNA-23
A.5 Configuration in adf-settings.xml ..A-24
A.5.1 How to Configure for ADF Faces in adf-settings.xml ..A-24
A.5.2 What You May Need to Know About Elements in adf-settings.xmlA-25
A.5.2.1 Help System ..A-25
A.5.2.2 Caching Rules ..A-25
A.6 Configuration in trinidad-config.xml ...A-26
A.6.1 How to Configure ADF Faces Features in trinidad-config.xmlA-27
A.6.2 What You May Need to Know About Elements in trinidad-config.xmlA-28
A.6.2.1 Animation Enabled ...A-28
A.6.2.2 Skin Family ...A-28
A.6.2.3 Time Zone and Year ..A-29
A.6.2.4 Enhanced Debugging Output ...A-29
A.6.2.5 Page Accessibility Level ..A-29
A.6.2.6 Language Reading Direction ...A-30
A.6.2.7 Currency Code and Separators for Number Groups and Decimal PointsA-30
A.6.2.8 Formatting Dates and Numbers Locale ...A-31
A.6.2.9 Output Mode ...A-31
A.6.2.10 Number of Active PageFlowScope Instances ..A-31
A.6.2.11 Custom File Uploaded Processor ..A-31
A.6.2.12 Client-Side Validation and Conversion ...A-31
A.7 Configuration in trinidad-skins.xml ...A-32
A.8 Using the RequestContext EL Implicit Object ..A-32
A.9 Using JavaScript Library Partitioning ..A-34
A.9.1 How to Create a JavaScript Feature ...A-35

xxix

A.9.2 How to Create JavaScript Partitions ...A-36
A.9.3 What You May Need to Know About the adf-js-partitions.xml FileA-37
A.9.4 What Happens at Runtime: JavaScript Partitioning ...A-44

B Message Keys for Converter and Validator Messages

B.1 Introduction to ADF Faces Default Messages ...B-1
B.2 Message Keys and Setter Methods ...B-1
B.3 Converter and Validator Message Keys and Setter Methods ...B-2
B.3.1 af:convertColor ..B-2
B.3.2 af:convertDateTime ..B-2
B.3.3 af:convertNumber ..B-3
B.3.4 af:validateByteLength ..B-4
B.3.5 af:validateDateRestriction ..B-4
B.3.6 af:validateDateTimeRange ...B-5
B.3.7 af:validateDoubleRange ...B-6
B.3.8 af:validateLength ...B-7
B.3.9 af:validateRegExp ..B-8

C Keyboard Shortcuts

C.1 Introduction to Keyboard Shortcuts .. C-1
C.2 Tab Traversal ... C-2
C.2.1 Tab Traversal Sequence on a Page .. C-2
C.2.2 Tab Traversal Sequence in a Table .. C-2
C.3 Accelerator Keys .. C-4
C.4 Accelerator Keys for ADF Data Visualization Components .. C-6
C.5 Access Keys ... C-9
C.6 Default Cursor or Focus Placement ... C-12
C.7 The Enter Key .. C-12

D Creating Web Applications for Touch Devices Using ADF Faces

D.1 Introduction to Creating Web Applications for Touch Devices Using ADF Faces D-1
D.2 How ADF Faces Behaves in Mobile Browsers on Touch Devices D-1
D.3 Best Practices When Using ADF Faces Components in a Mobile Browser D-5

E Quick Start Layout Themes

F Troubleshooting ADF Faces

F.1 Introduction to Troubleshooting ADF Faces ..F-1
F.2 Getting Started with Troubleshooting the View Layer of an ADF ApplicationF-2
F.3 Resolving Common Problems ..F-4
F.3.1 Application Displays an Unexpected White Background ..F-5
F.3.2 Application is Missing Expected Images ...F-5
F.3.3 Data Visualization Components Fail to Display as ExpectedF-5
F.3.4 High Availability Application Displays a NotSerializableExceptionF-6
F.3.5 Unable to Reproduce Problem in All Web Browsers ...F-6

xxx

F.3.6 Application is Missing Content ...F-7
F.3.7 Browser Displays an ADF_Faces-60098 Error ..F-7
F.3.8 Browser Displays an HTTP 404 or 500 Error ...F-7
F.3.9 Browser Fails to Navigate Between Pages ...F-8
F.4 Using My Oracle Support for Additional Troubleshooting InformationF-8

xxxi

Preface

Welcome to Web User Interface Developer's Guide for Oracle Application Development
Framework!

Audience
This document is intended for developers who need to create the view layer of a web
application using the rich functionality of ADF Faces components.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following related documents:

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Administrator’s Guide for Oracle Application Development
Framework

■ Oracle JDeveloper 11g Online Help

xxxii

■ Oracle JDeveloper 11g Release Notes, included with your JDeveloper 11g installation,
and on Oracle Technology Network

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Faces Client JavaScript

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization
Components

■ Oracle Fusion Middleware Tag Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces

■ Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors

■ Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin
Selectors

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxxiii

What's New in This Guide for Release
11.1.1.7.0

For Release 11.1.1.7.0, this guide has been updated in several ways. The following table
lists the sections that have been added or changed.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the New Features page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/overview/
index.html.

Note: This version of the guide may not contain the most recent
content. To view the latest version, access the guide directly from the
library on OTN. To see what has been added to this newer version,
compare the What's New sections of each guide.

Sections Changes Made

All Chapters Screenshots reflect new ADF Faces Skyros skin.

Chapter 2 Getting Started with ADF Faces

Section 2.6.3, "What You May Need to Know About
Component Bindings and Managed Beans"

Added content regarding the use of the
UIComponentReference API.

Chapter 5 Handling Events

Section 5.1.1, "Events and Partial Page Rendering" Information added about event root components.

Chapter 6 Validating and Converting Input

Section 6.3.4, "What You May Need to Know About Date
Converters"

Section added to document interpretation of
four-digit year values when using a two-digit year
pattern with a date converter.

Chapter 8 Organizing Content on Web Pages

Section 8.5, "Arranging Content in a Grid" Section added to document using the
panelGridLayout, gridRow and gridCell
components.

Section 8.9, "Displaying and Hiding Contents Dynamically" Content added to document how to use a skinning
key to control the indentation of child components of
the showDetail component.

Section 8.9, "Displaying and Hiding Contents Dynamically" Section revised to document the use of the
childCreation, contentDelivery, maximized,
showMaximized, and maximizeListener attributes.

xxxiv

Section 8.10.6, "What You May Need to Know About
Skinning and the panelTabbed Component"

Section added to document how to use a skinning
key to configure how the panelTabbed component
handles overflow.

Various sections in Chapter 8 Content added to describe how to globally set how
geometry managed components handle being
stretched, using the DEFAULT_DIMENSIONS web.xml
parameter.

Chapter 9 Using Input Components and Defining Forms

Section 9.9, "Using File Upload" Section revised to include multiple file upload
behavior of the inputFile component.

Section 9.10, "Using Code Editor" Section added to document the codeEditor
component.

Chapter 10 Using Tables and Trees

Chapter 10, "Using Tables, Trees, and Other
Collection-Based Components"

Title of chapter changed from "Using Tables and
Trees."

Section 10.1.1, "Content Delivery" Added content that describes the new scrollPolicy
attribute that determines how tables handle
navigation. Also added content to describe how to
globally set how table components handle being
stretched, using the DEFAULT_DIMENSIONS web.xml
parameter.

Section 10.2.3, "Formatting Columns" Added content to describe column sorting and
column spanning.

Section 10.2.4, "How to Display a Table on a Page" Procedures added for the new colSpan,
freezeDirection, scrollPolicy,
selectionEventDelay, sortable, and sortStrength
attributes.

Content also added to describe when to use the
dimensionsFrom attribute with regards to the new
DEFAULT_DIMENSIONS web.xml parameter.

Section 10.8, "Displaying a Collection in a List" Added section to describe the new ListView and
ListItem components.

Section 10.9, "Displaying Images in a Carousel" Moved section from Chapter 16 Using Output
Components to this chapter.

Chapter 15 Creating a Calendar Application

Section 15.3.1, "How to Configure the Calendar
Component"

Information added to describe the new HourZoom and
TimeSlotsPerHour attributes.

Chapter 16 Using Output Components

Section 16.6 Displaying Images in a Carousel Moved content to Chapter 10, "Using Tables, Trees,
and Other Collection-Based Components"

Chapter 18 Working with Navigation Components

Section 18.7.4, "What You May Need to Know About
Navigation Tabs in a Compressed Layout"

Section added to describe the -tr-layout-type
skinning key that allows you to render
navigationPane components on a conveyor belt
when an application window is in a compressed
layout.

Chapter 20 Customizing the Appearance Using Styles
and Skins

Section 20.1, "Introduction to Skins, Style Selectors, and
Style Properties"

Revised to describe the Skyros skin, the new default
skin for applications created using this release.

Sections Changes Made

xxxv

Chapter 22 Developing Accessible ADF Faces Pages

Section 22.3.3, "ADF Data Visualization Components
Accessibility Guidelines"

Revised to describe accessibility for treemaps and
sunbursts.

Chapter 23 Introduction to ADF Data Visualization
Components

Section 23.2, "Defining the ADF Data Visualization
Components"

Revised to include new timeline, treemap, and
sunburst components.

Chapter 24 Using ADF Graph Components

Section 24.1, "Introduction to the Graph Component" Code sample updated to remove deprecated
imageFormat attribute.

Section 24.4.1, "How to Add a Graph to a Page" Section added to document graph creation from the
Component Palette.

Section 24.4.4, "What You May Need to Know About Graph
Image Formats"

Section revised to document HTML5 support for
image formats.

Section 24.6.3.1, "How to Globally Set Graph Font Using a
Skin"

Procedure revised to remove references to the
blafplus-rich.desktop skin.

Section 24.6.4, "Changing Graph Size and Style" Sections revised to recommend AFStretchWidth
when setting width attributes to 100%.

Section 24.8.6, "How to React to Changes in the Zoom and
Scroll Levels"

Procedure corrected to include correct reference for
sample bean and to add a step to configure scrolling
if not already done.

Section 24.8.8.1, "How to Define a Relative Range of Time
Data for Display"

Procedure updated to remove reference to the
dvt:timeAxis attribute which is deprecated for
graphs.

Section 24.8.8.2, "How to Define an Explicit Range of Time
Data for Display"

Procedure revised to include a managed bean
requirement for storing the start and end dates for
the range.

Section 24.8.8.3, "How to Add a Time Selector to a Graph" Procedure added to document time selector
configuration.

Section 24.9.1, "How to Configure Graph Components to
Display Active Data"

Procedure simplified.

Chapter 25 Using ADF Gauge Components

Section 25.1, "Introduction to the Gauge Component" Revised to include HTML5 support for image
formats.

Section 25.3.1, "How to Add a Gauge to a Page" Section and procedure added to document gauge
creation from the Component Palette.

Section 25.3.2.2, "Structure of the List of Tabular Data" Code sample revised to match figure data.

Section 25.3.5, "What You May Need to Know About Gauge
Image Formats"

Revised to include Skyros skin support for HTML5.

Section 25.4.2, "How to Determine the Layout of Gauges in
a Gauge Set"

Procedure revised to remove -1 option for the
gaugeSetColumnCount attribute.

Section 25.4.5.1, "Formatting the Numeric Value in a Gauge
Metric or Tick Label"

Procedure revised to include tick label formatting.

Section 25.4.11, "How to Customize Indicators and Tick
Marks"

Procedures revised to account for attributes that are
already added to the gauge during creation.

Section 25.5.5.1, "Configuring Gauge Components to
Display Active Data"

Procedure simplified.

Sections Changes Made

xxxvi

Chapter 27 Using ADF Pivot Table Components

Section 27.4, "Displaying Large Data Sets in Pivot Tables" Section and procedure added to document how to
add page controls in desktop and mobile application
pages.

Section 27.10, "Displaying Pivot Tables in Printable Mode" Section added to describe pivot table and pivot filter
bar behavior when page is output in simplified
modes.

Section 27.12.1, "How to Specify Custom Images for Data
Cells"

Section and procedure revised to document how to
configure word wrapping in pivot table header cells.

Chapter 28 Using ADF Timeline Components

Chapter 28, "Using ADF Timeline Components" Chapter added to document new Data Visualization
Tools timeline component.

Chapter 29 Using ADF Gantt Chart Components

Section 29.5, "Creating an ADF Gantt Chart" Procedure revised to document Gantt chart creation
from the Component Palette.

Section 29.9, "Using Page Controls in Gantt Charts" Section and procedure added to document how to
add page controls in desktop and mobile application
pages.

Section 29.11, "Using Gantt Charts as a Drop Target or Drag
Source"

Procedure revised for adding drag and drop
functionality to Gantt charts.

Chapter 30 Using ADF Treemap and Sunburst
Components

Chapter 30, "Using ADF Treemap and Sunburst
Components"

Chapter added to document new Data Visualization
Tools treemap and sunburst components.

Chapter 31 Using ADF Hierarchy Viewer Components

Section 31.1.1, "Understanding the Hierarchy Viewer
Component"

Code sample revised to show new style defaults and
remove inlineStyle attributes.

Section 31.3, "Creating a Hierarchy Viewer" Section added to document hierarchy viewer creation
from the Component Palette.

Section 31.6.5, "Configuring Hierarchy Viewer Drag and
Drop"

Section and procedure added to document support
for drag and drop.

Section 31.8.1, "How to Adjust the Size of a Hierarchy
Viewer"

Section revised to reflect new skinning style classes.

Chapter 35 Using Different Output Modes

Section 35.3, "Creating Emailable Pages" Section revised to update information about
supported email clients for emailable pages.

Chapter 36 Using the Active Data Service with an
Asynchronous Backend

Chapter 36, "Using the Active Data Service with an
Asynchronous Backend"

Chapter added to document how to use the Active
Data Service.

Appendix A ADF Faces Configuration

Section A.2.3.15, "Framebusting" Revised section to document the
oracle.adf.view.rich.libraryPartitioning
.ENABLED context parameter.

Section A.2.3.16, "Version Number Information" Section added to describe new web.xml parameter
that can display version numbers for ADF
components.

Sections Changes Made

xxxvii

Section A.2.3.20, "Internet Explorer Compatibility View
Mode"

Section added to describe new web.xml parameter
that displays an alert asking the user to disable the
Internet Explorer compatibility mode.

Section A.2.3.25, "Geometry Management for Layout and
Table Components"

Content added to describe how to globally set how
geometry managed components and tables handle
being stretched, using the DEFAULT_DIMENSIONS
web.xml parameter.

Appendix C Keyboard Shortcuts

Section C.3, "Accelerator Keys" Section revised to include additional information
about row selection delay during keyboard
navigation in Table and Tree Table components.

Appendix D Creating Web Applications for Touch
Devices Using ADF Faces

Section D.2, "How ADF Faces Behaves in Mobile Browsers
on Touch Devices"

Added information about how tables on tablets
handle navigation.

Section D.3, "Best Practices When Using ADF Faces
Components in a Mobile Browser"

Added best practices for using tables in tablet
interfaces.

Appendix F Troubleshooting ADF Faces

Appendix F, "Troubleshooting ADF Faces" New appendix added to document troubleshooting
the application user interface.

Sections Changes Made

xxxviii

Part I
Part I Getting Started with ADF Faces

Part I contains the following chapters:

■ Chapter 1, "Introduction to ADF Faces Rich Client"

■ Chapter 2, "Getting Started with ADF Faces"

1

Introduction to ADF Faces Rich Client 1-1

1 Introduction to ADF Faces Rich Client

This chapter introduces ADF Faces rich client, providing a history, an overview of the
framework functionality, and an overview of each of the different component types
found in the library. It also introduces the ADF Faces demonstration application that
can be used in conjunction with this guide.

This chapter includes the following sections:

■ Section 1.1, "Introduction to ADF Faces Rich Client"

■ Section 1.2, "Architecture of ADF Faces Components"

■ Section 1.3, "ADF Faces Components"

■ Section 1.4, "ADF Faces Demonstration Application"

1.1 Introduction to ADF Faces Rich Client
ADF Faces rich client (known also as ADF Faces) is a set of JavaServer Faces (JSF)
components that include built-in Asynchronous JavaScript and XML (AJAX)
functionality. While AJAX brings rich client-like functionality to browser-based
applications, using JSF provides server-side control, which reduces the amount of
JavaScript code that application developers need to write in order to implement
AJAX-based applications.

In addition to providing a rich set of JSF components, the ADF Faces rich client
framework (RCF) provides a client-side programming model familiar to developers
accustomed to the JSF development model. Most of the RCF differs little from any
standard JSF application: the server programming model is still JavaServer Faces, and
the framework still uses the JavaServer Faces lifecycle, server-side component tree,
and the expression language (EL). However, the RCF also provides a client-side
programming model and lifecycle that execute independently of the server.
Developers can find and manipulate components from JavaScript, for example get and
set properties, receive and queue events, and so forth, entirely from JavaScript. The
RCF makes sure that changes to component state are automatically synchronized back
to the server to ensure consistency of state, and that events are delivered, when
necessary, to the server for further processing.

Before providing more detailed information regarding ADF Faces, it may help to have
a brief history of the ADF Faces library and Rich Internet Applications (RIAs) and
AJAX in general.

1.1.1 History of ADF Faces
In the 1990s, software vendors began to see the need for Internet applications to
appear and behave more like desktop applications, and so they developed RIA

Introduction to ADF Faces Rich Client

1-2 Web User Interface Developer's Guide for Oracle Application Development Framework

frameworks on which to build these applications. However, these frameworks
required that users install proprietary plug-ins in order to utilize the functionality. As
web standards developed, and Java web applications became more prevalent, the
development community at large started to recognize the need for a standard
view-layer framework. The Java Community Process (JCP) developed JSF as a user
interface standard for Java web applications. From the formative years of JSR-127 in
2001, through the first release in 2004, and up to the current release, the JCP has
brought together resources from the community, including Oracle, to define the JSF
specification and produce a reference implementation of the specification. JSF is now
part of the Java EE standard.

With JSF being a standard for building enterprise Java view components, vendors
could now develop their own components that could run on any compliant
application server. These components could now be more sophisticated, allowing
developers to create browser-based RIAs that behaved more like thick-client
applications. To meet this need, Oracle developed a set of components called ADF
Faces that could be used on any runtime implementation of JSF. ADF Faces provided a
set of over 100 components with built-in functionality, such as data tables, hierarchical
tables, and color and date pickers, that exceeded the functionality of the standard JSF
components. To underline its commitment to the technology and the open source
community, Oracle has since donated that version of the ADF Faces component library
to the Apache Software Foundation, and it is now known as Apache MyFaces
Trinidad. This component library is currently available through the Apache Software
Foundation.

ADF Faces not only provided a standard set of complex components, pages were now
able to be partially refreshed using partial page rendering with AJAX. AJAX is a
combination of asynchronous JavaScript, dynamic HTML (DHTML), XML, and the
XmlHttpRequest communication channel, which allows requests to be made to the
server without fully rerendering the page. However, pages built solely using AJAX
require a large amount of JavaScript to be written by the developer.

The latest version of ADF Faces takes full advantage of AJAX, and it also provides a
fully-functioning framework, allowing developers to implement AJAX-based RIAs
relatively easily with a minimal amount of hand-coded JavaScript. Using ADF Faces,
you can easily build a stock trader's dashboard application that allows a stock analyst
to use drag and drop to add new stock symbols to a table view, which then gets
updated by the server model using an advanced push technology. To close new deals,
the stock trader could navigate through the process of purchasing new stocks for a
client, without having to leave the actual page. ADF Faces insulates the developer
from the need to deal with the intricacies of JavaScript and the DHTML differences
across browsers.

1.1.2 ADF Faces as Rich Client Components
ADF Faces rich client framework offers complete RIA functionality, including drag
and drop, lightweight dialogs, a navigation and menu framework, and a complete
JavaScript API. The library provides over 100 RIA components, including hierarchical
data tables, tree menus, in-page dialogs, accordion panels, dividers, and sortable
tables. ADF Faces also includes data visualization components, which are Flash- and
SVG-enabled components capable of rendering dynamic charts, graphs, gauges, and
other graphics that provide a real-time view of underlying data. Each component also
offers customizing and skinning, along with support for internationalization and
accessibility.

To achieve these capabilities, ADF Faces components use a rich JSF render kit. This kit
renders both HTML content as well as the corresponding client-side components. This

Architecture of ADF Faces Components

Introduction to ADF Faces Rich Client 1-3

built-in support enables you to build RIAs without needing extensive knowledge of
the individual technologies.

ADF Faces can also be used in an application that uses the Facelets library. Facelets is a
JSF-centric declarative XML view definition technology that provides an alternative to
using the JSP engine technology for the view. For more details about the architecture of
ADF Faces, see Section 1.2, "Architecture of ADF Faces Components."

In addition to an extensive library of RIA components, Oracle also offers Oracle
JDeveloper, a full-featured development environment with built-in declarative support
for ADF Faces components, allowing you to quickly and easily build the view layer of
your web application. JDeveloper contains a visual layout editor that displays JSF
pages in a WYSIWYG environment. The Component Palette in JDeveloper holds
visual representations of each of the ADF Faces components, which allows you to drag
and drop a component onto a page in the visual editor, instead of having to manually
add tag syntax to a page. You can use JDeveloper throughout the complete
development lifecycle, as it has integrated features for modeling, coding, debugging,
testing, tuning, and deploying. For more information about using JDeveloper, see
Chapter 2, "Getting Started with ADF Faces."

1.2 Architecture of ADF Faces Components
Unlike frameworks where most of the application logic resides on the client, with ADF
Faces application logic resides mostly on the server, executing in the JSF lifecycle. The
Java data model also remains on the server: the ADF Faces framework performs initial
rendering of its components on the server, generating HTML content that is consumed
directly by browsers. Rendering HTML on the server means that there is less
client-side rendering overhead, which is helpful for complex components.

1.2.1 Client-Side Architecture
JavaScript performance can suffer when too many objects are created. To improve
performance, the RCF minimizes the number of component objects present on the
client, and the number of attributes sent to the client. The framework also has the
JavaScript files that make up the components housed in configurable partitions,
allowing your application to load only the required JavaScript.

Tip: You can use ADF Faces in conjunction with ADF Model data
binding, allowing you to declaratively bind ADF Faces components to
the business layer. Using ADF Model data binding, most developer
tasks that would otherwise require writing code are declarative.
However, this guide covers only using ADF Faces components in a
standard JSF application. For more information about using ADF
Faces with the ADF Model, see the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Note: Because ADF Faces adheres to the standards of the JSF
technology, this guide is mostly concerned with content that is in
addition to, or different from, JSF standards. Therefore, it is
recommended that you have a basic understanding of how JSF works
before beginning to develop with ADF Faces. To learn more about JSF,
visit the Java web site at
http://www.oracle.com/technetwork/java/index.html.

http://java.sun.com
http://java.sun.com
http://java.sun.com
http://www.oracle.com/technetwork/java/index.html

Architecture of ADF Faces Components

1-4 Web User Interface Developer's Guide for Oracle Application Development Framework

1.2.1.1 Client-Side Components
In JSF, as in most component-based frameworks, an intrinsic property of the
component model is that components can be nested to form a hierarchy, typically
known as the component tree. This simply means that parent components keep track of
their children, making it possible to walk over the component tree to find
all descendents of any given component. While the full component tree still exists on
the server, the ADF Faces client-side component tree is sparsely populated. Client-side
components primarily exist to add behavior to the page by exposing an API contract
for both application developers as well as for the framework itself. It is this contract
that allows, among other things, toggling the enabled state of a button on the client.
Therefore, client-side components are created only for those components that are truly
needed on the client, typically those that have been explicitly configured to have client
representation.

It is also possible for JavaScript components to be present that do not correspond to
any existing server-side component. For example, some ADF Faces components have
client-side behavior that requires popup content. These components may create
AdfRichPopup JavaScript components, even though no Java RichPopup component
may exist.

The JavaScript class that you will interact with most is AdfUIComponent and its
subclasses. An instance of this class is the client-side representation of a server-side
component. Each client component has a set of properties (key/value pairs) and a list
of listeners for each supported event type. All RCF JavaScript classes are prefixed with
Adf to avoid naming conflicts with other JavaScript libraries. For example,
RichCommandButton has AdfRichCommandButton, RichDocument has AdfRichDocument,
and so on.

While the Java UIComponent object represents the state of the component, and this
object is what you interact with to register listeners and set properties, the Renderer
handles producing HTML and receiving postbacks on behalf of the component. In the
RCF client-side JavaScript layer, client-side components have no direct interaction with
the document object model (DOM) whatsoever. All DOM interaction goes through an
intermediary called the peer. Peers interact with the DOM generated by the Java
renderer and handle updating that state and responding to user interactions.

Peers have a number of other responsibilities, including:

■ DOM initialization and cleanup

■ DOM event handling

■ Geometry Management

■ Partial page response handling

■ Child visibility change handling

1.2.1.2 JavaScript Library Partitioning
A common issue with JavaScript-heavy frameworks is determining how best to
deliver a large JavaScript code base to the client. On one extreme, bundling all code
into a single JavaScript library can result in a long download time. On the other
extreme, breaking up JavaScript code into many small JavaScript libraries can result in
a large number of roundtrips. Both approaches can result in the end user waiting
unnecessarily long for the initial page to load.

To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A
JavaScript library partition contains code for components and/or features that are
commonly used together. By default, ADF Faces provides a partitioning that is

Architecture of ADF Faces Components

Introduction to ADF Faces Rich Client 1-5

intended to provide a balance between total download size and total number of
roundtrips.

One benefit of ADF Faces's library partitioning strategy is that it is configurable.
Because different applications make use of different components and features, the
default partitioning provided by ADF Faces may not be ideal for all applications. As
such, ADF Faces allows the JavaScript library partitioning to be customized on a
per-application basis. This partitioning allows application developers to tune the
JavaScript library footprint to meet the needs of their application. For more
information about configuring JavaScript partitioning, see Section A.9, "Using
JavaScript Library Partitioning."

1.2.2 ADF Faces Architectural Features
The RCF enables many architectural features that can be used throughout your
application. For example, because processing can be done on the client, small amounts
of data can be exchanged with the server without requiring the whole page to be
rendered. This is referred to as partial page rendering (PPR). Many ADF Faces
components have PPR functionality implemented natively. For example, the
ADF Faces table component comes with built-in AJAX-style functionality that lets you
scroll through the table, sort the table by clicking a column header, mark a row or
several rows for selection, and even expand specific rows in the table, all without
requiring a roundtrip to the server, and with no coding needed. For more information,
see Chapter 7, "Rerendering Partial Page Content."

The RCF also adds functionality to the standard JSF lifecycle. Examples include a
client-side value lifecycle, a subform component that allows you to create independent
submittable regions on a page without the drawbacks of using multiple forms on a
single page, and an optimized lifecycle that can limit the parts of the page submitted
for processing. For more information, see Chapter 4, "Using the JSF Lifecycle with ADF
Faces."

The RCF uses the standard JSF event framework. However, events in the RCF have
been abstracted from the standard JavaScript DOM event model. Though the events
share some of the same abstractions found in the DOM event model, they also add
functionality. Consequently, you need not listen for click events on buttons, for
example. You can instead listen for AdfActionEvent events, which may or may not
have been caused by key or mouse events. RCF events can be configured to either
deliver or not deliver the event to the server. For more information, see Chapter 5,
"Handling Events."

ADF Faces input components have built-in validation capabilities. You set one or more
validators on a component by either setting the required attribute or by using the
prebuilt ADF Faces validators. In addition, you can create your own custom validators
to suit your business needs.

ADF Faces input components also have built-in conversion capabilities, which allow
users to enter information as a string and the application can automatically convert the
string to another data type, such as a date. Conversely, data stored as something other
than a string can be converted to a string for display and updating. Many components,
such as the inputDate component, automatically provide this capability. For more
information, see Chapter 6, "Validating and Converting Input."

In addition to these architectural features, the RCF also supports the following:

■ Fully featured client-side architecture: Many of the features you need to create
AJAX-type functionality in your web application are found in the client side of the
architecture. For more information, see Chapter 3, "Using ADF Faces
Architecture."

ADF Faces Components

1-6 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Reuse: You can create page templates, as well as page fragments and composite
components made up of multiple components, which can be used throughout
your application. For more information, see Chapter 19, "Creating and Reusing
Fragments, Page Templates, and Components."

■ Skinning: You can globally change the appearance of components. For more
information, see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

■ Internationalization: You can change text and other display attributes based on the
user’s locale. For more information, see Chapter 21, "Internationalizing and
Localizing Pages."

■ Accessibility: You can implement accessibility support, including keyboard
shortcuts and text descriptions. For more information, see Chapter 22,
"Developing Accessible ADF Faces Pages."

■ Custom component creation: You can create your own components that use the
RCF. For more information, see Chapter 32, "Creating Custom ADF Faces
Components."

■ User customizations: You can create your pages so that they allow users to change
certain display attributes for components at runtime. For more information, see
Chapter 33, "Allowing User Customization on JSF Pages."

■ Drag and drop: You can allow attribute values, collection values, or complete
components to be dragged from one component to another. For more information,
see Chapter 34, "Adding Drag and Drop Functionality."

1.3 ADF Faces Components
ADF Faces components generally fall into two categories. Layout components are
those that are used to organize the contents of the page. Along with components that
act as containers to determine the layout of the page, ADF Faces layout components
also include interactive container components that can show or hide content, or that
provide sections, lists, or empty spaces. Certain layout components support geometry
management, that is, the process by which the size and location of components appear
on a page. The RCF notifies these components of browser resize activity, and they in
turn are able to resize their children. This allows certain components to stretch or
shrink, filling up any available browser space. JDeveloper provides prebuilt
quick-start layouts that declaratively add layout components to your page based on
how you want the page to look. For more information about layout components and
geometry management, see Chapter 8, "Organizing Content on Web Pages."

The remaining components are considered to be in the common category, and are
divided into the following subcategories:

■ Input components: Allow users to enter data or other types of information, such as
color selection or date selection. ADF Faces also provides simple lists from which
users can choose the data to be posted, as well as a file upload component. For
more information about input components, see Chapter 9, "Using Input
Components and Defining Forms."

■ Table and tree components: Display structured data in tables or expandable trees.
ADF Faces tables provide functionality such as sorting column data, filtering data,
and showing and hiding detailed content for a row. Trees have built-in
expand/collapse behavior. Tree tables combine the functionality of tables with the
data hierarchy functionality of trees. For more information, see Chapter 10, "Using
Tables, Trees, and Other Collection-Based Components."

ADF Faces Components

Introduction to ADF Faces Rich Client 1-7

■ List-of-Values (LOV) components: Allow users to make selections from lists driven
by a model that contains functionality like searching for a specific value or
showing values marked as favorites. These LOV components are useful when a
field used to populate an attribute for one object might actually be contained in a
list of other objects, as with a foreign key relationship in a database. For more
information, see Chapter 11, "Using List-of-Values Components."

■ Query components: Allow users to query data. ADF Faces provides two query
components. The Query component can support multiple search criteria,
dynamically adding and deleting criteria, selectable search operators, match
all/any selections, seeded or saved searches, a basic or advanced mode, and
personalization of searches. The QuickQuery component is a simplified version of
the Query component that allows a search on a single item (criterion). For more
information, see Chapter 12, "Using Query Components."

■ Popup components: Display data in popup windows or dialogs. The dialog
framework in ADF Faces provides an infrastructure to support building pages for
a process displayed in a new popup browser window separate from the parent
page. Multiple dialogs can have a control flow of their own. For more information,
see Chapter 13, "Using Popup Dialogs, Menus, and Windows."

■ Explorer-type menus and toolbars: Allow you to create menu bars and toolbars.
Menus and toolbars allow users to select from a specified list of options (in the
case of a menu) or buttons (in the case of a toolbar) to cause some change to the
application. For more information, see Chapter 14, "Using Menus, Toolbars, and
Toolboxes."

■ Calendar component: Displays activities in day, week, month, or list view. You can
implement popup components that allow users to create, edit, or delete activities.
For more information, see Chapter 15, "Creating a Calendar Application."

■ Output components: Display text and graphics, and can also play video and music
clips. ADF Faces also includes a carousel output component that can display
graphics in a revolving carousel. For more information, see Chapter 16, "Using
Output Components."

■ Labels, tips, and messages: Display labels for other components, along with
mouseover tips and error messages. Unlike standard JSF input components, ADF
Faces components that support messages automatically display their own
messages. You can also have components display informational content, for
example contextual help. For more information, see Chapter 17, "Displaying Tips,
Messages, and Help."

■ Navigation components: Allow users to go from one page to the next. ADF Faces
navigation components include buttons and links, as well as the capability to
create more complex hierarchical page flows accessed through different levels of
menus. For more information, see Chapter 18, "Working with Navigation
Components."

■ Data visualization components: Allow users to view and analyze complex data in
real time. ADF data visualization components include graphs, gauges, pivot
tables, geographic maps, Gantt charts, and hierarchy viewers that display
hierarchical data as a set of linked nodes, for example an organization chart. For
more information, see Chapter 23, "Introduction to ADF Data Visualization
Components."

ADF Faces Demonstration Application

1-8 Web User Interface Developer's Guide for Oracle Application Development Framework

1.4 ADF Faces Demonstration Application
ADF Faces includes a demonstration application that allows you both to experiment
with running samples of the components and architecture features, and view the
source code.

1.4.1 How to Download and Install the ADF Faces Demo Application
In order to view the demo application (both the code and at runtime), install
JDeveloper, and then download and open the application within JDeveloper.

You can download the ADF Faces demo application from the Oracle Technology
Network (OTN) web site. Navigate to
http://www.oracle.com/technetwork/developer-tools/adf/overview/
index-092391.html and click the link for installing the ADF Faces Rich Client
demo. The resulting page provides detailed instructions for downloading the WAR file
that contains the application, along with instructions for deploying the application to a
standalone server, or for running the application using the Integrated WebLogic Server
included with JDeveloper.

If you do not want to install the application, you can run the application directly from
OTN by clicking the ADF Faces Rich Client Components Hosted Demo link.

1.4.2 Using the ADF Faces Demo Application
The demo application contains the following:

■ Tag guide: Demonstrations of ADF Faces components, validators, converters, and
miscellaneous tags, along with a property editor to see how changing attribute
values affects the component. Figure 1–1 shows the demonstration of the
selectManyCheckbox component. Each demo provides a link to the associated tag
documentation.

http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html

ADF Faces Demonstration Application

Introduction to ADF Faces Rich Client 1-9

Figure 1–1 Tag Demonstration

■ Skinning: Demonstrations of skinning on the various components. You can see, for
example, how changing style selectors affects how a component is displayed.
Figure 1–2 shows how setting certain style selectors affects the
inputNumberSpinbox component.

ADF Faces Demonstration Application

1-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 1–2 Skinning Demonstration

■ Feature demos: Various pages that demonstrate different ways you can use ADF
components. For example, the File Explorer is an application with a live data
model that displays a directory structure and allows you to create, save, and move
directories and files. This application is meant to showcase the components and
features of ADF Faces in a working application, as shown in Figure 1–3. For more
information about the File Explorer application, see Section 1.4.3, "Overview of the
File Explorer Application."

ADF Faces Demonstration Application

Introduction to ADF Faces Rich Client 1-11

Figure 1–3 File Explorer Application

Other pages demonstrate the main architectural features of ADF Faces, such as
layout components, AJAX postback functionality, and drag and drop. Figure 1–4
shows the demonstration on using the AutoSubmit attribute and validation.

ADF Faces Demonstration Application

1-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 1–4 Framework Demonstration

■ Visual designs: Demonstrations of how you can use types of components in
different ways to achieve different UI designs. Figure 1–5 shows how you can
achieve different looks for a toolbar.

ADF Faces Demonstration Application

Introduction to ADF Faces Rich Client 1-13

Figure 1–5 Toolbar Design Demonstration

■ Styles: Demonstration of how setting inline styles and content styles affects
components. Figure 1–6 shows different styles applied to the panelBox
component.

Figure 1–6 Styles Demonstration

ADF Faces Demonstration Application

1-14 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Commonly confused components: A comparison of components that provide
similar functionality. Figure 1–7 shows the differences between the various
components that display lists.

Figure 1–7 Commonly Confused Components

1.4.3 Overview of the File Explorer Application
Because the File Explorer is a complete working application, many sections in this
guide use that application to illustrate key points, or to provide code samples. The
source for the File Explorer application can be found in the fileExplorer directory.

The File Explorer application uses the fileExplorerTemplate page template. This
template contains a number of layout components that provide the basic look and feel
for the application. For more information about layout components, see Chapter 8,
"Organizing Content on Web Pages." For more information about using templates, see
Chapter 19, "Creating and Reusing Fragments, Page Templates, and Components."

The left-hand side of the application contains a panelAccordion component that holds
two areas: the directory structure and a search field with a results table, as shown in
Figure 1–8.

ADF Faces Demonstration Application

Introduction to ADF Faces Rich Client 1-15

Figure 1–8 Directory Structure Panel and Search Panel

You can expand and collapse both these areas. The directory structure is created using
a tree component. The search area is created using input components, a command
button, and a table component. For more information about using panelAccordion
components, see Section 8.10, "Displaying or Hiding Contents in Accordion Panels and
Tabbed Panels." For more information about using input components, see Chapter 9,
"Using Input Components and Defining Forms." For more information about using
command buttons, see Chapter 18, "Working with Navigation Components." For more
information about using tables and trees, see Chapter 10, "Using Tables, Trees, and
Other Collection-Based Components."

The right-hand side of the File Explorer application uses tabbed panes to display the
contents of a directory in either a table, a tree table or a list, as shown in Figure 1–9.

Figure 1–9 Directory Contents in Tabbed Panels

The table and tree table have built-in toolbars that allow you to manipulate how the
contents are displayed. In the table an list, you can drag a file or subdirectory from one
directory and drop it into another. In all tabs, you can right-click a file, and from the
context menu, you can view the properties of the file in a popup window. For more
information about using tabbed panes, see Section 8.10, "Displaying or Hiding
Contents in Accordion Panels and Tabbed Panels." For more information about table
and tree table toolbars, see Section 10.7, "Displaying Table Menus, Toolbars, and Status
Bars." For more information about enabling drag and drop, see Chapter 34, "Adding
Drag and Drop Functionality." For more information about using context menus and
popup windows, see Chapter 13, "Using Popup Dialogs, Menus, and Windows."

The top of the File Explorer application contains a menu and a toolbar, as shown in
Figure 1–10.

ADF Faces Demonstration Application

1-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 1–10 Menu and Toolbar

The menu options allow you to create and delete files and directories and change how
the contents are displayed. The Help menu opens a help system that allows users to
provide feedback in dialogs, as shown in Figure 1–11.

Figure 1–11 Help System

The help system consists of a number of forms created with various input components,
including a rich text editor. For more information about menus, see Section 14.2,
"Using Menus in a Menu Bar." For more information about creating help systems, see
Section 17.5, "Displaying Help for Components." For more information about input
components, see Chapter 9, "Using Input Components and Defining Forms."

Within the toolbar of the File Explorer are controls that allow you navigate within the
directory structure, as well as controls that allow you to change the look and feel of the
application by changing its skin. Figure 1–12 shows the File Explorer application using
the simple skin.

ADF Faces Demonstration Application

Introduction to ADF Faces Rich Client 1-17

Figure 1–12 File Explorer Application with the Simple Skin

For more information about toolbars, see Section 14.3, "Using Toolbars." For more
information about using skins, see Chapter 20, "Customizing the Appearance Using
Styles and Skins."

1.4.4 Viewing the Source Code In JDeveloper
All the source files for the ADF Faces demo application are contained in one project
(you give this project a name when you create it during installation). The project is
divided into two directories: Application Sources and Web Content. Application
Sources contains the oracle.adfdemo.view package, which in turn contains packages
that hold managed beans that provide functionality throughout the application.

The Web Content directory contains all the web resources used by the application,
including JSPX files, JavaScript libraries, images, configuration files, and so on.

Tip: The managed beans for the component demos are in the
component package and the managed beans for the File Explorer
application are in the explorer package.

Tip: The components subdirectory contains the resources for the
component demos. The docs directory contains the tag and Javadoc
documentation. The fileExplorer directory contains the resources for
the File Explorer application.

ADF Faces Demonstration Application

1-18 Web User Interface Developer's Guide for Oracle Application Development Framework

2

Getting Started with ADF Faces 2-1

2 Getting Started with ADF Faces

This chapter describes how to use JDeveloper to declaratively create ADF Faces
applications.

This chapter includes the following sections:

■ Section 2.1, "Developing Declaratively in JDeveloper"

■ Section 2.2, "Creating an Application Workspace"

■ Section 2.3, "Defining Page Flows"

■ Section 2.4, "Creating a View Page"

■ Section 2.5, "Creating EL Expressions"

■ Section 2.6, "Creating and Using Managed Beans"

■ Section 2.7, "Viewing ADF Faces Source Code and Javadoc"

2.1 Developing Declaratively in JDeveloper
Using JDeveloper 11g with ADF Faces and JSF provides a number of areas where page
and managed bean code is generated for you declaratively, including creating EL
expressions and automatic component binding. Additionally, there are a number of
areas where XML metadata is generated for you declaratively, including metadata that
controls navigation and configuration.

At a high level, the development process for an ADF Faces view project usually
involves the following:

■ Creating an application workspace

■ Designing page flows

■ Designing and creating the pages using either JavaServer Pages (JSPs) or Facelet
pages

■ Deploying the application. For more information about deployment, see the Oracle
Fusion Middleware Administrator's Guide for Oracle Application Development
Framework. If your application uses ADF Faces with the ADF Model layer, the ADF
Controller, and ADF Business Components, see the "Deploying Fusion Web
Applications" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Ongoing tasks throughout the development cycle will probably include the following:

■ Creating managed beans

■ Creating and using EL expressions

Creating an Application Workspace

2-2 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Viewing ADF Faces source code and Javadoc

JDeveloper also includes debugging and testing capabilities. For more information, see
the "Testing and Debugging ADF Components" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

2.2 Creating an Application Workspace
The first steps in building a new application are to assign it a name and to specify the
directory where its source files will be saved. By creating an application using
application templates provided by JDeveloper, you automatically get the organization
of your workspace into projects, along with many of the configuration files and
libraries required by the type of application you are creating.

2.2.1 How to Create an Application Workspace
You create an application workspace using the Create Application wizard.

To create an application:
1. In the JDeveloper main menu, choose File > New.

The New Gallery opens, where you can select different application components to
create.

2. In the New Gallery, expand the General node, select Applications and then Java
EE Web Application, and click OK.

This template provides the building blocks you need to create a web application
that uses JSF for the view and Enterprise JavaBean (EJB) session beans and Java
Persistence API (JPA) entities for business services. All the files and directories for
the business layer of your application will be stored in a project that by default is
named Model. All the files and directories for your view layer will be stored in a
project that by default is named ViewController.

3. In the Create Java EE Web Application dialog, set a name, directory location, and
package prefix of your choice and click Next.

4. In the Name Your Project page, you can optionally change the name and location
for your web project. On the Project Technologies tab, double-click ADF Faces to
move that technology to the Selected pane. This automatically adds the necessary
libraries and metadata files to your web project. Click Next.

5. In the Configure Java Settings page, optionally change the package name, Java
source path, and output directory for your view layer. Click Next.

Note: This document covers only how to create the ADF Faces
project in an application, without regard to the business services used
or the binding to those services. For information about how to use
ADF Faces with the ADF Model layer, the ADF Controller, and ADF
Business Components, see the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. For
more information about using ADF Faces with the ADF Model layer
and EJBs and JPA, see Oracle Fusion Middleware Java EE Developer's
Guide for Oracle Application Development Framework.

Creating an Application Workspace

Getting Started with ADF Faces 2-3

6. In the Name Your Project page, you can optionally change the name and location
for your Java project. By default, the necessary libraries and metadata files for Java
EE are already added to your data model project. Click Next.

7. In the Configure Java Settings page, optionally change the package name, Java
source path, and output directory for your model layer. Click Next.

8. Configure the EJB settings as needed. For help on this page, click Help or press F1.
Click Finish.

2.2.2 What Happens When You Create an Application Workspace
When you create an application workspace using the Java EE Web Application
template, JDeveloper creates a project named Model that will contain all the source files
related to the business services in your application. JDeveloper automatically adds the
libraries needed for your EJB project. For example, if you kept the default EJB settings,
JDeveloper adds the EJB 3.0 library.

JDeveloper also creates a project named ViewController that will contain all the
source files for your ADF Faces view layer. JDeveloper automatically creates the JSF
and ADF configuration files needed for the application. Additionally, JDeveloper adds
the following libraries to your view project:

■ JSF 1.2

■ JSTL 1.2

■ JSP Runtime

The ADF Faces and other runtime libraries are added when you create a JSF page in
your project.

Once the projects are created for you, you can rename them. Figure 2–1 shows the
workspace for a new Java EE Web application.

Creating an Application Workspace

2-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 2–1 New Workspace for an ADF Application

JDeveloper also sets configuration parameters in the configuration files based on the
options chosen when you created the application. In the web.xml file, these are
configurations needed to run a JSF application (settings specific to ADF Faces are
added when you create a JSF page with ADF Faces components). Example 2–1 shows
the web.xml file generated by JDeveloper when you create a new Java EE application.

Example 2–1 Generated web.xml File

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <description>Empty web.xml file for Web Application</description>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>

Defining Page Flows

Getting Started with ADF Faces 2-5

Configurations required for specific ADF Faces features are covered in the respective
chapters of this guide. For example, any configuration needed in order to use the
Change Persistence framework is covered in Chapter 33, "Allowing User
Customization on JSF Pages." For comprehensive information about configuring an
ADF Faces application, see Appendix A, "ADF Faces Configuration."

2.3 Defining Page Flows
Once you create your application workspace, often the next step is to design the flow
of your UI. As with standard JSF applications, ADF Faces applications use navigation
cases and rules to define the page flow. These definitions are stored in the
faces-config.xml file. JDeveloper provides a diagrammer through which you can
declaratively define your page flow using icons.

Figure 2–2 shows the navigation diagram created for a simple page flow that contains
two pages: a DisplayCustomer page that shows data for a specific customer, and an
EditCustomer page that allows a user to edit the customer information. There is one
navigation rule that goes from the display page to the edit page and one navigation
rule that returns to the display page from the edit page.

Figure 2–2 Navigation Diagram in JDeveloper

For more information on how navigation works in a JSF application, see the Java EE 5
tutorial at http://www.oracle.com/technetwork/java/index.html.

2.3.1 How to Define a Page Flow
You use the navigation diagrammer to declaratively create a page flow using JSP or
JSPX pages. When you use the diagrammer, JDeveloper creates the XML metadata
needed for navigation to work in your application in the faces-config.xml file.

Note: If you plan on using ADF Model data binding and the ADF
Controller, then instead of using standard JSF navigation rules, you
use task flows. For more information, see the "Getting Started With
ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Best Practice: The ADF Controller extends the JSF default controller.
While you can technically use the JSF controller and ADF Controller in
your application, you should use only one or the other.

http://java.sun.com
http://www.oracle.com/technetwork/java/index.html

Defining Page Flows

2-6 Web User Interface Developer's Guide for Oracle Application Development Framework

To create a page flow:
1. In the Application Navigator, double-click the faces-config.xml file for your

application. By default, this is in the Web Content/WEB-INF node.

2. In the editor window, click the Diagram tab to open the navigation diagrammer.

3. If the Component Palette is not displayed, from the main menu choose View >
Component Palette. By default, the Component Palette is displayed in the upper
right-hand corner of JDeveloper.

4. In the Component Palette, use the dropdown menu to choose JSF Diagram
Objects.

The components are contained in two accordion panels: Components and
Diagram Annotations. Figure 2–3 shows the Component Palette displaying JSF
navigation components.

Figure 2–3 Component Palette in JDeveloper

5. Select the component you wish to use and drag it onto the diagram.

JDeveloper redraws the diagram with the newly added component.

Once the navigation for your application is defined, you can create the pages and add
the components that will execute the navigation. For more information about using
navigation components on a page, see Chapter 18, "Working with Navigation
Components."

Note: The diagrammer supports only pages created as JSP and JSPX
files. If you need to create navigation for XHTML pages, you must
code the XML manually.

Tip: You can also use the overview editor to create navigation rules
and navigation cases by clicking the Overview tab. Press F1 for details
on using the overview editor to create navigation.

Additionally, you can manually add elements to the
faces-config.xml file by directly editing the page in the source
editor. To view the file in the source editor, click the Source tab.

Creating a View Page

Getting Started with ADF Faces 2-7

2.3.2 What Happens When You Use the Diagrammer to Create a Page Flow
When you use the diagrammer to create a page flow, JDeveloper creates the associated
XML entries in the faces-config.xml file. Example 2–2 shows the XML generated for
the navigation rules displayed in Figure 2–2.

Example 2–2 Navigation Rules in faces-config.xml

<navigation-rule>
 <from-view-id>/DisplayCustomer.jspx</from-view-id>
 <navigation-case>
 <from-outcome>edit</from-outcome>
 <to-view-id>/EditCustomer.jspx</to-view-id>
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/EditCustomer</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/DisplayCustomer</to-view-id>
 </navigation-case>
</navigation-rule>

2.4 Creating a View Page
From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSP files. When you create a JSP for an ADF Faces
application, you can choose to create an XML-based JSP document (which uses the
extension *.jspx) rather than a *.jsp file.

If you want to use Facelets instead of JSP in your application, you can instead create
XHTML files. Facelets is a JSF-centric declarative XML view definition technology that
provides an alternative to using the JSP engine.

ADF Faces provides a number of components that you can use to define the overall
layout of a page. JDeveloper contains predefined quick start layouts that use these
components to provide you with a quick and easy way to correctly build the layout.

Best Practice: Using an XML-based document has the following
advantages:

■ It simplifies treating your page as a well-formed tree of UI
component tags.

■ It discourages you from mixing Java code and component tags.

■ It allows you to easily parse the page to create documentation or
audit reports.

Best Practice: Use Facelets to take advantage of the following:

■ The Facelets layer was created specifically for JSF, which results in
reduced overhead and improved performance during tag
compilation and execution.

■ Facelets is considered the primary view definition technology in
JSF 2.0.

■ Some future performance enhancements will only be available
with Facelets

Creating a View Page

2-8 Web User Interface Developer's Guide for Oracle Application Development Framework

You can choose from one, two, or three column layouts, and then determine how you
want the columns to behave. For example, you may want one column’s width to be
locked, while another column stretches to fill available browser space. Figure 2–4
shows the quick start layouts available for a two-column layout with the second
column split between two panes. For more information about the layout components,
see Chapter 8, "Organizing Content on Web Pages."

Figure 2–4 Quick Layouts

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Appendix E,
"Quick Start Layout Themes." For more information about themes, see Section 20.3.4,
"How to Apply Themes to Components."

When you know you want to use the same layout on many pages in your application,
ADF Faces allows you to create and use predefined page templates. When creating
templates, the template developer can not only determine the layout of any page that
will use the template (either by selecting a quick layout design, as shown in
Figure 2–4, or by building it manually) but can also provide static content that must
appear on all pages, as well as create placeholder attributes that can be replaced with
valid values for each individual page. For example, ADF Faces ships with the Oracle
Three-Column-Layout template. This template provides areas for specific content,
such as branding, a header, and copyright information, and also displays a static logo
and busy icon, as shown in Figure 2–5.

Creating a View Page

Getting Started with ADF Faces 2-9

Figure 2–5 Oracle Three Column Layout Template

Whenever a template is changed, for example if the layout changes, any page that uses
the template will also be automatically updated. For more information about creating
and using templates, see Section 19.3, "Using Page Templates."

At the time you create a JSF page, you can also choose to create an associated backing
bean for the page. Backing beans allow you to access the components on the page
programmatically. For more information about using backing beans with JSF JSP
pages, see Section 2.4.3, "What You May Need to Know About Automatic Component
Binding."

You can also choose to have your page available for display in mobile devices. Once
your page files are created, you can add UI components and work with the page
source.

2.4.1 How to Create JSF JSP Pages
You create JSF JSP pages using the Create JSF Page dialog.

To create a JSF JSP page:
1. In the Application Navigator, right-click the directory where you would like the

page to be saved, and choose New. In the New Gallery, expand the Web Tier
node, select JSF and then JSF Page, and click OK.

OR

From a navigation diagram, double-click a page icon for a page that has not yet
been created.

Best Practice: Create backing beans only for pages that contain
components that must be accessed and manipulated
programmatically. Use managed beans instead if you need only to
provide additional functionality accessed through EL expressions on
component attributes (such as listeners).

Creating a View Page

2-10 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Complete the Create JSF Page dialog. For help, click Help in the dialog. For more
information about the Page Implementation option, which can be used to
automatically create a backing bean and associated bindings, see Section 2.4.3,
"What You May Need to Know About Automatic Component Binding."

2.4.2 What Happens When You Create a JSF JSP Page
When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates the
physical file and adds the code necessary to import the component libraries and
display a page. The code created depends on whether or not you chose to create a
.jspx document. Example 2–3 shows a .jspx page when it is first created by
JDeveloper.

Example 2–3 Declarative Page Source Created by JDeveloper

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document id="d1">
 <af:form id="f1"></af:form>
 </af:document>
 </f:view>
</jsp:root>

If you chose to use one of the quick layouts, then JDeveloper also adds the components
necessary to display the layout. Example 2–4 shows the generated code when you
choose a two-column layout, where the first column is locked and the second column
stretches to fill up available browser space, and you also choose to apply themes.

Example 2–4 Two-Column Layout

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout startWidth="100px" id="psl1">
 <f:facet name="start"/>
 <f:facet name="center">
 <!-- id="af_twocol_left_sidebar_stretched" -->
 <af:decorativeBox theme="dark" id="db2">
 <f:facet name="center">
 <af:decorativeBox theme="medium" id="db1">
 <f:facet name="center"/>
 </af:decorativeBox>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>

Creating a View Page

Getting Started with ADF Faces 2-11

 </af:document>
 </f:view>
</jsp:root>

If you chose to automatically create a backing bean using the Page Implementation
section of the dialog, JDeveloper also creates and registers a backing bean for the page,
and binds any existing components to the bean. Example 2–5 shows the code created
for a backing bean for a page.

Example 2–5 Declarative Backing Bean Source Created by JDeveloper

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;

public class MyFile {
 private RichForm f1;
 private RichDocument d1;

 public void setF1(RichForm f1) {
 this.f1 = f1;
 }

 public RichForm getF1() {
 return f1;
 }

 public void setD1(RichDocument d1) {
 this.document1 = d1;
 }

 public RichDocument getD1() {
 return d1;
 }
}

Additionally, JDeveloper adds the following libraries to the view project:

■ ADF Faces Runtime 11

■ ADF Common Runtime

■ ADF DVT Faces Runtime

■ Oracle JEWT

■ ADF DVT Faces Databinding Runtime

JDeveloper also adds entries to the web.xml file, as shown in Example 2–6.

Example 2–6 Code in the web.xml File After a JSF JSP Page is Created

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

Tip: You can access the backing bean source from the JSF page by
right-clicking the page in the editor, and choosing Go to and then
selecting the bean from the list.

Creating a View Page

2-12 Web User Interface Developer's Guide for Oracle Application Development Framework

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
 <param-value>false</param-value>
 </context-param>
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>
 org.apache.myfaces.trinidad.webapp.ResourceServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.graph.GraphServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.gauge.GaugeServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MapProxyServlet</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.geoMap.servlet.MapProxyServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>GatewayServlet</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.graph.FlashBridgeServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>

Creating a View Page

Getting Started with ADF Faces 2-13

 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <url-pattern>/servlet/GraphServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <url-pattern>/servlet/GaugeServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MapProxyServlet</servlet-name>
 <url-pattern>/mapproxy/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/bi/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>GatewayServlet</servlet-name>
 <url-pattern>/flashbridge/*</url-pattern>
 </servlet-mapping>
</web-app>

In the faces-config.xml file, when you create a JSF JSP page, JDeveloper creates an
entry that defines the default render kit (used to display the components in an HTML
client) for ADF Faces, as shown in Example 2–7.

Example 2–7 Generated faces-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

An entry in the trinidad-config.xml file defines the default skin used by the user
interface (UI) components in the application, as shown in Example 2–8.

Example 2–8 Generated trinidad-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>skyros</skin-family>
 <skin-version>v1</skin-version>
</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. You can also view the source for the page in the source editor

Creating a View Page

2-14 Web User Interface Developer's Guide for Oracle Application Development Framework

by clicking the Source tab. The Structure window located in the lower left-hand corner
of JDeveloper, provides a hierarchical view of the page.

2.4.3 What You May Need to Know About Automatic Component Binding
Backing beans are managed beans that contain logic and properties for UI components
on a JSF page (for more information about managed beans, see Section 2.6, "Creating
and Using Managed Beans"). If when you create your JSF JSP page you choose to
automatically expose UI components by selecting one of the choices in the Page
Implementation option of the Create JSF Page dialog, JDeveloper automatically creates
a backing bean (or uses a managed bean of your choice) for the page. For each
component you add to the page, JDeveloper then inserts a bean property for that
component, and uses the binding attribute to bind component instances to those
properties, allowing the bean to accept and return component instances.

Specifically, JDeveloper does the following when you use automatic component
binding:

■ Creates a JavaBean using the same name as the JSP or JSPX file, and places it in the
view.backing package (if you elect to have JDeveloper create a backing bean).

■ Creates a managed bean entry in the faces-config.xml file for the backing bean.
By default, the managed bean name is backing_<page_name> and the bean uses
the request scope (for more information about scopes, see Section 4.6, "Object
Scope Lifecycles").

■ On the newly created or selected bean, adds a property and accessor methods for
each component tag you place on the JSP. JDeveloper binds the component tag to
that property using an EL expression as the value for its binding attribute.

■ Deletes properties and methods for any components deleted from the page.

Once the JSP is created and components added, you can then declaratively add
method binding expressions to components that use them by double-clicking the
component in the visual editor, which launches an editor that allows you to select the
managed bean and method to which you want to bind the attribute. When automatic
component binding is used on a JSP and you double-click the component, skeleton
methods to which the component may be bound are automatically created for you in
the page’s backing bean. For example, if you add a command button component and
then double-click it in the visual editor, the Bind Action Property dialog displays the
page’s backing bean along with a new skeleton action method, as shown in Figure 2–6.

Note: JDeveloper does not create managed bean property entries in
the faces-config.xml file. If you wish the bean to be instantiated with
certain property values, you must perform this configuration in the
faces-config.xml file manually. For more information, see
Section A.3.1, "How to Configure for ADF Faces in faces-config.xml."

Creating a View Page

Getting Started with ADF Faces 2-15

Figure 2–6 Bind Action Property Dialog

You can select from one these methods, or if you enter a new method name,
JDeveloper automatically creates the new skeleton method in the page's backing bean.
You must then add the logic to the method.

For example, suppose you created a JSP with the file name myfile.jspx. If you chose
to let JDeveloper automatically create a default backing bean, then JDeveloper creates
the backing bean as view.backing.MyFile.java, and places it in the \src directory of
the ViewController project. The backing bean is configured as a managed bean in the
faces-config.xml file, and the default managed bean name is backing_myfile.

Example 2–9 shows the code on a JSP that uses automatic component binding, and
contains form, inputText, and commandButton components.

Example 2–9 JSF Page Code with Automatic Component Binding

<f:view>
 <af:document id="d1" binding="#{backing_myfile.d1}">
 <af:form id="f1" binding="#{backing_myfile.f1}">
 <af:inputText label="Label 1" binding="#{backing_MyFile.inputText1}"
 id="inputText1"/>
 <af:commandButton text="commandButton 1"
 binding="#{backing_MyFile.cb1}"
 id="cb1"/>
 </af:form>
 </af:document>
</f:view>

Example 2–10 shows the corresponding code on the backing bean.

Example 2–10 Backing Bean Code Using Automatic Component Binding

package view.backing;

import oracle.adf.view.rich.component.rich.RichDocument;
import oracle.adf.view.rich.component.rich.RichForm;
import oracle.adf.view.rich.component.rich.input.RichInputText;
import oracle.adf.view.rich.component.rich.nav.RichCommandButton;

public class MyFile {
 private RichForm f1;
 private RichDocument d1;
 private RichInputText inputText1;

Note: When automatic component binding is not used on a JSP, you
must select an existing managed bean or create a new backing bean to
create the binding.

Creating a View Page

2-16 Web User Interface Developer's Guide for Oracle Application Development Framework

 private RichCommandButton cb1;

 public void setForm1(RichForm f1) {
 this.form1 = f1;
 }

 public RichForm getF1() {
 return f1;
 }

 public void setD1(RichDocument d1) {
 this.d1 = d1;
 }

 public RichDocument getD1() {
 return d1;
 }

 public void setIt1(RichInputText inputText1) {
 this.inputText1 = inputText1;
 }

 public RichInputText getInputText1() {
 return inputText1;
 }

 public void setCb1(RichCommandButton cb1) {
 this.commandButton1 = commandButton1;
 }

 public RichCommandButton getCb1() {
 return cb1;
 }

 public String cb1_action() {
 // Add event code here...
 return null;
 }
}

Example 2–11 shows the code added to the faces-config.xml file to register the
page’s backing bean as a managed bean.

Example 2–11 Registration for a Backing Bean

<managed-bean>
 <managed-bean-name>backing_MyFile</managed-bean-name>
 <managed-bean-class>view.backing.MyFile</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

In addition, when you edit a Java file that is a backing bean for a JSP, a method binding
toolbar appears in the source editor for you to bind appropriate methods quickly and
easily to selected components in the page. When you select an event, JDeveloper
creates the skeleton method for the event, as shown in Figure 2–7.

Creating a View Page

Getting Started with ADF Faces 2-17

Figure 2–7 You Can Declaratively Create Skeleton Methods in the Source Editor

Once you create a page, you can turn automatic component binding off or on, and you
can also change the backing bean to a different Java class. Open the JSP in the visual
Editor and from the JDeveloper menu, choose Design > Page Properties. Here you can
select or deselect the Auto Bind option, and change the managed bean class. Click
Help for more information about using the dialog.

You can always access the backing bean for a JSP from the page editor by right-clicking
the page, choosing Go to, and then choosing the bean from the list of beans associated
with the JSP.

2.4.4 How to Create a Facelets XHTML Page
You use the Create Facelets Page dialog to create the XHTML file.

To create an XHTML page:
1. In the Application Navigator, right-click the directory where you would like the

page to be saved, and choose New. In the New Gallery, expand the Web Tier
node, select Facelets and then Facelets Page and click OK.

Note: If you turn automatic binding off, nothing changes in the
binding attributes of existing bound components in the page. If you
turn automatic binding on, all existing bound components and any
new components that you insert are bound to the selected managed
bean. If automatic binding is on and you change the managed bean
selection, all existing bindings and new bindings are switched to the
new bean.

Tip: Click the All Technologies tab in the New Gallery if Facelets is
not a listed technology.

Creating a View Page

2-18 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Complete the Create Facelets Page dialog. For help, click Help in the dialog.

2.4.5 What Happens When You Create a JSF XHTML Page
When you use the Create Facelets Page dialog to create an XHTML page, JDeveloper
creates the physical file and adds the code necessary to import the component libraries
and display a page. Example 2–3 shows an .xthml page when it is first created by
JDeveloper.

Example 2–12 Declarative Page Source Created by JDeveloper

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EE"
 "http://www.w3.org/TR/xhtml1/DTD/xhtall-transitional.dtd">
<f:view xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:document>
 <af:form/>
 </af:document>
</f:view>

Additionally, JDeveloper adds the following libraries to the view project:

■ Facelets Runtime

■ ADF Faces Runtime 11

■ ADF Common Runtime

■ ADF DVT Faces Runtime

■ Oracle JEWT

■ ADF DVT Faces Databinding Runtime

JDeveloper also adds entries to the web.xml file, as shown in Example 2–13.

Example 2–13 Code in the web.xml File After a JSF XHTML Page is Created

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <param-name>org.apache.myfaces.trinidad.FACELETS_VIEW_MAPPINGS</param-name>
 <param-value>*.xhtml</param-value>
 </context-param>
 <context-param>

Creating a View Page

Getting Started with ADF Faces 2-19

 <param-name>facelets.SKIP_XML_INSTRUCTIONS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>org.apache.myfaces.trinidad.ALTERNATE_VIEW_HANDLER</param-name>
 <param-value>
 org.apache.myfaces.trinidadinternal.facelets.TrinidadFaceletViewHandler
 </param-value>
 </context-param>
 <context-param>
 <param-name>facelets.DEVELOPMENT</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>facelets.SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>facelets.DECORATORS</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfTagDecorator
 </param-value>
 </context-param>
 <context-param>
 <param-name>facelets.RESOURCE_RESOLVER</param-name>
 <param-value>
 oracle.adfinternal.view.faces.facelets.rich.AdfFaceletsResourceResolver
 </param-value>
 </context-param>
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>resources</servlet-name>
 <servlet-class>
 org.apache.myfaces.trinidad.webapp.ResourceServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.graph.GraphServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.gauge.GaugeServlet

Creating a View Page

2-20 Web User Interface Developer's Guide for Oracle Application Development Framework

 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MapProxyServlet</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.geoMap.servlet.MapProxyServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>GatewayServlet</servlet-name>
 <servlet-class>
 oracle.adfinternal.view.faces.bi.renderkit.graph.FlashBridgeServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGRAPHSERVLET</servlet-name>
 <url-pattern>/servlet/GraphServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>BIGAUGESERVLET</servlet-name>
 <url-pattern>/servlet/GaugeServlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MapProxyServlet</servlet-name>
 <url-pattern>/mapproxy/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/bi/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>GatewayServlet</servlet-name>
 <url-pattern>/flashbridge/*</url-pattern>
 </servlet-mapping>
</web-app>

An entry is also created in the faces-config.xml file for the view handler, as shown in
Example 2–14.

Example 2–14 Generated faces-config.xml File for an XHTML Page

<?xml version="1.0" encoding="UTF-8"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

Creating a View Page

Getting Started with ADF Faces 2-21

An entry in the trinidad-config.xml file defines the default skin used by the user
interface (UI) components in the application, as shown in Example 2–15.

Example 2–15 Generated trinidad-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>skyros</skin-family>
 <skin-version>v1</skin-version>
</trinidad-config>

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. You can also view the source for the page in the source editor
by clicking the Source tab. The Structure window located in the lower left-hand corner
of JDeveloper, provides a hierarchical view of the page.

2.4.6 How to Add ADF Faces Components to JSF Pages
Once you have created a page, you can use the Component Palette to drag and drop
components onto the page. JDeveloper then declaratively adds the necessary page
code and sets certain values for component attributes.

To add ADF Faces components to a page:
1. In the Application Navigator, double click a JSF page to open it in the editor.

2. If the Component Palette is not displayed, from the menu choose View >
Component Palette. By default, the Component Palette is displayed in the upper
right-hand corner of JDeveloper.

3. In the Component Palette, use the dropdown menu to choose ADF Faces.

The components are contained in three accordion panels: Common Components,
Layout, and Operations. Figure 2–8 shows the Component Palette displaying the
Common Components for ADF Faces.

Tip: For detailed procedures and information about adding and
using specific ADF Faces components, see Part III, "Using ADF Faces
Components".

Note: You cannot use ADF Faces components on the same page as
MyFaces Trinidad components (tr: tags) or other AJAX-enabled
library components. You can use Trinidad HTML tags (trh:) on the
same page as ADF Faces components, however you may experience
some browser layout issues. You should always attempt to use only
ADF Faces components to achieve your layout.

Note that your application may contain a mix of pages built using
either ADF Faces or other components.

Creating a View Page

2-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 2–8 Component Palette in JDeveloper

4. Select the component you wish to use and drag it onto the page.

JDeveloper redraws the page in the visual editor with the newly added
component. In the visual editor, you can directly select components on the page
and use the resulting context menu to add more components. Figure 2–9 shows a
page in the visual editor.

Creating a View Page

Getting Started with ADF Faces 2-23

Figure 2–9 Page Displayed in the Visual Editor

2.4.7 What Happens When You Add Components to a Page
When you drag and drop components from the Component Palette onto a JSF page,
JDeveloper adds the corresponding code to the JSF page. This code includes the tag
necessary to render the component, as well as values for some of the component
attributes. Example 2–16 shows the code when you drop an Input Text and a Button
component from the palette.

Example 2–16 JDeveloper Declaratively Adds Tags to a JSF Page

<af:inputText label="Label 1" id="it1"/>
<af:commandButton text="commandButton 1" id="cb"/>

When you drop a component that contains mandatory child components (for example
a table or a list), JDeveloper launches a wizard where you define the parent and also
each of the child components. Figure 2–10 shows the Table wizard used to create a
table component and the table’s child column components.

Tip: You can also drag and drop components from the palette into
the Structure window or directly into the code in the source editor.

You can always add components by directly editing the page in the
source editor. To view the page in the source editor, click the Source
tab at the bottom of the window.

Note: If you chose to use automatic component binding, then
JDeveloper also adds the binding attribute with its value bound to the
corresponding property on the page’s backing bean. For more
information, see Section 2.4.3, "What You May Need to Know About
Automatic Component Binding."

Creating a View Page

2-24 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 2–10 Table Wizard in JDeveloper

Example 2–17 shows the code created when you use the wizard to create a table with
three columns, each of which uses an outputText component to display data.

Example 2–17 Declarative Code for a Table Component

<af:table var="row" id="t1">
 <af:column sortable="false" headerText="col1" id="c1">
 <af:outputText value="#{row.col1}" id="ot1"/>
 </af:column>
 <af:column sortable="false" headerText="col2" id="c2">
 <af:outputText value="#{row.col2}" id="ot2"/>
 </af:column>
 <af:column sortable="false" headerText="col3" id="c3">
 <af:outputText value="#{row.col3}" id="ot3"/>
 </af:column>
</af:table>

2.4.8 How to Set Component Attributes
Once you drop components onto a page you can use the Property Inspector (displayed
by default at the bottom right of JDeveloper) to set attribute values for each
component.

Figure 2–11 shows the Property Inspector displaying the attributes for an inputText
component.

Tip: If the Property Inspector is not displayed, choose View >
Property Inspector from the main menu.

Creating a View Page

Getting Started with ADF Faces 2-25

Figure 2–11 JDeveloper Property Inspector

The Property Inspector has sections that group similar properties together. For
example, the Property Inspector groups commonly used attributes for the inputText
component in the Common section, while properties that affect how the component
behaves are grouped together in the Behavior section. Figure 2–12 shows the Behavior
section of the Property Inspector for an inputText component.

Figure 2–12 Behavior Section of the Property Inspector

To set component attributes:
1. Select the component, in the visual editor, in the Structure window, or by selecting

the tag directly in the source editor.

2. In the Property Inspector, expand the section that contains the attribute you wish
to set.

3. Either enter values directly into the fields, or if the field contains a dropdown list,
use that list to select a value. You can also use the dropdown to the right of the
field, which launches a popup containing tools you can use to set the value. These
tools are either specific property editors (opened by choosing Edit) or the
Expression Builder, which you can use to create EL expressions for the value
(opened by choosing Expression Builder). For more information about using the

Tip: Some attributes are displayed in more than one section.
Entering or changing the value in one section will also change it in
any other sections. You can search for an attribute by entering the
attribute name in the search field at the top of the inspector.

Creating EL Expressions

2-26 Web User Interface Developer's Guide for Oracle Application Development Framework

Expression Builder, see Section 2.5, "Creating EL Expressions." This popup also
displays a description of the property, as shown in Figure 2–13.

Figure 2–13 Property Tools and Help

2.4.9 What Happens When You Use the Property Inspector
When you use the Property Inspector to set or change attribute values, JDeveloper
automatically changes the page source for the attribute to match the entered value.

2.5 Creating EL Expressions
You use EL expressions throughout an ADF Faces application to bind attributes to
object values determined at runtime. For example, #{UserList.selectedUsers} might
reference a set of selected users, #{user.name} might reference a particular user's
name, while #{user.role == 'manager'} would evaluate whether a user is a manager
or not. At runtime, a generic expression evaluator returns the List, String, and
boolean values of these respective expressions, automating access to the individual
objects and their properties without requiring code.

At runtime, the value of certain JSF UI components (such as an inputText component
or an outputText component) is determined by its value attribute. While a component
can have static text as its value, typically the value attribute will contain an EL
expression that the runtime infrastructure evaluates to determine what data to display.
For example, an outputText component that displays the name of the currently
logged-in user might have its value attribute set to the expression #{UserInfo.name}.
Since any attribute of a component (and not just the value attribute) can be assigned a
value using an EL expression, it's easy to build dynamic, data-driven user interfaces.
For example, you could hide a component when a set of objects you need to display is
empty by using a boolean-valued expression like #{not empty
UserList.selectedUsers} in the UI component's rendered attribute. If the list of
selected users in the object named UserList is empty, the rendered attribute evaluates
to false and the component disappears from the page.

In a typical JSF application, you would create objects like UserList as a managed bean.
The JSF runtime manages instantiating these beans on demand when any EL

Tip: You can always change attribute values by directly editing the
page in the source editor. To view the page in the source editor, click
the Source tab at the bottom of the window.

Creating EL Expressions

Getting Started with ADF Faces 2-27

expression references them for the first time. When displaying a value, the runtime
evaluates the EL expression and pulls the value from the managed bean to populate
the component with data when the page is displayed. If the user updates data in the
UI component, the JSF runtime pushes the value back into the corresponding managed
bean based on the same EL expression. For more information about creating and using
managed beans, see Section 2.6, "Creating and Using Managed Beans." For more
information about EL expressions, see the Java EE 5 tutorial at
http://www.oracle.com/technetwork/java/index.html.

2.5.1 How to Create an EL Expression
You can create EL expressions declaratively using the JDeveloper Expression Builder.
You can access the builder from the Property Inspector.

To use the Expression Builder:
1. In the Property Inspector, locate the attribute you wish to modify and use the right

most dropdown menu to choose Expression Builder.

2. Create expressions using the following features:

■ Use the Variables tree to select items that you want to include in the
expression. The tree contains a hierarchical representation of the binding
objects. Each icon in the tree represents various types of binding objects that
you can use in an expression.

To narrow down the tree, you can either use the dropdown filter or enter
search criteria in the search field. The EL accessible objects exposed by ADF
Faces are located under the adfFacesContext node, which is under the JSF
Managed Beans node, as shown in Figure 2–14.

Figure 2–14 adfFacesContext Objects in the Expression Builder

http://java.sun.com

Creating EL Expressions

2-28 Web User Interface Developer's Guide for Oracle Application Development Framework

Selecting an item in the tree causes it to be moved to the Expression box
within an EL expression. You can also type the expression directly in the
Expression box.

■ Use the operator buttons to add logical or mathematical operators to the
expression.

Figure 2–15 shows the Expression Builder dialog being used to create an
expression that binds to the value of a label for a component to the label property
of the explorer managed bean.

Figure 2–15 The Expression Builder Dialog

2.5.2 How to Use EL Expressions Within Managed Beans
While JDeveloper creates many needed EL expressions for you, and you can use the
Expression Builder to create those not built for you, there may be times when you need
to access, set, or invoke EL expressions within a managed bean.

Example 2–18 shows how you can get a reference to an EL expression and return (or
create) the matching object.

Example 2–18 Resolving an EL Expression from a Managed Bean

public static Object resolveExpression(String expression) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =

Tip: For more information about these objects, see the ADF Faces
Javadoc.

Creating and Using Managed Beans

Getting Started with ADF Faces 2-29

 elFactory.createValueExpression(elContext, expression,
 Object.class);
 return valueExp.getValue(elContext);
 }

Example 2–19 shows how you can resolve a method expression.

Example 2–19 Resolving a Method Expression from a Managed Bean

public static Object resloveMethodExpression(String expression,
 Class returnType,
 Class[] argTypes,
 Object[] argValues) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 MethodExpression methodExpression =
 elFactory.createMethodExpression(elContext, expression, returnType,
 argTypes);
 return methodExpression.invoke(elContext, argValues);
 }

Example 2–20 shows how you can set a new object on a managed bean.

Example 2–20 Setting a New Object on a Managed Bean

public static void setObject(String expression, Object newValue) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression,
 Object.class);

 //Check that the input newValue can be cast to the property type
 //expected by the managed bean.
 //Rely on Auto-Unboxing if the managed Bean expects a primitive
 Class bindClass = valueExp.getType(elContext);
 if (bindClass.isPrimitive() || bindClass.isInstance(newValue)) {
 valueExp.setValue(elContext, newValue);
 }
}

2.6 Creating and Using Managed Beans
Managed beans are Java classes that you register with the application using various
configuration files. When the JSF application starts up, it parses these configuration
files and the beans are made available and can be referenced in an EL expression,
allowing access to the beans’ properties and methods. Whenever a managed bean is
referenced for the first time and it does not already exist, the Managed Bean Creation
Facility instantiates the bean by calling the default constructor method on the bean. If
any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how managed beans are
used in a standard JSF application, see the Java EE 5 tutorial at
http://www.oracle.com/technetwork/java/index.html.

http://java.sun.com
http://java.sun.com
http://java.sun.com

Creating and Using Managed Beans

2-30 Web User Interface Developer's Guide for Oracle Application Development Framework

In a standard JSF application, managed beans are registered in the faces-config.xml
configuration file.

2.6.1 How to Create a Managed Bean in JDeveloper
You can create a managed bean and register it with the JSF application at the same
time using the overview editor for the faces-config.xml file.

To create and register a managed bean:
1. In the Application Navigator, open the faces-config.xml file.

2. In the editor window, click the Overview tab.

3. In the overview editor, click the Managed Beans tab.

Figure 2–16 shows the editor for the faces-config.xml file used by the ADF Faces
demo that contains the File Explorer application.

Figure 2–16 Managed Beans in the faces-config.xml File

4. Click the Add icon to add a row to the Managed Bean table.

5. In the Create Managed Bean dialog, enter values. Click Help for more information
about using the dialog. Select the Generate Class If It Does Not Exist option if
you want JDeveloper to create the class file for you.

Best Practice: Use managed beans to store only bookkeeping
information, for example the current user. All application data and
processing should be handled by logic in the business layer of the
application.

Note: If you plan on using ADF Model data binding and ADF
Controller, then instead of registering managed beans in the
faces-config.xml file, you may need to register them within ADF
task flows. For more information, refer to the "Using a Managed Bean
in a Fusion Web Application" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Creating and Using Managed Beans

Getting Started with ADF Faces 2-31

6. You can optionally add managed properties for the bean. When the bean is
instantiated, any managed properties will be set with the provided value. With the
bean selected in the Managed Bean table, click the New icon to add a row to the
Managed Properties table. In the Property Inspector, enter a property name (other
fields are optional).

2.6.2 What Happens When You Use JDeveloper to Create a Managed Bean
When you create a managed bean and elect to generate the Java file, JDeveloper
creates a stub class with the given name and a default constructor. Example 2–21
shows the code added to the MyBean class stored in the view package.

Example 2–21 Generated Code for a Managed Bean

package view;

public class MyBean {
 public MyBean() {
 }
}

You now must add the logic required by your page. You can then refer to that logic
using an EL expression that refers to the managed-bean-name given to the managed
bean. For example, to access the myInfo property on the my_bean managed bean, the
EL expression would be:

Note: When determining what scope to register a managed bean
with or to store a value in, keep the following in mind:

■ Always try to use the narrowest scope possible.

■ If your managed bean takes part in component binding by
accepting and returning component instances (that is, if UI
components on the page use the binding attribute to bind to
component properties on the bean), then the managed bean must
be stored in request or backingBean scope. If it can’t be stored in
one of those scopes (for example, if it needs to be stored in
session scope for high availability reasons), then you need to use
the ComponentReference API. For more information, see
Section 2.6.3, "What You May Need to Know About Component
Bindings and Managed Beans."

■ Use the session scope only for information that is relevant to the
whole session, such as user or context information, or for
high-availability reasons. Avoid using the session scope to pass
values from one page to another.

For more information about the different object scopes, see Section 4.6,
"Object Scope Lifecycles."

Note: While you can declare managed properties using this editor,
the corresponding code is not generated on the Java class. You must
add that code by creating private member fields of the appropriate
type, and then by choosing the Generate Accessors menu item on the
context menu of the code editor to generate the corresponding get
and set methods for these bean properties.

Creating and Using Managed Beans

2-32 Web User Interface Developer's Guide for Oracle Application Development Framework

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the faces-config.xml file.
Example 2–22 shows the managed-bean element created for the MyBean class.

Example 2–22 Managed Bean Configuration on the faces-config.xml File

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

2.6.3 What You May Need to Know About Component Bindings and Managed Beans
To avoid issues with managed beans, if your bean needs to use component binding
(through the binding attribute on the component), you must store the bean in request
scope. (If your application uses the Fusion technology stack, then you must store it in
backingBean scope. For more information, see the "Using a Managed Bean in a Fusion
Web Application" section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.) However, there may be circumstances
where you can’t store the bean in request or backingBean scope. For example, there
may be managed beans that are stored in session scope so that they can be deployed
in a clustered environment, and therefore must implement the Serializable interface.
When they are serializable, managed beans that change during a request can be
distributed to other servers for fail-over. However, ADF Faces components (and JSF
components in general) are not serializable. So if a serialized managed bean attempts
to access a component using component binding, the bean will fail serialization
because the referenced component cannot be serialized. There are also thread safety
issues with components bound to serialized managed beans because ADF Faces
components are not thread safe.

When you need to store a component reference to a UI component instance in a
backing bean that is not using request or backingBean scope, you should store a
reference to the component instance using the Trinidad ComponentReference API. The
UIComponentReference.newUIComponentReference() method creates a serializable
reference object that can be used to retrieve a UIComponent instance on the current
page. Example 2–23 shows how a managed bean might use the UIComponentReference
API to get and set values for a search field.

Example 2–23 Session Scoped Managed Bean Uses the UIComponentReference API

...
private ComponentReference<RichInputText> searchField;
...
public void setSearchField(RichInputText searchField)
{
 if(this.searchField == null)
 this.searchField = ComponentReference.newUIComponentReference(searchField);
}

public RichInputText getSearchField()
{
 return searchField ==null ? null : searchField.getComponent();
}
....

Viewing ADF Faces Source Code and Javadoc

Getting Started with ADF Faces 2-33

Keep the following in mind when using the UIComponentReference API:

■ The API is thread safe as long as it is called on the request thread.

■ The ADF Faces component being passed in must have an ID.

■ The reference will break if the component is moved between naming containers or
if the ID on any of the ancestor naming containers has changed.

For more information about the UIComponentReference API, see the Trinidad JavaDoc.

2.7 Viewing ADF Faces Source Code and Javadoc
You can view the ADF Faces Javadoc directly from JDeveloper.

To view Javadoc for a class:
1. From the main menu, choose Navigate > Go to Javadoc.

2. In the Go to Javadoc dialog, enter the class name you want to view. If you don’t
know the exact name, you can either begin to type the name and JDeveloper will
provide a list of classes that match the name. ADF Faces components are in the
oracle.adf.view.rich package.

Tip: When in a Java class file, you can go directly to the Javadoc for a
class name reference or for a JavaScript function call by placing your
cursor on the name or function and pressing Ctrl+D.

Viewing ADF Faces Source Code and Javadoc

2-34 Web User Interface Developer's Guide for Oracle Application Development Framework

Part II
Part II Understanding ADF Faces Architecture

Part II contains the following chapters:

■ Chapter 3, "Using ADF Faces Architecture"

■ Chapter 4, "Using the JSF Lifecycle with ADF Faces"

■ Chapter 5, "Handling Events"

■ Chapter 6, "Validating and Converting Input"

■ Chapter 7, "Rerendering Partial Page Content"

3

Using ADF Faces Architecture 3-1

3 Using ADF Faces Architecture

This chapter outlines the major features of the ADF Faces client-side architecture.

This chapter includes the following sections:

■ Section 3.1, "Introduction to Using ADF Faces Architecture"

■ Section 3.2, "Listening for Client Events"

■ Section 3.3, "Adding JavaScript to a Page"

■ Section 3.4, "Instantiating Client-Side Components"

■ Section 3.5, "Locating a Client Component on a Page"

■ Section 3.6, "Determining the User’s Current Location"

■ Section 3.7, "Accessing Component Properties on the Client"

■ Section 3.8, "Using Bonus Attributes for Client-Side Components"

■ Section 3.9, "Understanding Rendering and Visibility"

3.1 Introduction to Using ADF Faces Architecture
The ADF Faces rich client framework (RCF) provides many of the features you need to
create AJAX-type functionality in your web application, all built into the framework. A
key aspect of the RCF is the sparsely populated client-side component model. Client
components exist only when they are required, either due to having a clientListener
handler registered on them, or because the page developer needs to interact with a
component on the client side and has specifically configured the client component to
be available.

The main reason client components exist is to provide an API contract for the
framework and for developers. You can think of a client-side component as a simple
property container with support for event handling. Because client components exist
only to store state and provide an API, they have no direct interaction with the DOM
(document object model) whatsoever. All DOM interaction goes through an
intermediary called the peer. Most of the inner workings of the framework are hidden
from you. Using JDeveloper in conjunction with ADF Faces, you can use many of the
architectural features declaratively, without having to create any code.

For example, because RCF does not create client components for every server-side
component, there may be cases where you need a client version of a component
instance. Section 3.4, "Instantiating Client-Side Components," explains how to do this
declaratively. You use the Property Inspector in JDeveloper to set properties that
determine whether a component should be rendered at all, or simply be made not
visible, as described in Section 3.9, "Understanding Rendering and Visibility."

Introduction to Using ADF Faces Architecture

3-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Other functionality may require you to use the ADF Faces JavaScript API. For
example, Section 3.5, "Locating a Client Component on a Page," explains how to use
the API to locate a specific client-side component, and Section 3.7, "Accessing
Component Properties on the Client," documents how to access specific properties.

The following RCF features are more complex, and therefore have full chapters
devoted to them:

■ ADF Faces additions to the lifecycle: The ADF Faces framework extends the JSF
lifecycle, providing additional functionality, including a client-side value lifecycle.
For more information, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."

■ Event handling: ADF Faces adheres to standard JSF event handling techniques. In
addition, the RCF provides AJAX-based rich postbacks (called partial page
rendering), as well as a client-side event model. For more information, see
Chapter 5, "Handling Events."

■ Conversion and validation: ADF Faces input components have built-in capabilities
to both convert and validate user entries. You can also create your own custom
converters and validators. For more information, see Chapter 6, "Validating and
Converting Input."

■ Partial page rendering: Partial page rendering (PPR) allows small areas of a page
to be refreshed without the need to redraw the entire page. Many ADF Faces
components have built-in PPR functionality. In addition, you can declaratively
configure PPR so that an action on one component causes a rerender of another.
For more information, see Chapter 7, "Rerendering Partial Page Content."

■ Geometry management: ADF Faces provides a number of layout components,
many of which support geometry management by automatically stretching their
contents to take up available space. For more information, see Chapter 8,
"Organizing Content on Web Pages."

■ Messaging and help: The RCF provides the ability to display tooltips, messages,
and help for input components, as well as the ability to display global messages
for the application. The help framework allows you to create messages that can be
reused throughout the application.You create a help provider using a Java class, a
managed bean, an XLIFF file, or a standard properties file, or you can link to an
external HTML-based help system. For more information, see Chapter 17,
"Displaying Tips, Messages, and Help."

■ Hierarchical menu model: ADF Faces provides navigation components that render
items such as tabs and breadcrumbs for navigating hierarchical pages. The RCF
provides an XML-based menu model that, in conjunction with a metadata file,
contains all the information for generating the appropriate number of hierarchical
levels on each page, and the navigation items that belong to each level. For more
information, see Chapter 18, "Working with Navigation Components."

■ Reusable components: The RCF provides three reusable building blocks that can
be used by multiple pages in your application: page fragments that allow you to
create a part of a page (for example an address input form); page templates that
can provide a consistent look and feel throughout your application that can be
updated with changes automatically propagating to all pages using the template;
and declarative components that are composite components that developers can
reuse, ensuring consistent behavior throughout the application. For more
information, see Chapter 19, "Creating and Reusing Fragments, Page Templates,
and Components."

■ Applying skins: The RCF allows you to create your own look and feel by creating
skins used by the ADF Faces components to change their appearance. For more

Listening for Client Events

Using ADF Faces Architecture 3-3

information, see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

■ Internationalization and localization: You can configure your JSF page or
application to use different locales so that it displays the correct language based on
the language setting of a user’s browser. For more information, see Chapter 21,
"Internationalizing and Localizing Pages."

■ Accessibility: ADF Faces components have built-in accessibility support for user
agents, for example a web browser rendering to nonvisual media such as a screen
reader or magnifier. Accessibility support also includes access keys that allow
users to access components and links using only the keyboard, and audit rules that
provide directions to create accessible images, tables, frames, forms, error
messages, and popup dialogs using accessible HTML markup. For more
information, see Chapter 22, "Developing Accessible ADF Faces Pages."

■ User-driven personalization: Many ADF Faces components, such as the
panelSplitter, allow users to change the display of the component at runtime. By
default, these changes live only as long as the page request. However, you can
configure your application so that the changes can be persisted through the length
of the user’s session. For more information, see Chapter 33, "Allowing User
Customization on JSF Pages."

■ Drag and drop capabilities: The RCF allows the user to move (cut and paste), copy
(copy and paste), or link (copy and paste as a link) data from one location to
another. When the drop is completed, the component accepting the drop rerenders
using partial page rendering. For more information, see Chapter 34, "Adding Drag
and Drop Functionality."

The remainder of this chapter focuses on working with the client-side framework.

3.2 Listening for Client Events
In a traditional JSF application, if you want to process events on the client, you must
listen to DOM-level events. However, these events are not delivered in a portable
manner. The ADF Faces client-side event model is similar to the JSF events model, but
implemented on the client. The client-side event model abstracts from the DOM,
providing a component-level event model and lifecycle, which executes independently
of the server. Consequently, you do not need to listen for click events on buttons. You
can instead listen for AdfActionEvent events, which can be caused by key or mouse
events.

Events sent by clients are all subclasses of the AdfBaseEvent class. Each client event
has a source, which is the component that triggered the event. Events also have a type
(for example, action or dialog), used to determine which listeners are interested in
the event. You register a client listener on the component using the af:clientListener
tag.

For example, suppose you have a button that, when clicked, causes a "Hello World"
alert to be displayed. You would first register a listener with the button that will
invoke an event handler, as shown in Example 3–1.

Example 3–1 Registering a Client Listener

<af:commandButton text="Say Hello">
 <af:clientListener method="sayHello" type="action"/>
</af:commandButton>

Adding JavaScript to a Page

3-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Next, implement the handler in a JavaScript function, as shown in Example 3–2.

Example 3–2 JavaScript Event Handler

function sayHello(event)
 {
 alert("Hello, world!")
 }

When the button is clicked, because there is a client version of the component, the
AdfAction client event is invoked. Because a clientListener tag is configured to
listen for the AdfAction event, it causes the sayHello function to execute. For more
information about client-side events, see Section 5.3, "Using JavaScript for ADF Faces
Client Events."

3.3 Adding JavaScript to a Page
You can either add inline JavaScript directly to a page or you can import JavaScript
libraries into a page. When you import libraries, you reduce the page content size, the
libraries can be shared across pages, and they can be cached by the browser. You
should import JavaScript libraries whenever possible. Use inline JavaScript only for
cases where a small, page-specific script is needed.

3.3.1 How to Use Inline JavaScript
Create and use inline JavaScript in the same way you would in any JSF application.
Once the JavaScript is on the page, use a clientListener tag to invoke it.

To use inline JavaScript:
1. Add the MyFaces Trinidad tag library to the root element of the page by adding

the code shown in bold in Example 3–3.

Example 3–3 MyFaces Trinidad Tag Library on a Page

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:trh="http://myfaces.apache.org/trinidad/html">

Tip: Because the button has a registered client listener, the
framework will automatically create a client version of the
component.

Performance Tip: Including JavaScript only in the pages that need it
will result in better performance because those pages that do not need
it will not have to load it, as they would if the JavaScript were
included in a template. However, if you find that most of your pages
use the same JavaScript code, you may want to consider including the
script or the tag to import the library in a template.

Note, however, that if a JavaScript code library becomes too big, you
should consider splitting it into meaningful pieces and include only
the pieces needed by the page (and not in a template). This approach
will provide improved performance, because the browser cache will
be used and the HTML content of the page will be smaller.

Adding JavaScript to a Page

Using ADF Faces Architecture 3-5

2. Create the JavaScript on the page.

For example, the sayHello function shown in Example 3–2 might be included in a
JSF page as shown in Example 3–4.

Example 3–4 Inline JavaScript

<af:resource>
 function sayHello()
 {
 alert("Hello, world!")
 }
</af:resource>

3. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

4. In the Insert Client Listener dialog, in the Method field, enter the JavaScript
function name. In the Type field, select the event type that should invoke the
function.

3.3.2 How to Import JavaScript Libraries
Use the af:resource tag to access a JavaScript library from a page. This tag should
appear inside the document tag’s metaContainer facet.

To access a JavaScript library from a page:
1. Below the document tag, add the code shown in bold in Example 3–5 and replace

/mySourceDirectory with the relative path to the directory that holds the
JavaScript library.

Example 3–5 Accessing a JavaScript Library

<af:document>
 <f:facet name="metaContainer">
 <af:resource source="/mySourceDirectory"/>
 </facet>
 <af:form></af:form>
</af:document>

2. In the Structure window, right-click the component that will invoke the JavaScript,
and choose Insert inside component > ADF Faces > Client Listener.

3. In the Insert Client Listener dialog, in the Method field, enter the fully qualified
name of the function. For example, if the sayHello function was in the MyScripts
library, you would enter MyScripts.sayHello. In the Type field, select the event
type that should invoke the function.

3.3.3 What You May Need to Know About Accessing Client Event Sources
Often when your JavaScript needs to access a client, it is within the context of a listener
and must access the event’s source component. Use the getSource() method to get the
client component. Example 3–6 shows the sayHello function accessing the source

Note: Do not use the f:verbatim tag in a page or template to specify
the JavaScript.

Instantiating Client-Side Components

3-6 Web User Interface Developer's Guide for Oracle Application Development Framework

client component in order to display its name.

Example 3–6 Accessing a Client Event Source

function sayHello(actionEvent)
{
 var component=actionEvent.getSource();

 //Get the ID for the component
 var id=component.getId

 alert("Hello from "+id);
}

For more information about accessing client event sources, see Section 5.3, "Using
JavaScript for ADF Faces Client Events." For more information about accessing
client-side properties, see Section 3.7, "Accessing Component Properties on the Client."
For a complete description of how client events are handled at runtime, see
Section 5.3.6, "What Happens at Runtime: How Client-Side Events Work."

3.4 Instantiating Client-Side Components
The RCF does not make any guarantees about which components will have
corresponding client-side component instances by default. You will usually interact
with client-side components by registering a clientListener handler. When a
component has a registered clientListener handler, it will automatically have
client-side representation. If you have to access another component on the client, then
explicitly configure that component to be available on the client by setting the
clientComponent attribute to true.

When you set the clientComponent attribute to true, the framework creates an
instance of an AdfUIComponent class for the component. This class provides the API
that you can work with on the client side and also provides basic property accessor
methods (for example, getProperty() and setProperty()), event listener registration,
and event delivery-related APIs. The framework also provides renderer-specific
subclasses (for example, AdfRichOutputText) which expose property-specific accessor
methods (for example, getText() and setText()). These accessor methods are simply
wrappers around the AdfUIComponent class’s getProperty() and setProperty()
methods and are provided for coding convenience.

For example, suppose you have an outputText component on the page that will get its
value (and therefore the text to display) from the sayHello function. That function
must be able to access the outputText component in order to set its value. For this to
work, there must be a client-side version of the outputText component. Example 3–7
shows the JSF page code. Note that the outputText component has an id value and the
clientComponent attribute is set to true. Also, note there is no value in the example,
because that value will be set by the JavaScript.

Example 3–7 Adding a Component

<af:commandButton text="Say Hello">
 <af:clientListener method="sayHello" type="action"/>
</af:commandButton>

Performance Tip: Only set clientComponent to true if you plan on
interacting with the component programmatically on the client.

Locating a Client Component on a Page

Using ADF Faces Architecture 3-7

<af:outputText id="greeting" value="" clientComponent="true">

Because the outputText component will now have client-side representation, the
JavaScript will be able to locate and work with it.

3.5 Locating a Client Component on a Page
When you need to find a client component that is not the source of an event, you can
use the AdfUIComponent.findComponent(expr) method. This method is similar to the
JSF UIComponent.findComponent() method, which searches for and returns the
UIComponent object with an ID that matches the specified search expression. The
AdfUIComponent.findComponent(expr) method simply works on the client instead of
the server.

Example 3–8 shows the sayHello function finding the outputText component using
the component’s ID.

Example 3–8 Finding a Client Component Using findComponent()

function sayHello(actionEvent)
{
 var component=actionEvent.getSource();

 //Find the client component for the "greeting" af:outputText
 var greetingComponent=component.findComponent("greeting");

 //Set the value for the outputText component
 greetingComponent.setValue("Hello World")
}

Instead of using the AdfUIComponent.findComponent(expr) method, you can use the
AdfPage.PAGE.findComponentByAbsoluteId(absolute expr) method when you
know the absolute identifier for the component, but you don't have a component
instance to call AdfUIComponent.findComponent(expr) on. AdfPage.PAGE is a global
object that provides a static reference to the page's context object. However, if the
component you are finding is within a naming container, then you must use
AdfUIComponent.findComponent. For more information, see Section 3.5.1, "What You
May Need to Know About Finding Components in Naming Containers."

3.5.1 What You May Need to Know About Finding Components in Naming Containers
If the component you need to find is within a component that is a naming container
(such as pageTemplate, subform, table, and tree), then instead of using the
AdfPage.PAGE.findComponentByAbsoluteId(absolute expr) method, use the
AdfUIComponent.findComponent(expr) method. The expression can be either absolute
or relative.

Note: There is also a confusingly named
AdfPage.PAGE.findComponent(clientId) method, however this
function uses implementation-specific identifiers that can change
between releases and should not be used by page authors.

Tip: You can determine whether or not a component is a naming
container by reviewing the component tag documentation. The tag
documentation states whether a component is a naming container.

Determining the User’s Current Location

3-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Absolute expressions use the fully qualified JSF client ID (meaning, prefixed with the
IDs of all NamingContainer components that contain the component) with a leading
NamingContainer.SEPARATOR_CHAR character, for example:

":" + (namingContainersToJumpUp * ":") + some ending portion of the
clientIdOfComponentToFind

For example, to find a table whose ID is t1 that is within a panel collection component
whose ID is pc1 contained in a region whose ID is r1 on page that uses the myTemplate
template, you might use the following:

:myTemplate:r1:pc1:t1

Alternatively, if both the components (the one doing the search and the one being
searched for) share the same NamingContainer component somewhere in the
hierarchy, you can use a relative path to perform a search relative to the component
doing the search. A relative path has multiple leading NamingContainer.SEPARATOR_
CHAR characters, for example:

":" + clientIdOfComponentToFind

In the preceding example, if the component doing the searching is also in the same
region as the table, you might use the following:

::somePanelCollection:someTable

When deciding whether to use an absolute or relative path, keep the following in
mind:

■ If you know that the component you are trying to find will always be in the same
naming container, then use an absolute path.

■ If you know that the component performing the search and the component you
are trying to find will always be in the same relative location, then use a relative
path.

There are no getChildren() or getFacet() functions on the client. Instead, the
AdfUIComponent.visitChildren() function is provided to visit all children
components or facets (that is all descendents). See the ADF Faces JavaScript
documentation for more information.

3.6 Determining the User’s Current Location
ADF Faces provides JavaScript APIs that return the current contextual page
information, in response to an event. The AdfPage.prototype.getViewId() function
returns the identifier for the currently displayed view. This ID is set when either a full
page render or a partial page navigation occurs. The

Tip: Think of a naming container as a folder and the clientId as a
file path. In terms of folders and files, you use two sequential periods
and a slash (../) to move up in the hierarchy to another folder. This
is the same thing that the multiple colon (:) characters do in the
findComponent() expression. A single leading colon (:) means that
the file path is absolute from the root of the file structure. If there are
multiple leading colon (:) characters at the beginning of the
expression, then the first one is ignored and the others are counted,
one set of periods and a slash (../) per colon (:) character.

Determining the User’s Current Location

Using ADF Faces Architecture 3-9

AdfPage.prototype.getComponentsByType(componentType) function returns an array
of component instances that match the given component type.

For example, say your application contains a page with tabs, and each tab is made up
of a number of regions. Each region could contain other nested regions as well. You
can use the APIs to return a String identifier that is a combination of the viewId of the
entire page and the viewIds of the fragments displayed in each of the regions currently
rendered on the page, as shown in Example 3–9.

3.6.1 How to Determine the User’s Current Location
In order to retrieve the viewID property of the region component on the client, the
user activity monitoring feature needs to be enabled by setting a parameter in the
web.xml file. You then create JavaScript code that builds a String representation of the
viewIds that make up the current page.

To determine a context identifier:
1. Double-click the web.xml file.

2. In the source editor, set the oracle.adf.view.faces.context.ENABLE_ADF_
EXECUTION_CONTEXT_PROVIDER to true.

This parameter notifies ADF Faces that the ExecutionContextProvider service
provider is enabled. This service monitors and aggregates user activity
information for the client-initiated requests.

3. Set oracle.adf.view.rich.automation.ENABLED to true.

This parameter ensures that component IDs are set for all components. For more
information, see Section A.2.3.10, "Test Automation."

4. Create the JavaScript to build the context identifier (for more information about
adding JavaScript, see Section 3.3, "Adding JavaScript to a Page").

Example 3–9 shows JavaScript used to get the current view ID for a region.

Example 3–9 JavaScript to Retrieve viewIds

/**
 * Returns a String identifier comprising the page viewId and viewIds
 * of the fragments displayed in each of the displayed regions
*/
TestLibrary.prototype.getCurrentPageInfo = function()
{
 var pageIdentifier = null;
 var page = AdfPage.PAGE;
 if (page)
 {
 // get the viewId of the page
 var viewId = page.getViewId();
 // get all region components currently displayed on the page
 var regionComponents = page.getComponentsByType("oracle.adf.RichRegion");
 var regionViewIds = new Array();
 for (var index = 0; index < regionComponents.length; index++)
 {
 var regionComp = regionComponents[index]);
 if (regionComp)
 {
 regionViewIds.push(regionComp.getProperty("viewId"));
 }
 }

Accessing Component Properties on the Client

3-10 Web User Interface Developer's Guide for Oracle Application Development Framework

 // construct page identifier
 if (viewId != null && regionViewIds.length > 0)
 contextId = viewId.concat(regionViewIds.toString());
 }
 return contextId;
}

3.7 Accessing Component Properties on the Client
For each built-in property on a component, convenience accessor methods are
available on the component class. For example, you can call the getValue() method on
a client component and receive the same value that was used on the server.

Constants are also available for the property names on the class object. For instance,
you can use AdfRichDialog.STYLE_CLASS constant instead of using "styleClass".

When a component’s property changes, the end result should be that the component’s
DOM is updated to reflect its new state, in some cases without a roundtrip to the
server. The component's role in this process is fairly limited: it simply stores away the
new property value and then notifies the peer of the change. The peer contains the
logic for updating the DOM to reflect the new component state.

As noted in Section 1.2.2, "ADF Faces Architectural Features," most property values
that are set on the client result in automatic synchronization with the server (although
some complex Java objects are not sent to the client at all). There are however, two
types of properties that act differently: secured properties and disconnected properties.

Secured properties are those that cannot be set on the client at all. For example, say a
malicious client used JavaScript to set the immediate flag on a commandLink component
to true. That change would then be propagated to the server, resulting in server-side
validation being skipped, causing a possible security hole (for more information about
using the immediate property, see Section 4.2, "Using the Immediate Attribute").
Consequently, the immediate property is a secured property.

Attempts to set any other secured property from JavaScript will fail. For more
information, see Section 3.7.2, "How to Unsecure the disabled Property." Table 3–1
shows the secure properties on the client components.

Note: All client properties in ADF Faces use the getXyz function
naming convention including boolean properties. The isXyz naming
convention for boolean properties is not used.

Note: In JavaScript, it is more efficient to refer to a constant than to
code the string, as the latter requires an object allocation on each
invocation.

Note: Not all property changes are handled through the peer on the
client side. Some property changes are propagated back to the server
and the component is rerendered using PPR.

Accessing Component Properties on the Client

Using ADF Faces Architecture 3-11

Table 3–1 Secure Client Properties

Component Secure Property

AdfRichChooseColor colorData

AdfRichComboboxListOfValue disabled

readOnly

AdfRichCommandButton disabled

readOnly

blocking

AdfRichCommandImageLink blocking

disabled

partialSubmit

AdfRichCommandLink readOnly

AdfRichDialog dialogListener

AdfRichDocument failedConnectionText

AdfRichInputColor disabled

readOnly

colorData

AdfRichInputDate disabled

readOnly

valuePassThru

AdfRichInputFile disabled

readOnly

AdfRichInputListOfValues disabled

readOnly

AdfRichInputNumberSlider disabled

readOnly

AdfRichInputNumberSplinBox disabled

readOnly

maximum

minimum

stepSize

AdfRichInputRangeSlider disabled

readOnly

AdfRichInputText disabled

readOnly

secret

AdfRichPopUp launchPopupListener

model

returnPopupListener

returnPopupDataListener

createPopupId

Accessing Component Properties on the Client

3-12 Web User Interface Developer's Guide for Oracle Application Development Framework

AdfRichUIQuery conjunctionReadOnly

model

queryListener

queryOperationListener

AdfRichSelectBooleanCheckbox disabled

readOnly

AdfRichSelectBooleanRadio disabled

readOnly

AdfRichSelectManyCheckbox disabled

readOnly

valuePassThru

AdfRichSelectManyChoice disabled

readOnly

valuePassThru

AdfRichSelectManyListBox disabled

readOnly

valuePassThru

AdfRichSelectManyShuttle disabled

readOnly

valuePassThru

AdfRichSelectOneChoice disabled

readOnly

valuePassThru

AdfRichSelectOneListBox disabled

readOnly

valuePassThru

AdfRichSelectOneRadio disabled

readOnly

valuePassThru

AdfRichSelectOrderShuttle disabled

readOnly

valuePassThru

AdfRichUITable filterModel

AdfRichTextEditor disabled

readOnly

AdfUIChart chartDrillDownListener

AdfUIColumn sortProperty

Table 3–1 (Cont.) Secure Client Properties

Component Secure Property

Accessing Component Properties on the Client

Using ADF Faces Architecture 3-13

AdfUICommand actionExpression

returnListener

launchListener

immediate

AdfUIComponentRef componentType

AdfUIEditableValueBase immediate

valid

required

localValueSet

submittedValue

requiredMessageDetail

AdfUIMessage.js for

AdfUINavigationLevel level

AdfUINavigationTree rowDisclosureListener

startLevel

immediate

AdfUIPage rowDisclosureListener

immediate

AdfUIPoll immediate

pollListener

AdfUIProgress immediate

AdfUISelectBoolean selected

AdfUISelectInput actionExpression

returnListener

AdfUISelectRange immediate

rangeChangeListener

AdfUIShowDetailBase immediate

disclosureListener

AdfUISingleStep selectedStep

maxStep

AdfUISubform default

AdfUITableBase rowDisclosureListener

selectionListener

immediate

sortListener

rangeChangeListener

showAll

Table 3–1 (Cont.) Secure Client Properties

Component Secure Property

Accessing Component Properties on the Client

3-14 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces does allow you to configure the disabled property so that it can be made
unsecure. This can be useful when you need to use JavaScript to enable and disable
buttons. When you set the unsecure property to true, the disabled property (and only
the disabled property) will be made unsecure.

Disconnected properties are those that can be set on the client, but that do not propagate
back to the server. These properties have a lifecycle on the client that is independent of
the lifecycle on the server. For example, client form input components (like
AdfRichInputText) have a submittedValue property, just as the Java
EditableValueHolder components do. However, setting this property does not
directly affect the server. In this case, standard form submission techniques handle
updating the submitted value on the server.

A property can be both disconnected and secured. In practice, such properties act like
disconnected properties on the client: they can be set on the client, but will not be sent
to the server. But they act like secured properties on the server, in that they will refuse
any client attempts to set them.

3.7.1 How to Set Property Values on the Client
The RCF provides setXYZ convenience functions that provide calls to the
AdfUIComponent setProperty() function. The setProperty() function takes the
following arguments:

■ Property name (required)

■ New value (required)

3.7.2 How to Unsecure the disabled Property
You use the unsecured property to set the disabled property to be unsecure. You need
to manually add this property and the value of disabled to the code for the
component whose disabled property should be unsecure. For example, the code for a
button whose disabled property should be unsecured would be:

<af:commandButton text="commandButton 1" id="cb1" unsecure="disabled"/>

Once you set the unsecure attribute to disabled, a malicious JavaScript could change
the disabled attribute unwittingly. For example, say you have an expense approval
page, and on that page, you want certain managers to be able to only approve invoices
that are under $200. For this reason, you want the approval button to be disabled
unless the current user is allowed to approve the invoice.

AdfUITreeBase immediate

rowDisclosureListener

selectionListener

focusRowKey

focusListener

AdfUITreeTable rowsByDepth

rangeChangeListener

AdfUIValueBase converter

Table 3–1 (Cont.) Secure Client Properties

Component Secure Property

Using Bonus Attributes for Client-Side Components

Using ADF Faces Architecture 3-15

If you did not set the unsecured attribute to disabled, the approval button would
remain disabled until a round-trip to the server occurs, where logic determines if the
current user can approve the expense. But because you want the button to display
correctly as the page loads the expense, say you set the unsecure attribute to disabled.
Now you can use JavaScript on the client to determine if the button should be
disabled. But now, any JavaScript (including malicious JavaScript that you have no
control over) can do the same thing.

To avoid this issue, you must ensure that your application still performs the same logic
as if the round-trip to the server had happened. In the expense report approval screen,
you might have JavaScript that checks that the amount is under $200, but you still
need to have the action for the approval button perform the logic on the server.
Adding the logic to the server ensures that the disabled attribute does not get changed
when it should not.

Similarly, if you allow your application to be modified at runtime, and you allow users
to potentially edit the unsecure and/or the disabled attributes, you must ensure that
your application still performs the same logic as if the round-trip to the server had
occurred.

3.7.3 What Happens at Runtime: How Client Properties Are Set on the Client
Calling the setProperty() function on the client sets the property to the new value,
and synchronously fires a PropertyChangeEvent event with the new values (as long as
the value is different). Also, setting a property may cause the component to rerender
itself.

3.8 Using Bonus Attributes for Client-Side Components
In some cases you may want to send additional information to the client beyond the
built-in properties. This can be accomplished using bonus attributes. Bonus attributes
are extra attributes that you can add to a component using the clientAttribute tag.
For performance reasons, the only bonus attributes sent to the client are those specified
by clientAttribute.

The clientAttribute tag specifies a name/value pair that is added to the server-side
component's attribute map. In addition to populating the server-side attribute map,
using the clientAttribute tag results in the bonus attribute being sent to the client,
where it can be accessed through the
AdfUIComponent.getProperty("bonusAttributeName") method.

The RCF takes care of marshalling the attribute value to the client. The marshalling
layer supports marshalling of a range of object types, including strings, booleans,
numbers, dates, arrays, maps, and so on. For more information on marshalling, see
Section 5.4.3, "What You May Need to Know About Marshalling and Unmarshalling
Data."

Performance Tip: In order to avoid excessive marshalling overhead,
use client-side bonus attributes sparingly.

Note: The clientAttribute tag should be used only for bonus
(application-defined) attributes. If you need access to standard
component attributes on the client, instead of using the
clientAttribute tag, simply set the clientComponent attribute to
true. For more information, see Section 3.4, "Instantiating Client-Side
Components."

Understanding Rendering and Visibility

3-16 Web User Interface Developer's Guide for Oracle Application Development Framework

3.8.1 How to Create Bonus Attributes
You can use the Component Palette to add a bonus attribute to a component.

To create bonus attributes:
1. In the Structure window, select the component to which you would like to add a

bonus attribute.

2. In the Component Palette, from the Operations panel, drag and drop a Client
Attribute as a child to the component.

3. In the Property Inspector, set the Name and Value attributes.

3.8.2 What You May Need to Know About Marshalling Bonus Attributes
Although client-side bonus attributes are automatically delivered from the server to
the client, the reverse is not true. That is, changing or setting a bonus attribute on the
client will have no effect on the server. Only known (nonbonus) attributes are
synchronized from the client to the server. If you want to send application-defined
data back to the server, you should create a custom event. For more information, see
Section 5.4, "Sending Custom Events from the Client to the Server."

3.9 Understanding Rendering and Visibility
All ADF Faces display components have two attributes that relate to whether or not
the component is displayed on the page for the user to see: rendered and visible.

The rendered attribute has very strict semantics. When rendered is set to false, there
is no way to show a component on the client without a roundtrip to the server. To
support dynamically hiding and showing page contents, the RCF adds the visible
attribute. When set to false, the component's markup is available on the client but the
component is not displayed. Therefore calls to the setVisible(true) or
setVisible(false) method will, respectively, show and hide the component within
the browser (as long as rendered is set to true), whether those calls happen from Java
or from JavaScript.

Example 3–10 shows two outputText components, only one of which is rendered at a
time. The first outputText component is rendered when no value has been entered
into the inputText component. The second outputText component is rendered when a
value is entered.

Example 3–10 Rendered and Not Rendered Components

<af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"

Performance Tip: You should set the visible attribute to false only
when you absolutely need to be able to toggle visibility without a
roundtrip to the server, for example in JavaScript. Nonvisible
components still go through the component lifecycle, including
validation.

If you do not need to toggle visibility only on the client, then you
should instead set the rendered attribute to false. Making a
component not rendered (instead of not visible) will improve server
performance and client response time because the component will not
have client-side representation, and will not go through the
component lifecycle.

Understanding Rendering and Visibility

Using ADF Faces Architecture 3-17

 value="#{myBean.inputValue}"/>
 <af:commandButton text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:"/>
 <af:outputText value="No text entered" id="output1"
 rendered="#{myBean.inputValue==null}"/>
 <af:outputText value="#{myBean.inputValue}"
 rendered="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

Provided a component is rendered in the client, you can either display or hide the
component on the page using the visible property.

Example 3–11 shows how you might achieve the same functionality as shown in
Example 3–10, but in this example, the visible attribute is used to determine which
component is displayed (the rendered attribute is true by default, it does not need to
be explicitly set).

Example 3–11 Visible and Not Visible Components

<af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}"/>
 <af:commandButton text="Enter"/>
</af:panelGroupLayout>
<af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:"/>
 <af:outputText value="No text entered" id="output1"
 visible="#{myBean.inputValue==null}"/>
 <af:outputText value="#{myBean.inputValue}"
 visible="#{myBean.inputValue !=null}"/>
</af:panelGroupLayout>

However, because using the rendered attribute instead of the visible attribute
improves performance on the server side, you may instead decide to have JavaScript
handle the visibility.

 Example 3–12 shows the page code for JavaScript that handles the visiblity of the
components.

Example 3–12 Using JavaScript to Turn On Visibility

function showText()
{
 var output1 = AdfUIComponent.findComponent("output1")
 var output2 = AdfUIComponent.findComponent("output2")
 var input = AdfUIComponent.findComponent("input")

 if (input.getValue() == "")
 {
 output1.setVisible(true);
 }
 else
 {
 output2.setVisible(true)
 }

 }

Understanding Rendering and Visibility

3-18 Web User Interface Developer's Guide for Oracle Application Development Framework

3.9.1 How to Set Visibility Using JavaScript
You can create a conditional JavaScript function that can toggle the visible attribute
of components.

To set visibility:
1. Create the JavaScript that can toggle the visibility. Example 3–12 shows a script

that turns visibility on for one outputText component if there is no value;
otherwise, the script turns visibility on for the other outputText component.

2. For each component that will be needed in the JavaScript function, expand the
Advanced section of the Property Inspector and set the ClientComponent attribute
to true. This creates a client component that will be used by the JavaScript.

3. For the components whose visibility will be toggled, set the visible attribute to
false.

Example 3–13 shows the full page code used to toggle visibility with JavaScript.

Example 3–13 JavaScript Toggles Visibility

<f:view>
<af:resource>
 function showText()
 {
 var output1 = AdfUIComponent.findComponent("output1")
 var output2 = AdfUIComponent.findComponent("output2")
 var input = AdfUIComponent.findComponent("input")

 if (input.value == "")
 {
 output1.setVisible(true);
 }
 else
 {
 output2.setVisible(true)
 }

 }
</af:resource>
<af:document>
 <af:form>
 <af:panelGroupLayout layout="horizontal">
 <af:inputText label="Input some text" id="input"
 value="#{myBean.inputValue}" clientComponent="true"
 immediate="true"/>
 <af:commandButton text="Enter" clientComponent="true">
 <af:clientListener method="showText" type="action"/>
 </af:commandButton>
 </af:panelGroupLayout>
 <af:panelGroupLayout layout="horizontal">
 <af:outputLabel value="You entered:" clientComponent="false"/>
 <af:outputText value="No text entered" id="output1"
 visible="false" clientComponent="true"/>
 <af:outputText value="#{myBean.inputValue}" id="output2"
 visible="false" clientComponent="true"/>
 </af:panelGroupLayout>
 </af:form>
 </af:document>
</f:view>

Understanding Rendering and Visibility

Using ADF Faces Architecture 3-19

3.9.2 What You May Need to Know About Visible and the isShowing Function
If the parent of a component has its visible attribute set to false, when the
isVisible function is run against a child component whose visible attribute is set to
true, it will return true, even though that child is not displayed. For example, say you
have a panelGroupLayout component that contains an outputText component as a
child, and the panelGroupLayout component’s visible attribute is set to false, while
the outputText component’s visible attribute is left as the default (true). On the
client, neither the panelGroupLayout nor the outputText component will be displayed,
but if the isVisible function is run against the outputText component, it will return
true.

For this reason, the RCF provides the isShowing() function. This function will return
false if the component’s visible attribute is set to false, or if any parent of that
component has visible set to false.

Understanding Rendering and Visibility

3-20 Web User Interface Developer's Guide for Oracle Application Development Framework

4

Using the JSF Lifecycle with ADF Faces 4-1

4Using the JSF Lifecycle with ADF Faces

This chapter describes the JSF page request lifecycle and the additions to the lifecycle
from ADF Faces, and how to use the lifecycle properly in your application.

This chapter includes the following sections:

■ Section 4.1, "Introduction to the JSF Lifecycle and ADF Faces"

■ Section 4.2, "Using the Immediate Attribute"

■ Section 4.3, "Using the Optimized Lifecycle"

■ Section 4.4, "Using the Client-Side Lifecycle"

■ Section 4.5, "Using Subforms to Create Regions on a Page"

■ Section 4.6, "Object Scope Lifecycles"

■ Section 4.7, "Passing Values Between Pages"

4.1 Introduction to the JSF Lifecycle and ADF Faces
Because the ADF Faces rich client framework (RCF) extends the JSF framework, any
application built using the ADF Faces rich client framework uses the standard JSF
page request lifecycle. However, the ADF Faces framework extends that lifecycle,
providing additional functionality, such as a client-side value lifecycle, a subform
component that allows you to create independent submittable regions on a page
without the drawbacks (for example, lost user edits) of using multiple forms on a
single page, and additional scopes.

To better understand the lifecycle enhancements that the RCF delivers, it is important
that you understand the standard JSF lifecycle. This section provides only an overview.
For a more detailed explanation, refer to the JSF specification at
http://www.oracle.com/technetwork/java/index.html.

When a JSF page is submitted and a new page is requested, the JSF page request
lifecycle is invoked. This lifecycle handles the submission of values on the page,
validation for components on the current page, navigation to and display of the
components on the resulting page, as well as saving and restoring state. The JSF
lifecycle phases use a UI component tree to manage the display of the faces
components. This tree is a runtime representation of a JSF page: each UI component
tag in a page corresponds to a UI component instance in the tree. The FacesServlet
object manages the page request lifecycle in JSF applications. The FacesServlet object
creates an object called FacesContext, which contains the information necessary for
request processing, and invokes an object that executes the lifecycle.

Figure 4–1 shows the JSF lifecycle of a page request. As shown, events are processed
before and after each phase.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Introduction to the JSF Lifecycle and ADF Faces

4-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 4–1 Lifecycle of a Page Request in an ADF Faces Application

In a JSF application, the page request lifecycle is as follows:

■ Restore View: The component tree is established. If this is not the initial rendering
(that is, if the page was submitted back to server), the tree is restored with the
appropriate state. If this is the initial rendering, the component tree is created and
the lifecycle jumps to the Render Response phase.

■ Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores the values locally. Most
associated events are queued for later processing. If a component has its
immediate attribute set to true, then the validation, the conversion, and the events
associated with the component are processed during this phase. For more
information, see Section 4.2, "Using the Immediate Attribute."

■ Process Validations: Local values of components are converted from the input type
to the underlying data type. If the converter fails, this phase continues to
completion (all remaining converters, validators, and required checks are run), but
at completion, the lifecycle jumps to the Render Response phase.

If there are no failures, the required attribute on the component is checked. If the
value is true, and the associated field contains a value, then any associated
validators are run. If the value is true and there is no field value, this phase
completes (all remaining validators are executed), but the lifecycle jumps to the
Render Response phase. If the value is false, the phase completes, unless no value
is entered, in which case no validation is run. For more information about

Introduction to the JSF Lifecycle and ADF Faces

Using the JSF Lifecycle with ADF Faces 4-3

conversion and validation, see Chapter 6, "Validating and Converting Input."

At the end of this phase, converted versions of the local values are set, any
validation or conversion error messages and events are queued on the
FacesContext object, and any value change events are delivered.

■ Update Model Values: The component’s validated local values are moved to the
model, and the local copies are discarded.

■ Invoke Application: Application-level logic (such as event handlers) is executed.

■ Render Response: The components in the tree are rendered. State information is
saved for subsequent requests and for the Restore View phase.

To help illustrate the lifecycle, consider a page that has a simple input text component
where a user can enter a date and then click a command button to submit the entered
value. A valueChangeListener method is also registered on the component.
Example 4–1 shows the code for the example.

Example 4–1 Sample Code to Illustrate the JSF Lifecycle

<af:form>
 <af:inputText value="#{mybean.date}"
 valueChangeListener="#{mybean.valueChangeListener}">
 <af:convertDateTime dateStyle="long"/>
 </af:inputText>
 <af:commandButton text="Save" actionListener="#{mybean.actionListener}"/>
</af:form>

Suppose a user enters the string "June 25, 2005" and clicks the submit button.
Figure 4–2 shows how the values pass through the lifecycle and where the different
events are processed.

Tip: In short, for an input component that can be edited, the steps for
the Process Validations phase is as follows:

1. If a converter fails, the required check and validators are not run.

2. If the converter succeeds but the required check fails, the validators are
not run.

3. If the converter and required check succeed, all validators are run. Even if
one validator fails, the rest of the validators are run. This is because when
the user fixes the error, you want to give them as much feedback as
possible about what is wrong with the data entered.

For example suppose you have a dateTimeRange validator that
accepted dates only in the year 2010, and you had a
dateRestrictionValidator validator that did not allow the user
to pick Sundays. If the user entered July 5, 2009 (a Sunday),
you want to give the feedback that this fails both validators to
maximize the chance the user will enter valid data.

Using the Immediate Attribute

4-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 4–2 Example of Values and Events in the JSF Lifecycle

4.2 Using the Immediate Attribute
You can use the immediate attribute to allow processing of components to move up to
the Apply Request Values phase of the lifecycle. When actionSource components
(such as a commandButton) are set to immediate, events are delivered in the Apply
Request Values phase instead of in the Invoke Application phase. The actionListener
handler then calls the Render Response phase, and the validation and model update
phases are skipped.

For example, you might want to configure a Cancel button to be immediate, and have
the action return a string used to navigate back to the previous page (for more
information about navigation, see Chapter 18, "Working with Navigation
Components"). Because the Cancel button is set to immediate, when the user clicks the
Cancel button, all validation is skipped, any entered data is not updated to the model,
and the user navigates as expected, as shown in Figure 4–3.

Using the Immediate Attribute

Using the JSF Lifecycle with ADF Faces 4-5

Figure 4–3 Lifecycle for Command Button Set to Immediate

As with command components, for components that invoke disclosure events, (such
as a showDetail component), and for editableValueHolder components (components
that hold values that can change, such as an inputText component) the events are
delivered to the Apply Request Values phase. However, for editableValueHolder
components, instead of skipping phases, conversion, validation, and delivery of
valueChangeEvents events are done earlier in the lifecycle, during the Apply Request
Values phase, instead of after the Process Validations phase. No lifecycle phases are
skipped.

Figure 4–4 shows the lifecycle for an input component whose immediate attribute is set
to true. The input component takes a date entered as a string and stores it as a date
object when the command button is clicked.

Note: A command button that does not provide any navigation and
is set to immediate will also go directly to the Render Response phase:
the Validation, Update Model, and Invoke Application phases are
skipped, so any new values will not be pushed to the server.

Using the Immediate Attribute

4-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 4–4 Immediate Attribute on an Input Component

Setting immediate to true for an input component can be useful when one or more
input components must be validated before other components. Then, if one of those
components is found to have invalid data, validation is skipped for the other input
components in the same page, thereby reducing the number of error messages shown
for the page.

Performance Tip: There are some cases where setting the immediate
attribute to true can lead to better performance:

■ When you create a navigation train, and have a
commandNavigationItem component in a navigationPane
component, you should set the immediate attribute to true to
avoid processing the data from the current page (train stop) while
navigating to the next page. For more information, see
Section 18.8.1, "How to Create the Train Model."

■ If an input component value has to be validated before any other
values, the immediate attribute should be set to true. Any errors
will be detected earlier in the lifecycle and additional processing
will be avoided.

Using the Immediate Attribute

Using the JSF Lifecycle with ADF Faces 4-7

As another example, suppose you have a form with an input component used to
search for a string with a command button configured to invoke the search execution,
and another input text component used to input a date with an associated command
button used to submit the date. In this example, we want to set the search input
component and its button both to be immediate. This will allow the user to execute a
search, even if an invalid string is entered into the date field, because the date input
component’s converter is never fired. Also, because the search input text is set to
immediate and the date input field is not, only the search input text will be processed.
And because both fields are within the same form, if the user enters a valid date in the
date field, but then performs a search and does not click the Save button, the entered
value will still be displayed when the search results are displayed. Example 4–2 shows
the code used for the two fields and two buttons.

Example 4–2 Input Component and Command Components Using Immediate

<af:form>
 <af:inputText immediate="true" label="Search" value="#{mybean.search}"
 valueChangeListener="#{mybean.searchValueChangeListener}"/>
 <af:commandButton immediate="true" text="search"
 actionListener="#{mybean.searchActionListener}"/>
 [.... tags to render search result]

 <af:inputText label="Date" value="#{mybean.date}"
 valueChangeListener="#{mybean.valueChangeListener}">
 <af:convertDateTime dateStyle="long"/>
 </af:inputText>
 <af:commandButton text="save" actionListener="#{mybean.actionListener}"/>
</af:form>

Figure 4–5 shows the lifecycle for this page when a user does the following:

■ Enters binky into the Date input field (which is not a valid entry)

■ Enters dress into the Search field

■ Clicks the Search button to execute the search on dress

■ Clicks the Save button to save the value binky as the date

Using the Immediate Attribute

4-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 4–5 Immediate Attribute on Both Command Component and Input Component

When using the immediate attribute for editableValueHolder and actionSource
components on the same page, note the following issues:

■ If an editableValueHolder component is marked as immediate, it will execute
before the Update Model Values phase. This could be an issue when an immediate
actionSource component requires data from an editableValueHolder
component, as data entered into an editableValueHolder component is not
available to the model until after the Update Model Values phase. If you have an
immediate actionSource component, and that component needs data, then set
immediate on the editableValueHolder fields as well. Then, you can call the
getValue method on the editableValueHolder component and the local value
will be returned. It will not have been pushed into the model yet, but it will be
available on the component.

■ If an immediate editableValueHolder component fails validation, any immediate
actionSource component will still execute.

To use the immediate attribute:
1. On the JSF page, select the component that you want to be immediate.

Using the Optimized Lifecycle

Using the JSF Lifecycle with ADF Faces 4-9

2. In the Property Inspector, expand the Behavior section and set the immediate
attribute to true.

4.3 Using the Optimized Lifecycle
ADF Faces provides an optimized lifecycle that you can use when you want the JSF
page request lifecycle (including conversion and validation) to be run only for certain
components on a page. For example, suppose you have an inputText component on a
page whose required attribute is set to true. On the same page are radio buttons that
when selected cause the page to either show or hide text in an outputText component,
as shown in Figure 4–6.

Figure 4–6 Required Field and Boolean with Auto-Submit

Also assume that you want the user to be able to select a radio button before entering
the required text into the field. While you could set the radio button components to
automatically trigger a submit action and also set their immediate attribute to true so
that they are processed before the inputText component, you would also have to add
a valueChangeEvent listener, and in it call the Render Response phase so that
validation is not run on the input text component.

Instead of having to write this code in a listener, ADF Faces allows you to set
boundaries on the page that allow the lifecycle to run just on components within the
boundary. In order to determine the boundary, the framework must be notified of the
root component to process. This component can be determined in two ways:

■ Components: A region is an example of a component which the framework knows
is a boundary. No matter what event is triggered inside a region, the lifecycle does
not run on components outside the region.

■ Events: Certain events indicate a component as a root. For example, the disclosure
event sent when expanding or collapsing a showDetail component (see
Section 8.9, "Displaying and Hiding Contents Dynamically") indicates that the
showDetail component is a root, and so the lifecycle is run only on the showDetail
component and any child components. The lifecycle may also be run on any
components configured to listen for that disclosure event. Configuring a
component to listen for events on root components in order to be processed is
called cross-component refresh.

Cross-component refresh allows you to set up dependencies so that the events from
one component act as triggers for another component, known as the target. When any
event occurs on the trigger component, the lifecycle is run on any target components,
as well as on any child components of both the trigger and the target, causing only
those components to be rerendered. This is considered a partial page rendering (PPR).

In the radio button example, you would set the radio buttons to be triggers and the
panelGroupLayout component that contains the output text to be the target, as shown
in Example 4–3.

Example 4–3 Example of Cross-Component Rendering

<af:form>
 <af:inputText label="Required Field" required="true"/>

Using the Optimized Lifecycle

4-10 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:selectBooleanRadio id="show" autoSubmit="true" text="Show"
 value="#{validate.show}"/>
 <af:selectBooleanRadio id="hide" autoSubmit="true" text="Hide"
 value="#{validate.hide}"/>
 <af:panelGroupLayout partialTriggers="show hide" id="panel">
 <af:outputText value="You can see me!" rendered="#{validate.show}"/>
 </af:panelGroupLayout>
</af:form>

Because the autoSubmit attribute is set to true on the radio buttons, when they are
selected, a SelectionEvent is fired, for which the radio button is considered the root.
Because the panelGroupLayout component is set to be a target to both radio
components, when that event is fired, only the selectOneRadio (the root), the
panelGroupLayout component (the root’s target), and its child component (the
outputText component) are processed through the lifecycle. Because the outputText
component is configured to render only when the Show radio button is selected, the
user is able to select that radio button and see the output text, without having to enter
text into the required input field above the radio buttons.

For more information about how the ADF Faces framework uses PPR, and how you
can use PPR throughout your application, see Chapter 7, "Rerendering Partial Page
Content."

4.3.1 What You May Need to Know About Using the Immediate Attribute and the
Optimized Lifecycle

There may be cases where PPR will not be able to keep certain components from being
validated. For example, suppose instead of using an outputText component, you want
to use an inputText component whose required attribute is set to true, inside the
panelGroupLayout component, as shown in Example 4–4.

Example 4–4 inputText Component Within a panelGroup Component Will Be Validated
with Cross-Component PPR

<af:form>
 <af:selectBooleanRadio id="show2" autoSubmit="true" text="Show"
 value="#{validate.show2}"/>
 <af:selectBooleanRadio id="hide2" autoSubmit="true" text="Hide"
 value="#{validate.hide2}"/>
 <af:panelGroupLayout partialTriggers="show2 hide2">
 <af:inputText label="Required Field" required="true"
 rendered="#{validate.show2}"/>
 </af:panelGroupLayout>
</af:form>

In this example, the inputText component will be validated because the lifecycle runs
on the root (the selectOneRadio component), the target (the panelGroupLayout
component), and the target’s child (the inputText component). Validation will fail
because the inputText component is marked as required and there is no value, so an
error will be thrown. Because of the error, the lifecycle will skip to the Render
Response phase and the model will not be updated. Therefore, the panelGroupLayout
component will not be able to show or hide because the value of the radio button will
not be updated.

For cases like these, you can skip validation using the immediate attribute on the radio
buttons. Doing so causes the valueChangeEvent on the buttons to run before the
Process Validation phase of the inputText component. Then you need to add a
valueChangeListener handler method that would call the Render Response phase

Using the Optimized Lifecycle

Using the JSF Lifecycle with ADF Faces 4-11

(thereby skipping validation of the input component), and set the values on the radio
buttons and input component. Example 4–5 shows the JSF code to do this.

Example 4–5 Using the immediate Attribute and a valueChangeListener

<af:form>
 <af:selectOneRadio immediate="true"
 valueChangeListener="#{validate.toggle}"
 id="show2" autoSubmit="true" text="Show"
 value="#{validate.show2}"/>
 <af:selectOneRadio id="hide2" autoSubmit="true" text="Hide"
 value="#{validate.hide2}"/>
 <af:panelGroupLayout partialTriggers="show2 hide2">
 <af:inputText label="Required Field" required="true"
 rendered="#{validate.show2}"/>
 </af:panelGroupLayout>
</af:form>

Example 4–6 shows the valueChangeListener code.

Example 4–6 valueChangeListener Sets the Value and Calls Render Response

public void toggle(ValueChangeEvent vce)
 {
 setShow2(Boolean.TRUE.equals(vce.getNewValue()));
 FacesContext.getCurrentInstance().renderResponse();
 }

4.3.2 What You May Need to Know About Using an LOV Component and the Optimized
Lifecycle

For the inputListOfValues and inputComboBoxListOfValues components, the
procedures described in Section 4.3.1, "What You May Need to Know About Using the
Immediate Attribute and the Optimized Lifecycle," will not work. Consider the
following example.

Suppose you have an inputListOfValues component from which a user selects an
employee name, and an inputText component whose required attribute is set to true,
which is updated with the employee’s ID number once the employee is selected, as
shown in Figure 4–7.

Figure 4–7 LOV component Updates the Input Component

To achieve this, you might set the Empno field to have the Ename field as a partial
trigger, as shown in Example 4–7.

Example 4–7

<af:inputListOfValues label="Ename" id="lov0"
 value="#{validateLOV.ename}" autoSubmit="true"
 immediate="true"
 popupTitle="Search and Select: Ename"
 searchDesc="Choose a name"
 model="#{validateLOV.listOfValuesModel}"

Using the Optimized Lifecycle

4-12 Web User Interface Developer's Guide for Oracle Application Development Framework

 valueChangeListener="#{validateLOV.immediateValueChange}"
 validator="#{validateLOV.validate}"/>
<af:inputText label="Empno" value="#{validateLOV.empno}" required="true"
 id="lovDependent01" partialTriggers="lov0"/>

As with the radio button and input component example in Section 4.3.1, "What You
May Need to Know About Using the Immediate Attribute and the Optimized
Lifecycle," once the user clicks the search icon, the inputText component will be
validated because the lifecycle runs on both the root (the inputListOfValues
component) and the target (the inputText component). Validation will fail because the
inputText component is marked as required and there is no value, so an error will be
thrown, as shown in Figure 4–8.

Figure 4–8 Validation Error is Thrown Because a Value is Required

However, the solution recommended in Section 4.3.1, "What You May Need to Know
About Using the Immediate Attribute and the Optimized Lifecycle," of setting the
LOV component’s immediate attribute to true and using a ValueChangeListener on
the LOV will not fix the validation error. For LOV components, the ValueChangeEvent
is queued only when the value of the LOV component changes. For this reason, setting
the immediate attribute to true has no effect when the user clicks the search icon,
because at that point the ADF LaunchPopupEvent is queued for the Invoke Application
phase always, regardless of the value of the immediate attribute. In other words, the
optimized lifecycle is run as normal on both the root and target components and
therefore the input component throws a validation error.

When the user selects a new value from the LOV popup, the LOV component queues
two events. One is a ValueChangeEvent to signal a change in value for the component.
The second is a ReturnPopupEvent queued for the Invoke Application phase, which
gives application methods a chance to handle the selection. Both these events need to
occur in order for the LOV to behave as expected.

As mentioned, the LOV component queues a ValueChangeEvent only when the user
selects a new value. If you were to set the immediate attribute to true on the LOV
component, this event would be queued for the Apply Request Values phase and the
new value would be validated. In addition if you were to create a
ValueChangeListener method for the LOV component, and in its implementation
jump to the Render Response phase to avoid validation of the input component, the
selected value would never get pushed to the model, the ReturnPopupListener would
never get called during the Invoke Application phase, and the target input component
would not get updated with new value, as shown in Figure 4–9.

Figure 4–9 Model is Not Updated

To resolve this issue of needing both the ValueChangeEvent and the ReturnPopupEvent
to be queued as part of the same request and to have any target fields refreshed with
newly selected values, instead of declaratively setting the LOV component as a partial

Using the Client-Side Lifecycle

Using the JSF Lifecycle with ADF Faces 4-13

trigger for the input component and creating a method for the ValueChangeListener,
you need to create a listener for the ReturnPopupEvent. This listener must
programmatically set the input components as partial targets for the LOV. You do not
need to set the LOV’s immediate attribute to true because the input component is no
longer a target for the LOV until the ReturnPopupListener method is executed, and so
it will not fail validation because the lifecycle will not be run on it. And because a
listener method is used for the ReturnPopupEvent instead of for the
ValueChangeEvent, both events can be queued and the model updated appropriately.

Example 4–8 shows the needed page code for the LOV and input components.

Example 4–8

 <af:inputListOfValues label="Ename" id="lov1"
 value="#{validateLOV.ename}" autoSubmit="true"
 returnPopupListener="#{validate.processReturnPopup}"
 Title="Search and Select: Ename" searchDesc="Choose a name"
 model="#{validateLOV.listOfValuesModel}"
 validator="#{validateLOV.validate}"/>
 <af:inputText label="Empno" value="#{validateLOV.empno}" required="true"
 id="lovDependent1" binding="#{validate.lovDependent1}"/>

The input component uses its binding attribute to store the instance on a backing
bean, allowing the instance to be accessed by the listener method. The listener method
then accesses the input component and sets it as a partial target for the LOV, as shown
in Example 4–9.

Example 4–9

AdfFacesContext.getCurrentInstance().addPartialTarget(_lovDependent1)

For more information about programmatically setting partial page rendering, see
Section 7.3, "Enabling Partial Page Rendering Programmatically."

4.4 Using the Client-Side Lifecycle
The ADF Faces framework provides client-side conversion and validation. You can
create your own JavaScript-based converters and validators that run on the page
without a trip to the server.

You can use client-side validation so that when a specific client event is queued, it
triggers client validation of the appropriate form or subform (for more information
about subforms, see Section 4.5, "Using Subforms to Create Regions on a Page"). If this
client validation fails, meaning there are known errors, then the events that typically
propagate to the server (for example, a command button's actionEvent when a form is
submitted) do not go to the server. Having the event not delivered also means that
nothing is submitted and therefore, none of the client listeners is called. This is similar
to server-side validation in that when validation fails on the server, the lifecycle jumps
to the Render Response phase; the action event, though queued, will never be
delivered; and the actionListener handler method will never be called.

For example, ADF Faces provides the required attribute for input components, and
this validation runs on the client. When you set this attribute to true, the framework
will show an error on the page if the value of the component is null, without requiring
a trip to the server. Example 4–10 shows code that has an inputText component’s
required attribute set to true, and a command button whose actionListener
attribute is bound to a method on a managed bean.

Using Subforms to Create Regions on a Page

4-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 4–10 Simple Client-Side Validation Example

<af:form>
 <af:inputText id="input1" required="true" value="a"/>
 <af:commandButton text="Search" actionListener="#{demoForm.search}"/>
</af:form>

When this page is run, if you clear the field of the value of the inputText component
and tab out of the field, the field will redisplay with a red outline. If you then click into
the field, an error message will state that a value is required, as shown in Figure 4–10.
There will be no trip to the server; this error detection and message generation is all
done on the client.

Figure 4–10 Client-Side Validation Displays an Error Without a Trip to the Server

In this same example, if you were to clear the field of the value and click the Search
button, the page would not be submitted because the required field is empty and
therefore an error occurs; the action event would not be delivered, and the method
bound to the action listener would not be executed. This process is what you want,
because there is no reason to submit the page if the client can tell that validation will
fail on the server.

For more information about using client-side validation and conversion, see Chapter 6,
"Validating and Converting Input."

4.5 Using Subforms to Create Regions on a Page
In the JSF reference implementation, if you want to independently submit a region of
the page, you have to use multiple forms. However multiple forms require multiple
copies of page state, which can result in the loss of user edits in forms that aren't
submitted.

ADF Faces adds support for a subform component, which represents an
independently submittable region of a page. The contents of a subform will be
validated (or otherwise processed) only if a component inside of the subform is
responsible for submitting the page, allowing for comparatively fine-grained control of
the set of components that will be validated and pushed into the model without the
compromises of using entirely separate form elements. When a page using subforms is
submitted, the page state is written only once, and all user edits are preserved.

A subform will always allow the Apply Request Values phase to execute for its child
components, even when the page was submitted by a component outside of the
subform. However, the Process Validations and Update Model Values phases will be
skipped (this differs from an ordinary form component, which, when not submitted,
cannot run the Apply Request Values phase). To allow components in subforms to be
processed through the Process Validations and Update Model Value phases when a
component outside the subform causes a submit action, use the default attribute.
When a subform’s default attribute is set to true, it acts like any other subform in

Best Practice: Always use only a single form tag per page. Use the
subform tag where you might otherwise be tempted to use multiple
form tags.

Object Scope Lifecycles

Using the JSF Lifecycle with ADF Faces 4-15

most respects, but if no subform on the page has an appropriate event come from its
child components, then any subform with default set to true will behave as if one of
its child components caused the submit. For more information about subforms, see
Section 9.2, "Defining Forms."

4.6 Object Scope Lifecycles
At runtime, you pass data to pages by storing the needed data in an object scope
where the page can access it. The scope determines the lifespan of an object. Once you
place an object in a scope, it can be accessed from the scope using an EL expression.
For example, you might create a managed bean named foo, and define the bean to live
in the Request scope. To access that bean, you would use the expression
#{requestScope.foo}.

There are three types of scopes in a standard JSF application:

■ applicationScope: The object is available for the duration of the application.

■ sessionScope: The object is available for the duration of the session.

■ requestScope: The object is available for the duration between the time an HTTP
request is sent until a response is sent back to the client.

In addition to the standard JSF scopes, ADF Faces provides the following scopes:

■ pageFlowScope: The object is available as long as the user continues navigating
from one page to another. If the user opens a new browser window and begins
navigating, that series of windows will have its own pageFlowScope scope.

■ backingBeanScope: Used for managed beans for page fragments and declarative
components only. The object is available for the duration between the time an
HTTP request is sent until a response is sent back to the client. This scope is
needed because there may be more than one page fragment or declarative
component on a page, and to avoid collisions between values, any values must be
kept in separate scope instances. Use backingBeanScope scope for any managed
bean created for a page fragment or declarative component.

■ viewScope: The object is available until the ID for the current view changes. Use
viewScope scope to hold values for a given page.

Object scopes are analogous to global and local variable scopes in programming
languages. The wider the scope, the higher the availability of an object. During their
lifespan, these objects may expose certain interfaces, hold information, or pass
variables and parameters to other objects. For example, a managed bean defined in
sessionScope scope will be available for use during multiple page requests. However,
a managed bean defined in requestScope scope will be available only for the duration
of one page request.

Figure 4–11 shows the time period in which each type of scope is valid, and its
relationship with the page flow.

Note: Because these are not standard JSF scopes, EL expressions
must explicitly include the scope to reference the bean. For example,
to reference the MyBean managed bean from the pageFlowScope scope,
your expression would be #{pageFlowScope.MyBean}.

Passing Values Between Pages

4-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 4–11 Relationship Between Scopes and Page Flow

When determining what scope to register a managed bean with or to store a value in,
always try to use the narrowest scope possible. Use the sessionScope scope only for
information that is relevant to the whole session, such as user or context information.
Avoid using the sessionScope scope to pass values from one page to another.

4.7 Passing Values Between Pages

The ADF Faces pageFlowScope scope makes it easier to pass values from one page to
another, thus enabling you to develop master-detail pages more easily. Values added
to the pageFlowScope scope automatically continue to be available as the user

Note: If you are using the full Fusion technology stack, then you
have the option to register your managed beans in various
configuration files. For more information, see the "Using a Managed
Bean in a Fusion Web Application" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Note: If you are using the full Fusion technology stack and you need
information about passing values between pages in an ADF bounded
task flow, or between ADF regions and pages, refer to the "Getting
Started With ADF Task Flows" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Passing Values Between Pages

Using the JSF Lifecycle with ADF Faces 4-17

navigates from one page to another, even if you use a redirect directive. But unlike
session scope, these values are visible only in the current page flow or process. If the
user opens a new window and starts navigating, that series of windows will have its
own process. Values stored in each window remain independent.

Like objects stored in any standard JSF scope, objects stored in the pageFlow scope can
be accessed through EL expressions. The only difference with the pageFlow scope is
that the object names must use the pageFlowScope prefix. For example, to have a
button's label provided by a managed bean stored in the pageFlow scope, and to have
a method on the bean called when the button is selected, you might use the following
code on your page:

<af:commandButton text="#{pageFlowScope.buttonBean.label}"
 action="#{pageFlowScope.buttonBean.action}"/>

The pageFlowScope is a java.util.Map object that may be accessed from Java code.
The setPropertyListener tag allows you to set property values onto a scope, and also
allows you to define the event the tag should listen for. For example, when you use the
setPropertyListener tag with the type attribute set to action, it provides a
declarative way to cause an action source (for example, commandButton) to set a value
before navigation. You can use the pageFlowScope scope with the
setPropertyListener tag to pass values from one page to another, without writing
any Java code in a backing bean. For example, you might have one page that uses the
setPropertyListener tag and a command component to set a value in the
pageFlowScope scope, and another page whose text components use the
pageFlowScope scope to retrieve their values.

You can also use the pageFlowScope scope to set values between secondary windows
such as dialogs. When you launch secondary windows from, for example, a
commandButton component, you can use a launchEvent event and the pageFlowScope
scope to pass values into and out of the secondary windows without overriding values
in the parent process.

4.7.1 How to Use the pageFlowScope Scope Within Java Code
You can access pageFlow scope from within any Java code in your application.
Remember to clear the scope once you are finished.

To use pageFlowScope in Java code:
1. To get a reference to the pageFlowScope scope, use the

org.apache.myfaces.trinidad.context.RequestContext.
getPageFlowScope() method.

For example, to retrieve an object from the pageFlowScope scope, you might use
the following Java code:

import java.util.Map;
import org.apache.myfaces.trinidad.context.RequestContext;
. . .
Map pageFlowScope = RequestContext.getCurrentInstance().getPageFlowScope();
Object myObject = pageFlowScope.get("myObjectName");

2. To clear the pageFlowScope scope, access it and then manually clear it.

For example, you might use the following Java code to clear the scope:

Note: If your application uses ADF Controller, then you do not have
to manually clear the scope.

Passing Values Between Pages

4-18 Web User Interface Developer's Guide for Oracle Application Development Framework

RequestContext afContext = RequestContext.getCurrentInstance();
afContext.getPageFlowScope().clear();

4.7.2 How to Use the pageFlowScope Scope Without Writing Java Code
To use the pageFlowScope scope without writing Java code, use a
setPropertyListener tag in conjunction with a command component to set a value in
the scope. The setPropertyListener tag uses the type attribute that defines the event
type it should listen for. It ignores all events that do not match its type. Once set, you
then can access that value from another page within the page flow.

To set a value in the pageFlowScope scope:
1. On the page from where you want to set the value, create a command component

using the Component Palette.

2. In the Component Palette, from the Operations panel, drag a Set Property
Listener and drop it as a child to the command component.

Or right-click the component and choose Insert inside Button > ADF Faces >
setPropertyListener.

3. In the Insert Set Property Listener dialog, set the From field to the value that will
be set on another component.

For example, say you have a managed bean named MyBean that stores the name
value for an employee, and you want to pass that value to the next page. You
would enter #{myBean.empName} in the From field.

4. Set the To field to be a value on the pageFlowScope scope.

For example, you might enter #{pageFlowScope.empName} in the To field.

5. From the Type dropdown menu, choose Action.

This allows the listener to listen for the action event associated with the command
component.

To access a value from the pageFlowScope scope:
1. On the page from which you want to access the value, drop the component that

you want to display the value.

2. Set the value of the component to be the same value as the To value set on the
setPropertyListener tag.

For example, to have an outputText component access the employee name, you
would set the value of that component to be #{pageFlowScope.empName}.

4.7.3 What Happens at Runtime: Passing Values
When a user clicks a command button that contains a setPropertyListener tag, the
listener executes and the To value is resolved and retrieved, and then stored as a
property on the pageFlowScope scope. On any subsequent pages that access that
property through an EL expression, the expression is resolved to the value set by the
original page.

Tip: Instead of using the setActionListener tag (which may have
been used in previous versions of ADF Faces), use the
setPropertyListener tag and set the event type to action.

5

Handling Events 5-1

5 Handling Events

This chapter describes how to handle events on the server as well as on the client.

This chapter includes the following sections:

■ Section 5.1, "Introduction to Events and Event Handling"

■ Section 5.2, "Using ADF Faces Server Events"

■ Section 5.3, "Using JavaScript for ADF Faces Client Events"

■ Section 5.4, "Sending Custom Events from the Client to the Server"

■ Section 5.5, "Executing a Script Within an Event Response"

■ Section 5.6, "Using Client Behavior Tags"

■ Section 5.7, "Using Polling Events to Update Pages"

5.1 Introduction to Events and Event Handling
In traditional JSF applications, event handling typically takes place on the server. JSF
event handling is based on the JavaBeans event model, where event classes and event
listener interfaces are used by the JSF application to handle events generated by
components.

Examples of user events in an application include clicking a button or link, selecting
an item from a menu or list, and changing a value in an input field. When a user
activity occurs such as clicking a button, the component creates an event object that
stores information about the event and identifies the component that generated the
event. The event is also added to an event queue. At the appropriate time in the JSF
lifecycle, JSF tells the component to broadcast the event to the appropriate registered
listener, which invokes the listener method that processes the event. The listener
method may trigger a change in the user interface, invoke backend application code,
or both.

Like standard JSF components, ADF Faces command components deliver ActionEvent
events when the components are activated, and ADF Faces input and select
components deliver ValueChangeEvent events when the component local values
change.

For example, in the File Explorer application, the File Menu contains a submenu
whose commandMenuItem components allow a user to create a new file or folder. When
users click the Folder commandMenuItem, an ActionEvent is invoked. Because the EL
expression set as the value for the component’s actionListener attribute resolves to
the createNewDirectory method on the headerManager managed bean, that method is
invoked and a new directory is created.

Introduction to Events and Event Handling

5-2 Web User Interface Developer's Guide for Oracle Application Development Framework

While ADF Faces adheres to standard JSF event handling techniques, it also enhances
event handling in two key ways by providing:

■ Ajax-based functionality (partial page rendering)

■ A client-side event model

5.1.1 Events and Partial Page Rendering
Unlike standard JSF events, ADF Faces events support AJAX-style partial postbacks to
enable partial page rendering (PPR). Instead of full page rendering, ADF Faces events
and components can trigger partial page rendering, that is, only portions of a page
refresh upon request.

Certain components are considered event root components. Event root components
determine boundaries on the page, and so allow the lifecycle to run just on
components within that boundary (for more information about this aspect of the
lifecycle, see Section 4.3, "Using the Optimized Lifecycle"). When an event occurs
within an event root, only those components that are children to the root are refreshed
on the page. An example of an event root component is a popup. When an event
happens within a popup, only the popup and its children are rerendered, and not the
whole page.

The following components are considered event root components:

■ popup

■ region

■ panelCollection

■ calendar

■ editableValueHolder components (such as inputText)

Additionally, certain events indicate a specific component as an event root component.
For example, the disclosure event sent when a expanding or collapsing a showDetail
component (see Section 8.9, "Displaying and Hiding Contents Dynamically"), indicates
that the showDetail component is a root. The lifecycle is run only on the showDetail
component (and any child components or other components that point to this as a
trigger), and only they are rerendered when it is expanded or collapsed.

Table 5–1 shows the event types in ADF Faces, and whether or not the source
component is an event root.

Note: Any ADF Faces component that has built-in event
functionality must be enclosed in the form tag.

Table 5–1 Events and Event Root Components

Event Type Component Trigger Is Event Root

action All command components false

dialog dialog false

disclosure showDetail, showDetailHeader true

disclosure showDetailItem true

focus tree, treeTable true

launch All command components NA

Introduction to Events and Event Handling

Handling Events 5-3

5.1.2 Client-Side Event Model
In addition to server-side action and value change events, ADF Faces components also
invoke client-side action and value change events, and other kinds of server and client
events. Some events are generated by both server and client components (for example,
selection events); some events are generated by server components only (for example,
launch events); and some events are generated by client components only (for
example, load events).

By default, most client events are propagated to the server. Changes to the component
state are automatically synchronized back to the server to ensure consistency of state,
and events are delivered, when necessary, to the server for further processing.
However, you can configure your event so that it does not propagate.

In addition, any time you register a client-side event listener on the server-side Java
component, the RCF assumes that you require a JavaScript component, so a client-side
component is created.

Client-side JavaScript events can come from several sources: they can be derived
automatically from DOM events, from property change events, or they can be
manually created during the processing of other events.

launchPopup inputListOfValues, inputComboboxListOfValues true

load document NA

poll poll true

popupOpened popup NA

popupOpening popup NA

popupClosed popup NA

propertyChange All components NA

queryEvent query, quickQuery true

queryOperation query, quickQuery true

rangeChange table NA

regionNavigation region NA

return All command components true

returnPopupData inputListOfValues, inputComboboxListOfValues true

returnPopup inputListOfValues, inputComboboxListOfValues true

rowDisclosure tree, treeTable true

selection tree, treeTable, table true

sort treeTable, table true

valueChange All input and select components (components that
implement EditableValueHolder)

true

Tip: If components outside of the event root need to be processed
when the event root is processed, then you must set the
partialTrigger attribute on those components to the ID of the event
root component.

Table 5–1 (Cont.) Events and Event Root Components

Event Type Component Trigger Is Event Root

Using ADF Faces Server Events

5-4 Web User Interface Developer's Guide for Oracle Application Development Framework

5.2 Using ADF Faces Server Events
ADF Faces provides a number of server-side events. Table 5–2 lists the events
generated by ADF Faces components on the server, and the components that trigger
them.

* This focus event is generated when focusing in on a specific subtree, which is not the
same as a client-side keyboard focus event.

** The LoadEvent event is fired after the initial page is displayed (data streaming
results may arrive later).

All server events have event listeners on the associated component(s). You need to
create a handler that processes the event and then associate that handler code with the
listener on the component.

For example, in the File Explorer application, a selection event is fired when a user
selects a row in the table. Because the table’s selectionListener attribute is bound to
the tableSelectFileItem handler method on the TableContentView.java managed
bean, that method is invoked in response to the event.

To handle server-side events:
1. In a managed bean (or the backing bean for the page that will use the event

listener), create a public method that accepts the event (as the event type) as the
only parameter and returns void. Example 5–1 shows the code for the

Table 5–2 ADF Faces Server Events

Event Triggered by Component...

ActionEvent All command components

DialogEvent dialog

DisclosureEvent showDetail, showDetailHeader, showDetailItem

FocusEvent * tree, treeTable

LaunchEvent All command components

LaunchPopupEvent inputListOfValues, inputComboboxListOfValues

LoadEvent ** document

PollEvent poll

QueryEvent query, quickQuery

QueryOperationEvent query, quickQuery

RangeChangeEvent table

RegionNavigationEvent region

ReturnEvent All command components

ReturnPopupEvent inputListOfValues, inputComboboxListOfValues

RowDisclosureEvent tree, treeTable

SelectionEvent tree, treeTable, table

SortEvent treeTable, table

ValueChangeEvent All input and select components (components that implement
EditableValueHolder)

Using JavaScript for ADF Faces Client Events

Handling Events 5-5

tableSelectFileItem handler. (For information about creating and using
managed beans, see Section 2.6, "Creating and Using Managed Beans.")

Example 5–1 Event Listener Method

 public void tableSelectFileItem(SelectionEvent selectionEvent)
 {
 FileItem data = (FileItem)this.getContentTable().getSelectedRowData();
 setSelectedFileItem(data);
 }

2. To register an event listener method on a component, in the Structure window,
select the component that will invoke the event. In the Property Inspector, use the
dropdown menu next to the event listener property, and choose Edit.

3. Use the Edit Property dialog to select the managed bean and method created in
Step 1.

Example 5–2 shows sample code for registering a selection event listener method
on a table component.

Example 5–2 Registering an Event Listener Method

<af:table id="folderTable" var="file"
. . .
 rowSelection="single"
 selectionListener="#{explorer.tableContentView.tableSelectFileItem}"
. . .
</af:table>

5.3 Using JavaScript for ADF Faces Client Events
Most components can also work with client-side events. Handling events on the client
saves a roundtrip to the server. When you use client-side events, instead of having
managed beans contain the event handler code, you use JavaScript, which can be
contained either on the calling page or in a JavaScript library.

By default, client events are processed only on the client. However, some event types
are also delivered to the server, for example, AdfActionEvent events, which indicate a
button has been clicked. Other events may be delivered to the server depending on the
component state. For example, AdfValueChangeEvent events will be delivered to the
server when the autoSubmit attribute is set to true. You can cancel an event from
being delivered to the server if no additional processing is needed. However, some

Tip: If the event listener code is likely to be used by more than one
page in your application, consider creating an event listener
implementation class that all pages can access. All server event
listener class implementations must override a processEvent()
method, where Event is the event type.

For example, the LaunchListener event listener accepts an instance of
LaunchEvent as the single argument. In an implementation, you must
override the event processing method, as shown in the following
method signature:

public void processLaunch (LaunchEvent evt)
{
 // your code here
}

Using JavaScript for ADF Faces Client Events

5-6 Web User Interface Developer's Guide for Oracle Application Development Framework

client events cannot be canceled. For example, because the popupOpened event type is
delivered after the popup window has opened, this event delivery to the server cannot
be canceled.

Table 5–3 lists the events generated by ADF Faces client components, whether or not
events are sent to the sever, whether or not the events are cancelable, and the
components that trigger the events.

Performance Tip: If no server processing is needed for an event,
consider canceling the event at the end of processing so that the event
does not propagate to the server. For more information, see
Section 5.3.5, "How to Prevent Events from Propagating to the Server."

Table 5–3 ADF Faces Client Events

Event Type Event Class
Propagates
to Server

Can Be
Canceled Triggered by Component

action AdfActionEvent Yes Yes All command components

dialog AdfDialogEvent Yes Yes dialog

When user selects the OK or
Cancel button in a dialog

disclosure AdfDisclosureEvent Yes Yes showDetail, showDetailHeader,
showDetailItem

When the disclosure state is
toggled by the user

AdfFocusEvent Yes Yes tree, treeTable

AdfLaunchPopupEvent Yes Yes inputListOfValues,
inputComboboxListOfValues

inlineFrameLoad AdfDomComponentEvent Yes Yes inlineFrame

When the internal iframe fires its
load event.

load AdfComponentEvent Yes Yes document

After the document’s contents
have been displayed on the
client, even when PPR navigation
is used. It does not always
correspond to the onLoad DOM
event.

AdfPollEvent Yes Yes poll

popupOpened AdfPopupOpenedEvent No No popup

After a popup window or dialog
is opened

popupOpening AdfPopupOpeningEvent No Yes popup

Prior to opening a popup
window or dialog

popupClosed AdfPopupClosedEvent No No popup

After a popup window or dialog
is closed

propertyChange AdfPropertyChangeEvent No No All components

Using JavaScript for ADF Faces Client Events

Handling Events 5-7

ADF Faces also supports client keyboard and mouse events, as shown in Table 5–4

query AdfQueryEvent Yes Yes query, quickQuery

Upon a query action (that is,
when the user clicks the search
icon or search button)

queryOperation AdfQueryOperationEvent Yes Yes query, quickQuery

AdfReturnEvent Yes Yes All command components

AdfReturnPopupDataEvent Yes Yes inputListOfValues,
inputComboboxListOfValues

AdfReturnPopupEvent Yes Yes inputListOfValues,
inputComboboxListOfValues

rowDisclosure AdfRowDisclosureEvent Yes Yes tree, treeTable

When the row disclosure state is
toggled

selection AdfSelectionEvent Yes Yes tree, treeTable, table

When the selection state changes

sort AdfSortEvent Yes Yes treeTable, table

When the user sorts the table
data

touchStart
touchMove
touchEnd
touchCancel

AdfComponentTouchEvent No Yes All

valueChange AdfValueChangeEvent Yes Yes All input and select components
(components that implement
EditableValueHolder)

When the value of an input or
select component is changed

Table 5–4 Keyboard and Mouse Event Types Supported

Event Type Event Fires When...

click User clicks a component

dblclick User double-clicks a component

mousedown User moves mouse down on a component

mouseup User moves mouse up on a component

mousemove User moves mouse while over a component

mouseover Mouse enters a component

mouseout Mouse leaves a component

keydown User presses key down while focused on a component

keyup User releases key while focused on a component

keypress When a successful keypress occurs while focused on a component

focus Component gains keyboard focus

Table 5–3 (Cont.) ADF Faces Client Events

Event Type Event Class
Propagates
to Server

Can Be
Canceled Triggered by Component

Using JavaScript for ADF Faces Client Events

5-8 Web User Interface Developer's Guide for Oracle Application Development Framework

The clientListener tag provides a declarative way to register a client-side event
handler script on a component. The script will be invoked when a supported client
event type is fired. Example 5–3 shows an example of a JavaScript function associated
with an action event.

Example 5–3 clientListener Tag

<af:commandButton id="button0"
 text="Do something in response to an action">
 <af:clientListener method="someJSMethod" type="action"/>
</af:commandButton>

5.3.1 How to Use Client-Side Events
To use client-side events, you need to first create the JavaScript that will handle the
event. You then use a clientListener tag.

To use client-side events:
1. Create the JavaScript event handler function. For information about creating

JavaScript, see Section 3.3, "Adding JavaScript to a Page." Within that functionality,
you can add the following:

■ Locate a client component on a page

If you want your event handler to operate on another component, you must
locate that component on the page. For example, in the File Explorer
application, when users choose the Give Feedback menu item in the Help
menu, the associated JavaScript function has to locate the help popup dialog
in order to open it. For more information about locating client components, see
Section 3.5, "Locating a Client Component on a Page."

■ Return the original source of the event

If you have more than one of the same component on the page, your
JavaScript function may need to determine which component issued the event.
For example, say more than one component can open the same popup dialog,
and you want that dialog aligned with the component that called it. You must
know the source of the AdfLaunchPopupEvent in order to determine where to
align the popup dialog. For more information, see Section 5.3.2, "How to

blur Component loses keyboard focus

Best Practice: Keyboard and mouse events wrap native DOM
events using the AdfUIInputEvent subclass of the AdfBaseEvent class,
which provides access to the original DOM event and also offers a
range of convenience functions for retrieval of key codes, mouse
coordinates, and so on. The AdfBaseEvent class also accounts for
browser differences in how these events are implemented.
Consequently, you must avoid invoking the getNativeEvent()
method on the directly, and instead use the AdfUIInputEvent API.

Tip: Use the clientListener tag instead of the component's
JavaScript event properties.

Table 5–4 (Cont.) Keyboard and Mouse Event Types Supported

Event Type Event Fires When...

Using JavaScript for ADF Faces Client Events

Handling Events 5-9

Return the Original Source of the Event."

■ Add client attributes

It may be that your client event handler will need to work with certain
attributes of a component. For example, in the File Explorer application, when
users choose the About menu item in the Help menu, a dialog launches that
allows users to provide feedback. The function used to open and display this
dialog is also used by other dialogs, which may need to be displayed
differently. Therefore, the function needs to know which dialog to display
along with information about how to align the dialog. This information is
carried in client attributes. Client attributes can also be used to marshall
custom server-side attributes to the client. For more information, see
Section 5.3.3, "How to Use Client-Side Attributes for an Event."

■ Cancel propagation to the server

Some of the components propagate client-side events to the server, as shown
in Table 5–3. If you do not need this extra processing, then you can cancel that
propagation. For more information, see Section 5.3.5, "How to Prevent Events
from Propagating to the Server."

2. Once you create the JavaScript function, you must add an event listener that will
call the event method.

1. Select the component to invoke the JavaScript, and in the Property Inspector,
set ClientComponent to true.

2. In the Component Palette, from the Operations panel, drag a Client Listener
and drop it as a child to the selected component.

3. In the Insert Client Listener dialog, enter the method and select the type for
the JavaScript function.

The method attribute of the clientListener tag specifies the JavaScript
function to call when the corresponding event is fired. The JavaScript function
must take a single parameter, which is the event object.

The type attribute of the clientListener tag specifies the client event type
that the tag will listen for, such as action or valueChange. Table 5–3 lists the
ADF Faces client events.

The type attribute of the clientListener tag also supports client event types
related to keyboard and mouse events. Table 5–4 lists the keyboard and mouse
event types.

Example 5–4 shows the code used to invoke the showHelpFileExplorerPopup
function from the Explorer.js JavaScript file.

Example 5–4 clientListener Tags on JSF Page

<af:commandMenuItem id="feedbackMenuItem"
 text="#{explorerBundle['menuitem.feedback']}"
 clientComponent="true">

Note: Alternatively, you can use a JSF 2.0 client behavior tag (such as
f:ajax) to respond to the client event, as all client events on ADF
Faces components are also exposed as client behaviors. For more
information, see the Java EE 6 tutorial
(http://download.oracle.com/javaee/index.html)

http://download.oracle.com/javaee/index.html

Using JavaScript for ADF Faces Client Events

5-10 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:clientListener method="Explorer.showHelpFileExplorerPopup"
 type="action"/>
</af:commandMenuItem>

4. Add any attributes required by the function by dragging a Client Attribute
from the Operations panel of the Component Palette, and dropping it as a
child to the selected component. Enter the name and value for the attribute in
the Property Inspector. Example 5–5 shows the code used to set attribute
values for the showAboutFileExplorerPopup function.

Example 5–5 Adding Attributes

 <af:commandMenuItem id="aboutMenuItem"
 text="#{explorerBundle['menuitem.about']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showAboutFileExplorerPopup"
 type="action"/>
 <af:clientAttribute name="popupCompId" value=":fe:aboutPopup"/>
 <af:clientAttribute name="align" value="end_after"/>
 <af:clientAttribute name="alignId" value="aboutMenuItem"/>
 </af:commandMenuItem>

5.3.2 How to Return the Original Source of the Event
The JavaScript method getSource() returns the original source of a client event. For
example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in Example 5–6, that could be used by multiple events to set the
alignment on a given popup dialog or window, using client attributes to pass in the
values. Because each event that uses the function may have different values for the
attributes, the function must know which source fired the event so that it can access
the corresponding attribute values (for more about using client attributes, see
Section 5.3.3, "How to Use Client-Side Attributes for an Event").

Example 5–6 Finding the Source Component of a Client Event

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 source.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

Note: If you use the attribute tag (instead of the clientAttribute
tag) to add application-specific attributes or bonus attributes to a
server component, those attributes are not included on the client
component equivalent. You can use the clientAttribute tag on the
JSF page, and the value will then be available on both the server and
client. For information about posting client values back to the server,
see Section 5.4, "Sending Custom Events from the Client to the Server."
For information about bonus attributes, see Section 3.8, "Using Bonus
Attributes for Client-Side Components."

Using JavaScript for ADF Faces Client Events

Handling Events 5-11

The getSource() method is called to determine the client component that fired the
current focus event, which in this case is the popup component.

5.3.3 How to Use Client-Side Attributes for an Event
There may be cases when you want the script logic to cause some sort of change on a
component. To do this, you may need attribute values passed in by the event. For
example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in Example 5–7, that can be used to set the alignment on a given
popup component, using client attributes to pass in the values. The attribute values are
accessed by calling the getProperty method on the source component.

Example 5–7 Attribute Values Are Accessed from JavaScript

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 var aboutPopup = event.getSource().findComponent(popupCompId);
 aboutPopup.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

The values are set on the source component, as shown in Example 5–8.

Example 5–8 Setting Attributes on a Component

<af:commandMenuItem id="aboutMenuItem"
 text="#{explorerBundle['menuitem.about']}"
 clientComponent="true">
 <af:clientListener method="Explorer.showAboutFileExplorerPopup"
 type="action"/>
 <af:clientAttribute name="popupCompId" value=":aboutPopup"/>
 <af:clientAttribute name="align" value="end_after"/>
 <af:clientAttribute name="alignId" value="aboutMenuItem"/>
</af:commandMenuItem>

Using attributes in this way allows you to reuse the script across different components,
as long as they all trigger the same event.

5.3.4 How to Block UI Input During Event Execution
There may be times when you do not want the user to be able to interact with the UI
while a long-running event is processing. For example, suppose your application uses
a button to submit an order, and part of the processing includes creating a charge to
the user’s account. If the user were to inadvertently press the button twice, the account
would be charged twice. By blocking user interaction until server processing is
complete, you ensure no erroneous client activity can take place.

The ADF Faces JavaScript API includes the AdfBaseEvent.preventUserInput function.
To prevent all user input while the event is processing, you can call the
preventUserInput function, and a glass pane will cover the entire browser window,
preventing further input until the event has completed a roundtrip to the server.

Using JavaScript for ADF Faces Client Events

5-12 Web User Interface Developer's Guide for Oracle Application Development Framework

You can use the preventUserInput function only with custom events, events raised in
a custom client script, or events raised in a custom client component’s peer.
Additionally, the event must propagate to the server. Example 5–9 shows how you can
use preventUserInput in your JavaScript.

Example 5–9 Blocking UI Input

function queueEvent(event)
{
 event.cancel(); // cancel action event
 var source = event.getSource();

 var params = {};
 var type = "customListener";
 var immediate = true;
 var isPartial = true;
 var customEvent = new AdfCustomEvent(source, type, params, immediate);
 customEvent.preventUserInput();
 customEvent.queue(isPartial);
}

5.3.5 How to Prevent Events from Propagating to the Server
By default, some client events propagate to the server once processing has completed
on the client. In some circumstances, it is desirable to block this propagation. For
instance, if you are using a commandButton component to execute JavaScript code
when the button is clicked, and there is no actionListener event listener on the
server, propagation of the event is a waste of resources. To block propagation to the
server, you call the cancel() function on the event in your listener. Once the
cancel() function has been called, the isCanceled() function will return true.

Example 5–10 shows the showAboutFileExplorerPopup function, which cancels its
propagation.

Example 5–10 Canceling a Client Event from Propagating to the Server

Explorer.showAboutFileExplorerPopup = function(event)
{
 var source = event.getSource();
 var alignType = source.getProperty("align");
 var alignCompId = source.getProperty("alignId");
 var popupCompId = source.getProperty("popupCompId");

 var aboutPopup = event.getSource().findComponent(popupCompId);
 aboutPopup.show({align:alignType, alignId:alignCompId});

 event.cancel();
}

Canceling an event may also block some default processing. For example, canceling an
AdfUIInputEvent event for a context menu will block the browser from showing a
context menu in response to that event.

The cancel() function call will be ignored if the event cannot be canceled, which an
event indicates by returning false from the isCancelable() function (events that
cannot be canceled show "no" in the Is Cancelable column in Table 5–3). This generally
means that the event is a notification that an outcome has already completed, and

Using JavaScript for ADF Faces Client Events

Handling Events 5-13

cannot be blocked. There is also no way to uncancel an event once it has been
canceled.

5.3.6 What Happens at Runtime: How Client-Side Events Work
Event processing in general is taken from the browser's native event loop. The page
receives all DOM events that bubble up to the document, and hands them to the peer
associated with that piece of DOM. The peer is responsible for creating a rich client
JavaScript event object that wraps that DOM event, returning it to the page, which
queues the event (for more information about peers and the ADF Faces architecture,
see Chapter 3, "Using ADF Faces Architecture").

The event queue on the page most commonly empties at the end of the browser's
event loop once each DOM event has been processed by the page (typically, resulting
in a component event being queued). However, because it is possible for events to be
queued independently of any user input (for example, poll components firing their
poll event when a timer is invoked), queueing an event also starts a timer that will
force the event queue to empty even if no user input occurs.

The event queue is a First-In-First-Out queue. For the event queue to empty, the page
takes each event object and delivers it to a broadcast() function on the event source.
This loop continues until the queue is empty. It is completely legitimate (and common)
for broadcasting an event to indirectly lead to queueing a new, derived event. That
derived event will be broadcast in the same loop.

When an event is broadcast to a component, the component does the following:

1. Delivers the event to the peer's DispatchComponentEvent method.

2. Delivers the event to any listeners registered for that event type.

3. Checks if the event should be bubbled, and if so initiates bubbling. Most events do
bubble. Exceptions include property change events (which are not queued, and do
not participate in this process at all) and, for efficiency, mouse move events.

While an event is bubbling, it is delivered to the AdfUIComponent
HandleBubbledEvent function, which offers up the event to the peer's
DispatchComponentEvent function. Note that client event listeners do not receive
the event, only the peers do.

Event bubbling can be blocked by calling an event's stopBubbling() function,
after which the isBubblingStopped() function will return true, and bubbling will
not continue. As with cancelling, you cannot undo this call.

4. If none of the prior work has canceled the event, calls the
AdfUIComponent.HandleEvent method, which adds the event to the server event
queue, if the event requests it.

5.3.7 What You May Need to Know About Using Naming Containers
Several components in ADF Faces are NamingContainer components, such as
pageTemplate, subform, table, and tree. When working with client-side API and
events in pages that contain NamingContainer components, you should use the
findComponent() method on the source component.

Note: Canceling an event does not stop bubbling. If you want to both
cancel an event and stop it from bubbling, you must call both
functions.

Sending Custom Events from the Client to the Server

5-14 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, because all components in any page within the File Explorer application
eventually reside inside a pageTemplate component, any JavaScript function must use
the getSource() and findComponent() methods, as shown in Example 5–11. The
getSource() method accesses the AdfUIComponent class, which can then be used to
find the component.

Example 5–11 JavaScript Using the findComponent() Method

function showPopup(event)
{
 event.cancel();
 var source = event.getSource();
 var popup = source.findComponent("popup");
 popup.show({align:"after_end", alignId:"button"});
}

When you use the findComponent() method, the search starts locally at the component
where the method is invoked. For more information about working with naming
containers, see Section 3.5, "Locating a Client Component on a Page."

5.4 Sending Custom Events from the Client to the Server
While the clientAttribute tag supports sending bonus attributes from the server to
the client, those attributes are not synchronized back to the server. To send any custom
data back to the server, use a custom event sent through the AdfCustomEvent class and
the serverListener tag.

The AdfCustomEvent.queue() JavaScript method enables you to fire a custom event
from any component whose clientComponent attribute is set to true. The custom
event object contains information about the client event source and a map of
parameters to include on the event. The custom event can be set for immediate
delivery (that is, during the Apply Request Values phase), or non-immediate delivery
(that is, during the Invoke Application phase).

For example, in the File Explorer application, after entering a file name in the search
field on the left, users can press the Enter key to invoke the search. As Example 5–12
shows, this happens because the inputText field contains a clientListener that
invokes a JavaScript function when the Enter key is pressed.

Example 5–12 clientListener Invokes JavaScript Function and Causes ServerLIstener to
Be Invoked

//Code on the JSF page...
<af:inputText id="searchCriteriaName"
 value="#{explorer.navigatorManager.searchNavigator.
 searchCriteriaName}"
 shortDesc="#{explorerBundle['navigator.filenamesearch']}">
 <af:serverListener type="enterPressedOnSearch"
 method="#{explorer.navigatorManager.
 searchNavigator.searchOnEnter}"/>
 <af:clientListener type="keyPress"
 method="Explorer.searchNameHandleKeyPress"/>
</af:inputText>

//Code in JavaScript file...
Explorer.searchNameHandleKeyPress = function (event)
{
 if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
 {

Sending Custom Events from the Client to the Server

Handling Events 5-15

 var source = event.getSource();
 AdfCustomEvent.queue(source,
 "enterPressedOnSearch",
 {},
 false);
 }
}

The JavaScript contains the AdfCustomEvent.queue method that takes the event
source, the string enterPressedOnSearch as the custom event type, a null parameter
map, and False for the immediate parameter.

The inputText component on the page also contains the following serverListener
tag:

<af:serverListener type="enterPressedOnSearch"
 method="#{explorer.navigatorManager.
 searchNavigator.searchOnEnter}"/>

Because the type value enterPressedOnSearch is the same as the value of the
parameter in the AdfCustomEvent.queue method in the JavaScript, the method that
resolves to the method expression
#{explorer.navigatorManager.searchNavigator.searchOnEnter} will be invoked.

5.4.1 How to Send Custom Events from the Client to the Server
To send a custom event from the client to the server, fire the client event using a
custom event type, write the server listener method on a backing bean, and have this
method process the custom event. Next, register the server listener with the
component.

To send custom events:
1. Create the JavaScript that will handle the custom event using the

AdfCustomEvent.queue() method to provide the event source, custom event type,
and the parameters to send to the server.

For example, the JavaScript used to cause the pressing of the Enter key to invoke
the search functionality uses the AdfCustomEvent.queue method that takes the
event source, the string enterPressedOnSearch as the custom event type, a null
parameter map, and False for the immediate parameter, as shown in
Example 5–13.

Example 5–13 Sample JavaScript for Custom Events

Explorer.searchNameHandleKeyPress = function (event)
{
 if (event.getKeyCode()==AdfKeyStroke.ENTER_KEY)
 {
 var source = event.getSource();
 AdfCustomEvent.queue(source,
 "enterPressedOnSearch",
 {},
 false);
 }
}

2. Create the server listener method on a managed bean. This method must be public
and take an oracle.adf.view.rich.render.ClientEvent object and return a void
type. Example 5–14 shows the code used in the SearchNavigatorView managed

Sending Custom Events from the Client to the Server

5-16 Web User Interface Developer's Guide for Oracle Application Development Framework

bean that simply calls another method to execute the search and then refreshes the
navigator.

Example 5–14 Server Listener Method for a Custom Client Event

 public void searchOnEnter(ClientEvent clientEvent)
 {
 doRealSearchForFileItem();

 // refresh search navigator
 this.refresh();
 }

3. Register the clientListener by dragging a Client Listener from the Operations
panel of the Component Palette, and dropping it as a child to the component that
raises the event.

4. In the Insert Client Listener dialog, enter the method and type for the JavaScript
function. Be sure to include a library name if the script is not included on the page.
The type can be any string used to identify the custom event, for example,
enterPressedOnSearch was used in the File Explorer.

5. Register the server listener by dragging a Server Listener from the Operations
panel of the Component Palette, and dropping it as a sibling to the
clientListener tag.

6. In the Insert Server Listener dialog, enter the string used as the Type value for the
client listener, as the value for this server listener, for example
enterPressedOnSearch.

In the Property Inspector, for the method attribute, enter an expression that
resolves to the method created in Step 2.

5.4.2 What Happens at Runtime: How Client and Server Listeners Work Together
At runtime, when the user initiates the event, for example, pressing the Enter key, the
client listener script executes. This script calls the AdfCustomEvent.queue() method,
and a custom event of the specified event type is queued on the input component. The
server listener registered on the input component receives the custom event, and the
associated bean method executes.

Note: The Java-to-JavaScript transformation can lose type
information for Numbers, chars, Java Objects, arrays, and nonstring
CharSequences. Therefore, if an object being sent to the server was
initially on the server, you may want to add logic to ensure the correct
conversion. See Section 5.4.3, "What You May Need to Know About
Marshalling and Unmarshalling Data."

Note: On the component that will fire the custom client event, the
clientComponent attribute must be set to true to ensure that a
client-side generated component is available.

Sending Custom Events from the Client to the Server

Handling Events 5-17

5.4.3 What You May Need to Know About Marshalling and Unmarshalling Data
Marshalling and unmarshalling is the process of converting data objects of a
programming language into a byte stream and back into data objects that are native to
the same or a different programming language. In ADF Faces, marshalling and
unmarshalling refer to transformation of data into a suitable format so that it can be
optimally exchanged between JavaScript on the client end and Java on the server end.
When the client is browser-based, the two common strategies for marshalling are
JavaScript Object Notation (JSON) and XML. ADF Faces uses a mix of both of these
strategies, with the information sent from the server to the client mostly as JSON and
information sent from the client to the server as XML (for more information about
JSON, see http://www.json.org).

When you send information from JavaScript to Java, the JavaScript data objects are
converted (marshalled) into XML, which is then parsed back or unmarshalled into
Java objects at the server-side. For example, consider a JSF page that has a
commandButton component whose ID is cmd. When a user clicks the commandButton
component, the client must communicate to the server that an actionEvent has been
fired by this specific commandButton. In the requestParameter map, the information is
mapped with the key using the format event + . + id where id is the ID of the
component. So the requestParameter map key for the commandComponent would be
the XML string stored as the value of the key event.cmd.

The XML fragment after marshalling in this example would be:

<m xmlns="http:/oracle.com/richClient/comm"><k v="type"><s>action</s></k></m>

The m in the example means that this should be unmarshalled into a map. The k
denotes the key and the value is of type String. On the server side, this XML fragment
is parsed into a java.util.Map of one entry having type (java.lang.String) as the
key and action (java.lang.String) as the value.

The unmarshalled information is grouped per client ID, stored in the request map, and
used when the components are being decoded. So in this example, when the
commandButton is decoded, it will check for the presence of any client events using its
client ID (event.cmd) and then queue an action event if one is found (the decode
behavior is implemented in the renderer hierarchy for commandButton component).

Table 5–5 shows the mapping between corresponding JavaScript and Java types.

Marshalling from Java to JavaScript happens mostly through JSON. This type of
marshalling is straightforward as JSON is the object literal notation in JavaScript. The
client-components usually have their properties encoded in JSON. Consider the
following example:

new AdfRichCommandButton(’demoTemplate:richComand’
 {’partialSubmit’:true,’useWindow’:false})

Table 5–5 JavaScript to Java Type Map

JavaScript Type Java Type

Boolean java.lang.Boolean

Number java.lang.Double

String java.lang.String

Date java.util.Date

Array java.util.ArrayList

Object java.util.Map

http://www.json.org
http://www.json.org
http://www.json.org

Executing a Script Within an Event Response

5-18 Web User Interface Developer's Guide for Oracle Application Development Framework

The second argument ({’partialSubmit’:true,’useWindow’:false}) is a JSON object.
There is no additional unmarshalling step required at the browser end as JSON can
directly be parsed into the JavaScript environment as an object.

Encoding for a table also uses JSON to pass push messages to the client. The following
is an example of an envelope containing a single encoded push message:

[{'rKey':'0','type':'update','data':[{'val':'Active Data Every Second: on row
0:78','prop':'value','cInd':0},{'val':'Active Data Every Second: on row
0:78','prop':'value','cInd':1}]}]

The envelope is a JavaScript Array with only one object, which describes the message.
This message contains information about the type of change, the actual value of the
data, and so on, that is then used by the client-side table peer to update the table itself.

Table 5–6 shows the mapping between corresponding Java and JavaScript types.

Note that there could be some loss of information during the conversion process. For
example, say you are using the following custom event to send the number 1 and the
String test, as shown in the following example:

AdfCustomEvent.queue(event.getSource(), "something", {first:1, second:"test"});

In the server-side listener, the type of the first parameter would become a
java.lang.Double because numbers are converted to Doubles when going from
JavaScript to Java. However, it might be that the parameter started on the server side
as an int, and was converted to a number when conversion from Java to JavaScript
took place. Now on its return trip to the server, it will be converted to a Double.

5.5 Executing a Script Within an Event Response
Using the ExtendedRenderKitService class, you can add JavaScript to an event
response, for example, after invoking an action method binding. It can be a simple
message like sending an alert informing the user that the database connection could

Table 5–6 Java to JavaScript Type Map

Java Type JavaScript Type

java.lang.Boolean Boolean

java.lang.Double Number

java.lang.Integer Number

java.lang.Float Number

java.lang.Long Number

java.lang.Short Number

java.lang.Character String

java.lang.CharSequence String

java.util.Collection Array

java.util.Date Date

java.util.Map Object

Array Array

java.awt.Color TrColor

Executing a Script Within an Event Response

Handling Events 5-19

not be established, or a call to a function like hide() on a popup window to
programatically dismiss a popup dialog.

For example, in the File Explorer application, when the user clicks the UpOneFolder
navigation button to move up in the folder structure, the folder pane is repainted to
display the parent folder as selected. The HandleUpOneFolder() method is called in
response to clicking the UpOneFolder button event. It uses the
ExtendedRenderKitService class to add JavaScript to the response.

Example 5–15 shows the UpOneFolder code in the page with the actionListener
attribute bound to the HandleUpOneFolder() handler method which will process the
action event when the button is clicked.

Example 5–15 Invoking a Method to Add JavaScript to a Response

<af:commandToolbarButton id="upOneFolder"
. . .
 actionListener="#{explorer.headerManager.handleUpOneFolder}"/>

Example 5–16 shows the handleUpOneFolder method that uses the
ExtendedRenderKitService class.

Example 5–16 Adding JavaScript to a Response

public void handleUpOneFolder(ActionEvent actionEvent)
 {
 UIXTree folderTree =
 feBean.getNavigatorManager().getFoldersNavigator().getFoldersTreeComponent();
 Object selectedPath =
 feBean.getNavigatorManager().getFoldersNavigator().getFirstSelectedTreePath();

 if (selectedPath != null)
 {
 TreeModel model =
 _feBean.getNavigatorManager().getFoldersNavigator().getFoldersTreeModel();
 Object oldRowKey = model.getRowKey();
 try
 {
 model.setRowKey(selectedPath);
 Object parentRowKey = model.getContainerRowKey();
 if (parentRowKey != null)
 {
 folderTree.getSelectedRowKeys().clear();
 folderTree.getSelectedRowKeys().add(parentRowKey);
 // This is an example of how to force a single attribute
 // to rerender. The method assumes that the client has an optimized
 // setter for "selectedRowKeys" of tree.
 FacesContext context = FacesContext.getCurrentInstance();
 ExtendedRenderKitService erks =
 Service.getRenderKitService(context,
 ExtendedRenderKitService.class);
 String clientRowKey = folderTree.getClientRowKeyManager().
 getClientRowKey(context, folderTree, parentRowKey);
 String clientId = folderTree.getClientId(context);
 StringBuilder builder = new StringBuilder();
 builder.append("AdfPage.PAGE.findComponent('");
 builder.append(clientId);
 builder.append("').setSelectedRowKeys({'");
 builder.append(clientRowKey);
 builder.append("':true});");

Using Client Behavior Tags

5-20 Web User Interface Developer's Guide for Oracle Application Development Framework

 erks.addScript(context, builder.toString());
 }
 }
 finally
 {
 model.setRowKey(oldRowKey);
 }
 // Only really needed if using server-side rerendering
 // of the tree selection, but performing it here saves
 // a roundtrip (just one, to fetch the table data, instead
 // of one to process the selection event only after which
 // the table data gets fetched!)
 _feBean.getNavigatorManager().getFoldersNavigator().openSelectedFolder();
 }

 }

5.6 Using Client Behavior Tags
ADF Faces client behavior tags provide declarative solutions to common client
operations that you would otherwise have to write yourself using JavaScript, and
register on components as client listeners. By using these tags instead of writing your
own JavaScript code to implement the same operations, you reduce the amount of
JavaScript code that needs to be downloaded to the browser.

ADF Faces provides these client behavior tags that you can use in place of client
listeners:

■ panelDashboardBehavior: Enables the runtime insertion of a child component into
a panelDasboard component to appear more responsive. For details, see
Section 8.8.1, "How to Use the panelDashboard Component."

■ insertTextBehavior: Enables a command component to insert text at the cursor in
an inputText component. For details, see Section 9.3.2, "How to Add the Ability to
Insert Text into an inputText Component."

■ richTextEditorInsertBehavior: Enables a command component to insert text
(including preformatted text) at the cursor in a richTextEditor component. For
details, see Section 9.8.2, "How to Add the Ability to Insert Text into a
richTextEditor Component."

■ showPopupBehavior: Enables a command component to launch a popup
component. For details, see Section 13.4, "Invoking Popup Elements."

■ showPrintablePageBehavior: Enables a command component to generate and
display a printable version of the page. For details, see Section 35.2, "Displaying a
Page for Print."

■ scrollComponentIntoViewBehavior: Enables a command component to jump to a
named component when clicked. For details, see Section 5.6.1, "How to Use the
scrollComponentIntoViewBehavior Tag."

Client behavior tags cancel server-side event delivery automatically. Therefore, any
actionListener or action attributes on the parent component will be ignored. This
cannot be disabled. If you want to also trigger server-side functionality, you should
use either a client-side event (see Section 5.3, "Using JavaScript for ADF Faces Client
Events"), or add an additional client listener that uses AdfCustomEvent and
af:serverListener to deliver a server-side event (see Section 5.4, "Sending Custom
Events from the Client to the Server").

Using Client Behavior Tags

Handling Events 5-21

5.6.1 How to Use the scrollComponentIntoViewBehavior Tag
Use the scrollComponentIntoViewBehavior tag when you want the user to be able to
jump to a particular component on a page. This action is similar to an anchor in
HTML. For example, you may want to allow users to jump to a particular part of a
page using a commandLink component. For the richTextEditor and inlineFrame
components, you can jump to a subcomponent. For example, Figure 5–1 shows a
richTextEditor component with a number of sections in its text. The command links
below the editor allow the user to jump to specific parts of the text.

Figure 5–1 scrollComponentIntoViewBehavior Tag in an Editor

You can also configure the tag to have focus switched to the component to which the
user has scrolled.

To use the scrollComponentIntoViewBehavior tag:
1. Create a command component that the user will click to jump to the named

component. For procedures, see Section 18.2.1, "How to Use Command Buttons
and Command Links."

2. In the Component Palette, from the Operations section, drag and drop a Scroll
Component Into View Behavior as a child to the command component.

3. In the Insert Scroll Component Into View Behavior dialog, use the dropdown
arrow to select Edit and then navigate to select the component to which the user
should jump.

4. In the Property Inspector, set the focus attribute to true if you want the
component to have focus after the jump.

5. For a richTextEditor or inlineFrame component, optionally enter a value for the
subTargetId attribute. This ID is defined in the value of the richTextEditor or
inlineFrame component.

For example, the value of the subTargetId attribute for the
scrollComponentIntoViewBehavior tag shown in Figure 5–1 is Introduction. The
value of the richTextEditor is bound to the property shown in Example 5–17.
Note that Introduction is the ID for the first header.

Example 5–17 subTargetId Value Defined in a Property

private static final String _RICH_SECTIONED_VALUE =
 "<div>\n" +
 " <h2>\n" +
 " Introduction</h2>\n" +
 " <p>\n" +
 " The ADF Table component is used to display a list of structured data. For

Using Polling Events to Update Pages

5-22 Web User Interface Developer's Guide for Oracle Application Development Framework

example,\n" +
 " if we have a data structure called Person that has two properties -
firstname and\n" +
 " lastname, we could use a Table with two columns - one for firstname, and
the other\n" +
 " for lastname - to display a list of Person objects.\n" +
 " </p>\n" +
 " </div>\n" +
 " <div>\n" +
 " <h2>\n" +
 " The Table Model</h2>\n" +
 " <p>\n" +
 . . .
 </div>";

5.7 Using Polling Events to Update Pages
ADF Faces provides the poll component whose pollEvent can be used to
communicate with the server at specified intervals. For example, you might use the
poll component to update an outputText component, or to deliver a heartbeat to the
server to prevent a user from being timed out of their session.

You need to create a listener for the pollEvent that will be used to do the processing
required at poll time. For example, if you want to use the poll component to update
the value of an outputText component, you would implement a pollEventListener
method that would check the value in the data source and then update the component.

You can configure the interval time to determine how often the poll component will
deliver its poll event. You also configure the amount of time after which the page will
be allowed to time out. This can be useful, as the polling on a page causes the session
to never time out. Each time a request is sent to the server, a session time out value is
written to the page to determine when to cause a session time out. Because the poll
component will continually send a request to the server (based on the interval time),
the session will never time out. This is expensive both in network usage and in
memory.

To avoid this issue, the web.xml configuration file contains the
oracle.adf.view.rich.poll.TIMEOUT context-parameter, which specifies how long a
page should run before it times out. A page is considered eligible to time out if there is
no keyboard or mouse activity. The default timeout period is set at ten minutes. So if
user is inactive for 10 minutes, that is, does not use the keyboard or mouse, then the
framework stops polling, and from that point on, the page participates in the standard
server-side session timeout (for more information, see Section A.2.3.21, "Session
Timeout Warning").

If the application does time out, when the user moves the mouse or uses the keyboard
again, a new session timeout value is written to the page, and polling starts again.

You can override this time for a specific page using the poll component’s timeout
attribute.

5.7.1 How to Use the Poll Component
When you use the poll component, you normally also create a handler method to
handle the functionality for the polling event.

Using Polling Events to Update Pages

Handling Events 5-23

Before You Begin
It may be helpful to have an understanding of how the attributes can affect
functionality. For more information, see Section 5.7, "Using Polling Events to Update
Pages"

To use a poll component:
1. In a managed bean, create a handler for the poll event. For more information about

managed beans, see Section 2.6, "Creating and Using Managed Beans"

2. Create a poll component by dragging and dropping a Poll from the Operations
panel of the Component Palette.

3. In the Property Inspector, expand the Common section and set the following:

■ Interval: Enter the amount of time in milliseconds between poll events. Set to
0 to disable polling.

■ PollListener: Enter an EL expression that evaluates to the method in Step 1.

4. If you want to override the global timeout value in the web.xml file, expand the
Other section and set Timeout to the amount of time in milliseconds after which
the page will stop polling and the session will time out.

Using Polling Events to Update Pages

5-24 Web User Interface Developer's Guide for Oracle Application Development Framework

6

Validating and Converting Input 6-1

6Validating and Converting Input

This chapter describes how to add conversion and validation capabilities to ADF Faces
input components in your application. It also describes how to handle and display any
errors, including those not caused by validation.

This chapter includes the following sections:

■ Section 6.1, "Introduction to ADF Faces Converters and Validators"

■ Section 6.2, "Conversion, Validation, and the JSF Lifecycle"

■ Section 6.3, "Adding Conversion"

■ Section 6.4, "Creating Custom JSF Converters"

■ Section 6.5, "Adding Validation"

■ Section 6.6, "Creating Custom JSF Validation"

6.1 Introduction to ADF Faces Converters and Validators
ADF Faces input components support conversion capabilities. A web application can
store data of many types, such as int, long, and date in the model layer. When viewed
in a client browser, however, the user interface has to present the data in a manner that
can be read or modified by the user. For example, a date field in a form might
represent a java.util.Date object as a text string in the format mm/dd/yyyy. When a
user edits a date field and submits the form, the string must be converted back to the
type that is required by the application. Then the data is validated against any rules
and conditions. Conversely, data stored as something other than a String type can be
converted to a String for display and updating. Many components, such as
af:inputDate, automatically provide a conversion capability.

ADF Faces input components also support validation capabilities. If the required
attribute of an input component is set to true you can set one or more validator
attributes or you can use the ADF Faces validator components. In addition, you can
create your own custom validators to suit your business needs.

Validators and converters have a default hint message that is displayed to users when
they click in the associated field. For converters, the hint usually tells the user the
correct format to use for input values, based on the given pattern. For validators, the
hint is used to convey what values are valid, based on the validation configured for
the component. If conversion or validation fails, associated error messages are
displayed to the user. These messages can be displayed in dialogs, or they can be
displayed on the page itself next to the component whose conversion or validation
failed. For more information about displaying messages in an ADF Faces application,
see Chapter 17, "Displaying Tips, Messages, and Help."

Conversion, Validation, and the JSF Lifecycle

6-2 Web User Interface Developer's Guide for Oracle Application Development Framework

6.2 Conversion, Validation, and the JSF Lifecycle
When a form with data is submitted, the browser sends a request value to the server
for each UI component whose editable value attribute is bound. Request values are
decoded during the JSF Apply Request Values phase and the decoded value is saved
locally on the component in the sumbittedValue attribute. If the value requires
conversion (for example, if it is displayed as a String type but stored as a DateTime
object), the data is converted to the correct type during the Process Validation phase on
a per-UI-component basis.

If validation or conversion fails, the lifecycle proceeds to the Render Response phase
and a corresponding error message is displayed on the page. If conversion and
validation are successful, then the Update Model phase starts and the converted and
validated values are used to update the model.

When a validation or conversion error occurs, the component whose validation or
conversion failed places an associated error message in the queue and invalidates
itself. The current page is then redisplayed with an error message. ADF Faces
components provide a way of declaratively setting these messages.

For detailed information about how conversion and validation works in the JSF
Lifecycle, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."

6.3 Adding Conversion
A web application can store data of many types (such as int, long, date) in the model
layer. When viewed in a client browser, however, the user interface has to present the
data in a manner that can be read or modified by the user. For example, a date field in
a form might represent a java.util.Date object as a text string in the format
mm/dd/yyyy. When a user edits a date field and submits the form, the string must be
converted back to the type that is required by the application. Then the data is
validated against any rules and conditions. You can set only one converter on a UI
component.

When you create an af:inputText component and set an attribute that is of a type for
which there is a converter, JDeveloper automatically adds that converter’s tag as a
child of the input component. This tag invokes the converter, which will convert the
String type entered by the user back into the type expected by the object.

The JSF standard converters, which handle conversion between String types and
simple data types, implement the javax.faces.convert.Converter interface. The
supplied JSF standard converter classes are:

■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

■ EnumConverter

■ FloatConverter

■ IntegerConverter

Adding Conversion

Validating and Converting Input 6-3

■ LongConverter

■ NumberConverter

■ ShortConverter

Table 6–1 shows the converters provided by ADF Faces.

As with validators, the ADF Faces converters are also run on the client side.

If no converter is explicitly added, ADF Faces will attempt to create a converter based
on the data type. Therefore, if the value is bound to any of the following types, you do
not need to explicitly add a converter:

■ java.util.Date

■ java.util.Color

■ java.awt.Color

■ java.lang.Number

■ java.lang.Integer

■ java.lang.Long

■ java.lang.Short

■ java.lang.Byte

■ java.lang.Float

■ java.lang.Double

Unlike the converters listed in Table 6–1, the JavaScript-enabled converters are applied
by type and used instead of the standard ones, overriding the class and id attributes.
They do not have associated tags that can be nested in the component.

Some oracle.jbo.domain datatypes are automatically converted. For some
oracle.jbo.domain datatypes that are not handled automatically, you can add a
oracle.jbo.domain converter to your component as described in Section 6.3.5, "How
to Add oracle.jbo.domain Converters."

6.3.1 How to Add a Standard ADF Faces Converter
You can also manually insert a converter into a UI component.

Table 6–1 ADF Faces Converters

Converter Tag Name Description

ColorConverter af:convertColor Converts java.lang.String objects
to java.awt.Color objects. You
specify a set of color patterns as an
attribute of the converter.

DateTimeConverter af:convertDateTime Converts java.lang.String objects
to java.util.Date objects. You
specify the pattern and style of the
date as attributes of the converter.

NumberConverter af:convertNumber Converts java.lang.String objects
to java.lang.Number objects. You
specify the pattern and type of the
number as attributes of the converter.

Adding Conversion

6-4 Web User Interface Developer's Guide for Oracle Application Development Framework

To add ADF Faces converters that have tags:
1. In the Structure window, right-click the component for which you would like to

add a converter.

2. In the context menu, choose Insert inside <UI component>, then ADF Faces to
insert an ADF Faces converter, or JSF Core to insert a JSF converter.

3. Choose a converter tag (for example, ConvertDateTime).

4. In the Property Inspector, set values for the attributes, including any messages for
conversion errors. For additional help, right-click any of the attributes and choose
Help.

You can set multiple patterns for some ADF Faces converters. For more
information, see Section 6.3.2, "How to Set Attributes on a Standard ADF Faces
Converter".

ADF Faces lets you customize the detail portion of a conversion error message. By
setting a value for a MessageDetailxyz attribute, where xyz is the conversion error
type (for example, MessageDetailconvertDate), ADF Faces displays the custom
message instead of a default message, if conversion fails. For more information
about creating messages, see Chapter 17, "Displaying Tips, Messages, and Help."

6.3.2 How to Set Attributes on a Standard ADF Faces Converter
Patterns specify the format of data accepted for conversion. Multiple patterns allow for
more than one format. For example, a user could enter dates using a slash (/) or
hyphen (-) as a separator. Not all converters support multiple patterns, although
pattern matching is flexible and multiple patterns may not be needed.

Example 6–1 illustrates the use of a multiple pattern for the af:convertColor tag in
which "255-255-000" and "FFFF00" are both acceptable values.

Example 6–1 af:convertColor Multiple Patterns

<af:inputColor colorData="#{adfFacesContext.colorPalette.default49}" id="sic3"
 label="Select a color" value="#{demoColor.colorValue4}" chooseId="chooseId">
 <af:convertColor patterns="rrr-ggg-bbb RRGGBB #RRGGBB"
 transparentAllowed="false"/>
</af:inputColor>

Example 6–2 illustrates the use of an af:convertDateTime tag in which "6/9/2007"
and "2007/9/6" are both acceptable values.

Example 6–2 af:convertDateTime Multiple Patterns

 <af:inputDate id="mdf5" value="2004/09/06" label="attached converter">
 <af:convertDateTime pattern="yyyy/M/d" secondaryPattern="d/M/yyyy" />
 </af:inputDate>

Example 6–3 illustrates an af:convertNumber tag with the type attribute set to
currency to accepts "$78.57" and "$078.57" as values for conversion.

Example 6–3 af:convertNumber Set to Currency Attribute

<af:inputText label="type=currency" value="#{validate.currency}">
 <af:convertNumber type="currency"/>
</af:inputText>

Adding Conversion

Validating and Converting Input 6-5

6.3.3 What Happens at Runtime: How Converters Work
When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject() method to convert the String value to the
required object type. When there is not an attached converter and if the component is
bound to a bean property in the model, then ADF checks the model's data type and
attempts to find the appropriate converter. If conversion fails, the component’s value
attribute is set to false and JSF adds an error message to a queue that is maintained by
FacesContext. If conversion is successful and there are validators attached to the
component, the converted value is passed to the validators. If no validators are
attached to the component, the converted value is stored as a local value that is later
used to update the model.

6.3.4 What You May Need to Know About Date Converters
You should use a four-digit year pattern with a date converter to avoid ambiguity. If
you are using a two-digit year format as the pattern, all four-digit year values appear
as two digit year values. For example, if you are using a two-digit year format (such as
MM-dd-yy) as the pattern, the date values 03-01-1910 and 03-01-2010 appear as
03-01-10 in the input field and could be interpreted incorrectly, though the server
stores the correct year value.

If you are using a two-digit year format, the century containing the
two-digit-year-start value and the two-digit-year-start + 100 value is used. For
example, if two-digit-year-start value is 1912, two-digit values will resolve to a
date within 1912 through 2012. To enter dates outside this range, the end user should
enter a date with the full (four-digit) year. For more information about
two-digit-year-start element and how to configure it, see Section A.6.2, "What You
May Need to Know About Elements in trinidad-config.xml."

6.3.5 How to Add oracle.jbo.domain Converters
For oracle.jbo.domain datatypes that are not automatically converted, you will need
to reference the oracle.jbo.domain converter in your component. These converters
are automatically registered and do not need a tag.

Table 6–2 lists the oracle.jbo.domain datatype converters.

Note: While using a two-digit year format, two digit years will be
placed in the range determined by two-digit-year-start even if the
user is editing an existing value.

For example, assuming two-digit-year-start is set to 1950
(resolving year values to the range 1950 through 2050) and the
inputDate component has value 03/01/1776 (displayed as 03/01/76).
If the user modifies the value to 03/01/77, the new date would be
03/01/1977, not 03/01/1777 as may be expected.

Table 6–2 oracle.jbo.domain Datatype Converters

oracle.jbo.domain Converter Description

ordDomainConverter Handles oracle.jbo.domain.ord datatypes

genericDomainConverter Handles generic oracle.jbo.domain datatypes

Creating Custom JSF Converters

6-6 Web User Interface Developer's Guide for Oracle Application Development Framework

To add a oracle.jbo.domain converter, you can add the converter to the converter
attribute as shown in Example 6–4.

Example 6–4 Adding genericDomain Converter using the converter attribute

<af:inputText ... converter="oracle.genericDomain"/>

Or you can add the f:converter tag and reference the converter using the
converterId attribute as shown in Example 6–5.

Example 6–5 Adding genericDomain Converter using f:converter

<af:inputText ...
 <f:converter converterId="oracle.genericDomain"/>
</af:inputText>

6.4 Creating Custom JSF Converters
You can create your own converters to meet your specific business needs. You can
create custom JSF converters that run on the server-side using Java, and then also
create a JavaScript version that can run on the client-side. However, unlike creating
custom validators, you can create only converter classes. You cannot add a method to a
backing bean to provide conversion.

6.4.1 How to Create a Custom JSF Converter
Creating a custom converter requires writing the business logic for the conversion by
creating an implementation of the Converter interface that contains the
getAsObject() and getAsString() methods, and then registering the custom
converter with the application. You then use the f:converter tag and set the custom
converter as a property of that tag, or you can use the converter attribute on the input
component to bind to that converter.

You can also create a client-side version of the converter. ADF Faces client-side
converters work in the same way standard JSF conversion works on the server, except
that JavaScript is used on the client. JavaScript converter objects can throw
ConverterException exceptions and they support the getAsObject() and
getAsString() methods.

To create a custom JSF converter:
1. Create a Java class that implements the javax.faces.converter.Converter

interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and getAsObject and getAsString methods
to implement the Converter interface.

The getAsObject() method takes the FacesContext instance, the UI component,
and the String value to be converted to a specified object, for example:

public Object getAsObject(FacesContext context,
 UIComponent component,
 java.lang.String value){
..
}

The getAsString() method takes the FacesContext instance, the UI component,
and the object to be converted to a String value. For example:

public String getAsString(FacesContext context,

Creating Custom JSF Converters

Validating and Converting Input 6-7

 UIComponent component,
 Object value){
..
}

For more information about these classes, refer to the API documentation or visit
http://docs.oracle.com/javaee/index.html.

2. Add the needed conversion logic. This logic should use
javax.faces.convert.ConverterException to throw the appropriate exceptions
and javax.faces.application.FacesMessage to generate the corresponding error
messages. For more information about the Converter interface and the
FacesMessage error handlers, see the API documentation for
javax.faces.convert.ConverterException and
javax.faces.application.FacesMessage, or visit
http://docs.oracle.com/javaee/index.html.

3. If your application saves state on the client, your custom converter must
implement the Serializable interface or the StateHolder interface, and the
saveState(FacesContext) and restoreState(FacesContext, Object) methods
of the StateHolder interface. For more information, see the Javadoc for the
StateHolder interface of javax.faces.component package.

4. Register the converter in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_Project>/WEB-INF
directory in the JDeveloper Application Navigator.

■ In the window, select Converters and click New. Click Help or press F1 for
additional help in registering the converter.

To create a client-side version of the converter:
■ Write a JavaScript version of the converter, passing relevant information to a

constructor. Example 6–6 shows the code to implement the interface
org.apache.myfaces.trinidad.convert.ClientConverter, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Converter object. The second method is
getClientConversion(), which returns a JavaScript constructor that is used to
instantiate an instance of the converter.

Example 6–6 Interface Converter

function TrConverter()
{
}
/**
 * Convert the specified model object value, into a String for display
 * @param value Model object value to be converted
 * @param label label to identify the editableValueHolder to the user
 * @return the value as a string or undefined in case of no converter mechanism is
 * available (see TrNumberConverter).
 */
TrConverter.prototype.getAsString = function(value, label){}

/**
 * Convert the specified string value into a model data object
 * which can be passed to validators
 * @param value String value to be converted
 * @param label label to identify the editableValueHolder to the user

Creating Custom JSF Converters

6-8 Web User Interface Developer's Guide for Oracle Application Development Framework

 * @return the converted value or undefined in case of no converter mechanism is
 * available (see TrNumberConverter).
 */
TrConverter.prototype.getAsObject = function(value, label){}

The TrConverter interface can throw a TrConverterException exception, which
should contain a TrFacesMessage error message. Example 6–7 shows the signature for
TrFacesMessage and Example 6–8 shows the signature for TrFacesException.

Example 6–7 TrFacesMessage Signature

/**
 * Message similar to javax.faces.application.FacesMessage
 * @param summary - Localized summary message text
 * @param detail - Localized detail message text
 * @param severity - An optional severity for this message. Use constants
 * SEVERITY_INFO, SEVERITY_WARN, SEVERITY_ERROR, and
 * SEVERITY_FATAL from the FacesMessage class. Default is
 * SEVERITY_INFO
 */
function TrFacesMessage(
 summary,
 detail,
 severity
)

Example 6–8 TrFacesException Signature

/**
 * TrConverterException is an exception thrown by the getAsObject() or
getAsString()
 * method of a Converter, to indicate that the requested conversion cannot be
performed.
 * @param facesMessage the TrFacesMessage associated with this exception
 * @param summary Localized summary message text, used to create only if
facesMessage is null
 * @param detail Localized detail message text, used only if facesMessage is null
 */
function TrConverterException(
 facesMessage,
 summary,
 detail

Example 6–9 shows an example of a customer converter, SimpleNumberConverter,
written in Java that will run on the server. The custom converter has to implement the
ClientConverter interface.

Example 6–9 Custom Converter SimpleNumberConverter in Java

public class SimpleNumberConverter implements javax.faces.convert.Converter,
 org.apache.myfaces.trinidad.convert.ClientConverter
{
 public SimpleNumberConverter(boolean isInteger)
 {
 _isInteger = isInteger;
 }

 // CONVERTER INTERFACE

Creating Custom JSF Converters

Validating and Converting Input 6-9

 public Object getAsObject(FacesContext context, UIComponent component,
 String value)
 {
 // convert to object
 }

 String getAsString(FacesContext context, UIComponent component, Object value)
 {
 // convert to string
 }
 // CLIENTCONVERTER INTERFACE
 /**
 * Called to retrieve the appropriate client
 * conversion code for the node and context.
 * For HTML, this will be javascript that will be embedded in a
 * script tag. For HTML this method is expected to return a
 * constructor of the javascript Converter object
 * returned by getClientScript().
 */
 public String getClientConversion(FacesContext context, UIComponent component)
 {
 return "new SimpleNumberConverter(" + Boolean.toString(_isInteger) + ")";
 }
 public Collection<String> getClientImportNames()
 {
 // return empty collection
 }
 public String getClientLibrarySource(FacesContext context)
 {
 return null;
 }

 public String getClientScript(FacesContext context, UIComponent component)
 {
 return null;
 }

 private boolean _isInteger;
}

You must also create a JavaScript implementation of the custom converter for the
client, as shown in Example 6–10.

Example 6–10 Client-side Implementation of SimpleNumberConverter in JavaScript

/**
* constructor of client side SimpleNumberConverter class
*/
function SimpleNumberConverter(isInteger)
{
 this._isInteger = isInteger;
}

// Inherit object properties from base class if desired.
SimpleNumberConverter.prototype = new SimpleConverter();

SimpleNumberConverter.prototype.getAsString = function(number,label)
{
 // convert to string

Adding Validation

6-10 Web User Interface Developer's Guide for Oracle Application Development Framework

}

SimpleNumberConverter.prototype.getAsObject = function(numberString,label)
{
 // convert to object
}

To use a custom converter on a JSF page:
■ Bind your converter class to the converter attribute of the input component.

6.4.2 What Happens When You Use a Custom Converter
When you use a custom converter, the application accesses the converter class
referenced in the converter attribute, and executes the getAsObject or getAsString
method as appropriate. These methods access the data from the component and
execute the conversion logic.

6.5 Adding Validation
You can add validation so that when a user edits or enters data in a field and submits
the form, the data is validated against any set rules and conditions. If validation fails,
the application displays an error message. For example, in Figure 6–1 a specific date
range for user input with a message hint is set by the af:validateDateTimeRange
component and an error message is displayed in the message popup window when an
invalid value is entered.

Figure 6–1 Date Range Validator with Error Message

On the view layer use ADF Faces validation when you want client-side validation. All
validators provided by ADF Faces have a client-side peer. Many components have
attributes that provide validation. For information, see Section 6.5.1.2, "Using
Validation Attributes." In addition, ADF Faces provides separate validation classes
that can be run on both the client and the server. For details, see Section 6.5.1.3, "Using
ADF Faces Validators." You can also create your own validators. For information about
custom validators, see Section 6.6.3, "How to Create a Custom JSF Validator."

Note: If a custom converter is registered in an application under a
class for a specific data type, whenever a component's value
references a value binding that has the same type as the custom
converter object, JSF will automatically use the converter of that class
to convert the data. In that case, you do not need to use the converter
attribute to register the custom converter on a component, as shown in
the following code:

<af:inputText value="#{myBean.myProperty}"/>

 The myProperty data type has the same type as the custom converter.

Adding Validation

Validating and Converting Input 6-11

6.5.1 How to Add Validation
Set ADF Faces validation on the input component and an error message is displayed
inline or in a popup window on the page. For more information about displaying
messages created by validation errors, see Chapter 17, "Displaying Tips, Messages, and
Help."

6.5.1.1 Adding ADF Faces Validation
By default, ADF Faces syntactic and semantic validation occurs on both the client and
server side. Client-side validation allows validators to catch and display data without
requiring a round-trip to the server.

ADF Faces provides the following types of validation:

■ UI component attributes: ADF Faces input components provide attributes that can
be used to validate data. For example, you can supply simple validation using the
required attribute on ADF Faces input components to specify whether or not a
value must be supplied. When the required attribute is set to true, the component
must have a value. Otherwise the application displays an error message. For more
information, see Section 6.5.1.2, "Using Validation Attributes."

■ Default ADF Faces validators: The validators supplied by the JSF framework
provide common validation checks, such as validating date ranges and validating
the length of entered data. For more information, see Section 6.5.1.3, "Using ADF
Faces Validators."

■ Custom ADF Faces validators: You can create your own validators and then select
them to be used in conjunction with UI components. For more information, see
Section 6.6, "Creating Custom JSF Validation."

6.5.1.2 Using Validation Attributes
Many ADF Faces UI components have attributes that provide simple validation. For
example, the af:chooseDate component is used in conjunction with an af:inputDate
component for easy date selection. The af:chooseDate component has maxValue and
minValue attributes to specify the maximum and minimum number allowed for the
Date value.

For additional help with UI component attributes, in the Property Inspector, right-click
the attribute name and choose Help.

6.5.1.3 Using ADF Faces Validators
ADF Faces Validators are separate classes that can be run on the server or client.
Table 6–3 describes the validators and their logic.

Table 6–3 ADF Faces Validators

Validator Tag Name Description

ByteLengthValidator af:validateByteLength Validates the byte length
of strings when encoded.
The maximumLength
attribute of inputText is
similar, but it limits the
number of characters that
the user can enter.

DateRestrictionValidator af:validateDateRestriction Validates that the entered
date is valid with some
given restrictions.

Adding Validation

6-12 Web User Interface Developer's Guide for Oracle Application Development Framework

To add ADF Faces validators:
1. In the Structure window, right-click the component for which you would like to

add a validator.

2. In the context menu, choose Insert inside <UI component>, then ADF Faces to
insert an ADF Faces validator, or JSF Core to insert a JSF reference implementation
validator.

3. Choose a validator tag (for example, ValidateDateTimeRange).

4. In the Property Inspector, set values for the attributes, including any messages for
validation errors. For additional help, right-click any of the attributes and choose
Help.

ADF Faces lets you customize the detail portion of a validation error message. By
setting a value for a MessageDetailxyz attribute, where xyz is the validation error
type (for example, MessageDetailmaximum), ADF Faces displays the custom
message instead of a default message, if validation fails.

6.5.2 What Happens at Runtime: How Validators Work
When the user submits the page, ADF Faces checks the submitted value and runs
conversion on any non-null value. The converted value is then passed to the

DateTimeRangeValidator af:validateDateTimeRange Validates that the entered
date is within a given
range. You specify the
range as attributes of the
validator.

DoubleRangeValidator af:validateDoubleRange Validates that a
component value is
within a specified range.
The value must be
convertible to a
floating-point type.

LengthValidator af:validateLength Validates that the length
of a component value is
within a specified range.
The value must be of type
java.lang.String.

LongRangeValidator af:validateLongRange Validates that a
component value is
within a specified range.
The value must be any
numeric type or String
that can be converted to a
long data type.

RegExpValidator af:validateRegExp Validates the data using
Java regular expression
syntax.

Note: To register a custom validator on a component, use a standard
JSF f:validator tag. For information about using custom validators,
see Section 6.6, "Creating Custom JSF Validation."

Table 6–3 (Cont.) ADF Faces Validators

Validator Tag Name Description

Creating Custom JSF Validation

Validating and Converting Input 6-13

validate() method. If the value is empty, the required attribute of the component is
checked and an error message is generated if indicated. If the submitted value is
non-null, the validation process continues and all validators on the component are
called in order of their declaration.

ADF Faces validation is performed during the Process Validations phase. If any errors
are encountered, the components are invalidated and the associated messages are
added to the queue in the FacesContext instance. Once all validation is run on the
components, control passes to the model layer, which runs the Validate Model
Updates phase. As with the Process Validations phase, if any errors are encountered,
the components are invalidated and the associated messages are added to the queue in
the FacesContext instance.

The lifecycle then goes to the Render Response phase and redisplays the current page.
ADF Faces automatically displays an error icon next to the label of any input
component that generated an error, and displays the associated messages in a popup
window unless the af:message component inline attribute is set to true. Figure 6–2
shows a server-side validation error.

Figure 6–2 Server-Side Validation Error

6.5.3 What You May Need to Know About Multiple Validators
You can set zero or more validators on a UI component. You can set the required
attribute and use validators on a component. However, if you set the required
attribute to true and the value is null or a zero-length string, the component is
invalidated and any other validators registered on the component are not called.

This combination might be an issue if there is a valid case for the component to be
empty. For example, if the page contains a Cancel button, the user should be able to
click that button and navigate off the page without entering any data. To handle this
case, you set the immediate attribute on the Cancel button’s component to true. This
attribute allows the action to be executed during the Apply Request Values phase.
Then the default JSF action listener calls FacesContext.renderResponse(), thus
bypassing the validation whenever the action is executed. For more information see
Chapter 4, "Using the JSF Lifecycle with ADF Faces."

6.6 Creating Custom JSF Validation
You can add your own validation logic to meet your specific business needs. If you
want custom validation logic for a component on a single page, you can create a
validation method on the page’s backing bean.

Note: ADF Faces provides extensions to the standard JSF validators,
which have client-side support.

Creating Custom JSF Validation

6-14 Web User Interface Developer's Guide for Oracle Application Development Framework

If you want to create logic that will be reused by various pages within the application,
or if you want the validation to be able to run on the client side, you should create a
JSF validator class. You can then create an ADF Faces version, which will allow the
validator to run on the client.

6.6.1 How to Create a Backing Bean Validation Method
When you want custom validation for a component on a single page, create a method
that provides the required validation on a backing bean.

To add a backing bean validation method:
1. Insert the component that will require validation into the JSF page.

2. In the visual editor, double-click the component to open the Bind Validator
Property dialog.

3. In the Bind Validator Property dialog, enter or select the managed bean that will
hold the validation method, or click New to create a new managed bean. Use the
default method signature provided or select an existing method if the logic already
exists.

When you click OK in the dialog, JDeveloper adds a skeleton method to the code
and opens the bean in the source editor.

4. Add the required validation logic. This logic should use the
javax.faces.validator.ValidatorException exception to throw the appropriate
exceptions and the javax.faces.application.FacesMessage error message to
generate the corresponding error messages. For more information about the
Validator interface and FacesMessage, see the API documentation for
javax.faces.validator.ValidatorException and
javax.faces.application.FacesMessage, or visit
http://docs.oracle.com/javaee/index.html.

6.6.2 What Happens When You Create a Backing Bean Validation Method
When you create a validation method, JDeveloper adds a skeleton method to the
managed bean you selected. Example 6–11 shows the code JDeveloper generates.

Example 6–11 Managed Bean Code for a Validation Method

public void inputText_validator(FacesContext facesContext,
 UIComponent uiComponent, Object object) {
 // Add event code here...
}

When the form containing the input component is submitted, the method to which the
validator attribute is bound is executed.

6.6.3 How to Create a Custom JSF Validator
Creating a custom validator requires writing the business logic for the validation by
creating a Validator implementation of the interface, and then registering the custom
validator with the application. You can also create a tag for the validator, or you can
use the f:validator tag and the custom validator as an attribute for that tag.

You can then create a client-side version of the validator. ADF Faces client-side
validation works in the same way that standard validation works on the server, except

Creating Custom JSF Validation

Validating and Converting Input 6-15

that JavaScript is used on the client. JavaScript validator objects can throw
ValidatorExceptions exceptions and they support the validate() method.

To create a custom JSF validator:
1. Create a Java class that implements the javax.faces.validator.Validator

interface. The implementation must contain a public no-args constructor, a set of
accessor methods for any attributes, and a validate method to implement the
Validator interface.

public void validate(FacesContext facesContext,
 UIComponent uiComponent,
 Object object)
 throws ValidatorException {
..
}
For more information about these classes, refer to the API documentation or visit
http://docs.oracle.com/javaee/index.html.

2. Add the needed validation logic. This logic should use the
javax.faces.validate.ValidatorException exception to throw the appropriate
exceptions and the javax.faces.application.FacesMessage error message to
generate the corresponding error messages. For more information about the
Validator interface and FacesMessage, see the API documentation for
javax.faces.validate.ValidatorException and
javax.faces.application.FacesMessage, or visit
http://docs.oracle.com/javaee/index.html.

3. If your application saves state on the client, your custom validator must
implement the Serializable interface, or the StateHolder interface, and the
saveState(FacesContext) and restoreState(FacesContext, Object) methods
of the StateHolder interface. For more information, see the Javadoc for the
StateHolder interface of the javax.faces.component package.

4. Register the validator in the faces-config.xml file.

■ Open the faces-config.xml file and select the Overview tab in the editor
window. The faces-config.xml file is located in the <View_Project>/WEB-INF
directory.

■ In the window, select Validators and click New. Click Help or press F1 for
additional help in registering the validator.

To create a client-side version of the validator:
1. Write a JavaScript version of the validator, passing relevant information to a

constructor.

2. Implement the interface
org.apache.myfaces.trinidad.validator.ClientValidator, which has two
methods. The first method is getClientScript(), which returns an
implementation of the JavaScript Validator object. The second method is
getClientValidation(), which returns a JavaScript constructor that is used to
instantiate an instance of the validator.

Example 6–12 shows a validator in Java.

Example 6–12 Java Validator

public String getClientValidation(
FacesContext context,
UIComponent component)

Creating Custom JSF Validation

6-16 Web User Interface Developer's Guide for Oracle Application Development Framework

{
 return ("new SSNValidator('Invalid social security number.','Value \"{1}\"
 must start with \"123\".')");
}

The Java validator calls the JavaScript validator shown in Example 6–13.

Example 6–13 Client-side JavaScript Validator

function SSNValidator(summary, detail)
{
 this._detail = detail;
 this._summary = summary;
}

To use a custom validator on a JSF page:
■ To use a custom validator that has a tag on a JSF page, you must manually nest it

inside the component’s tag.

Example 6–14 shows a custom validator tag nested inside an inputText
component. Note that the tag attributes are used to provide the values for the
validator’s properties that were declared in the faces-config.xml file.

Example 6–14 A Custom Validator Tag on a JSF Page

<h:inputText id="empnumber" required="true">
 <hdemo:emValidator emPatterns="9999|9 9 9 9|9-9-9-9" />
</h:inputText>

To use a custom validator without a custom tag:
To use a custom validator without a custom tag, nest the validator’s ID (as configured
in faces-config.xml file) inside the f:validator tag. The validator’s ID attribute
supports EL expression such that the application can dynamically determine the
validator to use.

1. From the Structure window, right-click the input component for which you want
to add validation, and choose Insert inside component > ADF Faces Core >
Validator.

2. Select the validator’s ID from the dropdown list and click OK.

JDeveloper inserts code on the JSF page that makes the validator ID a property of
the f:validator tag.

Example 6–15 shows the code on a JSF page for a validator using the f:validator tag.

Example 6–15 A Custom Validator Nested Within a Component on a JSF Page

<af:inputText id="empnumber" required="true">
 <f:validator validatorID="emValidator"/>
</af:inputText>

6.6.4 What Happens When You Use a Custom JSF Validator
When you use a custom JSF validator, the application accesses the validator class
referenced in either the custom tag or the f:validator tag and executes the
validate() method. This method accesses the data from the component in the current
FacesContext and executes logic against it to determine if it is valid. If the validator

Creating Custom JSF Validation

Validating and Converting Input 6-17

has attributes, those attributes are also accessed and used in the validation routine.
Like standard validators, if the custom validation fails, associated messages are placed
in the message queue in the FacesContext instance.

Creating Custom JSF Validation

6-18 Web User Interface Developer's Guide for Oracle Application Development Framework

7

Rerendering Partial Page Content 7-1

7 Rerendering Partial Page Content

This chapter describes how to use the partial page render features provided with
ADF Faces components to rerender areas of a page without rerendering the whole
page.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Partial Page Rendering"

■ Section 7.2, "Enabling Partial Page Rendering Declaratively"

■ Section 7.3, "Enabling Partial Page Rendering Programmatically"

■ Section 7.4, "Using Partial Page Navigation"

7.1 Introduction to Partial Page Rendering
AJAX (Asynchronous JavaScript and XML) is a web development technique for
creating interactive web applications, where web pages appear more responsive by
exchanging small amounts of data with the server behind the scenes, without the
whole web page being rerendered. The effect is to improve a web page's interactivity,
speed, and usability.

With ADF Faces, the feature that delivers the AJAX partial page render behavior is
called partial page rendering (PPR). PPR allows certain components on a page to be
rerendered without the need to rerender the entire page. For example, an output
component can display what a user has chosen or entered in an input component, or a
command link or button can cause another component on the page to be rerendered,
without the whole page rerendering.

In order for PPR to work, boundaries must be set on the page that allow the lifecycle to
run just on components within the boundary. In order to determine the boundary, the
framework must be notified of the root component to process. The root component can
be identified in two ways:

■ Events: Certain events indicate a component as a root. For example, the disclosure
event sent when expanding or collapsing a showDetail component (see
Section 8.9, "Displaying and Hiding Contents Dynamically"), indicates that the
showDetail component is a root. When the showDetail component is expanded or
collapsed, only that component goes through the lifecycle. Other examples of
events identifying a root component are the disclosure event when expanding
nodes on a tree, or the sort event on a table.

■ Components: Certain components are recognized as a boundary, and therefore a
root component. For example, the framework knows a popup dialog is a
boundary. No matter what event is triggered inside a dialog, the lifecycle does not
run on components outside the dialog. It runs only on the popup.

Enabling Partial Page Rendering Declaratively

7-2 Web User Interface Developer's Guide for Oracle Application Development Framework

In addition to built-in PPR functionality, you can configure components to use
cross-component rendering, which allows you to set up dependencies so that one
component acts as a trigger and another as the listener. When an event occurs on the
trigger component, the lifecycle is run only on listener components and child
components to the listener, and only the listener components and their children are
rerendered. Cross-component rendering can be implemented declaratively. However,
by default, all events from a trigger component will cause PPR (note that some
components, such as table, trigger partial targets on only a subset of their events). For
these cases where you need strict control over the event that launches PPR, or for cases
where you want to use some logic to determine the target, you can implement PPR
programatically.

Additionally, ADF Faces applications can use PPR for navigation. In standard JSF
applications, the navigation from one page to the next requires the new page to be
rendered. When using AJAX-like components, this can cause overhead because of the
time needed to download the different JavaScript libraries and style sheets. To avoid
this costly overhead, the ADF Faces architecture can optionally simulate full-page
transitions while actually remaining on a single page, thereby avoiding the need to
reload JavaScript code and skin styles.

7.2 Enabling Partial Page Rendering Declaratively
Using the simplest form of cross-component rendering, one component, referred to as
the target component, is rerendered when any event occurs on another component,
referred to as the trigger component.

For example, as shown in Figure 7–1, the File Explorer application contains a table that
shows the search results in the Search panel. This table (and only this table) is
rerendered when the search button is activated. The search button is configured to be
the trigger and the table is configured to be the target.

Tip: If your application uses the Fusion technology stack, you can
enable the automatic partial page rendering feature on any page. This
causes any components whose values change as a result of backend
business logic to be automatically rerendered. For more information,
see the "What You May Need to Know About Automatic Partial Page
Rendering" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Note: The browser must have JavaScript enabled for PPR to work.

Enabling Partial Page Rendering Declaratively

Rerendering Partial Page Content 7-3

Figure 7–1 The Search Button Causes Results Table to Rerender

Trigger components must inform the framework that a PPR request has occurred. On
command components, this is achieved by setting the partialSubmit attribute to true.
Doing this causes the command component to fire a partial page request each time it is
clicked.

For example, say a page includes an inputText component, a commandButton
component, and an outputText component. When the user enters a value for the
inputText component, and then clicks the commandButton component, the input value
is reflected in the outputText component. You would set the partialSubmit attribute
to true on the commandButton component.

However, components other than command components can trigger PPR. ADF Faces
input and select components have the ability to trigger partial page requests
automatically whenever their values change. To make use of this functionality, use the
autoSubmit attribute of the input or select component so that as soon as a value is
entered, a submit occurs, which in turn causes a valueChangeEvent event to occur. It is
this event that notifies the framework to execute a PPR, as long as a target component
is set. In the previous example, you could delete the commandButton component and
instead set the inputText component’s autoSubmit attribute to true. Each time the
value changes, a PPR request will be fired.

Note: In some cases, you may want a component to be rerendered
only when a particular event is fired, not for every event associated
with the trigger component, or you may want some logic to determine
whether a component is to be rerendered. In these cases, you can
programatically enable PPR. For more information, see Section 7.3,
"Enabling Partial Page Rendering Programmatically."

Enabling Partial Page Rendering Declaratively

7-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Once PPR is triggered, any component configured to be a target will be rerendered.
You configure a component to be a target by setting the partialTriggers attribute to
the relative ID of the trigger component. For information about relative IDs, see
Section 3.5, "Locating a Client Component on a Page."

In the example, to update the outputText in response to changes to the inputText
component, you would set its partialTriggers attribute to the inputText
component’s relative ID.

7.2.1 How to Enable Partial Page Rendering
For a component to be rerendered based on an event caused by another component, it
must declare which other components are the triggers.

To enable a component to rerender another component:
1. In the Structure window, select the trigger component (that is, the component

whose action will cause the PPR):

■ Expand the Common section of the Property Inspector and set the id attribute
if it is not already set. Note that the value must be unique within that
component’s naming container. If the component is not within a naming
container, then the ID must be unique to the page. For more information about
naming containers, see Section 3.5, "Locating a Client Component on a Page."

Tip: The autoSubmit attribute on an input component and the
partialSubmit attribute on a command component are not the same
thing. When partialSubmit is set to true, then only the components
that have values for their partialTriggers attribute will be processed
through the lifecycle. The autoSubmit attribute is used by input and
select components to tell the framework to automatically do a form
submit whenever the value changes. However, when a form is
submitted and the autoSubmit attribute is set to true, a
valueChangeEvent event is invoked, and the lifecycle runs only on the
components marked as root components for that event, and their
children. For more information, see Section 4.3, "Using the Optimized
Lifecycle."

Note: Certain events on components trigger PPR by default, for
example the disclosure event on the showDetail component and the
sort event on a table. This means that any component configured to
be a target by having its partialTriggers attribute set to that
component’s ID will rerender when these types of events occur.

Note: If your trigger component is an inputLov or an
inputComboBoxLov, and the target component is an input component
set to required, then a validation error will be thrown for the input
component when the LOV popup is displayed. To avoid this, you
must use programmatic partial page rendering. For more information,
see Section 7.3, "Enabling Partial Page Rendering Programmatically."

Enabling Partial Page Rendering Declaratively

Rerendering Partial Page Content 7-5

■ If the trigger component is a command component, expand the Behavior
section of the Property Inspector, and set the partialSubmit attribute to true.

■ If the trigger component is an input or select component in a form and you
want the value to be submitted, expand the Behavior section of the Property
Inspector, and set the autoSubmit attribute of the component to true.

2. In the Structure window, select the target component that you want to rerender
when a PPR-triggering event takes place.

3. Expand the Behavior section of the Property Inspector, click the dropdown menu
for the partialTriggers attribute and choose Edit.

4. In the Edit Property dialog, shuttle the trigger component to the Selected panel
and click OK. If the trigger component is within a naming container, JDeveloper
automatically creates the relative path for you.

Example 7–1 shows a commandLink component configured to execute PPR.

Example 7–1 Code for Enabling Partial Page Rendering Through a Partial Submit

<af:commandLink id="deleteFromCart" partialSubmit="true"
 actionListener="#{homeBean...}">

Example 7–2 shows an outputText component that will be rerendered when the
command link with ID deleteFromCart in Example 7–1 is clicked.

Example 7–2 Code for Partial Page Rendering Triggered by Another Component

<af:outputText id="estimatedTotalInPopup"
 partialTriggers="deleteFromCart"
 value="#{shoppingCartBean...}"/>

Tip: JDeveloper automatically assigns component IDs. You can
safely change this value. A component’s ID must be a valid XML
name, that is, you cannot use leading numeric values or spaces in the
ID. JSF also does not permit colons (:) in the ID.

Note: Set the autoSubmit attribute to true only if you want the
component to submit its value. If you do not want to submit the value,
then some other logic must cause the component to issue a
ValueChangeEvent event. That event will cause PPR by default and
any component that has the trigger component as its value for the
partialTriggers attribute will be rerendered.

Tip: The selectBooleanRadio components behave like a single
component with partial page rendering;, however, they are in fact
multiple components. Therefore, if you want other components (such
as inputText components) to change based on selecting a different
selectBooleanRadio component in a group, you must group them
within a parent component, and set the partialTriggers attribute of
the parent component to point to all of the SelectBooleanRadio
components.

Enabling Partial Page Rendering Programmatically

7-6 Web User Interface Developer's Guide for Oracle Application Development Framework

7.2.2 What You May Need to Know About Using the Browser Back Button
In an ADF Faces application, because some components use PPR (either implicitly or
because they have been configured to listen for a partial trigger), what happens when
a user clicks the browser’s back button is slightly different than in an application that
uses simple JSF components.

In an application that uses simple JSF components, when the user clicks the browser’s
back button, the browser returns the page to the state of the DOM (document object
model) as it was when last rendered, but the state of the JavaScript is as it was when
the user first entered the page.

For example, suppose a user visited PageA. After the user interacts with components
on the page, say a PPR event took place using JavaScript. Let’s call this new version of
the page PageA1. Next, say the user navigates to PageB, then clicks the browser back
button to return to PageA. The user will be shown the DOM as it was on PageA1, but
the JavaScript will not have run, and therefore parts of the page will be as they were
for PageA. This might mean that changes to the page will be lost. Refreshing the page
will run the JavaScript and so return the user to the state it was in PageA1. In an
application that uses ADF Faces, the refresh is not needed; the framework provides
built-in support so that the JavaScript is run when the back button is clicked.

7.2.3 What You May Need to Know About PPR and Screen Readers
Screen readers do not reread the full page in a partial page request. PPR causes the
screen reader to read the page starting from the component that fired the partial page
request. You should place the target components after the component that triggers the
partial request; otherwise, the screen reader would not read the updated target
components.

7.3 Enabling Partial Page Rendering Programmatically
For components such as calendars that have many associated events, PPR will happen
any time any event is triggered, causing any component with the calendar as a partial
trigger to be rerendered with each event. If you want the target to be rerendered only
for certain events, or if you want a target to be rerendered based on some other logic,
you can enable partial page rendering programmatically.

For example, in the ADF Faces calendar demo, if a user attempts to change the
duration of an activity that no longer exists in the model, the calendar needs to be
refreshed to display without the activity (the calendar automatically refreshes itself if a
valid activity’s duration is changed). In this example, the
activityDurationChangeListener method sets the calendar as a partial target
whenever the activityDurationChangeEvent is invoked, and the activity object is
null.

Before you begin:
Create a managed bean that will contain the listener method. For more information,
see Section 2.6, "Creating and Using Managed Beans."

Tip: You can use PPR to prevent components from being validated
on a page. For more information, see Section 4.3, "Using the
Optimized Lifecycle."

Enabling Partial Page Rendering Programmatically

Rerendering Partial Page Content 7-7

How to enable PPR programatically:
1. In the JSF page, select the target component. In the Property Inspector, enter the set

ClientComponent to true.

2. Use the binding attribute so that the managed bean can work with an instance of
the target component. To do so:

1. In the Property Inspector, set the Binding to an EL expression that resolves to
the target component on the managed bean.

In the above example, you might set Binding to:

#{myBean.cal1}

Where cal1 is the ID of the target component, in this case, the calendar
component.

2. In the managed bean, create get and set methods for the target component.
Example 7–3 shows what the code on a managed bean might look like for the
calendar component.

Example 7–3 Get and Set Methods for a UI Component

public class MyBean {
 private RichCalendar cal1;

 public MyBean() {
 }

 public void setCal1(RichCalendar cal1) {
 this.cal1 = cal1;
 }

 public RichOutputText getCal1() {
 return cal1;
 }

3. In the managed bean, create a listener method for the event on the trigger
component that should cause the target component to be rerendered.

Use the addPartialTarget() method to add the component (using its ID) as a
partial target for an event, so that when that event is triggered, the partial target
component is rerendered. Using this method associates the component you want
to have rerendered with the event that is to trigger the rerendering.

Example 7–4 shows how you might create a ActivityDurationChangeEvent
listener that adds the calendar as a target.

Example 7–4 Rerendering Using Partial Targets

public void activityDurationChangeListener(CalendarActivityDurationChangeEvent ae)
 {
 CalendarActivity activity = ae.getCalendarActivity();

 if (activity == null)
 {
 // no activity with that id is found in the model

Note: You must set the clientComponent attribute to true to ensure
that the client ID will be generated.

Using Partial Page Navigation

7-8 Web User Interface Developer's Guide for Oracle Application Development Framework

 System.out.println("No activity with event " + ae.toString());
 setCurrActivity(null);

 // Since the user has acted on an activity that couldn't be found,
 // ppr the page so that they no longer see the activity
 RequestContext adfContext = RequestContext.getCurrentInstance();
 adfContext.addPartialTarget(getCal1());
 return;
 }

 DemoCalendarActivity demoActivity = ((DemoCalendarActivity)activity);
 TimeZone tz = getTimeZone();
 demoActivity.setEndDate(ae.getNewEndDate(), tz);
 setCurrActivity(new DemoCalendarActivityBean(demoActivity, tz));
 }

4. Select the trigger component, and in the Property Inspector, find the listener for
the event that will cause the refresh and bind it to the listener method created in
Step 3.

7.4 Using Partial Page Navigation
Instead of performing a full page transition in the traditional way, you can configure
an ADF Faces application to have navigation triggered through a partial page
rendering request. The new page is sent to the client using partial page rendering.
Partial page navigation is disabled by default.

In order to keep track of location (for example, for bookmarking purposes, or when a
refresh occurs), the framework makes use of the hash portion of the URL. This portion
of the URL contains the actual page being displayed in the browser.

7.4.1 How to Use Partial Page Navigation
You can turn partial page navigation on by setting the
oracle.adf.view.rich.pprNavigation.OPTIONS context parameter in the web.xml file
to on.

To use partial page navigation:
1. Double-click the web.xml file.

2. In the source editor, change the oracle.adf.view.rich.prNavigation.OPTIONS
parameter to one of the following:

■ on: Enables partial page navigation.

■ onWithForcePPR: Enables partial page navigation and notifies the framework
to use the PPR channel for all action events, even those that do not result in
navigation. Since partial page navigation requires that the action event be sent
over PPR channel, use this option to easily enable partial page navigation.

When partial page navigation is used, normally only the visual contents of the
page are rerendered (the header content remains constant for all pages).
However, the entire document will be rerendered when an action on the page

Note: If you set the parameter to on, then you need to set the
partialSubmit attribute to true for any command components
involved in navigation.

Using Partial Page Navigation

Rerendering Partial Page Content 7-9

is defined to use full page submit and also when an action does not result in
navigation.

7.4.2 What You May Need to Know About PPR Navigation
Before using PPR navigation, you should be aware of the following:

■ When using PPR navigation, all pages involved in this navigation must use the
same CSS skin.

■ Because PPR navigation makes use of the hash portion of the URL, you cannot use
the hash portion for navigation to anchors within the page.

■ Unlike regular page navigation, partial navigation will not result in JavaScript
globals (variables and functions defined in global scope) being unloaded. This
happens because the window object survives partial page transition. Applications
wishing to use page-specific global variables and/or functions must use the
AdfPage.getPageProperty() and AdfPage.setPageProperty() methods to store
these objects.

Using Partial Page Navigation

7-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Part III
Part III Using ADF Faces Components

Part III contains the following chapters:

■ Chapter 8, "Organizing Content on Web Pages"

■ Chapter 9, "Using Input Components and Defining Forms"

■ Chapter 10, "Using Tables, Trees, and Other Collection-Based Components"

■ Chapter 11, "Using List-of-Values Components"

■ Chapter 12, "Using Query Components"

■ Chapter 13, "Using Popup Dialogs, Menus, and Windows"

■ Chapter 14, "Using Menus, Toolbars, and Toolboxes"

■ Chapter 15, "Creating a Calendar Application"

■ Chapter 16, "Using Output Components"

■ Chapter 17, "Displaying Tips, Messages, and Help"

■ Chapter 18, "Working with Navigation Components"

■ Chapter 19, "Creating and Reusing Fragments, Page Templates, and Components"

■ Chapter 20, "Customizing the Appearance Using Styles and Skins"

■ Chapter 21, "Internationalizing and Localizing Pages"

■ Chapter 22, "Developing Accessible ADF Faces Pages"

8

Organizing Content on Web Pages 8-1

8Organizing Content on Web Pages

This chapter describes how to use several of the ADF Faces layout components to
organize content on web pages.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Organizing Content on Web Pages"

■ Section 8.2, "Starting to Lay Out a Page"

■ Section 8.3, "Arranging Contents to Stretch Across a Page"

■ Section 8.4, "Using Splitters to Create Resizable Panes"

■ Section 8.5, "Arranging Content in a Grid"

■ Section 8.6, "Arranging Page Contents in Predefined Fixed Areas"

■ Section 8.7, "Arranging Content in Forms"

■ Section 8.8, "Arranging Contents in a Dashboard"

■ Section 8.9, "Displaying and Hiding Contents Dynamically"

■ Section 8.10, "Displaying or Hiding Contents in Accordion Panels and Tabbed
Panels"

■ Section 8.11, "Displaying Items in a Static Box"

■ Section 8.12, "Displaying a Bulleted List in One or More Columns"

■ Section 8.13, "Grouping Related Items"

■ Section 8.14, "Separating Content Using Blank Space or Lines"

8.1 Introduction to Organizing Content on Web Pages
ADF Faces provides a number of layout components that can be used to arrange other
components on a page. Usually, you begin building your page with these components.
You then add components that provide other functionality (for example rendering
data or rendering buttons) either inside facets or as child components to these layout
components.

In addition to layout components that simply act as containers, ADF Faces also
provides interactive layout components that can display or hide their content, or that

Tip: You can create page templates that allow you to design the
layout of pages in your application. The templates can then be used by
all pages in your application. For more information, see Chapter 19,
"Creating and Reusing Fragments, Page Templates, and Components."

Introduction to Organizing Content on Web Pages

8-2 Web User Interface Developer's Guide for Oracle Application Development Framework

provide sections, lists, or empty space. Some layout components also provide
geometry management functionality, such as stretching their contents to fit the
browser windows as the window is resized, or the capability to be stretched when
placed inside a component that stretches. For more information about stretching and
other geometry management functionality of layout components, see Section 8.2.1,
"Geometry Management and Component Stretching."

Table 8–1 briefly describes each of the ADF Faces layout components.

Table 8–1 ADF Faces Layout Components

Component Description

Can
Stretch
Children

Can Be
Stretched

Page Management Components

document Creates each of the standard root
elements of an HTML page:
<html>, <body>, and <head>. All
pages must contain this
component. For more information,
see Section 8.2, "Starting to Lay Out
a Page."

X

form Creates an HTML <form> element.
For more information, see
Section 8.2, "Starting to Lay Out a
Page."

Page Layout Containers

panelStretchLayout Contains top, bottom, start,
center, and end facets where you
can place other components. For
more information, see Section 8.3,
"Arranging Contents to Stretch
Across a Page."

X X (when the
dimensionsFr
om attribute is
set to parent)

panelSplitter Divides a region into two parts
(first facet and second facet) with
a repositionable divider between
the two. You can place other
components within the facets. For
more information, see Section 8.4,
"Using Splitters to Create Resizable
Panes."

X X (when the
dimensionsFr
om attribute is
set to parent)

panelGridLayout Used in conjunction with gridRow
and gridCell components to
provide an HTML table-like layout
where you define the rows and
cells, and then place other
components as children to the cells.
For more information, see
Section 8.5, "Arranging Content in
a Grid."

X (when
the
gridRow
and
gridCell
compone
nts are
configure
d to
stretch)

X (when the
dimensionsFr
om attribute is
set to parent)

panelDashboard Provides a columnar display of
child components (usually
panelBox components). For more
information, see Section 8.8,
"Arranging Contents in a
Dashboard."

X X (when the
dimensionsFr
om attribute is
set to parent)

Introduction to Organizing Content on Web Pages

Organizing Content on Web Pages 8-3

panelBorderLayout Can have child components, which
are placed in its center, and also
contains 12 facets along the border
where additional components can
be placed. These will surround the
center. For more information, see
Section 8.6, "Arranging Page
Contents in Predefined Fixed
Areas."

panelFormLayout Positions input form controls, such
as inputText components so that
their labels and fields line up
vertically. It supports multiple
columns, and contains a footer
facet. For more information, see
Section 8.7, "Arranging Content in
Forms."

Components with Show/Hide Capabilities

showDetailHeader Can hide or display contents below
the header. Often used as a child to
the panelHeader component. For
more information, see Section 8.9,
"Displaying and Hiding Contents
Dynamically."

X (if the
type
attribute
is set to
stretch)

X (if the type
attribute is set
to stretch)

showDetailItem Used to hold the content for the
different panes of the
panelAccordion or different tabs of
the panelTabbed component. For
more information, see Section 8.10,
"Displaying or Hiding Contents in
Accordion Panels and Tabbed
Panels."

X (if it
contains
a single
child
compone
nt)

panelBox Titled box that can contain child
components. Has a toolbar facet.
For more information, see
Section 8.9, "Displaying and Hiding
Contents Dynamically."

X

panelAccordion Used in conjunction with
showDetailItem components to
display as a panel that can be
expanded or collapsed. For more
information, see Section 8.10,
"Displaying or Hiding Contents in
Accordion Panels and Tabbed
Panels."

X (when the
dimensionsFr
om attribute is
set to parent)

Table 8–1 (Cont.) ADF Faces Layout Components

Component Description

Can
Stretch
Children

Can Be
Stretched

Introduction to Organizing Content on Web Pages

8-4 Web User Interface Developer's Guide for Oracle Application Development Framework

panelTabbed Used in conjunction with
showDetailItem components to
display as a set of tabbed panels.
For more information, see
Section 8.10, "Displaying or Hiding
Contents in Accordion Panels and
Tabbed Panels."

If you want the tabs to be used in
conjunction with navigational
hierarchy, for example each tab is a
different page or region that
contains another set of navigation
items, you may instead want to use
a navigationPane component in a
navigational menu. For more
information, see Section 18.5,
"Using Navigation Items for a Page
Hierarchy."

X (when the
dimensionsFr
om attribute is
set to parent)

showDetail Hides or displays content through
a toggle icon. For more
information, see Section 8.9,
"Displaying and Hiding Contents
Dynamically."

Miscellaneous Containers

panelHeader Contains child components and
provides a header that can include
messages, toolbars, and help topics.
For more information, see
Section 8.11, "Displaying Items in a
Static Box."

X (if the
type
attribute
is set to
stretch)

X (if the type
attribute is set
to stretch)

panelCollection Used in conjunction with collection
components such as table, tree
and treeTable to provide menus,
toolbars, and status bars for those
components. For more information,
see Section 10.7, "Displaying Table
Menus, Toolbars, and Status Bars."

X (only a
single
table,
tree, or
tree
table)

X

decorativeBox Creates a container component
whose facets use style themes to
apply a bordered look to its
children. This component typically
acts as a look and feel transition
between areas on a page. For
example, a page that has a dark
background for its template can use
the decorative box to transition to a
white background for its main area.
For more information, see
Section 8.11, "Displaying Items in a
Static Box."

X (in the
Center
facet)

X (when the
dimensionsFr
om attribute is
set to parent)

inlineFrame Creates an inline iframe tag. X

Table 8–1 (Cont.) ADF Faces Layout Components

Component Description

Can
Stretch
Children

Can Be
Stretched

Starting to Lay Out a Page

Organizing Content on Web Pages 8-5

8.2 Starting to Lay Out a Page
JSF pages that use ADF Faces components must have the document tag enclosed within
a view tag. All other components that make up the page then go in between
<af:document> and </af:document>. The document tag is responsible for rendering the

navigationPane Creates a series of navigation items
representing one level in a
navigation hierarchy. For more
information, see Section 18.5,
"Using Navigation Items for a Page
Hierarchy."

X (if
configured to
display tabs)

panelList Renders each child component as a
list item and renders a bullet next
to it. Can be nested to create
hierarchical lists. For more
information, see Section 8.12,
"Displaying a Bulleted List in One
or More Columns."

panelWindow Displays child components inside a
popup window. For more
information, see Section 13.2,
"Declaratively Creating Popup
Elements."

toolbox Displays child toolbar and menu
components together. For more
information, see Section 14.3,
"Using Toolbars."

Grouping Containers

panelGroupLayout Groups child components either
vertically or horizontally. Used in
facets when more than one
component is to be contained in a
facet. For more information, see
Section 8.13, "Grouping Related
Items."

X (only if set
to scroll or
vertical
layout)

group Groups child components without
regard to layout unless handled by
the parent component of the group.
Used in facets when more than one
component is to be contained in a
facet. For more information, see
Section 8.13, "Grouping Related
Items."

Spacing Components

separator Creates a horizontal line between
items. For more information, see
Section 8.14, "Separating Content
Using Blank Space or Lines."

spacer Creates an area of blank space. For
more information, see Section 8.14,
"Separating Content Using Blank
Space or Lines."

Table 8–1 (Cont.) ADF Faces Layout Components

Component Description

Can
Stretch
Children

Can Be
Stretched

Starting to Lay Out a Page

8-6 Web User Interface Developer's Guide for Oracle Application Development Framework

browser title text, as well as the invisible page infrastructure that allows other
components in the page to be displayed. For example, at runtime, the document tag
creates the root elements for the client page. In HTML output, the standard root
elements of an HTML page, namely, <html>, <head>, and <body>, are generated.

By default, the document tag is configured to allow capable components to stretch to
fill available browser space. You can further configure the tag to allow a specific
component to have focus when the page is rendered, or to provide messages for failed
connections or warnings about navigating before data is submitted. For more
information, see Section 8.2.5, "How to Configure the document Tag."

Typically, the next component used is the ADF Faces form component. This component
creates an HTML form element that can contain controls that allow a user to interact
with the data on the page.

JDeveloper automatically inserts the view, document, and form tags for you, as shown
in Example 8–1. For more information, see Section 2.4, "Creating a View Page."

Example 8–1 Initial JSF Page Created by JDeveloper Wizard

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document>
 <af:form/>
 </af:document>
 </f:view>
</jsp:root>

Once those tags are placed in the page, you can use the layout components to control
how and where other components on the page will render. The component that will
hold all other components is considered the root component. Which component you
choose to use as the root component depends on whether you want the contained
components to display their contents so that they stretch to fit the browser window, or
whether you want the contents to flow, using a scrollbar to access any content that
may not fit in the window. For more information about stretching and flowing, see
Chapter 8.2.1, "Geometry Management and Component Stretching."

8.2.1 Geometry Management and Component Stretching
Geometry management is the process by which the user, parent components, and child
components negotiate the actual sizes and locations of the components in an
application. At the heart of the RCF geometry management solution is a resize

Note: Even though you can have multiple HTML forms on a page,
you should have only a single ADF Faces form tag per page. For more
information, see Section 8.7, "Arranging Content in Forms."

Tip: Instead of creating your layout yourself, you can use
JDeveloper’s quick layout templates, which provide correctly
configured components that will display your page with the layout
you want. For more information, see Section 8.2.3, "Using Quick Start
Layouts."

Starting to Lay Out a Page

Organizing Content on Web Pages 8-7

notification mechanism that allows components that support geometry management
to be notified of browser resize activity. The following scenarios trigger the
notification:

■ Load: When the page contents are first loaded, allowing initial sizing to take place.

■ Browser resize: When the browser window is resized.

■ Partial replacement: When a portion of the page is updated through partial page
rendering, any newly inserted components are notified, allowing them to perform
any necessary geometry management.

■ Visibility change: When a component that was initially configured to be invisible
is made visible (components that are initially not visible do not receive
notification).

■ Explicit resize: When components that allow themselves to be resized (for example
the panelSplitter), are resized by the user.

By default, the root component will stretch automatically to consume the browser's
viewable area, provided that component supports geometry management and
therefore can stretch its child components. Examples of geometry management
components are panelStretchLayout and panelSplitter.

When the user resizes the browser window, and when there is a single maximized root
visual component inside of the document component, that visual root component will
also resize along with the browser window. If the root component supports stretching
its child components (and they in turn support being stretched), the size of the child
components will also recompute, and so on down the component hierarchy until a
flowing layout area is reached; that is, an area that does not support stretching of its
child components. You do not have to write any code to enable the stretching.

As shown in Table 8–1, the panelStretchLayout, panelSplitter, and panelDashboard
components are components that can be stretched and can also stretch their child
components. Additionally, when the showDetailItem component is used as a direct
child of the panelAccordion or panelTabbed component, the contents in the
showDetailItem component can be stretched. Therefore, the panelStretchLayout,
panelSplitter, panelDashboard, panelAccordion with a showDetailItem component,
and a panelTabbed with a showDetailItem component, are the components you
should use as root components when you want to make the contents of the page fill
the browser window.

For example, Figure 8–1 shows a table placed in the center facet of the
panelStretchLayout component. The table stretches to fill the browser space. When
the entire table does not fit in the browser window, scrollbars are added in the data
body section of the table.

Note: The framework does not consider popup dialogs, popup
windows, or non-inline messages as root components. If a form
component is the direct child component of the document component,
the framework will look inside the form tag for the visual root. For
information on sizing a popup, see Chapter 13, "Using Popup Dialogs,
Menus, and Windows."

Starting to Lay Out a Page

8-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–1 Table Inside a Component That Stretches Child Components

Figure 8–2 shows the same table, but nested inside a panelGroupLayout component,
which cannot stretch its child components (for clarity, a dotted red outline has been
placed around the panelGroupLayout component). The table component displays only
a certain number of columns and rows, determined by properties on the table.

Figure 8–2 Table Inside a Component That Does Not Stretch Its Child Components

Performance Tip: The cost of geometry management is directly
related to the complexity of child components. Therefore, try
minimizing the number of child components that are under a parent
geometry-managed component.

Starting to Lay Out a Page

Organizing Content on Web Pages 8-9

8.2.2 Nesting Components Inside Components That Allow Stretching
Even though you choose a component that can stretch its child components, only the
following components will actually stretch:

■ inputText (when configured to stretch)

■ decorativeBox (when configured to stretch)

■ panelAccordion (when configured to stretch)

■ panelBox

■ panelCollection

■ panelDashboard (when configured to stretch)

■ panelGridLayout (when gridRow and gridCell components are configured to
stretch)

■ panelGroupLayout (with the layout attribute set to scroll or vertical)

■ panelSplitter (when configured to stretch)

■ panelStretchLayout (when configured to stretch)

■ panelTabbed (when configured to stretch)

■ region

■ table (when configured to stretch)

■ tree (when configured to stretch)

■ treeTable (when configured to stretch)

The following layout components cannot be stretched when placed inside a facet of a
component that stretches its child components:

■ panelBorderLayout

■ panelFormLayout

■ panelGroupLayout (with the layout attribute set to default or horizontal)

■ panelHeader

■ panelLabelAndMessage

■ panelList

■ showDetail

■ showDetailHeader

■ tableLayout (MyFaces Trinidad component)

Because these components cannot be stretched, you cannot place them in a facet of any
component that stretches its child components. So if you want to use one of these
components within the facet of component that does stretch its child components, you
must wrap it in a component that can be stretched, but one that does not stretch its
child components. If you do not, you may see unexpected results when the component
renders.

For example, suppose you have a panelStretchLayout as the first component on your
page. You then add a panelSplitter component that is configured to be stretched.
Now to the first facet of the panelSplitter component, say you add a
panelGroupLayout component with its layout attribute set to scroll (which means it

Starting to Lay Out a Page

8-10 Web User Interface Developer's Guide for Oracle Application Development Framework

can stretch), and inside that, you add a panelCollection component, and then finally
a table component.

To the second facet of the panelSplitter, suppose you add just the panelCollection
and table components, as shown in Figure 8–3. Components that can stretch their
children are green and components that can be stretched (but cannot stretch their
children) are blue.

Figure 8–3 Layout Using Geometry-Managed Components

As shown in Figure 8–4, when the page is run, the panelCollection and table
components in the panelGroupLayout do not stretch, while the ones directly in the
panelSplitter component do stretch.

Starting to Lay Out a Page

Organizing Content on Web Pages 8-11

Figure 8–4 Geometry-Managed Components Affect the Layout of the Page

Because the panelStretchLayout component can stretch its child components, and
because the panelSplitter component was configured to stretch, both stretch to fill
up available browser space. Because panelSplitter component can stretch its child
components and because on the left, panelGroupLayout component with its layout
attribute set to scroll can be stretched, and on the right, the panelCollection
component can be stretched, both of those stretch to fill up available browser space.
However, the panelGroupLayout component cannot stretch its child components,
while the panelCollection component can stretch a single table. Therefore, the
panelCollection component on the left does not stretch, even though its parent does.

Now suppose on the left, instead of a table component, you want to add a panelList
component. You would not need the panelCollection component (as that is used only
for tables), so you might also think you would not need to use the panelGroupLayout
component to group the panelList component with another component. However,
because the panelList component would then be a direct child of the panelSplitter
component, and because the panelSplitter component stretches its child components
and the panelList component cannot be stretched, you would need to keep the
panelGroupLayout (set to scroll) and place the panelList component as a child to the
panelGroupLayout component.

This way, the panelSplitter component can stretch the panelGroupLayout
component, but the panelGroupLayout component will not try to stretch the panelList
component. Because the panelGroupLayout component can be stretched, but does not
stretch its child components, it allows the transition between a layout that stretches
and one that flows.

Tip: Do not attempt to stretch any of the components in the list of
components that cannot stretch by setting their width to 100%. You
may get unexpected results. Instead, surround the component to be
stretched with a component that can be stretched. For components
that can be stretched, see Table 8–1.

Starting to Lay Out a Page

8-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Components that can be stretched but do not stretch their children are considered
transition components. Transition components must always be used between a
component that stretches its children and a component that does not stretch.

8.2.3 Using Quick Start Layouts
When you use the New Gallery Wizard to create a JSF JSP page (or a page fragment),
you can choose from a variety of predefined quick start layouts. When you choose one
of these layouts, JDeveloper adds the necessary components and sets their attributes to
achieve the look and behavior you want. You can choose from one-, two-, and
three-column formats. Within those formats, you can choose how many separate panes
will be displayed in each column, and if those panes can stretch or remain a fixed size.
Figure 8–5 shows the different layouts available in the two-column format.

Figure 8–5 Quick Layouts

Along with adding layout components, you can also choose to apply a theme to the
chosen quick layout. These themes add color styling to some of the components used
in the quick start layout. To see the color and where it is added, see Appendix E,
"Quick Start Layout Themes." For more information about themes, see Section 20.3.4,
"How to Apply Themes to Components."

In addition to saving time, when you use the quick layouts, you can be sure that
layout components are used together correctly to achieve the desired outcome. For
more information about creating pages using the quick layouts, see Section 2.4,
"Creating a View Page."

Tip: If you know that you always want your components to stretch
or not to stretch based on the parent's settings, then consider setting
the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter
to auto. For more information, see Section A.2.3.25, "Geometry
Management for Layout and Table Components."

Starting to Lay Out a Page

Organizing Content on Web Pages 8-13

8.2.4 Tips for Using Geometry-Managed Components
To ensure your page is displayed as expected in all browsers, use one of the quick
layouts provided by JDeveloper when you create a page. These ensure that the correct
components are used and configured properly. For more information, see Section 8.2.3,
"Using Quick Start Layouts."

However, if you wish to create your layout yourself, follow these tips for creating a
layout that includes both stretched and flowing components:

■ Place the page contents inside a root component that performs geometry
management, either panelStretchLayout, panelGridLayout with gridRow and
gridCell components, panelSplitter, panelAccordion with a showDetailItem,
or panelTabbed with a showDetailItem.

■ Never specify a height value with percent units. Instead, build a component
structure out of components that support being stretched and that stretch their
child components.

■ Inside this stretchable structure, create islands of nonstretched or flowing
components by using transition components, such as the panelGroupLayout
component with the layout attribute set to scroll. This component will provide
the transition between stretched and flowing components because it supports
being stretched but will not stretch its child components.

■ Never try to stretch something vertically inside a nonstretched or flowing
container because it will not act consistently across web browsers.

■ For components contained in a parent flowing component (that is, a component
that does not stretch its children), do not set widths greater than 95%. If you do,
you may get unexpected results.

■ If the parent component is 768 pixels or greater, set the styleClass attribute
on the component to be stretched to AFStretchWidth. This style will stretch
the component to what appears to be 100% of the parent container, taking into
account different browsers and any padding or borders on the parent.

■ If the parent component is 768 pixels or less, set the styleClass attribute on
the component to be stretched to AFAuxiliaryStretchWidth. This style will
stretch the component to what appears to be 100% of the parent container,
taking into account different browsers and any padding or borders on the
parent.

■ Never use the position style.

■ Ensure that the maximized attribute on the document tag is set to true (this is the
default). For more information about setting the attribute, see Section 8.2.5, "How
to Configure the document Tag."

Best Practice: Use quick start layouts to avoid layout display
issues.

Note: The two different styles are needed due to how Microsoft
Internet Explorer 7 computes widths inside scrolling containers (this
has been resolved in Internet Explorer 8). Unless you can control the
version of browser used to access your application, you should use
these styles as described.

Starting to Lay Out a Page

8-14 Web User Interface Developer's Guide for Oracle Application Development Framework

The remainder of this chapter describes the ADF Faces layout components and how
they can be used to design a page. You can find information about how each
component handles stretching in the respective "What You May Need to Know About
Geometry Management" sections.

8.2.5 How to Configure the document Tag
The document tag contains a number of attributes that you can configure to control
behavior for the page. For example, you can configure the tag so that one component
has focus when the page is first rendered. You can also configure the tag to display a
warning message if a user attempts to navigate off the page and the data has not been
submitted. You can also set the document to use a different state saving method than
the rest of the application.

To configure the document tag:
1. In the Structure window, select the af:document node.

2. In the Property Inspector, expand the Common section and set the following:

■ InitialFocusId: Use the dropdown menu to choose Edit. In the Edit Property
dialog, select the component that should have focus when the page first
renders.

Because this focus happens on the client, the component you select must have
a corresponding client component. For more information, see Section 3.4,
"Instantiating Client-Side Components."

■ Maximized: Set to true if you want the root component to expand to fit all
available browser space. When the document tag’s maximized attribute is set to
true, the framework searches for a single visual root component, and stretches
that component to consume the browser's viewable area, provided that the
component can be stretched. Examples of components that support this are
panelStretchLayout and panelSplitter. The document tag’s maximized
attribute is set to true by default. For more information, see Section 8.2.1,
"Geometry Management and Component Stretching."

■ Title: Enter the text that should be displayed in the title bar of the browser.

3. Expand the Appearance section and for the FailedConnectionText attribute, enter
the text you want to be displayed if a connection cannot be made to the server.

4. Expand the Other section and set the following:

■ UncommittedDataWarning: Set to on if you want a warning message
displayed to the user when the application detects that data has not been
committed. This can happen because either the user attempts to leave the page
without committing data or there is uncommitted data on the server. By
default, this is set to off.

■ StateSaving: Set to the type of state saving you want to use for a page.

For ADF Faces applications, it is recommended to have the application use
client state saving with tokens, which saves page state to the session and
persists a token to the client. This setting affects the application globally, such
that all pages have state saved to the session and persist tokens with
information regarding state.

You can override the global setting in web.xml to one of the following for the
page:

Arranging Contents to Stretch Across a Page

Organizing Content on Web Pages 8-15

– client: The state is saved fully to the client, without the use of tokens. This
setting keeps the session expired messages from being displayed.

– default: The state of the page is based on whatever is set in web.xml.

– server: The state of the page is saved on the server.

For more information about state saving, see Appendix A.2, "Configuration in
web.xml."

8.3 Arranging Contents to Stretch Across a Page
Use the panelStretchLayout component to arrange content in defined areas on a page
and when you want the content to be able to stretch when the browser is resized. The
panelStretchLayout component is one of the components that can stretch components
placed in its facets. Figure 8–6 shows the component’s facets.

Figure 8–6 Facets in the panelStretchLayout Component

When you set the height of the top and bottom facets, any contained components are
stretched up to fit the height. Similarly, when you set the width of the start and end
facets, any components contained in those facets are stretched to that width. If no
components are placed in the facets, then that facet does not render. That is, that facet
will not take up any space. If you want that facet to take up the set space but remain
blank, insert a spacer component. See Section 8.14, "Separating Content Using Blank
Space or Lines." Child Components components in the center facet are then stretched
to fill up any remaining space. For more information about component stretching, see
Section 8.2.1, "Geometry Management and Component Stretching."

Instead of setting the height of the top or bottom facet, or width of the start or end
facet to a dimension, you can set the height or width to auto. This allows the facet to
size itself to use exactly the space required by the child components of the facet. Space
will be allocated based on what the web browser determines is the required amount of
space to display the facet content.

Note: Figure 8–6 shows the facets when the language reading
direction of the application is configured to be left-to-right. If instead
the language direction is right-to-left, the start and end facets are
switched.

Arranging Contents to Stretch Across a Page

8-16 Web User Interface Developer's Guide for Oracle Application Development Framework

The File Explorer application uses a panelStretchLayout component as the root
component in the template. Child components are placed only in the center and
bottom facets. Therefore, whatever is in the center facet stretches the full width of the
window, and from the top of the window to the top of the bottom facet, whose height
is determined by the bottomHeight attribute. Example 8–2 shows abbreviated code
from the fileExplorerTemplate file.

Example 8–2 panelStretchLayout in the File Explorer’s Template File

<af:panelStretchLayout
 bottomHeight="#{attrs.footerGlobalSize}">
 <f:facet name="center">
 <af:panelSplitter orientation="vertical" ...>
.
.
.
 </af:panelSplitter
 </f:facet>
 <f:facet name="bottom">
 <af:panelGroupLayout layout="vertical">
.
.
.
 </af:panelGroupLayout>
 </f:facet>
</af:panelStretchLayout>

The template uses an EL expression to determine the value of the bottomHeight
attribute. This expression resolves to the value of the footerGlobalSize attribute
defined in the template, which by default is 0. Any page that uses the template can
override this value. For example, the index.jspx page uses this template and sets the
value to 30. Therefore, when the File Explorer application renders, the contents in the
panelStretchLayout component begin 30 pixels from the bottom of the page.

8.3.1 How to Use the panelStretchLayout Component
The panelStretchLayout component cannot have any direct child components.
Instead, you place components within its facets. The panelStretchLayout is one of the
components that can be configured to stretch any components in its facets to fit the
browser. You can nest panelStretchLayout components. For more information, see
Section 8.2.2, "Nesting Components Inside Components That Allow Stretching."

To create and use the panelStretchLayout component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Stretch

Layout to the JSF page.

2. In the Property Inspector, expand the Common section and set the attributes as
needed.

When there are child components in the top, bottom, start, and end facets, these
components occupy space that is defined by the topHeight, bottomHeight,
startWidth, and endWidth attributes. For example, topHeight attribute specifies
the height of the top facet, and startWidth attribute specifies the width of the

Performance Tip: Using auto as a value will degrade performance of
your page. You should first attempt to set a height or width and use
the auto attribute sparingly.

Arranging Contents to Stretch Across a Page

Organizing Content on Web Pages 8-17

start facet. Child components in top and bottom facets are stretched up to the
height set by topHeight and bottomHeight attributes, respectively, and child
components in start and end facets are stretched up to the width set by
startWidth and endWidth attributes, respectively. Instead of setting a numeric
dimension, you can set the topHeight, bottomHeight, startWidth and endWidth
attributes to auto and the browser will determine the amount of space required to
display the content in the facets.

If you do not explicitly specify a value, by default, the value for the topHeight,
bottomHeight, startWidth, and endWidth attributes is 50 pixels each. The widths
of the top and bottom facets, and the heights of the start and end facets are
derived from the width and height of the parent component of
panelStretchLayout.

3. The panelStretchLayout component can be configured to stretch to fill available
browser space, or if you want to place the panelStretchLayout component inside
a component that does not stretch its children, you can configure the
panelStretchLayout component to not stretch.

You configure whether the component will stretch or not using the
dimensionsFrom attribute.

Note: If you set a facet to use auto as a value for the width or height
of that facet, the child component does not have to be able to stretch.
In fact, it must use a stable, standalone width that is not dependent
upon the width of the facet.

For example, you should not use auto on a facet whose child
component can stretch their children automatically. These components
have their own built-in stretched widths by default which will then
cause them to report an unstable offsetWidth value, which is used by
the browser to determine the amount of space.

Additionally, you should not use auto in conjunction with a child
component that uses a percentage length for its width. The facet
content cannot rely on percentage widths or be any component that
would naturally consume the entire width of its surrounding
container.

Tip: If a facet does not contain a child component, it is not rendered
and therefore does not take up any space. You must place a child
component into a facet in order for that facet to occupy the configured
space.

Arranging Contents to Stretch Across a Page

8-18 Web User Interface Developer's Guide for Oracle Application Development Framework

To set the dimensionsFrom attribute, expand the Other section, and set
DimensionsFrom to one of the following:

■ children: Instead of stretching, the panelStretchLayout component will get
its dimensions from its child component.

■ parent: the size of the panelStretchLayout component will be determined in
the following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container (that is, the panelStretchLayout component will stretch).

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

This is the default setting.

■ auto: If the parent component to the panelStretchLayout component allows
stretching of its child, then the panelStretchLayout component will stretch to
fill the parent. If the parent does not stretch its children then the size of the
panelStretchLayout component will be based on the size of its child
component.

4. To place content in the component, drag and drop the desired component into any
of the facets. If you want the child component to stretch, it must be a component
that supports being stretched. See Section 8.3.2, "What You May Need to Know

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Note: If you use this setting, you cannot use a percentage to set the
height of the top and bottom facets. If you do, those facets will try to
get their dimensions from the size of this panelStretchLayout
component, which will not be possible, as the panelStretchLayout
component will be getting its height from its contents, resulting in a
circular dependency If a percentage is used for either facet, it will be
disregarded and the default 50px will be used instead.

Additionally, you cannot set the height of the panelStretchLayout
component (for example through the inlineStyle or styleClass
attributes) if you use this setting. Doing so would cause conflict
between the panelStretchLayout height and the child component
height.

Arranging Contents to Stretch Across a Page

Organizing Content on Web Pages 8-19

About Geometry Management and the panelStretchLayout Component," for more
details.

Because facets accept one child only, if you want to add more than one child
component, wrap the child components inside a container component, for
example, a panelGroupLayout component. This component must also be able to be
stretched in order for all contained components to stretch.

8.3.2 What You May Need to Know About Geometry Management and the
panelStretchLayout Component

The panelStretchLayout component can stretch its child components and it can also
be stretched. The following components can be stretched inside the facets of the
panelStretchLayout component:

■ inputText (when configured to stretch)

■ decorativeBox (when configured to stretch)

■ panelAccordion (when configured to stretch)

■ panelBox

■ panelCollection

■ panelDashboard (when configured to stretch)

■ panelGridLayout (when gridRow and gridCell components are configured to
stretch)

■ panelGroupLayout (only with the layout attribute set to scroll or vertical)

■ panelSplitter (when configured to stretch)

■ panelStretchLayout (when configured to stretch)

■ panelTabbed (when configured to stretch)

■ region

■ table (when configured to stretch)

■ tree (when configured to stretch)

■ treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
panelStretchLayout component:

■ panelBorderLayout

■ panelFormLayout

■ panelGroupLayout (only with the layout attribute set to default or horizontal)

■ panelHeader

■ panelLabelAndMessage

■ panelList

Tip: If any facet is not visible in the visual editor:

1. Right-click the panelStretchLayout component in the Structure window.

2. From the context menu, choose Facets - Panel Stretch Layout >facet
name. Facets in use on the page are indicated by a checkmark in front of
the facet name.

Using Splitters to Create Resizable Panes

8-20 Web User Interface Developer's Guide for Oracle Application Development Framework

■ showDetail

■ showDetailHeader

■ tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place a component that cannot
be stretched into a facet of the panelStretchLayout component, wrap that component
in a transition component that can stretch.

For example, if you want to place content in a panelBox component (which does not
stretch) within a facet of the panelStretchLayout component, you could place a
panelGroupLayout component with its layout attribute set to scroll in a facet of the
panelStretchLayout component, and then place the panelBox component in that
panelGroupLayout component. For more information, see Section 8.2.2, "Nesting
Components Inside Components That Allow Stretching."

8.4 Using Splitters to Create Resizable Panes
When you have groups of unique content to present to users, consider using the
panelSplitter component to provide multiple panes separated by adjustable splitters.
The File Explorer uses a panelSplitter to separate the navigation tree from the folder
contents, as shown in Figure 8–7. Users can change the size of the panes by dragging
the splitter, and can also collapse and restore the panel that displays the directories.
When a panel is collapsed, the panel contents are hidden; when a panel is restored, the
contents are displayed.

Figure 8–7 File Explorer Uses panelSplitter to Separate Contents

The panelSplitter component lets you organize contents into two panes separated by
an adjustable splitter. The panes can either line up on a horizontal line (as does the
splitter shown in Figure 8–7) or on a vertical line. The File Explorer application uses
another panelSplitter component to separate the application’s header contents from
the main body of the page. Figure 8–8 shows the panelSplitter component expanded

Using Splitters to Create Resizable Panes

Organizing Content on Web Pages 8-21

to show the header contents, which includes the Oracle logo and the File Explorer
name.

Figure 8–8 panelSplitter with a Vertical Split Expanded

Clicking the arrow button on a splitter collapses the panel that holds the header
contents, and the logo and name are no longer shown, as shown in Figure 8–9.

Figure 8–9 File Explorer Uses panelSplitter with a Vertical Split

You place components inside the facets of the panelSplitter component. The
panelSplitter component uses geometry management to stretch its child components
at runtime. This means when the user collapses one panel, the contents in the other
panel are explicitly resized to fill up available space.

Using Splitters to Create Resizable Panes

8-22 Web User Interface Developer's Guide for Oracle Application Development Framework

8.4.1 How to Use the panelSplitter Component
The panelSplitter component lets you create two panes separated by a splitter. Each
splitter component has two facets, namely, first and second, which correspond to the
first panel and second panel, respectively. Child components can reside inside the
facets only. To create more than two panes, you nest the panelSplitter components.

To create and use the panelSplitter component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Splitter

onto the JSF page.

2. In the Property Inspector, expand the Common section.

3. Set Orientation to vertical to create two vertical panes (one on top of the other).
By default, the value is horizontal, which means horizontal panes are placed
left-to-right (or right-to-left, depending on the language reading direction).

4. Set SplitterPosition and PositionedFromEnd to determine the initial placement of
the splitter. By default, the value of the splitterPosition attribute is 200 pixels,
and the positionedFromEnd attribute is false. This setting means that ADF Faces
measures the initial position of the adjustable splitter from the start or top panel
(depending on the orientation attribute value). For example, if the orientation
attribute is set to horizontal, the splitterPosition attribute is 200 and the
positionedFromEnd attribute is false (all default values), then ADF Faces places
the splitter 200 pixels from the start panel, as shown in Figure 8–10.

Figure 8–10 Splitter Position Measured from Start Panel

If the positionedFromEnd attribute is set to true, then ADF Faces measures the
initial position of the splitter from the end (or bottom panel, depending on the
orientation value). Figure 8–11 shows the position of the splitter measured 200
pixels from the end panel.

Note: While the user can change the values of the splitterPosition
and collapsed attributes by resizing or collapsing the panes, those
values will not be retained once the user leaves the page unless you
configure your application to use change persistence. For information
about enabling and using change persistence, see Chapter 33,
"Allowing User Customization on JSF Pages."

Using Splitters to Create Resizable Panes

Organizing Content on Web Pages 8-23

Figure 8–11 Splitter Position Measured from End Panel

5. Set collapsed to determine whether or not the splitter is in a collapsed (hidden)
state. By default, the collapsed attribute is false, which means both panes are
displayed. When the user clicks the arrow button on the splitter, the collapsed
attribute is set to true and one of the panes is hidden.

ADF Faces uses the collapsed and positionedFromEnd attributes to determine
which panel (that is, the first or second panel) to hide (collapse) when the user
clicks the arrow button on the splitter. When the collapsed attribute is set to true
and the positionedFromEnd attribute is false, the first panel is hidden and the
second panel stretches to fill up the available space. When the collapsed attribute
is true and the positionedFromEnd attribute is true, the second panel is hidden
instead. Visually, the user can know which panel will be collapsed by looking at
the direction of the arrow on the button: when the user clicks the arrow button on
the splitter, the panel collapses in the direction of the arrow.

6. The panelSplitter component can stretch to fill available browser space. If you
want to place the panelSplitter into a component that does not stretch its
children, then you need to change how the panelSplitter component handles
stretching.

You configure whether the component will stretch or not using the
dimensionsFrom attribute.

To use the dimensionsFrom attribute, expand the Other section, and set
DimensionsFrom to one of the following:

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Using Splitters to Create Resizable Panes

8-24 Web User Interface Developer's Guide for Oracle Application Development Framework

■ children: Instead of stretching, the panelSplitter component will get its
dimensions from its child component.

■ parent: The size of the panelSplitter component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

■ auto: If the parent component to the panelSplitter component allows
stretching of its child, then the panelSplitter component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelSplitter component will be based on the size of its child component.

7. To place content in the component, drag and drop the desired component into the
first and second facets. When you have the orientation set to horizontal, the
first facet is the left facet. When you have the orientation set to vertical, the first
facet is the top facet. If you want the child component to stretch, it must be a
component that supports stretching. For more details, see Section 8.4.2, "What You
May Need to Know About Geometry Management and the panelSplitter
Component."

Because facets accept one child component only, if you want to add more than one
child component, wrap the child components inside a container component. This
component must also be able to be stretched in order for all contained components
to stretch.

8. To create more than two panes, insert another Panel Splitter component into a
facet to create nested splitter panes (as shown in Figure 8–12).

Note: If you use this setting and you set the orientation attribute
to vertical, then the contents of the collapsible panel will not be
determined by its child component, but instead will be determined by
the value of splitterPosition attribute. The size of the other pane
will be determined by its child component.

Additionally, you cannot set the height of the panelSplitter
component (for example through the inlineStyle or styleClass
attributes) if you use this setting. Doing so would cause conflict
between the panelSplitter height and the child component height.

Tip: If any facet is not visible in the visual editor:

1. Right-click the panelSplitter component in the Structure window.

2. From the context menu, choose Facets - Panel Splitter >facet name.
Facets in use on the page are indicated by a checkmark in front of the
facet name.

Using Splitters to Create Resizable Panes

Organizing Content on Web Pages 8-25

Figure 8–12 Nested panelSplitter Components

Example 8–3 shows the code generated by JDeveloper when you nest splitter
components.

Example 8–3 Nested panelSplitter Components

<af:panelSplitter ...>
 <f:facet name="first">
 <!-- first panel child components components here -->
 </f:facet>
 <f:facet name="second">
 <!-- Contains nested splitter component -->
 <af:panelSplitter orientation="vertical" ...>
 <f:facet name="first">
 <!-- first panel child components components here -->
 </f:facet>
 <f:facet name="second">
 <!-- second panel child components components here -->
 </f:facet>
 </af:panelSplitter>
 </f:facet>
</af:panelSplitter>

9. If you want to perform some operation when users collapse or expand a panel,
attach a client-side JavaScript using the clientListener tag for the collapsed
attribute and a propertyChange event type. For more information about client-side
events, see Chapter 5, "Handling Events."

8.4.2 What You May Need to Know About Geometry Management and the panelSplitter
Component

The panelSplitter component can stretch its child components and it can also be
stretched. The following components can be stretched inside the first or second facet
of the panelSplitter component:

■ inputText (when configured to stretch)

■ decorativeBox (when configured to stretch)

■ panelAccordion (when configured to stretch)

■ panelBox

■ panelCollection

■ panelDashboard

Arranging Content in a Grid

8-26 Web User Interface Developer's Guide for Oracle Application Development Framework

■ panelGridLayout (when gridRow and gridCell components are configured to
stretch)

■ panelGroupLayout (only with the layout attribute set to scroll or vertical)

■ panelSplitter (when configured to stretch)

■ panelStretchLayout (when configured to stretch)

■ panelTabbed (when configured to stretch)

■ region

■ table (when configured to stretch)

■ tree (when configured to stretch)

■ treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
panelSplitter component:

■ panelBorderLayout

■ panelFormLayout

■ panelGroupLayout (only with the layout attribute set to default or horizontal)

■ panelHeader

■ panelLabelAndMessage

■ panelList

■ showDetail

■ showDetailHeader

■ tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched into a facet of the panelSplitter component, wrap that
component in a transition component that does not stretch its child components.

For example, if you want to place content in a panelBox component and have it flow
within a facet of the panelSplitter component, you could place a panelGroupLayout
component with its layout attribute set to scroll in a facet of the panelSplitter
component, and then place the panelBox component in that panelGroupLayout
component. For more information, see Section 8.2.2, "Nesting Components Inside
Components That Allow Stretching."

8.5 Arranging Content in a Grid
The panelGridLayout component uses child gridRow components to create rows, and
then within those rows, gridCell components that form columns, similar to an HTML
table. You place components in the gridCell components to display your data,
images, or other content.

Figure 8–13 shows a panelGridLayout component that contains two gridRow
components. Each of the gridRow components contain two gridCell components.
Each of the gridCell components contain one chooseDate component.

Arranging Content in a Grid

Organizing Content on Web Pages 8-27

Figure 8–13 Simple Grid Layout with Two Rows Each with Two Cells

You can nest panelGridLayout components. Figure 8–14 shows a more complicated
layout created with a parent panelGridLayout component (whose background is set to
pink).

Figure 8–14 Grid Layout Created with panelGridLayout, gridRow, and gridCell
components

The first gridRow component of this panelGridLayout contains one gridCell
component. This gridCell component contains another panelGridLayout component
for the header. This header grid contains two gridRow components, each with two
gridCell components. The top right gridCell contains the components for search
functionality, while the bottom left gridCell contains the Oracle logo.

The next four gridRows of the parent panelGridLayout component contain just one
gridCell component each that holds form components and buttons. The last gridRow
component contains one gridCell component that holds another panelGridLayout

Arranging Content in a Grid

8-28 Web User Interface Developer's Guide for Oracle Application Development Framework

component for the footer. This footer is made up of one gridRow component with four
gridCell components, each holding an inputText component.

When placed in a component that stretches it children, by default, the
panelGridLayout stretches to fill its parent container. However, whether or not the
content within the grid is stretched to fill the space is determined by the gridRow and
gridCell components.

By default, the child contents are not stretched. The gridRow component determines
the height. By default, the height is determined by the height of the tallest child
component in the row’s cells. The gridCell component determines the width. By
default, the width of a cell is determined by the width of other cells in the column.
Therefore, you must set at least one cell in a column to a determined width. You can
set it to determine the width based on the component in the cell, to a fixed CSS length,
or to a percentage of the remaining space in the grid.

If instead you want to have the grid stretch its contents to fill up all available browser
space, the following must be true:

■ There is only one component inside of the gridCell

■ The cell's halign and valign attributes are set to stretch

■ The effective width and effective height of the cell are not set to be automatically
determined by other cells or rows, as that would result in a circular dependency.

Each cell will then attempt to anchor the child component to all sides of the cell. If it
can’t (for example if the child component cannot be stretched), then the child
component will be placed at the start and top of the cell.

8.5.1 How to Use the panelGridLayout, gridRow, and gridCell Components to Create a
Grid-Based Layout

You create a grid by placing a certain number of gridRow components into a
panelGridLayout component. You then add gridCell components into the gridRow
components, and place components that contain the actual content in the gridCell
components. If you want to nest panelGridLayout components, you place the child
panelGridLayout component into a gridCell component.

To create and use the panelGridLayout, gridRow, and gridCell components:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Grid

Layout onto the JSF page.

2. In the Create Panel Grid Layout dialog, enter the number of columns and rows for
the grid, set the inner and outer grid margins, then click Next.

When setting the inner and outer grid margins, note the following:

■ Inner Grid Margins: Set to a fixed CSS size, for example, 2px.

– Columns: Sets the value of the marginStart property on all gridCell
components, except for the first one (which is handled by the Outer Grid
Margin setting).

– Rows: Sets the value of the marginTop property on all gridRow
components, except for the first one (which is handled by the Outer Grid
Margin setting).

■ Outer Grid Margins: Set to a fixed CSS size, for example, 2px.

– Top: Sets the marginTop property on just the top gridRow component.

Arranging Content in a Grid

Organizing Content on Web Pages 8-29

– Bottom: Sets the marginBottom property on just the last gridRow
component.

– Left: Sets the marginStart property on just the first gridCell component.

– Right: Sets the marginEnd property on just the last gridCell component.

3. On the second page of the dialog, set the width of each cell and height of each row.

■ Grid Width: Sets the width property on each of the gridCell component. Set
each column to one of the following:

– dontCare: The width of the cell is determined by other cells in the column.
This is the default.

– auto: The width of the cell is determined by the components in the
corresponding column. The browser first draws all those components and
the width is adjusted accordingly.

– A percentage: If you want the width of the cell’s corresponding column to
be a normalized percentage of the remaining space not already used by
other columns, then enter a percentage, for example, 25%.

– A fixed CSS size: If you want to constrain the width to a fixed width, enter
a fixed CSS size, for example 20px or 20em.

■ Grid Height: Sets the height property on each of the gridRow components. Set
each row to one of the following:

Note: For marginBottom and marginTop, conflicting unit types will
be ignored. For example, if RowA has marginTop set to 2px and RowB
has marginTop set to 5em, the margin will be 2px, as that is the first
unit type encountered.

When you use the Create Panel Grid Layout dialog, the marginTop
and marginBottom properties are set for you and avoid this conflict.

Note: If you want the panelGridLayout component to stretch its
children, then set the row heights to a value other than auto and set
the cell widths to a value other than auto. You then need to use the
Property Inspector to set other properties to allow stretching. For
more information, see Step 5.

Note: Note the following:

■ If you want a cell to span columns, then width must be set to
dontCare.

■ If cells in a column have different values for their width (for
example, if one is set to auto and another is set to a fixed width),
then the width of the column will be the largest value of the first
unit type encountered.

■ If all cells in a column are set to dontCare, then the widest cell
based on its child component will determine the width of the
column (as if the cells were all set to auto).

Arranging Content in a Grid

8-30 Web User Interface Developer's Guide for Oracle Application Development Framework

– auto: The height of a row is determined by the components in the row.
The browser first draws the child components and the height of the row is
adjusted accordingly. This is the default.

– A percentage: If the panelGridLayout component itself has a fixed height,
or if it is being stretched by its parent component, then enter a percentage,
for example 25%. The height of the row will then be a normalized
percentage of the remaining space not already used by other rows.

– A fixed CSS length: If you want to constrain the height to a fixed height,
enter a fixed CSS length, for example 10px or 20em.

Click Finish.

4. By default, the panelGridLayout component stretches to fill available browser
space. If instead, you want to use the panelGridLayout component as a child to a
component that does not stretch its children, then you need to change how the
panelGridLayout component handles stretching.

You configure whether the component will stretch or not using the
dimensionsFrom attribute. To do so, in the Property Inspector, set
DimensionsFrom to one of the following:

■ children: the panelGridLayout component will get its dimensions from its
child components.

■ parent: the size of the panelGridLayout component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

■ auto: If the parent component to the panelGridLayout component allows
stretching of its child, then the panelGridLayout component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelGridLayout component will be based on the size of its child component.
This is the default.

5. If you want the panelGridLayout to stretch its children, then you need to set the
following:

■ Set height on the rows to a value other than auto.

■ Set width on the cells to a value other than auto.

Note: If you use this setting, you cannot set the height of the child
row components as percentages, because space in the
panelGridLayout is not divided up based on availability. You can use
the Property Inspector to change the height of the rows that you set
when you completed the dialog.

Note: If you use this setting, you can set the height of the child row
components as percentages.

Arranging Content in a Grid

Organizing Content on Web Pages 8-31

■ Set halign on the gridCell components to stretch.

■ Set valign on the gridCell components to stretch.

■ Place only one child component into the gridCell components.

6. If you want the cell to take up more than one column, set ColumnSpan to the
number of columns it should span. The default is 1.

7. If you want the cell to take up more than one row, set RowSpan to the number of
rows it should span. The default is 1.

8. Set Halign to determine the horizontal alignment for the cell’s contents. If you
want the contents aligned to the start of the cell (the left in LTR locale), set it to
start (the default). You can also set it to center or end. If you want the
panelGridLayout to stretch, then set Halign to stretch (for more information
about getting the panelGridLayout component to stretch, see Step 5.)

9. Set Valign to determine the vertical alignment for the cell’s contents. If you want
the contents aligned to the top of the cell, set it to top (the default). You can also set
it to middle or bottom. If you want the panelGridLayout to stretch, then set Valign
to stretch (for more information about getting the panelGridLayout component
to stretch, see Step 5).

8.5.2 What You May Need to Know About Geometry Management and the
panelGridLayout Component

The panelGridLayout component can stretch its child components and it can also be
stretched. The following components can be stretched inside the panelGridLayout
component:

■ decorativeBox (when configured to stretch)

■ calendar

■ inputText (when configured to stretch)

■ panelAccordion (when configured to stretch)

■ panelBox (when configured to stretch)

■ panelCollection

■ panelDashboard (when configured to stretch)

■ panelGridLayout (when gridRow and gridCell components are configured to
stretch)

■ panelGroupLayout (only with the layout attribute set to scroll or vertical)

■ panelHeader (when configured to stretch)

■ panelSplitter (when configured to stretch)

■ panelStretchLayout (when configured to stretch)

■ panelTabbed (when configured to stretch)

■ region

■ showDetailHeader (when configured to stretch)

Note: If you set columnSpan to more than 1, then the value of the
width attribute must be set to dontCare.

Arranging Page Contents in Predefined Fixed Areas

8-32 Web User Interface Developer's Guide for Oracle Application Development Framework

■ table (when configured to stretch)

■ tree (when configured to stretch)

■ treeTable (when configured to stretch)

The following components cannot be stretched when placed inside the
panelGridLayout component:

■ panelBorderLayout

■ panelFormLayout

■ panelGroupLayout (only with the layout attribute set to default or horizontal)

■ panelLabelAndMessage

■ panelList

■ showDetail

■ tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into a component that stretches its
child components. Therefore, if you need to place a component that cannot be
stretched into a gridCell of a panelGridLayout component, then you must configure
the panelGridLayout, gridRow, and gridCell components so that they do not stretch
their children.

8.6 Arranging Page Contents in Predefined Fixed Areas
The panelBorderLayout component uses facets to contain components in predefined
areas of a page. Instead of a center facet, the panelBorder layout component takes 0 to
n direct child components (also known as indexed children), which are rendered
consecutively in the center. The facets then surround the child components.

Figure 8–15 shows the facets of the panelBorderLayout component.

Figure 8–15 Facets in panelBorderLayout

The 12 supported facets of the panelBorderLayout component are:

■ top: Renders child components above the center area.

■ bottom: Renders child components below the center area.

■ start: Supports multiple reading directions. This facet renders child components
on the left of the center area between top and bottom facet child components, if the

Arranging Page Contents in Predefined Fixed Areas

Organizing Content on Web Pages 8-33

reading direction of the client browser is left-to-right. If the reading direction is
right-to-left, it renders child components on the right of the center area. When
your application must support both reading directions, this facet ensures that the
content will be displayed on the proper side when the direction changes. If you do
not need to support both directions, then you should use either the left or right
facet.

■ end: Supports multiple reading directions. This facet renders child components on
the right of the center area between top and bottom facet child components, if the
reading direction of the client browser is left-to-right. If the reading direction is
right-to-left, it renders child components on the left of the center area. When your
application must support both reading directions, this facet ensures that the
content will be displayed on the proper side when the direction changes. If you do
not need to support both directions, then you should use either the left or right
facet.

■ left: Supports only one reading direction. This facet renders child components on
the left of the center area between top and bottom facet child components. When
the reading direction is left-to-right, the left facet has precedence over the start
facet if both the left and start facets are used (that is, contents in the start facet
will not be displayed). If the reading direction is right-to-left, the left facet also
has precedence over the end facet if both left and end facets are used.

■ right: Supports only one reading direction. This facet renders child components
on the right of the center area between top and bottom facet child components. If
the reading direction is left-to-right, the right facet has precedence over the end
facet if both right and end facets are used. If the reading direction is right-to-left,
the right facet also has precedence over the start facet, if both right and start
facets are used.

■ innerTop: Renders child components above the center area but below the top facet
child components.

■ innerBottom: Renders child components below the center area but above the
bottom facet child components.

■ innerLeft: Renders child components similar to the left facet, but renders
between the innerTop and innerBottom facets, and between the left facet and the
center area.

■ innerRight: Renders child components similar to the right facet, but renders
between the innerTop facet and the innerBottom facet, and between the right
facet and the center area.

■ innerStart: Renders child components similar to the innerLeft facet, if the
reading direction is left-to-right. Renders child components similar to the
innerRight facet, if the reading direction is right-to-left.

■ innerEnd: Renders child components similar to the innerRight facet, if the
reading direction is left-to-right. Renders child components similar to the
innerLeft facet, if the reading direction is right-to-left.

The panelBorderLayout component does not support stretching its child components,
nor does it stretch when placed in a component that stretches its child components.
Therefore, the size of each facet is determined by the size of the component it contains.
If instead you want the contents to stretch to fill the browser window, consider using
the panelStretchLayout component instead. For more information, see Section 8.3,
"Arranging Contents to Stretch Across a Page."

Arranging Content in Forms

8-34 Web User Interface Developer's Guide for Oracle Application Development Framework

8.6.1 How to Use the panelBorderLayout Component
There is no restriction to the number of panelBorderLayout components you can have
on a JSF page.

To create and use the panelBorderLayout component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Border

Layout onto the JSF page.

2. From the Component Palette, drag and drop the component that will be used to
display contents in the center of the window as a child component to the
panelBorderLayout component.

Child components are displayed consecutively in the order in which you inserted
them. If you want some other type of layout for the child components, wrap the
components inside the panelGroupLayout component. For more information, see
Section 8.13, "Grouping Related Items."

3. To place contents that will surround the center, drag and drop the desired
component into each of the facets.

Because facets accept one child component only, if you want to add more than one
child component, wrap the child components inside a container.

8.7 Arranging Content in Forms
The panelFormLayout component lets you lay out multiple form input components
such as input fields and selection list fields in one or more columns. The File Explorer
application uses a panelFormLayout component to display file properties. The
component is configured to have the labels right-aligned, as shown in Figure 8–16.

Figure 8–16 Right-Aligned Labels and Left-Aligned Fields in a Form

Figure 8–17 shows the same page with the component configured to display the labels
above the fields.

Tip: If any facet is not visible in the visual editor:

1. Right-click the panelBorderLayout component in the Structure window.

2. From the context menu, choose Facets - Panel Border Layout >facet
name. Facets in use on the page are indicated by a checkmark in front of
the facet name.

Arranging Content in Forms

Organizing Content on Web Pages 8-35

Figure 8–17 Labels Above Fields in a Form

You can configure the panelFormLayout component to display the fields with their
labels in one or more columns. Each field in the form is a child component of the
panelFormLayout component. You set the desired number of rows, and if there are
more child components than rows, the remaining child components are placed in a
new column. For example, if there are 25 child components, and you set the
component to display 15 rows, the last 10 components will be displayed in a second
column.

However, the number of rows displayed in each is not solely determined by the
configured number of rows. By default, the panelFormLayout component is set to
render no more than three columns (two for PDA applications). This value is what
actually determines the number of rows. For example, if you have 25 child
components and you set the component to display 5 rows and you leave the default
maximum number of columns set to 3, then the component will actually display 9
rows, even though you have it set to display 5. This is because the maximum number
of columns can override the set number of rows. Because it is set to allow only up to 3
columns, it must use 9 rows in order to display all child components. You would need
to set the maximum number of columns to 5 in order to have the component display
just 5 rows.

ADF Faces uses default label and field widths, as determined by the standard HTML
flow in the browser. You can also specify explicit widths to use for the labels and
fields. Regardless of the number of columns in the form layout, the widths you specify
apply to all labels and fields. You specify the widths using either absolute numbers in
pixels or percentage values. If the length of a label does not fit, the text is wrapped.

8.7.1 How to Use the panelFormLayout Component
You can use one or more panelFormLayout components on a page to create the desired
form layout.

To create and use panelFormLayout:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Form

Layout onto the JSF page.

2. In the Property Inspector, expand the Common section and set the label alignment.

By default, field labels on the child input components are displayed beside the
fields. To place the labels above the fields, set the labelAlignment attribute to top.

Tip: If your page will be displayed in languages other than English,
you should leave extra space in the labels to account for different
languages and characters.

Arranging Content in Forms

8-36 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Set rows and maxColumns to determine the number of rows and columns in the
form.

The rows attribute value is the number that ADF Faces uses as the number of rows
after which a new column will start. By default, it is set to 2147483647
(Integer.MAX_VALUE). This means all the child components that are set to
rendered="true" and visible="true" will render in one, single column.

If you want the form to contain more than one column, set the rows attribute to a
multiple of the number of rendered child components, and then set the
maxColumns attribute to the maximum amount of columns that the form should
display. The default value of maxColumns is 3. (On PDAs, the default is 2).

For example, if the rows attribute is set to 6 and there are 1 to 6 rendered child
components, the list will be displayed in 1 column. If there are 7 to 12 rendered
child components, the list will be displayed in 2 columns. If there are 13 or more
child components, the list will be displayed in 3 columns. To display all rendered
child components in 1 column, set the rows attribute back to the default value.

If the number of rendered child components would require more columns than
allowed by the maxColumn attribute, then the value of the rows attribute is
overridden. For example, if there are 100 rendered child components, and the rows
attribute is set to 30 and the maxColumns attribute is 3 (default), the list will be
displayed in 3 columns and 34 rows. If the maxColumns attribute is set to 2, the list
will be displayed in 2 columns and 51 rows.

4. Set fieldWidth and labelWidth as needed.

ADF Faces uses default label and field widths, as determined by standard HTML
flow in the browser. You can also specify explicit widths to use for the labels and
fields.

The labelWidth attribute on the panelFormLayout component lets you set the
preferred width for labels; the fieldWidth attribute lets you set the preferred
width for fields.

Note: When you nest a panelFormLayout component inside another
panelFormLayout component, the label alignment in the nested layout
is top.

Note: If the panelFormLayout component is inside another
panelFormLayout component, the inner panelFormLayout
component’s maxColumns value is always 1.

Tip: Rendered child components refers only to direct child
components of the form. Therefore, when a component that renders
multiple rows (for example selectManyCheckbox) is a child, all its
rows will be treated as a single rendered child and cannot be split
across separate columns.

Note: Any value you specify for the labelWidth component is
ignored in layouts where the labelAlignment attribute is set to top,
that is, in layouts where the labels are displayed above the fields.

Arranging Content in Forms

Organizing Content on Web Pages 8-37

Regardless of the number of columns in the form layout, the widths you specify
apply to all labels and fields, that is, you cannot set different widths for different
columns. You specify the widths using any CSS unit such as em, px, or %. The unit
used must be the same for both the labelWidth and fieldWidth attribute.

When using percentage values:

■ The percentage width you specify is a percent of the entire width taken up by
the panelFormLayout component, regardless of the number of columns to be
displayed.

■ The sum of the labelWidth and fieldWidth percentages must add up to 100%.
If the sum is less than 100%, the widths will be normalized to equal 100%. For
example, if you set the labelWidth to 10% and the fieldWidth to 30%, at
runtime the labelWidth would be 33% and the fieldWidth would be 67%.

■ If you explicitly set the width of one but not the other (for example, you
specify a percentage for labelWidth but not fieldWidth), ADF Faces
automatically calculates the percentage width that is not specified.

Suppose the width of the panelFormLayout component takes up 600 pixels of
space, and the labelWidth attribute is set at 50%. In a one-column display, the
label width will be 300 pixels and the field width will be 300 pixels. In a
two-column display, each column is 300 pixels, so each label width in a column
will be 150 pixels, and each field width in a column will be 150 pixels.

If the length of the label text does not fit on a single line with the given label
width, ADF Faces automatically wraps the label text. If the given field width is
less than the minimum size of the child content you have placed inside the
panelFormLayout component, ADF Faces automatically uses the minimum size of
the child content as the field width.

5. Insert the desired child components.

Usually you insert labeled form input components, such as Input Text, Select
Many Checkbox, and other similar components that enable users to provide
input.

Note: If your form contains multiple columns and a footer, you may
see a slight offset between the positioning of the main form items and
the footer items in web browsers that do not honor fractional divisions
of percentages. To minimize this effect, ensure that the percentage
labelWidth is evenly divisible by the number of columns.

Note: If the field is wider than the space allocated, the browser will
not truncate the field but instead will take space from the label
columns. This potentially could cause the labels to wrap more than
you would like. In this case, you may want to consider reducing the
width of the field contents (for example, use a smaller contentStyle
width on an inputText component).

Tip: The panelFormLayout component also allows you to use the
iterator, switcher, and group components as direct child
components, providing these components wrap child components
that would typically be direct child components of the
panelFormLayout component.

Arranging Content in Forms

8-38 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 8–4 shows the panelFormLayout component as it is used on the
properties.jspx page of the File Explorer application, shown in Figure 8–16.

Example 8–4 panelFormLayout Component

<af:panelFormLayout rows="5" labelAlignment="top">
 <af:inputText value="#{fileItemProperties.type}"
 label="#{explorerBundle['fileproperties.type']}"
 readOnly="true"/>
 <af:inputText value="#{fileItemProperties.location}"
 label="#{explorerBundle['fileproperties.currentpath']}"
 readOnly="true"/>
 <af:inputText value="#{fileItemProperties.size}"
 label="#{explorerBundle['fileproperties.size']}"
 readOnly="true"/>
 <af:inputText value="#{fileItemProperties.contains}"
 label="#{explorerBundle['fileproperties.contains']}"
 readOnly="true"/>
</af:panelFormLayout>

6. To group semantically related input components in a form layout, use the group
component to wrap those components that belong in a group. Components placed
within a group will cause the panelFormLayout component to draw a separator
line above and below the group.

For more information about using the group component, see Section 8.7.2, "What
You May Need to Know About Using the group Component with the
panelFormLayout Component."

7. To add content below the child input components, insert the desired component
into the footer facet.

Facets accept only one child component. If you have to insert more than one
component in the footer facet, use the panelGroupLayout component or the group
component to wrap the footer child components. Example 8–5 shows sample
code that uses the panelGroupLayout component to arrange footer child
components in a panelFormLayout component.

Example 8–5 Footer Child Components in panelFormLayout Arranged Horizontally

<af:panelFormLayout>
 <f:facet name="footer">
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Save"/>
 <af:commandButton text="Cancel"/>
 <f:facet name="separator">
 <af:spacer width="3" height="3"/>
 </f:facet>
 </af:panelGroupLayout>
 </f:facet>
 .

Tip: If you use non-input components (which do not have label
attributes) or if you want to group several input components with one
single label inside a panelFormLayout component, first wrap the
components inside a panelLabelAndMessage component. For
information about using the panelLabelAndMessage component, see
Section 17.4, "Grouping Components with a Single Label and
Message."

Arranging Content in Forms

Organizing Content on Web Pages 8-39

 .
 .
</af:panelFormLayout>

8.7.2 What You May Need to Know About Using the group Component with the
panelFormLayout Component

While the group component itself does not render anything, when it used as a child in
the panelFormLayout component, visible separators are displayed around the child
components of each group component. For example, you might want to group some of
the input fields in a form layout created by the panelFormLayout component.
Example 8–17 shows sample code that groups two sets of child components inside a
panelFormLayout component.

Example 8–6 Grouping Child Components in panelFormLayout

<af:panelFormLayout binding="#{editor.component}" rows="10" labelWidth="33%"
 fieldWidth="67%" testId="panelFormLayout1">
 <af:inputText columns="5" label="label 1"/>
 <af:group>
 <af:inputText columns="5" label="grouped 1" shortDesc="This one is secret!"
 secret="true"/>
 <af:inputText columns="5" label="grouped 2"/>
 <af:inputText columns="5" label="grouped 3"/>
 </af:group>
 <af:inputDate id="df1" label="label 2"/>
 <af:panelLabelAndMessage label="label 3" labelStyle="vertical-align: middle;">
 <af:commandButton text="Submit"/>
 </af:panelLabelAndMessage>
 <af:selectOneListbox id="sol" label="label 4" shortDesc="Select One Option">
 <af:selectItem label="option 1"/>
 <af:selectItem label="option 2"/>
 <af:selectItem label="option 3"/>
 <af:selectItem label="option 4"/>
 </af:selectOneListbox>
 <af:selectManyListbox id="rs" label="label 5" shortDesc="Select Option">
 <af:selectItem label="option 1"/>
 <af:selectItem label="option 2"/>
 <af:selectItem label="option 3"/>
 <af:selectItem label="option 4"/>oiiiik,
 </af:selectManyListbox>
</af:panelFormLayout>

Following along with the sample code in Example 8–17, at runtime the
panelFormLayout component renders dotted, separator lines before and after the first
group of child components, as shown in Figure 8–18.

Arranging Content in Forms

8-40 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–18 Grouped Components in panelFormLayout

As described in Section 8.7, "Arranging Content in Forms," the panelFormLayout
component uses certain component attributes to determine how to display its child
components (grouped and ungrouped) in columns and rows. When using the group
component to group related components in a panelFormLayout component that will
display its child components in more than one column, the child components of any
group component will always be displayed in the same column, that is, child
components inside a group component will never be split across a column.

While the group component does not provide any layout for its child components, the
underlying HTML elements can provide the desired layout for the child components
inside the group component. For example, if you want child button components in a
group component to flow horizontally in a form layout, use the panelGroupLayout
component to wrap the buttons, and set the layout attribute on panelGroupLayout
component to horizontal. Then insert the panelGroupLayout component into group
component, as shown in Example 8–7.

Example 8–7 panelGroupLayout Inside a Group Component

<af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Save" ../>
 <af:commandButton text="Cancel" ../>
 <f:facet name="separator">
 <af:spacer width="3"/>
 </f:facet>
 </af:panelGroupLayout>
</af:group>

When you use the group component to group child components in the footer facet of
the panelFormLayout component, you must place all the group components and other
ungrouped child components in one root group component, as shown in Example 8–8.

Arranging Content in Forms

Organizing Content on Web Pages 8-41

Example 8–8 footer Facet in panelFormLayout with One Root group Component

<af:panelFormLayout ...>
 <f:facet name="footer">
 <!-- One root group component needed -->
 <af:group>
 <af:outputText value="Footer item 1"/>
 <!-- One group -->
 <af:group>
 <af:outputText value="Group 1 item 1"/>
 <af:outputText value="Group 1 item 2"/>
 </af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Save"/>
 <af:commandButton text="Cancel"/>
 <f:facet name="separator">
 <af:spacer width="3"/>
 </f:facet>
 </af:panelGroupLayout>
 </af:group>
 </f:facet>
 .
 .
 .
</af:panelFormLayout>

Like grouped child components in a panelFormLayout component, at runtime the
panelFormLayout component renders dotted, separator lines around the child
components of each group component in the footer facet, as shown in Figure 8–19.

Figure 8–19 Footer in panelGroupLayout with Grouped Components

Arranging Content in Forms

8-42 Web User Interface Developer's Guide for Oracle Application Development Framework

Whether you are grouping components in the footer facet or in the main body of the
panelFormLayout component, if the first or last child inside the panelFormLayout
component or inside the footer facet is a group component, no separator lines will be
displayed around the child components in that group. For example, both sets of code
examples in Example 8–9 would produce the same visual effect at runtime.

Example 8–9 Code Producing Same Visual Effect

<!-- Example 1: Group of buttons is last child in root group -->
<f:facet name="footer">
 <af:group>
 <af:outputText value="Footer text item 1"/>
 <af:outputText value="Footer text item 2"/>
 <af:group>
 <af:inputText label="Nested group item 1"/>
 <af:inputText label="Nested group item 2"/>
 </af:group>
 <af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Cancel"/>
 <af:commandButton text="Save"/>
 </af:panelGroupLayout>
 </af:group>
 </af:group>
</f:facet>

<!-- Example 2: panelGroupLayout of buttons is last child in root group-->
<f:facet name="footer">
 <af:group>
 <af:outputText value="Footer text item 1"/>
 <af:outputText value="Footer text item 2"/>
 <af:group>
 <af:inputText label="Nested group item 1"/>
 <af:inputText label="Nested group item 2"/>

Note: The footer facet in the panelFormLayout component supports
only two levels of grouped components, that is, you cannot have three
or more levels of nested group components in the footer facet. For
example, the following code is not valid:

<f:facet name="footer">
 <!-- Only one root group -->
 <af:group>
 <af:outputText value="Footer item 1"/>
 <!-- Any number of groups at this level -->
 <af:group>
 <af:outputText value="Group 1 item 1"/>
 <af:outputText value="Group 1 item 2"/>
 <!-- But not another nested group. This is illegal. -->
 <af:group>
 <af:outputText value="Nested Group 1 item 1"/>
 <af:outputText value="Nested Group 1 item 2"/>
 </af:group>
 </af:group>
 <af:outputText value="Another footer item"/>
 </af:group>
</f:facet>

Arranging Contents in a Dashboard

Organizing Content on Web Pages 8-43

 </af:group>
 <af:panelGroupLayout layout="horizontal">
 <af:commandButton text="Cancel"/>
 <af:commandButton text="Save"/>
 </af:panelGroupLayout>
 </af:group>
</f:facet>

8.8 Arranging Contents in a Dashboard
The panelDashboard component allows you to arrange its child components in rows
and columns, similar to the panelForm component. However, instead of text
components, the panelDashboard children are panelBox components that contain
content, as shown in Figure 8–20.

Figure 8–20 panelDashboard with panelBox Child Components

When you add a panelDashboard component, you configure the number of columns it
will contain, along with the height of each row. The dashboard stretches its children to
fill up the configured space. If all the child components do not fit within the specified
number of columns and row height, then the panelDashboard component displays a
scroll bar.

When placed in a component that stretches it children, the panelDashboard can be
configured to stretch to fill its parent container, no matter the number of children. This
could mean that you may have blank space in the dashboard when the browser is
resized to be much larger than the dashboard needs.

For example, say you have set the panelDashboard to inherit its size from its parent by
setting the dimensionsFrom attribute to parent. You set columns to 1 and the
rowHeight to 50px. You then add two panelBox components. Because columns is set to
1, you will have 2 rows. Because the parent component is a panelStretchLayout, the
panelDashboard will stretch to fill the panelStretchLayout, no matter the height of the
boxes, and you end up with extra space, as shown in Figure 8–21 (the color of the
dashboard has been changed to fuchsia to make it more easy to see its boundaries).

Arranging Contents in a Dashboard

8-44 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–21 panelDashboard Stretches to Fill Space

If instead you don’t want the dashboard to stretch, you can place it in a component
that does not stretch its children, and you can configure the panelDashboard to
determine its size based on its children (by setting the dimensionsFrom attribute to
children). It will then be as tall as the number of rows required to display the
children, multiplied by the rowHeight attribute.

In the previous example, if instead you place the dashboard in a panelGroupLayout set
to scroll, because the rowHeight is set to 50, your panelDashboard will always be just
over 100px tall, no matter the size of the browser window, as shown in Figure 8–22.

Figure 8–22 panelDashboard Does Not Stretch

Arranging Contents in a Dashboard

Organizing Content on Web Pages 8-45

The panelDashboard component also supports declarative drag and drop behavior, so
that the user can rearrange the child components. As shown in Figure 8–23, the user
can for example, move panelBox 10 between panelBox 4 and panelBox 5. A shadow is
displayed where the box can be dropped.

Figure 8–23 Drag and Drop Capabilities in panelDashboard

Along with the ability to move child components, the panelDashboard component also
provides an API that you can access to allow users to switch child components from
being rendered to not rendered, giving the appearance of panelBoxes being inserted or
deleted. The dashboard uses partial page rendering to redraw the new set of child
components without needing to redraw the entire page.

You can use the panelDashboardBehavior tag to make the rendering of components
appear more responsive. This tag allows the activation of a command component to
apply visual changes to the dashboard before the application code modifies the
component tree on the server. Because this opening up of space happens before the

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Note: You can also configure drag and drop functionality that allows
users to drag components into and out of the panelDashboard
component. For more information, see Section 34.6, "Adding Drag and
Drop Functionality Into and Out of a panelDashboard Component."

Arranging Contents in a Dashboard

8-46 Web User Interface Developer's Guide for Oracle Application Development Framework

action event is sent to the server, the user will see immediate feedback while the action
listener for the command component modifies the component tree and prepares the
dashboard for the optimized encoding of the insert.

For example, Figure 8–24 shows a panelDashboard component used in the right panel
of a panelSplitter component. In the left panel, list items displayed as links represent
each panelBox component in the panelDashboard. When all panelBox components are
displayed, the links are all inactive. However, if a user deletes one of the panelBox
components, the corresponding link becomes active. The user can click the link to
reinsert the panelBox. By using the panelDashboardBehavior tag with the
commandLink component, the user sees the inserted box drawing.

Figure 8–24 commandLink Components Use panelDashboardBehavior Tag

If you decide not to use this tag, there will be a slight delay while your action listener
is processing before the user sees any change to the dashboard structure.

Figure 8–25 shows a practical example using a panelDashboard component. Selecting
one of the links at the top of the page changes the panelBoxes displayed in the
dashboard. The user can also add panelBoxes by clicking the associated link on the
left-hand side of the page.

Arranging Contents in a Dashboard

Organizing Content on Web Pages 8-47

Figure 8–25 Practical Example of panelDashboard

8.8.1 How to Use the panelDashboard Component
After you add a panelDashboard to a page, you can configure the dashboard to
determine whether or not it will stretch. Then, add child components, and if you want
to allow rearrangement the components, also add a componentDragSource tag to the
child component. If you want to allow insertion and deletion of components,
implement a listener to handle the action. You can also use the
panelDashboardBehavior tag to make the panelDashboard component appear more
responsive to the insertion.

To use the panelDashboard component:
1. In the Component Palette, from the Layout panel drag and drop a Panel

Dashboard onto the page.

2. In the Property Inspector, expand the Common section.

3. Set columns to the number of columns you want to use to display the child
components. The child components will stretch to fit each column.

4. Set RowHeight to the number of pixels high that each row should be. The child
components will stretch to this height.

5. The panelDashboard component can stretch to fill available browser space. If
instead, you want to use the panelDashboard component as a child to a
component that does not stretch its children, then you need to change how the
panelDashboard component handles stretching.

You configure whether the component will stretch or not using the
dimensionsFrom attribute.

Arranging Contents in a Dashboard

8-48 Web User Interface Developer's Guide for Oracle Application Development Framework

To use the dimensionsFrom attribute, expand the Other section, and set
DimensionsFrom to one of the following:

■ children: the panelDashboard component will get its dimensions from its
child components.

■ parent: the size of the panelDashboard component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

■ auto: If the parent component to the panelDashboard component allows
stretching of its child, then the panelDashboard component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelDashboard component will be based on the size of its child component.

6. From the Component Palette, drag and drop child panelBox components.

7. If you want users to be able to reorder the child components, in the Component
Palette, from the Operations panel, drag and drop a Component Drag Source as a
child to each of the child components.

8. If you want to be able to add and delete components, create a managed bean and
implement a handler method that will handle reordering children when a child is
added or dropped. This event is considered a drop event, so you must use the
Drag and Drop framework. For more information about creating a handler for a
drop event, see Chapter 34, "Adding Drag and Drop Functionality."

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Note: If you use this setting, you cannot set the height of the
panelDashboard component (for example through the inlineStyle or
styleClass attributes). Doing so would cause conflict between the
panelDashboard height and the child component height.

Tip: The panelDashboard component also supports the region
component as a child component.

Arranging Contents in a Dashboard

Organizing Content on Web Pages 8-49

To use the optimized lifecycle, have the handler call the panelDashboard
component’s prepareOptimizedEncodingOfInsertedChild() method, which
causes the dashboard to send just the inserted child component to be rendered.

9. If you have added a componentDragSource tag in Step 7, then you must also
implement a DropEvent handler for the panelDashboard. With the panelDashboard
component selected, expand the Behavior section and bind the DropListener
attribute to that handler method.

10. If you wish to use a panelDashboardBehavior tag, drag and drop a command
component that will be used to initiate the insertion.

11. In the Property Inspector, bind the ActionListener for the command component to
a handler on a managed bean that will handle the changes to the component tree.
Have the handler call the panelDashboard component’s
prepareOptimizedEncodingOfInsertedChild() method, which causes the
dashboard to send just the inserted child component to be rendered. Example 8–10
shows code on a managed bean that handles the insertion of child components.

Example 8–10 Action Listener Code for Insert Button

public void handleInsert(ActionEvent e)
{
 UIComponent eventComponent = e.getComponent();
 String panelBoxId = eventComponent.getAttributes().get("panelBoxId").toString();
 UIComponent panelBox = _dashboard.findComponent(panelBoxId);

 // Make this panelBox rendered:
 panelBox.setRendered(true);

 // Becaue the dashboard is already shown, perform an optimized
 // render so the whole dashboard does not have to be re-encoded:
 int insertIndex = 0;
 List<UIComponent> children = _dashboard.getChildren();
 for (UIComponent child : children)
 {
 if (child.equals(panelBox))
 {
 // Let the dashboard know that only the one child component should be
 // encoded during the render phase:
 _dashboard.prepareOptimizedEncodingOfInsertedChild(
 FacesContext.getCurrentInstance(),
 insertIndex);
 break;
 }

 if (child.isRendered())
 {
 // Count only rendered children because that is all that the
 // panelDashboard can see:
 insertIndex++;
 }
 }
 // Add the side bar as a partial target because we need to

Note: If you plan on using the panelDashboardBehavior tag, then
this API should be called from the associated command component’s
actionListener handler.

Displaying and Hiding Contents Dynamically

8-50 Web User Interface Developer's Guide for Oracle Application Development Framework

 // redraw the state of the side bar item that corresponds to the inserted item:
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_sideBar);
}

12. In the Component Palette, from the Operations panel, drag a Panel Dashboard
Behavior tag and drop it as a child to the command component.

13. In the Property Inspector, enter the following:

■ for: Enter the ID for the associated panelDashboard component

■ index: Enter an EL expression that resolves to a method that determines the
index of the component to be inserted. When you use the
panelDashboardBehavior tag, a placeholder element is inserted into the DOM
tree where the actual component will be rendered once it is returned from the
server. Because the insertion placeholder gets added before the insertion
occurs on the server, you must specify the location where you are planning to
insert the child component so that if the user reloads the page, the children
will continue to remain displayed in the same order.

8.8.2 What You May Need to Know About Geometry Management and the
panelDashboard Component

This component organizes its children into a grid based on the number of columns and
the rowHeight attribute. The child components that can be stretched inside of the
panelDashboard include:

■ inputText (when the rows attribute is set to greater than one, and the simple
attribute is set to true)

■ panelBox

■ region

■ table (when configured to stretch)

If you try to put any other component as a child component to the panelDashboard
component, then the component hierarchy is not valid.

8.9 Displaying and Hiding Contents Dynamically
Sometimes you want users to have the choice of displaying or hiding content. When
you do not need to show all the functionality of the user interface at once, you can
save a lot of space by using components that enable users to show and hide parts of
the interface at will.

The showDetail component creates a label with a toggle icon that allows users to
disclose (show) or undisclose (hide) contents under the label. When the contents are
undisclosed (hidden), the default label is Show and the toggle icon is a plus sign in a
box. When the contents are disclosed (shown), the default label is Hide, and the toggle
icon changes to a minus sign.

For example, the newFileItem page of the File Explorer application uses a showDetail
component to hide and display file properties. The component is configured to hide
the properties when the page is displayed, as shown in Figure 8–26.

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-51

Figure 8–26 Collapsed showDetail

When the user clicks the toggle icon, the properties are displayed, as shown in
Figure 8–27.

Figure 8–27 Expanded showDetail

If you want to use something more complex than an outputText component to display
the disclosed and undisclosed text, you can add components to the showDetail
component’s prompt facet. When set to be visible, any contents in the prompt facet will
replace the disclosed and undisclosed text values. To use the showDetail component,
see Section 8.9.1, "How to Use the showDetail Component."

Tip: By default, child components of the showDetail component are
indented. You can control the indentation using the child-container
skinning key. For example:

af|showDetail {
 -tr-layout: flush;
}
af|showDetail::child-container {
 padding-left: 10px;
}

For more information, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

Displaying and Hiding Contents Dynamically

8-52 Web User Interface Developer's Guide for Oracle Application Development Framework

Like the showDetail component, the showDetailHeader component also toggles the
display of contents, but the showDetailHeader component provides the label and
toggle icon in a header, and also provides facets for a menu bar, toolbar, and text.

When there is not enough space to display everything in all the facets of the title line,
the showDetailHeader text is truncated and displays an ellipsis. When the user hovers
over the truncated text, the full text is displayed in a tooltip, as shown in Figure 8–28.

Figure 8–28 Text for the showDetailHeader Is Truncated

When there is more than enough room to display the contents, the extra space is
placed between the context facet and the toolbar, as shown in Figure 8–29.

Figure 8–29 Extra Space Is Added Before the Toolbar

Additionally, you can configure the showDetailHeader component to be used as a
message for errors, warnings, information, or confirmations. The contents are hidden
or displayed below the header. For example, the newFileItem page of the File Explorer
application uses a showDetailHeader component to display help for creating a new
file. By default, the help is not displayed, as shown in Figure 8–27. When the user
clicks the toggle icon in the header, the contents are displayed, as shown in
Figure 8–30.

Figure 8–30 showDetailHeader Component Used to Display Help

You can also use the showDetailHeader component in conjunction with the
panelHeader component to divide a page into sections and subsections, where some
contents can be hidden. The showDetailHeader component contains a number of
facets, such as a toolbar and menu bar facet. These facets are the same as for the
panelHeader component. For more information about the panelHeader component,
see Section 8.11, "Displaying Items in a Static Box."

You can nest showDetailHeader components to create a hierarchy of content. Each
nested component takes on a different heading style to denote the hierarchy.

Tip: The showDetailHeader component is the same as a panelHeader
component, except that it handles disclosure events. For more
information about the panelHeader component, see Section 8.11,
"Displaying Items in a Static Box."

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-53

Figure 8–31 shows three nested showDetailHeader components, and their different
styles.

Figure 8–31 Nested showDetailHeader Components Create a Hierarchy

You can change the styles used by each header level by applying a skin to the
showDetailHeader component. For details about skinning ADF Faces components, see
Chapter 20, "Customizing the Appearance Using Styles and Skins."

Use the panelBox component when you want information to be able to be displayed or
hidden below the header, and you want the box to be offset from other information on
the page. The File Explorer application uses two panelBox components on the
properties.jspx page to display the attributes and history of a file, as shown in
Figure 8–32.

Figure 8–32 Two panelBox Components

Figure 8–33 shows the same page, but with the History panelBox component in an
undisclosed state.

Note: Heading sizes are determined by default by the physical
containment of the header components. That is, the first header
component will render as a heading level 1. Any header component
nested in the first header component will render as a heading level 2,
and so on. You can manually override the heading level on individual
header components using the headerLevel attribute.

Displaying and Hiding Contents Dynamically

8-54 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–33 Undisclosed panelBox Component

You can set the background color on a panelBox component so that the contents are
further delineated from the rest of the page. Two color combinations (called ramps) are
offered, and each combination contains four levels of color: none, light, medium, and
dark. Figure 8–34 shows the same panel boxes as in Figure 8–32, but with the bottom
panelBox component configured to show the dark tone of the core ramp.

Figure 8–34 Panel Boxes Using a Background Color

You can set the size of a panelBox component either explicitly by assigning a pixel size,
or as a percentage of its parent. You can also set the alignment of the title, and add an
icon. In addition, the panelBox component includes the toolbar facet that allows you
to add a toolbar and toolbar buttons to the box.

You can control when the contents of an undisclosed component are sent and rendered
to the client using the contentDelivery attribute. When set to immediate delivery, any
undisclosed content is fetched during the initial request. With lazy delivery, the page
initially goes through the standard lifecycle. However, instead of fetching the
undisclosed content during that initial request, a special separate partial page
rendering (PPR) request is run, and the undisclosed content is then returned. Because
the page has just been rendered, only the Render Response phase executes for the
undisclosed content, allowing the corresponding data to be fetched and displayed.
You can configure it so that the contents are not rendered to the client until the first
request to disclose the content and the contents then remain in the cache (lazy), or so
that the contents are rendered each time there is a request to disclose them
(lazyUncached).

For all three of these components, you can use the childCreation attribute. This
attribute affects JSP tag in determining when the UIComponent children are actually
created. By default, all child components are created when the parent component is
created. If you configure the component to use lazy or lazyUncached, the child
components are not created when the parent tag is certain that a rendered instance of
the component will be created. If there will be a large number of children, to improve

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-55

performance you can configure these components so that they create the child
components only when they are disclosed, or so that they create the child components
only when they are disclosed the first time, and from that point on they remain
created.

The showDetailHeader and the panelBox components both can be maximized to
display in the full browser window. You can also configure an icon to display that
allows the user to maximize and then restore the component to normal size.
Figure 8–35 shows the demo application with the panelBox component at its normal
size. Notice the maximize icon in the header.

Figure 8–35 panelBox Demo with panelBox at Normal Size

When a user clicks the maximize icon, the panelBox is redrawn to take up the entire
browser window, as shown in Figure 8–36. The user can click the restore icon to return
the component to its normal size.

Displaying and Hiding Contents Dynamically

8-56 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–36 Maximized panelBox component

By default, the component is configured to only show the maximize icon on tablet
devices. One desktops, no icon is visible. You can also configure the component so that
the icon is always displayed or never displayed. Additionally, you can create a listener
that can be used to determine when to maximize the component.

If you want to show and hide multiple large areas of content, consider using the
panelAccordion and panelTabbed components. For more information, see Section 8.10,
"Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."

8.9.1 How to Use the showDetail Component
Use the showDetail component to show and hide a single set of content.

To create and use the showDetail component:
1. In the Component Palette, from the Common Components panel, drag and drop a

Show Detail from the Component Palette onto the JSF page.

2. In the Property Inspector, expand the Common section and set the attributes as
needed.

Tip: This component appears in the Common Components panel of
the Component Palette, and not the Layout panel.

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-57

Set Disclosed to true if you want the component to show its child components.

Set DisclosedText to the label you want to display next to the toggle icon when the
contents are disclosed (shown). By default, the label is Hide if no value is
specified.

Set UndisclosedText to the label you want to display next to the toggle icon when
the contents are undisclosed (hidden). By default, the label is Show if no value is
specified.

3. Expand the Behavior section and set DisclosureListener to a DisclosureListener
method in a backing bean that you want to execute when the user displays or
hides the component’s contents.

For information about disclosure events and listeners, see Section 8.9.4, "What You
May Need to Know About Disclosure Events."

4. You can configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

■ immediate: All child components are created when the showDetail component
is created.

■ lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

■ lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

5. You can configure when content of undisclosed children will be sent to the client
using the contentDelivery attribute. To do so, expand the Other section, and set
ContentDelivery to one of the following:

■ immediate: All undisclosed content is sent when the showDetail component is
created.

■ lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory.

Note: While the user can change the value of the disclosed attribute
by displaying and hiding the contents, the value will not be retained
once the user leaves the page unless you configure your application to
allow user customizations. For information, see Chapter 33, "Allowing
User Customization on JSF Pages."

Note: If you specify a value for disclosedText but not for
undisclosedText, then ADF Faces automatically uses the
disclosedText value for both the disclosed state and undisclosed
state. Similarly, if you specify a value for undisclosedText but not for
disclosedText, the undisclosedText value is used when the contents
are hidden or displayed.

Instead of using text specified in disclosedText and
undisclosedText, you could use the prompt facet to add a component
that will render next to the toggle icon.

Displaying and Hiding Contents Dynamically

8-58 Web User Interface Developer's Guide for Oracle Application Development Framework

■ lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed.

6. To add content, insert the desired child components inside the showDetail
component.

8.9.2 How to Use the showDetailHeader Component
Use the showDetailHeader component when you want to display a single set of
content under a header, or when you want the content to be used as messages that can
be displayed or hidden. You can also use the showDetailHeader component to create a
hierarchy of headings and content when you want the content to be able to be hidden.

To create and use the showDetailHeader component:
1. In the Component Palette, from the Layout panel, drag and drop a Show Detail

Header onto the JSF page.

2. In the Property Inspector, expand the Common section. Set Text to the text string
you want for the section header label.

3. Set Icon to the URI of the image file you want to use for the section header icon.
The icon image is displayed before the header label.

4. If you are using the header to provide specific messaging information, set
MessageType to one of the following values:

■ confirmation: The confirmation icon (represented by a note page overlaid
with a green checkmark) replaces any specified icon image.

■ error: The error icon (represented by a red circle with an x inside) replaces
any specified icon image. The header label also changes to red.

■ info: The info icon (represented by a blue circle with an I inside) replaces any
specified icon image.

■ warning: The warning icon (represented by a yellow triangle with an
exclamation mark inside) replaces any specified icon image.

■ none: Default. No icon is displayed, unless one is specified for the icon
attribute.

Figure 8–37 shows each of the icons used for message types.

Figure 8–37 Icons Used for Message Types

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-59

5. Set Disclosed to true if you want the component to show its child components.

6. Expand the Behavior section and set DisclosureListener to a disclosureListener
method in a backing bean that you want to execute when the user displays or
hides the component’s contents.

For information about disclosure events and listeners, see Section 8.9.4, "What You
May Need to Know About Disclosure Events."

7. If you want to control how the showDetailHeader component handles geometry
management, expand the Other section and set Type. Set it to flow if you do not
want the component to stretch or to stretch its children. The height of the
showDetailHeader component will be determined solely by its children. Set it to
stretch if you want it to stretch and stretch its child (will only stretch a single
child component). Leave it set to the default if you want the parent component of
the showDetailHeader component to determine geometry management. For more
information about geometry management, see Section 8.2.1, "Geometry
Management and Component Stretching."

8. To add buttons or icons to the header, in the Component Palette, from the
Common Components panel, drag and drop the toolbar component into the
toolbar facet. Then add any number of commandToolbarButton or commandButton
components into the newly inserted toolbar component. For more information
about using the toolbar component, see Section 14.3, "Using Toolbars."

9. To add menus to the header, insert menu components into the menuBar facet. For
more information about creating menus, see Section 14.2, "Using Menus in a Menu
Bar."

10. To override the heading level for the component, set headerLevel to the desired
level, for example H1, H2, etc. through H6.

The heading level is used to determine the correct page structure, especially when
used with screen reader applications. By default, headerLevel is set to -1, which
allows the headers to determine their size based on the physical location on the

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Note: While the user can change the value of the disclosed attribute
by displaying and hiding the contents, the value will not be retained
once the user leaves the page unless you configure your application to
allow user customization. For information, see Chapter 33, "Allowing
User Customization on JSF Pages."

Note: Toolbar overflow is not supported in panelHeader
components.

Tip: You can place menus in the toolbar facet and toolbars (and
toolboxes) in the menu facet. The main difference between these facets
is location. The toolbar facet is before the menu facet.

Displaying and Hiding Contents Dynamically

8-60 Web User Interface Developer's Guide for Oracle Application Development Framework

page. In other words, the first header component will be set to be a H1. Any
header component nested in that H1 component will be set to H2, and so on.

11. If you want to change just the size of the header text, and not the structure of the
heading hierarchy, set the size attribute.

The size attribute specifies the number to use for the header text and overrides
the skin. The largest number is 0, and it corresponds to an H1 header level; the
smallest is 5, and it corresponds to an H6 header.

By default, the size attribute is -1. This means ADF Faces automatically calculates
the header level style to use from the topmost, parent component. When you use
nested components, you do not have to set the size attribute explicitly to get the
proper header style to be displayed.

In the default skin used by ADF Faces, the style used for sizes above 2 will be
displayed the same as size 2. That is, there is no difference in styles for sizes 3, 4, or
5–they all show the same style as size 2. You can change this by creating a custom
skin. For more information, see Chapter 20, "Customizing the Appearance Using
Styles and Skins."

12. You can configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

■ immediate: All child components are created when the showDetailHeader
component is created.

■ lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

■ lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

13. You can configure when content of undisclosed children will be sent to the client
using the contentDelivery attribute. To do so, expand the Other section, and set
ContentDelivery to one of the following:

■ immediate: All undisclosed content is sent when the showDetailHeader
component is created.

■ lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory.

Note: Screen reader applications rely on the HTML header level
assignments to identify the underlying structure of the page. Make
sure your use of header components and assignment of header levels
make sense for your page.

When using an override value, consider the effects of having headers
inside disclosable sections of the page. For example, if a page has
collapsible areas, you need to be sure that the overridden structure
will make sense when the areas are both collapsed and disclosed.

Note: While you can force the style of the text using the size
attribute, (where 0 is the largest text), the value of the size attribute
will not affect the hierarchy. It only affects the style of the text.

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-61

■ lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed.

14. If you want users to be able to maximize the showDetailHeader component so that
it renders in the full browser window, in the Other section, set ShowMaximized to
one of the following:

■ always: The maximize icon is always displayed.

■ never: The maximize icon is never displayed

■ auto: The maximize icon is displayed only on mobile devices. This is the
default.

You can also programmatically set the showDetailHeader component to be
maximized. You can use an EL expression as the value of the maximized attribute
to resolve to true, or you can create a listener method that sets that attribute and
listen for it using the maximizeListener attribute.

15. To add content to a section or subsection, insert the desired child components
inside the showDetailHeader component.

8.9.3 How to Use the panelBox Component
You can insert any number of panelBox components on a page.

To create and use a panelBox component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Box to

the JSF page.

2. In the Property Inspector, expand the Appearance section, and for Ramp, select
the ramp you wish to use.

The core ramp uses variations of blue, while the highlight ramp uses variations
of yellow. You can change the colors used by creating a custom skin. For details,
see Chapter 20, "Customizing the Appearance Using Styles and Skins."

3. Set Background to one of the following values: light, medium, dark, or default.
The default background color is transparent.

4. Set Text to the text string you want to display as the title in the header portion of
the container.

5. Set Icon to the URI of the icon image you want to display before the header text.

6. Set TitleHalign to one of the following values: center, start, end, left, or right.
The value determines the horizontal alignment of the title (including any icon
image) in the header portion of the container.

Note: If both the text and icon attributes are not set, ADF Faces
does not display the header portion of the panelBox component.

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Displaying and Hiding Contents Dynamically

8-62 Web User Interface Developer's Guide for Oracle Application Development Framework

7. Expand the Behavior section and set DisclosureListener to a disclosureListener
method in a backing bean that you want to execute when the user shows or hides
the component’s contents.

For information about disclosure events and listeners, see Section 8.9.4, "What You
May Need to Know About Disclosure Events."

8. To change the width of the panelBox component, set the inlineStyle attribute to
the exact pixel size you want. Alternatively, you can set the inlineStyle attribute
to a percentage of the outer element that contains the panelBox component.
Example 8–11 shows the code you might use for changing the width.

Example 8–11 panelBox Component with inlineStyle Attribute Set

<af:panelBox inlineStyle="width:50%;" ...>
 <!-- child contents here -->
</af:panelBox>

9. To add toolbar buttons, in the Component Palette, from the Common Components
Panel, drag and drop a Toolbar into the toolbar facet. Then insert the desired
number of commandToolbarButton components into the toolbar component. For
information about using toolbar and commandToolbarButton components, see
Section 14.3, "Using Toolbars."

10. You can configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

■ immediate: All child components are created when the panelBox component is
created.

■ lazy: The child components are created only when they are disclosed. Once
disclosed and the associated child components are rendered, they remain
created in the component tree.

■ lazyUncached: The child components are created only when they are
disclosed. Once the components are hidden, they are destroyed.

11. You can configure when content of undisclosed children will be sent to the client
using the contentDelivery attribute. To do so, expand the Other section, and set
ContentDelivery to one of the following:

■ immediate: All undisclosed content is sent when the panelBox component is
created.

■ lazy: The undisclosed content is sent only when the content is first disclosed.
Once disclosed and the content is rendered, it remains in memory.

■ lazyUncached: The undisclosed content is created every time it is disclosed. If
the content is subsequently hidden, it is destroyed.

12. If you want users to be able to maximize the panelBox component so that it
renders in the full browser window, in the Other section, set ShowMaximized to
one of the following:

■ always: The maximize icon is always displayed.

Tip: If any facet is not visible in the visual editor:

1. Right-click the panelBox component in the Structure window.

2. From the context menu, choose Facets - Panel Box >Toolbar. Facets in use
on the page are indicated by a checkmark in front of the facet name.

Displaying and Hiding Contents Dynamically

Organizing Content on Web Pages 8-63

■ never: The maximize icon is never displayed

■ auto: The maximize icon is displayed only on mobile devices. This is the
default.

You can also programmatically set the panelBox component to be maximized. You
can use an EL expression as the value of the maximized attribute to resolve to true,
or you can create a listener method that sets that attribute and listen for it using
the maximizeListener attribute.

13. To add contents to the container for display, insert the desired components as child
components to the panelBox component.

Typically, you would insert one child component into the panelBox component,
and then insert the contents for display into the child component. The child
component controls how the contents will be displayed, not the parent panelBox
component.

8.9.4 What You May Need to Know About Disclosure Events
Any ADF Faces component that has built-in event functionality, as the showDetail,
showDetailHeader, and panelBox components do, must be enclosed in the form
component.

The disclosed attribute on these components specifies whether to show (disclose) or
hide (undisclose) the contents under its header. By default, the disclosed attribute is
true, that is, the contents are shown. When the attribute is set to false, the contents
are hidden. You do not have to write any code to enable the toggling of contents from
disclosed to undisclosed, and vice versa. ADF Faces handles the toggling
automatically.

The value of the disclosed attribute can be persisted at runtime, that is, when the user
shows or hides contents, ADF Faces can change and then persist the attribute value so
that it remains in that state for the length of the user’s session. For more information,
see Chapter 33, "Allowing User Customization on JSF Pages."

When the user clicks the toggle icon to show or hide contents, the components deliver
a org.apache.myfaces.trinidad.event.DisclosureEvent event to the server. The
DisclosureEvent event contains information about the source component and its
state: whether it is disclosed (expanded) or undisclosed (collapsed). The isExpanded()
method returns a boolean value that determines whether to expand (disclose) or
collapse (undisclose) the node. If you only want the component to disclose and
undisclose its contents, then you do not need to write any code.

However, if you want to perform special handling of a DisclosureEvent event, you
can bind the component’s disclosureListener attribute to a disclosureListener
method in a backing bean. The disclosureListener method will then be invoked in
response to a DisclosureEvent event, that is, whenever the user clicks the disclosed or
undisclosed icon.

The disclosureListener method must be a public method with a single
disclosureEvent event object and a void return type, shown in Example 8–12.

Example 8–12 disclosureListener Method

public void some_disclosureListener(DisclosureEvent disclosureEvent) {
// Add event handling code here
}

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-64 Web User Interface Developer's Guide for Oracle Application Development Framework

By default, DisclosureEvent events are usually delivered in the Invoke Application
phase, unless the component’s immediate attribute is set to true. When the immediate
attribute is set to true, the event is delivered in the earliest possible phase, usually the
Apply Request Values phase.

On the client-side component, the AdfDisclosureEvent event is fired. The event root
for the client AdfDisclosureEvent event is set to the event source component: only the
event for the panel whose disclosed attribute is true gets sent to the server. For more
information about client-side events and event roots, see Chapter 5, "Handling
Events."

8.10 Displaying or Hiding Contents in Accordion Panels and Tabbed
Panels

When you need to display multiple areas of content that can be hidden and displayed,
you can use the panelAccordion or the panelTabbed components. Both of these
components use the showDetailItem component to display the actual contents.

The panelAccordion component creates a series of expandable panes. You can allow
users to expand more than one panel at any time, or to expand only one panel at a
time. When more than one panel is expanded, the user can adjust the height of the
panel by dragging the header of the showDetailItem component.

When a panel is collapsed, only the panel header is displayed; when a panel is
expanded, the panel contents are displayed beneath the panel header (users can
expand the panes by clicking either the panelAccordion component’s header or the
expand icon). The File Explorer application uses the panelAccordion component to
display the Folders and Search panes, as shown in Figure 8–38.

Figure 8–38 panelAccordion Panes

At runtime, when available browser space is less than the space needed to display
expanded panel contents, ADF Faces automatically displays overflow icons that
enable users to select and navigate to those panes that are out of view. Figure 8–39
shows the overflow icon displayed in the Folders panel of the File Explorer application
when there is not enough room to display the Search panel.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-65

Figure 8–39 Overflow Icon In panelAccordion

When the user clicks the overflow icon, ADF Faces displays the overflow popup menu
(as shown in Figure 8–40) for the user to select and navigate to.

Figure 8–40 Overflow Popup Menu in panelAccordion

You can also configure the panelAccordion so that the panes can be rearranged by
dragging and dropping, as shown in Figure 8–41.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-66 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–41 Panes Can Be Reordered by Dragging and Dropping

When the order is changed, the displayIndex attribute on the showDetailItem
components also changes to reflect the new order.

To use the panelAccordion component, see Section 8.10.1, "How to Use the
panelAccordion Component."

The panelTabbed component creates a series of tabbed panes. Unlike the
panelAccordion panes, the panelTabbed panes are not collapsible or expandable.
Instead, when users select a tab, the contents of the selected tab are displayed. The tabs
may be positioned above the display area, below the display area, or both. You can
configure a panelTabbed component so that the individual tabs can be closed. You can
have it so that all tabs can be closed, all but the last tab can be closed, or no tabs can be
closed. When tabs are configured to be closed, an X is displayed at the end of the tab.
You can also configure tabs so that they display a disabled X, meaning it can be closed,
but is currently disabled.

You can configure when the showDetailItem components that contain the contents for
each of the tabs will be created. When you have a small number of tabs, you can have
all the showDetailItem components created when the panelTabbed component is first
created, regardless of which tab is currently displayed. However, if the panelTabbed
component contains a large number of showDetailItem components, the page might

Note: Items in the overflow cannot be reordered.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-67

be slow to render. To enhance performance, you can instead configure the panelTabbed
component to create a showDetailItem component only when its corresponding tab is
selected. You can further configure the delivery method to either destroy a
showDetailItem once the user selects a different tab, or to keep any selected
showDetailItem components in the component tree so that they do not need to be
recreated each time they are accessed.

The File Explorer application uses the panelTabbed component to display the contents
in the main panel, as shown in Figure 8–42.

Figure 8–42 panelTabbed Panes

To use the panelTabbed component, see Section 8.10.2, "How to Use the panelTabbed
Component."

For both the panelAccordion and panelTabbed components, use one showDetailItem
component to provide the contents for each panel. For example, if you want to use
four panes, insert four showDetailItem components inside the panelAccordion or
panelTabbed components, respectively. To use the showDetailItem component, see
Section 8.10.3, "How to Use the showDetailItem Component to Display Content in
panelAccordion or panelTabbed Components." You can add a toolbar to the toolbar
facet of the showDetailItem component, and the toolbar will be shown whenever the
panel or tab is disclosed. Figure 8–42 shows the toolbar used by the showDetailItem
component in the File Explorer application.

The panelTabbed component also provides overflow support for when all tabs cannot
be displayed. How the overflow is handled depends on how you configure the
-tr-layout-type skinning key. For more information, see Section 8.10.6, "What You
May Need to Know About Skinning and the panelTabbed Component."

The panelAccordion and panelTabbed components can be configured to be stretched,
or they can be configured to instead take their dimensions from the currently disclosed
showDetailItem child.

Tip: If you want the tabs to be used in conjunction with navigational
hierarchy, for example, each tab is a different page or region that
contains another set of navigation items, you may want to use a
navigation panel component to create a navigational menu. For more
information, see Section 18.5, "Using Navigation Items for a Page
Hierarchy."

Performance Tip: The number of child components within a
panelAccordion or panelTabbed component, and the complexity of
the child components, will affect the performance of the overflow. Set
the size of the panelAccordion or panelTabbed component to avoid
overflow when possible.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-68 Web User Interface Developer's Guide for Oracle Application Development Framework

When you configure the panelAccordion or panelTabbed component to stretch, then
you can also configure the showDetailItem component to stretch a single child as long
as it is the only child of the showDetailItem component.

8.10.1 How to Use the panelAccordion Component
You can use more than one panelAccordion component in a page, typically in different
areas of the page, or nested. After adding the panelAccordion component, insert a
series of showDetailItem components to provide the panes, using one showDetailItem
for one panel. Then insert components into each showDetailItem to provide the panel
contents. For procedures on using the showDetailItem component, see Section 8.10.3,
"How to Use the showDetailItem Component to Display Content in panelAccordion or
panelTabbed Components."

To create and use the panelAccordion component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel

Accordion onto the JSF page.

2. In the Property Inspector, expand the Common section.

3. Set DiscloseMany to true if you want users to be able to expand and see the
contents of more than one panel at the same time.

By default, the value is false. This means only one panel can be expanded at any
one time. For example, suppose there is one expanded panel A and one collapsed
panel B when the page first loads. If the user expands panel B, panel A will be
collapsed, because only one panel can be expanded at any time.

4. Set the DiscloseNone to true if you want users to be able to collapse all panes.

By default, the value is false. This means one panel must remain expanded at any
time.

5. If you want users to be able to rearrange the panes by dragging and dropping,
expand the Other section, and set Reorder to enabled. The default is disabled.

6. The panelAccordion component can stretch to fill available browser space. If
instead, you want to use the panelAccordion component as a child to a
component that does not stretch its children, then you need to change how the
panelAccordion component handles stretching.

You configure whether the component will stretch or not using the
dimensionsFrom attribute.

Note: If the panelAccordion has components other than
showDetailItem components (see the tip in Step 8), those components
can be reordered on the client only. Therefore, any new order will not
be preserved.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-69

To do so, expand the Other section, and set DimensionsFrom to one of the
following:

■ children: the panelAccordion component will get its dimensions from the
currently disclosed showDetailItem component.

■ parent: the size of the panelAccordion component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

■ auto: If the parent component to the panelAccordion component allows
stretching of its child, then the panelAccordion component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
panelAccordion component will be based on the size of its child component.

7. By default, all child showDetailItem components are created when the
panelTabbed component is created. If there will be a large number of children, to

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Note: If you use this setting, you cannot set the height of the
panelAccordion component (for example through the inlineStyle or
styleClass attributes). Doing so would cause conflict between the
panelAccordion height and the child component height.

Similarly, you cannot set the stretchChildren, flex, and
inflexibleHeight attributes on any showDetailItem component, as
those settings would result in a circular reference back to the
panelAccordion to determine size.

Note: If you want the panelAccordion to stretch, and you also want
the showDetailItem to stretch its contents, then you must configure
the showDetailItem in a certain way. For details, see Section 8.10.3,
"How to Use the showDetailItem Component to Display Content in
panelAccordion or panelTabbed Components."

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-70 Web User Interface Developer's Guide for Oracle Application Development Framework

improve performance you can configure the panelTabbed either so that it creates
the child showDetailItem component only when the tab is selected, or so that it
creates the child showDetailItem component only when it’s selected the first time,
and from that point on it remains created.

You configure when the child components will be created using the
childCreation attribute. To do so, expand the Other section, and set
ChildCreation to one of the following:

■ immediate: All showDetailItem components are created when the
panelTabbed component is created.

■ lazy: The showDetailItem component is created only when the associated tab
is selected. Once a tab is selected, the showDetailItem component remains
created in the component tree.

■ lazyUncached: The showDetailItem component is created only when the
associated tab is selected. Once another tab is selected, the showDetailItem
component is destroyed.

8. By default, one panel is added for you using a showDetailItem component as a
child component to the panelAccordion component. To add more panes, insert the
showDetailItem component inside the panelAccordion component. You can add
as many panes as you wish.

To add contents for display in a panel, insert the desired child components into
each showDetailItem component. For procedures, see Section 8.10.3, "How to Use
the showDetailItem Component to Display Content in panelAccordion or
panelTabbed Components."

8.10.2 How to Use the panelTabbed Component
Using the panelTabbed component to create tabbed panes is similar to using the
panelAccordion component to create accordion panes. After adding a panelTabbed
component, you insert a series of showDetailItem components to provide the tabbed
panel contents for display.

To create and use the panelTabbed component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Tabbed

onto the JSF page.

2. In the Property Inspector, expand the Common section.

3. Set Position to below if you want the tabs to be rendered below the contents in the
display area.

By default, the value is above. This means the tabs are rendered above the contents
in the display area. The other acceptable value is both, where tabs are rendered
above and below the display area.

4. If you want users to be able to close (remove) tabs, then set TabRemoval. You can
set it to allow all tabs to be removed, or all but the last tab. You must implement a
handler to do the actual removal and configure the listeners for the associated
showDetailItem components. You can override this on an individual showDetail

Tip: Accordion panels also allow you to use the iterator, switcher,
and group components as direct child components, providing these
components wrap child components that would typically be direct
child components of the accordion panel.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-71

Item component, so that an individual tab cannot be removed (a close icon does
not display), or so that the closed icon is disabled. For more information, see
Section 8.10.3, "How to Use the showDetailItem Component to Display Content in
panelAccordion or panelTabbed Components."

5. The panelTabbed component can stretch to fill available browser space. If instead,
you want to use the panelTabbed component as a child to a component that does
not stretch its children, then you need to change how the panelTabbed component
handles stretching.

You configure whether the component will stretch or not using the
dimensionsFrom attribute.

To use the dimensionsFrom attribute, expand the Other section, and set
DimensionsFrom to one of the following:

■ disclosedChild: the panelTabbed component will get its dimensions from the
currently disclosed showDetailItem component.

■ parent: the size of the panelTabbed component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

■ auto: If the parent component to the PanelTabbed component allows
stretching of its child, then the panelTabbed component will stretch to fill the
parent. If the parent does not stretch its children then the size of the
panelTabbed component will be based on the size of its child component.

6. By default, one tabbed panel is created for you using a showDetailItem
component as a child to the panelTabbed component. To add more panes, insert

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Note: If you use this setting, you cannot set the height of the
panelTabbed component (for example through the inlineStyle or
styleClass attributes). Doing so would cause conflict between the
panelTabbed height and the child component height.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-72 Web User Interface Developer's Guide for Oracle Application Development Framework

the showDetailItem component inside the panelTabbed component. You can add
as many tabbed panes as you wish.

To add contents for display in a panel, insert the desired child components into
each showDetailItem component. For information about using showDetailItem,
see Section 8.10.3, "How to Use the showDetailItem Component to Display
Content in panelAccordion or panelTabbed Components."

8.10.3 How to Use the showDetailItem Component to Display Content in
panelAccordion or panelTabbed Components

Insert showDetailItem components into a panelAccordion or panelTabbed component
only. Each showDetailItem component corresponds to one accordion panel or tabbed
panel. Typically, you insert two or more showDetailItem components into the parent
component. Insert the child components for display into the showDetailItem
components.

The disclosed attribute on a showDetailItem component specifies whether to show
(disclose) or hide (undisclose) the corresponding accordion panel or tab contents. By
default, the disclosed attribute is false, that is, the contents are hidden (undisclosed).
When the attribute is set to true, the contents are shown (disclosed). You do not have
to write any code to enable the toggling of contents from disclosed to undisclosed, and
vice versa. ADF Faces handles the toggling automatically.

The following procedure assumes you have already added a panelAccordion or
panelTabbed component to the JSF page, as described in Section 8.10.1, "How to Use
the panelAccordion Component," and Section 8.10.2, "How to Use the panelTabbed
Component," respectively.

To add accordion panel or tabbed panel contents using a showDetailItem
component:
1. Insert one or more showDetailItem components inside the parent component,

such as panelAccordion or panelTabbed, by dragging and dropping a Show
Detail Item component from Common Components panel of the Component
Palette.

2. In the Property Inspector, expand the Appearance section.

3. Set Text to the label you want to display for this panel or tab.

4. To add an icon before the label, set Icon to the URI of the image file to use.

5. If the showDetailItem component is being used inside a panelAccordion
component configured to stretch, you can configure the showDetailItem to stretch
and in turn stretch its contents, however, the showDetailItem component must

Tip: The panelTabbed component also allow you to use the
iterator, switcher, and group components as direct child
components, providing these components wrap child components
that would typically be direct child components of the panelTabbed
component.

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-73

contain only one child component. You need to set Flex and the StretchChildren
for each showDetailItem component.

Use the following attributes on each showDetailItem component to control the
flexibility of panel contents:

■ Flex: Specifies a nonnegative integer that determines how much space is
distributed among the showDetailItem components of one panelAccordion
component. By default, the value of the flex attribute is 0 (zero), that is, the
panel contents of each showDetailItem component are inflexible. To enable
flexible contents in a panel, specify a flex number larger than 0, for example,
1 or 2. A larger flex value means that the contents will be made larger than
components with lower flex values. For two flexible components, their height
sizes are exactly proportionate to the flex values assigned. If component A
has flex set to 2 and component B has flex set to 1, then the height of
component A is two times the height of component B.

■ InflexibleHeight: Specifies the number of pixels a panel will use. The default
is 100 pixels. This means if a panel has a flex value of 0 (zero), ADF Faces will
use 100 pixels for that panel, and then distribute the remaining space among
the nonzero panes. If the contents of a panel cannot fit within the
panelAccordion container given the specified inflexibleHeight value,
ADF Faces automatically moves nearby contents into overflow menus (as
shown in Figure 8–40). Also, if a panel has a nonzero flex value, this will be
the minimum height that the panel will shrink to before causing other panes to
be moved into the overflow menus.

■ StretchChildren: When set to first, stretches a single child component.
However, the child component must allow stretching. For more information,
see Section 8.10.4, "What You May Need to Know About Geometry
Management and the showDetailItem Component."

For example, the File Explorer application uses showDetailItem components to
display contents in the navigator panel. Because the Search Navigator requires
more space when both navigators are expanded, its flex attribute is set to 2 and
the showDetailItem component for the Folders Navigator uses the default flex
value of 1. This setting causes the Search Navigator to be larger than the Folders
Navigator when it is expanded.

The user can change the panel heights at runtime, thereby changing the value of
the flex and inflexibleHeight attributes. Those values can be persisted so that
they remain for the duration of the user’s session. For information, see Chapter 33,
"Allowing User Customization on JSF Pages."

Note: If you have set the panelAccordion to not stretch (that is,
you’ve set dimensionsFrom to children), then you cannot set values
for the flex and stretchChildren attributes, as it will result in a
circular reference back to the panelAccordion for size.

Note: Instead of directly setting the value for the flex attribute, the
File Explorer application uses an EL expression that resolves to a
method used to determine the value. Using an EL expression allows
you to programmatically change the value if you decide at a later
point to use metadata to provide model information.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-74 Web User Interface Developer's Guide for Oracle Application Development Framework

Note the following additional information about flexible accordion panel contents:

■ There must be two or more panes (showDetailItem components) with flex
values larger than 0 before ADF Faces can enable flexible contents. This is
because ADF Faces uses the flex ratio between two components to determine
how much space to allocate among the panel contents. At runtime, two or
more panes must be expanded before the effect of flexible contents can be
seen.

■ If the showDetailItem component has only one child component and the flex
value is nonzero, and the stretchChildren attribute is set to first, ADF Faces
will stretch that child component regardless of the discloseMany attribute
value on the panelAccordion component.

■ When all showDetailItem components have flex values of 0 (zero) and their
panel contents are disclosed, even though the disclosed contents are set to be
inflexible, ADF Faces will stretch the contents of the last disclosed
showDetailItem component as if the component had a flex value of 1, but
only when that showDetailItem component has one child only, and the
stretchChildren attribute is set to first. If the last disclosed panel has more
than one child component or the stretchChildren attribute is set to none, the
contents will not be stretched.

Even with the flex attribute set, there are some limitations regarding geometry
management. For more information, see Section 8.10.4, "What You May Need to
Know About Geometry Management and the showDetailItem Component."

6. Expand the Behavior section. Set DisclosureListener to the disclosureListener
method in a backing bean you want to execute when this panel or tab is selected
by the user.

For information about server disclosure events and event listeners, see
Section 8.9.4, "What You May Need to Know About Disclosure Events."

7. Set Disabled to true if you want to disable this panel or tab (that is, the user will
not be able to select the panel or tab).

8. Set Disclosed to true if you want this panel or tab to show its child components.

By default, the disclosed attribute is set to false. This means the contents for this
panel or tab are hidden.

If none of the showDetailItem components has the disclosed attribute set to true,
ADF Faces automatically shows the contents of the first enabled showDetailItem
component (except when it is a child of a panelAccordion component, which has a
setting for zero disclosed panes).

Note: Note the difference between the disclosed and rendered
attributes. If the rendered attribute value is false, it means that this
accordion header bar or tab link and its corresponding contents are
not available at all to the user. However, if the disclosed attribute is
set to false, it means that the contents of the item are not currently
visible, but may be made visible by the user because the accordion
header bar or tab link are still visible.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-75

9. For showDetailItem components used in a panelAccordion component, expand
the Other section, and set DisplayIndex to reflect the order in which the
showDetailItem components should appear. If you simply want them to appear in
the order in which they are in the page’s code, then leave the default, -1.

10. If you chose to allow tab removal for a panelTabbed component, expand the Other
section and set Remove to one of the following:

■ inherit: The corresponding tab can be removed if the parent panelTabbed
component is configured to allow it. This is the default.

■ no: The corresponding tab cannot be removed, and will not display a close
icon.

■ disabled: The corresponding tab will display a disabled close icon.

Set ItemListener to an EL expression that resolves to a handler method that will
handle the actual removal of a component.

11. To add toolbar buttons to a panel (supported in the panelAccordion component
only), in the Component Palette, from the Common Components panel, insert a
Toolbar into the toolbar facet of the showDetailItem component that defines that
panel. Then, insert the desired number of commandToolbarButton components into
the toolbar component. Although the toolbar facet is on the showDetailItem
component, it is the panelAccordion component that renders the toolbar and its
buttons. For information about using toolbar and commandToolbarButton, see
Section 14.3, "Using Toolbars."

12. To add contents to the panel, insert the desired child components into each
showDetailItem component.

8.10.4 What You May Need to Know About Geometry Management and the
showDetailItem Component

Both the panelAccordion or panelTabbed components can be configured to stretch
when they are placed inside a component that uses geometry management to stretch

Note: While the user can change the value of the disclosed attribute
by displaying or hiding the contents, the value will not be retained
once the user leaves the page unless you configure your application to
allow user customization. For information, see Chapter 33, "Allowing
User Customization on JSF Pages."

Tip: If some showDetailItem components have -1 as the value for
displayIndex, and others have a positive number, those with the -1
value will display after those with a positive number, in the order they
appear in the page’s code.

Tip: This value can be changed at runtime if the parent
panelAccordion component is configured to allow reordering.

Note: When an accordion panel is collapsed, ADF Faces does not
display the toolbar and its buttons. The toolbar and its buttons are
displayed in the panel header only when the panel is expanded.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-76 Web User Interface Developer's Guide for Oracle Application Development Framework

its child components. However, for the panelAccordion component, the
showDetailItem component will stretch only if the discloseMany attribute on the
panelAccordion component is set to true (that is, when multiple panes may be
expanded to show their inflexible or flexible contents), the showDetailItem component
contains only one child component, and the showDetailItem component’s
stretchChildren attribute is set to first. By default, panel contents will not stretch.

The showDetailItem component will allow stretching if:

■ It contains only a single child

■ Its stretchChildren attribute is set to first

■ The child has no width, height, border, and padding set

■ The child must be capable of being stretched

When all of the preceding bullet points are true, the showDetailItem component can
stretch its child component. The following components can be stretched inside the
showDetailItem component:

■ inputText (when configured to stretch)

■ decorativeBox (when configured to stretch)

■ panelAccordion (when configured to stretch)

■ panelBox

■ panelCollection

■ panelDashboard (when configured to stretch)

■ panelGridLayout (when gridRow and gridCell components are configured to
stretch)

■ panelGroupLayout (only when the layout attribute is set to scroll or vertical)

■ panelSplitter (when configured to stretch)

■ panelStretchLayout (when configured to stretch)

■ panelTabbed (when configured to stretch)

■ region

■ table (when configured to stretch)

■ tree (when configured to stretch)

■ treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a showDetailItem
component:

■ panelBorderLayout

■ panelFormLayout

■ panelGroupLayout (only when the layout attribute is set to default or
horizontal)

■ panelHeader

■ panelLabelAndMessage

■ panelList

■ tableLayout (MyFaces Trinidad component)

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

Organizing Content on Web Pages 8-77

You cannot place components that cannot stretch as a child to a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched as a child of a showDetailItem component, you need to wrap
that component in different component that does not stretch its child components.

For example, if you want to place content in a panelList component and have it be
displayed in a showDetailItem component, you might place a panelGroupLayout
component with its layout attribute set to scroll as the chid of the showDetailItem
component, and then place the panelList component in that component. For more
information, see Section 8.2.1, "Geometry Management and Component Stretching."

8.10.5 What You May Need to Know About showDetailItem Disclosure Events
The showDetailItem component inside of panelAccordion and panelTabbed
components supports queuing of disclosure events so that validation is properly
handled on the server and on the client.

In general, for any component with the disclosed attribute, by default, the event root
for the client AdfDisclosureEvent is set to the event source component: only the event
for the panel whose disclosed attribute is true gets sent to the server. However, for
the showDetailItem component that is used inside of panelTabbed or panelAccordion
component, the event root is the panelTabbed or panelAccordion component (that is,
the event source parent component, not the event source component). This ensures
that values from the previously disclosed panel will not get sent to the server.

For example, suppose you have two showDetailItem components inside a
panelTabbed or panelAccordion component with the discloseMany attribute set to
false and the discloseNone attribute set to false. Suppose the showDetailItem 1
component is disclosed but not showDetailItem 2. Given this scenario, the following
occurs:

■ On the client:

– When a user clicks to disclose showDetailItem 2, a client-only disclosure event
gets fired to set the disclosed attribute to false for the showDetailItem 1
component. If this first event is not canceled, another client disclosure event
gets fired to set the disclosed attribute to true for the showDetailItem 2
component. If this second event is not canceled, the event gets sent to the
server; otherwise, there are no more disclosure changes.

■ On the server:

– The server disclosure event is fired to set the disclosed attribute to true on
the showDetailItem 2 component. If this first server event is not canceled,
another server disclosure event gets fired to set the disclosed attribute to
false for the showDetailItem 1 component. If neither server event is canceled,
the new states get rendered, and the user will see the newly disclosed states on
the client; otherwise, the client looks the same as it did before.

For the panelAccordion component with the discloseMany attribute set to false and
the discloseNone attribute set to true, the preceding information is the same only
when the disclosure change forces a paired change (that is, when two disclosed states
are involved). If only one disclosure change is involved, there will just be one client
and one server disclosure event.

For the panelAccordion component with the discloseMany attribute set to true (and
any discloseNone setting), only one disclosure change is involved; there will just be
one client and one server disclosure event.

Displaying or Hiding Contents in Accordion Panels and Tabbed Panels

8-78 Web User Interface Developer's Guide for Oracle Application Development Framework

For additional information about disclosure events, see Section 8.9.4, "What You May
Need to Know About Disclosure Events."

8.10.6 What You May Need to Know About Skinning and the panelTabbed Component
You can use the -tr-layout-type skinning key to configure how the panelTabbed
component handles overflow when its parent container is too small to display all the
tabs. This compressed layout can display either overflow button(s) or can roll to show
hidden tabs, similar to a conveyor belt.

Figure 8–43 shows the overflow compressed layout. When the user clicks the overflow
icon a popup displays showing the items that are hidden.

Figure 8–43 Overflow Compressed Layout

Example 8–13 shows how you use the skinning key to display an overflow layout.

Example 8–13 Using a Skinning Key to Set the Compressed Layout to Overflow

af|panelTabbed {
 -tr-layout-type: overflow;
}

Figure 8–44 shows the conveyor compressed layout. When the user clicks the overflow
icon, the tabs that were hidden slide into place, similar to a conveyor belt. Accordingly,
tabs on the other end are hidden.

Figure 8–44 Conveyor Belt Compressed Layout

Example 8–14 shows how you can use the skinning key to use a conveyor belt layout.

Example 8–14 Using a Skinning Key to Set the Compressed Layout to Conveyor Belt

af|panelTabbed {
 -tr-layout-type: conveyor;
}

Displaying Items in a Static Box

Organizing Content on Web Pages 8-79

For more information about skins, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

8.11 Displaying Items in a Static Box
You can use the panelHeader component when you want header type functionality,
such as message display or associated help topics, but you do not have to provide the
capability to show and hide content.

You can use the decorativeBox component when you need to transition to a different
look and feel on the page. The decorativeBox component uses themes and skinning
keys to control the borders and colors of its different facets. For example, depending
on the skin you are using, if you use the default theme, the decorativeBox component
body is white and the border is blue, and the top-left corner is rounded. If you use the
medium theme, the body is a medium blue. For information about using themes and
skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins"

The panelHeader component offers facets for specific types of components and the
ability to open a help topic from the header. The following are the facets supported by
the panelHeader component:

■ context: Displays information in the header alongside the header text.

■ help: Displays help information. Use only for backward compatibility. Use the
helpTopicId attribute on the panelHeader component instead.

■ info: Displays information beneath the header text, aligned to the right.

■ legend: If help text is present, displays information to the left of the help content
and under the info facet's content. If help text is not present, the legend content
will be rendered directly under the header.

■ toolbar: Displays a toolbar, before the menu bar.

■ menuBar: Displays a menu bar, after the toolbar.

Figure 8–45 shows the different facets in the panelHeader component.

Note: In order for the panelTabbed component to support a
compressed layout, its parent component must either stretch its
children or be a set width.

Therefore, the following layout configurations are not supported:

■ Using a parent container that does not stretch its children.

■ Using a parent container that displays multiple children
horizontally without explicit sizes for each child. For example, a
panelGroupLayout with layout='horizontal' would be invalid,
but panelSplitter is valid because it has an explicitly set splitter
position.

■ Setting the compressed layout component with a styleClass or
inlineStyle that assigns a percentage width value. Note that this
includes assigning styleClass='AFStretchWidth' on a
compressed layout component.

Displaying Items in a Static Box

8-80 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–45 panelHeader and Its Facets

When there is not enough space to display everything in all the facets of the title line,
the panelHeader text is truncated and displays an ellipsis. When the user hovers over
the truncated text, the full text is displayed in a tooltip, as shown in Figure 8–46.

Figure 8–46 Text for the panelHeader Is Truncated

When there is more than enough room to display the contents, the extra space is
placed between the context facet and the toolbar, as shown in Figure 8–47.

Figure 8–47 Extra Space Is Added Before the Toolbar

You can configure panelHeader components so that they represent a hierarchy of
sections. For example, as shown in Figure 8–48, you can have a main header with a
subheader and then a heading level 1 also with a subheader.

Figure 8–48 Creating Subsections with the panelHeader Component

Create subsections by nesting panelHeader components within each other. When you
nest panelHeader components, the heading text is automatically sized according to the
hierarchy, with the outermost panelHeader component having the largest text.

Note: Heading sizes are determined by default by the physical
containment of the header components. That is, the first header
component will render as a heading level 1. Any header component
nested in the first header component will render as a heading level 2,
and so on. You can manually override the heading level on individual
header components using the headerLevel attribute.

Displaying Items in a Static Box

Organizing Content on Web Pages 8-81

For information about using the panelHeader component, see Section 8.11.1, "How to
Use the panelHeader Component."

The decorativeBox component provides styling capabilities using themes. It has two
facets, top and center. The top facet provides a non-colored area, while the center facet
is the actual box. The height of the top facet depends on whether or not a component
has been put into the top facet. When the facet is set, the topHeight attribute is used to
specify the size the content should occupy.

The color of the box for the center facet depends on the theme and skin used.
Figure 8–49 shows the different themes available by default.

Figure 8–49 Themes Used in a decorativeBox Component

The decorativeBox component can be configured to stretch to fill its parent
component. You can also configure the decorative Box component to inherit its
dimensions from its child components. For example, Figure 8–50 shows the
dark-theme decorativeBox configured to stretch to fill its parent, while the
medium-theme decorativeBox is configured to only be as big as its child outputText
component.

Figure 8–50 decorativeBox Can Stretch or Not

You can further control the style of the decorativeBox component using skins.
Skinning keys can be defined for the following areas of the component:

■ top-start

■ top

■ top-end

■ start

■ end

■ bottom-start

■ bottom

Displaying Items in a Static Box

8-82 Web User Interface Developer's Guide for Oracle Application Development Framework

■ bottom-end

For more information about skins, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

8.11.1 How to Use the panelHeader Component
You can use one panelHeader component to contain specific information, or you can
use a series of nested panelHeader components to create a hierarchical organization of
content. If you want to be able to hide and display the content, use the
showDetailHeader component instead. For more information, see Section 8.9.2, "How
to Use the showDetailHeader Component."

To create and use a panelHeader component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Header

onto the page.

2. In the Property Inspector, expand the Appearance section.

3. Set Text to the label you want to display for this panel.

4. To add an icon before the label, set Icon to the URI of the image file to use.

5. If you are using the header to provide specific messaging information, set
MessageType to one of the following values:

■ confirmation: The confirmation icon (represented by a note page overlaid
with a green checkmark) replaces any specified icon image.

■ error: The error icon (represented by a red circle with an "x" inside) replaces
any specified icon image. The header label also changes to red.

■ info: The info icon (represented by a blue circle with an "I" inside) replaces any
specified icon image.

■ none: Default. No icon is displayed.

■ warning: The warning icon (represented by a yellow triangle with an
exclamation mark inside) replaces any specified icon image.

Figure 8–51 shows the icons used for the different message types.

Figure 8–51 Icons for Message Types

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Displaying Items in a Static Box

Organizing Content on Web Pages 8-83

6. To display help for the header, enter the topic ID for HelpTopicId. For more
information about creating and using help topics, see Section 17.5, "Displaying
Help for Components."

7. To override the heading level for the component, set headerLevel to the desired
level, for example H1, H2, etc. through H6.

The heading level is used to determine the correct page structure, especially when
used with screen reader applications. By default, headerLevel is set to -1, which
allows the headers to determine their size based on the physical location on the
page. In other words, the first header component will be set to be a H1. Any
header component nested in that H1 component will be set to H2, and so on.

8. If you want to change just the size of the header text, and not the structure of the
heading hierarchy, set the size attribute.

The size attribute specifies the number to use for the header text and overrides
the skin. The largest number is 0, and it corresponds to an H1 header level; the
smallest is 5, and it corresponds to an H6 header.

By default, the size attribute is -1. This means ADF Faces automatically calculates
the header level style to use from the topmost, parent component. When you use
nested components, you do not have to set the size attribute explicitly to get the
proper header style to be displayed.

In the default skin used by ADF Faces, the style used for sizes above 2 will be
displayed the same as size 2. That is, there is no difference in styles for sizes 3, 4, or
5–they all show the same style as size 2. You can change this by creating a custom
skin. For more information, see Chapter 20, "Customizing the Appearance Using
Styles and Skins."

9. If you want to control how the panelHeader component handles geometry
management, expand the Other section and set Type to one of the following. For
more information about geometry management, see Section 8.2.1, "Geometry
Management and Component Stretching."

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Note: Screen reader applications rely on the HTML header level
assignments to identify the underlying structure of the page. Make
sure your use of header components and assignment of header levels
make sense for your page.

When using an override value, consider the effects of having headers
inside disclosable sections of the page. For example, if a page has
collapsible areas, you need to be sure that the overridden structure
will make sense when the areas are both collapsed and disclosed.

Note: While you can force the style of the text using the size
attribute, (where 0 is the largest text), the value of the size attribute
will not affect the hierarchy. It only affects the style of the text.

Displaying Items in a Static Box

8-84 Web User Interface Developer's Guide for Oracle Application Development Framework

■ flow: The component will not stretch or stretch its children. The height of the
panelHeader component will be determined solely by its children.

■ stretch: The component will stretch and stretch its child (will only stretch a
single child component).

■ default: if you want the parent component of the panelHeader component to
determine geometry management.

10. To add toolbar buttons to a panel, insert the toolbar component into the toolbar
facet. Then, insert the desired number of commandToolbarButton components into
the toolbar component. For information about using toolbar and
commandToolbarButton, see Section 14.3, "Using Toolbars."

11. To add menus to a panel, insert menu components into the menuBar facet. For
information about creating menus in a menu bar, see Section 14.2, "Using Menus in
a Menu Bar."

12. Add contents to the other facets as needed.

13. To add contents to the panel, insert the desired child components into the
panelHeader component.

8.11.2 How to Use the decorativeBox Component
You use the decorativeBox component to provide a colored area or box in a page. This
component is typically used as a container for the navigationPane component that is
configured to display tabs. For more information, see Section 18.5, "Using Navigation
Items for a Page Hierarchy."

To create and use a decorativeBox component:
1. In the Component Palette, from the Layout panel, drag and drop a Decorative Box

onto the page.

2. In the Property Inspector, expand the Common section and set Top Height to the
height for the top facet.

3. To change the theme, expand the Style and Theme section and choose a different
theme.

4. The decorativeBox component can stretch to fill available browser space. If
instead, you want to use the decorativeBox component as a child to a component

Note: Toolbar overflow is not supported in panelHeader
components.

Tip: You can place menus in the toolbar facet and toolbars (and
toolboxes) in the menu facet. The main difference between these facets
is location. The toolbar facet is before the menu facet.

Tip: If any facet is not visible in the visual editor:

1. Right-click the panelHeader component in the Structure window.

2. From the context menu, choose Facets - Panel Header >facet name.
Facets in use on the page are indicated by a checkmark in front of the
facet name.

Displaying Items in a Static Box

Organizing Content on Web Pages 8-85

that does not stretch its children, then you need to change how the decorativeBox
component handles stretching.

You configure whether the component will stretch or not using the
dimensionsFrom attribute.

To use the dimensionsFrom attribute, expand the Other section, and set
DimensionsFrom to one of the following:

■ children: the decorativeBox component will get its dimensions from its child
components.

■ parent: the size of the decorativeBox component will be determined in the
following order:

– From the inlineStyle attribute.

– If no value exists for inlineStyle, then the size is determined by the
parent container.

– If the parent container is not configured or not able to stretch its children,
the size will be determined by the skin.

■ auto: If the parent component to the decorativeBox component allows
stretching of its child, then the decorativeBox component will stretch to fill
the parent. If the parent does not stretch its children then the size of the
decorativeBox component will be based on the size of its child component.

Note: The default value for the dimensionsFrom attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
the components whose geometry management is determined by the
dimensionsFrom attribute to stretch if its parent component allows
stretching of its child, set the DEFAULT_DIMENSIONS parameter to auto,
instead of setting the dimensionsFrom attribute. Set the
dimensionsFrom attribute when you want to override the global
setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
dimensionsFrom is based on the component’s default value, as
documented in the following descriptions. For more information, see
Section A.2.3.25, "Geometry Management for Layout and Table
Components."

Note: If you use this setting, you cannot use a percentage to set the
height of the top facet. If you do, the top facet will try to get its
dimensions from the size of this decorativeBox component, which
will not be possible, as the decorativeBox component will be getting
its height from its contents, resulting in a circular dependency. If a
percentage is used, it will be disregarded and the default 50px will be
used instead.

Similarly, you cannot set the height of the decorativeBox (for example
through the inlineStyle or styleClass attributes). Doing so would
cause conflict between the decorativeBox height and the child
component height.

Displaying Items in a Static Box

8-86 Web User Interface Developer's Guide for Oracle Application Development Framework

For more information, see Section 8.11.3, "What You May Need to Know About
Geometry Management and the decorativeBox Component."

8.11.3 What You May Need to Know About Geometry Management and the
decorativeBox Component

The decorativeBox component can stretch child components in its center facet and it
can also be stretched. The following components can be stretched inside the center
facet of the decorativeBox component:

■ inputText (when configured to stretch)

■ decorativeBox (when configured to stretch)

■ panelAccordion (when configured to stretch)

■ panelBox

■ panelCollection

■ panelDashboard

■ panelGridLayout (when gridRow and gridCell components are configured to
stretch)

■ panelGroupLayout (only with the layout attribute set to scroll or vertical)

■ panelSplitter (when configured to stretch)

■ panelStretchLayout (when configured to stretch)

■ panelTabbed (when configured to stretch)

■ region

■ table (when configured to stretch)

■ tree (when configured to stretch)

■ treeTable (when configured to stretch)

The following components cannot be stretched when placed inside a facet of the
decorativeBox component:

■ panelBorderLayout

■ panelFormLayout

■ panelGroupLayout (only with the layout attribute set to default or horizontal)

■ panelHeader

■ panelLabelAndMessage

■ panelList

■ showDetail

■ showDetailHeader

■ tableLayout (MyFaces Trinidad component)

You cannot place components that cannot stretch into facets of a component that
stretches its child components. Therefore, if you need to place one of the components
that cannot be stretched into a facet of the decorativeBox component, wrap that
component in a transition component that does not stretch its child components.

Displaying a Bulleted List in One or More Columns

Organizing Content on Web Pages 8-87

For example, if you want to place content in a panelBox component and have it flow
within a facet of the decorativeBox component, you could place a panelGroupLayout
component with its layout attribute set to scroll in the facet of the decorativeBox
component, and then place the panelBox component in that panelGroupLayout
component. For more information, see Section 8.2.2, "Nesting Components Inside
Components That Allow Stretching."

8.12 Displaying a Bulleted List in One or More Columns
The panelList component is a layout element for displaying a vertical list of child
components with a bullet next to each child, as shown in Figure 8–52. Only child
components whose rendered attribute is set to true and whose visible attribute is set
to true are considered for display by in the list.

Figure 8–52 PanelList Component with Default Disc Bullet

By default, the disc bullet is used to style the child components. There are other styles
you can use, such as square bullets and white circles. You can also split the list into
columns when you have a very long list of items to display.

8.12.1 How to Use the panelList Component
Use one panelList component to create each list of items.

To create and use the panelList component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel List to

the JSF page.

2. In the Property Inspector, expand the Common section, and set the listStyle
attribute to a valid CSS 2.1 list style value, such as one of the following:

■ list-style-type: disc

■ list-style-type: square

■ list-style-type: circle

■ list-style-type: decimal

■ list-style-type: lower-alpha

■ list-style-type: upper-alpha

For example, the list-style-type: disc attribute value corresponds to a disc
bullet, and the list-style-type: circle value corresponds to a circle bullet.

Note: To display dynamic data (for example, a list of data
determined at runtime by JSF bindings), use the selection components,
as documented in Section 9.6, "Using Selection Components." If you
need to create lists that change the model layer, see Chapter 11, "Using
List-of-Values Components."

Displaying a Bulleted List in One or More Columns

8-88 Web User Interface Developer's Guide for Oracle Application Development Framework

For a complete list of the valid style values to use, refer to the CSS 2.1 Specification
for generated lists at

http://www.w3.org/TR/CSS21/generate.html

Example 8–15 shows the code for setting the list style to a circle.

Example 8–15 PanelList Component with ListStyle Attribute Set

<af:panelList listStyle="list-style-type: circle" ...>
 <!-- child components here -->
</af:panelList>

3. Insert the desired number of child components (to display as bulleted items) into
the panelList component.

For example, you could insert a series of commandLink components or
outputFormatted components.

8.12.2 What You May Need to Know About Creating a List Hierarchy
You can nest panelList components to create a list hierarchy. A list hierarchy, as
shown in Figure 8–53, has outer items and inner items, where the inner items
belonging to an outer item are indented under the outer item. Each group of inner
items is created by one nested panelList component.

Figure 8–53 Hierarchical List Created Using Nested panelList Components

To achieve the list hierarchy as shown in Figure 8–53, use a group component to wrap
the components that make up each group of outer items and their respective inner
items. Example 8–16 shows the code for how to create a list hierarchy that has one
outer item with four inner items, and another outer item with two inner items.

Tip: Panel lists also allow you to use the iterator, switcher, and
group components as direct child components, providing these
components wrap child components that would typically be direct
child components of the panel list.

Note: By default, ADF Faces displays all rendered child components
of a panelList component in a single column. For details on how to
split the list into two or more columns and for information about
using the rows and maxColumns attributes, see Section 8.7, "Arranging
Content in Forms." The concept of using the rows and maxColumns
attributes for columnar display in the panelList and
panelFormLayout components are the same.

Grouping Related Items

Organizing Content on Web Pages 8-89

Example 8–16 Nested PanelList Components

<af:panelList>
 <!-- First outer item and its four inner items -->
 <af:group>
 <af:commandLink text="item 1"/>
 <af:panelList>
 <af:commandLink text="item 1.1"/>
 <af:commandLink text="item 1.2"/>
 <af:commandLink text="item 1.3"/>
 <af:commandLink text="item 1.4"/>
 </af:panelList>
 </af:group>
 <!-- Second outer item and its two inner items -->
 <af:group>
 <af:commandLink text="item 2"/>
 <af:panelList>
 <af:commandLink text="item 2.1"/>
 <af:commandLink text="item 2.2"/>
 </af:panelList>
 </af:group>
</af:panelList>

By default, the outer list items (for example, item 1 and item 2) are displayed with the
disc bullet, while the inner list items (for example, item 1.1 and item 2.1) have the
white circle bullet.

For more information about the panelGroupLayout component, see Section 8.13,
"Grouping Related Items."

8.13 Grouping Related Items
To keep like items together within a parent component, use either the group or
panelGroupLayout component. The group component aggregates or groups together
child components that are related semantically. Unlike the panelGroupLayout
component, the group component does not provide any layout for its child
components. Used on its own, the group component does not render anything; only
the child components inside of a group component render at runtime.

You can use any number of group components to group related components together.
For example, you might want to group some of the input fields in a form layout
created by the panelFormLayout component. Example 8–17 shows sample code that
groups two sets of child components inside a panelFormLayout component.

Example 8–17 Grouping Child Components in panelFormLayout

<af:panelFormLayout>
 <af:inputDate label="Pick a date"/>
 <!-- first group -->
 <af:group>
 <af:selectManyCheckbox label="Select all that apply">
 <af:selectItem label="Coffee" value="1"/>
 <af:selectItem label="Cream" value="1"/>
 <af:selectItem label="Low-fat Milk" value="1"/>
 <af:selectItem label="Sugar" value="1"/>
 <af:selectItem label="Sweetener"/>
 </af:selectManyCheckbox>
 <af:inputText label="Special instructions" rows="3"/>
 </af:group>
 <!-- Second group -->

Grouping Related Items

8-90 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:group>
 <af:inputFile label="File to upload"/>
 <af:inputText label="Enter passcode"/>
 </af:group>
 <af:inputText label="Comments" rows="3"/>
 <af:spacer width="10" height="15"/>
 <f:facet name="footer"/>
</af:panelFormLayout>

The panelGroupLayout component lets you arrange a series of child components
vertically or horizontally without wrapping, or consecutively with wrapping, as
shown in Figure 8–54. The layout attribute value determines the arrangement of the
child components.

Figure 8–54 panelGroupLayout Arrangements

In all arrangements, each pair of adjacent child components can be separated by a line
or white space using the separator facet of the panelGroupLayout component. For
more information, see Section 8.14, "Separating Content Using Blank Space or Lines."

When using the horizontal layout, the child components can also be vertically or
horizontally aligned. For example, you could make a short component beside a tall
component align at the top, as shown in Figure 8–55.

Figure 8–55 Top-Aligned Horizontal Layout with panelGroupLayout

Unlike the panelSplitter or panelStretchLayout components, the panelGroupLayout
component does not stretch its child components. Suppose you are already using a
panelSplitter or panelStretchLayout component as the root component for the
page, and you have a large number of child components to flow, but are not to be
stretched. To provide scrollbars when flowing the child components, wrap the child
components in the panelGroupLayout component with its layout attribute set to
scroll, and then place the panelGroupLayout component inside a facet of the
panelSplitter or panelStretchLayout component.

When the layout attribute is set to scroll on a panelGroupLayout component,
ADF Faces automatically provides a scrollbar at runtime when the contents contained
by the panelGroupLayout component are larger than the panelGroupLayout
component itself. You do not have to write any code to enable the scrollbars, or set any
inline styles to control the overflow.

Grouping Related Items

Organizing Content on Web Pages 8-91

For example, when you use layout components such as the panelSplitter component
that let users display and hide child components contents, you do not have to write
code to show the scrollbars when the contents are displayed, and to hide the scrollbars
when the contents are hidden. Simply wrap the contents the be displayed inside a
panelGroupLayout component, and set the layout attribute to scroll.

In the File Explorer application, the Search Navigator contains a panelSplitter
component used to hide and show the search criteria. When the search criteria are
hidden, and the search results content does not fit into the area, a scrollbar is rendered,
as shown in Figure 8–56.

Figure 8–56 Scrollbars Rendered Using panelGroupLayout

8.13.1 How to Use the panelGroupLayout Component
Any number of panelGroupLayout components can be nested to achieve the desired
layout.

To create and use the panelGroupLayout component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel Group

Layout to the JSF page.

2. Insert the desired child components into the panelGroupLayout component.

3. To add spacing or separator lines between adjacent child components, insert the
spacer or separator component into the separator facet.

Tip: The panelGroupLayout component also allows you to use the
iterator, switcher, and group components as direct child
components, providing these components wrap child components
that would typically be direct child components of the
panelGroupLayout component.

Grouping Related Items

8-92 Web User Interface Developer's Guide for Oracle Application Development Framework

4. In the Property Inspector, expand the Appearance section. To arrange the child
components in the desired layout, set Layout to one of the following values:

■ default: Provides consecutive layout with wrapping.

At runtime, when the contents exceed the browser space available (that is,
when the child components are larger than the width of the parent container
panelGrouplayout), the browser flows the contents onto the next line so that
all child components are displayed.

■ horizontal: Uses a horizontal layout, where child components are arranged in
a horizontal line. No wrapping is provided when contents exceed the amount
of browser space available.

In a horizontal layout, the child components can also be aligned vertically and
horizontally. By default, horizontal child components are aligned in the center
with reference to an imaginary horizontal line, and aligned in the middle with
reference to an imaginary vertical line. To change the horizontal and vertical
alignments of horizontal components, use the following attributes:

– halign: Sets the horizontal alignment. The default is center. Other
acceptable values are: start, end, left, right.

For example, set halign to start if you want horizontal child compo-
nents to always be left-aligned in browsers where the language reading
direction is left-to-right, and right-aligned in a right-to-left reading direc-
tion.

– valign: Sets the vertical alignment. Default is middle. Other acceptable
values are: top, bottom, baseline.

In output text components (such as outputText) that have varied font
sizes in the text, setting valign to baseline would align the letters of the
text along an imaginary line on which the letters sit, as shown in
Figure 8–57. If you set valign to bottom for such text components, the
resulting effect would not be as pleasant looking, because bottom vertical
alignment causes the bottommost points of all the letters to be on the same
imaginary line.

Figure 8–57 Bottom and Baseline Vertical Alignment of Text

Note: ADF Faces uses the bidirectional algorithm when making
contents flow. Where there is a mix of right-to-left content and
left-to-right content, this may result in contents not flowing
consecutively.

Note: The halign and valign attributes are ignored if the layout is
not horizontal.

Separating Content Using Blank Space or Lines

Organizing Content on Web Pages 8-93

■ scroll: Uses a vertical layout, where child components are stacked vertically,
and a vertical scrollbar is provided when necessary.

■ vertical: Uses a vertical layout, where child components are stacked vertically.

8.13.2 What You May Need to Know About Geometry Management and the
panelGroupLayout Component

While the panelGroupLayout component cannot stretch its child components, it can be
stretched when it is the child of a panelSplitter or panelStretchLayout component
and its layout attribute is set to either scroll or vertical.

8.14 Separating Content Using Blank Space or Lines
You can incorporate some blank space in your pages, to space out the components so
that the page appears less cluttered than it would if all the components were presented
immediately next to each other, or immediately below each other. The ADF Faces
component provided specifically for this purpose is the spacer component.

You can include either or both vertical and horizontal space in a page using the height
and width attributes.

The height attribute determines the amount of vertical space to include in the page.
Example 8–18 shows a page set up to space out two lengthy outputText components
with some vertical space.

Example 8–18 Vertical Space

<af:panelGroupLayout layout="vertical">
 <af:outputText value="This is a long piece of text for this page..."/>
 <af:spacer height="10"/>
 <af:outputText value="This is some more lengthy text ..."/>
</af:panelGroupLayout>

Figure 8–58 shows the effect the spacer component has on the page output as viewed
in a browser.

Figure 8–58 Vertical Space Viewed in a Browser

The width attribute determines the amount of horizontal space to include between
components. Example 8–19 shows part of the source of a page set up to space out two
components horizontally.

Example 8–19 Horizontal Space

<af:outputLabel value="Your credit rating is currently:"/>
<af:spacer width="10"/>
<af:outputText value="Level 8"/>

Figure 8–59 shows the effect of spacing components horizontally as viewed in a
browser.

Separating Content Using Blank Space or Lines

8-94 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 8–59 Horizontal Space Viewed in a Browser

The separator component creates a horizontal line. Figure 8–60 shows the
properties.jspx file as it would be displayed with a separator component inserted
between the two panelBox components.

Figure 8–60 Using the separator Component to Create a Line

The spacer and separator components are often used in facets of other layout
components. Doing so ensures that the space or line stays with the components they
were meant to separate.

8.14.1 How to Use the spacer Component
You can use as many spacer components as needed on a page.

To create and use the spacer component:
1. In the Component Palette, from the Layout panel, drag and drop a Spacer to the

JSF page.

2. In the Property Inspector, expand the Common section. Set the width and height
as needed.

8.14.2 How to Use the Separator Component
You can use as many separator components as needed on a page.

To create and use the separator component:
1. In the Component Palette, from the Layout panel, drag and drop a Separator to

the JSF page.

2. In the Property Inspector, set the properties as needed.

Note: If the height is specified but not the width, a block-level HTML
element is rendered, thereby introducing a new line effect. If the width
is specified, then, irrespective of the specified value of height, it may
not get shorter than the applicable line-height in user agents that
strictly support HTML standards.

9

Using Input Components and Defining Forms 9-1

9Using Input Components and Defining
Forms

This chapter describes the input components that are used to enter data, select values,
edit text, and load files.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Input Components and Forms"

■ Section 9.2, "Defining Forms"

■ Section 9.3, "Using the inputText Component"

■ Section 9.4, "Using the Input Number Components"

■ Section 9.5, "Using Color and Date Choosers"

■ Section 9.6, "Using Selection Components"

■ Section 9.7, "Using Shuttle Components"

■ Section 9.8, "Using the richTextEditor Component"

■ Section 9.9, "Using File Upload"

■ Section 9.10, "Using Code Editor"

9.1 Introduction to Input Components and Forms
Input components accept user input in a variety of formats. The most common formats
are text, numbers, date, and selection lists that appear inside a form and are submitted
when the form is submitted. The entered values or selections may be validated and
converted before they are processed further. For example, the File Explorer application
contains a form that allows users to create a new file. Using input components, users
enter the name, the size, select permissions, and add keywords, and a description, as
shown in Figure 9–1.

Introduction to Input Components and Forms

9-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 9–1 Form Uses Input Components

In addition to standard input components used to input text, number, date, or color,
ADF Faces includes input type components that provide additional functionality. The
inputFile component allows users to browse for a file to load.

The richTextEditor component provides rich text input that can span many lines and
can be formatted using different fonts, sizes, justification, and other editing features.
The richTextEditor component can also be used with command components to insert
given text into the component. The inserted text can be preformatted. Additionally,
you can customize the buttons that appear in the editor’s toolbar.

The selection components allow the user to make selections from a list of items instead
of or in addition to typing in values. For example, the selectOneChoice component
lets the user select input from a dropdown list and the selectOneRadio component lets
a user pick from a group of radio buttons.

You can use either selection or list-of-values (LOV) components to display a list. LOV
components should be used when the selection list is large. LOV components are
model-driven using the ListOfValueModel class and may be configured
programmatically using the API. They present their selection list inside a popup
window that may also include a query panel. Selection lists simply display a static list
of values. For more information about using LOV components, see Chapter 11, "Using
List-of-Values Components."

The selectItem component is used within other selection components to represent the
individual selectable items for that component. For example, a selectOneRadio
component will have a selectItem component for each of its radio buttons. If the
radio button selections are coffee, tea, and milk, there would be a selectItem
component for coffee, one for tea, and one for milk.

The form components provide a container for other components. The form component
represents a region where values from embedded input components can be submitted.
Form components cannot be nested. However, the subform component provides
additional flexibility by defining subregions whose component values can be
submitted separately within a form. The resetButton component provides an easy
way for the user to reset input values within a form or subform to their previous state.

All the input and selection components deliver the ValueChangeEvent and
AttributeChangeEvent events. You can create valueChangeListener and
attributeChangeListener methods to provide functionality in response to the
corresponding events.

Introduction to Input Components and Forms

Using Input Components and Defining Forms 9-3

All input components, selection components (except selectItem), and the rich text
editor component have a changed attribute that when set to true enables a change
indicator icon to be displayed upon changes in the value field. This indicator allows
the user to easily see which input value has changed, which can be helpful when there
are multiple components on the page. By default, the change indicator usually is
displayed to the left of the component. If the value in a field automatically changes
due to a change in another field’s value, such as an automatically generated postal
code when the city is entered, the postal code field will also display a change indicator.
Figure 9–2 shows changed indicators present for the checkbox and input components.

Figure 9–2 Changed indicators for two components

Most input components also have the capability of displaying only the label, and not
appearing capable of changing value until the user mouses over or hovers over the
component. Once the user changes the value, that new value displays as read-only.
Figure 9–3 shows a selectManyChoice component configured to be editable only on
access.

Figure 9–3 Input Components Can Appear Not Editable

Input components can also display tooltips, error and validation messages, and
context-sensitive help. For more information, see Chapter 17, "Displaying Tips,
Messages, and Help."

All input components have JavaScript client APIs that you can use to set or get
property values. For more information, see the ADF Faces JavaScript API
documentation.

Tip: You can change the icon or the position of the icon using skins.
For more information, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

Defining Forms

9-4 Web User Interface Developer's Guide for Oracle Application Development Framework

9.2 Defining Forms
A form is a component that serves as a container for other components. When a submit
action occurs within the form, any modified input values are submitted. For example,
you can create an input form that consists of input and selection components, and a
submit command button, all enclosed within a form. When the user enters values into
the various input fields and clicks the Submit button, those new input values will be
sent for processing.

By default, when you create a JSF page in JDeveloper, it automatically inserts a form
component into the page. When you add components to the page, they will be inserted
inside the form component.

Example 9–1 shows two input components and a Submit button that when clicked will
submit both input values for processing.

Example 9–1 ADF Faces Form as a Container for Input Components

<af:form>
 <af:panelFormLayout>
 <af:inputText value="#{myBean.firstName}"
 label="#{First Name}"
 </af:inputText>
 <af:inputText value="#{myBean.lastName}"
 label="#{Last Name}"
 </af:inputText>
 <f:facet name="footer">
 <af:commandButton text="Submit"/>
 </f:facet>
 </af:panelFormLayout>
</af:form>

Because there can be only one form component on a page, you can use subforms
within a form to create separate regions whose input values can be submitted. Within
a region, the values in the subform will be validated and processed only if a
component inside the subform caused the values to be submitted. You can also nest a
subform within another subform to create nested regions whose values can be
submitted. For more information about subforms, see Section 4.5, "Using Subforms to
Create Regions on a Page."

Example 9–2 shows a form with two subforms, each containing its own input
components and Submit button. When a Submit button is clicked, only the input
values within that subform will be submitted for processing.

Example 9–2 ADF Faces Subform Within a Form

<af:form>
 <af:subform>
 <af:panelFormLayout>
 <af:inputText value="#{myBean.firstName}"
 </af:inputText>
 <af:inputText value="#{myBean.lastName}"
 </af:inputText>
 <f:facet name="footer">
 <af:commandButton text="Submit"/>

Tip: If you do not already have an af:form tag on the page, and you
drag and drop an ADF Faces component onto the page, JDeveloper
will prompt you to enclose the component within a form component.

Defining Forms

Using Input Components and Defining Forms 9-5

 </f:facet>
 </af:panelFormLayout>
 </af:subform>
 <af:subform>
 <af:panelFormLayout>
 <af:inputText value="#{myBean.primaryPhone}"
 </af:inputText>
 <af:inputText value="#{myBean.cellPhone}"
 </af:inputText>
 <f:facet name="footer">
 <af:commandButton text="Submit"/>
 </f:facet>
 </af:panelFormLayout>
 </af:subform>
</af:form>

Aside from the basic Submit button, you can add any other command component
within a form and have it operate on any field within the form. ADF Faces provides a
specialized command component: the resetButton component, which when clicked,
resets all the input and selection components within a form. That is, it updates all
components whose values can be edited with the current values of the model. The
resetButton component is different from HTML reset in that the resetButton
component will reset the input components to their previous state which was partially
or fully submitted successfully to the server without any validation or conversion
error. For example, if a user enters value A and clicks the Submit button, and then
changes the value from A to B and clicks the resetButton component, the value A will
be restored.

9.2.1 How to Add a Form to a Page
In most cases, JDeveloper will add the form component for you. However, there may
be cases where you must manually add a form, or configure the form with certain
attribute values.

To add a form to a page:
1. In the Component Palette, from the Common Components panel, drag and drop a

Form onto the page.

2. In the Property Inspector expand the Common section, where you can optionally
set the following:

■ DefaultCommand: Specify the ID attribute of the command component
whose action should be invoked when the Enter key is pressed and the focus
is inside the form.

■ UsesUpload: Specify whether or not the form supports uploading files. For
more information about uploading files, see Section 9.9, "Using File Upload."

■ TargetFrame: Specify where the new page should be displayed. Acceptable
values are any of the valid values for the target attribute in HTML. The default
is _self.

9.2.2 How to Add a Subform to a Page
You should add subform components within a form component when you need a
section of the page to be capable of independently submitting values.

Using the inputText Component

9-6 Web User Interface Developer's Guide for Oracle Application Development Framework

To add subforms to a page:
1. In the Component Palette, from the Common Components panel, drag and drop a

Subform onto the page as a child to a form component.

2. Use the Property Inspector to set the following:

■ Default: Specify whether or not the subform should assume it has submitted
its values. When set to the default value of false, this subform component will
consider itself to be submitted only if no other subform component has been
submitted. When set to true, this subform component assumes it has
submitted its values.

■ Default Command: Specify the ID attribute of the command component
whose action should be invoked when the Enter key is pressed and the focus
is inside the subform.

9.2.3 How to Add a Reset Button to a Form
You can add the resetButton component inside a form or a subform. The reset button
will act upon only those components within that form or subform.

To add a reset button to a page:
1. In the Component Palette, from the Common Components panel, drag and drop a

Reset Button onto the page.

2. Use the Property Inspector to set the following:

■ Text: Specify the textual label of the button.

■ Disabled: Specify whether or not the button should be disabled. For example,
you could enter an EL expression that determines certain conditions under
which the button should be disabled.

9.3 Using the inputText Component
Although input components include many variations, such as pickers, sliders, and a
spinbox, the inputText component is the basic input component for entering values.
You can define an inputText component as a single-row input field or as a text area by
setting the rows attribute to more than 1. However, if you want to create a multiple
row text input, consider using the richTextEditor component as described in
Section 9.8, "Using the richTextEditor Component."

You can hide the input values from being displayed, such as for passwords, by setting
the secret attribute to true. Like other ADF Faces components, the inputText
component supports label, text, and messages. When you want this component to be
displayed without a label, you set the simple attribute to true. Figure 9–4 shows a
single-row inputText component.

Figure 9–4 Single-Row inputText Component

Tip: A subform is considered submitted if an event is queued by one
of its children or facets for a phase later than Apply Request Values
(that is, for later than decode()). For more information about lifecycle
phases, see Chapter 4, "Using the JSF Lifecycle with ADF Faces."

Using the inputText Component

Using Input Components and Defining Forms 9-7

You can make the inputText component display more than one row of text using the
rows attribute. If you set the rows attribute to be greater than one, and you set the
simple attribute to true, then the inputText component can be configured to stretch to
fit its container using the dimensionsFrom attribute. For more information about how
components stretch, see Chapter 8.2.1, "Geometry Management and Component
Stretching." Figure 9–6 shows a multi-row inputText component.

You can add multiple inputText components to create an input form. Figure 9–5
shows an input form using two inputText components.

Figure 9–5 Form Created by inputText Components

You can also configure an insertTextBehavior tag that works with command
components to insert given text into an inputText component. The text to be entered
can be a simple string, or it can be the value of another component, for example the
selected list item in a selectOneChoice component. For example, Figure 9–6 shows an
inputText component with some text already entered by a user.

Figure 9–6 inputText Component with Entered Text

The user can then select additional text from a dropdown list, click the command
button, and that text appears in the inputText component as shown in Figure 9–7.

Figure 9–7 inputText Component with Inserted Text

9.3.1 How to Add an inputText Component
You can use an inputText component inside any of the layout components described
in Chapter 8, "Organizing Content on Web Pages."

To add an inputText component:
1. In the Component Palette, from the Common Components panel, drag and drop

an Input Text onto the page.

2. In the Property Inspector, expand the Common section and set the following:

Using the inputText Component

9-8 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Label: Enter a value to specify the text to be used as the label.

If the text to be used is stored in a resource bundle, use the dropdown list to
select Select Text Resource. Use the Select Text Resource dialog either to
search for appropriate text in an existing bundle, or to create a new entry in an
existing bundle. For more information about using resource bundles, see
Chapter 21, "Internationalizing and Localizing Pages."

■ Value: Specify the value of the component. If the EL binding for a value points
to a bean property with a get method but no set method, and this is a
component whose value can be edited, then the component will be rendered
in read-only mode.

3. Expand the Appearance section, and set the following:

■ Columns: Specify the size of the text control by entering the maximum
number of characters that can be entered into the field.

■ Rows: Specify the height of the text control by entering the number of rows to
be shown. The default value is 1, which generates a one-row input field. The
number of rows is estimated based on the default font size of the browser. If
set to more than 1, you must also set the wrap attribute.

■ Secret: Specify this boolean value that applies only to single-line text controls.
When set to true, the secret attribute hides the actual value of the text from
the user.

■ Wrap: Specify the type of text wrapping to be used in a multiple-row text
control. This attribute is ignored for a single-row component. By default, the
attribute is set to soft, which means multiple-row text wraps visually, but
does not include carriage returns in the submitted value. Setting this attribute
to off will disable wrapping: the multiple-row text will scroll horizontally.
Setting it to hard specifies that the value of the text should include any
carriage returns needed to wrap the lines.

■ ShowRequired: Specify whether or not to show a visual indication that the
field is required. Note that setting the required attribute to true will also
show the visual indication. You may want to use the showRequired attribute
when a field is required only if another field’s value is changed.

■ Changed: Specify whether or not to show a blue circle whenever the value of
the field has changed. If you set this to true, you may also want to set the
changedDesc attribute.

■ ChangedDesc: Specify the text to be displayed in a tooltip on a mouseover of
the changed icon. By default, the text is "Changed." You can override this by
providing a different value.

■ AccessKey: Specify the key to press that will access the field.

■ LabelAndAccessKey: Instead of specifying a separate label and access key,
you can combine the two, so that the access key is part of the label. Simply
precede the letter to be used as an access key with an ampersand (&).

For example, if the label of a field is Description and you want the D to be the
access key, you would enter &Description.

Note: Because the value is being stored in the source of the page in
XML, the ampersand (&) character must be escaped, so the value will
actually be represented in the source of the page using the characters
& to represent the ampersand.

Using the inputText Component

Using Input Components and Defining Forms 9-9

■ Simple: Set to true if you do not want the label to be displayed.

■ Placeholder: Specify the text that appears in the input component if the
component is empty and does not have focus. When the component gets
focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
input component.

4. Expand the Behavior section and set the following:

■ Required: Specify whether or not a value is required. If set to true, a visual
indication is displayed to let the user know a value must be entered. If a value
is not entered, an exception will occur and the component will fail validation.

■ ReadOnly: Specify whether the control is displayed as a field whose value can
be edited, or as an output-style text control.

■ AutoSubmit: Specify whether or not the component will automatically submit
when the value changes. For more information about using the autoSubmit
attribute, see Section 4.3, "Using the Optimized Lifecycle."

■ AutoTab: Specify whether or not focus will automatically move to the next tab
stop when the maximum length for the current component is reached.

■ Usage: Specify how the input component will be rendered in HTML 5
browser. The valid values are auto, text, and search. Default is auto.

If the usage type is search, the input component will render as an HTML 5
search input type. Some HTML 5 browsers may add a Cancel icon that can be
used to clear the search text.

■ MaximumLength: Specify the maximum number of characters per line that
can be entered into the text control. This includes the characters representing
the new line. If set to 0 or less, the maximumLength attribute is ignored. Note
that in some browsers such as Internet Explorer, a new line is treated as two
characters.

■ Converter: Specify a converter object. For more information, see Section 6.3,
"Adding Conversion."

■ Validator: Specify a method reference to a validator method using an EL
expression. For more information, see Section 6.5, "Adding Validation."

5. Expand the Other section and set the following:

■ DimensionsFrom: Determine how you want the inputText component to
handle geometry management. Set this attribute to one of the following:

– auto: If the parent component to the inputText component allows
stretching of its child, then the inputText component will stretch to fill the
parent component, as long as the rows attribute is set to a number greater
than one and the simple attribute is set to true. If the parent component
does not allow stretching, then the inputText component gets its
dimensions from the content.

– content: The inputText component gets its dimensions from the
component content. This is the default.

– parent: The inputText component gets its dimensions from the
inlineStyle attribute. If no value exists for inlineStyle, then the size is
determined by the parent container.

Using the inputText Component

9-10 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Editable: Determine whether you want the component to always appear
editable. If so, select always. If you want the value to appear as read-only until
the user hovers over it, select onAccess. If you want the value to be inherited
from an ancestor component, select inherit.

9.3.2 How to Add the Ability to Insert Text into an inputText Component
The insertTextBehavior tag works with command components to insert given text
into an inputText component. The text to be entered can be a simple string, or it can
be the value of another component, for example the selected list item in a
selectOneChoice component. To allow text to be inserted into an inputText
component, add the insertTextBehavior tag as a child to a command component that
will be used to insert the text.

Before You Begin
Before you add an insertTextBehavior tag, you need to create an inputText
component as described in Section 9.3.1, "How to Add an inputText Component." Set
the clientComponent attribute to true.

To add text insert behavior:
1. Add a command component that the user will click to insert the text. For

procedures, see Section 18.2.1, "How to Use Command Buttons and Command
Links."

2. In the Component Palette, from the Operations panel, drag and drop an Insert
Text Behavior as a child to the command component.

3. In the Insert Text Behavior dialog, enter the following:

■ For: Use the dropdown arrow to select Edit and then navigate to select the
inputText component into which the text will be inserted.

■ Value: Enter the value for the text to be inserted. If you want to insert static
text, then enter that text. If you want the user to be able to insert the value of
another component (for example, the value of a selectOneChoice component),
then enter an EL expression that resolves to that value. Example 9–3 shows
page code for an inputText component into which either the value of a
dropdown list or the value of static text can be inserted.

Example 9–3 Using the insertTextBehavior Tag

<af:inputText clientComponent="true" id="idInputText" label="String value"
 value="#{demoInput.value}" rows="10" columns="60"/>
<af:selectOneChoice id="targetChoice" autoSubmit="true"
 value="#{demoInput.choiceInsertText}"

Note: If you select inherit, and no ancestor components define the
editable value, then the value always is used.

Note: The insertTextBehavior tag cancels server-side event
delivery automatically; actionListener or action attributes on the
parent command component will be ignored. If you need to also
trigger server-side functionality, you must add an custom client
listener to deliver the server-side event. For more information, see
Section 5.4, "Sending Custom Events from the Client to the Server."

Using the Input Number Components

Using Input Components and Defining Forms 9-11

 label="Select text to insert">
 <af:selectItem label="Some Text." value="Some Text."/>
 <af:selectItem label="0123456789" value="0123456789"/>
 <af:selectItem label="~!@#$%^*" value="~!@#$%^*"/>
 <af:selectItem label="Two Lines" value="\\nLine 1\\nLine 2"/>
</af:selectOneChoice>
<af:commandButton text="Insert Selected Text" id="firstButton"
 partialTriggers="targetChoice">
 <af:insertTextBehavior for="idInputText"
 value="#{demoInput.choiceInsertText}"/>
</af:commandButton>
<af:commandButton text="Insert Static Text">
 <af:insertTextBehavior for="idInputText"
 value="Some Static Text."/>
</commandButton>

4. By default, the text will be inserted when the action event is triggered by clicking
the command component. However, you can change this to another client event by
choosing that event from the dropdown menu for the triggerType attribute of the
insertTextBehavior component in the Property Inspector.

9.4 Using the Input Number Components
The slider components present the user with a slider with one or two markers whose
position on the slider corresponds to a value. The slider values are displayed and
include a minus icon at one end and a plus icon at the other. The user selects the
marker and moves it along the slider to select a value. The inputNumberSlider
component has one marker and allows the user to select one value from the slider, as
shown in Figure 9–8 in horizontal layout, and in Figure 9–9 in vertical layout.

Figure 9–8 inputNumberSlider in Horizontal Layout

Figure 9–9 InputNumberSlider in Vertical Layout

The inputRangeSlider component has two markers and allows the user to pick the
end points of a range, as shown in Figure 9–10.

Using the Input Number Components

9-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 9–10 inputRangeSlider in horizontal layout

You can also configure the inputNumberSlider and inputRangeSlider components to
add a play/pause button that animates the slider across the component’s increment
values, as shown in Figure 9–11.

Figure 9–11 inputRangeSlider with Play/Pause Button

The inputNumberSpinbox is an input component that presents the user with an input
field for numerical values and a set of up- and down-arrow keys to increment or
decrement the current value in the input field, as shown in Figure 9–12.

Figure 9–12 inputNumberSpinbox

9.4.1 How to Add an inputNumberSlider or an inputRangeSlider Component
When you add an inputNumberSlider or an inputRangeSlider component, you can
determine the range of numbers shown and the increment of the displayed numbers.

To add an inputNumberSlider or inputRangeSlider component:
1. In the Component Palette, from the Common Components panel, drag and drop

an Input Number Slider or Input Range Slider onto the page.

2. In the Property Inspector, expand the Common section (and for the
inputRangeSlider component, also expand the Data section) and set the following
attributes:

■ Label: Specify a label for the component.

■ Minimum: Specify the minimum value that can be selected. This value is the
begin value of the slider.

■ Maximum: Specify the maximum value that can be selected. This value is the
end value of the slider.

■ MinimumIncrement: Specify the smallest possible increment. This is the
increment that will be applied when the user clicks the plus or minus icon.

■ MajorIncrement: Specify the distance between two major marks. This value
causes a labeled value to be displayed. For example, the majorIncrement
value of the inputRangeSlider component in Figure 9–10 is 5.0. If set to less
than 0, major increments will not be shown.

■ MinorIncrement: Specify the distance between two minor marks. If less than
0, minor increments will not be shown.

Using Color and Date Choosers

Using Input Components and Defining Forms 9-13

■ Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

3. Expand the Appearance section and set Orientation to specify whether the
component will be in horizontal or vertical layout. For information about the other
attributes in this section, see Section 9.3.1, "How to Add an inputText Component."

4. Expand the Other section and set AnimationInterval to a value in milliseconds.
Default value is zero.

If the value is greater than zero, a play button appears below the component.
When clicked, it animates the slider across its increment values, stopping at each
increment for the specified number of milliseconds. While animation is playing,
the play button changes to a pause button that stops the animation at the current
increment value.

For example, the animationInterval value of the inputRangeSlider component
in Figure 9–11 is 999.

9.4.2 How to Add an inputNumberSpinbox Component
The inputNumberSpinbox component allows the user to scroll through a set of
numbers to select a value.

To add an inputNumberSpinbox component:
1. In the Component Palette, from the Common Components panel, drag and drop

an Input Number Spinbox onto the page.

2. Expand the Data section of the Property Inspector and set the following:

■ Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

■ Minimum: Specify the minimum value allowed in the input field.

■ Maximum: Specify the maximum value allowed in the input field.

■ StepSize: Specify the increment by which the spinbox will increase or decrease
the number in the input field.

3. Expand the Appearance section and set the attributes. For more information about
setting these attributes, see Section 9.3.1, "How to Add an inputText Component."

4. If you want the value of the spinbox to appear as read-only until the user hovers
over it, expand the Other section and set Editable to onAccess. If you want the
component to always appear editable, select always. If you want the value to be
inherited from an ancestor component, select inherit.

9.5 Using Color and Date Choosers
The inputColor component presents a text input field for entering code for colors and
a button for picking colors from a palette. The default color code format is the
hexadecimal color format. However, you can override the format using a
ColorConverter class.

Note: If you select inherit, and no ancestor components define the
editable value, then the value always is used.

Using Color and Date Choosers

9-14 Web User Interface Developer's Guide for Oracle Application Development Framework

By default, the inputColor component opens the chooseColor component that allows
users to pick the color from a a palette. Figure 9–13 shows the inputColor component
with the chooseColor component in a popup dialog.

Figure 9–13 inputColor Component with Popup chooseColor Component

The inputDate component presents a text input field for entering dates and a button
for picking dates from a popup calendar, as shown in Figure 9–14. The default date
format is the short date format appropriate for the current locale. For example, the
default format in American English (ENU) is mm/dd/yy. However, you can override
the format using a date-time converter (for more information about using converters,
see Section 6.3, "Adding Conversion").

Figure 9–14 inputDate Component

When you add a date-time converter and configure it to show both the date and the
time, the date picker is displayed as a modal dialog with additional controls for the
user to enter a time. Additionally, if the converter is configured to show a time zone, a
timezone dropdown list is shown in the dialog, as shown in Figure 9–15.

Figure 9–15 Modal Dialog When Date-Time Converter Is Used

Using Color and Date Choosers

Using Input Components and Defining Forms 9-15

9.5.1 How to Add an inputColor Component
The inputColor component allows users either to enter a value in an input text field,
or to select a color from a color chooser.

To add an inputColor component:
1. In the Component Palette, from the Common Components panel, drag and drop

an Input Color onto the page.

2. In Property Inspector, expand the Common section and set the following:

■ Label: Specify a label for the component.

■ Compact: Set to true if you do not want to display the input text field, as
shown in Figure 9–16.

Figure 9–16 inputColor Component in Compact Mode

3. Expand the Data section and set the following attributes:

■ Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

■ ColorData: Specify the list of colors to be displayed in the standard color
palette. The number of provided colors can be 49 (7 colors x 7 colors), 64 (8
colors x 8 colors), or 121 (11 colors x 11 colors). The number set for this
attribute will determine the valid value for the width attribute. For example, if
you set the colorData attribute to 49, the width must be 7. If the number does
not match the width, extra color elements in the list will be ignored and
missing color elements will be displayed as no-color. The color list must be an
array of type TrColor on the client side.

■ CustomColorData: Specify the list of custom-defined colors. The number of
colors can be 7, 8, or 11. The color list must be an array of type TrColor on the
client side. On the server side, it must be a List of java.awt.Color objects, or
a list of hexadecimal color strings.

■ DefaultColor: Specify the default color using hexadecimal color code, for
example #000000.

4. Expand the Appearance section and set the following attributes:

■ Width: Specify the width of the standard palette in cells. The valid values are
7, 8, and 11, which correspond to the values of the colorData and
customColorData attributes.

Using Color and Date Choosers

9-16 Web User Interface Developer's Guide for Oracle Application Development Framework

■ CustomVisible: Specify whether or not the Custom Color button and custom
color row are to be displayed. When set to true, the Custom Color button and
custom color row will be rendered.

■ DefaultVisible: Specify whether or not the Default button is to be displayed.
When set to true, the Default button will be rendered. The Default button
allows the user to easily select the color set as the value for the defaultColor
attribute.

■ LastUsedVisible: Specify whether or not the Last Used button is to be
displayed. When set to true the Last Used button will be rendered, which
allows the user to select the color that was most recently used.

■ Placeholder: Specify the text that appears in the input component if the
component is empty and does not have focus. When the component gets
focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
input component.

5. Expand the Behavior section and set the following attributes:

■ ChooseId: Specify the id of the chooseColor component which can be used to
choose the color value. If not set, the inputColor component has its own
default popup dialog with a chooseColor component.

■ Usage: Specify how the input component will be rendered in HTML 5
browser. The valid values are auto, text, and search. Default is auto.

If the usage type is search, the input component will render as an HTML 5
search input type. Some HTML 5 browsers may add a Cancel icon that can be
used to clear the search text.

6. If you want the value of the component to appear as read-only until the user
hovers over it, expand the Other section and set Editable to onAccess. If you want
the component to always appear editable, select always. If you want the value to
be inherited from an ancestor component, select inherit.

9.5.2 How to Add an InputDate Component
The inputDate component allows the user to either enter or select a date.

To add an inputDate component:
1. In the Component Palette, from the Common Components panel, drag and drop

an Input Date onto the page.

2. In the Property Inspector, in the Common section, set the following:

■ Label: Specify a label for the component.

■ Value: Specify the value of the component. If the EL binding for value points
to a bean property with a get method but no set method, the component will
be rendered in read-only mode.

3. Expand the Data section and set the following attributes:

■ MinValue: Specify the minimum value allowed for the date value. When set
to a fixed value on a tag, this value will be parsed as an ISO 8601 date. ISO

Note: If you select inherit, and no ancestor components define the
editable value, then the value always is used.

Using Color and Date Choosers

Using Input Components and Defining Forms 9-17

8601 dates are of the form "yyyy-MM-dd" (for example: 2002-02-15). All other
uses require java.util.Date objects.

■ MaxValue: Specify the maximum value allowed for the date value. When set
to a fixed value on a tag, this value will be parsed as an ISO 8601 date. ISO
8601 dates are of the form "yyyy-MM-dd" (for example: 2002-02-15). All other
uses require java.util.Date objects.

■ DisableDays: Specify a binding to an implementation of the
org.apache.myfaces.trinidad.model.DateListProvider interface. The
getDateList method should generate a List of individual java.util.Date
objects which will be rendered as disabled. The dates must be in the context of
the given base calendar.

■ DisableDaysOfWeek: Specify a whitespace-delimited list of weekdays that
should be rendered as disabled in every week. The list should consist of one or
more of the following abbreviations: sun, mon, tue, wed, thu, fri, sat. By
default, all days are enabled.

■ DisableMonths: Specify a whitespace-delimited list of months that should be
rendered as disabled in every year. The list should consist of one or more of
the following abbreviations: jan, feb, mar, apr, may, jun, jul, aug,
sep, oct, nov, dec. By default, all months are enabled.

4. Expand the Behavior section and set the following attributes:

■ ChooseId: Specify the id of the chooseDate component which can be used to
choose the date value. If not set, the inputDate component has its own default
popup dialog with a chooseDate component.

■ Usage: Specify how the input component will be rendered in HTML 5
browser. The valid values are auto, text, and search. Default is auto.

If the usage type is search, the input component will render as an HTML 5
search input type. Some HTML 5 browsers may add a Cancel icon that can be
used to clear the search text.

5. Expand the Appearance section and set the following:

■ Editable: Set to onAccess if you want the value of the component to appear as
read-only until the user hovers over it. If you want the component to always
appear editable, select always. If you want the value to be inherited from an
ancestor component, select inherit.

■ Placeholder: Specify the text that appears in the input component if the
component is empty and does not have focus. When the component gets
focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
input component.

Performance Tip: This binding requires periodic roundtrips. If you
just want to disable certain weekdays (for example, Saturday and
Sunday), use the disableDaysOfWeek attribute.

Note: If you select inherit, and no ancestor components define the
editable value, then the value always is used.

Using Color and Date Choosers

9-18 Web User Interface Developer's Guide for Oracle Application Development Framework

9.5.3 What You May Need to Know About Selecting Time Zones Without the inputDate
Component

By default, the inputDate component displays a drop down list of time zones if the
associated converter is configured to do so, for example, if you include the timezone
placeholder z in the converter’s pattern. The end user can only modify the timezone
using this list. The list is configured to display the most common time zones.

However, there may be times when you need to display the list of time zones outside
of the inputDate component. For example, on a Application Preferences page, you
may want to use a selectOneChoice component that allows the user to select the time
zone that will be used to display all inputDates in the application. A backing bean
would handle the conversion between the time zone ID and the java.util.TimeZone
object. Converters for the inputDate instances in the application would then bind the
time zone to that time zone object.

You can access this list using either an API on the DateTimeUtils class, or using an EL
expression on a component.

Following are the methods on DateTimeUtils class:

■ getCommonTimeZoneSelectItems (): Returns a list of commonly used time zones.

■ getCommonTimeZoneSelectItems (String timeZoneId): Returns a list of
commonly used time zones, including the given time zone if it is not part of the
list.

To access this list using EL, use one of the following expressions:

■ af:getCommonTimeZoneSelectItems

For example:

<f:selectItems value="#{af:getCommonTimeZoneSelectItems()}" id="tzones2" />

■ af:getMergedTimeZoneSelectItems (id)

For example:

<f:selectItems
value="#{af:getMergedTimeZoneSelectItems(demoInput.preferredTimeZoneId)}"
id="tzones" />

If you will be using an inputDate component and a selection list for its time zone on
the same page, you must clear out the local value for the inputDate's timezone to
ensure that the value binding for the selection takes precedence. Otherwise, a non-null
local value will take precedence, and the inputDate component will not appear to be
updated.

In Example 9–4, the backing bean has a reference using the binding attribute to the
inputDate component. When the user picks a new time zone, the id is set and the code
gets the converter for the inputDate and clears out its time zone. When the page is
rendered, since the local value for the converter's time zone is null, it will evaluate
#{demoInput.preferredTimeZone} and obtain the updated time zone.

Example 9–4 Using an inputDate and Time Zone Selection List Together

<af:selectOneChoice label="Select a new timezone"
 value="#{demoInput.preferredTimeZoneId}" autoSubmit="true">
 <f:selectItems
 value="#{af:getMergedTimeZoneSelectItems(demoInput.preferredTimeZoneId)}"
 id="tzones" />
</af:selectOneChoice>

Using Selection Components

Using Input Components and Defining Forms 9-19

<af:inputDate label="First inputDate with timezone bound" id="bound1"
 partialTriggers="tzpick" binding="#{demoInput.boundDate1}">
 <af:convertDateTime type="both" timeStyle="full"
 timeZone="#{demoInput.preferredTimeZone}"/>
</af:inputDate>

DemoInputBean.java
public void setPreferredTimeZoneId(String _preferredTimeZoneId)
{
 TimeZone tz = TimeZone.getTimeZone(_preferredTimeZoneId);
 setPreferredTimeZone (tz);
 this._preferredTimeZoneId = _preferredTimeZoneId;
}

public void setPreferredTimeZone(TimeZone _preferredTimeZone)
{
 this._preferredTimeZone = _preferredTimeZone;
 DateTimeConverter conv1 = (DateTimeConverter)
 _boundDate1.getConverter();
 conv1.setTimeZone(null);
}

9.6 Using Selection Components
The selection components allow the user to select single and multiple values from a
list or group of items. ADF Faces provides a number of different selection components,
ranging from simple boolean radio buttons to list boxes that allow the user to select
multiple items. The list of items within a selection component is made up of a number
of selectItem components

All the selection components except the selectItem component delivers the
ValueChangeEvent and AttributeChangeEvent events. The selectItem component
only delivers the AttributeChangeEvent event. You must create a
valueChangeListener handler or an attributeChangeListener handler, or both for
them.

The selectBooleanCheckbox component value must always be set to a boolean and
not an object. It toggles between selected and unselected states, as shown in
Figure 9–17.

Figure 9–17 selectBooleanCheckbox Component

The selectBooleanRadio component displays a boolean choice, and must always be
set to a boolean. Unlike the selectBooleanCheckbox component, the
selectBooleanRadio component allows you to group selectBooleanRadio
components together using the same group attribute.

For example, say you have one boolean that determines whether or not a user is age 10
to 18 and another boolean that determines whether a user is age 19-100. As shown in
Figure 9–18, the two selectBooleanRadio components can be placed anywhere on the
page, they do not have to be next to each other. As long as they share the same group
value, they will have mutually exclusive selection, regardless of their physical
placement on the page.

Using Selection Components

9-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 9–18 selectBooleanRadio Component

You use the selectOneRadio component to create a list of radio buttons from which
the user can select a single value, as shown in Figure 9–19.

Figure 9–19 selectOneRadio Component

You use the selectManyCheckbox component to create a list of checkboxes from which
the user can select one or more values, as shown in Figure 9–20.

Figure 9–20 selectManyCheckbox Component

The selectOneListbox component creates a component which allows the user to select
a single value from a list of items displayed in a shaded box, as shown in Figure 9–21.

Figure 9–21 selectOneListbox Component

The selectManyListbox component creates a component which allows the user to
select many values from a list of items. This component includes an All checkbox that
is displayed at the beginning of the list of checkboxes, as shown in Figure 9–22.

Figure 9–22 selectManyListbox Component

Tip: Each selectBooleanRadio component must be bound to a
unique boolean.

Using Selection Components

Using Input Components and Defining Forms 9-21

The selectOneChoice component creates a menu-style component, which allows the
user to select a single value from a dropdown list of items. The selectOneChoice
component is intended for a relatively small number of items in the dropdown list.

The selectOneChoice component is shown in Figure 9–23.

Figure 9–23 selectOneChoice Component

You can configure the selectOneChoice component to display in a compact mode, as
shown in Figure 9–24. When in compact mode, the input field is replaced with a
smaller icon.

Figure 9–24 selectOneChoice Component in Compact Mode

When the user clicks the icon, the dropdown list is displayed, as shown in Figure 9–25.

Figure 9–25 List for selectOneChoice Component in Compact Mode

The selectManyChoice component creates a menu-style dropdown component, which
allows the user to select multiple values from a dropdown list of items. This
component can be configured to include an All selection item that is displayed at the
beginning of the list of selection items. If the number of choices is greater than 15, a
scrollbar will be presented, as shown in Figure 9–26.

Best Practice: If a large number of items is desired, use an
inputComboboxListOfValues component instead. For more
information, see Chapter 11, "Using List-of-Values Components."

Using Selection Components

9-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 9–26 selectManyChoice Component

By default, all selectItem child components are built when the selectManyChoice
component is built, as the page is rendered. However, if the way the list items are
accessed is slow, then performance can be hampered. This delay can be especially
troublesome when it is likely that the user will select the items once, and then not
change them on subsequent visits. For example, suppose you have a
selectManyChoice component used to filter what a user sees on a page, and that the
values for the child selectItem components are accessed from a web service. Suppose
also that the user is not likely to change that selection each time they visit the page. By
default, each time the page is rendered, all the selectItems must be built, regardless
of whether or not the user will actually need to view them. Instead, you can change
the contentDelivery attribute on the selectManyChoice component from immediate
(the default) to lazy. The lazy setting causes the selectItem components to be built
only when the user clicks the dropdown.

For both immediate and lazy, when the user then makes a selection, the values of the
selected selectItem components are displayed in the field. However when lazy
content delivery is used, on subsequent visits, instead of pulling the selected values
from the selectItem components (which would necessitate building these
components), the values are pulled from the lazySelectedLabel attribute. This
attribute is normally bound to a method that returns an array of Strings representing
the selected items. The selectItem components will not be built until the user goes to
view or change them, using the dropdown.

Note that there are limitations when using the lazy delivery method on the
selectManyChoice component. For more information about content delivery for the
selectManyChoice component and its limitations, see Section 9.6.2, "What You May
Need to Know About the contentDelivery Attribute on the SelectManyChoice
Component."

For the following components, if you want the label to appear above the control, you
can place them in a panelFormLayout component.

■ selectOneChoice

■ selectOneRadio

■ selectOneListbox

■ selectManyChoice

■ selectManyCheckbox

■ selectManyListbox

Using Selection Components

Using Input Components and Defining Forms 9-23

For the following components, the attributes disabled, immediate, readOnly,
required, requireMessageDetail, and value cannot be set from JavaScript on the
client for security reasons (for more information, see Section 3.7.1, "How to Set
Property Values on the Client"):

■ selectOneChoice

■ selectOneRadio

■ selectOneListbox

■ selectBooleanRadio

■ selectBooleanCheckbox

■ selectManyChoice

■ selectManyCheckbox

■ selectManyListbox

9.6.1 How to Use Selection Components
The procedures for adding selection components are the same for each of the
components. First, you add the selection component and configure its attributes. Then
you add any number of selectItem components for the individual items in the list,
and configure those.

To use a selection component:
1. In the Component Palette, from the Common Components panel, drag and drop

the selection component onto the page.

2. For all selection components except the selectBooleanCheckbox and
selectBooleanRadio components, a dialog opens where you choose either to bind
to a value in a managed bean, or to create a static list. On the second page of the
dialog, you can set the following properties:

■ Label: Enter the label for the list.

■ RequiredMessageDetail: Enter the message that should be displayed if a
selection is not made by the user. For more information about messages, see
Section 17.3, "Displaying Hints and Error Messages for Validation and
Conversion."

■ Validator: Enter an EL expression that resolves to a validation method on a
managed bean (for more information, see Chapter 6, "Validating and
Converting Input").

■ Value: Specify the value of the component. If the EL binding for the value
points to a bean property with a get method but no set method, the
component will be rendered in read-only mode.

■ ValueChangeListener: Enter an EL expression that resolves to a listener on a
managed bean that handles value change events.

Note: If you are creating a selectBooleanRadio or
selectBooleanCheckbox component, and you enter a value for the
value attribute, you cannot also enter a value for the selected
attribute, as it is a typesafe alias for the value attribute. You cannot
use both.

Using Selection Components

9-24 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Expand the Appearance section of the Property Inspector and set the attributes, as
described in Table 9–1. Note that only attributes specific to the selection
components are discussed here. Many of the attributes are the same as for input
text components. For more information, see Section 9.3.1, "How to Add an
inputText Component."

4. Expand the Behavior section of the Property Inspector and set the attributes, as
described in Table 9–2. Note that only attributes specific to the selection
components are discussed here. Many of the attributes are the same as for input
text components. For more information, see Section 9.3.1, "How to Add an
inputText Component."

Table 9–1 Appearance Attributes for Selection Components

Components Attribute

selectOneRadio,
selectManyCheckbox

Layout: Set to vertical to have the buttons or checkboxes
displayed vertically. Set to horizontal to have them displayed
in a single horizontal line.

selectManyListbox Size: Set to the number of items that should be displayed in the
list. If the number of items in the list is larger than the size
attribute value, a scrollbar will be displayed.

selectManyListbox,
selectManyChoice

SelectAllVisible: Set to true to display an All selection that
allows the user to select all items in the list.

selectOneChoice Mode: Set to compact to display the component only when the
user clicks the dropdown icon.

selectOneRadio,
selectOneListbox,
selectOneChoice

UnselectedLabel: Enter text for the option that represents a
value of null, meaning nothing is selected. If unselectedLabel
is not set and if the component does not have a selected value,
then an option with an empty string as the label and value is
rendered as the first option in the choice box (if there is not an
empty option already defined). Note that you should set the
required attribute to true when defining an unselectedLabel
value. If you do not, two blank options will appear in the list.
Once an option has been successfully selected, and if
unselectedLabel is not set, then the empty option will not be
rendered.

Table 9–2 Behavior Attributes for Selection Components

Component Attribute

All except the boolean
selection components

ValuePassThru: Specify whether or not the values are passed
through to the client. When valuePassThru is false, the value
and the options' values are converted to indexes before being
sent to the client. Therefore, when valuePassThru is false, there
is no need to write your own converter when you are using
custom Objects as your values, options, or both. If you need to
know the actual values on the client-side, then you can set
valuePassThru to true. This will pass the values through to the
client, using your custom converter if it is available; a custom
converter is needed if you are using custom objects. The default
is false.

Note that if your selection components uses ADF Model
binding, this value will be ignored.

selectBooleanRadio Group: Enter a group name that will enforce mutual exclusivity
for all other selectBooleanRadio components with the same
group value.

Using Selection Components

Using Input Components and Defining Forms 9-25

5. If you want the value of a selectOneChoice or selectManyChoice component to
appear as read-only until the user hovers over it, expand the Other section and set
Editable to onAccess. If you want the component to always appear editable, select
always. If you want the value to be inherited from an ancestor component, select
inherit.

6. If you do not want the child selectItem components for the selectManyChoice to
be built each time the page is rendered, do the following:

■ Create logic that can store the labels of the selected items and also return those
labels as an array of strings.

■ Expand the Other section, and set ContentDelivery to lazy.

■ Bind LazySelectedLabel to the method that returns the array of the selected
items.

Note that there are limitations to using lazy content delivery. For more information
about content delivery for the selectManyChoice component, see Section 9.6.2,
"What You May Need to Know About the contentDelivery Attribute on the
SelectManyChoice Component."

7. For the boolean components, drag and drop any number of selectItem
components as children to the boolean component. These will represent the items
in the list (for other selection components, the dialog in Step 2 automatically
added these for you).

8. With the selectItem component selected, in the Property Inspector, expand the
Common section, and if not set, enter a value for the value attribute. This will be
the value that will be submitted.

9. Expand the Appearance section, and if not set, enter a value for Label. This will be
the text that is displayed in the list.

10. Expand the Behavior section, and set Disabled to true if you want the item to
appear disabled in the list.

9.6.2 What You May Need to Know About the contentDelivery Attribute on the
SelectManyChoice Component

When the contentDelivery attribute on the selectManyChoice component is set to
immediate (the default), the following happens:

■ First visit to the page:

– The selectManyChoice and all selectItem components are built as the page is
rendered. This can cause performance issues if there are many items, or if the
values for the selectItem components are accessed for example, from a web
service.

– When the selectManyChoice component renders, nothing displays in the field,
as there has not yet been a selection.

– When user clicks drop down, all items are shown.

– When user selects items, the corresponding labels for the selected selectItem
components are shown in field.

Note: If you select inherit, and no ancestor components define the
editable value, then the value always is used.

Using Shuttle Components

9-26 Web User Interface Developer's Guide for Oracle Application Development Framework

– When page is submitted, values are posted back to the model.

■ Subsequent visit: The selectManyChoice and all selectItem components are built
again as the page is rendered. Labels for selected selectItem components are
displayed in field. This will cause the same performance issues as on the first visit
to the page.

When the contentDelivery attribute on the selectManyChoice component is set to
lazy, the following happens:

■ First visit to the page:

– The selectManyChoice is built as the page is rendered, but the selectItem
components are not.

– When the selectManyChoice component renders, nothing displays in the field,
as there has not yet been a selection.

– When user clicks drop down, the selectItem components are built. While this
is happening, the user sees a "busy" spinner. Once the components are built,
all items are shown.

– When user selects items, the corresponding labels for the selected selectItem
components are shown in field.

– When page is submitted, values are posted back to the model.

■ Subsequent visit:

– When page is first rendered, only the selectManyChoice component is built.
At this point, the value of the lazySelectedLabel attribute is used to display
the selected items.

– If user clicks drop down, the selectItem components are built. While this is
happening, the user sees a "busy" spinner. Once the components are built, all
items are shown.

Once the selectItem components are built, the selectManyChoice component
will act as though its contentDelivery attribute is set to immediate, and use
the actual value of the selectItem components to display the selected items.

Following are limitations for using lazy content delivery for the selectManyChoice
component:

■ You cannot store the value of the selectManyChoice is in Request scope. On
postback, the value attribute is accessed from the model, rather than decoding
what was returned from the client. If the value is stored in Request scope, that
value will be empty. Do not store the value in Request scope.

■ On postbacks, converters are not called. If you are relying on converters for
postbacks, then you should not use lazy content delivery.

■ The contentDelivery attribute is ignored when in screen reader mode. The
selectItem components will always be built when the page is rendered.

9.7 Using Shuttle Components
The selectManyShuttle and selectOrderShuttle components present the user with
two list boxes and buttons to move or shuttle items from one list box to the other. The
user can select a single item or multiple items to shuttle between the leading
(Available values) list box and the trailing (Selected values) list box. For either
component, if you want the label to appear above the control, place them in a
panelFormLayout component.

Using Shuttle Components

Using Input Components and Defining Forms 9-27

The selectManyShuttle component is shown in Figure 9–27.

Figure 9–27 selectManyShuttle component

The selectOrderShuttle component additionally includes up and down arrow
buttons that the user can use to reorder values in the Selected values list box, as
shown in Figure 9–28. When the list is reordered, a ValueChangeEvent event is
delivered. If you set the readOnly attribute to true, ensure the values to be reordered
are selected values that will be displayed in the trailing list (Selected values).

Figure 9–28 selectOrderShuttle Component

The value attribute of these components, like any other selectMany component, must
be a List or an Array of values that correspond to a value of one of the contained
selectItem components. If a value of one of the selectItems is in the List or Array,
that item will appear in the trailing list. You can convert a selectManyListbox
component directly into a selectManyShuttle; instead of the value driving which
items are selected in the listbox, it affects which items appear in the trailing list of the
selectOrderShuttle component.

Similar to other select components, the List or Array of items are composed of
selectItem components nested within the selectManyShuttle or
selectOrderShuttle component. Example 9–5 shows a sample selectOrderShuttle
component that allows the user to select the top five file types from a list of file types.

Example 9–5 selectOrderShuttle JSF Page Code

<af:selectOrderShuttle value="#{helpBean.topFive}"
 leadingHeader="#{explorerBundle['help.availableFileTypes']}"
 trailingHeader="#{explorerBundle['help.top5']}"
 simple="true">
 <af:selectItem label="XLS"/>
 <af:selectItem label="DOC"/>
 <af:selectItem label="PPT"/>
 <af:selectItem label="PDF"/>
 <af:selectItem label="Java"/>
 <af:selectItem label="JWS"/>
 <af:selectItem label="TXT"/>
 <af:selectItem label="HTML"/>

Using Shuttle Components

9-28 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:selectItem label="XML"/>
 <af:selectItem label="JS"/>
 <af:selectItem label="PNG"/>
 <af:selectItem label="BMP"/>
 <af:selectItem label="GIF"/>
 <af:selectItem label="CSS"/>
 <af:selectItem label="JPR"/>
 <af:selectItem label="JSPX"/>
 <f:validator validatorId="shuttle-validator"/>
</af:selectOrderShuttle>

If you set the reorderOnly attribute of a selectOrdershuttle component to true, the
shuttle function will be disabled, and only the Selected Values listbox appears. The
user can only reorder the items in the listbox, as shown in Figure 9–29.

Figure 9–29 selectOrderShuttle Component in Reorder-Only Mode

9.7.1 How to Add a selectManyShuttle or selectOrderShuttle Component
The procedures for adding shuttle components are the same for both components.
First you add the selection component and configure its attributes. Then you add any
number of selectItem components for the individual items in the list, and configure
those.

To add a selectManyShuttle or selectOrderShuttle component:
1. In the Component Palette, from the Common Components panel, drag and drop a

Select Many Shuttle or Select Order Shuttle from the Component Palette onto the
page.

2. A dialog appears where you choose either to bind to a value in a managed bean, or
to create a static list. On the second page of the dialog, you can set the following:

■ Label: Enter the label for the list.

■ RequiredMessageDetail: Enter the message that should be displayed if a
selection is not made by the user. For more information about messages, see
Section 17.3, "Displaying Hints and Error Messages for Validation and
Conversion."

■ Size: Specify the display size (number of items) of the lists. The size specified
must be between 10 and 20 items. If the attribute is not set or has a value less
than 10, the size would have a default or minimum value of 10. If the attribute
value specified is more than 20 items, the size would have the maximum value
of 20.

■ Validator: Enter an EL expression that resolves to a validation method on a
managed bean.

Using Shuttle Components

Using Input Components and Defining Forms 9-29

■ Value: Specify the value of the component. If the EL binding for the value
points to a bean property with a get method but no set method, the
component will be rendered in read-only mode.

■ ValueChangeListener: Enter an EL expression that resolves to a listener on a
managed bean that handles value change events.

3. In the Property Inspector, expand the Appearance section and set the following:

■ Layout: Specify whether the component will be in horizontal or vertical
layout. The default is horizontal, meaning the leading and trailing list boxes
are displayed next to each other. When set to vertical, the leading list box is
displayed above the trailing list box.

■ LeadingHeader: Specify the header text of the leading list of the shuttle
component.

■ LeadingDescShown: Set to true to display a description of the selected item
at the bottom of the leading list box.

■ TrailingHeader: Specify the header of the trailing list of the shuttle
component.

■ TrailingDescShown: Set to true to display a description of the selected item at
the bottom of the trailing list box.

4. Expand the Behavior section and optionally set the following attributes:

■ ValuePassThru: Specify whether or not the values are passed through to the
client. When valuePassThru is false, the value and the options' values are
converted to indexes before being sent to the client. Therefore, when
valuePassThru is false, there is no need to write your own converter when
you are using custom objects as your values, options, or both. If you need to
know the actual values on the client-side, then you can set valuePassThru to
true. This will pass the values through to the client, using your custom
converter if it is available; a custom converter is needed if you are using
custom objects. The default is false.

■ ReorderOnly (selectOrderShuttle component only): Specify whether or not
the shuttle component is in reorder-only mode, where the user can reorder the
list of values, but cannot add or remove them.

5. In the Structure window, select one of the selectItem components, and in the
Property Inspector, set any needed attributes.

9.7.2 What You May Need to Know About Using a Client Listener for Selection Events
You can provide the user with information about each selected item before the user
shuttles it from one list to another list by creating JavaScript code to perform
processing in response to the event of selecting an item. For example, your code can
obtain additional information about that item, then display it as a popup to help the
user make the choice of whether to shuttle the item or not. Figure 9–30 shows a
selectManyShuttle component in which the user selects Meyers and a popup
provides additional information about this selection.

Tip: If you elected to have the leading or trailing list box display a
description, you must set a value for the shortDesc attribute for each
selectItem component.

Using Shuttle Components

9-30 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 9–30 selectManyShuttle with selectionListener

You implement this feature by adding a client listener to the selectManyShuttle or
selectOrderShuttle component and then create a JavaScript method to process this
event. The JavaScript code is executed when a user selects an item from the lists. For
more information about using client listeners for events, see Section 3.2, "Listening for
Client Events."

How to add a client listener to a shuttle component to handle a selection event:
1. In the Component Palette, from the Operations panel, drag a Client Listener and

drop it as a child to the shuttle component.

2. In the Insert Client Listener dialog, enter a function name in the Method field (you
will implement this function in the next step), and select propertyChange from the
Type dropdown.

If for example, you entered showDetails as the function, JDeveloper would enter
the code shown in bold in Example 9–6.

Example 9–6 Using a clientListener to Register a Selection

<af:selectManyShuttle value="#{demoInput.manyListValue1}"
 valuePassThru="true" ...>
 <af:clientListener type="propertyChange" method="showDetails"/>
 <af:selectItem label="coffee" value="bean" />
 ...
</af:selectManyShuttle>

This code causes the showDetails function to be called any time the property
value changes.

3. In your JavaScript, implement the function entered in the last step. This function
should do the following:

■ Get the shuttle component by getting the source of the event.

■ Use the client JavaScript API calls to get information about the selected items.

 In Example 9–7, AdfShuttleUtils.getLastSelectionChange is called to get the value
of the last selected item

Example 9–7 Sample JavaScript methods showDetails used to process a selection

function showDetails(event)
{
 if(AdfRichSelectManyShuttle.SELECTION == event.getPropertyName())
 {
 var shuttleComponent = event.getSource();
 var lastChangedValue =
AdfShuttleUtils.getLastSelectionChange(shuttleComponent, event.getOldValue());
 var side = AdfShuttleUtils.getSide(shuttleComponent, lastChangedValue);

Using the richTextEditor Component

Using Input Components and Defining Forms 9-31

 if(AdfShuttleUtils.isSelected(shuttleComponent, lastChangedValue))
 {
 //do something...
 }
 else
 {
 //do something else
 }
 if(AdfShuttleUtils.isLeading(shuttleComponent, lastChangedValue))
 {
 //queue a custom event (see serverListener) to call a java method on the
server
 }
 }
}

9.8 Using the richTextEditor Component
The richTextEditor component provides an input field that can accept text with
formatting. It also supports label text, and messages. It allows the user to change font
name, size, and style, create ordered lists, justify text, and use a variety of other
features. The richTextEditor component also can be used to edit an HTML source
file. Two command buttons are used to toggle back and forth between editing
standard formatted text and editing the HTML source file. Figure 9–31 shows the rich
text editor component in standard rich text editing Mode.

Figure 9–31 The richTextEditor Component in Standard Editing Mode

Figure 9–32 shows the editor in source code editing mode.

Figure 9–32 The richTextEditor in Source Editing Mode

Other supported features include:

■ Font type

■ Font size

■ Link/unlink

■ Clear styling

■ Undo/redo

Using the richTextEditor Component

9-32 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Bold/italics/underline

■ Subscript/superscript

■ Justify (left, middle, right, full)

■ Ordered/unordered lists

■ Indentation

■ Text color/background color

■ Rich text editing mode/source code editing mode

The value (entered text) of the rich text editor is a well-formed XHTML fragment.
Parts of the value may be altered for browser-specific requirements to allow the value
to be formatted. Also, for security reasons, some features such as script-related tags
and attributes will be removed. There are no guarantees that this component records
only the minimal changes made by the user. Because the editor is editing an XHTML
document, the following elements may be changed:

■ Nonmeaningful whitespace

■ Element minimization

■ Element types

■ Order of attributes

■ Use of character entities

The editor supports only HTML 4 tags, with the exception of:

■ Script, noscript

■ Frame, frameset, noframes

■ Form-related elements (input, select, optgroup, option, textarea, form, button,
label, isindex)

■ Document-related elements (html, head, body, meta, title, base, link)

The richTextEditor component also supports tags that pull in content (such as
applet, iframe, object, img, and a). For the iframe tag, the content should not be able
to interact with the rest of the page because browsers allow interactions only with
content from the same domain. However, this portion of the page is not under the
control of the application.

While the richTextEditor component does not support font units such as px and em, it
does support font size from 1 to 7 as described in the HTML specification. It does not
support embed or unknown tags (such as <foo>).

On the client, the richTextEditor component does not support getValue and
setValue methods. There is no guarantee the component’s value on the client is the
same as the value on the server. Therefore, the richTextEditor does not support
client-side converters and validators. Server-side converters and validators will still
work.

The rich text editor delivers ValueChangeEvent and AttributeChangeEvent events.
Create valueChangeListener and attributeChangeListener handlers for these events
as required.

You can also configure the richTextEditorInsertBehavior tag, which works with
command components to insert given text into the richTextEditor component. The
text to be entered can be a simple string, or it can be preformatted text held, for
example, in a managed bean.

Using the richTextEditor Component

Using Input Components and Defining Forms 9-33

By default, the toolbar in the richTextEditor component allows the user to change
many aspects of the text, such as the font, font size and weight, text alignment, and
view mode, as shown in Figure 9–33.

Figure 9–33 Toolbar in richTextEditor Component

Figure 9–34 shows a toolbar that has been customized. Many of the toolbar buttons
have been removed and a toolbar with a custom toolbar button and a menu have been
added.

Figure 9–34 Customized Toolbar for richTextEditor

9.8.1 How to Add a richTextEditor Component
Once you add a richTextEditor component, you can configure it so that text can be
inserted at a specific place, and you can also customize the toolbar. For more
information, see Section 9.8.2, "How to Add the Ability to Insert Text into a
richTextEditor Component," and Section 9.8.3, "How to Customize the Toolbar."

To add a richTextEditor component:
1. In the Component Palette, from the Common Components panel, drag and drop a

Rich Text Editor onto the page.

2. Expand the Common section of the Property Inspector and set the value attribute.

3. Expand the Appearance section and set the following:

■ Rows: Specify the height of the edit window as an approximate number of
characters shown.

■ Columns: Specify the width of the edit window as an approximate number of
characters shown.

■ Label: Specify a label for the component.

4. Expand the Behavior section and set the following:

■ EditMode: Select whether you want the editor to be displayed using the
WYSIWYG or source mode.

■ ContentDelivery: Specify whether or not the data within the editor should be
fetched when the component is rendered initially. When the contentDelivery
attribute value is immediate, data is fetched and displayed in the component
when it is rendered. If the value is set to lazy, data will be fetched and
delivered to the client during a subsequent request. For more information, see
Section 10.1.1, "Content Delivery."

Tip: You can set the width of a richTextEditor component to full
width or 100%. However, this works reliably only if the editor is
contained in a geometry-managing parent components. It may not
work reliably if it is placed in flowing layout containers such as
panelFormLayout or panelGroupLayout. For more information, see
Section 8.2.1, "Geometry Management and Component Stretching."

Using the richTextEditor Component

9-34 Web User Interface Developer's Guide for Oracle Application Development Framework

9.8.2 How to Add the Ability to Insert Text into a richTextEditor Component
To allow text to be inserted into a richTextEditor component, add the
richTextEditorInsertBehavior tag as a child to a command component that will be
used to insert the text.

Before you begin
You need to create a richTextEditor component as described in Section 9.3.1, "How to
Add an inputText Component." Set the clientComponent attribute to true.

To add text insert behavior:
1. Add a command component that the user will click to insert the text. For

procedures, see Section 18.2.1, "How to Use Command Buttons and Command
Links."

2. In the Component Palette, from the Operations panel, drag and drop a Rich Text
Editor Insert Behavior as a child to the command component.

3. In the Rich Text Editor Insert Behavior dialog, enter the following:

■ For: Use the dropdown arrow to select Edit and then navigate to select the
richTextEditor component into which the text will be inserted.

■ Value: Enter the value for the text to be inserted. If you want to insert static
text, then enter that text. If you want the user to be able to insert the value of
another component (for example, the value of a selectOneChoice component),
then enter an EL expression that resolves to that value. If you want the user to
enter preformatted text, enter an EL expression that resolves to that text. For
example Example 9–8 shows preformatted text as the value for an attribute in
the demoInput managed bean.

Example 9–8 Preformatted Text in a Managed Bean

private static final String _RICH_INSERT_VALUE =
 "<p align=\"center\" style=\"border: 1px solid gray;
 margin: 5px; padding: 5px;\">" +
 "<span style=\"font-family: Comic Sans MS,
 Comic Sans,cursive;\">Store Hours
\n" +
 "Monday through Friday 'til 8:00 pm
\n" +
 "Saturday & Sunday 'til 5:00 pm" +
 "</p>";

Example 9–9 shows how the text is referenced from the
richTextEditorInsertBehavior tag.

Example 9–9 Using the richTextEditorInsertBehavior Tag

<af:richTextEditor id="idRichTextEditor" label="Rich text value"
 value="#{demoInput.richValue2}"/>
. . .
</af:richTextEditor>
<af:commandButton text="Insert Template Text">
 <af:richTextEditorInsertBehavior for="idRichTextEditor"
 value="#{demoInput.richInsertValue}"/>
</af:commandButton>

4. By default, the text will be inserted when the action event is triggered by clicking
the command component. However, you can change this to another client event by
choosing that event from the dropdown menu for the triggerType attribute.

Using the richTextEditor Component

Using Input Components and Defining Forms 9-35

9.8.3 How to Customize the Toolbar
Place the toolbar and toolbar buttons you want to add in custom facets that you create.
Then, reference the facet (or facets) from an attribute on the toolbar, along with
keywords that determine how or where the contained items should be displayed.

To customize the toolbar:
1. In the JSF page of the Component Palette, from the Core panel, drag and drop a

Facet for each section of the toolbar you want to add. For example, to add the
custom buttons shown in Figure 9–34, you would add two <f:facet> tags. Ensure
that each facet has a unique name for the page.

2. In the ADF Faces page of the Component Palette, from the Common Components
panel, drag and drop a Toolbar into each facet and add toolbar buttons or other
components and configure as needed. For more information about toolbars and
toolbar buttons, see Section 14.3, "Using Toolbars."

3. With the richTextEditor component selected, in the Property Inspector, in the
Other section, click the dropdown icon for the toolboxLayout attribute and select
Edit to open the Edit Property: ToolboxLayout dialog. The value for this attribute
should be a list of the custom facet names, in the order in which you want the
contents in the custom facets to appear. In addition to those facets, you can also
include all, or portions, of the default toolbar, using the following keywords:

■ all: All the toolbar buttons and text in the default toolbar. If all is entered,
then any keyword for noncustom buttons will be ignored.

■ font: The font selection and font size buttons.

■ history: Undo and redo buttons.

■ mode: Rich text mode and source code mode buttons.

■ color: Foreground and background color buttons.

■ formatAll: Bold, italic, underline, superscript, subscript, strikethrough
buttons. If formatAll is specified, formatCommon and formatUncommon will be
ignored.

■ formatCommon: Bold, italic, and underline buttons.

■ formatUncommon: Superscript, subscript, and strikethrough buttons.

■ justify: Left, center, right and full justify buttons.

■ list: Bullet and numbered list buttons.

■ indent: Outdent and indent buttons.

■ link: Add and remove Link buttons.

For example, if you created two facets named customToolbar1 and
customToolbar2, and you wanted the complete default toolbar to appear in
between your custom toolbars, you would enter the following list:

■ customToolbar1

■ all

■ customToolbar2

Tip: To ensure that there will be no conflicts with future releases of
ADF Faces, start all your facet names with customToolbar.

Using File Upload

9-36 Web User Interface Developer's Guide for Oracle Application Development Framework

You can also determine the layout of the toolbars using the following keywords:

■ newline: Places the toolbar in the next named facet (or the next keyword from
the list in the toolboxLayout attribute) on a new line. For example, if you
wanted the toolbar in the customToolbar2 facet to appear on a new line, you
would enter the following list:

– customToolbar1

– all

– newline

– customToolbar2

If instead, you did not want to use all of the default toolbar, but only the font,
color, and common formatting buttons, and you wanted those buttons to
appear on a new line, you would enter the following list:

– customToolbar1

– customToolbar2

– newline

– font

– color

– formatCommon

■ stretch: Adds a spacer component that stretches to fill all available space so
that the next named facet (or next keyword from the default toolbar) is
displayed as right-aligned in the toolbar.

9.9 Using File Upload
The inputFile component provides users with file uploading and updating
capabilities. This component allows the user to select a local file and upload it to a
selectable location on the server. To download a file from the server to the user, see
Section 18.4.1, "How to Use a Command Component to Download Files."

The inputFile component delivers the standard ValueChangeEvent event as files are
being uploaded, and it manages the loading process transparently. The value property
of an inputFile component is set to an instance of the
org.apache.myfaces.trinidad.model.UploadedFile class when a file is uploaded.

To initiate the upload process, you can create an action component such as a command
button, as shown in Figure 9–35.

Figure 9–35 inputFile Component

Once a file has been uploaded, and so the value of the inputFile is not null (either
after the initial load is successful or it has been specified as an initial value), you can
create an Update button that will be displayed instead of the Browse button, as shown
in Figure 9–36. This will allow the user to modify the value of the inputFile
component.

Using File Upload

Using Input Components and Defining Forms 9-37

Figure 9–36 inputFile Component in Update Mode

You can also specify that the component be able to load only a specific file by setting
the readOnly property to true, In this mode, only the specified file can be loaded, as
shown in Figure 9–37.

Figure 9–37 inputFile Component in Read-Only Mode

By default, the inputFile component allows upload of one file, but it can be
configured to upload multiple files. Figure 9–38 shows the inputFile component
configured to upload multiple files.

Figure 9–38 inputFile Component for Multiple Files

The user can select multiple files in the File Upload dialog that opens through the
Browse button, or drag-and-drop multiple files in the drop section of the component.
When files appear in the drop section, the user clicks Upload to upload the files, as
shown in Figure 9–39.

Figure 9–39 inputFile Component Showing Files Ready to Upload

For security reasons, the following attributes cannot be set from the client:

■ disabled (unless the unsecure property is set. For more information, see
Section 3.7.2, "How to Unsecure the disabled Property.")

■ immediate

■ readOnly

■ requiredMessageDetail

■ value

The inputFile component can be placed in either an h:form tag or an af:form tag,
but in either case, you have to set the form tag to support file upload. If you use the
JSF basic HTML h:form, set the enctype to multipart/form-data. This would make

Using File Upload

9-38 Web User Interface Developer's Guide for Oracle Application Development Framework

the request into a multipart request to support file uploading to the server. If you are
using the ADF Faces af:form tag, set usesUpload to true, which performs the same
function as setting enctype to multipart/form-data to support file upload.

The ADF Faces framework performs a generic upload of the file. You should create an
actionListener or action method to process the file after it has been uploaded (for
example, processing xml files, pdf files, and so on).

The value of an inputFile component is an instance of the
org.apache.myfaces.trinidad.model.UploadedFile interface. The API lets you get at
the actual byte stream of the file, as well as the file's name, its MIME type, and its size.

The uploaded file may be stored as a file in the file system, but may also be stored in
memory; the API hides that difference. The filter ensures that the UploadedFile
content is cleaned up after the request is complete. Because of this, you cannot usefully
cache UploadedFile objects across requests. If you need to keep the file, you must copy
it into persistent storage before the request finishes.

For example, instead of storing the file, add a message stating the file upload was
successful using a managed bean as a response to the ValueChangeEvent event, as
shown in Example 9–10.

Example 9–10 Using valueChangeListener to Display Upload Message

JSF Page Code ----->
<af:form usesUpload="true" id="f1">
 <af:inputFile label="Upload:"
 valueChangeListener="#{managedBean.fileUploaded}" id="if1"/>
 <af:commandButton text="Begin" id="b1"/>
</af:form>

Managed Bean Code ---->
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.faces.event.ValueChangeEvent;
import org.apache.myfaces.trinidad.model.UploadedFile;

public class ABackingBean
{
 ...
 public void fileUploaded(ValueChangeEvent event)
 {
 UploadedFile file = (UploadedFile) event.getNewValue();
 if (file != null)
 {
 FacesContext context = FacesContext.getCurrentInstance();
 FacesMessage message = new FacesMessage(
 "Successfully uploaded file " + file.getFilename() +
 " (" + file.getLength() + " bytes)");
 context.addMessage(event.getComponent().getClientId(context), message);
 // Here's where we could call file.getInputStream()
 }
 }
}

Note: The API does not allow you to get path information from the
client about from where the file was uploaded.

Using File Upload

Using Input Components and Defining Forms 9-39

You can also handle the upload by binding the value directly to a managed bean, as
shown in Example 9–11.

Example 9–11 Binding the Value to a Managed Bean

JSF Page Code ---->
<af:form usesUpload="true">
 <af:inputFile label="Upload:" value="#{managedBean.file}" id="if1"/>
 <af:commandButton text="Begin" action="#{managedBean.doUpload}" id="b1"/>
</af:form>

Managed Bean Code ---->
import org.apache.myfaces.trinidad.model.UploadedFile;

public class AManagedBean
{
 public UploadedFile getFile()
 {
 return _file;
 }
 public void setFile(UploadedFile file)
 {
 _file = file;
 }

 public String doUpload()
 {
 UploadedFile file = getFile();
 // ... and process it in some way
 }
 private UploadedFile _file;

}

9.9.1 How to Use the inputFile Component
A Java class must be bound to the inputFile component. This class will be responsible
for containing the value of the uploaded file.

To add an inputFile component:
1. Create a Java class that will hold the value of the input file. It must be an instance

of the org.apache.myfaces.trinidad.model.UploadedFile interface.

2. In the Component Palette, from the Common Components panel, drag and drop
an Input File onto the page.

3. Set value to be the class created in Step 1.

4. If you want the value of the component to appear as read-only until the user
hovers over it, expand the Other section and set Editable to onAccess. If you want
the component to always appear editable, select always. If you want the value to
be inherited from an ancestor component, select inherit.

Note: If you are using the inputFile component to upload multiple
files, note that the return type of event.getNewValue() is
List<UploadedFile>, instead of UploadedFile. The value binding for
the managed bean is also List<UploadedFile>, not UploadedFile.

Using File Upload

9-40 Web User Interface Developer's Guide for Oracle Application Development Framework

5. From the Component Palette, drag and drop any command component onto the
page. This will be used to initiate the upload process.

6. With the command component selected, set the actionListener attribute to a
listener that will process the file after it has been uploaded.

9.9.2 How to Configure the inputFile Component to Upload Multiple Files
Use the uploadType and maximumFiles attributes to configure the inputFile
component to upload multiple files.

To configure an inputFile component to upload multiple files:
1. In the form, select the inputFile component.

2. In the Property Inspector, expand the Appearance section and set the following:

■ autoHeightRows: Specify the number of rows used to size the height of the
inputFile component. The value must be equal to, or lower than, the value of
rows.

■ rows: Specify the number of files that will appear in the drop section. By
default, it is set to 5.

3. Expand the Advanced section and set the maximumFiles attribute to specify the
number of maximum files the user can upload. By default, it is set to 1 and allows
upload of one file only.

4. Expand the Behavior section and set the uploadType attribute to specify whether
the files would be uploaded automatically, or the user would have to click Upload
button to upload files.

Table 9–3 lists the possible values of the uploadType attribute.

Note: If you select inherit, and no ancestor components define the
editable value, then the value always is used.

Table 9–3 uploadType Values for the inputFile Component

Value Description

submit Upload one file only. The drop section, where the user can
drag-and-drop files, is not displayed.

auto Show the drop section and enable upload of multiple files. The
upload starts immediately when the files appear in drop section.

If maximumFiles is set to 1, the user can upload multiple files by
selecting one file at a time, instead of selecting multiple files
together.

manual Show the drop section and enable upload of multiple files. The
upload starts when the Upload button is clicked.

If maximumFiles is set to 1, the user can upload multiple files by
selecting one file at a time, instead of selecting multiple files
together.

autoIfMultiple Upload multiple files. The upload starts immediately when the
files appear in the drop section. By default, uploadType is set to
autoIfMultiple.

If maximumFiles is set to 1, the user can select and upload one
file only. The drop section is also not displayed.

Using File Upload

Using Input Components and Defining Forms 9-41

To remove an uploaded file from the drop section, or cancel upload of a file that is
being uploaded, click the Cancel icon next to the file name and the progress bar. To
cancel upload of all files, click the Stop Uploading button, as shown in Figure 9–40.

Figure 9–40 File Being Uploaded Using inputFile Component

9.9.3 What You May Need to Know About Temporary File Storage
Because ADF Faces will temporarily store files being uploaded (either on disk or in
memory), by default it limits the size of acceptable incoming upload requests to avoid
denial-of-service attacks that might attempt to fill a hard drive or flood memory with
uploaded files. By default, only the first 100 kilobytes in any one request will be stored
in memory. Once that has been filled, disk space will be used. Again, by default, that is
limited to 2,000 kilobytes of disk storage for any one request for all files combined.
Once these limits are exceeded, the filter will throw an EOFException.

Files are, by default, stored in the temporary directory used by the
java.io.File.createTempFile() method, which is usually defined by the system
property java.io.tmpdir. Obviously, this will be insufficient for some applications, so
you can configure these values using three servlet context initialization parameters, as
shown in Example 9–12.

Example 9–12 Parameters That Define File Upload Size and Directory

 <context-param>
 <!-- Maximum memory per request (in bytes) -->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY</param-name>
 <!-- Use 500K -->
 <param-value>512000</param-value>
 </context-param>
 <context-param>
 <!-- Maximum disk space per request (in bytes) -->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE</param-name>
 <!-- Use 5,000K -->
 <param-value>5120000</param-value>
 </context-param>
 <context-param>
 <!-- directory to store temporary files -->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR</param-name>
 <!-- Use a TrinidadUploads subdirectory of /tmp -->

manualIfMultiple Upload multiple files. The upload starts when the Upload
button is clicked.

If maximumFiles is set to 1, the user can select and upload one
file only. The drop section is also not displayed.

Table 9–3 (Cont.) uploadType Values for the inputFile Component

Value Description

Using File Upload

9-42 Web User Interface Developer's Guide for Oracle Application Development Framework

 <param-value>/tmp/TrinidadUploads/</param-value>
 </context-param>
 <context-param>
 <!-- Maximum file size that can be uploaded.-->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_FILE_SIZE</param-name>
 <!-- Use 5,000K -->
 <param-value>5120000</param-value>
 </context-param>
 <!-- This filter is always required; one of its functions is
 file upload. -->
 <filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter</filter-class>
 </filter>

You can customize the file upload process by replacing the entire
org.apache.myfaces.trinidad.webapp.UploadedFileProcessor class with the
<uploaded-file-processor> element in the trinidad-config.xml configuration file.
Replacing the UploadedFileProcessor class makes the parameters listed in
Example 9–12 irrelevant, they are processed only by the default
UploadedFileProcessor class.

The <uploaded-file-processor> element must be the name of a class that implements
the oracle.adf.view.rich.webapp.UploadedFileProcessor interface. This API is
responsible for processing each individual uploaded file as it comes from the incoming
request, and then making its contents available for the rest of the request. For most
applications, the default UploadedFileProcessor class is sufficient, but applications
that need to support uploading very large files may improve their performance by
immediately storing files in their final destination, instead of requiring ADF Faces to
handle temporary storage during the request.

9.9.4 What You May Need to Know About Uploading Multiple Files
The inputFile component uses HTML 5 to support the drag-and-drop functionality
and upload of multiple files. In browsers that do not support HTML 5, a Java applet is
used for drag-and-drop functionality and upload of multiple files, as shown in
Figure 9–41.

Figure 9–41 inputFile Component in a Non-HTML 5 Browser

If the browser does not support HTML5 and Java is also not available, then the drop
section in the inputFile component is not displayed.

Using Code Editor

Using Input Components and Defining Forms 9-43

The inputFile component can only upload files that are smaller than 2 GB when in
single file upload mode. In multiple file upload mode, the inputFile component can
upload files greater than 2 GB, by default, by splitting them into chunks of 2 GB in
size. The chunk size can be controlled by the parameter
org.apache.myfaces.trinidad.UPLOAD_MAX_CHUNK_SIZE in web.xml whose default
and maximum value is 2 GB. For example:

<context-param>
 <!-- Maximum file chunk size that can be uploaded.-->
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_CHUNK_SIZE</param-name>
 <!-- Use 1,000 MB as chunk size -->
 <param-value>1000000000</param-value>
 </context-param>

Note that not all browsers support the uploading of large files using the chunk
functionality. For more information, see Oracle JDeveloper Release Notes on Oracle
Technology Network.

After uploading all files, you must ensure that the form is submitted, else the
inputFile component data will not be uploaded to the server. If autoSubmit is set to
true on the inputFile component, then the form is submitted automatically after all
the files have finished uploading. After the form has been submitted, the inputFile
component is refreshed and the file list of the drop section becomes empty so that
more files can be uploaded. To show the list of uploaded files, add
ValueChangeListener or bind the value to a managed bean, as described in
Example 9–10.

9.10 Using Code Editor
The af:codeEditor component provides an in-browser code editing solution and
enables the user to display and edit program code at runtime in the Fusion web
application. The input field of the code editor component accepts text, and provides
some common code editing functionalities such as a toolbar, syntactical color coding of
keywords, basic validation, highlighting errors, and a message pane for logs. Using the
code editor, the user won't need to run an IDE software to test a program code for
errors or warnings.

Note: If you are using OracleAS Single Sign-On (SSO), you might
need to configure the mod_osso.conf file that enables single sign-on
for Oracle HTTP Server. The file is located at ORACLEOHS_
HOME/ohs/conf/, where ORACLEOHS_HOME refers to the home directory
of the Oracle HTTP server installation. The configuration is required
for the upload applet to function properly in non-HTML5 browsers.

Update the mod_osso.conf file with the following parameters:

OssoSecureCookies off

OssoHTTPOnly Off

Header unset Pragma

OssoSendCacheHeaders off

For more information about OracleAS Single Sign-On, see the chapter
on configuring Single Sign-On using OracleAS SSO in the Oracle
Fusion Middleware Application Security Guide.

Using Code Editor

9-44 Web User Interface Developer's Guide for Oracle Application Development Framework

The code editor component supports Javascript, XML, and Groovy languages, as
shown in Figure 9–42.

Figure 9–42 Code Editor Component using Javascript, XML, and Groovy

The code editor component provides the following functionalities:

■ Line numbering

■ Undo and redo operations (also possible using keyboard shortcuts Ctrl+Z and
Ctrl+Y)

■ Jump to a specific line

■ Find and replace

■ Color-coded text

■ Highlighting syntaxes and search terms

■ Auto-indent

■ Auto-format

■ Message pane for error messages

■ Support for large files with more than thousand lines of code

The user can use the toolbar (shown in Figure 9–43) to undo and redo the changes,
search and replace text, and jump to a specific line number.

Using Code Editor

Using Input Components and Defining Forms 9-45

Figure 9–43 Code Editor Toolbar

To search for a string, enter the search term in the Find field, and click Find Next or
Find Previous icons to locate the search string in the code editor. Figure 9–44 shows
the Find field of the toolbar used to search a string in the code editor.

Figure 9–44 Using the Find Field of Code Editor Toolbar

To search a case sensitive string, or replace a search term, open the Find and Replace
dialog from the Find and Replace icon and perform the operations from the dialog, as
shown in Figure 9–45.

Figure 9–45 Using Find and Replace Dialog of Code Editor

To jump to a specific line number, enter the number in the Go to Line field and click
Jump to line, as shown in Figure 9–46.

Figure 9–46 Using Go To Line Feature of Code Editor

Note: If the Whole Words checkbox is selected, the Find and Replace
dialog cannot search for a non-English string in the editor. However,
using the Replace All button, you can replace all instances of the
non-English string while the Whole Words checkbox is selected.

Using Code Editor

9-46 Web User Interface Developer's Guide for Oracle Application Development Framework

The code editor component can be configured to list all warnings and errors in a
message pane that is also provided with the code editor component. Figure 9–47
shows the message pane listing all XML errors noticed by the XML parser running on
the server.

Figure 9–47 Message Pane of Code Editor

The message pane is a non-editable region that resides below the text area of the code
editor. It is used to display code-related status information, such as validation support
for code compilation, and any error or warning messages. Clicking a message in the
message pane navigates you to the respective code line in the code editor.

You can also configure the code editor to programmatically add various types of
markers. Figure 9–48 shows the code editor with error, critical, warning, and
information markers.

Using Code Editor

Using Input Components and Defining Forms 9-47

Figure 9–48 Using Markers in Code Editor

9.10.1 How to Add a codeEditor Component
When you add a codeEditor component, use the language attribute to configure the
programming language used by the code editor.

To add a codeEditor component:
1. In the Component Palette, from the Common Components panel, drag and drop a

Code Editor component onto the page.

2. In the Property Inspector, expand the Common section, and set Language. The
valid values are javascript, groovy, and xml.

3. Expand the Appearance section, and set the following:

■ LineNumbers: Specify whether line numbers should be visible in the code
editor.

The valid values are yes and no.

■ Simple: Set to true if you do not want the label to be displayed.

4. Expand the Behavior section, and set the following

■ ReadOnly: Specify whether the code in the code editor can be edited or
displayed as output-style text.

Using Code Editor

9-48 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Disabled: Specify whether or not the code editor should be disabled.

10

Using Tables, Trees, and Other Collection-Based Components 10-1

10 Using Tables, Trees, and Other
Collection-Based Components

This chapter describes how to display structured data in components that can iterate
through collections of data and then display each row in the collection, using the
ADF Faces table, tree, treeTable, listView, and carousel components. If your
application uses the Fusion technology stack, then you can use data controls to create
these components. For more information see the "Creating ADF Databound Tables,"
"Displaying Master-Detail Data, " and "Creating More Complex Pages" chapters of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

This chapter includes the following sections:

■ Section 10.1, "Introduction to Using Collection-Based Components"

■ Section 10.2, "Displaying Data in Tables"

■ Section 10.3, "Adding Hidden Capabilities to a Table"

■ Section 10.4, "Enabling Filtering in Tables"

■ Section 10.5, "Displaying Data in Trees"

■ Section 10.6, "Displaying Data in Tree Tables"

■ Section 10.7, "Displaying Table Menus, Toolbars, and Status Bars"

■ Section 10.8, "Displaying a Collection in a List"

■ Section 10.9, "Displaying Images in a Carousel"

■ Section 10.10, "Passing a Row as a Value"

■ Section 10.11, "Exporting Data from Table, Tree, or Tree Table"

■ Section 10.12, "Accessing Selected Values on the Client from Collection-Based
Components"

10.1 Introduction to Using Collection-Based Components
ADF Faces provides components that you can use to iterate through and display
collections of structured data. Instead of containing a child component for each record
to be displayed, and then binding these components to the individual records, these
components are bound to a complete collection, and they then repeatedly render one
component (for example an outputText component), by stamping the value for each
record.

Introduction to Using Collection-Based Components

10-2 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, say a table contains two child column components. Each column
displays a single attribute value for the row using an output component, and there are
four records to be displayed. Instead of binding four sets of two output components to
display the data, the table itself is bound to the collection of all four records and
simply stamps one set of the output components four times. As each row is stamped,
the data for the current row is copied into the var attribute on the table, from which
the output component can retrieve the correct values for the row. For more
information about how stamping works, especially with client components, see
Section 10.1.5, "Accessing Client Collection Components."

Example 10–1 shows the JSF code for a table whose value for the var attribute is row.
Each outputText component in a column displays the data for the row because its
value is bound to a specific property on the variable.

Example 10–1 JSF Code for a Table Uses the var Attribute to Access Values

<af:table var="row" value="#{myBean.allEmployees}">
 <af:column>
 <af:outputText value="#{row.firstname}"/>
 </af:column>
 <af:column>
 af:outputText value="#{row.lastname}"/>
 </af:column>
</af:table>

Collection components use a CollectionModel class to access the data in the
underlying collection. This class extends the JSF DataModel class, but is based on row
keys instead of indexes to support underlying data changes. It also supports more
advanced functionality, such as sorting.

You may also use other model classes, such as java.util.List, array, and
javax.faces.model.DataModel. If you use one of these other classes, the collection
component automatically converts the instance into a CollectionModel class, but
without any additional functionality. For more information about the
CollectionModel class, see the MyFaces Trinidad javadoc at
http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

The table component displays simple tabular data. Each row in the table displays one
object in a collection, for example one row in a database. The column component
displays the value of attributes for each of the objects.

For example, as shown in Figure 10–1, the Table tab in the File Explorer application
uses a table to display the contents of the selected directory. The table value attribute
is bound to the contentTable property of the tableContentView managed bean in the
File Explorer demo.

Note: If your application uses the Fusion technology stack, then you
can use data controls to create collection components and the
collection model will be created for you. For more information see the
"Creating ADF Databound Tables," "Displaying Master-Detail Data, "
and "Creating More Complex Pages" chapters of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Introduction to Using Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-3

Figure 10–1 Table Component in the File Explorer Application

The table component provides a range of features for end users, such as sorting
columns, and selecting one or more rows and then executing an application defined
action on the selected rows. They also provide a range of presentation features, such as
showing grid lines and banding, row and column headers, column headers spanning
groups of columns, and values wrapping within cells. Many of these features are
available on all the collection components.

Hierarchical data (that is data that has parent/child relationships), such as the
directory in the File Explorer application, can be displayed as expandable trees using
the tree component. Items are displayed as nodes that mirror the parent/child
structure of the data. Each top-level node can be expanded to display any child nodes,
which in turn can also be expanded to display any of their child nodes. Each expanded
node can then be collapsed to hide child nodes. Figure 10–2 shows the file directory in
the File Explorer application, which is displayed using a tree component.

Figure 10–2 Tree Component in the File Explorer Application

Hierarchical data can also be displayed using tree table components. The tree table
also displays parent/child nodes that are expandable and collapsible, but in a tabular
format, which allows the page to display attribute values for the nodes as columns of
data. For example, along with displaying a directory’s contents using a table
component, the File Explorer application has another tab that uses the tree table
component to display the contents, as shown in Figure 10–3.

Introduction to Using Collection-Based Components

10-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–3 Tree Table in the File Explorer Application

Like the tree component, the tree table component can show the parent/child
relationship between items. And like the table component, the tree table component
can also show any attribute values for those items in a column.

You can add a toolbar and a status bar to tables, trees, and tree tables by surrounding
them with the panelCollection component. The top panel contains a standard menu
bar as well as a toolbar that holds menu-type components such as menus and menu
options, toolbars and toolbar buttons, and status bars. Some buttons and menus are
added by default. For example, when you surround a table, tree, or tree table with a
panelCollection component, a toolbar that contains the View menu is added. This
menu contains menu items that are specific to the table, tree, or tree table component.

Figure 10–4 shows the tree table from the File Explorer application with the toolbar,
menus, and toolbar buttons created using the panelCollection component.

Figure 10–4 TreeTable with Panel Collection

The listView component is lighter-weight than a table, and allows you to display
structured data in a list format. Unlike a table, it does not have columns, which allows
you to easily present data in a variety of patterns, beyond a simple tabular layout.

The components that display the actual data are contained in a single child listItem
component. Figure 10–5 shows a listView component that contains one child
listItem component. The listItem component contains a mix of layout components,
output components and button components.

Figure 10–5 The listView Component Uses listItem Components to Hold Data for Each
Row

Introduction to Using Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-5

The listView component can also display hierarchical data. When a component that is
bound to the parent data is placed in the groupHeaderStamp facet, that data is
displayed in a header. Figure 10–6 shows how the alphabet letters, which are the
parent data, are displayed in headers, while the child personnel data is displayed in
rows below the parent.

Figure 10–6 Hierarchical Data Can be Displayed in Groups

The carousel component displays a collection of images in a revolving carousel, as
shown in Figure 10–7. Users can change the image at the front either by using the
slider at the bottom or by clicking one of the auxiliary images to bring that specific
image to the front.

Figure 10–7 The ADF Faces Carousel

10.1.1 Content Delivery
The collection components are virtualized, meaning not all the rows that are there for
the component on the server are delivered to and displayed on the client. You
configure a collection-based component to fetch a certain number of rows at a time
from your data source. The data can be delivered to the component immediately upon
rendering, when it is available, or lazily fetched after the shell of the component has
been rendered (by default, the components fetch data when it is available).

With immediate delivery, the data is fetched during the initial request. With lazy
delivery, when a page contains one or more collection components, the page initially
goes through the standard lifecycle. However, instead of fetching the data during that
initial request, a special separate partial page rendering (PPR) request is run, and the
number of rows set as the value of the fetch size for the component is then returned.
Because the page has just been rendered, only the Render Response phase executes for
the components, allowing the corresponding data to be fetched and displayed. When a

Introduction to Using Collection-Based Components

10-6 Web User Interface Developer's Guide for Oracle Application Development Framework

user’s actions cause a subsequent data fetch (for example scrolling in a table for
another set of rows), another PPR request is executed.

When content delivery is configured to be delivered when it is available, the
framework checks for data availability during the initial request, and if it is available,
it sends the data to the component. If it is not available, the data is loaded during the
separate PPR request, as it is with lazy delivery.

The number of rows that are displayed on the client are just enough to fill the page as
it is displayed in the browser. More rows are fetched as the user scrolls the component
vertically (or if configured to page instead of scroll, when the user navigates to another
set of rows). The fetchSize attribute determines the number of rows requested from
the client to the server on each attempt to fill the component. For a table, the default
value is 25. So if the height of the table is small, the fetch size of 25 is sufficient to fill
the component. However, if the height of the component is large, there might be
multiple requests for the data from the server. Therefore, the fetchSize attribute
should be set to a higher number. For example, if the height of the table is 600 pixels
and the height of each row is 18 pixels, you will need at least 45 rows to fill the table.
With a fetchSize of 25, the table has to execute two requests to the server to fill the
table. For this example, you would set the fetch size to 50.

However, if you set the fetch size too high, it will impact both server and client. The
server will fetch more rows from the data source than needed and this will increase
time and memory usage. On the client side, it will take longer to process those rows
and attach them to the component.

By default, on a desktop device, tables render a scroll bar that allows the users to scroll
through the rows of data. Instead, you can configure the table to be paginated using
the scrollPolicy attribute, so that it displays a footer that allows the user to jump to
specific pages of rows, as shown in Figure 10–8.

Performance Tip: Lazy delivery should be used when a data fetch is
expected to be an expensive (slow) operation, for example, slow,
high-latency database connection, or fetching data from slow
non-database data sources like web services. Lazy delivery should
also be used when the page contains a number of components other
than a collection-based component. Doing so allows the initial page
layout and other components to be rendered first before the data is
available.

Immediate delivery should be used if the collection-based component
is the only context on the page, or if the component is not expected to
return a large set of data. In this case, response time will be faster than
using lazy delivery (or in some cases, simply perceived as faster), as
the second request will not go to the server, providing a faster user
response time and better server CPU utilizations. Note however that
only the number of rows configured to be the fetch block will be
initially returned. As with lazy delivery, when a user’s actions cause a
subsequent data fetch, the next set of rows are delivered.

When available delivery provides the additional flexibility of using
immediate when data is available during initial rendering or falling
back on lazy when data is not initially available.

Introduction to Using Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-7

Figure 10–8 Paginated Table

When the viewport is too narrow to display the complete footer, the table displays a
compact footer that shows only the page currently displayed and the navigation
buttons, as shown in Figure 10–9.

Figure 10–9 Paginated Table in Compact Mode

Introduction to Using Collection-Based Components

10-8 Web User Interface Developer's Guide for Oracle Application Development Framework

As with a table configured to scroll, the number of rows on a page is determined by
the fetchSize attribute.

You can also configure the set of data that will be initially displayed using the
displayRow attribute. By default, the first record in the data source is displayed in the
top row or node and the subsequent records are displayed in the following rows or
nodes. You can also configure the component to first display the last record in the
source instead. In this case, the last record is displayed in the bottom row or node of
the component, and the user can scroll up to view the preceding records. Additionally,
you can configure the component to display the selected row. This can be useful if the
user is navigating to the component, and based on some parameter, a particular row
will be programmatically selected. When configured to display the selected row, that
row will be displayed at the top of the table and the user can scroll up or down to view
other rows.

10.1.2 Row Selection
You can configure selection to be either for no rows, for a single row, or for multiple
rows using the rowSelection attribute (the carousel component does not allow
multiple selection). This setting allows you to execute logic against the selected rows.
For example, you may want users to be able to select a row in a table or a node in a
tree, and then to click a command button that navigates to another page where the
data for the selected row is displayed and the user can edit it.

When the selected row (or node) of a component changes, the component triggers a
selection event. This event reports which rows were just deselected and which rows
were just selected. While the components handle selection declaratively, if you want to
perform some logic on the selected rows, you need to implement code that can access
those rows and then perform the logic. You can do this in a selection listener method
on a managed bean. For more information, see Section 10.2.8, "What You May Need to
Know About Performing an Action on Selected Rows in Tables."

Note: By default, tables are rendered to display as paginated on
tablet devices.

In order for a table to display as paginated, you must set the
scrollPolicy attribute to page, the autoHeightRows attribute to 0,
and the table must be placed in a flowing container (that is, a
component that does not stretch its children). For more information
about flowing container components, see Section 8.2.1, "Geometry
Management and Component Stretching."

Note: If you configure your component to allow multiple selection,
users can select one row and then press the shift key to select another
row, and all the rows in between will be selected. This selection will be
retained even if the selection is across multiple data fetch blocks.
Similarly, you can use the Ctrl key to select rows that are not next to
each other.

For example, if you configure your table to fetch only 25 rows at a
time, but the user selects 100 rows, the framework is able to keep track
of the selection.

Introduction to Using Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-9

10.1.3 Editing Data in Tables, Trees, and Tree Tables
You can choose the component used to display the actual data in a table, tree, or tree
table. For example, you may want the data to be read-only, and therefore you might
use an outputText component to display the data. Conversely, if you want the data to
be able to be edited, you might use an inputText component, or if choosing from a list,
one of the SelectOne components. All of these components are placed as children to
the column component (in the case of a table and tree table) or within the nodeStamp
facet (for a tree).

When you decide to use components whose value can be edited to display your data,
you have the option of having the table, tree, or tree table either display all rows as
available for editing at once, or display all but the currently active row as read-only
using the editingMode attribute. For example, Figure 10–10 shows a table whose rows
can all be edited. The page renders using the components that were added to the page
(for example, inputText, inputDate, and inputComboBoxListOfValues components).

Figure 10–10 Table Whose Rows Can All Be Edited

Figure 10–11 shows the same table (that is, it uses inputText, inputDate, and
inputComboBoxListOfValues components to display the data), but configured so that
only the active row displays the editable components. Users can then click on another
row to make it editable (only one row is editable at a time). Note that outputText
components are used to display the data in the noneditable rows, even though the
same input components as in Figure 10–10 were used to build the page. The only row
that actually renders those components is the active row.

Performance Tip: Users can navigate through the table using a
mouse and the scrollbar, or using the up and down arrow keyboard
keys. By default, a selection event is immediately fired when the user
clicks a row. If the user is navigating through the rows using the arrow
keys, this means that a selection event will be fired for each row, as the
user navigates.

If you expect users to navigate through the table using the keys, you
can set the delaySelectionEvent attribute to true, so that there is a
300 millisecond delay before the selection event is fired. If the user
navigates to another row within the 300 milliseconds, the selection
event is canceled.

Introduction to Using Collection-Based Components

10-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–11 Table Allows Only One Row to Be Edited at a Time

The currently active row is determined by the activeRowKey attribute on the table. By
default, the value of this attribute is the first visible row of the table. When the table (or
tree or tree table) is refreshed, that component scrolls to bring the active row into view,
if it is not already visible. When the user clicks on a row to edit its contents, that row
becomes the active row.

When you allow only a single row (or node) to be edited, the table (or tree or tree
table) performs PPR when the user moves from one row (or node) to the next, thereby
submitting the data (and validating that data) one row at a time. When you allow all
rows to be edited, data is submitted whenever there is an event that causes PPR to
typically occur, for example scrolling beyond the currently displayed rows or nodes.

Not all editable components make sense to be displayed in a click-to-edit mode. For
example, those that display multiple lines of HTML input elements may not be good
candidates. These components include:

■ SelectManyCheckbox

■ SelectManyListBox

■ SelectOneListBox

■ SelectOneRadio

■ SelectManyShuttle

Note: You should not use more than one editable component in a
column.

Performance Tip: For increased performance during both rendering
and postback, you should configure your table to allow editing only to
a single row.

When you elect to allow only a single row to be edited at a time, the
page will be displayed more quickly, as output components tend to
generate less HTML than input components. Additionally, client
components are not created for the read-only rows. Because the table
(or tree, or tree table) performs PPR as the user moves from one row to
the next, only that row’s data is submitted, resulting in better
performance than a table that allows all cells to be edited, which
submits all the data for all the rows in the table at the same time.
Allowing only a singe row to be edited also provides more intuitive
validation, because only a single row’s data is submitted for
validation, and therefore only errors for that row are displayed.

Introduction to Using Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-11

10.1.4 Using Popup Dialogs in Tables, Trees, and Tree Tables
You can configure your table, tree, or tree table so that popup dialogs will be displayed
based on a user’s actions. For example, you can configure a popup dialog to display
some data from the selected row when the user hovers the mouse over a cell or node.
You can also create popup context menus for when a user right-clicks a row in a table
or tree table, or a node in a tree. Additionally, for tables and tree tables, you can create
a context menu for when a user right-clicks anywhere within the table, but not on a
specific row.

Tables, trees, and tree tables all contain the contextMenu facet. You place your popup
context menu within this facet, and the associated menu will be displayed when the
user right-clicks a row. When the context menu is being fetched on the server, the
components automatically establish the currency to the row for which the context
menu is being displayed. Establishing currency means that the current row in the model
for the table now points to the row for which the context menu is being displayed. In
order for this to happen, the popup component containing the menu must have its
contentDelivery attribute set to lazyUncached so that the menu is fetched every time
it is displayed.

Introduction to Using Collection-Based Components

10-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Tables and tree tables contain the bodyContextMenu facet. You can add a popup that
contains a menu to this facet, and it will be displayed whenever a user clicks on the
table, but not within a specific row.

For more information about creating context menus, see Section 13.2, "Declaratively
Creating Popup Elements."

Tip: If you want the context menu to dynamically display content
based on the selected row, set the popup content delivery to
lazyUncached and add a setPropertyListener tag to a method on a
managed bean that can get the current row and then display data
based on the current row:

<af:tree value="#{fs.treeModel}"
 contextMenuSelect="false" var="node" ..>
 <f:facet name="contextMenu">
 <af:popup id="myPopup" contentDelivery="lazyUncached">
 <af:setPropertyListener from="#{fs.treeModel.rowData}"
 to="#{dynamicContextMenuTable.currentTreeRowData}"
 type="popupFetch" />
 <af:menu>
 <af:menu text="Node Info (Dynamic)">
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text=
 "Name - #{dynamicContextMenuTable.currentTreeRowData.name}" />
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text=
 "Path - #{dynamicContextMenuTable.currentTreeRowData.path}" />
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text="Date -
 #{dynamicContextMenuTable.currentTreeRowData.lastModified}" />
 </af:menu>
 </af:menu>
 </af:popup>
 </f:facet>
...
</af:tree>

The code on the backing bean might look something like this:

public class DynamicContextMenuTableBean
{
 ...
 public void setCurrentTreeRowData(Map currentTreeRowData)
 {
 _currentTreeRowData = currentTreeRowData;
 }

 public Map getCurrentTreeRowData()
 {
 return _currentTreeRowData;
 }

 private Map _currentTreeRowData;
}

Introduction to Using Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-13

10.1.5 Accessing Client Collection Components
With ADF Faces, the contents of the collection-based component are rendered on the
server. There may be cases when the client needs to access that content on the server,
including:

■ Client-side application logic may need to read the row-specific component state.
For example, in response to row selection changes, the application may want to
update the disabled or visible state of other components in the page (usually menu
items or toolbar buttons). This logic may be dependent on row-specific metadata
sent to the client using a stamped inputHidden component. In order to enable this,
the application must be able to retrieve row-specific attribute values from stamped
components.

■ Client-side application logic may need to modify row-specific component state.
For example, clicking a stamped command link in a table row may update the
state of other components in the same row.

■ The peer may need access to a component instance to implement event handling
behavior (for more information about peers, see Section 3.1, "Introduction to Using
ADF Faces Architecture"). For example, in order to deliver a client-side action
event in response to a mouse click, the AdfDhtmlCommandLinkPeer class needs a
reference to the component instance which will serve as the event source. The
component also holds on to relevant state, including client listeners as well as
attributes that control event delivery behavior, such as disabled or
partialSubmit.

Because there is no client-side support for EL in the rich client framework, nor is there
support for sending entire table models to the client, the client-side code cannot rely
on component stamping to access the value. Instead of reusing the same component
instance on each row, a new JavaScript client component is created on each row
(assuming any component must be created at all for any of the rows).

Therefore, to access row-specific data on the client, you need to use the stamped
component itself to access the value. To do this without a client-side data model, you
use a client-side selection change listener. For detailed instructions, see Section 10.12,
"Accessing Selected Values on the Client from Collection-Based Components."

10.1.6 Geometry Management for Table, Tree, and Tree Table Components
By default, when tables, trees, and tree tables are placed in a component that stretches
its children (for example, a panelCollection component inside a panelStretchLayout
component), the table, tree, or tree table will stretch to fill the existing space. However,
in order for the columns to stretch to fit the table, you must specify a specific column
to stretch to fill up any unused space, using the columnStretching attribute.
Otherwise, the table will only stretch vertically to fit as many rows as possible. It will
not stretch the columns, as shown in Figure 10–12.

Introduction to Using Collection-Based Components

10-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–12 Table Stretches But Columns Do Not

When placed in a component that does not stretch its children (for example, in a
panelCollection component inside a panelGroupLayout component set to vertical),
by default, a table width is set to 300px, as shown in Figure 10–13.

Figure 10–13 Table Does Not Stretch

When you place a table in a component that does not stretch its children, you can
control the height of the table so that is never more than a specified number of rows,
using the autoHeightRows attribute. When you set this attribute to a positive integer,

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-15

the table height will be determined by the number of rows set. If that number is higher
than the fetchSize attribute, then only the number of rows in the fetchSize attribute
will be returned. You can set autoHeightRows to -1 (the default), to turn off auto-sizing.

Auto-sizing can be helpful in cases where you want to use the same table both in
components that stretch their children and those that don’t. For example, say you have
a table that has 6 columns and can potentially display 12 rows. When you use it in a
component that stretches its children, you want the table to stretch to fill the available
space. If you want to use that table in a component that doesn’t stretch its children,
you want to be able to "fix" the height of the table. However, if you set a height on the
table, then that table will not stretch when placed in the other component. To solve this
issue, you can set the autoHeightRows attribute, which will be ignored when in a
component that stretches, and will be honored in one that does not.

10.2 Displaying Data in Tables
The table component uses other components to actually display the data. The
immediate children of a table component must be column components. Each visible
column component is displayed as a separate column in the table. Column
components contain components used to display content, images, or provide further
functionality. For more information about the features available with the column
component, see Section 10.2.1, "Columns and Column Data."

The child components of each column display the data for each row in that column.
The column does not create child components per row; instead, the table uses
stamping to render each row. Each child is stamped once per row, repeatedly for all the
rows. As each row is stamped, the data for the current row is copied into a property
that can be addressed using an EL expression. You specify the name to use for this
property using the var property on the table. Once the table has completed rendering,
this property is removed or reverted back to its previous value.

Because of this stamping behavior, some components may not work inside the
column. Most components will work without problems, for example any input and
output components. If you need to use multiple components inside a cell, you can
wrap them inside a panelGroupLayout component. Components that themselves
support stamping are not supported, such as tables within a table. For information
about using components whose values are determined dynamically at runtime, see
Section 10.2.9, "What You May Need to Know About Dynamically Determining Values
for Selection Components in Tables."

You can use the detailStamp facet in a table to include data that can be optionally
displayed or hidden. When you add a component to this facet, the table displays an
additional column with an expand and collapse icon for each row. When the user
clicks the icon to expand, the component added to the facet is displayed, as shown in

Note: The default value for the autoHeightRows attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
table components to be stretched when the parent can stretch, and to
be the size of the fetchSize attribute when it cannot, set the
DEFAULT_DIMENSIONS parameter instead of the autoHeightRows
attribute. Set the autoHeightRows attribute when you want to override
the global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
autoHeightRows is -1 (the table will not stretch). For more
information, see Section A.2.3.25, "Geometry Management for Layout
and Table Components."

Displaying Data in Tables

10-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–14.

Figure 10–14 Extra Data Can Be Optionally Displayed

When the user clicks on the expanded icon to collapse it, the component is hidden, as
shown in Figure 10–15.

Figure 10–15 Extra Data Can Be Hidden

For more information about using the detailStamp facet, see Section 10.3, "Adding
Hidden Capabilities to a Table."

10.2.1 Columns and Column Data
Columns contain the components used to display the data. As stated previously, only
one child component is needed for each item to be displayed; the values are stamped
as the table renders. Columns can be sorted, and you can configure whether or not the
sorting is case-sensitive (by default, it is case-sensitive).

Columns can also contain a filtering element. Users can enter a value into the filter and
the returned data set will match the value entered in the filter. You can set the filter to
be either case-sensitive or case-insensitive. If the table is configured to allow it, users
can also reorder columns. Columns have both header and footer facets. The header
facet can be used instead of using the header text attribute of the column, allowing you
to use a component that can be styled. The footer facet is displayed at the bottom of
the column. For example, Figure 10–16 uses footer facets to display the total at the
bottom of two columns. If the number of rows returned is more than can be displayed,
the footer facet is still displayed; the user can scroll to the bottom row.

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-17

Figure 10–16 Footer Facets in a Column

10.2.2 Formatting Tables
A table component offers many formatting and visual aids to the user. You can enable
these features and specify how they can be displayed. These features include:

■ Row selection: By default, at runtime, users cannot select rows. If you want users
to be able to select rows in order to perform some action on them somewhere else
on the page, or on another page, then enable row selection for the table by setting
the rowSelection attribute. You can configure the table to allow either a single
row or multiple rows to be selected. For information about how to then
programatically perform some action on the selected rows, see Section 10.2.8,
"What You May Need to Know About Performing an Action on Selected Rows in
Tables."

■ Scrolling/Pagination: By default, on desktop devices, tables render a scroll bar that
allows the user to scroll through all rows. On tablet devices, instead of a scroll bar,
the table is paginated. and displays a footer that allows the user to jump to specific
pages of rows. You can change the default by setting the scrollPolicy attribute.

■ Table height: You can set the table height to be absolute (for example, 300 pixels),
or you can determine the height of the table based on the number of rows you
wish to display at a time by setting the autoHeightRows attribute. For more
information, see Section 10.1.6, "Geometry Management for Table, Tree, and Tree
Table Components."

■ Grid lines: By default, an ADF table component draws both horizontal and vertical
grid lines. These may be independently turned off using the
horizontalGridVisible and verticalGridVisible attributes.

Note: When table is placed in a layout-managing container, such as a
panelSplitter component, it will be sized by the container and the
autoHeightRows is not honored.

Displaying Data in Tables

10-18 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Banding: Groups of rows or columns are displayed with alternating background
colors using the columnBandingInterval attribute. This helps to differentiate
between adjacent groups of rows or columns. By default, banding is turned off.

■ Column groups: Columns in a table can be grouped into column groups, by
nesting column components. Each group can have its own column group heading,
linking all the columns together.

■ Editable cells: When you elect to use input text components to display data in a
table, you can configure the table so that all cells can be edited, or so that the user
must explicitly click in the cell in order to edit it. For more information, see
Section 10.1.3, "Editing Data in Tables, Trees, and Tree Tables."

■ Column stretching: If the widths of the columns do not together fill the whole
table, you can set the columnStretching attribute to determine whether or not to
stretch columns to fill up the space, and if so, which columns should stretch. You
can set the minimum width for columns, so that when there are many columns in
a table and you enable stretching, columns will not be made smaller than the set
minimum width. You can also set a width percentage for each column you want to
stretch to determine the amount of space that column should take up when
stretched.

■ Column selection: You can choose to allow users to be able to select columns of
data. As with row selection, you can configure the table to allow single or multiple
column selection. You can also use the columnSelectionListener to respond to
the ColumnSelectionEvent that is invoked when a new column is selected by the
user. This event reports which columns were just deselected and which columns
were just selected.

■ Column reordering: Users can reorder the columns at runtime by simply dragging
and dropping the column headers. By default, column reordering is allowed, and
is handled by a menu item in the panelCollection component. For more
information, see Section 10.7, "Displaying Table Menus, Toolbars, and Status Bars."

Performance Tip: When you choose to have cells be available for
editing only when the user clicks on them, the table will initially load
faster. This may be desirable if you expect the table to display large
amounts of data.

Note: If the total sum of the columns’ minimum widths equals more
than the viewable space in the viewport, the table will expand outside
the viewport and a scrollbar will appear to allow access outside the
viewport.

Performance Tip: Column stretching is turned off by default.
Turning on this feature may have a performance impact on the client
rendering time when used for complex tables (that is, tables with a
large amount of data, or with nested columns, and so on).

Note: Columns configured to be row headers or configured to be
frozen will not be stretched because doing so could easily leave the
user unable to access the scrollable body of the table.

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-19

■ Column freezing: You can configure the table so that columns can be frozen and so
will not scroll out of view. Columns can be frozen on either the left or right side of
the table. This is controlled by the freezeDirection attribute on the table. You
choose the column to start the freeze using the frozen attribute on the column.

10.2.3 Formatting Columns
Each column component also offers many formatting and visual aids to the user. You
can enable these features and specify how they can be displayed. These features
include:

■ Column sorting: Columns can be configured so that the user can sort the contents
by a given column, either in ascending or descending order using the sortable
attribute. A special indicator on a column header lets the user know that the
column can be sorted. When the user clicks on the icon to sort a previously
unsorted column, the column’s content is sorted in ascending order. Subsequent
clicks on the same header sort the content in the reverse order.

By default, sorting is case-sensitive. That is, abc would be sorted before ABC. You
can configure the column so that instead, abc would be sorted the same as ABC,
using the sortStrength attribute.

In order for the table to be able to sort, the underlying data model must also
support sorting. For more information, see Section 10.2.7, "What You May Need to
Know About Programmatically Enabling Sorting for Table Columns."

■ Content alignment: You can align the content within the column to either the start,
end, left, right, or center using the align attribute.

■ Column width: The width of a column can be specified as an absolute value in
pixels using the width attribute. If you configure a column to allow stretching,
then you can also set the width as a percentage.

■ Column spanning: You can configure a column to span across other columns using
the colSpan attribute. Normally however, you use an EL expression as the value
for the span, to enable only a certain cell in the column to actually span.

■ Line wrapping: You can define whether or not the content in a column can wrap
over lines, using the noWrap attribute. By default, content will not wrap.

■ Row headers: You can define the left-most column to be a row header using the
rowHeader attribute. When you do so, the left-most column is rendered with the
same look as the column headers, and will not scroll off the page. Figure 10–17
shows how a table showing departments appears if the first column is configured
to be a row header.

Tip: Use start and end instead of left and right if your application
supports multiple reading directions.

Displaying Data in Tables

10-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–17 Row Header in a Table

If you elect to use a row header column and you configure your table to allow row
selection, the row header column displays a selection arrow when a users hovers
over the row, as shown in Figure 10–18.

Figure 10–18 Selection Icon in Row Header

For tables that allow multiple selection, users can mouse down and then drag on the
row header to select a contiguous blocks of rows. The table will also autoscroll
vertically as the user drags up or down.

10.2.4 How to Display a Table on a Page
You use the Create an ADF Faces Table dialog to add a table to a JSF page. You also use
this dialog to add column components for each column you need for the table. You can
also bind the table to the underlying model or bean using EL expressions.

Performance Tip: Use of row headers increases the complexity of
tables and can have a negative performance impact.

Tip: While the user can change the way the table displays at runtime
(for example the user can reorder columns or change column widths),
those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For
information, see Chapter 33, "Allowing User Customization on JSF
Pages."

Note: If your application uses the Fusion technology stack, then you
can use data controls to create tables and the binding will be done for
you. For more information see the "Creating ADF Databound Tables"
chapter of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-21

Once you complete the dialog, and the table and columns are added to the page, you
can use the Property Inspector to configure additional attributes of the table or
columns, and add listeners to respond to table events. You must have an
implementation of the CollectionModel class to which your table will be bound.

To display a table on a page:
1. Create a Java class that extends the

org.apache.myfaces.trinidad.model.CollectionModel class.

Collection components use a CollectionModel class to access the data in the
underlying collection. This class extends the JSF DataModel class, but is based on
row keys instead of indexes to support underlying data changes. It also supports
more advanced functionality, such as sorting.

You may also use other model classes, such as java.util.List, array, and
javax.faces.model.DataModel. If you use one of these other classes, the collection
component automatically converts the instance into a CollectionModel class, but
without any additional functionality. For more information about the
CollectionModel class, see the MyFaces Trinidad javadoc at
http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

2. In the Component Palette, from the Common Components panel, drag and drop a
Table to open the Create ADF Faces Table dialog.

Use the dialog to bind the table to any existing model you have. When you bind
the table to a valid model, the dialog automatically shows the columns that will be
created. You can then use the dialog to edit the values for the columns’ header and
value attributes, and choose the type of component that will be used to display the
data. Alternatively, you can manually configure columns and bind at a later date.
For more information about using the dialog, press F1 or click Help.

3. In the Property Inspector, expand the Common section. If you have already bound
your table to a model, the value attribute should be set. You can use this section to
set the following table-specific attributes:

■ RowSelection: Set a value to make the rows selectable. Valid values are: none,
single, and multiple, and multipleNoSelectAll.

For information about how to then programatically perform some action on
the selected rows, see Section 10.2.8, "What You May Need to Know About
Performing an Action on Selected Rows in Tables."

■ ColumnSelection: Set a value to make the columns selectable. Valid values
are: none, single, and multiple.

4. Expand the Columns section. If you previously bound your table using the Create
ADF Faces Table dialog, then these settings should be complete. You can use this
section to change the binding for the table, to change the variable name used to
access data for each row, and to change the display label and components used for
each column.

Note: Users can select all rows and all columns in a table by clicking
the column header for the row header if the rowSelection attribute is
set to multiple and that table also contains a row header. If you do
not want users to be able to select all columns and rows, then set
rowSelection to multipleNoSelectAll.

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Displaying Data in Tables

10-22 Web User Interface Developer's Guide for Oracle Application Development Framework

5. Expand the Appearance section. You use this section to set the appearance of the
table, by setting the following table-specific attributes:

■ Width: Specify the width of the table. You can specify the width as either a
percentage or as a number of pixels. The default setting is 300 pixels. If you
configure the table to stretch columns (using the columnStretching attribute),
you must set the width to percentages.

■ ColumnStretching: If the widths of the columns do not together fill the whole
table, you can set this attribute to determine whether or not to stretch columns
to fill up the space, and if so, which columns should stretch.

You can set column stretching to one of the following values:

Tip: If you want to use a component other than those listed, select
any component in the Property Inspector, and then manually change
it:

1. In the Structure window, right-click the component created by the dialog.

2. Choose Convert from the context menu.

3. Select the desired component from the list. You can then use the Property
Inspector to configure the new component.

Tip: If you want more than one component to be displayed in a
column, add the other component manually and then wrap them both
in a panelGroupLayout component. To do so:

1. In the Structure window, right-click the first component and choose
Insert before or Insert after. Select the component to insert.

2. By default the components will be displayed vertically. To have multiple
components displayed next to each other in one column, press the shift
key and select both components in the Structure window. Right-click the
selection and choose Surround With.

3. Select panelGroupLayout.

Tip: If the table is a child to a component that stretches its children,
then this width setting will be overridden and the table will
automatically stretch to fit its container. For more information about
how components stretch, see Section 8.2.1, "Geometry Management
and Component Stretching."

Note: If the table is placed inside a component that can stretch its
children, only the table will stretch automatically. You must manually
configure column stretching if you want the columns to stretch to fill
the table.

Note: Columns configured to be row headers or configured to be
frozen will not be stretched because doing so could easily leave the
user unable to access the scrollable body of the table.

Performance Tip: Column stretching is turned off by default.
Turning on this feature may have a performance impact on the client
rendering time for complex tables.

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-23

– blank: If you want to have an empty blank column automatically inserted
and have it stretch (so the row background colors will span the entire
width of the table).

– A specifically named column: Any column currently in the table can be
selected to be the column to stretch.

– last: If you want the last column to stretch to fill up any unused space
inside of the window.

– none: The default option where nothing will be stretched. Use this for
optimal performance.

– multiple: All columns that have a percentage value set for their width
attribute will be stretched to that percent, once other columns have been
rendered to their (non-stretched) width. The percentage values will be
weighted with the total. For example, if you set the width attribute on
three columns to 50%, each column will get 1/3 of the remaining space
after all other columns have been rendered.

■ HorizontalGridVisible: Specify whether or not the horizontal grid lines are to
be drawn.

■ VerticalGridVisible: Specify whether or not the vertical grid lines are to be
drawn.

■ RowBandingInterval: Specify how many consecutive rows form a row group
for the purposes of color banding. By default, this is set to 0, which displays all
rows with the same background color. Set this to 1 if you want to alternate
colors.

■ ColumnBandingInterval: Specify the interval between which the column
banding occurs. This value controls the display of the column banding in the
table. For example, columnBandingInterval=1 would display alternately
banded columns in the table.

■ FilterVisible: You can add a filter to the table so that it displays only those
rows that match the entered filter criteria. If you configure the table to allow
filtering, you can set the filter to be case-insensitive or case-sensitive. For more
information, see Section 10.4, "Enabling Filtering in Tables."

■ ScrollPolicy: By default, on desktop devices, tables render a scroll bar that
allows the user to scroll through all rows. On tablet devices, instead of a scroll
bar, the table is paginated, and displays a footer that allows the user to jump to
specific pages of rows. Set the value to auto to keep this default behavior. Set
the value to scroll to have the table always render a scroll bar. Set the value
to page to have the table always display the rows as sets of pages, with a
navigation to those pages in the footer.

Tip: While the user can change the values of the column width at
runtime, those values will not be retained once the user leaves the
page unless you configure your application to use change persistence.
For information about enabling and using change persistence, see
Chapter 33, "Allowing User Customization on JSF Pages."

Displaying Data in Tables

10-24 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Text attributes: You can define text strings that will determine the text
displayed when no rows can be displayed, as well as a table summary and
description for accessibility purposes.

6. Expand the Behavior section. You use this section to configure the behavior of the
table by setting the following table-specific attributes:

■ DisableColumnReordering: By default, columns can be reordered at runtime
using a menu option contained by default in the panelCollection component.
You can change this so that users will not be able to change the order of
columns. (The panelCollection component provides default menus and
toolbar buttons for tables, trees, and tree tables. For more information, see
Section 10.7, "Displaying Table Menus, Toolbars, and Status Bars".)

■ FetchSize: Set the size of the block that should be returned with each data
fetch. The default is 25.

■ ContentDelivery: Specify when the data should be delivered. When the
contentDelivery attribute is set to immediate, data is fetched at the same time
the component is rendered. If the contentDelivery attribute is set to lazy,
data will be fetched and delivered to the client during a subsequent request. If
the attribute is set to whenAvailable (the default), the renderer checks if the
data is available. If it is, the content is delivered immediately. If it is not, then
lazy delivery is used. For more information, see Section 10.1.1, "Content
Delivery."

■ AutoHeightRows: Specify the number of rows to initially display in the table.
When the returned number of rows exceeds this value, a scrollbar is
displayed. If you want your table to size to be the same as the fetchSize, set it
to 0. If you want the table to stretch to fill its parent container that is
configured to stretch children, set it to -1 (for more information about

Note: In order for a table to display as paginated, you must set the
scrollPolicy attribute to page, the autoHeightRows attribute to 0, and
the table must be placed in a flowing container (that is, a component
that does not stretch its children). If these conditions are not met, the
table will display a scroll bar. For more information about flowing
container components, see Section 8.2.4, "Tips for Using
Geometry-Managed Components."

Note: While the user can change the order of columns, those values
will not be retained once the user leaves the page unless you configure
your application to allow user customization. For information, see
Chapter 33, "Allowing User Customization on JSF Pages."

Tip: You should determine the value of the fetchSize attribute by
taking the height of the table and dividing it by the height of each row
to determine how many rows will be needed to fill the table. If the
fetchSize attribute is set too low, it will require multiple trips to the
server to fill the table. If it is set too high, the server will need to fetch
more rows from the data source than needed, thereby increasing time
and memory usage. On the client side, it will take longer to process
those rows and attach them to the component. For more information,
see Section 10.1.1, "Content Delivery."

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-25

stretching the table, see Section 10.1.6, "Geometry Management for Table, Tree,
and Tree Table Components"). Otherwise set it to a specific number that is
lower than the current setting for fetchSize.

■ DisplayRow: Specify the row to be displayed in the table during the initial
display. The possible values are first to display the first row at the top of the
table, last to display the last row at the bottom of the table (users will need to
scroll up to view preceding rows) and selected to display the first selected
row in the table.

■ DisplayRowKey: Specify the row key to display in the table during initial
display. This attribute should be set programmatically rather than
declaratively because the value may not be strings. Specifying this attribute
will override the displayRow attribute.

Note: Note the following about setting the autoHeightRows attribute:

■ Specifying height on the inlineStyle attribute will have no effect
and will be overridden by the value of AutoHeightRows.

■ Specifying a min-height or max-height on the inlineStyle
attribute is not recommended and is incompatible with the
autoHeightRows attribute.

■ When the component is placed in a layout-managing container,
such as panelSplitter, it will be sized by the container (no
auto-sizing will occur).

Note: The default value for the autoHeightRows attribute is handled
by the DEFAULT_DIMENSIONS web.xml parameter. If you always want
table components to be stretched when the parent can stretch, and to
be the size of the fetchSize attribute when it cannot, set the
DEFAULT_DIMENSIONS parameter to auto, instead of setting the
autoHeightRows attribute.

When you set the DEFAULT_DIMENSIONS parameter to auto and
place the table in a parent that does not stretch its children, and there
is no override value for the autoHeightRows attribute, then the table
will take its width from the AFStretchWidth style class, which by
default, will stretch the width of the table to accommodate it’s child
column components.

Set the autoHeightRows attribute when you want to override the
global setting.

By default, DEFAULT_DIMENSIONS is set so that the value of
autoHeightRows is -1 (the table will not stretch). For more
information, see Section A.2.3.25, "Geometry Management for Layout
and Table Components."

Note: The total number of rows from the table model must be known
in order for this attribute to work successfully.

Displaying Data in Tables

10-26 Web User Interface Developer's Guide for Oracle Application Development Framework

■ EditingMode: Specify whether for any editable components, you want all the
rows to be editable (editAll), or you want the user to click a row to make it
editable (clickToEdit). For more information, see Section 10.1.3, "Editing Data
in Tables, Trees, and Tree Tables."

■ ContextMenuSelect: Specify whether or not the row is selected when you
right-click to open a context menu. When set to true, the row is selected. For
more information about context menus, see Chapter 13, "Using Popup
Dialogs, Menus, and Windows."

■ FilterModel: Use in conjunction with filterVisible. For more information,
see Section 10.4, "Enabling Filtering in Tables."

■ Various listeners: Bind listeners to methods that will execute when the table
invokes the corresponding event (the columnSelectionListener is located in
the Other section). For more information, see Chapter 5, "Handling Events."

7. Expand the Other section, and set the following:

■ ActiveRowKey: If you choose clickToEdit, then only the active row can be
edited. This row is determined by the activeRowKey attribute. By default,
when the table is first rendered, the active row is the first visible row. When a
user clicks another row, then that row becomes the active row. You can change
this behavior by setting a different value for the activeRowKey attribute.

■ ColumnResizing: Specify whether or not you want the end user to be able to
resize a column’s width at runtime. When set to disabled, the widths of the
columns will be set once the page is rendered, and the user will not be able to
change those widths.

■ FreezeDirection: If you want columns to be able to be frozen, specify whether
they should be frozen from the start of the table (the left side in a LTR locale)
or the end of the table (the right side in a LTR locale). You must configure the
column to start to the freeze using that column’s frozen attribute.

For example, say you want the first three columns to be frozen. On the table,
you would set freezeDirection to start, and on the third column, you
would set frozen to true.

Note: The total number of rows must be known from the table model
in order for this attribute to work successfully.

Tip: If you choose clickToEdit, then only the active row can be
edited. This row is determined by the activeRowKey attribute. By
default, when the table is first rendered, the active row is the first
visible row. When a user clicks another row, then that row becomes
the active row. You can change this behavior by setting a different
value for the activeRowKey attribute, located in the Other section.

Tip: While the user can change the values of the column width at
runtime, those width values will not be retained once the user leaves
the page unless you configure your application to use change
persistence. For information about enabling and using change
persistence, see Chapter 33, "Allowing User Customization on JSF
Pages."

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-27

If you want the last four columns to be frozen, you would set
freezeDirection to end, and on the fourth from last column, you would set
frozen to true

■ SelectionEventDelay: Set to true if you expect users to navigate through the
table using the up and down arrow keys.

Users can navigate through the table using a mouse and the scrollbar, or using
the up and down arrow keys. By default, a selection event is immediately fired
when the user clicks a row. If the user is navigating through the rows using the
arrow keys, this means that a selection event will be fired for each row, as the
user navigates.

If you expect users to navigate through the table using the keys, you can set
the delaySelectionEvent attribute to true, so that there is a 300 millisecond
delay before the selection event is fired. If the user navigates to another row
within the 300 milliseconds, the selection event is canceled.

8. In the Structure window, select a column. In the Property Inspector, expand the
Common section, and set the following column-specific attributes:

■ HeaderText: Specify text to be displayed in the header of the column. This is a
convenience that generates output equivalent to adding a header facet
containing an outputText component. If you want to use a component other
than outputText, you should use the column’s header facet instead (for more
information, see Step 14). When the header facet is added, any value for the
headerText attribute will not be rendered in a column header.

■ Align: Specify the alignment for this column. start, end, and center are used
for left-justified, right-justified, and center-justified respectively in left-to-right
display. The values left or right can be used when left-justified or
right-justified cells are needed, irrespective of the left-to-right or right-to-left
display. The default value is null, which implies that it is skin-dependent and
may vary for the row header column versus the data in the column. For more
information about skins, see Chapter 20, "Customizing the Appearance Using
Styles and Skins."

■ Sortable: Specify whether or not the column can be sorted. A column that can
be sorted has a header that when clicked, sorts the table by that column's
property. Note that in order for a column to be sortable, the sortable attribute
must be set to true and the underlying model must support sorting by this
column's property. For more information, see Section 10.2.7, "What You May
Need to Know About Programmatically Enabling Sorting for Table Columns."

■ SortStrength: Specify the level of difference to be considered significant when
sorting. Choose from one of the following:

– Primary: The sorting considers only the letter itself. Case and any accents
are ignored: abc, ÁBC, ábc, and ABC will be sorted as abc, ÁBC, ábc, ABC
(the order in which they appear). Use this for case-insensitive sorting.

– Secondary: The sorting considers the letter and then any accent. Case is
ignored: abc, ÁBC, ábc, and ABC will be sorted as abc, ABC, ÁBC, ábc. In

Note: When column selection is enabled, clicking on a column
header selects the column instead of sorting the column. In this case,
columns can be sorted by clicking the ascending/descending sort
indicator.

Displaying Data in Tables

10-28 Web User Interface Developer's Guide for Oracle Application Development Framework

locales that do not have accents, this will result in a case-insensitive
search.

– Tertiary: The sorting will consider the letter, then the accent, and then the
case: abc, ÁBC, ábc, and ABC will be sorted as abc, ABC, ábc, ÁBC. In locales
that do not have accents, this will result in a case-sensitive search.

– Identical: The letters, accents, cases, and any other differences (such as
words with punctuation) will be considered: abc, ab-c, ÁBC, ábc, and ABC
will be sorted as abc, ABC, ábc, ÁBC, ab-c. This is the default.

■ Filterable: Specify whether or not the column can be filtered. A column that
can be filtered has a filter field on the top of the column header. Note that in
order for a column to be filterable, this attribute must be set to true and the
filterModel attribute must be set on the table. Only leaf columns can be
filtered and the filter component is displayed only if the column header is
present. This column's sortProperty attribute must be used as a key for the
filterProperty attribute in the filterModel class.

9. Expand the Appearance section. Use this section to set the appearance of the
column, using the following column-specific attributes:

■ DisplayIndex: Specify the display order index of the column. Columns can be
rearranged and they are displayed in the table based on the displayIndex
attribute. Columns without a displayIndex attribute value are displayed at
the end, in the order in which they appear in the data source. The
displayIndex attribute is honored only for top-level columns, because it is not
possible to rearrange a child column outside of the parent column.

■ Width: Specify the width of the column.

■ MinimumWidth: Specify the minimum number of pixels for the column
width. When a user attempts to resize the column, this minimum width will
be enforced. Also, when a column is flexible, it will never be stretched to be a
size smaller than this minimum width. If a pixel width is defined and if the
minimum width is larger, the minimum width will become the smaller of the
two values. By default, the minimum width is 10 pixels.

■ ShowRequired: Specify whether or not an asterisk should be displayed in the
column header if data is required for the corresponding attribute.

■ HeaderNoWrap and NoWrap: Specify whether or not you want content to
wrap in the header and in the column.

■ RowHeader: Set to true if you want this column to be a row header for the
table.

10. Expand the Behavior section. Use this section to configure the behavior of the
columns, using the following column-specific attributes:

Note: For a column with filtering turned on (filterable=true), you
can specify the input component to be used as the filter criteria input
field. To do so, add a filter facet to the column and add the input
component. For more information, see Section 10.4, "Enabling
Filtering in Tables."

Performance Tip: Use of row headers increases the complexity of
tables and can have a negative performance impact.

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-29

■ SortProperty: Specify the property that is to be displayed by this column. This
is the property that the framework might use to sort the column’s data.

■ Frozen: Specify whether the column is frozen; that is they can’t be scrolled off
the page. In the table, columns up to the frozen column are locked with the
header, and not scrolled with the rest of the columns. The frozen attribute is
honored only on the top-level column, because it is not possible to freeze a
child column by itself without its parent being frozen.

■ Selected: When set to true, the column will be selected on initial rendering.

11. Expand the Other section and set ColSpan if you want this column to span over
subsequent columns. You can set it to the number of columns you want it to span,
or you can set it to ALL to span to the end of the table. If you don’t want the whole
column to span, you can use an EL expression that resolves to a cell or cells.

Example 10–2 shows how you might set colSpan in a tree table component where
you want only the parent node to span across all columns.

Example 10–2 Set colSpan to Span Parent Node to End of Table

<af:column id="c1" sortable="true" sortProperty="Dname"
 colSpan="#{testBean.container ? 'ALL' : '1'}"
 headerText="DepartmentName">
 <af:outputText value="#{node.Dname}" id="ot2"/>
</af:column>

Example 10–3 shows the corresponding managed bean code.

Example 10–3 Managed Bean Code to Span Columns

public class TestBean
{
 public boolean isContainer()
 {
 return _treeTable.isContainer();
 }
}

12. To add a column to an existing table, in the Structure window, right-click the table
and from the context menu choose Insert Inside Table > Column.

13. To add facets to the table, right-click the table and from the context menu, choose
Facets - Table and choose the type of facet you want to add. You can then add a
component directly to the facet.

14. To add facets to a column, right-click the column and from the context menu,
choose Facets - Column and choose the type of facet you want to add. You can
then add a component directly to the facet.

Performance Tip: Use of frozen columns increases the complexity of
tables and can have a negative performance impact.

Tip: Facets can have only one direct child. If you want the facet to
display more than one component, first insert a group component
(such as panelGroupLayout) and then insert the multiple components
as children to the group component.

Displaying Data in Tables

10-30 Web User Interface Developer's Guide for Oracle Application Development Framework

15. Add components as children to the columns to display your data.

The component’s value should be bound to the variable value set on the table’s
var attribute and the attribute to be displayed. For example, the table in the File
Explorer application uses file as the value for the var attribute, and the first
column displays the name of the file for each row. Therefore, the value of the
output component used to display the directory name is #{file.name}.

10.2.5 What Happens When You Add a Table to a Page
When you use JDeveloper to add a table onto a page, JDeveloper creates a table with a
column for each attribute. If you bind the table to a model, the columns will reflect the
attributes in the model. If you are not yet binding to model, JDeveloper will create the
columns using the default values. You can change the default values (add/delete
columns, change column headings, and so on) during in the table creation dialog or
later using the Property Inspector.

Example 10–4 shows abbreviated page code for the table in the File Explorer
application.

Example 10–4 ADF Faces Table in the File Explorer Application

<af:table id="folderTable" var="file"
 value="#{explorer.contentViewManager.
 tableContentView.contentModel}"
 binding="#{explorer.contentViewManager.
 tableContentView.contentTable}"
 emptyText="#{explorerBundle['global.no_row']}"
 rowselection="multiple"
 contextMenuId=":context1" contentDelivery="immediate"
 columnStretching="last"
 selectionListener="#{explorer.contentViewManager.
 tableContentView.tableFileItem}"
 summary="table data">
 <af:column width="180" sortable="true" sortStrength="identical"
 sortProperty="name"
 headerText="" align="start">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['contents.name']}"/>
 </f:facet>
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 inlineStyle="margin-right:3px; vertical-align:middle;"

Tip: Facets can have only one direct child. If you want the facet to
display more than one component, first insert a group component
(such as panelGroupLayout) and then insert the multiple components
as children to the group component.

Tip: If an input component is the direct child of a column, be sure its
width is set to a width that is appropriate for the width of the column.
If the width is set too large for its parent column, the browser may
extend its text input cursor too wide and cover adjacent columns. For
example, if an inputText component has its size set to 80 pixels and
its parent column size is set to 20 pixels, the table may have an input
cursor that covers the clickable areas of it neighbor columns.

To allow the input component to be automatically sized when it is not
the direct child of a column, set contentStyle="width:auto".

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-31

 shortDesc="file icon"/>
 <af:outputText value="#{file.name}" noWrap="true"/>
 </af:panelGroupLayout>
 </af:column>
 <af:column width="70" sortable="true" sortStrength="identical"
 sortProperty="property.size">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['contents.size']}"/>
 </f:facet>
 <af:outputText value="#{file.property.size}" noWrap="true"/>
 </af:column>
...
 <af:column width="100">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['global.properties']}"/>
 </f:facet>
 <af:commandLink text="#{explorerBundle['global.properties']}"
 partialSubmit="true"
 action="#{explorer.launchProperties}"
 returnListener="#{explorer.returnFromProperties}"
 windowWidth="300" windowHeight="300"
 useWindow="true"></af:commandLink>
 </af:column>
</af:table>

10.2.6 What Happens at Runtime: Data Delivery
When a page is requested that contains a table, and the content delivery is set to lazy,
the page initially goes through the standard lifecycle. However, instead of fetching the
data during that request, a special separate PPR request is run. Because the page has
just rendered, only the Render Response phase executes, and the corresponding data is
fetched and displayed. If the user’s actions cause a subsequent data fetch (for example
scrolling in a table), another PPR request is executed. Figure 10–19 shows a page
containing a table during the second PPR request.

Figure 10–19 Table Fetches Data in a Second PPR Request

When the user clicks a sortable column header, the table component generates a
SortEvent event. This event has a getSortCriteria property, which returns the
criteria by which the table must be sorted, along with the sort strength. The table
responds to this event by calling the setSortCriteria() method on the underlying
CollectionModel instance, and calls any registered SortListener instances.

Displaying Data in Tables

10-32 Web User Interface Developer's Guide for Oracle Application Development Framework

10.2.7 What You May Need to Know About Programmatically Enabling Sorting for Table
Columns

Sorting can be enabled for a table column only if the underlying model supports
sorting. If the model is a CollectionModel instance, it must implement the following
methods:

■ public boolean isSortable(String propertyName)

■ public List getSortCriteria()

■ public void setSortCriteria(List criteria)

The criteria in the second and third methods is an instance of
org.apache.myfaces.trinidad.model.SortCriterion, which supports sort strength.

For more information, see the MyFaces Trinidad website at
http://myfaces.apache.org/trinidad/index.html.

If the model is not a CollectionModel instance, the table component wraps that model
into an org.apache.myfaces.trinidad.model.SortableModel instance.
SortableModel is a concrete class that extends CollectionModel and implements all
the sorting functionalities.

10.2.8 What You May Need to Know About Performing an Action on Selected Rows in
Tables

A collection-based component can allow users to select one or more rows and perform
some actions on those rows (the carousel component does not support multiple
selection).

When the selection state of a component changes, the component triggers selection
events. A selectionEvent event reports which rows were just deselected and which
rows were just selected.

To listen for selection events on a component, you can register a listener on the
component either using the selectionListener attribute or by adding a listener to the
component using the addselectionListener() method. The listener can then access
the selected rows and perform some actions on them.

The current selection, that is the selected row or rows, are the RowKeySet object, which
you obtain by calling the getSelectedRowKeys() method for the component. To
change a selection programmatically, you can do either of the following:

■ Add rowKey objects to, or remove rowKey objects from, the RowKeySet object.

■ Make a particular row current by calling the setRowIndex() or the setRowKey()
method on the component. You can then either add that row to the selection, or
remove it from the selection, by calling the add() or remove() method on the
RowKeySet object.

Example 10–5 shows a portion of a table in which a user can select some rows then
click the Delete button to delete those rows. Note that the actions listener is bound to
the performDelete method on the mybean managed bean.

Example 10–5 Selecting Rows

<af:table binding="#{mybean.table}" rowselection="multiple" ...>

Note: Automatic support provides sorting for only one column.
Multi-column sorting is not supported.

http://myfaces.apache.org/trinidad/index.html
http://myfaces.apache.org/trinidad/index.html

Displaying Data in Tables

Using Tables, Trees, and Other Collection-Based Components 10-33

 ...
</af:table>
<af:commandButton text="Delete" actionListener="#{mybean.performDelete}"/>

Example 10–6 shows an actions method, performDelete, which iterates through all the
selected rows and calls the markForDeletion method on each one.

Example 10–6 Using the rowKey Object

public void performDelete(ActionEvent action)
{
 UIXTable table = getTable();
 Iterator selection = table.getSelectedRowKeys().iterator();
 Object oldKey = table.getRowKey();
 while(selection.hasNext())
 {
 Object rowKey = selection.next();
 table.setRowKey(rowKey);
 MyRowImpl row = (MyRowImpl) table.getRowData();
 //custom method exposed on an implementation of Row interface.
 row.markForDeletion();
 }
 // restore the old key:
 table.setRowKey(oldKey);
}

// Binding methods for access to the table.
public void setTable(UIXTable table) { _table = table; }
public UIXTable getTable() { return _table; }
private UIXTable _table;

10.2.9 What You May Need to Know About Dynamically Determining Values for
Selection Components in Tables

There may be a case when you want to use a selectOne component in a table, but you
need each row to display different choices in a component. Therefore, you need to
dynamically determine the list of items at runtime.

While you may think you should use a forEach component to stamp out the
individual items, this will not work because forEach does not work with the
CollectionModel instance. It also cannot be bound to EL expressions that use
component-managed EL variables, as those used in the table. The forEach component
performs its functions in the JSF tag execution step while the table performs in the
following component encoding step. Therefore, the forEach component will execute
before the table is ready and will not perform its iteration function.

 In the case of a selectOne component, the direct child must be the items component.
While you could bind the items component directly to the row variable (for example,
<f:items value="#{row.Items}"/>, doing so would not allow any changes to the
underlying model.

Instead, you should create a managed bean that creates a list of items, as shown in
Example 10–7.

Example 10–7 Managed Bean Returns a List of Items

public List<SelectItem> getItems()
{
 // Grab the list of items

Adding Hidden Capabilities to a Table

10-34 Web User Interface Developer's Guide for Oracle Application Development Framework

 FacesContext context = FacesContext.getCurrentInstance();
 Object rowItemObj = context.getApplication().evaluateExpressionGet(
 context, "#{row.items}", Object.class);
 if (rowItemObj == null)
 return null;
 // Convert the model objects into items
 List<SomeModelObject> list = (List<SomeModelObject>) rowItemObj;
 List<SelectItem> items = new ArrayList<SelectItem>(list.size());
 for (SomeModelObject entry : list)
 {
 items.add(new SelectItem(entry.getValue(), entry.getLabel());public
 }
 // Return the items
 return items;
}

You can then access the list from the one component on the page, as shown in
Example 10–8.

Example 10–8 Accessing the Items from a JSF Page

<af:table var="row">
 <af:column>
 <af:selectOneChoice value="#{row.myValue}">
 <f:Items value="#{page_backing.Items}"/>
 </af:selectOneChoice>
 </af:column>
</af:table>

10.2.10 What You May Need to Know About Using the Iterator Tag
When you do not want to use a table, but still need the same stamping capabilities,
you can use the iterator tag. For example, say you want to display a list of periodic
table elements, and for each element, you want to display the name, atomic number,
symbol, and group. You can use the iterator tag as shown in Example 10–9.

Example 10–9 Using the Iterator Tag

<af:iterator var="row" first="3" rows="3" varStatus="stat"
 value="#{periodicTable.tableData}" >
 <af:outputText value="#{stat.count}.Index:#{stat.index} of
 #{stat.model.rowCount}"/>
 <af:inputText label="Element Name" value="#{row.name}"/>
 <af:inputText label="Atomic Number" value="#{row.number}"/>
 <af:inputText label="Symbol" value="#{row.symbol}"/>
 <af:inputText label="Group" value="#{row.group}"/>
</af:iterator>

Each child is stamped as many times as necessary. Iteration starts at the index specified
by the first attribute for as many indexes specified by the row attribute. If the row
attribute is set to 0, then the iteration continues until there are no more elements in the
underlying data.

10.3 Adding Hidden Capabilities to a Table
You can use the detailStamp facet in a table to include data that can be displayed or
hidden. When you add a component to this facet, the table displays an additional
column with a toggle icon. When the user clicks the icon, the component added to the

Adding Hidden Capabilities to a Table

Using Tables, Trees, and Other Collection-Based Components 10-35

facet is shown. When the user clicks on the toggle icon again, the component is
hidden. Figure 10–20 shows the additional column that is displayed when content is
added to the detailStamp facet.

Figure 10–20 Table with Unexpanded DetailStamp Facet

Figure 10–21 shows the same table, but with the detailStamp facet expanded for the
first row.

Figure 10–21 Expanded detailStamp Facet

10.3.1 How to Use the detailStamp Facet
To use the detailStamp facet, you insert a component that is bound to the data to be
displayed or hidden into the facet.

To use the detailStamp facet:
1. In the Component Palette, drag the components you want to appear in the facet to

the detailStamp facet folder. Figure 10–22 shows the detailStamp facet folder in
the Structure window.

Note: When a table that uses the detailStamp facet is rendered in
Screen Reader mode, the contents of the facet appear in a popup
window. For more information about accessibility, see Chapter 22,
"Developing Accessible ADF Faces Pages."

Note: If you set the table to allow columns to freeze, the freeze will
not work when you display the detailStamp facet. That is, a user
cannot freeze a column while the details are being displayed.

Adding Hidden Capabilities to a Table

10-36 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–22 detailStamp Facet in the Structure Window

2. If the attribute to be displayed is specific to a current record, replace the JSF code
(which simply binds the component to the attribute), so that it uses the table’s
variable to display the data for the current record.

Example 10–10 shows abbreviated code used to display the detailStamp facet
shown in Figure 10–21, which shows details about the selected row.

Example 10–10 Code for detailStamp Facet

<af:table rowSelection="multiple" var="test1"
 value="#{tableTestData}"
 <f:facet name="detailStamp">
 <af:panelFormLayout rows="4" labelWidth="33%" fieldWidth="67%"
 inlineStyle="width:400px">
 <af:inputText label="Name" value="#{test1.name}"/>
 <af:group>
 <af:inputText label="Size" value="#{test1.size}"/>
 <af:inputText label="Date Modified" value="#{test1.inputDate}"/>
 <af:inputText label="Created by"/>
 </af:group>
 </af:panelFormLayout>
 </f:facet>
</af:table>

10.3.2 What Happens at Runtime: Disclosing Row Data
When the user hides or shows the details of a row, the table generates a
rowDisclosureEvent event. The event tells the table to toggle the details (that is, either
expand or collapse).

The rowDisclosureEvent event has an associated listener. You can bind the
rowDisclosureListener attribute on the table to a method on a managed bean. This
method will then be invoked in response to the rowDisclosureEvent event to execute
any needed post-processing.

Tip: If the facet folder does not appear in the Structure window,
right-click the table and choose Facets - Table > Detail Stamp.

Note: If your application uses the Fusion technology stack, then you
can drag attributes from a data control and drop them into the
detailStamp facet. You don’t need to modify the code.

Enabling Filtering in Tables

Using Tables, Trees, and Other Collection-Based Components 10-37

10.4 Enabling Filtering in Tables
You can add a filter to a table that can be used so that the table displays only rows
whose values match the filter. When enabled and set to visible, a search criteria input
field displays above each searchable column.

For example, the table in Figure 10–23 has been filtered to display only rows in which
the Location value is 1700.

Figure 10–23 Filtered Table

Filtered table searches are based on Query-by-Example and use the QBE text or date
input field formats. The input validators are turned off to allow for entering characters
for operators such as > and < to modify the search criteria. For example, you can enter
>1500 as the search criteria for a number column. Wildcard characters may also be
supported. Searches can be either case-sensitive or case-insensitive. If a column does
not support QBE, the search criteria input field will not render for that column.

The filtering feature uses a model for filtering data into the table. The table’s
filterModel attribute object must be bound to an instance of the
FilterableQueryDescriptor class.

In Example 10–11, the table filterVisible attribute is set to true to enable the filter
input fields, and the sortProperty attribute is set on the column to identify the
column in the filterModel instance. Each column element has its filterable attribute
set to true.

Example 10–11 Table Component with Filtering Enabled

<af:table value="#{myBean.products}" var="row"
 ...
 filterVisible="true"
 ...
 rowselection="single">
 ...
 <af:column sortProperty="ProductID" filterable="true" sortable="true"
 <af:outputText value="#{row.ProductID}">
 ...
 </af:column>
 <af:column sortProperty="Name" filterable="true" sortable="true"
 <af:outputText value="#{row.Name}"/>

Note: If your application uses the Fusion technology stack, then you
can use data controls to create tables and filtering will be created for
you. For more information see the "Creating ADF Databound Tables"
chapter of the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework

Enabling Filtering in Tables

10-38 Web User Interface Developer's Guide for Oracle Application Development Framework

 ...
 </af:column>
 <af:column sortProperty="warehouse" filterable="true" sortable="true"
 <af:outputText value="#{row.warehouse}"/>
 ...
 </af:column>
</af:table>

10.4.1 How to Add Filtering to a Table
To add filtering to a table, first create a class that can provide the filtering functionality.
You then bind the table to that class, and configure the table and columns to use
filtering. The table that will use filtering must either have a value for its headerText
attribute, or it must contain a component in the header facet of the column that is to be
filtered. This allows the filter component to be displayed. Additionally, the column
must be configured to be sortable, because the filterModel class uses the
sortProperty attribute.

To add filtering to a table:
1. Create a Java class that is a subclass of the FilterableQueryDescriptor class. For

more information about this class, see the ADF Faces Javadoc.

2. Create a table, as described in Section 10.2, "Displaying Data in Tables."

3. Select the table in the Structure window and set the following attributes in the
Property Inspector:

■ FilterVisible: Set to true to display the filter criteria input field above
searchable column.

■ FilterModel: Bind to an instance of the FilterableQueryDescriptor class
created in Step 1.

4. In the Structure window, select a column in the table and in the Property Inspector,
and set the following for each column in the table:

■ Filterable: Set to true.

■ FilterFeatures: Set to caseSensitive or caseInsensitive. If not specified, the
case sensitivity is determined by the model.

Tip: If you want to use a component other than an inputText
component for your filter (for example, an inputDate component),
then instead of setting filterVisible to true, you can add the
needed component to the filter facet. To do so:

1. In the Structure window, right-click the column to be filtered and choose
Insert inside af:column > JSF Core > Filter facet.

2. From the Component Palette, drag and drop a component into the facet.

3. Set the value of the component to the corresponding attribute within the
FilterableQueryDescriptor class created in Step 1. Note that the value
must take into account the variable used for the row, for example:

#{af:inputDate label="Select Date" id="name"
 value="row.filterCriteria.date"}

Displaying Data in Trees

Using Tables, Trees, and Other Collection-Based Components 10-39

10.5 Displaying Data in Trees
The ADF Faces tree component displays hierarchical data, such as organization charts
or hierarchical directory structures. In data of these types, there may be a series of
top-level nodes, and each element in the structure may expand to contain other
elements. For example, in an organization chart, any number of employees in the
hierarchy may have any number of direct reports. The tree component can be used to
show that hierarchy, where the direct reports appear as children to the node for the
employee.

The tree component supports multiple root elements. It displays the data in a form
that represents the structure, with each element indented to the appropriate level to
indicate its level in the hierarchy. Users can expand and collapse portions of the
hierarchy. Figure 10–24 shows a tree used to display directories in the File Explorer
application.

Figure 10–24 Tree Component in the File Explorer Application

The ADF Faces tree component uses a model to access the data in the underlying
hierarchy. The specific model class is oracle.adf.view.rich.model.TreeModel, which
extends CollectionModel, described in Section 10.2, "Displaying Data in Tables."

You must create your own tree model to support your tree. The tree model is a
collection of rows. It has an isContainer() method that returns true if the current row
contains child rows. To access the children of the current row, you call the
enterContainer() method. Calling this method results in the TreeModel instance
changing to become a collection of the child rows. To revert back up to the parent
collection, you call the exitContainer() method.

You may find the oracle.adf.view.rich.model.ChildPropertyTreeModel class
useful when constructing a TreeModel class, as shown in Example 10–12.

Example 10–12 Constructing a TreeModel

List<TreeNode> root = new ArrayList<TreeNode>();
for(int i = 0; i < firstLevelSize; i++)
{
 List<TreeNode> level1 = new ArrayList<TreeNode>();
 for(int j = 0; j < i; j++)
 {

Displaying Data in Trees

10-40 Web User Interface Developer's Guide for Oracle Application Development Framework

 List<TreeNode> level2 = new ArrayList<TreeNode>();
 for(int k=0; k<j; k++)
 {
 TreeNode z = new TreeNode(null, _nodeVal(i,j,k));
 level2.add(z);
 }
 TreeNode c = new TreeNode(level2, _nodeVal(i,j));
 level1.add(c);
 }
 TreeNode n = new TreeNode(level1, _nodeVal(i));
 root.add(n);
}
ChildPropertyTreeModel model = new ChildPropertyTreeModel(root, "children");
private String _nodeVal(Integer... args)
{
 StringBuilder s = new StringBuilder();
 for(Integer i : args)
 s.append(i);
 return s.toString();
}

You can manipulate the tree similar to the way you can manipulate a table. You can do
the following:

■ To make a node current, call the setRowIndex() method on the tree with the
appropriate index into the list. Alternatively, call the setRowKey() method with the
appropriate rowKey object.

■ To access a particular node, first make that node current, and then call the
getRowData() method on the tree.

■ To access rows for expanded or collapsed nodes, call getAddedSet and
getRemovedSet methods on the RowDisclosureEvent. For more information, see
Section 10.5.4, "What You May Need to Know About Programmatically Expanding
and Collapsing Nodes."

■ To manipulate the node’s child collection, call the enterContainer() method
before calling the setRowIndex() and setRowKey() methods. Then call the
exitContainer() method to return to the parent node.

■ To point to a rowKey for a node inside the tree (at any level) use the focusRowKey
attribute. The focusRowKey attribute is set when the user right-clicks on a node
and selects the Show as top context menu item (or the Show as top toolbar button
in the panelCollection component).

When the focusRowKey attribute is set, the tree renders the node pointed to by the
focusRowKey attribute as the root node in the Tree and displays a Hierarchical
Selector icon next to the root node. Clicking the Hierarchical Selector icon displays
a Hierarchical Selector dialog which shows the path to the focusRowKey object
from the root node of the tree. How this displays depends on the components
placed in the pathStamp facet.

Note: If your application uses the Fusion technology stack, then you
can use data controls to create trees and the model will be created for
you. For more information see the "Displaying Master-Detail Data"
chapter of the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework

Displaying Data in Trees

Using Tables, Trees, and Other Collection-Based Components 10-41

As with tables, trees use stamping to display content for the individual nodes. Trees
contain a nodeStamp facet, which is a holder for the component used to display the
data for each node. Each node is rendered (stamped) once, repeatedly for all nodes. As
each node is stamped, the data for the current node is copied into a property that can
be addressed using an EL expression. Specify the name to use for this property using
the var property on the tree. Once the tree has completed rendering, this property is
removed or reverted back to its previous value.

Because of this stamping behavior, only certain types of components are supported as
children inside an ADF Faces tree. All components that have no behavior are
supported, as are most components that implement the ValueHolder or ActionSource
interfaces.

In Example 10–13, the data for each element is referenced using the variable node,
which identifies the data to be displayed in the tree. The nodeStamp facet displays the
data for each element by getting further properties from the node variable:

Example 10–13 Displaying Data in a Tree

<af:tree var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node.firstname}"/>
 </f:facet>
</af:tree>

Trees also contain a pathStamp facet. This facet determines how the content of the
Hierarchical Selector dialog is rendered, just like the nodeStamp facet determines how
the content of the tree is rendered. The component inside the pathStamp facet can be a
combination of simple outputText, image, and outputFormatted tags and cannot not
be any input component (that is, any EditableValueHolder component) because no
user input is allowed in the Hierarchical Selector popup. If this facet is not provided,
then the Hierarchical Selector icon is not rendered.

For example, including an image and an outputText component in the pathStamp
facet causes the tree to render an image and an outputText component for each node
level in the Hierarchical Selector dialog. Use the same EL expression to access the
value. For example, if you want to show the first name for each node in the path in an
outputText component, the EL expression would be <af:outputText
value="#{node.firstname}"/>.

10.5.1 How to Display Data in Trees
To create a tree, you add a tree component to your page and configure the display and
behavior properties.

To add a tree to a page:
1. Create a Java class that extends the

org.apache.myfaces.trinidad.model.TreeModel class, as shown in
Example 10–12.

Tip: The pathStamp facet is also used to determine how default
toolbar buttons provided by the panelCollection component will
behave. If you want to use the buttons, add a component bound to a
node value. For more information about using the panelCollection
component, see Section 10.7, "Displaying Table Menus, Toolbars, and
Status Bars."

Displaying Data in Trees

10-42 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Component Palette, from the Common Components panel, drag and drop a
Tree to open the Insert Tree dialog. Configure the tree as needed. Click Help or
press F1 for help in using the dialog.

3. In the Property Inspector, expand the Data section and set the following attributes:

■ Value: Specify an EL expression for the object to which you want the tree to be
bound. This must be an instance of
org.apache.myfaces.trinidad.model.TreeModel as created in Step 1.

■ Var: Specify a variable name to represent each node.

■ VarStatus: Optionally enter a variable that can be used to determine the state
of the component. During the Render Response phase, the tree iterates over
the model rows and renders each node. For any given node, the varStatus
attribute provides the following information:

– model: A reference to the CollectionModel instance

– index: The current row index

– rowKey: The unique key for the current node

4. Expand the Appearance section and set the following attributes:

■ DisplayRow: Specify the node to display in the tree during the initial display.
The possible values are first to display the first node, last to display the last
node, and selected to display the first selected node in the tree. The default is
first.

■ DisplayRowKey: Specify the row key to display in the tree during the initial
display. This attribute should be set only programatically. Specifying this
attribute will override the displayRow attribute.

■ Summary: Optionally enter a summary of the data displayed by the tree.

5. Expand the Behavior section and set the following attributes:

■ InitiallyExpanded: Set to true if you want all nodes expanded when the
component first renders.

■ EditingMode: Specify whether for any editable components used to display
data in the tree, you want all the nodes to be editable (editAll), or you want
the user to click a node to make it editable (clickToEdit). For more
information, see Section 10.1.3, "Editing Data in Tables, Trees, and Tree Tables."

■ ContextMenuSelect: Determines whether or not the node is selected when
you right-click to open a context menu. When set to true, the node is selected.
For more information about context menus, see Chapter 13, "Using Popup
Dialogs, Menus, and Windows."

■ RowSelection: Set a value to make the nodes selectable. Valid values are: none,
single, or multiple. For information about how to then programatically
perform some action on the selected nodes, see Section 10.5.5, "What You May
Need to Know About Programmatically Selecting Nodes."

■ ContentDelivery: Specify when the data should be delivered. When the
contentDelivery attribute is set to immediate, data is fetched at the same time
the component is rendered. If the contentDelivery attribute is set to lazy,
data will be fetched and delivered to the client during a subsequent request. If
the attribute is set to whenAvailable (the default), the renderer checks if the
data is available. If it is, the content is delivered immediately. If it is not, then
lazy delivery is used. For more information, see Section 10.1.1, "Content
Delivery."

Displaying Data in Trees

Using Tables, Trees, and Other Collection-Based Components 10-43

■ FetchSize: Specify the number of rows in the data fetch block. For more
information, see Section 10.1.1, "Content Delivery."

■ SelectionListener: Optionally enter an EL expression for a listener that
handles selection events. For more information, see Section 10.5.5, "What You
May Need to Know About Programmatically Selecting Nodes."

■ FocusListener: Optionally enter an EL expression for a listener that handles
focus events.

■ RowDisclosureListener: Optionally enter an EL expression for a listener
method that handles node disclosure events.

6. Expand the Advanced section and set the following attributes:

■ FocusRowKey: Optionally enter the node that is to be the initially focused
node.

■ DisclosedRowKeys: Optionally enter an EL expression to a method on a
backing bean that handles node disclosure. For more information, see
Section 10.5.4, "What You May Need to Know About Programmatically
Expanding and Collapsing Nodes."

■ SelectedRowKeys: Optionally enter the keys for the nodes that should be
initially selected. For more information, see Section 10.5.5, "What You May
Need to Know About Programmatically Selecting Nodes."

7. If you want your tree to size its height automatically, expand the Other section and
set AutoHeightRows to the maximum number of nodes to display before a scroll
bar is displayed. The default value is -1 (no automatic sizing for any number of
number). You can set the value to 0 to have the value be the same as the fetchSize
value.

8. To add components to display data in the tree, drag the desired component from
the Component Palette to the nodeStamp facet. Figure 10–25 shows the
nodeStamp facet for the tree used to display directories in the File Explorer
application.

Note: Note the following about setting the autoHeightRows attribute:

■ Specifying height on the inlineStyle attribute will have no effect
and will be overridden by the value of AutoHeightRows.

■ Specifying a min-height or max-height on the inlineStyle
attribute is not recommended and is incompatible with the
autoHeightRows attribute.

■ When the component is placed in a layout-managing container,
such as panelSplitter, it will be sized by the container (no
auto-sizing will occur). For more information, see Section 10.1.6,
"Geometry Management for Table, Tree, and Tree Table
Components."

Displaying Data in Trees

10-44 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–25 nodeStamp Facet in the Structure Window

The component’s value should be bound to the variable value set on the tree’s var
attribute and the attribute to be displayed. For example, the tree in the File
Explorer application uses folder as the value for the var attribute, and displays
the name of the directory for each node. Therefore, the value of the output
component used to display the directory name is #{folder.name}.

10.5.2 What Happens When You Add a Tree to a Page
When you add a tree to a page, JDeveloper adds a nodeStamp facet to stamp out the
nodes of the tree. Example 10–14 shows the abbreviated code for the tree in the File
Explorer application that displays the directory structure.

Example 10–14 ADF Faces Tree Code in a JSF Page

<af:tree id="folderTree"
 var="folder"
 binding="#{explorer.navigatorManager.foldersNavigator
 .foldersTreeComponent}"
 value="#{explorer.navigatorManager.foldersNavigator.
 foldersTreeModel}"
 disclosedRowKeys="#{explorer.navigatorManager.foldersNavigator.
 foldersTreeDisclosedRowKeys}"
 rowSelection="single"
 contextMenuId=":context2"
 selectionListener="#{explorer.navigatorManager.foldersNavigator.
 showSelectedFolderContent}">
 <f:facet name="nodeStamp">
 <af:panelGroupLayout>
 <af:image id="folderNodeStampImg" source="#{folder.icon}"
 inlineStyle="vertical-align:middle; margin-right:3px;
 shortDesc="folder icon"/>
 <af:outputText id="folderNodeStampText" value="#{folder.name}"/>
 </af:panelGroupLayout>
 </f:facet>
</af:tree>

10.5.3 What Happens at Runtime: Tree Component Events
The tree is displayed in a format with nodes indented to indicate their levels in the
hierarchy. The user can click nodes to expand them to show children nodes. The user
can click expanded nodes to collapse them. When a user clicks one of these icons, the
component generates a RowDisclosureEvent event. You can register a custom
rowDisclosureListener method to handle any processing in response to the event.

Tip: Facets can accept only one child component. Therefore, if you
want to use more than one component per node, place the
components in a group component that can be the facet’s direct child,
as shown in Figure 10–25.

Displaying Data in Trees

Using Tables, Trees, and Other Collection-Based Components 10-45

For more information, see Section 10.5.4, "What You May Need to Know About
Programmatically Expanding and Collapsing Nodes."

When a user selects or deselects a node, the tree component invokes a selectionEvent
event. You can register custom selectionListener instances, which can do
post-processing on the tree component based on the selected nodes. For more
information, see Section 10.5.5, "What You May Need to Know About
Programmatically Selecting Nodes."

10.5.4 What You May Need to Know About Programmatically Expanding and Collapsing
Nodes

The RowDisclosureEvent event has two RowKeySet objects: the RemovedSet object for
all the collapsed nodes and the AddedSet object for all the expanded nodes. The
component expands the subtrees under all nodes in the added set and collapses the
subtrees under all nodes in the removed set.

Your custom rowDisclosureListener method can do post-processing, on the tree
component, as shown in Example 10–15.

Example 10–15 Tree Table Component with rowDisclosureListener

<af:treeTable id="folderTree" var="directory" value="#{fs.treeModel}"
 binding="#{editor.component}" rowselection="multiple"
 columnselection="multiple" focusRowKey="#{fs.defaultFocusRowKey}"
 selectionListener="#{fs.Table}"
 contextMenuId="treeTableMenu"
 rowDisclosureListener="#{fs.handleRowDisclosure}">

The backing bean method that handles row disclosure events is shown in
Example 10–16. The example illustrates expansion of a tree node. For the contraction
of a tree node, you would use getRemovedSet.

Example 10–16 Backing Bean Method for RowDisclosureEvent

public void handleRowDisclosure(RowDisclosureEvent rowDisclosureEvent)
 throws Exception {
 Object rowKey = null;
 Object rowData = null;
 RichTree tree = (RichTree) rowDisclosureEvent.getSource();
 RowKeySet rks = rowDisclosureEvent.getAddedSet();

 if (rks != null) {
 int setSize = rks.size();
 if (setSize > 1) {
 throw new Exception("Unexpected multiple row disclosure
 added row sets found.");
 }

 if (setSize == 0) {
 // nothing in getAddedSet indicates this is a node
 // contraction, not expansion. If interested only in handling
 // node expansion at this point, return.
 return;
 }

 rowKey = rks.iterator().next();
 tree.setRowKey(rowKey);

Displaying Data in Trees

10-46 Web User Interface Developer's Guide for Oracle Application Development Framework

 rowData = tree.getRowData();

 // Do whatever is necessary for accessing tree node from
 // rowData, by casting it to an appropriate data structure
 // for example, a Java map or Java bean, and so forth.
 }
}

Trees and tree tables use an instance of the oracle.adf.view.rich.model.RowKeySet
class to keep track of which nodes are expanded. This instance is stored as the
disclosedRowKeys attribute on the component. You can use this instance to control the
expand or collapse state of an node in the hierarchy programatically, as shown in
Example 10–17. Any node contained by the RowKeySet instance is expanded, and all
other nodes are collapsed. The addAll() method adds all elements to the set, and the
and removeAll() method removes all the nodes from the set.

Example 10–17 Tree Component with disclosedRowKeys Attribute

<af:tree var="node"
 inlineStyle="width:90%; height:300px"
 id="displayRowTable"
 varStatus="vs"
 rowselection="single"
 disclosedRowKeys="#{treeTableTestData.disclosedRowKeys}"
 value="#{treeTableTestData.treeModel}">

The backing bean method that handles the disclosed row keys is shown in
Example 10–18.

Example 10–18 Backing Bean Method for Handling Row Keys

public RowKeySet getDisclosedRowKeys()
{
 if (disclosedRowKeys == null)
 {
 // Create the PathSet that we will use to store the initial
 // expansion state for the tree
 RowKeySet treeState = new RowKeySetTreeImpl();
 // RowKeySet requires access to the TreeModel for currency.
 TreeModel model = getTreeModel();
 treeState.setCollectionModel(model);
 // Make the model point at the root node
 int oldIndex = model.getRowIndex();
 model.setRowKey(null);
 for(int i = 1; i<=19; ++i)
 {
 model.setRowIndex(i);
 treeState.setContained(true);
 }
 model.setRowIndex(oldIndex);
 disclosedRowKeys = treeState;
 }
 return disclosedRowKeys;
}

Displaying Data in Tree Tables

Using Tables, Trees, and Other Collection-Based Components 10-47

10.5.5 What You May Need to Know About Programmatically Selecting Nodes
The tree and tree table components allow nodes to be selected, either a single node
only, or multiple nodes. If the component allows multiple selections, users can select
multiple nodes using Control+click and Shift+click operations.

When a user selects or deselects a node, the tree component fires a selectionEvent
event. This event has two RowKeySet objects: the RemovedSet object for all the
deselected nodes and the AddedSet object for all the selected nodes.

Tree and tree table components keep track of which nodes are selected using an
instance of the class oracle.adf.view.rich.model.RowKeySet. This instance is stored
as the selectedRowKeys attribute on the component. You can use this instance to
control the selection state of a node in the hierarchy programatically. Any node
contained by the RowKeySet instance is deemed selected, and all other nodes are not
selected. The addAll() method adds all nodes to the set, and the and removeAll()
method removes all the nodes from the set. Tree and tree table node selection works in
the same way as table row selection. You can refer to sample code for table row
selection in Section 10.2.8, "What You May Need to Know About Performing an Action
on Selected Rows in Tables."

10.6 Displaying Data in Tree Tables
The ADF Faces tree table component displays hierarchical data in the form of a table.
The display is more elaborate than the display of a tree component, because the tree
table component can display columns of data for each tree node in the hierarchy. The
component includes mechanisms for focusing on subtrees within the main tree, as well
as expanding and collapsing nodes in the hierarchy. Figure 10–26 shows the tree table
used in the File Explorer application. Like the tree component, the tree table can
display the hierarchical relationship between the files in the collection. And like the
table component, it can also display attribute values for each file.

Figure 10–26 Tree Table in the File Explorer Application

The immediate children of a tree table component must be column components, in the
same way as for table components. Unlike the table, the tree table component has a
nodeStamp facet which holds the column that contains the primary identifier of an
node in the hierarchy. The treeTable component supports the same stamping
behavior as the Tree component (for details, see Section 10.5, "Displaying Data in
Trees").

For example, in the File Explorer application (as shown in Figure 10–26), the primary
identifier is the file name. This column is what is contained in the nodeStamp facet. The
other columns, such as Type and Size, display attribute values on the primary
identifier, and these columns are the direct children of the tree table component. This
tree table uses node as the value of the variable that will be used to stamp out the data
for each node in the nodeStamp facet column and each component in the child
columns. Example 10–19 shows abbreviated code for the tree table in the File Explorer
application.

Displaying Data in Tree Tables

10-48 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 10–19 Stamping Rows in a TreeTable

<af:treeTable id="folderTreeTable" var="file"
 value="#{explorer.contentViewManager.treeTableContentView.
 contentModel}"
 binding="#{explorer.contentViewManager.treeTableContentView.
 contentTreeTable}"
 emptyText="#{explorerBundle['global.no_row']}"
 columnStretching="last"
 rowSelection="single"
 selectionListener="#{explorer.contentViewManager.
 treeTableContentView.treeTableSelectFileItem}"
 summary="treeTable data">
 <f:facet name="nodeStamp">
 <af:column headerText="#{explorerBundle['contents.name']}"
 width="200" sortable="true" sortProperty="name">
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 shortDesc="#{file.name}"
 inlineStyle="margin-right:3px; vertical-align:middle;"/>
 <af:outputText id="nameStamp" value="#{file.name}"/>
 </af:panelGroupLayout>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 shortDesc="#{file.name}"
 inlineStyle="margin-right:3px; vertical-align:middle;"/>
 <af:outputText value="#{file.name}"/>
 </af:panelGroupLayout>
 </f:facet>
 <af:column headerText="#{explorerBundle['contents.type']}">
 <af:outputText id="typeStamp" value="#{file.type}"/>
 </af:column>
 <af:column headerText="#{explorerBundle['contents.size']}">
 <af:outputText id="sizeStamp" value="#{file.property.size}"/>
 </af:column>
 <af:column headerText="#{explorerBundle['contents.lastmodified']}"
 width="140">
 <af:outputText id="modifiedStamp"
 value="#{file.property.lastModified}"/>
 </af:column>
</af:treeTable>

The tree table component supports many of the same attributes as both tables and
trees. For more information about these attributes see Section 10.2, "Displaying Data in
Tables" and Section 10.5, "Displaying Data in Trees."

10.6.1 How to Display Data in a Tree Table
You use the Insert Tree Table wizard to create a tree table. Once the wizard is complete,
you can use the Property Inspector to configure additional attributes on the tree table.

To add a tree table to a page:
1. In the Component Palette, from the Common Components panel, drag and drop a

Tree Table onto the page to open the Insert Tree Table wizard. Configure the table
by completing the wizard. If you need help, press F1 or click Help.

2. Use the Property Inspector to configure any other attributes.

Displaying Table Menus, Toolbars, and Status Bars

Using Tables, Trees, and Other Collection-Based Components 10-49

10.7 Displaying Table Menus, Toolbars, and Status Bars
You can use the panelCollection component to add menus, toolbars, and status bars
to tables, trees, and tree tables. To use the panelCollection component, you add the
table, tree, or tree table component as a direct child of the panelCollection
component. The panelCollection component provides default menus and toolbar
buttons.

Figure 10–27 shows the panelCollection component with the tree table component in
the File Explorer application. The toolbar contains a menu that provides actions that
can be performed on the tree table (such as expanding and collapsing nodes), a button
that allows users to detach the tree table, and buttons that allow users to change the
rows displayed in the tree table. You can configure the toolbar to not display certain
toolbar items. For example, you can turn off the buttons that allow the user to detach
the tree or table. For more information about menus, toolbars, and toolbar buttons, see
Chapter 14, "Using Menus, Toolbars, and Toolboxes."

Figure 10–27 Panel Collection for Tree Table with Menus and Toolbar

Among other facets, the panelCollection component contains a menu facet to hold
menu components, a toolbar facet for toolbar components, a secondaryToolbar facet
for another set of toolbar components, and a statusbar facet for status items.

The default top-level menu and toolbar items vary depending on the component used
as the child of the panelCollection component:

■ Table and tree: Default top-level menu is View.

■ Table and tree table with selectable columns: Default top-level menu items are
View and Format.

■ Table and tree table: Default toolbar menu is Detach.

■ Table and tree table with selectable columns: Default top-level toolbar items are
Freeze, Detach, and Wrap

■ Tree and tree table (when the pathStamp facet is used): The toolbar buttons Go Up,
Go To Top, and Show as Top also appear.

Tip: The attributes of the tree table are the same as those on the table
and tree components. Refer to Section 10.2.4, "How to Display a Table
on a Page," and Section 10.5.1, "How to Display Data in Trees" for help
in configuring the attributes.

Displaying Table Menus, Toolbars, and Status Bars

10-50 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 10–20 shows how the panelCollection component contains menus and
toolbars.

Example 10–20 The panelCollection Component with Table, Menus, and Toolbars

<af:panelCollection
 binding="#{editor.component}">
 <f:facet name="viewMenu">
 <af:group>
 <af:commandMenuItem text="View Item 1..."/>
 <af:commandMenuItem text="View Item 2.."/>
 <af:commandMenuItem text="View Item 3..." disabled="true"/>
 <af:commandMenuItem text="View Item 4"/>
 </af:group>
 </f:facet>

 <f:facet name="menus">
 <af:menu text="Actions">
 <af:commandMenuItem text="Add..." />
 <af:commandMenuItem text="Create.." />
 <af:commandMenuItem text="Update..." disabled="true"/>
 <af:commandMenuItem text="Copy"/>
 <af:commandMenuItem text="Delete"/>
 <af:commandMenuItem text="Remove" accelerator="control A"/>
 <af:commandMenuItem text="Preferences"/>
 </af:menu>
 </f:facet>
 <f:facet name="toolbar">
 <af:toolbar>
 <af:commandToolbarButton shortDesc="Create" icon="/new_ena.png">
 </af:commandToolbarButton>
 <af:commandToolbarButton shortDesc="Update" icon="/update_ena.png">
 </af:commandToolbarButton>
 <af:commandToolbarButton shortDesc="Delete" icon="/delete_ena.png">
 </af:commandToolbarButton>
 </af:toolbar>
 </f:facet>
 <f:facet name="secondaryToolbar">
 </f:facet>
 <f:facet name="statusbar">
 <af:toolbar>
 <af:outputText id="statusText" ... value="Custom Statusbar Message"/>
 </af:toolbar>
 </f:facet>
 <af:table rowselection="multiple" columnselection="multiple"
 ...
 <af:column
 ...
 </af:column>

Displaying Table Menus, Toolbars, and Status Bars

Using Tables, Trees, and Other Collection-Based Components 10-51

10.7.1 How to Add a panelCollection with a Table, Tree, or Tree Table
You add a panelCollection component and then add the table, tree, or tree table
inside the panelCollection component. You can then add and modify the menus and
toolbars for it.

To create a panelCollection component with an aggregate display component:
1. In the Component Palette, from the Layout panel, drag and drop a Panel

Collection onto the page. Add the table, tree, or tree table as a child to that
component.

Alternatively, if the table, tree, or tree table already exists on the page, you can
right-click the component and choose Surround With. Then select Panel
Collection to wrap the component with the panelCollection component.

2. Optionally, customize the panelCollection toolbar by turning off specific toolbar
and menu items. To do so, select the panelCollection component in the Structure
window. In the Property Inspector, set the featuresOff attribute. Table 10–1 shows
the valid values and the corresponding effect on the toolbar.

Tip: You can make menus detachable in the panelCollection
component. For more information, see Section 14.2, "Using Menus in a
Menu Bar." Consider using detached menus when you expect users to
do any of the following:

■ Execute similar commands repeatedly on a page.

■ Execute similar commands on different rows of data in a large
table, tree table, or tree.

■ View data in long and wide tables or tree tables, and trees. Users
can choose which columns or branches to hide or display with a
single click.

■ Format data in long or wide tables, tree tables, or trees.

Table 10–1 Valid Values for the featuresOff Attribute

Value Will not display...

statusBar status bar

viewMenu View menu

formatMenu Format menu

columnsMenuItem Columns menu item in the View menu

columnsMenuItem:colId

For example:
columnsMenuItem:col1, col2

Columns with matching IDs in the Columns menu

For example, the value to the left would not display the
columns whose IDs are col1 and col2

freezeMenuItem Freeze menu item in the View menu

detachMenuItem Detach menu item in the View menu

sortMenuItem Sort menu item in the View menu

reorderColumnsMenuItem Reorder Columns menu item in the View menu

resizeColumnsMenuItem Resize Columns menu item in the Format menu

wrapMenuItem Wrap menu item in the Format menu

showAsTopMenuItem Show As Top menu item in the tree’s View menu

Displaying a Collection in a List

10-52 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Add your custom menus and toolbars to the component:

■ Menus: Add a menu component inside the menu facet.

■ Toolbars: Add a toolbar component inside the toolbar or secondaryToolbar
facet.

■ Status items: Add items inside the statusbar facet.

■ View menu: Add commandMenuItem components to the viewMenu facet. For
multiple items, use the group component as a container for the many
commandMenuItem components.

From the Component Palette, drag and drop the component into the facet. For
example, drop Menu into the menu facet, then drop Menu Items into the same
facet to build a menu list. For more instructions about menus and toolbars, see
Chapter 14, "Using Menus, Toolbars, and Toolboxes."

10.8 Displaying a Collection in a List
Instead of using a table with multiple columns, you can use the listView and listItem
components to display structured data in a simple table-like format that contains just
one column. Figure 10–28 shows a listView component that contains one listItem
component used to display an error icon, task information, and an action button, for
each row.

Figure 10–28 The listView Component with a listItem Component

As shown in Figure 10–29, instead of using columns to group the data to be displayed,
a mix of layout components and other components, held by one listItem component,
display the actual the data. In this example, the listItem component contains one

scrollToFirstMenuItem Scroll To First menu item in the tree’s View menu

scrollToLastMenuItem Scroll To Last menu item in the tree’s View menu

freezeToolbarItem Freeze toolbar item

detachToolbarItem Detach toolbar item

wrapToolbarItem Wrap toolbar item

showAsTopToolbarItem Show As Top toolbar item

wrap Wrap menu and toolbar items

freeze Freeze menu and toolbar items

detach Detach menu and toolbar items

Table 10–1 (Cont.) Valid Values for the featuresOff Attribute

Value Will not display...

Displaying a Collection in a List

Using Tables, Trees, and Other Collection-Based Components 10-53

large panelGroupLayout component set to display its children horizontally. The
children are three other panelGroupLayout components used to group their children as
columns might in a table. These panelGroupLayout components are also set to display
their children horizontally. The second of these layout components contains one
panelGroupLayout component set to display its child components (in this case three
outputText components) vertically.

Figure 10–29 The listItem Component Contains Multiple Components That Display the Data

Example 10–21 shows the corresponding code.

Example 10–21 The listView Component

<af:listView id="listView" binding="#{editor.component}"
 var="item" varStatus="vs" partialTriggers="::pprLV"
 value="#{demolistView.taskModel}"
 selection="multiple">
 <af:listItem id="lvi">
 <af:showPopupBehavior popupId="::ctxtMenu"
 triggerType="contextMenu"/>
 <af:panelGroupLayout id="panelGroupLayout1"
 layout="horizontal"
 styleClass="AFStretchWidth">
 <af:panelGroupLayout id="panelGroupLayout2"
 layout="horizontal"
 inlineStyle="margin-left:20px; width:45px"
 halign="center" valign="middle">
 <af:image rendered="#{vs.index %6 ==1}"
 source="/images/error.png" id="i1"
 shortDesc="Error at Line #{vs.index + 1}"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="panelGroupLayout3" layout="horizontal"
 inlineStyle="width:100%">
 <af:panelGroupLayout id="panelGroupLayout5"
 layout="vertical"
 inlineStyle="min-width:300px">
 <af:outputText id="outputText1" value="#{item.taskName}"
 styleClass="taskName"/>
 <af:outputText id="outputText2"
 value="#{item.projectDesc}"
 styleClass="taskProjectDesc"/>
 <af:outputText id="outputText3" value="#{item.created}"
 styleClass="taskCreated"/>
 </af:panelGroupLayout>
 </af:panelGroupLayout>

Displaying a Collection in a List

10-54 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:panelGroupLayout id="panelGroupLayout4"
 layout="horizontal" halign="end"
 valign="middle"
 inlineStyle="margin-right:20px">
 <af:commandButton id="cb1" text="Action"
 shortDesc="Click To Invoke Action for Item #{vs.index + 1}">
 <af:showPopupBehavior popupId="::popupDialog"
 alignId="cb1" align="afterStart"/>
 </af:commandButton>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </af:listItem>
</af:listView>

You bind the listView component to the collection. The component then repeatedly
renders one listItem component by stamping the value for each item. As each item is
stamped, the data for the current row is copied into a property that can be addressed
by an EL expression that uses the listView component’s var attribute. Once the list
has completed rendering, this property is removed or reverted back to its previous
value.

In this example, the listView value is bound to the demolistView.taskModel object.
The properties on this object can be accessed using the var property, which is set to
item. For example, in order to display the task name, the outputText component value
is set to item.taskName.

The listView component can also display a limited, two-level hierarchy. To display a
hierarchy, the listView needs to be bound to a TreeModel instead of a
CollectionModel. The TreeModel can contain one root level and one child level (for
more information about the TreeModel class, see Section 10.5, "Displaying Data in
Trees").

As with trees, the listView uses stamping to display content for the individual nodes,
and a facet (named the groupHeaderStamp facet) that acts as a holder for the
component used to display the parent group for the nodes. However, since the
listView only allows two levels, the groupHeaderStamp facet contains the component
used to display only the root level.

Figure 10–30 shows a listView component displaying a simple hierarchy that has
letters of the alphabet as the root, and employee objects as the leaf nodes.

Figure 10–30 Simple Hierarchy in a listView Component

The components used to display the employee object are placed in a listItem
component, while the components used to display the letter of the alphabet are placed

Displaying a Collection in a List

Using Tables, Trees, and Other Collection-Based Components 10-55

in a listItem component inside the groupHeaderStamp facet, as shown in
Example 10–22.

Example 10–22 The groupHeaderStamp Facet in a listView Component

<af:listView id="listView" binding="#{editor.component}"
 var="item" varStatus="vs" groupDisclosurePolicy="noDisclosure"
 value="#{demolistView.ABTreeModel}">
 <af:listItem id="listItem1">
 <af:panelGroupLayout id="pgl3" layout="vertical">
 <af:outputText id="ot2" value="#{item.ename}" styleClass="ABName"/>
 <af:outputText id="ot3" value="#{item.job}" styleClass="ABJob"/>
 </af:panelGroupLayout>
 </af:listItem>
 <f:facet name="groupHeaderStamp">
 <af:listItem id="listItem2" styleClass="ABHeader">
 <af:outputText id="ot1" value="#{item.alphabetHeading}"/>
 </af:listItem>
 </f:facet>
</af:listView>

When you display a hierarchy in a listView component, you can configure it so that
the headers can disclose or hide its child components, as shown in Figure 10–31.

Figure 10–31 The listView Component Configured to Provide Collapsing Headers

By default, the listView component is configured to display all children. You can
change this using the groupDisclosurePolicy attribute.

When a user collapses or expands a group, a RowDisclosureEvent is fired. You can use
the groupDisclosureListener to programmatically expand and collapse nodes. For
more information, see Section 10.5.4, "What You May Need to Know About
Programmatically Expanding and Collapsing Nodes."

When a user selects or deselects a row or a node, a SelectionEvent is fired. You can
use the selectionListener to programmatically respond to the event. For more
information, see Section 10.2.8, "What You May Need to Know About Performing an
Action on Selected Rows in Tables."

10.8.1 How to Display a Collection in a List
You use a listView component bound to a CollectionModel instance and one
listItem component to create the list. If you want to display a simple parent-child

Displaying a Collection in a List

10-56 Web User Interface Developer's Guide for Oracle Application Development Framework

hearers, you place a second listItem component in the groupHeaderStamp facet. You
then add layout components and other text components to display the actual data.

To display a collection in a list:
1. Create a Java class for the model to which the list will be bound. If you want the

list to display groups with headers, the model must extend the
org.apache.myfaces.trinidad.model.TreeModel class. If not, it should extend
the org.apache.myfaces.trinidad.model.CollectionModel class.

2. In the Component Palette, from the ADF Faces panel, drag and drop a List View
on to the page.

3. In the Property Inspector, expand the Other section and set the following:

■ Value: Specify an EL expression to bind the list to the mode created in Step 1.

■ Var: Specify a variable name to represent each node.

■ First: Specify a row to set as the first row to display in the list.

■ FetchSize: Set the size of the block that should be returned with each data
fetch. The default is 25.

■ Rows: Specific the number of rows to display in the range of rows. By default
this is 25 (the same value as the fetchSize attribute).

■ SelectedRowKeys: Optionally enter the keys for the nodes that should be
initially selected. For more information, see Section 10.5.5, "What You May
Need to Know About Programmatically Selecting Nodes."

■ Selection: Set a value to make the rows selectable (this is the rowSelection
attribute). Valid values are: none, single, and multiple. For information about
how to then programatically perform some action on the selected rows, see
Section 10.2.8, "What You May Need to Know About Performing an Action on
Selected Rows in Tables."

4. Drag and drop a List Item as a child to the listView component.

5. Drag and drop layout and other components into the listView component, to
create your desired configuration. See Figure 10–29 and Example 10–21 for an
example.

6. If you want the listView component to display a simple hierarchy, drag and drop
a List Item into the groupHeaderStamp facet. Figure 10–32 shows the
groupHeaderStamp facet in the Structure window.

Tip: You may also use other model classes, such as java.util.List,
array, and javax.faces.model.DataModel. If you use one of these
other classes, the listView component automatically converts the
instance into a CollectionModel class, but without any additional
functionality. For more information about the CollectionModel class,
see the MyFaces Trinidad Javadoc at
http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Displaying Images in a Carousel

Using Tables, Trees, and Other Collection-Based Components 10-57

Figure 10–32 The groupHeaderStamp Facet in the Structure Window

7. Drag and drop an Output Text into the listItem component to display your
header text, and configure the outputText component as needed.

10.9 Displaying Images in a Carousel
You can display images in a revolving carousel, as shown in Figure 10–33. Users can
change the image at the front either by using the slider at the bottom or by clicking one
of the auxiliary images to bring that specific image to the front.

Figure 10–33 The ADF Faces Carousel

By default, the carousel is displayed horizontally. The objects within the horizontal
orientation of the carousel are vertically aligned to the middle and the carousel itself is
horizontally aligned to the center of its container.

You can configure the carousel so that it can be displayed vertically, as you might
want for a reference card file. By default, the objects within the vertical orientation of
the carousel are horizontally aligned to the center and the carousel itself is vertically
aligned to the middle, as shown in Figure 10–34. You can change the alignments using
the carousel’s alignment attributes.

Displaying Images in a Carousel

10-58 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–34 Vertical Carousel Component

The carousel component can display in circular mode, as in Figure 10–33, or you can
configure it so that it displays only the current image, as shown in Figure 10–35

Figure 10–35 Carousel Can Display Just One Image.

You can also configure the controls used to browse through the images. You can
display a slider that has next and previous arrows and that spans more than one image
(as shown in Figure 10–33), you can display only next and previous buttons, (as shown
in Figure 10–35), or you can display next and previous buttons, along with the slide

Best Practice: Generally the carousel should be placed in a parent
component that stretches its children (such as a panelSplitter or
panelStretchLayout). If you do not place the carousel in a component
that stretches its children, your carousel will display at the default
dimension of 500px wide and 300px tall. You can change these
dimensions.

Displaying Images in a Carousel

Using Tables, Trees, and Other Collection-Based Components 10-59

counter, (as shown in Figure 10–36).

Figure 10–36 Next and Previous Buttons With a Slide Counter

By default, when the carousel is configured to display in the circular mode, when you
hover over an auxiliary item (that is, and item that is not the current item at the
center), the item is outlined to show that it can be selected (note that this outline will
only appear if your application is using the Skyros or Fusion FX v1.2 and above skins).
You can configure the carousel so that instead, the item pops out and displays at full
size, as shown in Figure 10–37.

Figure 10–37 Auxiliary Item Pops Out on Hover

When set to the circular mode, you can also configure the space between images, and
you can also configure the size of the auxiliary images. By default, the space between
images is set to 0.45 times the size of the preceding image, resulting in the images
overlapping each other, and the auxiliary image size is set to 0.8, so that each image is
0.8 times the size of the preceding image, as shown in Figure 10–33. You can change
these settings to alter how the carousel appears. For example, if you wanted the
carousel to appear more like a filmstrip, you might set the space between the images to
be 1.1, and the size of the auxiliary items to be 1, so that they are all the same size, as
shown in Figure 10–38.

Displaying Images in a Carousel

10-60 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 10–38 Configuring a Carousel to Display Like a Filmstrip

A child carouselItem component displays the objects in the carousel, along with a
title for the object. You bind the carousel component to the collection. The component
then repeatedly renders one carouselItem component by stamping the value for each
item. As each item is stamped, the data for the current item is copied into a property
that can be addressed by an EL expression that uses the carousel component’s var
attribute. Once the carousel has completed rendering, this property is removed or
reverted back to its previous value. Carousels contain a nodeStamp facet, which is both
a holder for the carouselItem component used to display the text and short
description for each item, and the parent component to the image displayed for each
item.

For example, the carouselItem JSF page in the ADF Faces demo shown in
Figure 10–33 contains a carousel component that displays an image of each of the
ADF Faces components. The demoCarouselItem (CarouselBean.java) managed bean
contains a list of each of these components. The value attribute of the carousel
component is bound to the items property on that bean, which represents that list. The
carousel component’s var attribute is used to hold the value for each item to display,
and is used by both the carouselItem component and the image component to retrieve
the correct values for each item. Example 10–23 shows the JSF page code for the
carousel. For more information about stamping behavior in a carousel, see
Section 10.5, "Displaying Data in Trees."

Example 10–23 Carousel Component JSF Page Code

<af:carousel id="carousel" binding="#{editor.component}"
 var="item"
 value="#{demoCarousel.items}"
 carouselSpinListener="#{demoCarousel.handleCarouselSpin}">
 <f:facet name="nodeStamp">
 <af:carouselItem id="crslItem" text="#{item.title}" shortDesc="#{item.title}">
 <af:image id="img" source="#{item.url}" shortDesc="#{item.title}"/>
 </af:carouselItem>
 </f:facet>
</af:carousel>

A carouselItem component stretches its sole child component. If you place a single
image component inside of the carouselItem, the image stretches to fit within the
square allocated for the item (as the user spins the carousel, these dimensions shrink
or grow).

Displaying Images in a Carousel

Using Tables, Trees, and Other Collection-Based Components 10-61

The carousel component uses a CollectionModel class to access the data in the
underlying collection. This class extends the JSF DataModel class and adds on support
for row keys. In the DataModel class, rows are identified entirely by index. However,
to avoid issues if the underlying data changes, the CollectionModel class is based on
row keys instead of indexes.

You may also use other model classes, such as java.util.List, array, and
javax.faces.model.DataModel. If you use one of these other classes, the carousel
component automatically converts the instance into a CollectionModel class, but
without any additional functionality. For more information about the
CollectionModel class, see the MyFaces Trinidad javadoc at
http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

The carousel components are virtualized, meaning that not all the items available to the
component on the server are delivered to, and displayed on, the client. You configure
the carousel to fetch a certain number of rows at a time from your data source. The
data can be delivered to the component either immediately upon rendering, or lazily
fetched after the shell of the component has been rendered. By default, the carousel
lazily fetches data for the initial request. When a page contains one or more of these
components, the page initially goes through the standard lifecycle. However, instead
of the carousel fetching the data during that initial request, a special separate partial
page rendering (PPR) request is run on the component, and the number of items set as
the value of the fetch size for the carousel is then returned. Because the page has just
been rendered, only the Render Response phase executes for the carousel, allowing the
corresponding data to be fetched and displayed. When a user does something to cause
a subsequent data fetch (for example, spinning the carousel for another set of images),
another PPR request is executed.

Best Practice: The image component does not provide any geometry
management controls for altering how it behaves when stretched. You
should use images that have equal width and height dimensions in
order for the image to retain its proper aspect ratio when it is being
stretched.

Note: If your application uses the Fusion technology stack, you can
create ADF Business Components over your data source that
represent the items, and the model will be created for you. You can
then declaratively create the carousel, and it will automatically be
bound to that model. For more information, see the "Using the ADF
Faces Carousel Component" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Displaying Images in a Carousel

10-62 Web User Interface Developer's Guide for Oracle Application Development Framework

A slider control allows users to navigate through the collection. Normally, the thumb
on the slider displays the current object number out of the total number of objects, for
example 6 of 20. When the total number of objects is too high to calculate, the thumb
on the slider will show only the current object number. For example, say a carousel is
used for a company's employee directory. By default, the directory might show faces
for every employee, but it may not know without an expensive database call that there
are exactly 94,409 employees in the system that day.

You can use other components in conjunction with the carousel. For example, you can
add a toolbar or menu bar, and to that, add buttons or menu items that allow users to
perform actions on the current object.

10.9.1 How to Create a Carousel
To create a carousel, you must first create the data model that contains the images to
display. You then bind a carousel component to that model and insert a
carouselItem component into the nodeStamp facet of the carousel. Lastly, you insert
an image component (or other components that contain an image component) as a
child to the carouselItem component.

To Create a Carousel:
1. Create the data model that will provide the collection of images to display. The

data model can be a List, Array, DataModel, or CollectionModel. If the collection
is anything other than a CollectionModel, the framework will automatically
convert it to a CollectionModel. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at
http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

The data model should provide the following information for each of the images
to be displayed in the carousel:

■ URL to the images

■ Title, which will be displayed below the image in the carousel

■ Short description used for text displayed when the user mouses over the
image

For examples, see the CarouselBean.java and the CarouselMediaBean.java
classes in the ADF Faces demo application.

2. In the Component Palette, from the Common Components panel, drag and drop a
Carousel onto the page.

Performance Tip: You should use lazy delivery when the page
contains a number of components other than a carousel. Using lazy
delivery allows the initial page layout and other components to be
rendered first before the data is available.

Use immediate delivery if the carousel is the only context on the page,
or if the carousel is not expected to return a large set of items. In this
case, response time will be faster than with lazy delivery (or in some
cases, simply perceived as faster), as the second request will not go to
the server, providing a faster user response time and better server
CPU utilizations. Note, however, that only the number of items
configured to be the fetch block will be initially returned. As with lazy
delivery, when a user’s actions cause a subsequent data fetch, the next
set of items is delivered.

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Displaying Images in a Carousel

Using Tables, Trees, and Other Collection-Based Components 10-63

3. In the Property Inspector, expand the Common section, and set the following:

■ Orientation: By default, the carousel displays horizontally. Select vertical if
you want it to display vertically, as shown in Figure 10–34. If you set it to
horizontal, you must configure how the items line up using the halign
attribute. If you set it to vertical, set how the items line up using the valign
attribute.

■ Halign: Specify how you want items in a vertical carousel to display. Valid
values are:

– Center: Aligns the items so that they have the same centerpoint. This is
the default.

– End: Aligns the items so that the right edges line up (when the browser is
displaying a left-to-right language).

– Start: Aligns the items so that the left edges line up (when the browser is
displaying a left-to-right language).

■ Valign: Specify how you want items in a horizontal carousel to display. Valid
values are:

– Bottom: Aligns the items so that the bottom edges line up.

– Middle: Aligns the items so that they have the same middle point. This is
the default.

– Top: Aligns the items so that the top edges line up.

■ Value: Bind the carousel to the model.

4. Expand the Data section and set the following:

■ Var: Enter a variable that will be used in EL to access the individual item data.

■ VarStatus: Enter a variable that will be used in EL to access the status of the
carousel. Common properties of varStatus include:

– model: Returns the CollectionModel for the component.

– index: Returns the zero-based item index.

5. Expand the Appearance section and set EmptyText to the text that should display
if no items are returned. If using a resource bundle, use the dropdown menu to
choose Select Text Resource.

6. Expand the Behavior section, and set the following:

■ FetchSize: Set the size of the block that should be returned with each data
fetch.

■ ContentDelivery: Specify when the data should be delivered. When the
contentDelivery attribute is set to immediate, items are fetched at the same
time the carousel is rendered. If the contentDelivery attribute is set to lazy,
items will be fetched and delivered to the client during a subsequent request.

■ CarouselSpinListener: Bind to a handler method that handles the spinning of
the carousel when you need logic to be executed when the carousel spin is
executed. Example 10–24 shows the handler method on the CarouselBean
which redraws the detail panel when the spin happens.

Example 10–24 Handler for the CarouselSpinEvent

 public void handleCarouselSpin(CarouselSpinEvent event)
 {

Displaying Images in a Carousel

10-64 Web User Interface Developer's Guide for Oracle Application Development Framework

 RichCarousel carousel = (RichCarousel)event.getComponent();
 carousel.setRowKey(event.getNewItemKey());
 ImageInfo itemData = (ImageInfo)carousel.getRowData();
 _currentImageInfo = itemData;

 // Redraw the detail panel so that we can update the selected details.
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_detailPanel);
 }

7. Expand the Advanced section and set CurrentItemKey. Specify which item is
showing when the carousel is initially rendered. The value should be (or evaluate
to) the item’s primary key in the CollectionModel:

8. Expand the Other section, and set the following:

■ AuxiliaryOffset: Set to a number to determine how much an image will be
offset from the preceding image. The default is 0.45.

■ AuxiliaryPopOut: Set to hover to cause an auxiliary image to render full-size
when the user hovers over it. The default is off.

■ AuxiliaryScale: Set to a number to determine what size each image should be
in comparison to the image before it. A setting of 1 means all images would be
the same size. A setting of less than 1 causes each image to be incrementally
smaller, greater than 1 and they will be larger. By default, the setting is 0.8,
which means each image is 80% smaller than the preceding image.

■ ControlArea: Specify the controls used to browse through the carousel
images. Valid values are:

– full: The slider is larger than the current image, and displays next and
previous buttons.

– small: The slider is the size of the current image, and displays next and
previous buttons.

– compact: Only the next and previous buttons are displayed.

– none: The slider and controls are not displayed.

■ DisplayItems: Select circular to have the carousel display multiple images.
Select oneByOne to have the carousel display one image at a time.

9. From the Component Palette, drag a Carousel Item to the nodeStamp facet of the
Carousel component.

Bind the CarouselItem component’s attributes to the properties in the data model
using the variable value set on the carousel’s var attribute. For example, the
carousel in Example 10–23 uses item as the value for the var attribute. So the value
of the carouselItem’s text attribute would be item.title (given that title is the
property used to access the text used for the carousel items on the data model).

10. Drag an image from the Component Palette and drop it as a child to the
carouselItem.

Bind the image component’s attributes to the properties in the data model using
the variable value set on the carousel’s var attribute. For example, the carousel in
Example 10–23 uses item as the value for the var attribute. So the value of the
image’s source attribute would be item.url (given that url is the property used to
access the image).

You can surround the image component with other components if you want more
functionality. For example, Figure 10–39 shows a carousel whose images are

Displaying Images in a Carousel

Using Tables, Trees, and Other Collection-Based Components 10-65

surrounded by a panelGroupLayout component and that also uses a
clientListener to call a JavaScript function to show a menu and a navigation bar.

Figure 10–39 Using a More Complex Layout in a Carousel

Example 10–25 shows the corresponding page code.

Example 10–25 A More Complex Layout for a Carousel

<af:carouselItem id="mainItem" text="#{item.title}" shortDesc="#{item.title}">
 <af:panelGroupLayout id="itemPgl" layout="vertical">
 <af:image id="mainImg" source="#{item.url}" shortDesc="#{item.title}"
 styleClass="MyImage">
 <af:clientListener method="handleItemOver" type="mouseOver"/>
 <af:clientListener method="handleItemDown" type="mouseDown"/>
 <af:showPopupBehavior triggerType="contextMenu" popupId="::itemCtx"/>
 </af:image>
 <af:panelGroupLayout id="overHead" styleClass="MyOverlayHeader"
 layout="vertical" clientComponent="true">
 <af:menuBar id="menuBar">
 <af:menu id="menu" text="Menu">
 <af:commandMenuItem id="menuItem1" text="Menu Item 1"/>
 <af:commandMenuItem id="menuItem2" text="Menu Item 2"/>
 <af:commandMenuItem id="menuItem3" text="Menu Item 3"/>
 </af:menu>
 </af:menuBar>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="overFoot" styleClass="MyOverlayFooter"
 layout="vertical" clientComponent="true"
 halign="center">
 <af:panelGroupLayout id="footHorz" layout="horizontal">
 <f:facet name="separator">
 <af:spacer id="footSp" width="8"/>
 </f:facet>
 <af:commandImageLink . . .
 />
 <af:outputText id="pageInfo" value="Page 1 of 1"/>
 <af:commandImageLink . . .
 />
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </af:panelGroupLayout>

Passing a Row as a Value

10-66 Web User Interface Developer's Guide for Oracle Application Development Framework

</af:carouselItem>

10.9.2 What You May Need to Know About the Carousel Component and Different
Browsers

In some browsers, the visual decoration of the carousel’s items will be richer. For
example, Safari and Google Chrome display subtle shadows around the carousel’s
items, and the noncurrent items have a brightness overlay to help make clear that the
auxiliary items are not the current item, as shown in Figure 10–40.

Figure 10–40 Carousel Component Displayed in Google Chrome

Figure 10–41 shows the same component in Internet Explorer.

Figure 10–41 Carousel Component Displayed in Microsoft Internet Explorer

10.10 Passing a Row as a Value
There may be a case where you need to pass an entire row from a collection as a value.
To do this, you pass the variable used in the table to represent the row, or used in the
tree to represent a node, and pass it as a value to a property in the pageFlow scope.
Another page can then access that value from the scope. The setPropertyListener tag
allows you to do this (for more information about the setPropertyListener tag,
including procedures for using it, see Section 4.7, "Passing Values Between Pages").

For example, suppose you have a master page with a single-selection table showing
employees, and you want users to be able to select a row and then click a command
button to navigate to a new page to edit the data for that row, as shown in
Example 10–26. The EL variable name emp is used to represent one row (employee) in
the table. The action attribute value of the commandButton component is a static string

Performance Tip: The simpler the structure for the carousel is, the
faster it will perform.

Exporting Data from Table, Tree, or Tree Table

Using Tables, Trees, and Other Collection-Based Components 10-67

outcome showEmpDetail, which allows the user to navigate to the Employee Detail
page. The setPropertyListener tag takes the from value (the variable emp), and stores
it with the to value.

Example 10–26 Using SetPropertyListener and PageFlowScope

<af:table value="#{myManagedBean.allEmployees}" var="emp"
 rowSelection="single">
 <af:column headerText="Name">
 <af:outputText value="#{emp.name}"/>
 </af:column>
 <af:column headerText="Department Number">
 <af:outputText value="#{emp.deptno}"/>
 </af:column>
 <af:column headertext="Select">
 <af:commandButton text="Show more details" action="showEmpDetail">
 <af:setPropertyListener from="#{emp}"
 to="#{pageFlowScope.empDetail}"
 type="action"/>
 </af:commandButton>
 </af:column>
</af:table>

When the user clicks the command button on an employee row, the listener executes,
and the value of #{emp} is retrieved, which corresponds to the current row (employee)
in the table. The retrieved row object is stored as the empDetail property of
pageFlowScope with the #{pageFlowScope.empDetail} EL expression. Then the action
event executes with the static outcome, and the user is navigated to a detail page. On
the detail page, the outputText components get their value from
pageFlowScope.empDetail objects, as shown in Example 10–27.

Example 10–27 Retrieving PageFlowScope Objects

<h:panelGrid columns="2">
 <af:outputText value="Firstname:"/>
 <af:inputText value="#{pageFlowScope.empDetail.name}"/>
 <af:outputText value="Email:"/>
 <af:inputText value="#{pageFlowScope.empDetail.email}"/>
 <af:outputText value="Hiredate:"/>
 <af:inputText value="#{pageFlowScope.empDetail.hiredate}"/>
 <af:outputText value="Salary:"/>
 <af:inputText value="#{pageFlowScope.empDetail.salary}"/>
</h:panelGrid>

10.11 Exporting Data from Table, Tree, or Tree Table
You can export the data from a table, tree, or tree table, or from a table region of the
DVT project Gantt chart to a Microsoft Excel spreadsheet. To allow users to export a
table, you create an action source, such as a command button or command link, and
add an exportCollectionActionListener component and associate it with the data
you wish to export. You can configure the table so that all the rows will be exported, or
so that only the rows selected by the user will be exported.

Tip: You can also export data from a DVT pivot table. For more
information, see Section 27.9, "Exporting from a Pivot Table."

Exporting Data from Table, Tree, or Tree Table

10-68 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, Figure 10–42 shows the table from the ADF Faces demo that includes a
command button component that allows users to export the data to an Excel
spreadsheet.

Figure 10–42 Table with Command Button for Exporting Data

When the user clicks the command button, the listener processes the exporting of all
the rows to Excel. As shown in Figure 10–42, you can also configure the
exportCollectionActionListener component so that only the rows the user selects
are exported.

Depending on the browser, and the configuration of the listener, the browser will
either open a dialog, allowing the user to either open or save the spreadsheet as shown
in Figure 10–43, or the spreadsheet will be displayed in the browser. For example, if
the user is viewing the page in Microsoft Internet Explorer, and no file name has been
specified on the exportCollectionActionListener component, the file is displayed in
the browser. In Mozilla Firefox, the dialog opens.

Note: Only the following can be exported:

■ Value of value holder components (such as input and output
components).

■ Value of selectItem components used in selelctOneChoice and
selectOneListbox components (the value of selectItem
components in other selection components are not exported).

■ Value of the text attribute of a command component.

■ Value of the shortDesc attribute on image and icon components.

Exporting Data from Table, Tree, or Tree Table

Using Tables, Trees, and Other Collection-Based Components 10-69

Figure 10–43 Exporting to Excel Dialog

If the user chooses to save the file, it can later be opened in Excel, as shown in
Figure 10–44. If the user chooses to open the file, what happens depends on the
browser. For example, if the user is viewing the page in Microsoft Internet Explorer,
the spreadsheet opens in the browser window. If the user is viewing the page in
Mozilla Firefox, the spreadsheet opens in Excel.

Figure 10–44 Exported Data File in Excel

10.11.1 How to Export Table, Tree, or Tree Table Data to an External Format
You create a command component, such as a button, link, or menu item, and add the
exportCollectionActionListener inside this component. Then you associate the data
collection you want to export by setting the exportCollectionActionListener
component’s exportedId attribute to the ID of the collection component whose data
you wish to export.

Note: You may receive a warning from Excel stating that the file is in
a different format than specified by the file extension. This warning
can be safely ignored.

Exporting Data from Table, Tree, or Tree Table

10-70 Web User Interface Developer's Guide for Oracle Application Development Framework

Before you begin:
You should already have a table, tree, or tree table on your page. If you do not, follow
the instructions in this chapter to create a table, tree, or tree table. For example, to add
a table, see Section 10.2, "Displaying Data in Tables."

To export collection data to an external format:
1. In the Component Palette, from the Common Components panel, drag and drop a

command component, such as a button, to your page.

You may want to change the default label of the command component to a
meaningful name such as Export to Excel.

2. In the Component Palette, from the Operations panel, drag an Export Collection
Action Listener as a child to the command component.

3. In the Insert Export Collection Action Listener dialog, set the following:

■ ExportedId: Specify the ID of the table, tree, or tree table to be exported. Either
enter it manually or use the dropdown menu to choose Edit. Use the Edit
Property dialog to select the component.

■ Type: Set to excelHTML.

4. With the exportCollectionActionListener component still selected, in the
Property Inspector, set the following:

■ Filename: Specify the proposed file name for the exported content. When this
attribute is set, a "Save File" dialog will typically be displayed, though this is
ultimately up to the browser. If the attribute is not set, the content will
typically be displayed inline, in the browser, if possible.

■ Title: Specify the title of the exported document. Whether or not the title is
displayed and how exactly it is displayed depends on Excel.

■ ExportedRows: Specify if you want to export all rows in the table, or only
rows selected by the user. If your table uses the detailStamp facet, you can
elect to either export that data or not (for more information about the
detailStamp facet, see Section 10.3, "Adding Hidden Capabilities to a Table").
Set to one of the following:

– all: All rows will be automatically selected and exported.

– selected: Only the rows the user has selected will be exported.

– allWithoutDetails: All rows, except the data in the detailStamp facet,
will be selected and exported.

– selectedWithoutDetails: Only the rows the user has selected will be
exported, except for the data in the detailStamp facet.

Tip: If you want users to be able to select rows to export, then
configure your table to allow selection. For more information, see
Section 10.2.2, "Formatting Tables."

Tip: If you want your table, tree, or tree table to have a toolbar that
will hold command components, you can wrap the collection
component in a panelCollection component. This component adds
toolbar functionality. For more information, see Section 10.7,
"Displaying Table Menus, Toolbars, and Status Bars."

Accessing Selected Values on the Client from Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-71

Example 10–28 shows the code for a table and its exportCollectionActionListener
component. Note that the exportedId value is set to the table id value.

Example 10–28 Using the exportCollectionActionListener to Export a Table

<af:table contextMenuId="thePopup" selectionListener="#{fs.Table}"
 rowselection="multiple" columnselection="multiple"
 columnBandingInterval="1"
 binding="#{editor.component}" var="test1" value="#{tableTestData}"
 id="table" summary="table data">
 <af:column>
 . . .
 </af:column>
</af:table>
<af:commandButton text="Export To Excel" immediate="true">
 <af:exportCollectionActionListener type="excelHTML" exportedId="table"
 filename="export.xls" title="ADF Faces Export"/>

10.11.2 What Happens at Runtime: How Row Selection Affects the Exported Data
Exported data is exported in index order, not selected key order. This means that if you
allow selected rows to be exported, and the user selects rows (in this order) 8, 4, and 2,
then the rows will be exported and displayed in Excel in the order 2, 4, 8.

10.12 Accessing Selected Values on the Client from Collection-Based
Components

Since there is no client-side support for EL in the rich client framework, nor is there
support for sending entire collection models to the client, if you need to access values
on the client using JavaScript, the client-side code cannot rely on component stamping
to access the value. Instead of reusing the same component instance on each row, a
new JavaScript component is created on each row (assuming any component needs to
be created at all for any of the rows), using the fully resolved EL expressions.

Therefore, to access row-specific data on the client, you need to use the stamped
component itself to access the value. To do this without a client-side data model, you
use a client-side selection change listener.

10.12.1 How to Access Values from a Selection in Stamped Components.
To access values on the client from a collection-based component, you first need to
make sure the component has a client representation. Then you need to register a
selection change listener on the client and then have that listener handle determining
the selected row, finding the associated stamped component for that row, use the
stamped component to determine the row-specific name, and finally interact with the
selected data as needed.

To access selected values from stamped components:
1. In the Structure window for your page, select the component associated with the

stamped row. For example, in Example 10–29 the table uses an outputText
component to display the stamped rows.

Example 10–29 Table Component Uses an outputText Component for Stamped Rows

<af:table var="row" value="#{data}" rowSelection="single">
 <af:column headerText="Name">

Accessing Selected Values on the Client from Collection-Based Components

10-72 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:outputText value="#{row.name}"/>
 </af:column>
</af:table>

Set the following on the component:

■ Expand the Common section of the Property Inspector and if one is not
already defined, set a unique ID for the component using the Id attribute.

■ Expand the Advanced section and set ClientComponent to True.

2. In the Component Palette, from the Operations panel, drag and drop a Client
Listener as a child to the table.

3. In the Insert Client Listener dialog, enter a function name in the Method field (you
will implement this function in the next step), and select selection from the Type
dropdown.

If for example, you entered mySelectedRow as the function, JDeveloper would
enter the code shown in bold in Example 10–30.

Example 10–30 Using a clientListener to Register a Selection

<af:table var="row" value="#{data}" rowSelection="single">
 <af:clientListener type="selection" method="mySelectedRow"/>
 ...
</af:table>

This code causes the mySelectedRow function to be called any time the selection
changes.

4. In your JavaScript library, implement the function entered in the last step. This
function should do the following:

■ Figure out what row was selected. To do this, use the event object that is
passed into the listener. In the case of selection events, the event object is of
type AdfSelectionEvent. This type provides access to the newly selected row
keys via the getAddedSet() method, which returns a POJSO (plain old
JavaScript object) that contains properties for each selected row key. Once you
have access to this object, you can iterate over the row keys using a "for in"
loop. For example, the code in Example 10–31 extracts the first row key (which
in this case, is the only row key).

Example 10–31 Iterating Over Row Keys Using a "for" in Loop

function showSelectedName(event)
{
 var firstRowKey;
 var addRowKeys=event.getAddedSet();

 for(var rowKey in addedRowKeys)
 {
 firstRowKey=rowKey;
 break;
 }
}

■ Find the stamped component associated with the selected row. The client-side
component API AdfUIComponent exposes a findComponent() method that
takes the ID of the component to find and returns the AdfUIComponent
instance. When using stamped components, you need to find a component not

Accessing Selected Values on the Client from Collection-Based Components

Using Tables, Trees, and Other Collection-Based Components 10-73

just by its ID, but by the row key as well. In order to support this, the
AdfUITable class provides an overloaded method of findComponent(), which
takes both an ID as well as a row key.

In the case of selection events, the component is the source of the event. So
you can get the table from the source of the event and then use the table to
find the instance using the ID and row key. Example 10–32 shows this, where
nameStamp is the ID of the table.

Example 10–32 Finding a Stamped Component Instance Given a Selected Row

// We need the table to find our stamped component.
// Fortunately, in the case of selection events, the
 // table is the event source.
 var table = event.getSource();

 // Use the table to find the name stamp component by id/row key:
 var nameStamp = table.findComponent("nameStamp", firstRowKey);

5. Add any additional code needed to work with the component. Once you have the
stamped component, you can interact with it as you would with any other
component. For example, Example 10–33 shows how to use the stamped
component to get the row-specific value of the name attribute (which was the
stamped value as shown in Example 10–29)and then display the name in an alert.

Example 10–33 Retrieving the Name of the Row in a Stamped Component

if (nameStamp)
 {
 // This is the row-specific name
 var name = nameStamp.getValue();

 alert("The selected name is: " + name);
 }

Example 10–34 shows the entire code for the JavaScript.

Example 10–34 JavaScript Used to Access Selected Row Value

function showSelectedName(event)
{
 var firstRowKey;
 var addedRowKeys = event.getAddedSet();

 for (var rowKey in addedRowKeys)
 {
 firstRowKey = rowKey;
 break;
 }
 // We need the table to find our stamped component.
 // Fortunately, in the case of selection events, the
 // table is the event source.
 var table = event.getSource();

 // We use the table to find the name stamp component by id/row key:
 var nameStamp = table.findComponent("nameStamp", firstRowKey);

 if (nameStamp)
 {
 // This is the row-specific name

Accessing Selected Values on the Client from Collection-Based Components

10-74 Web User Interface Developer's Guide for Oracle Application Development Framework

 var name = nameStamp.getValue();

 alert("The selected name is: " + name);
 }
}

10.12.2 What You May Need to Know About Accessing Selected Values
Row keys are tokenized on the server, which means that the row key on the client may
have no resemblance to the row key on the server. As such, only row keys that are
served up by the client-side APIs (like AdfSelectionEvent.getAddedSet()) are valid.

Also note that AdfUITable.findComponent(id, rowKey)method may return null if
the corresponding row has been scrolled off screen and is no longer available on the
client. Always check for null return values from AdfUITable.findComponent()
method.

11

Using List-of-Values Components 11-1

11 Using List-of-Values Components

This chapter describes how to use a list-of-values component to display a
model-driven list of objects from which a user can select a value.

This chapter includes the following sections:

■ Section 11.1, "Introduction to List-of-Values Components"

■ Section 11.2, "Creating the ListOfValues Data Model"

■ Section 11.3, "Using the inputListOfValues Component"

■ Section 11.4, "Using the InputComboboxListOfValues Component"

11.1 Introduction to List-of-Values Components
ADF Faces provides two list-of-values (LOV) input components that can display
multiple attributes of each list item and can optionally allow the user to search for the
needed item. These LOV components are useful when a field used to populate an
attribute for one object might actually be contained in a list of other objects, as with a
foreign key relationship in a database. For example, suppose you have a form that
allows the user to edit employee information. Instead of having a separate page where
the user first has to find the employee record to edit, that search and select
functionality can be built into the form, as shown in Figure 11–1.

Figure 11–1 List-of-Values Input Field

In this form, the employee name field is an LOV that contains a list of employees.
When the user clicks the search icon of the inputListOfValues component, a Search
and Select dialog displays all employees, along with a search field that allows the user
to search for the employee, as shown in Figure 11–2.

Introduction to List-of-Values Components

11-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 11–2 The Search Popup Dialog for a List-of-Values Component

When the user returns to the page, the current information for that employee is
displayed in the form, as shown in Figure 11–3. The user can then edit and save the
data.

Figure 11–3 Form Populated Using LOV Component

Other list components, such as selectOneChoice, also allow users to select from a list,
but they do not include a popup dialog and they are intended for smaller lists. This

Introduction to List-of-Values Components

Using List-of-Values Components 11-3

chapter describes only the inputListOfValues and inputComboboxListOfValues LOV
components. For more information about select choice components, list box
components, and radio buttons, see Chapter 9, "Using Input Components and
Defining Forms."

As shown in the preceding figures, the inputListOfValues component provides a
popup dialog from which the user can search for and select an item. The list is
displayed in a table. In contrast, the inputComboboxListOfValues component allows
the user two different ways to select an item to input: from a simple dropdown list, or
by searching as you can in the inputListOfValues component.

You can also create custom content to be rendered in the Search and Select dialog by
using the searchContent facet. You define the returnPopupDataValue attribute and
programmatically set it with a value when the user selects an item from the Search and
Select dialog and then closes the dialog. This value will be the return value from
ReturnPopupEvent to the returnPopupListener. When you implement the
returnPopupListener, you can perform functions such as setting the value of the LOV
component, its dependent components, and displaying the custom content. In the
searchContent facet you can add components such as tables, trees, and inputText to
display your custom content.

If you implement both the searchContent facet and the ListOfValues model, the
searchContent facet implementation will take precedence in rendering the Search and
Select dialog. Example 11–1 show the code to display custom content using a table
component.

Example 11–1 Adding Custom Content to the Search and Select Dialog

<af:inputListOfValues model="#{bean.listOfValuesModel}"
...
 returnPopupDataValue="#{bean.returnPopupDataValue}"
 returnPopupListener="#{bean.returnPopupListener}">
 <f:facet name="searchContent">
 <af:table id="t1" value="#{bean.listModel}" var="row"
 selectionListener="#{bean.selected}"
 ...
 </f:facet>
</af:inputListOfValues>

If the readOnly attribute is set to true, the input field is disabled. If readOnly is set to
false, then the editMode attribute determines which type of input is allowed. If
editMode is set to select, the value can be entered only by selecting from the list. If
editMode is set to input, then the value can also be entered by typing.

You can also implement the LOV component to automatically display a list of
suggested items when the user types in a partial value. For example, when the user
enters Ca, then a suggested list which partially matches Ca is displayed as a suggested
items list, as shown in Figure 11–4.

Introduction to List-of-Values Components

11-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 11–4 Suggested Items List for an LOV

The user can select an item from this list to enter it into the input field, as shown in
Figure 11–5.

Figure 11–5 Suggested Items Selected

You add the auto suggest behavior by adding the af:autoSuggestBehavior tag inside
the LOV component with the tag’s suggestItems values set to a method that retrieves
and displays the list. You can create this method in a managed bean. If you are using
ADF Model, the method is implemented by default.

In your LOV model implementation, you can implement a smart list that filters the list
further. You can implement a smart list for both LOV components. If you are using
ADF Model, the inputComboboxListOfValues allows you declaratively select a smart
list filter defined as a view criteria for that LOV. If the smart list is implemented, and
auto suggest behavior is also used, auto suggest will search from the smart list first. If
the user waits for two seconds without a gesture, auto suggest will also search from
the full list and append the results. The maxSuggestedItems attribute specifies the
number of items to return (-1 indicates a complete list). If maxSuggestedItems > 0, a
More link is rendered for the user to click to launch the LOV’s Search and Select
dialog. Example 11–2 shows the code for an LOV component with both auto suggest
behavior and smart list.

Example 11–2 Auto Suggest Behavior and Smart List

<af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>

Figure 11–6 shows how a list can be displayed by an inputComboboxListOfValues
component. If the popup dialog includes a query panel, then a Search link is displayed
at the bottom of the dropdown list. If a query panel is not used, a More link is
displayed.

Introduction to List-of-Values Components

Using List-of-Values Components 11-5

Figure 11–6 InputComboboxListOfValues Displays a List of Employee Names

The dropdown list of the inputComboboxListOfValues component can display the
following:

■ Full list: As shown in Figure 11–6, a complete list of items returned by the
ListOfValuesModel.getItems() method.

■ Favorites list: A list of recently selected items returned by the
ListOfValuesModel.getRecentItems() method.

■ Search link: A link that opens a popup Search and Select dialog. The link is not on
the scrollable region on the dropdown list.

■ customActions facet: A facet for adding additional content. Typically, this contains
one or more commandLink components. You are responsible for implementing any
logic for the commandLink to perform its intended action, for example, launching a
popup dialog.

The number of columns to be displayed for each row can be retrieved from the model
using the getItemDescriptors() method. The default is to show all the columns.

The popup dialog from within an inputListOfValues component or the optional
search popup dialog in the inputComboboxListOfValues component also provides the
ability to create a new record. For the inputListOfValues component, when the
createPopupId attribute is set on the component, a toolbar component with a
commandToolbarButton is displayed with a create icon. At runtime, a
commandToolbarButton component appears in the LOV popup dialog, as shown in
Figure 11–7.

Introduction to List-of-Values Components

11-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 11–7 Create Icon in Toolbar of Popup Dialog

When the user clicks the Create button, a popup dialog is displayed that can be used
to create a new record. For the inputComboboxListOfValues, instead of a toolbar, a
commandLink with the label Create is displayed in the customActions facet, at the
bottom of the dialog. This link launches a popup where the user can create a new
record. In both cases, you must provide the code to actually create the new record.

Like the query components, the LOV components rely on a data model to provide the
functionality. This data model is the ListOfValuesModel class. This model uses a table
model to display the list of values, and can also access a query model to perform a
search against the list. You must implement the provided interfaces for the
ListOfValuesModel in order to use the LOV components.

Tip: Instead of having to build your own create functionality, you
can use ADF Business Components and ADF data binding. For more
information, see the "Creating an Input Table" section of the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Creating the ListOfValues Data Model

Using List-of-Values Components 11-7

When the user selects an item in the list, the data is returned as a list of objects for the
selected row, where each object is the rowData for a selected row. The list of objects is
available on the ReturnPopupEvent event, which is queued after a selection is made.

If you choose to also implement a QueryModel class, then the popup dialog will
include a Query component that the user can use to perform a search and to filter the
list. Note the following about using the Query component in an LOV popup dialog:

■ The saved search functionality is not supported.

■ The Query component in the popup dialog and its functionality is based on the
corresponding QueryDescriptor class.

■ The only components that can be included in the LOV popup dialog are query,
toolbar, and table.

When the user clicks the Search button to start a search, the
ListOfValuesModel.performQuery() method is invoked and the search is performed.
For more information about the query model, see Chapter 12, "Using Query
Components."

Both components support the auto-complete feature, which allows the user to enter a
partial value in the input field, tab out, and have the dialog populated with the rows
that match the partial criteria. For this to work, you must implement logic so that
when the user tabs out after a partial entry, the entered value is posted back to the
server. On the server, your model implementation filters the list using the partially
entered value and performs a query to retrieve the list of values. ADF Faces provides
APIs for this functionality.

11.2 Creating the ListOfValues Data Model
Before you can use the LOV components, you must have a data model that uses the
ADF Faces API to access the LOV functionality. Figure 11–8 shows the class diagram
for a ListOfValues model.

Tip: Instead of having to build your own ListOfValuesModel class,
you can use ADF Business Components to provide the needed
functionality. For more information, see the "Creating Databound
Selection Lists and Shuttles" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Creating the ListOfValues Data Model

11-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 11–8 Class Diagram for LIstOfValues Model

11.2.1 How to Create the ListOfValues Data Model

To create a ListOfValues model and associated events:
1. Create implementations of each of the interface classes shown in Figure 11–8.

Table 11–1 provides a description of the APIs.

Table 11–1 ListOfValues Model API

Method Functionality

autoCompleteValue() Called when the search icon is clicked or the value is changed
and the user tabs out from the input field, as long as
autoSubmit is set to true on the component. This method
decides whether to open the dialog or to auto-complete the
value. The method returns a list of filtered objects.

valueSelected(value) Called when the value is selected from the Search and Select
dialog and the OK button is clicked. This method gives the
model a chance to update the model based on the selected
value.

isAutoCompleteEnabled() Returns a boolean to decide whether or not the auto complete
is enabled.

Using the inputListOfValues Component

Using List-of-Values Components 11-9

For an example of a ListOfValues model, see the DemoLOVBean and
DemoComboboxLOVBean classes located in the oracle.adfdemo.view.lov package,
found in the Application Sources directory of the ADF Faces application.

2. For the inputListOfValues component, provide logic in a managed bean (it can be
the same managed bean used to create your LOV model) that accesses the
attribute used to populate the list. The inputComboboxListOfValues component
uses the getItems() and getRecentItems() methods to return the list.

3. For the Search and Select dialog used in the InputListOfValues component, or if
you want the InputComboboxListOfValues component to use the Search and
Select dialog, implement the ListOfValuesModel.autoCompleteValue() and
ListOfValuesModel.valueSelected() methods. These methods open the popup
dialog and apply the selected values onto the component.

11.3 Using the inputListOfValues Component
The inputListOfValues component uses the ListOfValues model you implemented
to access the list of items, as documented in Section 11.2, "Creating the ListOfValues
Data Model."

11.3.1 How to Add the InputListOfValues Component

Before you begin:
You should already have a created a page or page fragment. If you also implemented
the search API in the model, the component would also allows the user to search
through the list for the value.

To add an inputListOfValues component:
1. In the Component Palette, from the Common panel, drag an Input List Of Values

component and drop it onto the page.

2. In the Property Inspector, expand the Common section and set the following
attributes:

getTableModel() Returns the implementation of the TableModel class, on
which the table in the search and select dialog will be based
and created.

getItems() and
getRecentItems()

Return the items and recentItems lists to be displayed in the
combobox dropdown. Valid only for the
inputComboboxListOfValues component. Returns null for the
inputListOfValues component.

getItemDescriptors() Return the list of columnDescriptors to be displayed in the
dropdown list for an inputComboboxListOfValues
component.

getQueryModel() and
getQueryDescriptor()

Return the queryModel based on which the query component
inside the Search and Select dialog is created.

performQuery() Called when the search button in the query component is
clicked.

Table 11–1 (Cont.) ListOfValues Model API

Method Functionality

Using the inputListOfValues Component

11-10 Web User Interface Developer's Guide for Oracle Application Development Framework

■ model: Enter an EL expression that resolves to your ListOfValuesModel
implementation, as created in Section 11.2, "Creating the ListOfValues Data
Model."

■ value: Enter an EL expression that resolves to the attribute values used to
populate the list, as created in Section 11.2, "Creating the ListOfValues Data
Model."

3. Expand the Appearance section and set the following attribute values:

■ popupTitle: Specify the title of the Search and Select popup dialog.

■ searchDesc: Enter text to display as a mouseover tip for the component.

■ Placeholder: Specify the text that appears in the inputListOfValues
component if the component is empty and does not have focus. When the
component gets focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
inputListOfValues component.

The rest of the attributes in this section can be populated in the same manner as
any other input component. For more information, see Section 9.3, "Using the
inputText Component."

4. Expand the Behavior section and set the following attribute values:

■ autoSubmit: Set to true if you want the component to automatically submit
the enclosing form when an appropriate action takes place (a click, text
change, and so on). This will allow the auto-complete feature to work.

■ createPopupId: If you have implemented a popup dialog used to create a new
object in the list, specify the ID of that popup component. Doing so will
display a toolbar component above the table that contains a
commandToolbarButton component bound to the popup dialog you defined. If
you have added a dialog to the popup, then it will intelligently decide when to
refresh the table. If you have not added a dialog to the popup, then the table
will be always refreshed.

■ launchPopupListener: Enter an EL expression that resolves to a
launchPopupListener that you implement to provide additional functionality
when the popup is launched.

■ returnPopupListener: Enter an EL expression that resolves to a
returnPopupListener component that you implement to provide additional
functionality when the value is returned.

■ Usage: Specify how the inputListOfValues component will be rendered in
HTML 5 browser. The valid values are auto, text, and search. Default is auto.

If the usage type is search, the inputListOfValues component will render as
an HTML 5 search input type. Some HTML 5 browsers may add a Cancel icon
that can be used to clear the search text.

The rest of the attributes in this section can be populated in the same manner as
any other input component. For more information, see Section 9.3, "Using the
inputText Component."

5. If you want users to be able to create a new item, create a popup dialog with the
ID given in Step 4. For more information, see Chapter 13, "Using Popup Dialogs,
Menus, and Windows."

6. In the Component Palette, from the Operations panel, drag an Auto Suggest
Behavior and drop it as a child to the inputListOfValues component.

Using the inputListOfValues Component

Using List-of-Values Components 11-11

7. In the Property Inspector, for each of the auto suggest attributes, enter the:

■ EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the
suggestItems. The method signature should be of the form
List<javax.model.SelectItem>
suggestItems(javax.faces.context.FacesContext,
oracle.adf.view.rich.model.AutoSuggestUIHints)

■ EL expression that resolves to the smartList method. The method should
return List<javax.model.SelectItem> of the smart list items.

■ number of items to be displayed in the auto suggest list. Enter -1 to display the
complete list.

If you are implementing this method in a managed bean, the JSF page entry
should have the format shown in Example 11–3.

Example 11–3 autoSuggestBehavior Tag in an LOV

<af:inputListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>
</af:inputListOfValues>

If the component is being used with a data model such as ADF Model, the
suggestItem method should be provided by the default implementation.

8. If you are not using ADF Model, create the suggestItems method to process and
display the list. The suggestItems method signature is shown in Example 11–4.

Example 11–4 suggestItems Method Signature

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

11.3.2 What You May Need to Know About Skinning the Search and Select Dialogs in
the LOV Components

By default, the search and select dialogs that the InputComboboxListOfValues and
InputListOfValues components can be resized by end users when they render. You
can disable the end user’s ability to resize these dialogs by setting the value of the
-tr-stretch-search-dialog selector key to false in your application’s skin file, as
shown in Example 11–5. The default value of the -tr-stretch-search-dialog selector
key is true. For more information about skinning, see the skinning chapter.

Example 11–5 Disabling the Resizing of Search and Select Dialogs

af|inputComboboxListOfValues{
 -tr-stretch-search-dialog: false;
}
af|inputListOfValues{
 -tr-stretch-search-dialog: false;
}

Using the InputComboboxListOfValues Component

11-12 Web User Interface Developer's Guide for Oracle Application Development Framework

11.4 Using the InputComboboxListOfValues Component
The inputComboboxListOfValues component allows a user to select a value from a
dropdown list and populate the LOV field, and possibly other fields, on a page, similar
to the inputListOfValues component. However, it also allows users to view the
values in the list either as a complete list, or by most recently viewed. You can also
configure the component to perform a search in a popup dialog, as long as you have
implemented the query APIs, as documented in Section 11.2, "Creating the
ListOfValues Data Model."

For more information about skinning and the Search and Select dialog sizing, see
Section 11.3.2, "What You May Need to Know About Skinning the Search and Select
Dialogs in the LOV Components."

11.4.1 How to Add the InputComboboxListOfValues Component

Before you begin:
You should already have a created a page or page fragment.

To add an inputComboboxListOfValues component:
1. In the Component Palette, from the Common panel, drag an Input Combobox List

Of Values and drop it onto the page.

2. In the Property Inspector, expand the Common section and set the following
attributes:

■ model: Enter an EL expression that resolves to your ListOfValuesModel
implementation, as created in Section 11.2, "Creating the ListOfValues Data
Model."

■ value: Enter an EL expression that resolves to the attribute values used to
populate the list, as created in Section 11.2, "Creating the ListOfValues Data
Model."

3. Expand the Appearance section and set the following attribute values:

■ popupTitle: Specify the title of the Search and Select popup dialog.

■ searchDesc: Enter text to display as a mouseover tip for the component.

■ Placeholder: Specify the text that appears in the inputComboboxListOfValues
component if the component is empty and does not have focus. When the
component gets focus, or has a value, then the placeholder text is hidden.

The placeholder text is used to inform the user what should be entered in the
inputComboboxListOfValues component.

The rest of the attributes in this section can be populated in the same manner as
any other input component. For more information, see Section 9.3, "Using the
inputText Component."

4. Expand the Behavior section and set the following attribute values:

■ autoSubmit: Set to true if you want the component to automatically submit
the enclosing form when an appropriate action takes place (a click, text
change, and so on). This will allow the auto complete feature to work.

■ createPopupId: If you have implemented a popup dialog used to create a new
object in the list, specify the ID of that popup component. Doing so will
display a toolbar component above the table that contains a
commandToolbarButton component bound to the dialog you defined. If you

Using the InputComboboxListOfValues Component

Using List-of-Values Components 11-13

have added a dialog to the popup, then it will intelligently decide when to
refresh the table. If you have not added a dialog to the popup, then the table
will always be refreshed.

■ launchPopupListener: Enter an EL expression that resolves to a
launchPopupListener handler that you implement to provide additional
functionality when the popup dialog is opened.

■ returnPopupListener: Enter an EL expression that resolves to a
returnPopupListener handler that you implement to provide additional
functionality when the value is returned.

■ Usage: Specify how the inputComboboxListOfValues component will be
rendered in HTML 5 browser. The valid values are auto, text, and search.
Default is auto.

If the usage type is search, the inputComboboxListOfValues component will
render as an HTML 5 search input type. Some HTML 5 browsers may add a
Cancel icon that can be used to clear the search text.

The rest of the attributes in this section can be populated in the same manner as
any other input component. For more information, see Section 9.3, "Using the
inputText Component."

5. If you are using a launchPopupListener, you can use the getPopupType() method
of the LaunchPopupEvent class to differentiate the source of the event.
getPopupType() returns DROPDOWN_LIST if the event is a result of the launch of the
LOV Search and Select dialog, and SEARCH_DIALOG if the event is the result of the
user clicking the Search button in the dialog.

6. If you want users to be able to create a new item, create a popup dialog with the
ID given in Step 5. For more information, see Chapter 13, "Using Popup Dialogs,
Menus, and Windows."

7. In the Component Palette, from the Operations panel, drag an Auto Suggest
Behavior and drop it as child to the inputComboboxListOfValues component.

8. In the Property Inspector, for each of the auto suggest attributes, enter the:

■ EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the
suggestItems. The method signature should be of the form
List<javax.model.SelectItem>
suggestItems(javax.faces.context.FacesContext,
oracle.adf.view.rich.model.AutoSuggestUIHints)

■ EL expression that resolves to the smartList method. The method should
return List<javax.model.SelectItem> of the smart list items.

■ number of items to be displayed in the auto suggest list. Enter -1 to display the
complete list.

If you are implementing this method in a managed bean, the JSF page entry
should have the format shown in Example 11–6.

Example 11–6 autoSuggestBehavior Tag in an LOV

<af:inputComboboxListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"

Using the InputComboboxListOfValues Component

11-14 Web User Interface Developer's Guide for Oracle Application Development Framework

 maxSuggestedItems="7"/>
</af:inputComboboxListOfValues>

If the component is being used with a data model such as ADF Model, the
suggestItem method should be provided by the default implementation.

9. If you are not using the component with ADF Model, create the suggestItems
method to process and display the list. The suggestItems method signature is
shown in Example 11–7.

Example 11–7 suggestItems Method Signature

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

12

Using Query Components 12-1

12Using Query Components

This chapter describes how to use the query and quickQuery search panel components.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Query Components"

■ Section 12.2, "Implementing the Model for Your Query"

■ Section 12.3, "Using the quickQuery Component"

■ Section 12.4, "Using the query Component"

12.1 Introduction to Query Components
The query and quickQuery components are used to search through data sets. The
query component provides a comprehensive set of search criteria and controls, while
the quickQuery component can be used for searching on a single criterion.

The query component supports the following functionality:

■ Selecting and searching against multiple search criteria

■ Dynamically adding and deleting criteria items

■ Selecting search operators (associated to a single criterion)

■ Choosing match all or match any conjunction

■ Displaying in a basic, advanced, compact, simple, or design mode

■ Creating saved searches

■ Personalizing saved searches

By default, the advanced mode of the query component allows the user to add and
delete criteria items to the currently displayed search. However you can implement
your own QueryModel class that can hide certain features in basic mode (and expose
them only in advanced mode). For example, you might display operators only in
advanced mode or display more criteria in advanced mode than in basic mode.

Typically, the results of the query are displayed in a table or tree table, which is
identified using the resultComponentId attribute of the query component. However,
you can display the results in any other output components as well. The component
configured to display the results is automatically rerendered when a search is
performed.

Figure 12–1 shows an advanced mode query component with three search criteria.

Introduction to Query Components

12-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 12–1 Query Component with Three Search Criteria

You can create seeded searches, that is, searches whose criteria are already determined
and from which the user can choose, or you can allow the user to add criterion and
then save those searches. For example, Figure 12–1 shows a seeded search for an
employee. The user can enter values for the criteria on which the search will execute.
The user can also choose the operands (greater than, equals, less than) and the
conjunction (matches all or matches any, which creates either an "and" or "or" query).
The user can click the Add Fields dropdown list to add one or more criteria and then
save that search. If the application is configured to use persistence, then those search
criteria, along with the chosen operands and conjunctions, can be saved and
reaccessed using a given search name (for more information about persistence, see
Chapter 33, "Allowing User Customization on JSF Pages").

The quickQuery component is a simplified version of the query component. The user
can perform a search on any one of the searchable attributes by selecting it from a
dropdown list. Figure 12–2 shows a quickQuery component in horizontal layout.

Figure 12–2 A QuickQuery Component in Horizontal Layout

Both the query and quickQuery components use the QueryModel class to define and
execute searches. Create the associated QueryModel classes for each specific search you
want users to be able to execute.

The QueryModel class manages QueryDescriptor objects, which define a set of search
criteria. The QueryModel class is responsible for creating, deleting, and updating
QueryDescriptor objects. The QueryModel class also retrieves saved searches, both
those that are seeded and those that the user personalizes. For more information, refer
to the ADF Faces Javadoc.

You must create a QueryDescriptor class for each set of search criteria items. The
QueryDescriptor class is responsible for accessing the criteria and conjunction needed
to build each seeded search. It is also responsible for dynamically adding, deleting, or
adding and deleting criteria in response to end-user's actions. The QueryDescriptor
class also provides various UI hints such as mode, auto-execute, and so on. For more
information, refer to the ADF Faces Javadoc. One QueryModel class can manage
multiple QueryDescriptor objects.

Tip: Instead of having to build your own QueryModel
implementation, you can use ADF Business Components, which
provide the needed functionality. For more information, see the
"Creating ADF Databound Search Forms" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Implementing the Model for Your Query

Using Query Components 12-3

When a user creates a new saved search, a new QueryDescriptor object is created for
that saved search. When a search is executed, a QueryOperationEvent is fired for
operations performed on saved searches. The operations include changeMode, create,
delete, reset, select and update. This event is consumed by the
QueryOperationListener handlers during the Invoke Application phase of the JSF
lifecycle. The QueryOperationEvent event takes the QueryDescriptor object as an
argument and passes it to the listener. ADF Faces provides a default implementation of
the listener. For details of what the listener does, see Table 12–2.

For example, updating a saved search would be accomplished by calling the
QueryModel’s update() method. A QueryOperationEvent event is queued, and then
consumed by the QueryOperationListener handler, which performs processing to
change the model information related to the update operation.

 The query operation actions that generate a QueryOperationEvent event are:

■ Saving a search

■ Deleting a saved search

■ Toggling between the basic and advanced mode

■ Resetting a saved search

■ Selecting a different saved search

■ Updating a saved search

■ Updating the value of a criterion that has dependent criteria

The hasDependentCriterion method of the AttributeCriterion class can be called to
check to see whether a criterion has dependents. By default, the method returns false,
but it returns true if the criterion has dependent criteria. When that criterion’s value
has changed, a QueryOperationEvent is queued for the Update Model Values JSF
lifecycle phase. The model will need a listener to update the values of the dependent
criterion based on the value entered in its root criteria.

12.2 Implementing the Model for Your Query
Before you can use the query components, you must to create your QueryModel classes.

Figure 12–3 shows the class diagram for a QueryModel class.

Tip: You can use the quickQuery component without implementing
a QueryModel class. However, you will have to add some additional
logic to a managed bean. For more information, see Section 12.3.2,
"How to Use a quickQuery Component Without a Model."

Implementing the Model for Your Query

12-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 12–3 Class Diagram for QueryModel

To create the model classes:
1. Create implementations of each of the interface classes shown in Figure 12–3.

Implement one QueryModel class and then a QueryDescriptor class with
appropriate criteria (operators and values) for each system-seeded search. For
example implementations of the different model classes for a query, see the classes
located in the oracle.adfdemo.view.query.rich package of the ADF Faces
sample application.

2. Create a QueryListener handler method on a managed bean that listens for the
QueryEvent event (this will be referenced by a button on the query component).
This listener will invoke the proper APIs in the QueryModel to execute the query.
Example 12–1 shows the listener method of a basic QueryListener
implementation that constructs a String representation of the search criteria. This
String is then displayed as the search result.

Note: If your query uses composition (for example,
ConjunctionCriterion 1...n with
AttributeCriterion/ConjunctionCriterion), this relationship is not
enforced by the abstract interfaces. Your implementation must decide
whether to use composition over association, and determine how the
lifecyle of these objects are managed.

Implementing the Model for Your Query

Using Query Components 12-5

Example 12–1 A QueryListener Handler Method

 public void processQuery(QueryEvent event)
 {
 DemoQueryDescriptor descriptor = (DemoQueryDescriptor) event.getDescriptor();
 String sqlString = descriptor.getSavedSearchDef().toString();
 setSqlString(sqlString);
 }

Query component has a refresh() method on the UIXQuery component. This method
should be called when the model definition changes and the query component need to
be refreshed (i.e., all its children removed and recreated). When a new criterion is
added to the QueryDescriptor or an existing one is removed, if the underlying model
returns a different collection of criterion objects than what the component subtree
expects, then this method should be called. QueryOperationListener, QueryListener,
and ActionListener should all call this method. The query component itself will be
flushed at the end of the Invoke Application Phase. This method is a no-op when
called during the Render Response Phase.

To better understand what your implementations must accomplish, Table 12–1 and
Table 12–2 map the functionality found in the UI component shown in Figure 12–4
with the corresponding interface.

Figure 12–4 Query Component and Associated Popup Dialog

Implementing the Model for Your Query

12-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Table 12–1 shows UI artifacts rendered for the query component, the associated class,
class property, and methods used by the artifact.

Table 12–1 Query UI Artifacts and Associated Model Class Operations and Properties

UI Artifact Class Property/Methods Used Comments

1 Search panel The QueryDescriptor instance provides
the items displayed in the panel.

Based on a saved search.

2 Disclosure icon Opens or closes the search panel

3 Match type radio
button

Available through the
getConjunction() method on the
ConjunctionCriterion class.

Displays the default conjunction to use
between search fields, when a query is
performed. If a default is set, and it is the
same for all search fields, it appears
selected. If the search fields are configured
such that a mix of different conjunctions
must be used between them, then a value
may not be selected on the UI.

For example, if the All conjunction type is
used between all the search fields, then All
appears selected. If it is a mix of All and
Any, then none of the radio buttons appears
selected.

The Match Type will be read only if the
conjunctionReadOnly property is set to
true. Its not rendered at all when the
displayMode attribute is set to simple.

Implementing the Model for Your Query

Using Query Components 12-7

Table 12–2 shows the behaviors of the different UI artifacts, and the associated
methods invoked to execute the behavior.

4 Group of search
fields

The collection of search fields for a
QueryDescriptor object is represented
by a ConjunctionCriterion object,
returned by the method
getConjunctionCriterion() on the
QueryDescriptor class. The
getCriterionList() method returns a
List<Criterion> list.

Displays one or more search fields
associated with the currently selected
search.

5 Search field An AttributeCriterion class provides
information specific to a search field
instance. An AttributeCriterion object
is an item in the List<Criterion> list
returned by getCriterionList()
method on the ConjunctionCriterion
class (see #4).

An AttributeDescriptor class provides
static information pertaining to a search
field. This is available through the
method getAttribute(), on the
AttributeCriterion class.

The getConverter() method of the
AttributeDescriptor class can be
overridden to return a converter object
of type
javax.faces.convert.Converter.
When defined, the attribute value is
converted using this converter instance.
The default return value is null.

The hasDependentCriterion method in
the AttributeCriterion class returns
true if the criterion has dependents. If
the criterion has dependents, then the
dependent criterion fields are refreshed
when the value for this criterion
changes. By default this method returns
false.

Each search field contains a label, an
operator, one or more value components
(for example, an input text component),
and an optional delete icon. The
information required to render these can be
either specific to an instance of a search
field (in a saved search) or it can be generic
and unchanging regardless of which saved
search it is part of.

For example, assume an Employee
business object contains the search fields
Employee Name and Salary.

A user can then configure two different
searches: one named Low Salaried
Employees and one named High Salaried
Employees. Both searches contain two
search fields based on the Employee and
Salary attributes. Even though both saved
searches are based on the same attributes
of the Employee object, the search field
Salary is configured to have its default
operator as less than and value as 50000.00
for the low Salaried Employees search and
for the High Salaried Employees search,
with a default operator of greater than and
value of 100000.00. Selecting the saved
searches on the UI will show the
appropriate operator and values for that
search.

Regardless of the search selected by the
user, the search field for Salary always has
to render a number component, and the
label always has to show Salary.

6 Saved Searches
dropdown

System- and user-saved searches are
available through the methods
getSystemQueries() and
getUserQueries() on the QueryModel
class.

Displays a list of available system- and
user-saved searches. Saved searches are
listed in alphabetical order.

A Personalize option is also added if the
saveQueryMode property is set to default.
Selecting this option opens a Personalize
dialog, which allows users to personalize
saved searches. They can duplicate or
update an existing saved search.

Table 12–1 (Cont.) Query UI Artifacts and Associated Model Class Operations and

UI Artifact Class Property/Methods Used Comments

Implementing the Model for Your Query

12-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Table 12–2 UI Artifact Behaviors and Associated Methods

UI Artifact Class Method Invoked Event Generated Comments

7 Delete icon During the Invoke Application
phase, the method
removeCriterion() on the
QueryDescriptor class is called
automatically by an internal
ActionListener handler
registered with the command
component.

ActionEvent Deletes a search field
from the current
QueryDescriptor object.

8 Search button During the Apply Request
Values phase of the JSF lifecycle,
a QueryEvent event is queued, to
be broadcast during the Invoke
Application phase.

During the Update Model Values
phase, the selected operator and
the values entered in the search
fields are automatically updated
to the model using the EL
expressions added to the
operator and value components
(for more information, see
Section 12.4.1, "How to Add the
Query Component"). These
expressions should invoke the
get/setOperator();
get/setOperators(); and
getValues() methods,
respectively, on the
AttributeCriterion class.

During the Invoke Application
phase, the QueryListener
registered with the query
component is invoked and this
performs the search.

You must implement this
listener.

QueryEvent Rendered always on the
footer (footer contents
are not rendered at all
when the displayMode
attribute is simple)

Performs a query using
the select operator and
selected Match radio (if
no selection is made the
default is used), and the
values entered for every
search field.

9 Reset button During the Apply Request
Values phase of the JSF lifecycle,
a QueryOperationEvent event is
queued with the operation type
QueryOperationEvent.
Operation.RESET, to be
broadcast during the Invoke
Application phase.

During the Invoke Application
phase, the method reset() on
the QueryModel class is called.
This is done automatically by an
internal
QueryOperationListener
handler registered with the
query component. You must
override this method to reset the
QueryDescriptor object to its
original state.

QueryOperationEvent (an
internal QueryOperation
Listener handler is
registered with the query
component that in turn
calls the model methods).

Resets the search fields
to its previous saved
state.

Implementing the Model for Your Query

Using Query Components 12-9

10 Save button During the Apply Request
Values phase of the JSF lifecycle,
a QueryOperationEvent event is
queued with the operation type
QueryOperationEvent.
Operation.SAVE, to be broadcast
during the Invoke Application
phase.

During the Invoke Application
phase, the method create() on
the QueryModel class is called.
After the call to the create()
method, the update() method is
called to save the hints (selected
by the user in the dialog) onto
the new saved search. This is
done automatically by an
internal
QueryOperationListener
handler registered with the
query component. You must
override this method to create a
new object based on the
argument passed in.

QueryOperationEvent (an
internal QueryOperation
Listener handler is
registered with the query
component that in turn
calls the model methods).

Creates a new saved
search based on the
current saved search
settings, including any
new search fields added
by the user.

11 Add Fields
dropdown list

During the Invoke Application
phase, the method
addCriterion() on the
QueryDescriptor class is called
automatically by an internal
ActionListener handler
registered with the command
component. You must override
this method to create a new
AttributeCriterion object
based on the
AttributeDescriptor object
(identified by the name
argument).

ActionEvent Adds an attribute as a
search field to the
existing saved search.

12 Mode (Basic or
Advanced) button

During the Apply Request
Values phase of the JSF lifecycle,
a QueryOperationEvent event is
queued with the operation type
QueryOperationEvent.
Operation.MODE_CHANGE, to be
broadcast during the Invoke
Application phase.

During the Invoke Application
phase, the method
changeMode()on the QueryModel
class is called.

QueryOperationEvent (an
internal QueryOperation
Listener handler is
registered with the query
component that in turn
calls the model methods).

Clicking the mode
button toggles the mode.

Table 12–2 (Cont.) UI Artifact Behaviors and Associated Methods

UI Artifact Class Method Invoked Event Generated Comments

Using the quickQuery Component

12-10 Web User Interface Developer's Guide for Oracle Application Development Framework

12.3 Using the quickQuery Component
The quickQuery component has one dropdown list that allows a user to select an
attribute to search on. The available searchable attributes are drawn from your
implementation of the model or from a managed bean. The user can search against the
selected attribute or against all attributes.

A quickQuery component may be used as the starting point of a more complex search
using a query component. For example, the user may perform a quick query search on
one attribute, and if successful, may want to continue to a more complex search. The
quickQuery component supports this by allowing you to place command components
in the end facet, which you can bind to a method on a managed bean that allows the
user to switch from a quickQuery to a query component.

13 Delete button During the Invoke Application
phase, the method delete() on
the QueryModel class is called.
This is done automatically by an
internal
QueryOperationListener
handler registered with the
query component. You must
override this method order to
delete the QueryDescriptor
object.

ActionEvent Deletes the selected
saved search, unless it is
the one currently in use.

14 Apply button During the Apply Request
Values phase of the JSF lifecycle,
a QueryOperationEvent event is
queued with the operation type
QueryOperationEvent.
Operation.UPDATE, to be
broadcast during the Invoke
Application phase.

During the Invoke Application
phase, the method update() on
the QueryModel class is called.
This is done automatically by an
internal
QueryOperationListener
handler registered with the
query component. You must
override this method in order to
update the QueryDescriptor
object using the arguments
passed in.

QueryOperationEvent (an
internal QueryOperation
Listener is registered
with the query
component that in turn
calls the model methods).

Applies changes made to
the selected saved
search.

15 OK button Same as the Apply button. QueryOperationEvent (an
internal QueryOperation
Listener handler is
registered with the query
component that in turn
calls the model methods).

Applies changes made to
the selected saved search
and the dialog is closed
afterwards.

16 Cancel button No method defined for this
action.

QueryOperationEvent (an
internal QueryOperation
Listener handler is
registered with the query
component that in turn
calls the model methods).

Cancels any edits made
in the dialog.

Table 12–2 (Cont.) UI Artifact Behaviors and Associated Methods

UI Artifact Class Method Invoked Event Generated Comments

Using the quickQuery Component

Using Query Components 12-11

The quickQuery component renders the searchable criteria in a dropdown list and
then, depending on the type of the criteria chosen at runtime, the quickQuery
component renders different criteria fields based on the attribute type. For example, if
the attribute type is Number, it renders an inputNumberSpinbox component. You do not
need to add these components as long as you have implemented the complete model
for your query. If instead you have the logic in a managed bean and do not need a
complete model, then you create the quickQuery component artifacts manually. For
more information, see Section 12.3.2, "How to Use a quickQuery Component Without a
Model."

12.3.1 How to Add the quickQuery Component Using a Model

Before you begin
Implement a QueryModel class and associated classes. For more information, see
Section 12.2, "Implementing the Model for Your Query."

To add a quickQuery component:
1. In the Component Palette, from the Common Components panel, drag a Quick

Query and drop it onto the page.

2. Expand the Common section of the Property Inspector and set the following
attributes:

■ id: Enter a unique ID for the component.

■ layout: Specify if you want the component to be displayed horizontally with
the criterion and value next to each other, as shown in Figure 12–2, or
vertically as shown in Figure 12–5.

Figure 12–5 A quickQuery Component Set to Display Vertically

■ model: Enter an EL expression that evaluates to the class that implements the
QueryModel class, as created in Section 12.2, "Implementing the Model for Your
Query."

■ value: Enter an EL expression that evaluates to the class that implements the
QueryDescriptor class, as created in Section 12.2, "Implementing the Model
for Your Query."

3. Expand the Behavior section and set the following attributes:

■ conjunctionReadOnly: Specify whether or not the user should be able to set
the Match Any or Match All radio buttons. When set to false, the user can set
the conjunction. When set to true, the radio buttons will not be rendered.

■ queryListener: Enter an EL expression that evaluates to the QueryListener
handler you created in Section 12.2, "Implementing the Model for Your
Query."

4. Drag and drop a table (or other component that will display the search results)
onto the page. Set the results component’s PartialTriggers with the ID of the
quickQuery component. The value of this component should resolve to a
CollectionModel object that contains the filtered results.

Using the quickQuery Component

12-12 Web User Interface Developer's Guide for Oracle Application Development Framework

5. If you want users to be able to click the Advanced link to turn the quickQuery
component into a full query component, add a command component to the End
facet of the quickQuery component, and implement logic that will hide the
quickQuery component and display the query component.

12.3.2 How to Use a quickQuery Component Without a Model
You can use the quickQuery component without a model, for example if all your query
logic resides in a simple managed bean, including a QueryListener handler that will
execute the search and return the results. You must to manually add and bind the
components required to create the complete quickQuery component.

To add a quickQuery component:
1. On a managed bean, create a valueChangeListener handler for the

selectOneChoice component that will display the attributes on which the user can
search. The valueChangeListener handler should handle the choice for which
attribute to search on.

2. On a managed bean, create the QueryListener handle to execute the search. This
handle will use the ID of the input component used to enter the search criterion
value, to retrieve the component and the value to execute the query.

3. In the Component Palette, from the Common Components panel, drag a Quick
Query and drop it onto the page.

4. In the Property Inspector, expand the Common section, and set the following
attributes:

■ id: Enter a unique ID for the component.

■ layout: Specify if you want the component to display horizontally with the
criterion and value next to each other, as shown in Figure 12–2, or vertically, as
shown in Figure 12–5.

5. Expand the Behavior section and set the QueryListener attribute to an EL
expression that evaluates to the QueryListener handler created in Step 2.

6. In the Component Palette, from the Common Components panel, drag a Select
One Choice and drop it onto the criteriaItems facet of the quickQuery
component. In the dialog, choose either to enter an EL expression that evaluates to
the list of attributes on which the user can search, or to enter a static list. For help
with the dialog, press F1 or click Help.

7. In the Structure window, select the selectOneChoice component in the
criteriaItems facet, and set the following attributes:

■ simple: Set to true so that no label for the component displays.

■ valueChangeListener: Enter an EL expression that evaluates to the listener
created in Step 1.

■ autoSubmit: Set to true.

8. From the Component Palette, add select list items as needed. For more
information about using the selectOneChoice and selectItems components, see
Section 9.6, "Using Selection Components."

9. In the Component Palette, from the Common Components panel, drag an
inputText component as a direct child to the quickQuery component. Set the
following attributes:

■ simple: Set to true so that the label is not displayed.

Using the query Component

Using Query Components 12-13

■ value: Enter an EL expression that evaluates to the property that will contain
the value that the user enters.

10. If you want users to be able to click the Advanced link to turn the quickQuery
component into a full query component, add a command component to the End
facet of the quickQuery component, and implement logic that will hide the
quickQuery component and display the query component.

11. In the Component Palette, from the Common Components panel, drag a table (or
other component that will display the search results) onto the page. Set the results
component’s PartialTriggers with the ID of the quickQuery component. The
value of this component should resolve to a CollectionModel object that contains
the filtered results.

12.3.3 What Happens at Runtime: How the Framework Renders the quickQuery
Component and Executes the Search

When the quickQuery component is bound to a QueryDescriptor object, the
selectOneChoice and inputText components are automatically added at runtime as
the page is rendered. However, you can provide your own components. If you do
provide both the component to display the searchable attributes and the inputText
components, then you need the QueryListener handler to get the name-value pair
from your components.

If you provide only your own component to show the searchable attributes (and use
the default input text component), the framework will display an input text
component. You must have your QueryListener handler get the attribute name from
the dropdown list and the value from the QueryDescriptor.getCurrentCriterion()
method to perform the query.

If you provide only your own component to collect the searchable attribute value (and
use the default selectOneChoice component to provide the attribute name), then the
framework will display the selectOneChoice component. You must have your
QueryListener handler get the attribute name from the
QueryDescriptor.getCurrentCriterion() method and the value from your
component.

If you choose not to bind the QuickQuery component value attribute to a
QueryDescriptor object, and you provide both components, when the Go button is
clicked, the framework queues a QueryEvent event with a null QueryDescriptor
object. The provided QueryListener handler then executes the query using the
changeValueListener handler to access the name and the input component to access
the value. You will need to implement a QueryListener handler to retrieve the
attribute name from your selectOneChoice component and the attribute value from
your inputText component, and then perform a query.

12.4 Using the query Component
The query component is used for full feature searches. It has a basic and an advanced
mode, which the user can toggle between by clicking a button.

The features for a basic mode query include:

■ Dropdown list of selectable search criteria operators

Tip: If you do not provide an inputText component, then at runtime,
a disabled inputText component and a disabled Go icon will be
rendered.

Using the query Component

12-14 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Selectable WHERE clause conjunction of either AND or OR (match all or match any)

■ Saved (seeded) searches

■ Personalized saved searches

The advanced mode query form also includes the ability for the user to dynamically
add search criteria by selecting from a list of searchable attributes. The user can
subsequently delete any criteria that were added.

The user can select from the dropdown list of operators to create a query for the
search. The input fields may be configured to be list-of-values (LOV), number
spinners, date choosers, or other input components.

To support selecting multiple items from a list, the model must expose a control hint
on viewCriteriaItem and the underlying attribute must be defined as an LOV in the
corresponding view object. The hint is used to enable or disable the multiple selection
or "in" operator functionality. When multiple selection is enabled, selecting the Equals
or Does not equal operator will render the search criteria field as a selectManyChoice
component. The user can choose multiple items from the list.

The component for the search criteria field depends on the underlying attribute data
type, the operator that was chosen, and whether multiple selection is enabled. For
example, a search field for an attribute of type String with the Contains operator
chosen would be rendered as an inputText component, as shown in Table 12–3.

If the operator is Equals or Does not equal, but multiple selection is not enabled, the
component defaults to the component specified in the Default List Type hint from the
model.

If the underlying attribute is the Number data type, the component that will be
rendered is shown in Table 12–4.

Table 12–3 Rendered Component for Search Criteria Field of Type String

Operator Component
Component When Multiple
Select Is Enabled

Starts with af:inputText af:inputText

Ends with af:inputText af:inputText

Equals Default list type hint af:selectManyChoice

Does not equal Default list type hint af:selectManyChoice

Contains af:inputText af:inputText

Does not contain af:inputText af:inputText

Is blank None None

Is not blank None None

Table 12–4 Rendered Component for Search Criteria Field of Type Number

Operator Component
Component When Multiple
Select Is Enabled

Equals Default list type hint af:selectManyChoice

Does not equal Default list type hint af:selectManyChoice

Less than af:inputNumberSpinBox af:inputNumberSpinBox

Using the query Component

Using Query Components 12-15

If the underlying attribute is the Date data type, the component that will be rendered
is shown in Table 12–5.

If a search criterion's underlying attribute was defined as an LOV, in order for the
auto-complete feature to work, the ListOfValues model instance returned by the
getModelList method of the AttributeCriterion class must return true for its
isAutoCompleteEnabled method. For more information about LOV, see Chapter 11,
"Using List-of-Values Components."

When autoSubmit is set to true, any value change on the search criterion will be
immediately pushed to the model. The query component will automatically flush its
criterion list only when it has dependent criteria. If the criterion instance has no
dependent criteria but autoSubmit is set to true, then the query component will be
only partially refreshed.

A Match All or Match Any radio button group further modifies the query. A Match
All selection is essentially an AND function. The query will return only rows that match
all the selected criteria. A Match Any selection is an OR function. The query will return
all rows that match any one of the criteria items.

Less than or equal to af:inputNumberSpinBox af:inputNumberSpinBox

Greater than af:inputNumberSpinBox af:inputNumberSpinBox

Greater than or equal to af:inputNumberSpinBox af:inputNumberSpinBox

Between af:inputNumberSpinBox af:inputNumberSpinBox

Not between af:inputNumberSpinBox af:inputNumberSpinBox

Is blank None None

Is not blank None None

Table 12–5 Rendered Component for Search Criteria Field of Type Date

Operator Component
Component When Multiple
Select Is Enabled

Equals Default list type hint af:selectManyChoice

Does not equal Default list type hint af:selectManyChoice

Before af:inputDate af:inputDate

After af:inputDate af:inputDate

On or before af:inputDate af:inputDate

On or after af:inputDate af:inputDate

Between af:inputDate (2) af:inputDate (2)

Not between af:inputDate (2) af:inputDate (2)

Is blank None None

Is not blank None None

Table 12–4 (Cont.) Rendered Component for Search Criteria Field of Type Number

Operator Component
Component When Multiple
Select Is Enabled

Using the query Component

12-16 Web User Interface Developer's Guide for Oracle Application Development Framework

After the user enters all the search criteria values (including null values) and selects
the Match All or Match Any radio button, the user can click the Search button to
initiate the query. The query results can be displayed in any output component.
Typically, the output component will be a table or tree table, but you can associate
other display components such as af:forms, af:outputText, and graphics to be the
results component by specifying it in the resultComponentId attribute.

If the Basic or Advanced button is enabled and displayed, the user can toggle between
the two modes. Each mode will display only the search criteria that were defined for
that mode. A search criteria field can be defined to appear only for basic, only for
advanced, or for both modes.

In advanced mode, the control panel also includes an Add Fields button that exposes a
popup list of searchable attributes. When the user selects any of these attributes, a
dynamically generated search criteria input field and dropdown operator list is
displayed. The position of all search criteria input fields, as well as newly added fields,
are determined by the model implementation.

This newly created search criteria field will also have a delete icon next to it. The user
can subsequently click this icon to delete the added field. The originally defined search
criteria fields do not have a delete icon and therefore cannot be deleted by the user.
Figure 12–6 shows an advanced mode query component with a dynamically added
search criteria field named Salary. Notice the delete icon (an X) next to the field.

Figure 12–6 Advanced Mode Query with Dynamically Added Search Criteria

The user can also save the entered search criteria and the mode by clicking the Save
button. A popup dialog allows the user to provide a name for the saved search and
specify hints by selecting checkboxes. A persistent data store is required if the saved
search is to be available beyond the session. For more information about persistence,
see Chapter 33, "Allowing User Customization on JSF Pages."

A seeded search is essentially a saved search that was created by the application
developer. When the component is initialized, any seeded searches associated with
that query component become available for the user to select.

Any user-created saved searches and seeded system searches appear in the Saved
Search dropdown list. The seeded searches and user-saved searches are separated by a
divider.

Users can also personalize the saved and seeded searches for future use.
Personalization of saved searches requires the availability of a persistent data store.
For more information about persistence, see Chapter 33, "Allowing User
Customization on JSF Pages."

Along with the default display described previously, you can also configure the query
component to display in a compact mode, simple mode, or design mode. The compact
mode has no header or border, and the Saved Search dropdown list moves next to the

Using the query Component

Using Query Components 12-17

expand or collapse icon. Figure 12–7 shows the same query component as in
Figure 12–6, but set to compact mode.

Figure 12–7 Query Component in Compact Mode

The simple mode displays the component without the header and footer, and without
the buttons typically displayed in those areas. Figure 12–8 shows the same query
component set to simple mode.

Figure 12–8 Query Component in Simple Mode

The design mode has the same visual appearance as the simple mode but is used
mostly for designing the QueryDescriptor.

The query component supports toolbar and footer facets that allow you to add
additional components to the query, such as command buttons. For example, you can
create command components to toggle between the quickQuery and query
components and place those in a toolbar in the toolbar facet.

12.4.1 How to Add the Query Component

Before you begin:
Implement a QueryModel class and associated classes. For more information, see
Section 12.2, "Implementing the Model for Your Query."

To add a query component:
1. In the Component Palette, from the Common Components panel, drag a Query

and drop it onto the page.

2. In the Property Inspector, expand the Common section and set the following
attributes:

■ id: Set a unique ID for the component.

■ model: Enter an EL expression that resolves to the QueryModel class, as created
in Section 12.2, "Implementing the Model for Your Query."

■ value: Enter an EL expression that resolves to the QueryDescriptor class, as
created in Section 12.2, "Implementing the Model for Your Query."

Using the query Component

12-18 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Expand the Appearance section and set the following attributes:

■ displayMode: Specify if you want the component to display in Default,
Simple, Compact, or Design mode.

■ saveQueryMode: Specify if you want saved searches to be displayed and used
at runtime. Set to default if you want the user to be able to view and edit all
saved searches. Set to readOnly if you want the user to only be able to view
and select saved searches, but not update them. Set to hidden if you do not
want any saved searches to be displayed.

■ modeButtonPosition: Specify if you want the button that allows the user to
switch the mode from basic to advanced to be displayed in toolbar (the
default) or in the footer facet.

■ modeChangeVisible: Set to false if you want to hide the basic or advanced
toggle button.

4. Expand the Behavior section and set the following:

■ conjunctionReadOnly: Set to false if you want the user to be able to select a
radio button to determine if the search should match all criteria (query will
use the AND function) or any criteria (query will use the OR function). When set
to true, the radio buttons will not be rendered.

■ queryListener: Enter an EL expression that evaluates to the QueryListener
handler, as created in Section 12.2, "Implementing the Model for Your Query."

5. Expand the Other section and set the following:

■ criterionFeatures: Enter matchCaseDisplayed to allow the user to set
matchCase for a criterion. This option is available only for String data types.

■ runQueryAutomatically: Select allSavedSearches to enable all system and
user-created saved searches to run automatically upon initial render, changes
in saved search selection, and reset.

Select searchDependent to allow the developer to choose the Run
Automatically option at design time for each system query. Default is
searchDependent.

For new user-created saved searches, if searchDependent is selected, the
Create Saved Search dialog will have the Run Automatically option selected
by default. If allSavedSearches is selected, the Run Automatically option is
not displayed but is set to true implicitly.

6. In the Component Palette, from the Common Components panel, drag a table (or
other component that will display the search results) onto the page. Set an ID on
the table. The value of this component should resolve to a CollectionModel object
that contains the filtered results.

7. In the Structure window, select the query component and set the
resultComponentID to the ID of the table.

13

Using Popup Dialogs, Menus, and Windows 13-1

13Using Popup Dialogs, Menus, and Windows

This chapter describes how to create and use popup elements in secondary windows
including dialogs, menus, and windows on JSF pages. The chapter also describes how
to use the ADF Faces dialog framework to create dialogs with a separate page flow.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Using Popup Elements"

■ Section 13.2, "Declaratively Creating Popup Elements"

■ Section 13.3, "Programmatically Invoking a Popup"

■ Section 13.4, "Invoking Popup Elements"

■ Section 13.5, "Displaying Contextual Information"

■ Section 13.6, "Controlling the Automatic Cancellation of Inline Popups"

13.1 Introduction to Using Popup Elements
ADF Faces provides a set of rich client components for hiding and showing
information in a secondary window. The popup component is an invisible layout
control, typically used in conjunction with other components to display inline (that is,
belonging to the same page) dialogs, windows, and menus.

For example, Figure 13–1 shows a dialog box created by placing a dialog component
as a child to a popup component. A user can enter search criteria and click OK to
submit the entry, or exit the dialog by clicking Cancel or closing the dialog.

Figure 13–1 af:dialog Component

Declaratively Creating Popup Elements

13-2 Web User Interface Developer's Guide for Oracle Application Development Framework

You can also use components within a popup to display contextual information related
to another component. When so configured, the related component displays a small
square. When moused over, the icon grows and also displays a note icon as shown in
Figure 13–2.

Figure 13–2 With Mouseover, Larger Icon with Note is Displayed

When the user clicks the note icon, the associated popup displays its enclosed content.

ADF Faces also provides a dialog framework to support building pages for a process
displayed separate from the parent page. This framework supports multiple dialog
pages with a control flow of their own. For example, say a user is checking out of a
web site after selecting a purchase and decides to sign up for a new credit card before
completing the checkout. The credit card transaction could be launched using the
dialog framework in an external browser window. The completion of the credit card
transaction does not close the checkout transaction on the original page.

This dialog framework can also be used inline as part of the parent page. This can be
useful when you want the pages to have a control flow of their own, but you don’t
want the external window blocked by popup blockers.

If your application uses the full Fusion technology stack, note that this dialog
framework is integrated with ADF Controller for use with ADF task flows. For more
information, see the "Running a Bounded Task Flow in a Modal Dialog" section in the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

13.2 Declaratively Creating Popup Elements
The dialog, panelWindow, menu, and noteWindow components can all be used inside the
popup component to display inline popup elements, as shown in Table 13–1. When no
child component exists for the popup component, a very simple inline popup is
displayed.

Table 13–1 Components Used with the popup Component

Component Displays at Runtime

dialog Displays its children inside a dialog and delivers events when
the OK, Yes, No, and Cancel actions are activated. For more
information, see Section 13.2.1, "How to Create a Dialog."

Declaratively Creating Popup Elements

Using Popup Dialogs, Menus, and Windows 13-3

Both the dialog and panelWindow components support definition help, content
displayed when a user moves the cursor over a help icon (a blue circle with a question
mark). For more information, see Section 17.5, "Displaying Help for Components."

Typically, you use a command component in conjunction with the showPopupBehavior
tag to launch a popup element. You associate the showPopupBehavior tag with the
component it should launch. This tag also controls the positioning of the popup
element (when needed).

In addition to being used with action events on command components, the
showPopupBehavior tag can be used in conjunction with other events, such as the

panelWindow Displays its children in a window that is similar to a dialog, but
does not support events. For more information, see
Section 13.2.2, "How to Create a Panel Window."

menu Displays a context menu for an associated component. For more
information, see Section 13.2.3, "How to Create a Context Menu."

noteWindow Displays read-only information associated with a particular UI
component. Note windows are used to display help and
messages and are commonly shown on mouseover or on focus
gestures. For more information, see Section 13.2.4, "How to
Create a Note Window."

popup component without a
parent component

Displays content inline.

Table 13–1 (Cont.) Components Used with the popup Component

Component Displays at Runtime

Declaratively Creating Popup Elements

13-4 Web User Interface Developer's Guide for Oracle Application Development Framework

showDetail event and the selection event. For more information, see Section 13.4,
"Invoking Popup Elements."

By default, the content of the popup element is not sent from the server until the
popup element is displayed. This represents a trade-off between the speed of showing
the popup element when it is opened and the speed of rendering the parent page.
Once the popup element is loaded, by default the content will be cached on the client
for rapid display.

You can modify this content delivery strategy by setting the contentDelivery attribute
on the popup component to one of the following options:

■ lazy - The default strategy previously described. The content is not loaded until
you show the popup element once, after which it is cached.

■ immediate - The content is loaded onto the page immediately, allowing the content
to be displayed as rapidly as possible. Use this strategy for popup elements that
are consistently used by all users every time they use the page.

■ lazyUncached - The content is not loaded until the popup element is displayed,
and then the content is reloaded every time you show the popup element. Use this
strategy if the popup element shows data that can become stale or outdated.

If you choose to set the popup component’s contentDelivery attribute to lazy or
lazyUncached, you can further optimize the performance of the popup component and
the page that hosts it by setting another popup component attribute (childCreation) to
deferred. This defers the creation of the popup component's child components until
the application delivers the content. The default value for the childCreation attribute
is immediate.

13.2.1 How to Create a Dialog
Create a dialog when you need the dialog to raise events when dismissed. Once you
add the dialog component as a child to the popup component, you can add other
components to display and collect data.

By default, the dialog component can have the following combination of buttons:

■ Cancel

■ OK

■ OK and Cancel

■ Yes and No

■ Yes, No, and Cancel

■ None

These buttons launch a dialogEvent when clicked. You can add other buttons to a
dialog using the buttonBar facet. Any buttons that you add do not invoke the
dialogEvent. Instead, they invoke the standard actionEvent. It is recommended that
any of these buttons that you add have their partialSubmit attribute set to true. This
makes sure that an actionEvent invokes only on components within the dialog.
However, you can add buttons and set their partialSubmit attribute to false if you
set the af:popup component’s autoCancel property’s value to disabled. Choosing this
latter option (partialSubmit set to false) results in increased wait times for end users
because your application reloads the page and reinitializes components on the page
before it restores the popup component’s visibility (and by extension, the dialog
component). Note that you must set the command component’s partialSubmit
attribute to true if the af:popup component’s autoCancel property’s value is set to

Declaratively Creating Popup Elements

Using Popup Dialogs, Menus, and Windows 13-5

enabled (the default value). For more information about the use of the af:popup
component’s autoCancel property, see Section 13.6, "Controlling the Automatic
Cancellation of Inline Popups."

To create an inline dialog:
1. In the Component Palette, from the Common Components panel, drag and drop a

Popup onto the JSF page.

2. In the Property Inspector, expand the Common section and set the following
attributes:

■ ContentDelivery: Select how the content is delivered to the component in the
popup.

■ Animate: Select true to enable animation. Animation is determined by
configuration in the trinidad-config.xml file and by its skin properties (for
more information, see Section A.6.2.1, "Animation Enabled"). You can override
this setting by selecting false.

■ LauncherVar: Enter a variable to be used to reference the launch component.
This variable is reachable only during event delivery on the popup or its child
components, and only if the EventContext is set to launcher.

■ EventContext: Set to launcher if the popup is shared by multiple objects, for
example if the dialog within the popup will display information for the
selected row in a table. Setting this attribute to launcher makes the row
clicked current before the event listener is called, and returns data only for that
row. For more information, see Section 13.2.5, "What Happens at Runtime:
Popup Component Events."

3. Optionally, in the Property Inspector, expand the Other section and set a value for
the AutoCancel property to determine the automatic cancel behavior. For more
information, see Section 13.6, "Controlling the Automatic Cancellation of Inline
Popups."

4. From the Component Palette, drag and drop a Dialog as a direct child to the popup
component.

5. In the Property Inspector, expand the Common section and set the following
attributes:

■ Type: Select the built-in partial-submit command buttons you want to display
in your dialog.

For example, if you set the type attribute to yesNoCancel, the dialog will
display Yes, No, and Cancel buttons. When any of these buttons are pressed,
the dialog dismisses itself, and the associated outcome (either ok, yes, no, or
cancel) is delivered with an event. Ok, yes, and no outcomes are delivered

Tip: It does not matter where the popup component appears on the
page, as the position is driven by the component used to invoke the
popup. However, the popup component must be within a form
component.

Tip: Values of input components in a dialog are not reset when a
user clicks the dialog’s Cancel button. If the user opens the dialog a
second time, those values will still display. If you want the values to
match the current values on the server, then set the contentDelivery
attribute to lazyUncached.

Declaratively Creating Popup Elements

13-6 Web User Interface Developer's Guide for Oracle Application Development Framework

with the dialogEvent. Cancel outcomes are sent with the PopupCanceled
event. You can use the appropriate listener property to bind to a method to
handle the event, using the outcome to determine the logic.

■ Title: Enter text to be displayed as the title on the dialog window.

■ CloseIconVisible: Select whether or not you want the Close icon to display in
the dialog.

■ Modal: Select whether or not you want the dialog to be modal. Modal dialogs
do not allow the user to return to the main page until the dialog has been
dismissed.

■ Resize: Select whether or not you want users to be able to change the size of
the dialog. The default is off.

■ StretchChildren: Select whether or not you want child components to stretch
to fill the dialog. When set to first, the dialog stretches a single child
component. However, the child component must allow stretching. For more
information, see Section 8.2.1, "Geometry Management and Component
Stretching."

6. Expand the Appearance section and set the text attributes.

Instead of specifying separate button text and an access key, you can combine the
two, so that the access key is part of the button text. Simply precede the letter to be
used as an access key with an ampersand (&).

For example, if you want the text for the affirmative button to be OK, and you
want the O in OK to be the access key, enter &OK.

7. Expand the Behavior section and if needed, enter a value for the dialogListener
attribute. The value should be an EL expression method reference to a dialog
listener method that will handle the event.

For example, suppose you create a dialog to confirm the deletion of an item. You
might then create a method on a managed bean similar to the deleteItem method
shown in Example 13–1. This method accesses the outcome from the event. If the
outcome is anything other than yes, the dialog is dismissed. If the outcome is yes
(meaning the user wants to delete the item), the method then gets the selected item
and deletes it.

Example 13–1 Handler for dialogEvent That Deletes an Item

 public void deleteItem(DialogEvent dialogEvent)
 {
 if (dialogEvent.getOutcome() != DialogEvent.Outcome.yes)
 {
 return;
 }

 // Ask for selected item from FileExplorerBean

Tip: A dialog will not dismiss if there are any ADF Faces messages
with a severity of error or greater.

Note: If you set Resize to on or set StretchChildren to first, you
must also set ContentWidth and ContentHeight (see Step 8).
Otherwise, the size will default to 250x250 pixels.

Declaratively Creating Popup Elements

Using Popup Dialogs, Menus, and Windows 13-7

 FileItem selectedFileItem = _feBean.getLastSelectedFileItem();
 if (selectedFileItem == null)
 {
 return;
 }
 else
 {
 // Check if we are deleting a folder
 if (selectedFileItem.isDirectory())
 {
 _feBean.setSelectedDirectory(null);
 }
 }

 this.deleteSelectedFileItem(selectedFileItem);
 }

Example 13–2 shows how the dialogListener attribute is bound to the
deleteItem method.

Example 13–2 Binding the dialogListener attribute to a Method

<af:dialog title="#{explorerBundle['deletepopup.popuptitle']}"
 type="yesNo"
 dialogListener="#{explorer.headerManager.deleteItem}"
 id="d1">

The dialogEvent is propagated to the server only when the outcome is ok, yes, or
no. You can block this if needed. For more information, see Section 5.3.5, "How to
Prevent Events from Propagating to the Server.")

If the user instead clicks the Cancel button (or the Close icon), the outcome is
cancel, the popupCancel client event is raised on the popup component, and any
other events (including the dialogEvent) are prevented from getting to the server.
However, the popupCancel event is delivered to the server.

8. If you want to set a fixed size for the dialog, or if you have set resize to on or set
stretchChildren to first, expand the Other section and set the following
attributes:

■ ContentHeight: Enter the desired height in pixels.

■ ContentWidth: Enter the desired width in pixels.

Tip: While the user can change the values of these attributes at
runtime (if the resize attribute is set to on), the values will not be
retained once the user leaves the page unless you configure your
application to use change persistence. For information about enabling
and using change persistence, see Chapter 33, "Allowing User
Customization on JSF Pages."

Note: If a command component without the showPopupBehavior tag
is used to launch the dialog, and if that command component has
values for the windowHeight and windowWidth attributes, the values on
the command component will override the contentHeight and
contentWidth values. For more information about the
showPopupBehavior tag, see Section 13.4, "Invoking Popup Elements."

Declaratively Creating Popup Elements

13-8 Web User Interface Developer's Guide for Oracle Application Development Framework

9. If needed, add command components to the buttonBar facet. It is recommended
that you set the partialSubmit attribute to true for every added command
component. However, you can set the command component’s partialSubmit
attribute to false if the af:popup component’s autoCancel property is set to
disabled. The values an af:popup component’s autoCancel property and a
command component partialSubmit property determine how a command
component dismisses and reloads a dialog. For more information, see Section 13.6,
"Controlling the Automatic Cancellation of Inline Popups."

By default, added command components do not dismiss the dialog. You need to
bind the actionListener on the command component to a handler that manages
closing the dialog, as well as any needed processing. For examples on how to do
this, see the tag documentation.

10. Insert components to display or collect data for the dialog. Use a layout
component like panelGroupLayout to contain the components.

11. Add logic on the parent page to invoke the popup and dialog. For more
information, see Section 13.4, "Invoking Popup Elements."

13.2.2 How to Create a Panel Window
The panelWindow component is similar to the dialog component, but it does not allow
you to configure the buttons or to add buttons to a facet. If you need some logic to be
invoked to handle data in the panelWindow, then you need to create a listener for the
popup component’s cancel event.

The popup component that contains the panelWindow component must be contained
within a form component.

To create an inline window:
1. In the Component Palette, from the Common Components panel, drag and drop a

Popup onto the JSF page.

Tip: If the facet is not visible in the visual editor:

1. Right-click the dialog component in the Structure window.

2. From the context menu, choose Facets - Dialog > ButtonBar. Facets in use
on the page are indicated by a checkmark in front of the facet name.

Tip: Normally, clicking a dialog’s Cancel button or Close icon
prevents any data entered into an inputText component from being
submitted. However, setting the autoSubmit attribute to true on an
inputText component in a dialog overrides the dialog's cancel
behavior, as this setting causes a submit.

Tip: If you are using the panelWindow as an inline popup in an
application that uses the Fusion technology stack, and you want to
emulate the look of a dialog, place the panelWindow component in the
center facet of a panelStretchLayout component, and place command
buttons in the bottom facet.

Tip: It does not matter where the popup component appears on the
page, as the position is driven by the component used to invoke the
popup. However, the popup component must be within a form
component.

Declaratively Creating Popup Elements

Using Popup Dialogs, Menus, and Windows 13-9

2. In the Property Inspector, expand the Common section and set the following
attributes:

■ ContentDelivery: Select how the content is to be delivered to the component
in the popup.

■ Animate: Select true to enable animation. Animation is determined by
configuration in the trinidad-config.xml file and by its skin properties (for
more information, see Section A.6.2.1, "Animation Enabled"). You can override
this setting by selecting false.

■ LauncherVar: Enter a name (for example, source) for a variable. Similar to the
var attribute on a table, this variable is used to store reference in the Request
scope to the component containing the showPopupBehavior tag. The variable is
reachable only during event delivery on the popup or its child components,
and only if EventContext is set to launcher.

■ EventContext: Set to launcher if the popup is shared by multiple objects, for
example if the window within the popup will display information for the
selected row in a table. Setting this attribute to launcher makes the row
clicked current before the event listener is called, and returns data only for that
row. For more information, see Section 13.2.5, "What Happens at Runtime:
Popup Component Events."

■ PopupCancelListener: set to an EL expression that evaluates to a handler with
the logic that you want to invoke when the window is dismissed.

3. Optionally, in the Property Inspector, expand the Other section and set a value for
the AutoCancel property to determine the automatic cancel behavior. For more
information, see Section 13.6, "Controlling the Automatic Cancellation of Inline
Popups."

4. In the Component Palette, from the Layout panel, drag and drop a Panel Window
as a direct child to the popup component.

5. In the Property Inspector, expand the Common section and set the following
attributes:

■ Modal: Select whether or not you want the window to be modal. Modal
windows do not allow the user to return to the main page until the window
has been dismissed.

■ CloseIconVisible: Select whether or not you want the Close icon to display in
the window.

■ Title: The text displayed as the title in the window.

■ Resize: Select whether or not you want users to be able to change the size of
the dialog. The default is off.

■ StretchChildren: Select whether or not you want child components to stretch
to fill the window. When set to first, the window stretches a single child
component. However, the child component must allow stretching. For more
information, see Section 8.2.1, "Geometry Management and Component
Stretching."

Tip: Values of input components are not reset when a user closes the
panelWindow component. If the user opens the window a second time,
those values will still display. If you want the values to match the
current values on the server, then set the contentDelivery attribute to
lazyUncached.

Declaratively Creating Popup Elements

13-10 Web User Interface Developer's Guide for Oracle Application Development Framework

6. If you want to set a fix size for the window, or if you have set resize to on or set
stretchChildren to first, expand the Other section and set the following
attributes:

■ ContentHeight: Enter the desired height in pixels.

■ ContentWidth: Enter the desired width in pixels.

7. Insert components to display or collect data for the window. Use a layout
component like panelGroupLayout to contain the components.

8. Add logic on the parent page to invoke the popup and panel window. For more
information, see Section 13.4, "Invoking Popup Elements."

13.2.3 How to Create a Context Menu
You create a context menu by using menu components within the popup component.
You can then invoke the context menu popup from another component, based on a
given trigger. If instead, you want toolbar buttons in a toolbar to launch popup menus,
then see Section 14.3, "Using Toolbars."

To create an inline context menu:
1. In the Component Palette, from the Common Components panel, drag and drop a

Popup onto the JSF page.

2. In the Property Inspector, expand the Common section and set the following
attributes.

■ ContentDelivery: Determines how the content is delivered to the component
in the popup.

Note: If you set Resize to on or set StretchChildren to first, you
must also set ContentWidth and ContentHeight (see Step 6).
Otherwise, the size will default to 250x250 pixels.

Tip: While the user can change the values of these attributes at
runtime (if the resize attribute is set to on), the values will not be
retained once the user leaves the page unless you configure your
application to use change persistence. For information about enabling
and using change persistence, see Chapter 33, "Allowing User
Customization on JSF Pages."

Note: If a command component without the showPopupBehavior tag
is used to launch the dialog, and if that command component has
values for the windowHeight and windowWidth attributes, the values on
the command component will override the contentHeight and
contentWidth values. For more information about the
showPopupBehavior tag, see Section 13.4, "Invoking Popup Elements."

Tip: It does not matter where the popup component appears on the
page, as the position is driven by the component used to invoke the
popup. However, the popup component must be within a form
component.

Declaratively Creating Popup Elements

Using Popup Dialogs, Menus, and Windows 13-11

■ Animate: Select true to enable animation. Animation is determined by
configuration in the trinidad-config.xml file and by its skin properties (for
more information, see Section A.6.2.1, "Animation Enabled"). You can override
this setting by selecting false.

■ LauncherVar: Enter a variable name (for example, source) to be used to
reference the launch component. This variable is reachable only during event
delivery on the popup or its child components, and only if the EventContext is
set to launcher.

■ EventContext: Set to launcher if the popup is shared by multiple objects, for
example if the menu within the popup will display information for the
selected row in a table. Setting this attribute to launcher makes the row
clicked current before the event listener is called, and returns only data for that
row. For more information, see Section 13.2.5, "What Happens at Runtime:
Popup Component Events."

3. Optionally, in the Property Inspector, expand the Other section and set a value for
the AutoCancel property to determine the automatic cancel behavior. For more
information, see Section 13.6, "Controlling the Automatic Cancellation of Inline
Popups."

4. From the Component Palette, drag and drop a Menu as a direct child to the popup
component, and build your menu using commandMenuItem components, as
documented starting with Step 6 in Section 14.2.1, "How to Create and Use Menus
in a Menu Bar."

5. Add logic on the parent page to invoke the popup and context menu. For more
information, see Section 13.4, "Invoking Popup Elements."

13.2.4 How to Create a Note Window
Use the noteWindow component to display read-only text. The popup component that
contains the noteWindow component must be contained within a form component.

To create an inline window:
1. In the Component Palette, from the Common Components panel, drag and drop a

Popup onto the JSF page.

2. In the Property Inspector, expand the Common section and set the following
attributes.

■ ContentDelivery: Determines how the content is delivered to the component
in the popup.

■ Animate: Select true to enable animation. Animation is determined by
configuration in the trinidad-config.xml file and by its skin properties (for
more information, see Section A.6.2.1, "Animation Enabled"). You can override
this setting by selecting false.

Tip: Because this is a context menu, you do not need to create a
menu bar or multiple menus, as documented in Steps 1 through 5 in
Section 14.2.1, "How to Create and Use Menus in a Menu Bar."

Tip: It does not matter where the popup component appears on the
page, as the position is driven by the component used to invoke the
popup. However, the popup component must be within a form
component.

Declaratively Creating Popup Elements

13-12 Web User Interface Developer's Guide for Oracle Application Development Framework

■ LauncherVar: Enter a variable to be used to reference the launch component.
This variable is reachable only during event delivery on the popup or its child
components, and only if the EventContext is set to launcher.

■ EventContext: Set to launcher if the popup is shared by multiple objects, for
example if the window within the popup will display information for the
selected row in a table. Setting this attribute to launcher makes the row
clicked current before the event listener is called, and returns only data for that
row. For more information, see Section 13.2.5, "What Happens at Runtime:
Popup Component Events."

■ PopupCancelListener: set to an EL expression that evaluates to a handler with
the logic that you want to invoke when the window is dismissed.

3. Optionally, in the Property Inspector, expand the Other section and set a value for
the AutoCancel property to determine the automatic cancel behavior. For more
information, see Section 13.6, "Controlling the Automatic Cancellation of Inline
Popups."

4. From the Component Palette, drag and drop a Note Window as a direct child to
the popup component.

5. To enter the text to display in the window:

1. Click the Source tab to view the page source code.

2. Remove the closing slash (/) from the af:noteWindow tag.

3. Below the af:noteWindow tag, enter the text to display, using simple HTML
tags, and ending with a closed af:noteWindow tag.

Example 13–3 shows text for a note window.

Example 13–3 Text Within an af:noteWindow Tag

<af:popup id="popupHead" contentDelivery="lazyUncached">
 <af:noteWindow inlineStyle="width:200px" id="nw3">
 <p>In anatomy, the head of an animal is the rostral part (from
 anatomical position) that usually comprises the brain, eyes,
 ears, nose, and mouth (all of which aid in various sensory
 functions, such as sight, hearing, smell, and taste). Some very
 simple animals may not have a head, but many bilaterally
 symmetric forms do.</p>
 </af:noteWindow>
</af:popup>

Figure 13–3 shows how the note would display.

Figure 13–3 Text Displayed in a Note Window

Declaratively Creating Popup Elements

Using Popup Dialogs, Menus, and Windows 13-13

6. Optionally, in the Property Inspector, expand the Other section and specify a
number of seconds for the AutoDismissalTimeout property. The value you
specify determines the time in seconds that the note window displays before the
application automatically dismisses it. Any value you specify overrides the default
automatic dismissal behavior. This override is revoked if the end user moves the
mouse over the content of the note window because this gesture reverts the
automatic dismissal behavior back to the default automatic dismissal behavior for
the note window. The default automatic dismissal behavior is to dismiss the note
window when focus changes from the launching source or from the content of the
popup.

7. Add logic on the parent page to invoke the popup and note window. For more
information, see Section 13.4, "Invoking Popup Elements."

13.2.5 What Happens at Runtime: Popup Component Events
When content is delivered to the popup, and the contentDelivery attribute is set to
either lazy or lazyUncached, the popupFetch server-side event is invoked. This event
has two properties, eventContext and launcherVar. The eventContext property
determines the context from which the event is delivered, either from the context of
the popup (self) or from the component that launched the popup (launcher). Setting
the context to launcher can be very useful if the popup is shared by multiple
components, because the framework will behave as though the component that
launched the popup had launched the event, and not the popup. The launcherVar
property is used to keep track of the current launcher, similar to the way in which
variables are used to stamp out rows in a table.

For example, say you have a column in a table that displays a person’s first name
using a command link. When the command link is hovered over, a popup noteWindow
is invoked that shows the person’s full name. Because this noteWindow will be used by
all rows in the table, but it needs to display the full name only for the row containing
the command link that was clicked, you need to use the eventContext property to
ensure that the context is that row, as shown in Example 13–4.

Example 13–4 Using eventContext for Shared Popup elements

<af:popup id="noteWindow" contentDelivery="lazyUncached" eventContext="launcher"
 launcherVar="source">
 <af:noteWindow>
 <af:outputText value="#{testBean.fullName}"/>
 </af:noteWindow>
</af:popup>
<af:table var="person" value="#{testBean.people}">
 <af:column id="firstName">
 <af:commandLink text="#{person.firstName}">
 <af:showPopupBehavior popupId="::noteWindow" triggerType="mouseHover"/>
 </af:commandLink>
 </af:column>
</af:table>

Using the variable source, you can take values from the source and apply them, or you
can set values. For example, you could get the full name value of the people object

Note: The feature enabled by this property is not accessible friendly
because a mouse over triggers the timeout cancellation period and
there is no keyboard equivalent.

Declaratively Creating Popup Elements

13-14 Web User Interface Developer's Guide for Oracle Application Development Framework

used in the table, and set it as the value of the testBean’s fullName property used by
the window, using a setPropertyListener and clientAttribute tag, as shown in
Example 13–5.

Example 13–5 Setting the Value of a Component in a Popup Using the launcherVar
Property

<af:popup id="noteWindow" contentDelivery="lazyUncached" eventContext="launcher"
 launcherVar="source">
 <af:noteWindow>
 <af:outputText value="#{testBean.fullName}"/>
 </af:noteWindow>
 <af:setPropertyListener from="#{source.attributes.fullName}"
 to="#{testBean.fullName}" type="popupFetch"/>
</af:popup>
<af:table var="person" value="#{testBean.people}">
 <af:column id="firstName">
 <f:facet name="header">
 <af:outputText value="First Name"/>
 </f:facet>
 <af:commandLink text="#{person.firstName}">
 <af:showPopupBehavior popupId="::noteWindow" triggerType="mouseHover"/>
 <af:clientAttribute name="fullName" value="#{person.fullName}"/>
 </af:commandLink>
 </af:column>
</af:table>

In this example, the launcherVar property source gets the full name for the current
row using the popupFetch event. For more information about using the
setPropertyListener tag, see Section 4.7.2, "How to Use the pageFlowScope Scope
Without Writing Java Code." For more information about using client attributes, see
Section 3.8, "Using Bonus Attributes for Client-Side Components." For more
information about the showPopupBehavior tag, see Section 13.4, "Invoking Popup
Elements."

Popups also invoke the following client-side events:

■ popupOpening: Fired when the popup is invoked. If this event is canceled in a
client-side listener, the popup will not be shown.

■ popupOpened: Fired after the popup becomes visible. One example for using this
event would be to create custom rules for overriding default focus within the
popup.

■ popupCanceled: Fired when a popup is unexpectedly dismissed by auto-dismissal
or by explicitly invoking the popup client component's cancel method. This
client-side event also has a server-side counterpart.

■ popupClosed: Fired when the popup is hidden or when the popup is unexpectedly
dismissed. This client-side event also has a server-side counterpart.

When a popup is closed by an affirmative condition, for example, when the Yes button
is clicked, it is hidden. When a popup is closed by auto-dismissal, for example when
either the Close icon or the Cancel button is clicked, it is canceled. Both types of
dismissals result in raising a popupClosed client-side event. Canceling a popup also
raises a client-side popupCanceled event that has an associated server-side counterpart.
The event will not be propagated to the server unless there are registered listeners for
the event. If it is propagated, it prevents processing of any child components to the
popup, meaning any submitted values and validation are ignored. You can create a

Programmatically Invoking a Popup

Using Popup Dialogs, Menus, and Windows 13-15

listener for the popupCanceled event that contains logic to handle any processing
needed when the popup is canceled.

If you want to invoke some logic based on a client-side event, you can create a custom
client listener method. For more information, see Section 3.2, "Listening for Client
Events." If you want to invoke server-side logic based on a client event, you can add a
serverListener tag that will invoke that logic. For more information, see Section 5.4,
"Sending Custom Events from the Client to the Server."

13.3 Programmatically Invoking a Popup
You can programmatically show, hide, or cancel a popup in response to an
actionEvent generated by a command component. Implement this functionality if you
want to deliver the actionEvent to the server immediately so you can invoke
server-side logic and show, hide, or cancel the popup in response to the outcome of
invoking the server-side logic.

Programmatically invoking a popup as described here differs to the method of
invoking a popup described in Section 13.2, "Declaratively Creating Popup Elements"
where the showPopupBehavior tag does not deliver the actionEvent to the server
immediately.

You create the type of popup that you want by placing one of the components (dialog,
panelWindow, menu, or noteWindow) inside the popup component as described in
Section 13.2, "Declaratively Creating Popup Elements." Make sure that the popup
component is in the right context when you invoke it. One of the easier ways to do this
is to bind it to the backing bean for the page, as in Example 13–6.

Example 13–6 Binding a popup Component to a Backing Bean

<af:popup id="p1"
 binding="#{mybean.popup}"
 ...
 />

Once you have done this, you configure a command component's actionListener
attribute to reference the popup component by calling an accessor for the popup
binding.

Write code for the backing bean method that invokes, cancels, or hides the popup.
Example 13–7 shows a showPopup backing bean method that uses the HINT_LAUNCH_ID
hint to identify the command component that passes the actionEvent to it and p1 to
reference the popup on which we invoke the show method.

Example 13–7 Backing Bean Method Invoking a Popup

public void showPopup(ActionEvent event) {
{
 FacesContext context = FacesContext.getCurrentInstance();
 UIComponent source = (UIComponent)event.getSource();
 String alignId = source.getClientId(context);
 RichPopup.PopupHints hints = new RichPopup.PopupHints();
 hints.add(RichPopup.PopupHints.HintTypes.HINT_ALIGN_ID,source)
 .add(RichPopup.PopupHints.HintTypes.HINT_LAUNCH_ID,source)
 .add(RichPopup.PopupHints.HintTypes.HINT_ALIGN,
 RichPopup.PopupHints.AlignTypes.ALIGN_AFTER_END);
 p1.show(hints);
}

Programmatically Invoking a Popup

13-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 13–8 shows a backing bean method that cancels a popup in response to an
actionEvent:

Example 13–8 Backing Bean Method Canceling a Popup

public void cancelPopupActionListener(ActionEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 p1.cancel();
 }

Example 13–9 shows a backing bean method that hides a popup in response to an
actionEvent:

Example 13–9 Backing Bean Method Hiding a Popup

public void hidePopupActionListener(ActionEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 p1.hide();
 }

The p1 object in the previous examples refers to an instance of the RichPopup class
from the following package:

oracle.adf.view.rich.component.rich.RichPopup

For more information about RichPopup, see the Oracle Fusion Middleware Java API
Reference for Oracle ADF Faces.

13.3.1 How to Programatically Invoke a Popup
You configure the command component’s actionListener attribute to reference the
backing bean method that shows, cancels or hides the popup.

Before you begin:
Create the type of popup that you want the server-side method to invoke, as described
in Section 13.2, "Declaratively Creating Popup Elements."

It may be helpful to have an understanding of the configuration options available to
you if you want to invoke a popup component programmatically. For more
information, see Section 13.3, "Programmatically Invoking a Popup."

To programmatically invoke a popup:
1. In the Component Palette, from the General Controls panel, drag and drop a

command component onto the JSF page.

For example, a Button component.

2. In the Property Inspector, expand the Behavior section and set the following
attributes:

■ PartialSubmit: set to true if you do not want the Fusion web application to
render the entire page after an end user clicks the command component. The
default value (false) causes the application to render the whole page after an
end user invokes the command component. For more information about page
rendering, see Chapter 7, "Rerendering Partial Page Content."

■ ActionListener: set to an EL expression that evaluates to a backing bean
method with the logic that you want to execute when the end user invokes the
command component at runtime.

Invoking Popup Elements

Using Popup Dialogs, Menus, and Windows 13-17

3. Write the logic for the backing bean that is invoked when the command
component in step 1 passes an actionEvent.

For more information, see Example 13–7, "Backing Bean Method Invoking a
Popup", Example 13–8, "Backing Bean Method Canceling a Popup", or
Example 13–9, "Backing Bean Method Hiding a Popup".

13.3.2 What Happens When You Programmatically Invoke a Popup
At runtime, end users can invoke the command components you configure to invoke
the server-side methods to show, cancel, or hide a popup. For example, Figure 13–4
shows a panelWindow component that renders inside a popup component. It exposes
two command buttons (Cancel and Hide) that invoke the cancel and hide methods
respectively. End users invoke a commandLink component rendered in the Supplier
Name column of the table component in the underlying page to show the popup.

Figure 13–4 Popup Component Invoked by a Server-Side Method

13.4 Invoking Popup Elements
With ADF Faces rich client components, JavaScript is not needed to show or hide
popups. The showPopupBehavior client behavior tag provides a declarative solution, so
that you do not have to write JavaScript to open the popup or register the script with
the component. For more information about client behavior tags, see Section 5.6,
"Using Client Behavior Tags."

The showPopupBehavior tag listens for a specified event, for example the actionEvent
on a command component, or the disclosureEvent on a showDetail component.
However, the showPopupBehavior tag also cancels delivery of that event to the server.
Therefore, if you need to invoke some server-side logic based on the event that the
showPopupBehavior tag is listening for, then you need to use either JavaScript to
launch the popup, or to use a custom event as documented in Section 5.4, "Sending
Custom Events from the Client to the Server."

13.4.1 How to Use the af:showPopupBehavior Tag
You use the showPopupBehavior tag in conjunction with the component that will
invoke the popup element, for example a commandButton component that will invoke a
dialog, or an inputText component that, when right-clicked, will invoke a context
menu.

Before you begin:
1. Create a popup component and its holder.

2. Create the component that will invoke the popup.

Invoking Popup Elements

13-18 Web User Interface Developer's Guide for Oracle Application Development Framework

To use the showPopupBehavior tag:
1. In the Component Palette, from the Operations panel, drag a Show Popup

Behavior and drop it as a child to the component that will be used to invoke the
popup element.

2. In the Property Inspector, use the dropdown menu for the PopupId attribute to
choose Edit. Use the Edit Property: PopuId dialog to select the popup component
to invoke.

3. From the TriggerType dropdown menu, choose the trigger that should invoke the
popup. The default is action which can be used for command components. Use
contextMenu to trigger a popup when the right-mouse is clicked. Use mouseHover
to trigger a popup when the cursor is over the component. The popup closes when
the cursor moves off the component. For a detailed list of component and
mouse/keyboard events that can trigger the popup, see the showPopupBehavior
tag documentation.

4. From the AlignId dropdown, choose Edit, and then use the Edit Property: AlignId
dialog to select the component with which you want the popup to align.

5. From the Align dropdown menu, choose how the popup should be positioned
relative to the component selected in the previous step.

Example 13–10 shows sample code that displays some text in the af:popup component
with the id “popup1" when the button "Click Me" is clicked.

Example 13–10 showPopupBehavior Associated with commandButton component

<af:commandButton text="Click me" id="button">
 <af:showPopupBehavior popupId="popup1" alignId="button" align="afterEnd"/>
</af:commandButton>

<af:popup id="popup1">
 <af:panelGroupLayout layout="vertical">
 <af:outputText value="Some"/>
 <af:outputText value="popup"/>
 <af:outputText value="content"/>
 </af:panelGroupLayout>
</af:popup>

Note: The event selected for the triggerType attribute will not be
delivered to the server. If you need to invoke server-side logic based
on this event, then you must launch the popup using either JavaScript
or a custom event as documented in Section 5.4, "Sending Custom
Events from the Client to the Server."

Note: The dialog and panelWindow components do not require
alignId or align attributes, as the corresponding popup can be
moved by the user. If you set AlignId, the value will be overridden by
any manual drag and drop repositioning of the dialog or window. If
no value is entered for AlignId or Align, then the dialog or window is
opened in the center of the browser.

Additionally, if the triggerType attribute is set to contextMenu, the
alignment is always based on mouse position.

Displaying Contextual Information

Using Popup Dialogs, Menus, and Windows 13-19

The code in Example 13–10 tells ADF Faces to align the popup contents with the
commandButton that is identified by the value of alignId (button), and to use the
alignment position of afterEnd, which aligns the popup element underneath the
button, as shown in Figure 13–5.

Figure 13–5 Button and Popup Contents

13.5 Displaying Contextual Information
There may be cases when you think the user may need more information to complete a
task on a page, but you don’t want to clutter the page with information that may not
be needed each time the page is accessed, or with multiple buttons that might launch
dialogs to display information. While you could put the information in a popup
element that was launched with a right-click on a component, the user would have no
way of knowing the information was available in a popup.

The contextInfo component allows you to display additional information in a popup
element and also notifies users that additional information is available. When you
place the contextInfo component into the context facet of a component that supports
contextual information, a small orange square is shown in the upper left-hand corner
of the component, as shown in Figure 13–6.

Figure 13–6 contextInfo Displays a Square

When the user places the cursor over the square, a larger triangle with a note icon and
tooltip is displayed, indicating that additional information is available, as shown in
Figure 13–7

Figure 13–7 contextInfo Component Indicates Additional Information Is Available

Because a showPopupBehavior tag is a child to the contextInfo component, the
referenced popup will display when the user clicks the information icon, as shown in
Figure 13–8.

Displaying Contextual Information

13-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 13–8 Dialog launched From contextInfo Component

13.5.1 How to Create Contextual Information
You use the showPopupBehavior component as a child to the contextInfo component,
which allows the popup component to align with the component that contains the
contextInfo component.

Before you begin:
1. Create the component that will be the parent to the contextInfo component. The

following components support the contextInfo component:

■ column

■ commandLink

■ inputComboboxListOfValues

■ inputListOfValues

■ inputText

■ outputFormatted

■ outputText

■ selectOneChoice

2. Create the popup element to display, as documented in Section 13.2, "Declaratively
Creating Popup Elements."

To use a contextInfo component:
1. In the Component Palette, from the Common Components panel, drag a Context

Info and drop it into the Context facet of the component that is to display the
additional information icons.

2. If you need server-side logic to execute when the contextInfo component
displays, bind the contextInfoListener attribute to a handler that can handle the
event.

Tip: If the facet is not visible in the visual editor:

1. Right-click the outputText component in the Structure window.

2. From the context menu, choose Facets - component name > Context.
Facets in use on the page are indicated by a checkmark in front of the
facet name.

Controlling the Automatic Cancellation of Inline Popups

Using Popup Dialogs, Menus, and Windows 13-21

3. In the Component Palette, from the Operations panel, drag a Show Popup
Behavior and drop it as a child to the contextInfo component.

4. With the showPopupBehavior tag selected in the editor, in the Property Inspector,
set the attributes as described in Section 13.4.1, "How to Use the
af:showPopupBehavior Tag." For the triggerType value, be sure to enter
contextInfo.

13.6 Controlling the Automatic Cancellation of Inline Popups
You can use the af:popup component with a number of other components to create
inline popups. That is, inline windows, dialogs, and context menus. These other
components include the:

■ Dialog component to create an inline dialog

For more information, see Section 13.2.1, "How to Create a Dialog."

■ panelWindow component to create an inline window

For more information, see Section 13.2.2, "How to Create a Panel Window."

■ Menu components to create context menus

For more information, see Section 13.2.3, "How to Create a Context Menu."

■ noteWindow component to create a note window

For more information, see Section 13.2.4, "How to Create a Note Window."

By default, a Fusion web application automatically cancels an inline popup if the
metadata that defines the inline popup is replaced. Scenarios where this happens
include the following:

■ Invocation of a command component that has its partialSubmit property set to
false. The Fusion web application renders the entire page after it invokes such a
command component. In contrast, a command component that has its
partialSubmit property set to true causes the Fusion web application to render
partial content. For more information about page rendering, see Chapter 7,
"Rerendering Partial Page Content."

■ A component that renders a toggle icon for end users to display or hide content
hosts the popup component. Examples include the showDetailItem and
panelTabbed components. For more information about the use of components that
render toggle icons, see Section 8.9, "Displaying and Hiding Contents
Dynamically."

■ Failover occurs when the Fusion web application displays an inline popup.
During failover, the Fusion web application replaces the entire page.

You can change the default behavior described in the previous list by disabling the
automatic cancellation of an inline popup component. This means that the Fusion web

Note: If you use the showPopupBehavior tag to launch the popup,
then delivery of the contextInfoEvent to the server is cancelled. If you
need to invoke server-side logic based on this event, then you must
launch the popup by using either JavaScript or a custom event as
documented in Section 5.4, "Sending Custom Events from the Client to
the Server."

Controlling the Automatic Cancellation of Inline Popups

13-22 Web User Interface Developer's Guide for Oracle Application Development Framework

application does not automatically cancel the inline popup if any of the above events
occur. Instead, the Fusion web applications restores the inline popup.

13.6.1 How to Disable the Automatic Cancellation of an Inline Popup
You disable the automatic cancellation of an inline popup by setting the popup
component’s autoCancel property to disabled.

Before you begin:
It may be helpful to understand how other components can affect functionality. For
more information, see Section 13.6, "Controlling the Automatic Cancellation of Inline
Popups."

To control the automatic cancellation of inline popups:
1. In the Structure window, right-click the af:popup component for which you want

to configure the automatic cancellation behavior and choose Go to Properties.

2. In the Property Inspector, expand the Other section and use the dropdown menu
for the AutoCancel property to choose disabled.

13.6.2 What Happens When You Disable the Automatic Cancellation of an Inline Popup
JDeveloper sets the af:popup component autoCancel property’s value to disabled, as
shown in Example 13–11:

Example 13–11 Metadata to Prevent the Automatic Cancellation of an Inline Popup

<af:popup id="p1" autoCancel="disabled">
 ...
 </af:popup>

At runtime, the Fusion web application restores an inline popup after it rerenders a
page if the inline popup displayed before invocation of the command to rerender the
page.

14

Using Menus, Toolbars, and Toolboxes 14-1

14 Using Menus, Toolbars, and Toolboxes

This chapter describes how to create menu bars and toolbars that contain tool buttons.

For information about creating navigation menus, that is, menus that allow you to
navigate through a hierarchy of pages, see Section 18.5, "Using Navigation Items for a
Page Hierarchy."

This chapter includes the following sections:

■ Section 14.1, "Introduction to Menus, Toolbars, and Toolboxes"

■ Section 14.2, "Using Menus in a Menu Bar"

■ Section 14.3, "Using Toolbars"

14.1 Introduction to Menus, Toolbars, and Toolboxes
Menus and toolbars allow users to choose from a specified list of options (in the case
of a menu) or to click buttons (in the case of a toolbar) to effect some change to the
application. The File Explorer application contains both a menu bar and a toolbar, as
shown in Figure 14–1.

Figure 14–1 Menu Bar and Toolbar in File Explorer Application

When a user chooses a menu item in the menu bar, the menu component displays a list
of menu items, as shown in Figure 14–2.

Using Menus in a Menu Bar

14-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 14–2 Menu in the File Explorer Application

Note that as shown in Figure 14–3, menus can be nested.

Figure 14–3 Nested Menu Items

Buttons in a toolbar also allow a user to invoke some sort of action on an application
or to open a popup menu that behaves the same as a standard menu.

You can organize toolbars and menu bars using a toolbox. The toolbox gives you the
ability to define relative sizes for the toolbars on the same line and to define several
layers of toolbars and menu bars vertically.

14.2 Using Menus in a Menu Bar
Use the menuBar component to render a bar that contains the menu bar items (such as
File in the File Explorer application). Each item on a menu bar is rendered by a menu
component, which holds a vertical menu. Each vertical menu consists of a list of
commandMenuItem components that can invoke some operation on the application. You
can nest menu components inside menu components to create submenus. The
different components used to create a menu are shown in Figure 14–4.

Figure 14–4 Components Used to Create a Menu

Note: If you want to create menus and toolbars in a table, then
follow the procedures in Section 10.7, "Displaying Table Menus,
Toolbars, and Status Bars."

If you want to create a context menu for a component (that is a menu
that launches when a user right-clicks the component), follow the
procedures in Section 13.2.3, "How to Create a Context Menu."

Using Menus in a Menu Bar

Using Menus, Toolbars, and Toolboxes 14-3

You can use more than one menu bar by enclosing them in a toolbox. Enclosing them
in a toolbox stacks the menu bars so that the first menu bar in the toolbox is displayed
at the top, and the last menu bar is displayed at the bottom. When you use more than
one menu bar in a single toolbox row (by having them grouped inside the toolbox),
then the flex attribute will determine which menu bar will take up the most space.

If you wish menu bars to be displayed next to each other (rather than being stacked),
you can enclose them in a group component.

Within a menu bar, you can set one component to stretch so that the menu bar will
always be the same size as its parent container. For example, in Figure 14–5, the menu
bar is set to stretch a spacer component that is placed between the Disabled GMI menu
and the Component Guide button. When the window is resized, that spacer
component either stretches or shrinks so that the menu bar will always be the same
width as the parent. Using a spacer component like this also ensures that any
components to the right of the spacer will remain right-justified in the menu bar.

Figure 14–5 Spacer Component Stretches and Shrinks

When a window is resized such that all the components within the menu bar can no
longer be displayed, the menu bar displays an overflow icon, identified by the arrow
cursor as shown in Figure 14–6.

Figure 14–6 Overflow Icon in a Menu Bar

Clicking that overflow icon displays the remaining components in a popup window,
as shown in Figure 14–7.

Figure 14–7 menu Component in an Overflow Popup Window

Menus and submenus can be made to be detachable and to float on the browser
window. Figure 14–8 shows a submenu configured to be detachable. The top of the
menu is rendered with a bar to denote that it can be detached.

Tip: You can also use the toolbox component to group menu bars
with toolbars, or to group multiple menu bars. Use the group
component to group menu bars and toolbars on the same row.

Using Menus in a Menu Bar

14-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 14–8 Detachable Menu

The user can drag the detachable menu to anywhere within the browser. When the
mouse button is released, the menu stays on top of the application until the user closes
it, as shown in Figure 14–9.

Figure 14–9 Floating Detached Menu

The menu and commandMenuItem components can each include an icon image.
Figure 14–10 shows the Delete menu item configured to display a delete icon.

Tip: Consider using detachable menus when you expect users to:

■ Execute similar commands repeatedly on a page.

■ Execute similar commands on different rows of data in a large
table, tree table, or tree.

■ View data in long and wide tables, tree tables, or trees. Users can
choose which columns or branches to hide or display with a single
click.

■ Format data in long or wide tables, tree tables, or trees.

Using Menus in a Menu Bar

Using Menus, Toolbars, and Toolboxes 14-5

Figure 14–10 Icons Can Be Used in Menus

You can configure commandMenuItem components to be specific types that change how
they are displayed when the menu item is chosen. For example, you can configure a
commandMenuItem component to display a checkmark or a radio button next to the
label when the item is chosen. Figure 14–11 shows the View menu with the Folders
menu item configured to use a checkmark when chosen. The Table, Tree Table, and
List menu items are configured to be radio buttons, and allow the user to choose only
one of the group.

Figure 14–11 Square Icon and Radio Button Denote the Chosen Menu Items

You can also configure a commandMenuItem component to have an antonym. Antonyms
display different text when the user chooses a menu item. Figure 14–12 shows an
Undo menu item in the Edit menu (added to the File Explorer application for this
example).

Figure 14–12 The Edit Menu of the File Explorer Application

By configuring the commandMenuItem component for the Undo menu item to be an
antonym and to have alternate text to display, when a user chooses Undo, the next
time the user returns to the menu, the menu item will display the antonym Restore, as
shown in Figure 14–13.

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, use this icon only when it is
purely decorative. You must provide the meaning of this icon in some
accessible manner.

Using Menus in a Menu Bar

14-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 14–13 Menu Items Can Be Antonyms

Because an action is expected when a user chooses a menu item, you must bind the
action or actionListener attribute of the commandMenuItem component to some
method that will execute the needed functionality.

Along with commandMenuItem components, a menu can also include one or more
goMenuItem components. These are navigation components similar to the goLink
component, in that they perform direct page navigation, without delivering an
ActionEvent event. Figure 14–14 shows three goMenuItem components used to
navigate to external web sites.

Figure 14–14 Menus Can Use goMenuItem Components

Aside from menus that are invoked from menu bars, you can also create context
menus that are invoked when a user right-clicks a UI component, and popup menus
that are invoked when a user clicks a command component. For more information, see
Section 13.2.3, "How to Create a Context Menu."

By default, the contents of the menu are delivered immediately, as the page is
rendered. If you plan on having a large number of children in a menu (multiple menu
and commandMenuItem components), you can choose to configure the menu to use lazy
content delivery. This means that the child components are not retrieved from the server
until the menu is accessed.

You can also create menus that mainly provide navigation throughout the application,
and are not used to cause any change on a selected item in an application. To create
this type of menu, see Section 18.6, "Using a Menu Model to Create a Page Hierarchy."

Note: ADF Faces provides a button with built-in functionality that
allows a user to view a printable version of the current page. Menus
and menu bars do not render on these pages. For more information,
see Section 5.6, "Using Client Behavior Tags.".

Note: Content delivery for menus used as popup context menus is
determined by the parent popup dialog, and not the menu itself.

Using Menus in a Menu Bar

Using Menus, Toolbars, and Toolboxes 14-7

14.2.1 How to Create and Use Menus in a Menu Bar
To create a menu, you first have to create a menu bar to hold the menus. You then add
and configure menu and commandMenuItem components as needed.

To create and use menus in a menu bar:
1. If you plan on using more than one menu bar or a combination of toolbars and

menu bars, create a toolbox component by dragging and dropping a Toolbox
component from the Layout panel of the Component Palette.

2. Create a menu bar by dragging and dropping a Panel Menu Bar from the
Common Components panel of the Component Palette. If you are using a toolbox
component, the Panel Menu Bar should be dropped as a direct child of the
toolbox component.

3. If grouping more than one menu bar within a toolbox, for each menu bar, expand
the Appearance section and set the flex attribute to determine the relative sizes of
each of the menu bars. The higher the number given for the flex attribute, the
longer the toolbox will be. For the set of menu bars shown in Example 14–5,
menubar2 will be the longest, menubar4 will be the next longest, and because their
flex attributes are not set, the remaining menu bars will be the same size and
shorter than menubar4.

Example 14–1 Flex Attribute Determines Length of Toolbars

<af:toolbox>
 <af:menuBar id="menuBar1" flex="0">
 <af:menu text="MenuA"/>
 </af:menBar>
 <af:menuBar id="menuBar2" flex="2">
 <af:menu text="MenuB"/>
 </af:menuBar>
 <af:menuBar id="menuBar3" flex="0">
 <af:menu text="MenuC"/>
 </af:menuBar>
 <af:menuBar id="menuBar4" flex="1">
 <af:menu text="MenuD"/>
 </af:toolbar>
</af:toolbox>

Note: If you want to create menus in a table, follow the procedures
outlined in Section 10.7, "Displaying Table Menus, Toolbars, and
Status Bars."

Tip: The panelHeader, showDetailHeader, and showDetailItem
components support a toolbar facet for adding toolboxes and
toolbars to section headers and accordion panel headers.

Tip: Toolboxes also allow you to use the iterator, switcher, and group
components as direct children, providing these components wrap
child components that would usually be direct children of the toolbox.
For more information about toolboxes, see Section 14.3, "Using
Toolbars."

Using Menus in a Menu Bar

14-8 Web User Interface Developer's Guide for Oracle Application Development Framework

For information about how the flex attribute works, see Section 14.3.2, "What
Happens at Runtime: Determining the Size of Menu Bars and Toolbars."

4. Insert the desired number of menu components into the menu bar by dragging a
Menu from the Component Palette, and dropping it as a child to the menuBar
component.

You can also insert commandMenuItem components directly into a menu bar by
dragging and dropping a Menu Item. Doing so creates a commandMenuItem
component that renders similar to a toolbar button.

5. For each menu component, expand the Appearance section in the Property
Inspector and set the following attributes:

■ Text: Enter text for the menu’s label. If you wish to also provide an access key
(a letter a user can use to access the menu using the keyboard), then leave this
attribute blank and enter a value for textAndAccessKey instead.

■ TextAndAccessKey: Enter the menu label and access key, using conventional
ampersand notation. For example, &File sets the menu label to File, and
at the same time sets the menu access key to the letter F. For more information
about access keys and the ampersand notation, see Section 22.3, "Specifying
Component-Level Accessibility Properties."

■ Icon: Use the dropdown list to select the icon. If the icon does not display in
this menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

6. If you want the menu to be detachable (as shown in Figure 14–8), expand the
Behavior section in the Property Inspector and set the Detachable attribute to
true. At runtime, the user can drag the menu to detach it, and drop it anywhere

Performance Tip: At runtime, when available browser space is less
than the space needed to display the contents of the toolbox,
ADF Faces automatically displays overflow icons that enable users to
select and navigate to those items that are out of view. The number of
child components within a toolbox component, and the complexity of
the children, will affect the performance of the overflow. You should
set the size of the toolbox component to avoid overflow when
possible. For more information, see Section 14.3.2, "What Happens at
Runtime: Determining the Size of Menu Bars and Toolbars."

Tip: You can use the group component to group menu bars (or menu
bars and toolbars) that you want to appear on the same row. If you do
not use the group component, the menu bars will appear on
subsequent rows.

Tip: Menu bars also allow you to use the iterator, switcher, and
group components as direct children, providing these components
wrap child components that would usually be direct children of the
menu bar.

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, this icon must only be used
when the use is purely decorative. You must provide the meaning of
this icon using another accessible manner.

Using Menus in a Menu Bar

Using Menus, Toolbars, and Toolboxes 14-9

on the screen (as shown in Figure 14–9).

7. If you want the menu to use lazy content delivery, expand the Other section in the
Property Inspector and set the ContentDelivery attribute to lazy.

8. To create a menu item that invoke some sort of action along with navigation, drag
a MenuItem from the Component Palette and drop it as a child to the menu
component to create a commandMenuItem component. Create a number of
commandMenuItem components to define the items in the vertical menu.

If necessary, you can wrap the commandMenuItem components within a group
component to display the items as a group. Example 14–2 shows simplified code
for grouping the Folders and Search menu items in one group, the Table, Tree
Table and List menu items in a second group, and the Refresh menu item by itself
at the end.

Example 14–2 Grouping Menu Items

<af:menu id="viewMenu"
 <af:group>
 <af:commandMenuItem type="check" text="Folders"/>
 <af:commandMenuItem type="check" text="Search"/>
 </af:group>
 <af:group>
 <af:commandMenuItem type="radio" text="Table"/>
 <af:commandMenuItem type="radio" text="Tree Table"/>
 <af:commandMenuItem type="radio" text="List"/>
 </af:group>
 <af:commandMenuItem text="Refresh"/>
</menu>

Figure 14–15 shows how the menu is displayed.

Figure 14–15 Grouped commandMenuItem Components in a Menu

Note: If you use lazy content delivery, any accelerators set on the
child commandMenuItem components will not work because the
contents of the menu are not known until the menu is accessed. If
your menu must support accelerators, then ContentDelivery must be
set to immediate.

Note: If the menu will be used inside a popup dialog or window,
leave ContentDelivery set to immediate, because the popup dialog or
window will determine the content delivery for the menu.

Using Menus in a Menu Bar

14-10 Web User Interface Developer's Guide for Oracle Application Development Framework

You can also insert another menu component into an existing menu component to
create a submenu (as shown in Figure 14–3).

9. For each commandMenuItem component, expand the Common section in the
Property Inspector and set the following attributes:

■ Type: Specify a type for this menu item. When a menu item type is specified,
ADF Faces adds a visual indicator (such as a radio button) and a toggle
behavior to the menu item. At runtime, when the user selects a menu item
with a specified type (other than the default), ADF Faces toggles the visual
indicator or menu item label. Use one of the following acceptable type values:

– check: In the default Skyros skin, toggles a square next to the menu item
label. The square is displayed as solid blue when the menu item is chosen,
and greyed out when not.

– radio: Toggles a radio button next to the menu item label. The radio
button is displayed as a solid blue circle when the menu item is chosen,
and greyed out when not.

– antonym: Toggles the menu item label. The value set in the SelectedText
attribute is displayed when the menu item is chosen, instead of the menu
item defined by the value of text or textAndAccessKey attribute (which is
what is displayed when the menu item is not chosen). If you select this
type, you must set a value for SelectedText.

– default: Assigns no type to this menu item. The menu item is displayed in
the same manner whether or not it is chosen.

■ Text: Enter text for the menu item’s label. If you wish to also provide an access
key (a letter a user can use to access the item using the keyboard), then leave
this attribute blank and enter a value for TextAndAccessKey instead. Or, you
can set the access key separately using the accessKey attribute.

■ Selected: Set to true to have this menu item appear to be chosen. The
selected attribute is supported for check-, radio-, and antonym-type menu
items only.

■ SelectedText: Set the alternate label to display for this menu item when the
menu item is chosen. This value is ignored for all types except antonym.

Example 14–3 shows the Special menu with one group of menu items configured
to use radio buttons and another group of menu items configured to show blue
squares when chosen. The last group contains a menu item configured to be the
antonym Open when it is first displayed, and then it toggles to Closed.

Tip: By default, only up to 14 items are displayed in the menu. If
more than 14 items are added to a menu, the first 14 are displayed
along with a scrollbar, which can be used to access the remaining
items. If you wish to change the number of visible items, edit the
af|menu {-tr-visible-items} skinning key. For more information,
see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

Tip: Menus also allow you to use the iterator and switcher
components as direct children, providing these components wrap
child components that would usually be direct children of the menu.

Using Menus in a Menu Bar

Using Menus, Toolbars, and Toolboxes 14-11

Example 14–3 Using the Type Attribute in a commandMenuItem Component

<af:menu text="Special">
 <af:group>
 <af:commandMenuItem text="Radio 1" type="radio" selected="true"
 <af:commandMenuItem text="Radio 2" type="radio"/>
 <af:commandMenuItem text="Radio 3" type="radio">
 </af:group>
 <af:group>
 <af:commandMenuItem text="Check 1" type="check" selected="true"
 <af:commandMenuItem text="Check 2" type="check"/>
 </af:group>
 <af:commandMenuItem text="Open (antonym)" type="antonym"
 selectedText="Close (antonym)"/>
</af:menu>

Figure 14–16 shows how the menu will be displayed when it is first accessed.

Figure 14–16 Menu Items Using the Type Attribute

10. Expand the Appearance section and set the following attributes:

■ Icon: Use the dropdown list to select the icon. If the icon does not display in
this menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

■ Accelerator: Enter the keystroke that will activate this menu item’s command
when the item is chosen, for example, Control O. ADF Faces converts the
keystroke and displays a text version of the keystroke (for example, Ctrl+O)
next to the menu item label, as shown in Figure 14–3.

Note: By default, ADF Faces components use the Skyros skin. You
can change this by creating your own skin. For more information, see
Chapter 20, "Customizing the Appearance Using Styles and Skins."

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, this icon must only be used
when the use is purely decorative. You must provide the meaning of
this icon using another accessible manner.

Note: If you choose to use lazy content delivery, any accelerators set
on the child commandMenuItem components will not work because the
contents of the menu are not known until it is accessed. If your menu
must support accelerator keys, then the contentDelivery attribute
must be set to immediate.

Using Menus in a Menu Bar

14-12 Web User Interface Developer's Guide for Oracle Application Development Framework

■ TextAndAccessKey: Enter the menu item label and access key, using
conventional ampersand notation. For example, &Save sets the menu item
label to Save, and at the same time sets the menu item access key to the letter
S. For more information about access keys and the ampersand notation, see
Section 22.3, "Specifying Component-Level Accessibility Properties."

11. Expand the Behavior section and set the following attributes:

■ Action: Use an EL expression that evaluates to an action method in an object
(such as a managed bean) that will be invoked when this menu item is chosen.
The expression must evaluate to a public method that takes no parameters,
and returns a java.lang.Object object.

If you want to cause navigation in response to the action generated by
commandMenuItem component, instead of entering an EL expression, enter a
static action outcome value as the value for the action attribute. You then
must either set the partialSubmit attribute to false, or use a redirect. For
more information about configuring navigation in your application, see
Section 2.3, "Defining Page Flows."

■ ActionListener: Specify the expression that refers to an action listener method
that will be notified when this menu item is chosen. This method can be used
instead of a method bound to the action attribute, allowing the action
attribute to handle navigation only. The expression must evaluate to a public
method that takes an ActionEvent parameter, with a return type of void.

12. To create a menu item that simply navigates (usually to an external site), drag and
drop a Go Menu Item from the Component Palette as a child to the menu.

13. In the Property Inspector, expand the Other section and set the following
attributes:

■ Destination: Enter the URI of the page to which the link should navigate. For
example, to navigate to the Oracle Corporation Home Page, you would enter
http://www.oracle.com.

■ Icon: Use the dropdown list to select the icon. If the icon does not display in
this menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

■ TargetFrame: Use the dropdown list to specify where the new page should
display. Values are

– _blank: The link opens the document in a new window.

– _parent: The link opens the document in the window of the parent. For
example, if the link appeared in a dialog, the resulting page would render
in the parent window.

– _self: The link opens the document in the same page or region.

– _top: The link opens the document in a full window, replacing the entire
page.

■ Text: Enter the text for the link.

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, this icon must only be used
when the use is purely decorative. You must provide the meaning of
this icon using another accessible manner.

Using Toolbars

Using Menus, Toolbars, and Toolboxes 14-13

14. If you want a menu bar to stretch so that it equals the width of the containing
parent component, set stretchId to be the ID of the component within the menu
bar that should be stretched so that the menu bar is the same size as the parent.
This one component will stretch, while the rest of the components in the menu bar
remain a static size.

You can also use the stretchId attribute to justify components to the left and right
by inserting a spacer component, and setting that component ID as the stretchId
for the menu bar, as shown in Example 14–7.

Example 14–4 Using a Spacer to Justify menuBar Components

<af:menuBar binding="#{editor.component}" id="menuBar1" stretchId="stretch1">
 <af:menu text="File" id="m1">
. . .
 </af:menu>
. . .
 <af:commandMenuItem text="Disabled CMI"/>
 <af:goMenuItem textAndAccessKey="O&racle destination="http://www.oracle.com"
 id="gmi1"/>
 <af:goMenuItem text="Disabled GMI" destination="http://www.gizmo.com"
 shortDesc="disabled goMenuItem" id="gmi2"/>
 <af:spacer id="stretch1" clientComponent="true"/>
 <af:commandMenuItem textAndAccessKey="Component G&uide"
 action="guide" id="cmi9"/>
</af:menuBar>

14.3 Using Toolbars
Along with menus, you can create toolbars in your application that contain toolbar
buttons used to initiate some operation in the application. The buttons can display
text, an icon, or a combination of both. Toolbar buttons can also open menus in a
popup window. Along with toolbar buttons, other UI components, such as dropdown
lists, can be displayed in toolbars. Figure 14–17 shows the toolbar from the File
Explorer application.

Tip: Instead, you can use the textAndAccessKey attribute to provide
a single value that defines the label and the access key to use for the
link. For information about how to define access keys, see
Section 22.3.4, "How to Define Access Keys for an ADF Faces
Component."

Tip: Toolbars can also include command buttons and command links
(including the commandImageLink component) instead of toolbar
buttons. However, toolbar buttons provide additional functionality,
such as opening popup menus. Toolbar buttons can also be used
outside of a toolbar component

Using Toolbars

14-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 14–17 Toolbar in the File Explorer Application

The toolbar component can contain many different types of components, such as
inputText components, LOV components, selection list components, and command
components. ADF Faces also includes a commandToolbarButton component that has a
popup facet, allowing you to provide popup menus from a toolbar button. You can
configure your toolbar button so that it only opens the popup dialog and does not fire
an action event. As with menus, you can group related toolbar buttons on the toolbar
using the group component.

You can use more than one toolbar by enclosing them in a toolbox. Enclosing toolbars
in a toolbox stacks them so that the first toolbar on the page is displayed at the top,
and the last toolbar is displayed on the bottom. For example, in the File Explorer
application, the currently selected folder name is displayed in the Current Location
toolbar, as shown in Figure 14–17. When you use more than one toolbar, you can set
the flex attribute on the toolbars to determine which toolbar should take up the most
space. In this case, the Current Location toolbar is set to be the longest.

If you wish toolbars to be displayed next to each other (rather than stacked), you can
enclose them in a group component.

Within a toolbar, you can set one component to stretch so that the toolbar will always
be the same size as its parent container. For example, in the File Explorer application,
the lower toolbar that displays the current location contains the component that shows
the selected folder. This component is set to stretch so that when the window is
resized, that component and the toolbar will always be the same width as the parent.
However, because no component in the top toolbar is set to stretch, it does not change
size when the window is resized. When a window is resized such that all the
components within the toolbar can no longer be displayed, the toolbar displays an
overflow icon, identified by an arrow cursor in the upper right-hand corner, as shown
in Figure 14–18.

Tip: You can also use the toolbox component to group menu bars
with toolbars, or to group multiple menu bars. As with grouping
toolbars, use the group component to group menu bars and toolbars
on the same row.

Using Toolbars

Using Menus, Toolbars, and Toolboxes 14-15

Figure 14–18 Overflow Icon in a Toolbar

Clicking that overflow icon displays the remaining components in a popup window,
as shown in Figure 14–19.

Figure 14–19 Toolbar Component in an Overflow Popup Window

When you expect overflow to occur in your toolbar, it is best to wrap it in a toolbox
that has special layout logic to help in the overflow.

14.3.1 How to Create and Use Toolbars
If you are going to use more than one toolbar component on a page, or if you plan to
use menu bars with toolbars, you first create the toolbox component to hold them.
You then create the toolbars, and last, you create the toolbar buttons.

To create and use toolbars:
1. If you plan on using more than one toolbar or a combination of toolbars and menu

bars, create a toolbox component by dragging and dropping a Toolbox
component from the Layout panel of the Component Palette.

2. In the Component Palette, from the Common Components panel, drag and drop a
Toolbar onto the JSF page. If you are using a toolbox component, the Toolbar
should be dropped as a direct child of the toolbox component.

Tip: If you encounter layout issues with single toolbars or menu
bars, consider wrapping them in a toolbox component, because this
component can handle overflow and layout issues.

Tip: The panelHeader, showDetailHeader, and showDetailItem
components support a toolbar facet for adding toolboxes and
toolbars to section headers and accordion panel headers.

Using Toolbars

14-16 Web User Interface Developer's Guide for Oracle Application Development Framework

3. If grouping more than one toolbar within a toolbox, for each toolbar, select the
toolbar, expand the Appearance section and set the flex attributes to determine
the relative sizes of each of the toolbars. The higher the number given for the flex
attribute, the longer the toolbox will be. For the set of toolbars shown in
Example 14–5, toolbar2 will be the longest, toolbar4 will be the next longest, and
because their flex attributes are not set, the remaining toolbars will be the same
size and shorter than toolbar4.

Example 14–5 Flex Attribute Determines Length of Toolbars

<af:toolbox>
 <af:toolbar id="toolbar1" flex="0">
 <af:commandToolbarButton text="ButtonA"/>
 </af:toolbar>
 <af:toolbar id="toolbar2" flex="2">
 <af:commandToolbarButton text="ButtonB"/>
 </af:toolbar>
 <af:toolbar id="toolbar3" flex="0">
 <af:commandToolbarButton text="ButtonC"/>
 </af:toolbar>
 <af:toolbar id="toolbar4" flex="1">
 <af:commandToolbarButton text="ButtonD"/>
 </af:toolbar>
</af:toolbox>

For information about how the flex attribute works, see Section 14.3.2, "What
Happens at Runtime: Determining the Size of Menu Bars and Toolbars."

4. Insert components into the toolbar as needed. To create a commandToolbarButton
drag a ToolbarButton from the Component Palette and drop it as a direct child of
the toolbar component.

Tip: Toolboxes also allow you to use the iterator, switcher, and group
components as direct children, providing these components wrap
child components that would usually be direct children of the toolbox.

Performance Tip: At runtime, when available browser space is less
than the space needed to display the contents of the toolbox,
ADF Faces automatically displays overflow icons that enable users to
select and navigate to those items that are out of view. The number of
child components within a toolbox component, and the complexity of
the children, will affect the performance of the overflow. You should
set the size of the toolbox component to avoid overflow when
possible. For more information, see Section 14.3.2, "What Happens at
Runtime: Determining the Size of Menu Bars and Toolbars."

Tip: You can use the group component to group toolbars (or menu
bars and toolbars) that you want to appear on the same row. If you do
not use the group component, the toolbars will appear on subsequent
rows.

Using Toolbars

Using Menus, Toolbars, and Toolboxes 14-17

5. For each commandToolbarButton component, expand the Common section of the
Property Inspector and set the following attributes:

■ Type: Specify a type for this toolbar button. When a toolbar button type is
specified, an icon can be displayed when the button is clicked. Use one of the
following acceptable type values:

– check: Toggles to the depressedIcon value if selected or to the default
icon value if not selected.

– radio: When used with other toolbar buttons in a group, makes the button
currently clicked selected, and toggles the previously clicked button in the
group to unselected.

– default: Assigns no type to this toolbar button.

■ Selected: Set to true to have this toolbar button appear as selected. The
selected attribute is supported for checkmark- and radio-type toolbar buttons
only.

■ Icon: Use the dropdown list to select the icon. If the icon does not display in
this menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

Tip: You can use the group component to wrap related buttons on
the bar. Doing so inserts a separator between the groups, as shown
surrounding the group for the Select Skin dropdown list and Refresh
button in Figure 14–17.

Toolbars also allow you to use the iterator and switcher components
as direct children, providing these components wrap child
components that would usually be direct children of the toolbar.

Tip: You can place other components, such as command buttons and
links, input components, and select components in a toolbar.
However, they may not have the capability to stretch. For details
about stretching the toolbar, see Step 9.

Tip: If you plan to support changing the visible attribute of the
button through active data (for example, data being pushed from the
data source will determine whether nor not the toolbar is displayed),
then you should use the activeCommandToolbarButton component
instead of the commandToolbarButton component. Create an
activeCommandToolbarButton component by dragging a
ToolbarButton (Active) from the Component Palette.

Note: When setting the type to radio, you must wrap the toolbar
button in a group tag that includes other toolbar buttons whose types
are set to radio as well.

Note: Because alternative text cannot be provided for this icon, in
order to create an accessible product, this icon must only be used
when the use is purely decorative. You must provide the meaning of
this icon using another accessible manner.

Using Toolbars

14-18 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Text: Enter the label for this toolbar button.

■ Action: Use an EL expression that evaluates to an action method in an object
(such as a managed bean) that will be invoked when a user presses this
button. The expression must evaluate to a public method that takes no
parameters, and returns a java.lang.Object object.

If you want to cause navigation in response to the action generated by the
button, instead of entering an EL expression, enter a static action outcome
value as the value for the action attribute. You then must set either
partialSubmit to false, or use a redirect. For more information about
configuring navigation, see Section 2.3, "Defining Page Flows."

■ ActionListener: Specify the expression that refers to an action listener method
that will be notified when a user presses this button. This method can be used
instead of a method bound to the action attribute, allowing the action
attribute to handle navigation only. The expression must evaluate to a public
method that takes an ActionEvent parameter, with a return type of void.

6. Expand the Appearance section and set the following properties:

■ HoverIcon: Use the dropdown list to select the icon to display when the
mouse cursor is directly on top of this toolbar button. If the icon is not in this
menu, use the dropdown menu to the right of the list to choose Edit, and
browse to select the icon.

■ DepressedIcon: Use the dropdown list to select the icon to display when the
toolbar button is activated. If the icon is not in this menu, use the dropdown
menu to the right of the list to choose Edit, and browse to select the icon.

7. Expand the Behavior section and set ActionDelivery to none if you do not want to
fire an action event when the button is clicked. This is useful if you want the
button to simply open a popup window. If set to none, you must have a popup
component in the popup facet of the toolbar button (see Step 8), and you cannot
have any value set for the action or actionListener attributes. Set to
clientServer attribute if you want the button to fire an action event as a standard
command component.

8. To have a toolbar button invoke a popup menu, insert a menu component into the
popup facet of the commandToolbarButton component. For information, see
Section 14.2.1, "How to Create and Use Menus in a Menu Bar."

9. If you want a toolbar to stretch so that it equals the width of the containing parent
component, set stretchId to be the ID of the component within the toolbar that
should be stretched. This one component will stretch, while the rest of the
components in the toolbar remain a static size.

For example, in the File Explorer application, the inputText component that
displays the selected folder’s name is the one that should stretch, while the
outputText component that displays the words "Current Folder" remains a static
size, as shown in Example 14–6.

Example 14–6 Using the stretchId Attribute

<af:toolbar id="headerToolbar2" flex="2" stretchId="pathDisplay">
 <af:outputText id="currLocation" noWrap="true"
 value="#{explorerBundle['menuitem.location']}"/>
 <af:inputText id="pathDisplay" simple="true" inlineStyle="width:100%"
 contentStyle="width:100%"
 binding="#{explorer.headerManager.pathDisplay}"
 value="#{explorer.headerManager.displayedDirectory}"

Using Toolbars

Using Menus, Toolbars, and Toolboxes 14-19

 ="true"
 validator="#{explorer.headerManager.validatePathDisplay}"/>
</af:toolbar>

You can also use the stretchId attribute to justify components to the left and right
by inserting a spacer component, and setting that component ID as the stretchId
for the toolbar, as shown in Example 14–7.

Example 14–7 Using a Spacer to Justify Toolbar Components

<af:toolbar flex="1" stretchId="stretch1">
 <af:commandToolbarButton text="Forward"
 icon="/images/fwdarrow_gray.gif"
 disabled="true"></af:commandToolbarButton>
 <af:commandToolbarButton icon="/images/uplevel.gif" />

<!-- Insert a stretched spacer to push subsequent buttons to the right -->

 <af:spacer id="stretch1" clientComponent="true"/>

 <af:commandToolbarButton text="Reports" />
 <af:commandToolbarButton id="toggleRefresh"
 text="Refresh:OFF" />
</af:toolbar>

14.3.2 What Happens at Runtime: Determining the Size of Menu Bars and Toolbars
When a page with a menu bar or toolbar is first displayed or resized, the space needed
for each bar is based on the value of the bar’s flex attribute. The percentage of size
allocated to each bar is determined by dividing its flex attribute value by the sum of
all the flex attribute values. For example, say you have three toolbars in a toolbox,
and those toolbars are grouped together to display on the same line. The first toolbar is
given a flex attribute value of 1, the second toolbar also has a flex attribute value of
1, and the third has a flex attribute value of 2, giving a total of 4 for all flex attribute
values. In this example, the toolbars would have the following allocation percentages:

■ Toolbar 1: 1/4 = 25%

■ Toolbar 2: 1/4 = 25%

■ Toolbar 3: 2/4 = 50%

Once the allocation for the bars is determined, and the size set accordingly, each
element within the toolbars are placed left to right. Any components that do not fit are
placed into the overflow list for the bar, keeping the same order as they would have if
displayed, but from top to bottom instead of left to right.

14.3.3 What You May Need to Know About Toolbars
Toolbars are supported and rendered by parent components such as panelHeader,
showDetailHeader, and showDetailItem, which have a toolbar facet for adding
toolbars and toolbar buttons to section headers and accordion panel headers.

Note the following points about toolbars at runtime:

Note: If the application is configured to read right to left, the
toolbars will be placed right to left. For more information, see
Section A.6.2.6, "Language Reading Direction."

Using Toolbars

14-20 Web User Interface Developer's Guide for Oracle Application Development Framework

■ A toolbar and its buttons do not display on a header if that header is in a collapsed
state. The toolbar displays only when the header is in an expanded state.

■ When the available space on a header is less than the space needed by a toolbar
and all its buttons, ADF Faces automatically renders overflow icons that allow
users to select hidden buttons from an overflow list.

■ Toolbars do not render on printable pages.

15

Creating a Calendar Application 15-1

15 Creating a Calendar Application

This chapter describes how to use the ADF Faces calendar component to create a
calendar application.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Creating a Calendar Application"

■ Section 15.2, "Creating the Calendar"

■ Section 15.3, "Configuring the Calendar Component"

■ Section 15.4, "Adding Functionality Using Popup Components"

■ Section 15.5, "Customizing the Toolbar"

■ Section 15.6, "Styling the Calendar"

15.1 Introduction to Creating a Calendar Application
ADF Faces includes a calendar component that by default displays created activities in
daily, weekly, monthly, or list views for a given provider or providers (a provider is the
owner of an activity). Figure 15–1 shows an ADF Faces calendar in weekly view
mode with some sample activities.

Figure 15–1 ADF Faces Calendar Showing Weekly View

You can configure the calendar so that it only displays a subset of those views. For
example, you may not want your calendar to use the month and list views. You can

Introduction to Creating a Calendar Application

15-2 Web User Interface Developer's Guide for Oracle Application Development Framework

configure it so that only the day and week views are available, as shown in
Figure 15–2. Because only day and week views are available, those are the only
buttons displayed in the toolbar.

Figure 15–2 Calendar Configured to Use Only Week and Day Views

By default, the calendar displays dates and times based on the locale set in the
trinidad-config.xml file (for example, Section A.6, "Configuration in
trinidad-config.xml"). If a locale is not set in that file, then it is based on the locale sent
by the browser. For example, in the United States, by default, the start day of the week
is Sunday, and 2 p.m. is shown as 2:00 PM. In France, the default start day is Monday,
and 2 p.m. is shown as 14:00. The time zone for the calendar is also based on the
setting in trinidad-config.xml. You can override the default when you configure the
calendar. For more information, see Section 15.3, "Configuring the Calendar
Component."

The calendar uses the CalendarModel class to display the activities for a given time
period. You must create your own implementation of the model class for your
calendar. If your application uses the Fusion technology stack, then you can create
ADF Business Components over your data source that represents the activities, and
the model will be created for you. You can then declaratively create the calendar, and it
will automatically be bound to that model. For more information, see the "Using the
ADF Faces Calendar Component" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

If your application does not use the Fusion technology stack, then you create your own
implementation of the CalendarModel class and the associated CalendarActivity and
CalendarProvider classes. The classes are abstract classes with abstract methods. You
must provide the functionality behind the methods, suitable for your implementation
of the calendar. For more information, see Section 15.2, "Creating the Calendar."

The calendar includes a toolbar with built-in functionality that allows a user to change
the view (between daily, weekly, monthly, or list), go to the previous or next day, week,
or month, and return to today. The toolbar is fully customizable. You can choose which
buttons and text to display, and you can also add buttons or other components. For
more information, see Section 15.5, "Customizing the Toolbar."

Introduction to Creating a Calendar Application

Creating a Calendar Application 15-3

The calendar component displays activities based on those activities and the provider
returned by the CalendarModel class. By default, the calendar component is read-only.
That is, it can display only those activities that are returned. You can add functionality
within supported facets of the calendar so that users can edit, create, and delete
activities. When certain events are invoked, popup components placed in these
corresponding facets are opened, which can allow the user to act on activities or the
calendar.

For example, when a user clicks on an activity in the calendar, the
CalendarActivityEvent is invoked and the popup component in the ActivityDetail
facet is opened. You might use a dialog component that contains a form where users
can view and edit the activity, as shown in Figure 15–3.

Figure 15–3 Dialog Implemented to Edit an Activity

For more information about implementing additional functionality using events,
facets, and popup components, see Section 15.4, "Adding Functionality Using Popup
Components."

The calendar component supports the ADF Faces drag and drop architectural feature.
Users can drag activities to different areas of the calendar, executing either a copy or a
move operation, and can also drag handles on the activity to change the duration of
the activity. For more information about adding drag and drop functionality, see
Section 34.7, "Adding Drag and Drop Functionality to a Calendar."

By default, the calendar displays activities using a blue ramp. Color ramps are groups
of colors all based on the same hue, for example, blue. In the default calendar, for a

Tip: When these toolbar buttons are used, attribute values on the
calendar are changed. You can configure these values to be persisted
so that they remain for the user during the duration of the session. For
more information, see Chapter 33, "Allowing User Customization on
JSF Pages."

You can also configure your application so that the values will be
persisted and used each time the user logs into the system. For this
persistence to take place, your application must use the Fusion
technology stack. For more information, see the "Allowing User
Customizations at Runtime" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Creating the Calendar

15-4 Web User Interface Developer's Guide for Oracle Application Development Framework

short-duration activity shown in the daily view, the time of an activity is shown with a
dark blue background, while the title of the activity is shown with a light blue
background, as shown in Figure 15–1. You can customize how the activities are
displayed by changing the color ramp.

Each activity is associated with a provider, that is, an owner. If you implement your
calendar so that it can display activities from more than one provider, you can also
style those activities so that each provider’s activity shows in a different color, as
shown in Figure 15–4.

Figure 15–4 Month View with Activities from Different Providers

15.2 Creating the Calendar
Before you can add a calendar component to a page, you must implement the logic
required by the calendar in Java classes that extend ADF Faces calendar abstract
classes. For an ADF Faces application, create the classes as managed beans. After you
create the classes, you can add the calendar to a page.

Before you implement your logic, it helps to have an understanding of the
CalendarModel and CalendarActivity classes, as described in the following section.

15.2.1 Calendar Classes
The calendar component must be bound to an implementation of the CalendarModel
class. The CalendarModel class contains the data for the calendar. This class is
responsible for returning a collection of calendar activities, given the following set of
parameters:

Note: If your application uses the Fusion technology stack,
implement the calendar classes using ADF Business Components.
This will allow you to declaratively create and bind your calendar
component. For more information, see the "Using the ADF Faces
Calendar Component" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Creating the Calendar

Creating a Calendar Application 15-5

■ Provider ID: The owner of the activities. For example, you may implement the
CalendarModel class such that the calendar can return just the activities associated
with the owner currently in session, or it can also return other owners’ activities.

■ Time range: The expanse of time for which all activities that begin within that time
should be returned. A date range for a calendar is inclusive for the start time and
exclusive for the end time (also known as half-open), meaning that it will return all
activities that intersect that range, including those that start before the start time,
but end after the start time (and before the end time).

A calendar activity represents an object on the calendar, and usually spans a certain
period of time. The CalendarActivity class is an abstract class whose methods you
can implement to return information about the specific activities.

Activities can be recurring, have associated reminders, and be of a specific time type
(for example, hour or minute). Activities can also have start and end dates, a location,
a title, and a tag.

The CalendarProvider class represents the owner of an activity. A provider can be
either enabled or disabled for a calendar.

15.2.2 How to Create a Calendar
Create your own implementations of the CalendarModel and CalendarActivity
classes and implement the abstract methods to provide the logic.

To create the calendar model classes:
1. Create a managed bean that will hold logic for the calendar. This bean must:

■ Extend the oracle.adf.view.rich.model.CalendarModel class.

■ Implement the abstract methods.

For more information about the CalendarModel class, see the ADF Faces
Javadoc.

■ Implement any other needed functionality for the calendar. For example, you
might add logic that sets the time zone, as in the
oracle.adfdemo.view.calendar.rich.model.DemoCalendarBean managed
bean in the ADF Faces demo application (for more information about the
demo application, see Section 1.4, "ADF Faces Demonstration Application").

For more information about creating managed beans, see Section 2.6, "Creating
and Using Managed Beans."

2. Create a managed bean that will hold logic for the activities. This bean must:

■ Extend the oracle.adf.view.rich.model.CalendarActivity class.

■ Implement the abstract methods.

■ Implement any other required functionality for the calendar. As an example,
see the oracle.adfdemo.view.calendar.rich.model.DemoCalendarActivity
managed bean in the ADF Faces demo application.

Tip: If you want to style individual instances of an activity (for
example, if you want each provider’s activities to be displayed in a
different color), then the getTags method must return a string that
represents the activity instance. For more information, see
Section 15.6.1, "How to Style Activities."

Configuring the Calendar Component

15-6 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Create a managed bean that will hold information and logic for providers.

■ Extend the oracle.adf.view.rich.model.CalendarProvider class.

■ Implement the abstract methods.

■ Implement any other required functionality for the provider.

To create the calendar component:
1. In the Component Palette, from the Common Components section, drag a

Calendar and drop it onto a JSF page.

2. Expand the Calendar Data section of the Property Inspector, and enter an EL
expression for Value that resolves to the managed bean that extends the
CalendarModel class.

15.3 Configuring the Calendar Component
Configure the many display attributes for the calendar, for example, the day that a
week starts, and the time displayed at the beginning of a day.

15.3.1 How to Configure the Calendar Component
You configure the calendar using the Property Inspector.

To configure a calendar:
1. With the calendar component selected, expand the Common section of the

Property Inspector, and set the following:

■ AvailableViews: Select the available views. The value can be one of or a
combination of the following:

– month

– week

– day

– list

– all

If you want to enter more than one value, enter the values with a space
between. For example, if you want the calendar to use day and week views,
you would enter the following:

day week

Tip: The calendar component can be stretched by any parent
component that can stretch its children. If the calendar is a child
component to a component that cannot be stretched, it will use a
default width and height, which cannot be stretched by the user at
runtime. However, you can override the default width and height
using inline style attributes. For more information about the default
height and width, see Section 15.3, "Configuring the Calendar
Component." For more information about stretching components, see
Section 8.2.1, "Geometry Management and Component Stretching."

Configuring the Calendar Component

Creating a Calendar Application 15-7

The corresponding buttons will automatically be displayed in the toolbar, in
the order they appear in the list.

If you do not enter day as an available view, then activities will be listed as
plain text rather than as links in the list and week views (provided you do not
also enter all).

■ View: Select the view (either day, list, month, or week) that should be the
default when the calendar is displayed. Users change this value when they
click the corresponding button in the calendar’s toolbar.

■ StartDayOfWeek: Enter the day of the week that should be shown as the
starting day, at the very left in the monthly or weekly view. When not set, the
default is based on the user’s locale. Valid values are:

– sun

– mon

– tue

– wed

– thu

– fri

– sat

■ StartHour: Enter a number that represents the hour (in 24 hour format, with 0
being midnight) that should be displayed at the top of the day and week view.
While the calendar (when in day or week view) starts the day at 12:01 a.m., the
calendar will automatically scroll to the startHour value, so that it is
displayed at the top of the view. The user can always scroll above that time to
view activities that start before the startHour value.

■ ListType: Select how you want the list view to display activities. Valid values
are:

– day: Shows activities only for the active day.

– dayCount: Shows a number of days including the active day and after,
based on the value of the listCount attribute.

– month: Shows all the activities for the month to which the active day
belongs.

– week: Shows all the activities for the week to which the active day belongs

■ ListCount: Enter the number of days’ activities to display (used only when the
listType attribute is set to dayCount).

Note: If all is entered, then all views are available, regardless if one
is left out of the list.

Note: In order to handle an overflow of tasks for a given day in the
month view, if you enter month and do not also enter all, then you
must also enter day.

Configuring the Calendar Component

15-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 15–5 shows a calendar in list view with the listType set to dayCount
and the listCount value set to 14.

Figure 15–5 List View Using dayCount Type

2. Expand the Calendar Data section of the Property Inspector, and set the following:

■ ActiveDay: Set the day used to determine the date range that is displayed in
the calendar. By default, the active day is today’s date for the user. Do not
change this if you want today’s date to be the default active day when the
calendar is first opened.

Note that when the user selects another day, this becomes the value for the
activeDay attribute. For example, when the user first accesses the calendar,
the current date is the active day. The month view will show the current
month. If the user uses the next button to scroll to the next month, the active
date will change to the next month.

■ TimeZone: Set the time zone for the calendar. If not set, the value is taken
from AdfFacesContext. The valid value is a java.util.TimeZone object.

3. Expand the Other section of the Property Inspector and set the following:

■ HourZoom: Set the zoom factor for time cells to be displayed in the calendar.
The zoom factor applies to the height of the hour in day or week view. Valid
values are auto or a non-zero positive number (including fractions). By
default, the value is 1.

A value greater than 1 will scale up the calendar by the specified factor. For
example, a value of 2 will scale up the calendar by 200%. A value of 0.5 will
scale down the calendar by 50%. When set to auto the calendar will scale by
an optimal factor for best viewing, ensuring that tightly scheduled
non-overlapping activities will not display overlapping each other for lack of
vertical space.

■ TimeSlotsPerHour: Set the number of time slots to display per hour in day or
week view. Time slots are minor divisions per hour, indicated by a dotted line
splitting the hour into shorter intervals. For example, the value 4 will render
four time slots per hour, measuring 15 minutes each. Valid values are auto or
a non-zero positive whole number. By default, the value is auto.

When set to auto the calendar will use the skin property
-tr-time-slots-per-hour. For example, af|calendar
{-tr-time-slots-per-hour: 4} will render a minor division (dotted line) at
15-minute intervals.

Adding Functionality Using Popup Components

Creating a Calendar Application 15-9

4. If you want the user to be able to drag a handle on an existing activity to expand
or collapse the time period of the activity, then implement a handler for
CalendarActivityDurationChangeListener. This handler should include
functionality that changes the end time of the activity. If you want the user to be
able to move the activity (and, therefore, change the start time as well as the end
time), then implement drag and drop functionality. For more information, see
Section 34.7, "Adding Drag and Drop Functionality to a Calendar."

You can now add the following functionality:

■ Create, edit, and delete activities using popup components. For more information,
see Section 15.4, "Adding Functionality Using Popup Components."

■ Move activities around on the calendar. For more information, see Section 34.7,
"Adding Drag and Drop Functionality to a Calendar."

■ Change or add to the toolbar buttons in the toolbar. For more information, see
Section 15.5, "Customizing the Toolbar."

■ Change the appearance of the calendar and events. For more information, see
Section 15.6, "Styling the Calendar."

15.3.2 What Happens at Runtime: Calendar Events and PPR
The calendar has two events that are used in conjunction with facets to provide a way
to easily implement additional functionality needed in a calendar, such as editing or
adding activities. These two events are CalendarActivityEvent (invoked when an
action occurs on an activity) and CalendarEvent (invoked when an action occurs on
the calendar, itself). For more information about using these events to provide
additional functionality, see Section 15.4, "Adding Functionality Using Popup
Components."

The calendar also supports events that are fired when certain changes occur. The
CalendarActivityDurationChangeEvent is fired when the user changes the duration
of an activity by dragging the box that displays the activity. The
CalendarDisplayChangeEvent is fired whenever the component changes the value of a
display attribute, for example when the view attribute changes from month to day.

When a CalendarDisplayChangeEvent is fired, the calendar component adds itself as a
partial page rendering (PPR) target, allowing the calendar to be immediately
refreshed. This is because the calendar assumes that if the display changed
programatically, then the calendar must need to be rerendered. For example, if a user
changes the view attribute from day to month, then the calendar is rerendered
automatically.

15.4 Adding Functionality Using Popup Components
When a user acts upon an activity, a CalendarActivityEvent is fired. This event
causes the popup component contained in a facet to be displayed, based on the user’s
action. For example, if the user right-clicks an activity, the CalendarActivityEvent
causes the popup component in the activityContextMenu to be displayed. The event
is also delivered to the server, where a configured listener can act upon the event. You
create the popup components for the facets (or if you do not want to use a popup
component, implement the server-side listener). It is in these popup components and
facets where you can implement functionality that will allow users to create, delete,
and edit activities, as well as to configure their instances of the calendar.

Table 15–1 shows the different user actions that invoke events, the event that is
invoked, and the associated facet that will display its contents when the event is

Adding Functionality Using Popup Components

15-10 Web User Interface Developer's Guide for Oracle Application Development Framework

invoked. The table also shows the component you must use within the popup
component. You create the popup and the associated component within the facet,
along with any functionality implemented in the handler for the associated listener. If
you do not insert a popup component into any of the facets in the table, then the
associated event will be delivered to the server, where you can act on it accordingly by
implementing handlers for the events.

15.4.1 How to Add Functionality Using Popup Components
To add functionality, create the popups and associated components in the associated
facets.

To add functionality using popup components:
1. In the Structure window, expand the af:calendar component node so that the

calendar facets are displayed, as shown in Figure 15–6.

Table 15–1 Calendar Faces Events and Associated Facets

User Action Event Associated Facet

Component
to Use in
Popup

Right-click an
activity.

CalendarActivityEve
nt

activityContextMenu: The
enclosed popup component can be
used to display a context menu,
where a user can choose some
action to execute against the
activity, for example edit or delete.

menu

Select an activity
and press the
Delete key.

CalendarActivityEve
nt

activityDelete: The enclosed
popup component can be used to
display a dialog that allows the user
to delete the selected activity.

dialog

Click or
double-click an
activity, or select
an activity and
press the Enter
key.

CalendarActivityEve
nt

activityDetail: The enclosed
popup component can be used to
display the activity’s details.

dialog

Hover over an
activity.

CalendarActivityEve
nt

activityHover: The enclosed
popup component can be used to
display high-level information
about the activity.

noteWindow

Right-click the
calendar (not an
activity or the
toolbar).

CalendarEvent contextMenu: The enclosed popup
component can be used to display a
context menu for the calendar.

menu

Click or
double-click any
free space in the
calendar (not an
activity).

CalendarEvent create: The enclosed popup
component can be used to display a
dialog that allows a user to create
an activity.

dialog

Adding Functionality Using Popup Components

Creating a Calendar Application 15-11

Figure 15–6 Calendar Facets in the Structure Window

2. Based on Table 15–1, create popup components in the facets that correspond to the
user actions for which you want to provide functionality. For example, if you want
users to be able to delete an activity by clicking it and pressing the Delete key, you
add a popup dialog to the activityDelete facet.

To add a popup component, right-click the facet in the Structure window and
choose Insert inside facetName > ComponentName.

For more information about creating popup components, see Chapter 13, "Using
Popup Dialogs, Menus, and Windows."

Example 15–1 shows the JSF code for a dialog popup component used in the
activityDelete facet.

Example 15–1 JSF Code for an Activity Delete Dialog

<f:facet name="activityDelete">
 <af:popup id="delete" contentDelivery="lazyUncached">
 <!-- don't render if the activity is null -->
 <af:dialog dialogListener="#{calendarBean.deleteListener}"
 affirmativeTextAndAccessKey="Yes" cancelTextAndAccessKey="No"
 rendered="#{calendarBean.currActivity != null}">
 <af:outputText value="NOTE: This popup is for demo purposes only,
 it is not part of the built in functionality of the calendar."/>
 <af:spacer height="20"/>
 <af:outputText value="Are you sure you want to delete this activity?"/>
 <af:panelFormLayout>
 <af:inputText label="Title" value="#{calendarBean.currActivity.title}"
 readOnly="true"/>
 <af:inputDate label="From" value="#{calendarBean.currActivity.from}"
 readOnly="true">
 <af:convertDateTime type="date" dateStyle="short"
 timeZone="#{calendarBean.timeZone}"
 pattern="#{calendarBean.currActivity.dateTimeFormat}"/>
 </af:inputDate>
 <af:inputDate label="To" value="#{calendarBean.currActivity.to}"
 readOnly="true">
 <af:convertDateTime type="date" dateStyle="short"
 timeZone="#{calendarBean.timeZone}"
 pattern="#{calendarBean.currActivity.dateTimeFormat}"/>
 </af:inputDate>
 <af:inputText label="Location" readOnly="true"
 rendered="#{calendarBean.currActivity.location != null}"
 value="#{calendarBean.currActivity.location}"/>

Customizing the Toolbar

15-12 Web User Interface Developer's Guide for Oracle Application Development Framework

 </af:panelFormLayout>
 </af:dialog>
 </af:popup>
</f:facet>

Figure 15–7 shows how the dialog is displayed when a user clicks an activity and
presses the Delete key.

Figure 15–7 Delete Activity Dialog

3. Implement any needed logic for the calendarActivityListener. For example, if
you are implementing a dialog for the activityDeleteFacet, then implement
logic in the calendarActivityListener that can save-off the current activity so
that when you implement the logic in the dialog listener (in the next step), you
will know which activity to delete. Example 15–2 shows the
calendarActivityListener for the calendar.jspx page in the ADF Faces demo
application.

Example 15–2 calendarActivityListener Handler

 public void activityListener(CalendarActivityEvent ae)
 {

 CalendarActivity activity = ae.getCalendarActivity();

 if (activity == null)
 {
 // no activity with that id is found in the model
 System.out.println("No activity with event " + ae.toString());
 setCurrActivity(null);
 return;
 }

 System.out.println("providerId is " + activity.getProviderId());
 System.out.println("activityId is " + activity.getId());

 setCurrActivity(new DemoCalendarActivityBean((DemoCalendarActivity)activity,
getTimeZone()))

4. Implement the logic for the popup component in the handler for the popup event.
For example, for the delete dialog, implement a handler for the dialogListener
that actually deletes the activity when the dialog is dismissed. For more
information about creating dialogs and other popup components, see Chapter 13,
"Using Popup Dialogs, Menus, and Windows."

15.5 Customizing the Toolbar
By default, the toolbar in the calendar allows the user to change the view between day,
week, month, and list, go to the next or previous item in the view, or go to the present
day. The toolbar also displays a text description of the current view. For example in the

Customizing the Toolbar

Creating a Calendar Application 15-13

day view, it displays the active date, as shown in Figure 15–8.

Figure 15–8 Toolbar in Day View of a Calendar

Figure 15–9 shows a toolbar that has been customized. It has added toolbar buttons,
including buttons that are right-aligned on the top toolbar, and buttons in a second
toolbar.

Figure 15–9 Customized Toolbar for a Calendar

15.5.1 How to Customize the Toolbar
Place the toolbar and toolbar buttons you want to add in custom facets that you create.
Then, reference the facet (or facets) from an attribute on the toolbar, along with
keywords that determine how or where the contained items should be displayed.

To customize the toolbar:
1. In the JSF page of the Component Palette, from the Core panel, drag and drop a

Facet for each section of the toolbar you want to add. For example, to add the
custom buttons shown in Figure 15–9, you would add four facet tags. Ensure that
each facet has a unique name for the page.

Customizing the Toolbar

15-14 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the ADF Faces page of the Component Palette, from the Common Components
panel, drag and drop a Toolbar to each facet and add toolbar buttons and
configure the buttons and toolbar as needed. For more information about toolbars
and toolbar buttons, see Section 14.3, "Using Toolbars."

3. In the Property Inspector, from the dropdown menu next to the toolboxLayout
attribute, choose Edit.

4. In the Edit Property: ToolboxLayout dialog set the value for this attribute. It
should be a list of the custom facet names, in the order in which you want the
contents in the custom facets to appear. In addition to those facets, you can also
include all, or portions of the default toolbar, using the following keywords:

■ all: Displays all the toolbar buttons and text in the default toolbar

■ dates: Displays only the previous, next, and today buttons

■ range: Displays only the string showing the current date range

■ views: Displays only the buttons that allows the user to change the view

For example, if you created two facets named customToolbar1 and
customToolbar2, and you wanted the complete default toolbar to appear in
between your custom toolbars, the value of the toolboxLayout attribute would be
the following list items:

■ customToolbar1

■ all

■ customToolbar2

You can also determine the layout of the toolbars using the following keywords:

■ newline: Places the toolbar in the next named facet (or the next keyword from
the list in the toolboxLayout attribute) on a new line. For example, if you
wanted the toolbar in the customToolbar2 facet to appear on a new line, the
list would be:

– customToolbar1

– all

– newline

– customToolbar2

If instead, you did not want to use all of the default toolbar, but only the views
and dates sections, and you wanted those to each appear on a new line, the list
would be:

– customToolbar1

– customToolbar2

Tip: To ensure that there will be no conflicts with future releases of
ADF Faces, start all your facet names with customToolbar. For
example, the section of the toolbar that contains the alignment buttons
shown in Figure 15–9 are in the customToolbarAlign facet.

Note: If you use the all keyword, then the dates, range, and views
keywords are ignored.

Styling the Calendar

Creating a Calendar Application 15-15

– newline

– views

– newline

– dates

■ stretch: Adds a spacer component that stretches to fill up all available space
so that the next named facet (or next keyword from the default toolbar) is
displayed as right-aligned in the toolbar. Example 15–3 shows the value of the
toolboxLayout attribute for the toolbar displayed in Figure 15–9, along with
the toolbar placed in the customToolbarAlign facet. Note that the toolbar
buttons displayed in the customToolbarBold facet are right-aligned in the
toolbar because the keyword stretch is named before the facet.

Example 15–3 Value for Custom Toolbar

<af:calendar binding="#{editor.component}" id="calendar1"
 value="#{calendarBean.calendarModel}"
 timeZone="#{calendarBean.timeZone}"
 toolboxLayout="customToolbarAlign all customToolbarTZ stretch
 customToolbarBold newline customToolbarCreate"
. . .
 <f:facet name="customToolbarAlign">
 <af:toolbar>
 <af:commandToolbarButton id="alignLeft" shortDesc="align left"
 icon="/images/alignleft16.png" type="radio"
 selected="true"/>
 <af:commandToolbarButton id="alignCenter" shortDesc="align center"
 icon="/images/aligncenter16.png" type="radio"
 selected="false"/>
 <af:commandToolbarButton id="alignRight" shortDesc="align right"
 icon="/images/alignright16.png" type="radio"
 selected="false"/>
 </af:toolbar>
 </f:facet>
. . .
</af:calendar>

15.6 Styling the Calendar
Like other ADF Faces components, the calendar component can be styled as described
in Chapter 20, "Customizing the Appearance Using Styles and Skins." However, along
with standard styling procedures, the calendar component has specific attributes that
make styling instances of a calendar easier. These attributes are:

■ activityStyles: Allows you to individually style each activity instance. For
example, you may want to show activities belonging to different providers in
different colors.

■ dateCustomizer: Allows you to display strings other than the calendar date for the
day in the month view. For example, you may want to display countdown or
countup type numbers, as shown in Figure 15–10. This attribute also allows you to
add strings to the blank portion of the header for a day.

Styling the Calendar

15-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 15–10 Customized Display of Dates in a Calendar

15.6.1 How to Style Activities
The activityStyles attribute uses InstanceStyles objects to style specific instances
of an activity. The InstanceStyles class is a way to provide per-instance inline styles
based on skinning keys.

The most common usage of the activityStyles attribute is to display activities
belonging to a specific provider using a specific color. For example, the calendar
shown in Figure 15–11 shows activities belonging to three different providers. The user
can change that color used to represent a provider’s activities in the left panel. The
activityStyles attribute is used to determine the color displayed for each activity,
based on the provider with which it is associated.

Styling the Calendar

Creating a Calendar Application 15-17

Figure 15–11 Activities Styled to Display Color for Different Providers

Note that instead of using a single color, a range of a color is used in the calendar. This
is called a color ramp. A color ramp is a set of colors in a color family to represent the
different states of activities. For example, Ted’s activities use the Blue ramp. Activities
whose time span is within one day are displayed in medium blue text. Activities that
span across multiple days are shown in a medium blue box with white text. Darker
blue is the background for the start time, while lighter blue is the background for the
title. These three different blues are all part of the Blue color ramp.

The CalendarActivityRamp class is a subclass of InstanceStyles, and can take a
representative color (for example, the blue chosen for Ted’s activities) and return the
correct color ramp to be used to display each activity in the calendar.

The activityStyles attribute must be bound to a map object. The map key is the set
returned from the getTags method on an activity. The map value is an
InstanceStyles object, most likely an instance of CalendarActivityRamp. This
InstanceStyles object will take in skinning keys, and for each activity, styles will be
returned.

To style activities:
1. In your CalendarActivity class, have the getTags method return a string set that

will be used by the activityStyles attribute to map the returned string to a
specific style. For example, to use the different color ramps for the different
providers shown in Figure 15–11, you must return a string for each provider. In
this case, an activity belonging to the current user might return Me, an activity
belonging to L.E. might return LE, and an activity belonging to T.F. might return
TF. For more information about implementing the CalendarActivity class, see
Section 15.2.2, "How to Create a Calendar."

Styling the Calendar

15-18 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Create a map whose key is the string returned from the getTags method, and
whose value is an InstanceStyles object (for example, a CalendarActivityRamp
instance).

For example, to use the different color ramps shown in Figure 15–11, you would
create a map using the values shown in Table 15–2.

3. In the Structure window, select the calendar component, and in the Property
Inspector, bind the activityStyles attribute to the map.

15.6.2 What Happens at Runtime: Activity Styling
During calendar rendering for each activity, the renderer calls the
CalendarActivity.getTags method to get a string set. The string set is then passed to
the map bound to the activityStyles attribute, and an InstanceStyles object is
returned (which may be a CalendarActivityRamp).

Using the example:

■ If the string set {"Me"} is passed in, the red CalendarActivityRamp is returned.

■ If the string set {"LE"} is passed in, the orange CalendarActivityRamp is returned.

■ If the string set {"TF"} is passed in, the blue CalendarActivityRamp is returned.

15.6.3 How to Customize Dates
If you want to display something other than the date number string in the day header
of the monthly view, you can bind the dateCustomizer attribute to an implementation
of a DateCustomizer class that determines what should be displayed for the date.

To customize the date string:
1. Create a subclass of the oracle.adf.view.rich.util.DateCustomizer class. This

subclass should determine what to display using the following skinning keys:

Keys passed to the DateCustomizer.format method:

■ af|calendar::day-header-row: In day view, customize the day of the week in
the header. For example, replace "Thursday" with "Thu".

■ af|calendar::list-day-of-month-link: In list view, customize the text for
the day of the month link. For example, replace "Jan 1" with "New Year's Day".

■ af|calendar::list-day-of-week-column: In list view, customize the day of
the week in the left list column. For example, replace "Thursday" with "Thu".

Table 15–2 Map for activityStyles Attribute

Key

 (String Set) Value (InstanceStyles Object)

{"Me"} CalendarActivityRamp.getActivityRamp

 (CalendarActivityRamp.RampKey.RED)

{"LE"} CalendarActivityRamp.getActivityRamp

 (CalendarActivityRamp.RampKey.ORANGE)

{"TF"} CalendarActivityRamp.getActivityRamp

 (CalendarActivityRamp.RampKey.BLUE)

Styling the Calendar

Creating a Calendar Application 15-19

■ af|calendar::week-header-day-link: In week view, customize the date link
for each date in the header. For example, replace "Sun 1/1" with "New Year's
Day".

■ af|calendar::month-grid-cell-header-misc: In month view, add
miscellaneous text to the empty area of the cell header. For example, on Jan 1,
add the text "New Year's Day".

■ af|calendar::month-grid-cell-header-day-link: In month view, customize
the date link labels in the cell header. For example, replace "5" with "-34".

■ af|calendar::toolbar-display-range:day: In day view, or in list view when
listType = day, customize the date string on the toolbar.

■ af|calendar::toolbar-display-range:month: In month view, or in list view
when listType = month, customize the date string on the toolbar.

Keys passed to the DateCustomizer.formatRange method:

■ af|calendar::toolbar-display-range:week: In week view, or in list view
when listType = week, customize the date string on the toolbar.

■ af|calendar::toolbar-display-range:list: In list view, or in list view
when listType = list, customize the date string on the toolbar.

Example 15–4 shows the DemoDateCustomizer class that displays the week number
in the first day of the week, and instead of the day of the month, a countdown
number to a specific date, as shown in Figure 15–10.

Example 15–4 Date Customizer Class

public class MyDateCustomizer extends DateCustomizer
{
 public String format(Date date, String key, Locale locale, TimeZone tz)
 {

 if ("af|calendar::month-grid-cell-header-misc".equals(key))
 {

 // return appropriate string

 }
 else if ("af|calendar::month-grid-cell-header-day-link".equals(key))
 {

 // return appropriate string
 }

 return null;

 }

}
2. In a managed bean, create an instance of the DateCustomizer class, for example:

private DateCustomizer _dateCustomizer = new DemoDateCustomizer();

3. In the calendar component, bind the dateCustomizer attribute to the
DateCustomizer instance created in the managed bean.

Styling the Calendar

15-20 Web User Interface Developer's Guide for Oracle Application Development Framework

16

Using Output Components 16-1

16Using Output Components

This chapter describes how to display output text, images, and icons using ADF Faces
components, and how to use components that allow users to play video and audio
clips.

This chapter includes the following sections:

■ Section 16.1, "Introduction to Output Text, Image, Icon, and Media Components"

■ Section 16.2, "Displaying Output Text and Formatted Output Text"

■ Section 16.3, "Displaying Icons"

■ Section 16.4, "Displaying Images"

■ Section 16.5, "Using Images as Links"

■ Section 16.6, "Displaying Application Status Using Icons"

■ Section 16.7, "Playing Video and Audio Clips"

16.1 Introduction to Output Text, Image, Icon, and Media Components
ADF Faces provides components for displaying text, icons, and images, and for
playing audio and video clips on JSF pages.

Read-only text can be displayed using the outputText or outputFormatted
components. The outputFormatted component enables you to add a limited set of
HTML markup to the value of the component, allowing for some very simple
formatting to the text.

Many ADF Faces components can have icons associated with them. For example, in a
menu, each of the menu items can have an associated icon. You identify the image to
use for each one as the value of an icon attribute for the menu item component itself.
Information and instructions for adding icons to components that support them are
covered in those components’ chapters. In addition to providing icons within
components, ADF Faces also provides icons used when displaying messages. You can
use these icons outside of messages as well.

To display an image on a page, you use the image component. Images can also be used
as links (including image maps) or to depict the status of the server.

The media component can play back an audio clip or a video clip. These components
have attributes so that you can define how the item is to be presented on the page.

Displaying Output Text and Formatted Output Text

16-2 Web User Interface Developer's Guide for Oracle Application Development Framework

16.2 Displaying Output Text and Formatted Output Text
There are two ADF Faces components specifically for displaying output text on pages:
outputText, which displays unformatted text, and outputFormatted, which displays
text and can include a limited range of formatting options.

To display simple text specified either explicitly or from a resource bundle or bean,
you use the outputText component. You define the text to be displayed as the value of
the value property. For example:

<af:outputText value="The submitted value was: "/>

Example 16–1 shows two outputText components: the first specifies the text to be
displayed explicitly, and the second takes the text from a managed bean and converts
the value to a text value ready to be displayed (for more information about conversion,
see Section 6.3, "Adding Conversion").

Example 16–1 Output Text

<af:panelGroupLayout>
 <af:outputText value="The submitted value was: "/>
 <af:outputText value="#{demoInput.date}">
 <af:convertDateTime dateStyle="long"/>
 </af:outputText>
</af:panelGroupLayout>

You can use the escape attribute to specify whether or not special HTML and XML
characters are escaped for the current markup language. By default, characters are
escaped.

Example 16–2 illustrates two outputText components, the first of which uses the
default value of true for the escape attribute, and the second of which has the
attribute set to false.

Example 16–2 Output Text With and Without the escape Property Set

<af:outputText value="<h3>output & heading</h3>"/>
<af:outputText value="<h3>output & heading</h3>"
 escape="false"/>

Figure 16–1 shows the different effects seen in a browser of the two different settings of
the escape attribute.

Caution: Avoid setting the escape attribute to false unless
absolutely necessary. When escape is set to false, your website may
be exposed to cross-site scripting attacks if the value of the
outputText component is in any way derived from values supplied by
a user. A better option is to use the outputFormatted component,
which allows a limited number of HTML tags. In addition, nearly all
attributes are ignored when the escape attribute is set to false (for
example, styleClass is not output).

Displaying Output Text and Formatted Output Text

Using Output Components 16-3

Figure 16–1 Using the escape Attribute for Output Text

As with the outputText component, the outputFormatted component also displays
the text specified for the value property, but the value can contain HTML tags. Use the
formatting features of the outputFormatted component specifically when you want to
format only parts of the value in a certain way. If you want to use the same styling for
the whole component value, instead of using HTML within the value, apply a style to
the whole component. If you want all instances of a component to be formatted a
certain way, then you should create a custom skin. For more information about using
inline styles and creating skins, see Chapter 20, "Customizing the Appearance Using
Styles and Skins."

Example 16–3 shows an outputFormatted component displaying only a few words of
its value in bold.

Example 16–3 Using outputFormatted to Bold Some Text

<af:outputFormatted value="This is in bold. This is not bold"/>

Figure 16–2 shows how the component displays the text.

Figure 16–2 Text Formatted Using the outputFormatted Component

16.2.1 How to Display Output Text
Before displaying any output text, decide whether or not any parts of the value must
be formatted in a special way.

To display output text:
1. In the Component Palette, from the Common Components panel, drag and drop

an Output Text onto the page. To create an outputFormatted component, drag and
drop an Output Formatted from the Component Palette.

2. Expand the Common section of the Property Inspector and set the value attribute
to the value to be displayed. If you are using the outputFormatted component, use
HTML formatting codes to format the text as needed, as described in Table 16–1
and Table 16–2.

Tip: If parts of the value require special formatting, use an
outputFormatted component.

Tip: If you plan to support changing the text of the component
through active data (for example, data being pushed from the data
source will determine the text that is displayed), then you should use
the activeOutputText component instead of the outputText
component. Create an activeOutputText component by dragging an
Output Text (Active) from the Component Palette.

Displaying Output Text and Formatted Output Text

16-4 Web User Interface Developer's Guide for Oracle Application Development Framework

The outputFormatted component also supports the styleUsage attribute whose
values are the following predefined styles for the text:

■ inContextBranding

■ instruction

■ pageStamp

Figure 16–3 shows how the styleUsage values apply styles to the component.

Figure 16–3 styleUsage Attribute Values

16.2.2 What You May Need to Know About Allowed Format and Character Codes in the
outputFormatted Component

Only certain formatting and character codes can be used. Table 16–1 lists the
formatting codes allowed for formatting values in the outputFormatted component.

Table 16–2 lists the character codes for displaying special characters in the values.

Note: If the styleUsage and styleClass attributes are both set, the
styleClass attribute takes precedence.

Table 16–1 Formatting Codes for Use in af:outputFormatted Values

Formatting Code Effect

 Line break

<hr> Horizontal rule

......
...

Lists: ordered list, unordered list, and list item

<p>...</p> Paragraph

... Bold

<i>...</i> Italic

<tt>...</tt> Teletype or monospaced

<big>...</big> Larger font

<small>...</small> Smaller font

<pre>...</pre> Preformatted: layout defined by whitespace and line break
characters preserved

... Span the enclosed text

<a>... Anchor

Table 16–2 Character Codes for Use in af:outputFormatted Values

Character Code Character

< Less than

Displaying Icons

Using Output Components 16-5

The attributes class, style, and size can also be used in the value attribute of the
outputFormatted component, as can href constructions. All other HTML tags are
ignored.

16.3 Displaying Icons
ADF Faces provides a set of icons used with message components, shown in
Figure 16–4.

Figure 16–4 ADF Faces Icons

If you want to display icons outside of a message component, you use the icon
component and provide the name of the icon type you want to display.

When you use messages in an ADF Faces application, the icons are automatically
added for you. You do not have to add them to the message component. However, you
can use the icons outside of a message component. To display one of the standard
icons defined in the skin for your application, use the icon component.

To display a standard icon:
1. In the Component Palette, from the Common Components panel, drag and drop

an Icon onto your page.

> Greater than

& Ampersand

® Registered

© Copyright

 Nonbreaking space

" Double quotation marks

Note: For security reasons, JavaScript is not supported in output
values.

Note: The images used for the icons are determined by the skin the
application uses. If you want to change the image, create a custom
skin. For more information, see Chapter 20, "Customizing the
Appearance Using Styles and Skins."

Table 16–2 (Cont.) Character Codes for Use in af:outputFormatted Values

Character Code Character

Displaying Images

16-6 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Expand the Common section and set Name to the name of one of the icon
functions shown in Figure 16–4. For example, if you want to display a red circle
with a white X, you would set Name to error.

3. Expand the Appearance section, and set ShortDesc to the text you want to be
displayed as the alternate text for the icon.

16.4 Displaying Images
To display an image on a page, you use the image component and set the source
attribute to the URI where the file is located. The image component also supports
accessibility description text by providing a way to link to a long description of the
image.

The image component can also be used as a link and can include an image map,
however, it must be placed inside a goLink component. For more information, see
Section 16.5, "Using Images as Links."

To display an image:
1. In the Component Palette, from the Common Components panel, drag and drop

an Image onto your page.

2. In the Insert Image dialog, set the following:

■ ShortDesc: Set to the text to be used as the alternate text for the image.

■ Source: Enter the URI to the image file.

3. If you want to include a longer description for the image, in the Property
Inspector, set LongDescURL attribute to the URI where the information is located.

16.5 Using Images as Links
ADF Faces provides the commandImageLink component that renders an image as a link,
along with optional text. You can set different icons for when the user hovers the
mouse over the icon, and for when the icon is depressed or disabled. For more
information about the commandImageLink component, see Section 18.2, "Using Buttons
and Links for Navigation."

If you simply want an image to be used to navigate to a given URI, you can enclose the
image in the goLink component and then, if needed, link to an image map.

You can use an image as a goLink component to one or more destinations. If you want
to use an image as a simple link to a single destination, use a goLink component to
enclose your image, and set the destination attribute of the goLink component to the
URI of the destination for the link.

If your image is being used as a graphical navigation menu, with different areas of the
graphic navigating to different URIs, enclose the image component in a goLink
component and create a server-side image map for the image.

Tip: If you plan to support changing the source attribute of the
image through active data (for example, data being pushed from the
data source will determine the image that is displayed), then you
should use the activeImage component instead of the image
component. Create an activeImage component by dragging an Image
(Active) from the Component Palette.

Displaying Application Status Using Icons

Using Output Components 16-7

To use an image as one or more goLink components:
1. In the Component Palette, from the Common Components panel, drag and drop a

Go Link onto the page.

2. Drag and drop an Image as a child to the goLink component.

3. In the Insert Image dialog, set the following:

■ ShortDesc: Set to the text to be used as the alternate text for the image.

■ Source: Enter the URI to the image file.

4. If different areas of the image are to link to different destinations:

■ Create an image map for the image and save it to the server.

■ In the Property Inspector, set ImageMapType attribute to server.

■ Select the goLink component and in the Property Inspector, set Destination to
the URI of the image map on the server.

5. If the whole image is to link to a single destination, select the goLink component
and enter the URI of the destination as the value of Destination.

16.6 Displaying Application Status Using Icons
ADF Faces provides the statusIndicator component that you can use to indicate
server activity. What displays depends both on the skin your application uses and on
how your server is configured. By default, the following are displayed:

■ When your application is configured to use the standard data transfer service,
during data transfer an animated spinning icon is displayed:

When the server is not busy, a static icon is displayed:

■ When your application is configured to use the Active Data Service (ADS), what
the status indicator displays depends on how ADS is configured.

ADS can be configured to either have data pushed to the model, or it can be
configured to have the application poll for the data at specified intervals.
Table 16–3 shows the icons that are used to display server states for push and poll
modes (note that the icons are actually animated).

Note: ADS allows you to bind your application to an active data
source. You must use the Fusion technology stack in order to use ADS.
For more information, see the "Using the Active Data Service" chapter
of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Playing Video and Audio Clips

16-8 Web User Interface Developer's Guide for Oracle Application Development Framework

After you drop a status indicator component onto the page, you can use skins to
change the actual image files used in the component. For more information about
using skins, see Chapter 20, "Customizing the Appearance Using Styles and Skins."

To use the status indicator icon:
1. In the Component Palette, from the Common Components panel, drag and drop a

Status Indicator onto the page.

2. Use the Property Inspector to set any needed attributes.

16.7 Playing Video and Audio Clips
The ADF Faces media component allows you to include video and audio clips on your
application pages.

The media control handles two complex aspects of cross-platform media display:
determining the best player to display the media, and sizing the media player.

You can specify which media player is preferred for each clip, along with the size of
the player to be displayed for the user. By default, ADF Faces uses the MIME type of
the media resource to determine the best media player and the default inner player
size to use, although you can specify the type of content yourself, using the
contentType attribute.

You can specify which controls are to be available to the user, and other player features
such as whether or not the clip should play automatically, and whether or not it
should play continuously or a specified number of times.

16.7.1 How to Allow Playing of Audio and Video Clips
Once you add a media component to your page, you can configure the media player to
use by default, the size of the player and screen, the controls, and whether or not the
clip should replay.

Table 16–3 Icons Used in Status Indicator for ADS

Icon Push Mode Pull Mode

At the first attempt at connecting to
the server.

At the first attempt at connecting to
server.

When the first connection is
successfully established.

When the first connection is
successfully established and when a
connection is reestablished.

When subsequent attempts are made
to reconnect to the server.

Before every poll request.

When a connection cannot be
established or reestablished.

When the configured number of poll
attempts are unsuccessful.

Tip: For help in setting attributes, use the field’s dropdown menu to
view a description of the attribute.

Playing Video and Audio Clips

Using Output Components 16-9

To include an audio or video clip in your application page:
1. In the Component Palette, from the Common Components panel, drag and drop a

Media onto the page.

2. In the Insert Media dialog, set the following attributes:

■ Source: Enter the URI to the media to be played.

■ StandbyText: Enter a message that will be displayed while the content is
loading.

3. Expand the Common section of the Property Inspector and set the following:

■ Player: Select the media player that should be used by default to play the clip.
You can choose from Real Player, Windows Media Player, or Apple Quick
Time Player.

Alternatively, you can create a link in the page that starts the playing of the
media resource based on the user agent's built-in content type mapping. The
media control attempts to pick the appropriate media player using the
following steps:

– If the primary MIME type of the content is image, the built-in user-agent
support is used.

– If a media player has been specified by the player attribute, and that
player is available on the user agent and can display the media resource,
that player is used.

– If one player is especially good at playing the media resource and that
player is available on the user agent, that player is used.

– If one player is especially dominant on the user agent and that player can
play the media resource, that player is used.

– The player connected to the link provided on the page is used.

■ Autostart: Set to True if you want the clip to begin playing as soon as it loads.

■ ContentType: Enter the MIME type of the media to play. This will be used to
determine which player to use, the configuration of the controls, and the size
of the display.

4. Expand the Appearance section of the Property Inspector and set the following:

■ Controls: Select the amount and types of controls you want the player to
display.

Because the set of controls available varies between players, you define what
set of controls to display in a general way, rather than listing actual controls.
For example, you can have the player display all controls available, the most
commonly used controls, or no controls.

As an example, Example 16–4 uses the all setting for a media component.

Example 16–4 Controls for a Media Player

<af:media source="/images/myvideo.wmv" controls="all"/>

Figure 16–5 shows how the player is displayed to the user.

Playing Video and Audio Clips

16-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 16–5 Media Player with All Controls

Following values are valid:

– All: Show all available controls for playing media on the media player.

Using this setting can cause a large amount of additional space to be
required, depending on the media player used.

– Minimal: Show a minimal set of controls for playing media on the media
player.

This value gives users control over the most important media playing con-
trols, while occupying the least amount of additional space on the user
agent.

– None: Do not show any controls for the media player and do not allow
control access through other means, such as context menus.

You would typically use this setting only for kiosk-type applications,
where no user control over the playing of the media is allowed. This set-
ting is typically used in conjunction with settings that automatically start
the playback, and to play back continuously.

– NoneVisible: Do not show any controls for the media player, but allow
control access through alternate means, such as context menus.

You would typically use this value only in applications where user con-
trol over the playing of the media is allowed, but not encouraged. As with
the none setting, this setting is typically used in conjunction with settings
that automatically start the playback, and to play back continuously.

– Typical: Show the typical set of controls for playing media on the media
player.

This value, the default, gives users control over the most common media
playing controls, without occupying an inordinate amount of extra space
on the user agent.

■ Width and Height: Define the size in pixels of the complete display, including
the whole player area, which includes the media content area.

Tip: Using the width and height attributes can lead to unexpected
results because it is difficult to define a suitable width and height to
use across different players and different player control
configurations. Instead of defining the size of the complete display,
you can instead define just the size of the media content area using the
innerWidth and innerHeight attributes.

Playing Video and Audio Clips

Using Output Components 16-11

■ InnerWidth and InnerHeight: Define the size in pixels of only the media
content area. This is the preferred scheme, because you control the amount of
space allocated to the player area for your clip.

5. Expand the Behavior section and set Autostart. By default, playback of a clip will
not start until the user starts it using the displayed controls. You can specify that
playback is to start as soon as the clip is loaded by setting the autostart attribute
to true.

Set PlayCount to the number of times you want the media to play. Once started,
by default, the clip with play through once only. If the users have controls
available, they can replay the clip. However, you can specify that the clip is to play
back a fixed number of times, or loop continuously, by setting a value for the
playCount attribute. Setting the playCount attribute to 0 replays the clip
continuously. Setting the attribute to some other number plays the clip the
specified number of times.

Example 16–5 shows an af:media component in the source of a page. The component
will play a video clip starting as soon as it is loaded and will continue to play the clip
until stopped by the user. The player will display all the available controls.

Example 16–5 Media Component to Play a Video Clip Continuously

<af:media source="/components/images/seattle.wmv" playCount="0"
 autostart="true" controls="all"
 innerHeight="112" innerWidth="260"
 shortDesc="My Video Clip"
 standbyText="My video clip is loading"/>

Tip: If you do not specify a size for the media control, a default inner
size, determined by the content type of the media resource, is used.
While this works well for audio content, it can cause video content to
be clipped or to occupy too much space.

If you specify dimensions from both schemes, such as a height and an
innerHeight, the overall size defined by the height attribute is used.
Similarly, if you specify both a width and an innerWidth, the width
attribute is used.

Playing Video and Audio Clips

16-12 Web User Interface Developer's Guide for Oracle Application Development Framework

17

Displaying Tips, Messages, and Help 17-1

17 Displaying Tips, Messages, and Help

This chapter describes how to define and display tips and messages for ADF Faces
components, and how to provide different levels of help information for users.

This chapter includes the following sections:

■ Section 17.1, "Introduction to Displaying Tips and Messages"

■ Section 17.2, "Displaying Tips for Components"

■ Section 17.3, "Displaying Hints and Error Messages for Validation and
Conversion"

■ Section 17.4, "Grouping Components with a Single Label and Message"

■ Section 17.5, "Displaying Help for Components"

17.1 Introduction to Displaying Tips and Messages
ADF Faces provides many different ways for displaying informational text in an
application. You can create simple tip text, validation and conversion tip text,
validation and conversion failure messages, as well as elaborate help systems.

Many ADF Faces components support the shortDesc attribute, which for most
components, displays tip information when a user hovers the cursor over the
component. Figure 17–1 shows a tip configured for a toolbar button. For more
information about creating tips, see Section 17.2, "Displaying Tips for Components."

Figure 17–1 Tip Displays Information

Along with tips, EditableValueHolder components (such as the inputText
component, or the selection components) can display hints used for validation and
conversion. When you configure validation or conversion, a default hint automatically
displays in a note window (for more information, see Chapter 6, "Validating and
Converting Input"). For example, when users click Help > Give Feedback in the File
Explorer application, a dialog displays where they can enter a time and date for a

Introduction to Displaying Tips and Messages

17-2 Web User Interface Developer's Guide for Oracle Application Development Framework

customer service representative to call. Because the inputDate component contains a
converter, when the user clicks in the field, a note window displays a hint that shows
the expected pattern, as shown in Figure 17–2. If the inputDate component was also
configured with a minimum or maximum value, the hint would display that
information as well. These hints are provided by the converters and validators
automatically.

Figure 17–2 Attached Converters and Validators Include Messages

ADF Faces uses the standard JSF messaging API. JSF supports a built-in framework for
messaging by allowing FacesMessage instances to be added to the FacesContext
object using the addMessage(java.lang.String clientId, FacesMessage message)
method. In general there are two types of messages that can be created:
component-level messages, which are associated with a specific component based on
any client ID that was passed to the addMessage method, and global-level messages,
which are not associated with a component because no the client ID was passed to the
addMessage method.When conversion or validation fails on an EditableValueHolder
ADF Faces component, FacesMessages objects are automatically added to the message
queue on the FacesContext instance, passing in that component’s ID. These messages
are then displayed in the note window for the component. ADF Faces components are
able to display their own messages. You do not need to add any tags.

For example, if a user enters a date incorrectly in the field shown in Figure 17–2, an
error message is displayed, as shown in Figure 17–3. Note that the error message
appears in the note window along with the hint.

Figure 17–3 Validation and Conversion Errors Display in Note Window

If you want to display a message for a non-ADF Faces component, or if you want the
message to be displayed inline instead of the note window, use the ADF Faces message
component.

Similarly, the document tag handles and displays all global FacesMessages objects
(those that do not contain an associated component ID), as well as component
FacesMessages. Like component messages, you do not need to add any tags for
messages to be displayed. Whenever a global message is created (or more than two
component messages), all messages in the queue will be displayed in a popup
window, as shown in Figure 17–4.

Introduction to Displaying Tips and Messages

Displaying Tips, Messages, and Help 17-3

Figure 17–4 Global and Component Messages Displayed by the Document

However, you can use the ADF Faces messages component if you want messages to
display on the page rather than in a popup window. For more information about
displaying hints and messages for components, see Section 17.3, "Displaying Hints and
Error Messages for Validation and Conversion."

Instead of having each component display its own messages, you can use the
panelLabelAndMessage component to group components and display a message in
one area. This can be very useful when you have to group components together. For
example, the File Explorer application uses a panelLabelAndMessage component
where users enter a telephone number. The telephone number input field is actually
three separate inputText components. The panelLabelAndMessage component wraps
three inputText components. Instead of each having its own label and message, the
three have just one label and one message, as shown in Figure 17–3. For more
information, see Section 17.4, "Grouping Components with a Single Label and
Message."

Instead of configuring messages for individual component instances, you can create a
separate help system that provides information that can be reused throughout the
application.You create help information using different types of providers, and then
reference the help text from the UI components. The following are the three types of
help supported by ADF Faces:

■ Definition: Provides a help icon (question mark in a blue circle) with the help text
appearing when the user mouses over the icon, as shown in Figure 17–5.

Tip: While ADF Faces provides messages for validation and
conversion, you can add your own FacesMessages objects to the
queue using the standard JSF messaging API. When you do so, ADF
Faces will display icons with the message based on the message level,
as follows:

Introduction to Displaying Tips and Messages

17-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 17–5 Definition Messages Display When Mousing Over the Icon

■ Instruction: Depending on the component, this type of help either provides
instruction text within the component (as with panelHeader components), or
displays text in the note window that is opened when the user clicks in the
component, as shown in Figure 17–6. The text can be any length.

Figure 17–6 Instruction Messages Display in a Note Window

■ External URL: You can have a help topic that resides in an external application,
which will open in a separate browser window. For example, instead of displaying
instruction help, Figure 17–7 shows the Select Skin selectOneChoice component
configured to open a help topic about skins. When a user clicks the
selectOneChoice component, the help topic opens.

Figure 17–7 External URL Help Opens in a New Window

Displaying Hints and Error Messages for Validation and Conversion

Displaying Tips, Messages, and Help 17-5

For more information about creating help systems, see Section 17.5, "Displaying
Help for Components."

17.2 Displaying Tips for Components
ADF Faces components use the shortDesc attribute to display a tip when the user
hovers the mouse over the component. Input components display the tips in their note
window. Other component types display the tip in a standard tip box. This text should
be kept short. If you have to display more detailed information, or if the text can be
reused among many component instances, consider using help text, as described in
Section 17.5, "Displaying Help for Components."

Figure 17–8 shows the effect when the focus is on an inputText component.

Figure 17–8 Tip for an inputText Component

Figure 17–9 shows a tip for a showDetailItem component.

Figure 17–9 Tip for a showDetailItem Component

To define a tip for a component:
1. In the Structure window, select the component for which you want to display the

tip.

2. In the Property Inspector, expand the Appearance section and enter a value for the
shortDesc attribute.

If the text to be used is stored in a resource bundle, use the dropdown list to select
Select Text Resource. Use the Select Text Resource dialog to either search for
appropriate text in an existing bundle, or to create a new entry in an existing
bundle. For more information about using resource bundles, see Chapter 21,
"Internationalizing and Localizing Pages."

17.3 Displaying Hints and Error Messages for Validation and Conversion
Validators and converters have a default hint that is displayed to users when they click
in the associated field. For converters, the hint usually tells the user the correct format
to use. For validators, the hint is used to convey what values are valid.

For example, in the File Explorer application, when a user clicks in the input date field
on the Speak with Customer Service page, a tip is displayed showing the correct
format to use, as shown in Figure 17–10.

Tip: The value should be less than 80 characters, as some browsers
will truncate the tip if it exceeds that length.

Displaying Hints and Error Messages for Validation and Conversion

17-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 17–10 Validators and Converters Have Built-in Messages

When the value of an ADF Faces component fails validation, or cannot be converted
by a converter, the component displays the resulting FacesMessage instance.

For example, entering a date that does not match the dateStyle attribute of the
converter results in an error message, as shown in Figure 17–11.

Figure 17–11 Validation Error at Runtime

You can override the default validator and converter hint and error messages. Each
ADF Faces validator and converter component has attributes you can use to define the
detail messages to be displayed for the user. The actual attributes vary according to the
validator or converter. Figure 17–12 shows the attributes that you can populate to
override the messages for the convertDateTime converter, as displayed in the Property
Inspector.

Figure 17–12 Message Attributes on a Converter

If you do not want messages to be displayed in the note window, you can use the
message component, and messages will be displayed inline with the component.
Figure 17–13 shows how messages are displayed using the message component.

Displaying Hints and Error Messages for Validation and Conversion

Displaying Tips, Messages, and Help 17-7

Figure 17–13 Use the message Component to Display Messages Inline

JSF pages in an ADF Faces application use the document tag, which among other
things, handles displaying all global messages (those not associated with a
component) in a popup window. However, if you want to display global messages on
the page instead, use the messages component.

17.3.1 How to Define Custom Validator and Converter Messages
To override the default validator and converter messages, set values for the different
message attributes.

To define a validator or converter message:
1. In the Structure window, select the converter or validator for which you want to

create the error message.

Note: To format the message using HTML tags, you must enclose the
message within <html></html> tags. For example:

<html>error message details</html>

The following HTML tags are allowed in error messages:

■

■

■ <a>

■ <i>

■

■

■ <hr>

■

■

■

■ <p>

■ <tt>

■ <big>

■ <small>

■ <pre>

Displaying Hints and Error Messages for Validation and Conversion

17-8 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Property Inspector, expand the Messages section and enter a value for the
attribute for which you want to provide a message.

The values can include dynamic content by using parameter placeholders such as
{0}, {1}, {2}, and so on. For example, the messageDetailConvertDate attribute on
the convertDateTime converter uses the following parameters:

■ {0} the label that identifies the component

■ {1} the value entered by the user

■ {2}an example of the format expected by the component.

Using these parameters, you could create this message:

{1} is not using the correct date format. Please enter the date as follows:
{2}.

 The error message would then be displayed as shown in Figure 17–14.

Figure 17–14 Detail Message at Runtime

If the text to be used is stored in a resource bundle, use the dropdown list to select
Select Text Resource. Use the Select Text Resource dialog to either search for
appropriate text in an existing bundle, or to create a new entry in an existing
bundle. For more information about using resource bundles, see Chapter 21,
"Internationalizing and Localizing Pages."

Note: You can override messages only for ADF Faces components. If
you want to create a message for a non-ADF Faces component (for
example for the f:validator component), then use the message
component. For more information, see Section 17.3.3, "How to Display
Component Messages Inline."

Tip: Use the dropdown menu to view the property help, which
includes the parameters accepted by the message.

Note: The message text is for the detail message of the FacesMessage
object. If you want to override the summary (the text shown at the top
of the message), you can only do this globally. For more information,
see Section 17.3.2, "What You May Need to Know About Overriding
Default Messages Globally."

Displaying Hints and Error Messages for Validation and Conversion

Displaying Tips, Messages, and Help 17-9

17.3.2 What You May Need to Know About Overriding Default Messages Globally
Instead of changing the message string per component instance with the
messageDetail[XYZ] attributes, override the string globally so that the string will be
displayed for all instances. To override globally, create a message bundle whose
contents contain the key for the message and the message text you wish to use.

You create and use a message bundle in the same way you create and use resource
bundles for translation, using either Java classes or properties files. For procedures and
information, see Chapter 21, "Internationalizing and Localizing Pages."

For message key information, see Appendix B, "Message Keys for Converter and
Validator Messages."

17.3.3 How to Display Component Messages Inline
Instead of having a component display its messages in the note window, use the
message component to display the messages inline on the page. In order for the
message component to display the correct messages, associate it with a specific
component.

To display component messages inline:
1. In the Structure window, select the component that will display its messages using

the message component. If not already set, enter an ID for the component.

2. In the Component Palette, from the Common Components panel, drag a Message
and drop it where you want the message to be displayed on the page.

3. Use the dropdown menu for the for attribute to select Edit.

4. In the Edit Property dialog, locate the component for which the message
component will display messages. Only components that have their ID set are
valid selections.

17.3.4 How to Display Global Messages Inline
Instead of displaying global messages in a popup window for the page, display them
inline using the messages component.

1. In the Component Palette, from the Common Components panel, drag a Messages
and drop it onto the page where you want the messages to be displayed.

2. In the Property Inspector set the following attributes:

■ globalOnly: By default, ADF Faces displays global messages (messages that
are not associated with components) followed by individual component
messages. If you want to display only global messages in the box, set this
attribute to true. Component messages will continue to be displayed with the
associated component.

Note: The message icon and message content that will be displayed
are based on what was given when the FacesMessage object was
created. Setting the messageType or message attributes on the message
component causes the messageType or message attribute values to be
displayed at runtime, regardless of whether or not an error has
occurred. Only populate these attributes if you want the content to
always be displayed when the page is rendered.

Grouping Components with a Single Label and Message

17-10 Web User Interface Developer's Guide for Oracle Application Development Framework

■ inline: Set to true to show messages at the top of the page. Otherwise,
messages will be displayed in a dialog.

17.4 Grouping Components with a Single Label and Message
By default, ADF Faces input and select components have built-in support for label and
message display. If you want to group components and use a single label, wrap the
components using the panelLabelAndMessage component.

For example, the File Explorer application collects telephone numbers using four
separate inputText components; one for the area code, one for the exchange, one for
the last four digits, and one for the extension. Because a single label is needed, the four
inputText components are wrapped in a panelLabelAndMessage component, and the
label value is set on that component. However, the input component for the extension
requires an additional label, so an outputText component is used. Example 17–1
shows the JSF code for the panelLabelAndMessage component.

Example 17–1 panelLabelAndMessage Can Display a Single Label and Help Topic

<af:panelLabelAndMessage labelAndAccessKey="#{explorerBundle['help.telephone']}"
 helpTopicId="HELP_TELEPHONE_NUMBER"
 labelStyle="vertical-align: top;
 padding-top: 0.2em;">
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="4"
 columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:outputText value="#{explorerBundle['help.extension']}"/>
 <af:inputText simple="true" columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
</af:panelLabelAndMessage>

Figure 17–15 shows how the panelLabelAndMessage and nested components are
displayed in a browser.

Figure 17–15 Examples Using the panelLabelAndMessage Component

The panelLabelAndMessage component also includes an End facet that can be used to
display additional components at the end of the group. Figure 17–16 shows how the
telephone number fields would be displayed if the End facet was populated with an
outputText component.

Figure 17–16 End Facet in a panelLabelAndMessage Component

Grouping Components with a Single Label and Message

Displaying Tips, Messages, and Help 17-11

Use a panelGroupLayout component within a panelLabelAndMessage component to
group the components for the required layout. For information about using the
panelGrouplayout component, see Section 8.13, "Grouping Related Items."

You set the simple attribute to true on each of the input components so that their
individual labels are not displayed. However, you may want to set a value for the label
attribute on each of the components for messaging purposes and for accessibility.

Group and wrap components using the panelLabelAndMessage component. The
panelLabelAndMessage component can be used to wrap any components, not just
those that typically display messages and labels.

To arrange form input components with one label and message:
1. Add input or select components as needed to the page.

For each input and select component:

■ Set the simple attribute to true.

■ For accessibility reasons, set the label attribute to a label for the component.

2. In the Structure window, select the input and/or select components created in Step
1. Right-click the selection and choose Surround With > Panel Label And
Message.

3. With the panelLabelAndMessage component selected, in the Property Inspector, set
the following:

■ label: Enter the label text to be displayed for the group of components.

■ for: Use the dropdown menu to choose Edit. In the Edit Property dialog, select
the ID of the child input component. If there is more than one input
component, select the first component.

Set the for attribute to the first inputComponent to meet accessibility
requirements.

If one or more of the nested input components is a required component and you
want a marker to be displayed indicating this, set the showRequired attribute to
true.

4. To place content in the End facet, drag and drop the desired component into the
facet.

Because facets accept one child component only, if you want to add more than one
child component, you must wrap the child components inside a container, such as
a panelGroupLayout or group component.

Tip: If you have to use multiple panelLabelAndMessage components
one after another, wrap them inside an af:panelFormLayout
component, so that the labels line up properly. For information about
using the panelFormLayout component, see Section 8.7, "Arranging
Content in Forms."

Tip: If the facet is not visible in the visual editor:

1. Right-click the panelLabelAndMessage component in the Structure
window.

2. From the context menu, choose Facets - Panel Label And Message >facet
name. Facets in use on the page are indicated by a checkmark in front of
the facet name.

Displaying Help for Components

17-12 Web User Interface Developer's Guide for Oracle Application Development Framework

17.5 Displaying Help for Components
ADF Faces provides a framework that allows you to create and display three different
types of help whose content comes from an external source, rather than as text
configured on the component. Because it is not configured directly on the component,
the content can be used by more than one component, saving time in creating pages
and also allowing you to change the content in one place rather than everywhere the
content appears.

The first type of external help provided by ADF Faces is Definition help. Like a
standard tip, the content appears in a message box. However, instead of appearing
when the user mouses over the component, Definition help provides a help icon (a
blue circle with a question mark). When the user mouses over the icon, the content is
displayed, as shown in Figure 17–17.

Figure 17–17 Definition Text for a Component

Table 17–1 shows the components that support Definition help.

The second type of help is Instruction help. Where Instruction help is displayed
depends on the component with which it is associated. The panelHeader and Search
panel components display Instruction help within the header. Figure 17–18 shows how
the text that typically is displayed as Definition help as shown in Figure 17–17 would
be displayed as Instruction help within the panelHeader component.

Table 17–1 Components That Support Definition Help

Supported
Components Help Icon Placement Example

All input
components, Select
components, Choose
Color, Choose Date,
Query components

Before the label, or if
no label exists, at the
start of the field

Panel Header,
PanelBox, Show
Detail Header

End of header text

Panel Window,
Dialog

Next to close icon in
header

Columns in table and
tree

Below header text

Displaying Help for Components

Displaying Tips, Messages, and Help 17-13

Figure 17–18 Instruction Text for panelHeader

All other components that support Instruction help display the text within a note
window, as shown in Figure 17–19. Note that no help icon is displayed.

Figure 17–19 Instruction Text for a Component

Table 17–2 shows the components that support Instruction help.

The last type of help is External URL help. You provide a URL to a web page in an
external application, and when the help icon is clicked, the web page opens in a
separate browser window, as shown in Figure 17–20. Instead of clicking a help icon,
you can also use JavaScript to open a help window based on any client-based event.

Table 17–2 Components That Support Instruction Help

Supported
Components Help Placement Example

Input components,
Choose Color, Choose
Date, Quick Query

Note window, on
focus only

Select components Note window, on
hover and focus

Panel Header, Panel
Box, Query

Text below header text

Displaying Help for Components

17-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 17–20 External URL Help

ADF Faces includes a variety of help providers. The ResourceBundleHelpProvider
help provider allows you to create resource bundles that hold the help content. The
ELHelpProvider help provider allows you to create XLIFF files that get converted into
maps, or create a managed bean that contains a map of help text strings. You can use a
combination of the different help providers. You can also create your own help
provider class.

To create help for your application, do the following:

■ Determine the help provider(s) to use and then implement the required artifacts.

■ Register the help provider(s), specifying the prefix that will be used to access the
provider’s help. Each help provider has its own unique prefix, which is used as its
identifier. A particular provider will be called to produce help only for help topic
IDs that start with the prefix under which the provider is registered.

■ Have the UI components access the help contained in the providers by using the
component’s helpTopicId attribute. A helpTopicId attribute contains the
following.

■ The prefix that is used by the provider of the help

■ The topic name

For example, the value of the helpTopicId attribute on the inputText component
shown in Figure 17–19 might be RBHELP_FILE_NAME, where RBHELP is the resource
bundle help providers prefix, and FILE_NAME is the help topic name.

17.5.1 How to Create Resource Bundle-Based Help
You can store help text within standard resource bundle property files and use the
ResourceBundleHelpProvider class to deliver the content.

To create resource bundle-based help:
1. Create a properties file that contains the topic ID and help text for each help topic.

The topic ID must contain the following:

■ The prefix that will be used by this provider, for example, RBHELP.

■ The topic name, for example, TELEPHONE_NUMBER.

■ The help type, for example, DEFINITION.

For example, a topic ID might be RBHELP_TELEPHONE_NUMBER_DEFINITION.

Displaying Help for Components

Displaying Tips, Messages, and Help 17-15

Example 17–2 shows an example resource bundle with three topics.

Example 17–2 Resource Bundle Help

RBHELP_CUST_SERVICE_EMAIL_DEFINITION=For security reasons,
 we strongly discourage the submission of credit card numbers.
RBHELP_TELEPHONE_NUMBER_DEFINITION=We only support calling telephone numbers
 in the United States at this time.
RBHELP_TELEPHONE_NUMBER_INSTRUCTIONS=Enter a telephone number.

2. Register the resource bundle as a help provider in the adf-settings.xml file (for
information on creating the adf-settings.xml file if one does not exist, see
Section A.5.1, "How to Configure for ADF Faces in adf-settings.xml").

To register the provider, open the adf-settings.xml file, click the Source tab, and
add the following elements:

■ <help-provider>: Use the prefix attribute to define the prefix that UI
components will use to access this help provider. This must be unique in the
application, and must match the prefix used in the resource bundle.

■ <help-provider-class>: Create as a child element to the <help-provider>
element and enter
oracle.adf.view.rich.help.ResourceBundleHelpProvider.

■ <property>: Create as a child element to the <help-provider> element. The
property defines the actual help source.

■ <property-name>: Create as a child element to the <property> element, and
enter a name for the source, for example, baseName.

■ <value>: Create as a child element to the <property> element and enter the
fully qualified class name of the resource bundle. For example, the qualified

Note: All prefixes under which help providers are registered must be
unique. It is also not permissible for one prefix to begin with the same
characters as another prefix. For example, if help providers have
already been registered for the two prefixes AAB and AC, then the
following prefixes are all invalid and will cause an exception to be
thrown at registration time: AABC, A, AA, AC, ACB. However, the
following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name.
Therefore, if you use the same topic name for two different types of
help (as shown in Example 17–2), then both types of help will be
displayed by the UI component.

Note: If you wish to use an external URL help type, create a subclass
of the ResourceBundleHelpProvider class. For more information, see
Step 3.

Note: If the prefix attribute is missing, or is empty, then the help
provider will be registered as a special default help provider. It will be
used to produce help for help topic IDs that cannot be matched with
any other help provider. Only one default help provider is permitted.

Displaying Help for Components

17-16 Web User Interface Developer's Guide for Oracle Application Development Framework

class name of the resource bundle used in the ADF Faces demo application is
oracle.adfdemo.view.resource.DemoResources.

Example 17–3 shows how the resource bundle in Example 17–2 would be
registered in the adf-settings.xml file.

Example 17–3 Registering a Resource Bundle as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="RBHELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ResourceBundleHelpProvider
 </help-provider-class>
 <property>
 <property-name>baseName</property-name>
 <value>oracle.adfdemo.view.resource.DemoResources</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

3. If you want to use External URL help, then you also must extend the
ResourceBundleHelpProvider class and implement the getExternalUrl method.
Example 17–4 shows an example method.

Example 17–4 Overriding the getExternalURL Method

protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;
 if (topicId.contains("TOPICID_ALL") ||
 topicId.contains("TOPICID_DEFN_URL") ||
 topicId.contains("TOPICID_INSTR_URL") ||
 topicId.contains("TOPICID_URL"))
 return http://www.myURL.com;
 else
 return null;
 }

In Example 17–4, all the topics in the method return the same URL. You would
have to create separate if statements to return different URLs.

If you want the external window to be launched based on a component’s client
event instead of from a help icon, use a JavaScript function. For more information,
see Section 17.5.4, "How to Use JavaScript to Launch an External Help Window."

17.5.2 How to Create XLIFF-Based Help
You can store the help text in XLIFF XML files and use the ELHelpProvider class to
deliver the content. This class translates the XLIFF file to a map of strings that will be
used as the text in the help.

To create XLIFF help:
1. Create an XLIFF file that defines your help text, using the following elements

within the <body> tag:

Displaying Help for Components

Displaying Tips, Messages, and Help 17-17

■ <trans-unit>: Enter the topic ID. This must contain the prefix, the topic name,
and the help type, for example, XLIFFHELP_CREDIT_CARD_DEFINITION. In this
example, XLIFFHELP will become the prefix used to access the XLIFF file.
CREDIT_CARD is the topic name, and DEFINITION is the type of help.

■ <source>: Create as a direct child of the <trans-unit> element and enter the
help text.

■ <target>: Create as a direct child of the <trans-unit> element and leave it
blank. This is used to hold translated text.

■ <note>: Create as a direct child of the <trans-unit> element and enter a
description for the help text.

Example 17–5 shows an example of an XLIFF file that contains two topics.

Example 17–5 XLIFF Help

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="this" datatype="xml">
 <body>
 <trans-unit id="XLIFF_CREDIT_CARD_DEFINITION">
 <source>Credit Card Definition</source>
 <target/>
 <note>Credit Card definition text.</note>
 </trans-unit>
 <trans-unit id="XLIFF_CREDIT_CARD_INSTRUCTIONS">
 <source>Credit Card Instructions</source>
 <target/>
 <note>Credit card instruction text.</note>
 </trans-unit>
 </body>
 </file>
</xliff>

2. Register XLIFF as a help provider in the adf-settings.xml file (for information on
creating the adf-settings.xml file if one does not exist, see Section A.5.1, "How to
Configure for ADF Faces in adf-settings.xml").

To register the provider, open the adf-settings.xml file and add the following
elements:

■ <help-provider>: Use the prefix attribute to define the prefix that UI
components will use to access this help provider. This must be unique in the
application, and must match the prefix used in the XLIFF file.

Note: All prefixes under which help providers are registered must be
unique. It is also not permissible for one prefix to begin with the same
characters as another prefix. For example, if help providers have
already been registered for the two prefixes AAB and AC, then the
following prefixes are all invalid and will cause an exception to be
thrown at registration time: AABC, A, AA, AC, ACB. However, the
following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name.
Therefore, if you use the same topic name for two different types of
help (as shown in Example 17–5), then both types of help will be
displayed by the UI component.

Displaying Help for Components

17-18 Web User Interface Developer's Guide for Oracle Application Development Framework

■ <help-provider-class>: Create as a child element to the <help-provider>
element and enter oracle.adf.view.rich.help.ELHelpProvider.

■ <property>: Create as a child element to the <help-provider> element. The
property values define the actual help source.

■ <property-name>: Create as a child element to the <property> element and
enter a name for the help, for example, helpSource.

■ <value>: Create as a child element to the <property> element and enter an EL
expression that resolves to the XLIFF file, wrapped in the adfBundle EL
function, for example,
#{adfBundle['project1xliff.view.Project1XliffBundle']}.

Example 17–6 shows how the XLIFF file in Example 17–5 would be registered in
the adf-settings.xml file.

Example 17–6 Registering an XLIFF File as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="XLIFF">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{adfBundle['project1xliff.view.Project1XliffBundle']}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

17.5.3 How to Create Managed Bean Help
To implement managed bean help, create a managed bean that contains a map of
strings that will be used as the text in the help. Managed bean help providers use the
ELHelpProvider class to deliver the help.

To create managed bean help:
1. Create a managed bean that returns a map of strings, each of which is the ID and

content for a help topic, as shown in Example 17–7.

Example 17–7 Managed Bean that Returns a Map of Help Text Strings

public class ELHelpProviderMapDemo
{
 public ELHelpProviderMapDemo()
 {
 }

 /* To use the ELHelpProvider, the EL expression must point to a Map, otherwise

Note: If the prefix attribute is missing, or is empty, then the help
provider will be registered as a special default help provider. It will be
used to produce help for help topic IDs that cannot be matched with
any other help provider. Only one default help provider is permitted.

Displaying Help for Components

Displaying Tips, Messages, and Help 17-19

 * you will get a coerceToType error. */

 public Map<String, String> getHelpMap()
 {
 return _HELP_MAP;
 }

 static private final Map<String, String> _HELP_MAP =
 new HashMap<String, String>();
 static
 {
 _HELP_MAP.put("MAPHELP_CREDIT_CARD_DEFINITION",
 "Map value for credit card definition");
 _HELP_MAP.put("MAPHELP_CREDIT_CARD_INSTRUCTIONS",
 "Map value for credit card instructions");
 _HELP_MAP.put("MAPHELP_SHOPPING_DEFINITION",
 "Map value for shopping definition");
 _HELP_MAP.put("MAPHELP_SHOPPING_INSTRUCTIONS",
 "Map value for shopping instructions");
 }

}

The first string must contain the prefix, the topic name, and the help type, for
example, MAPHELP_CREDIT_CARD_DEFINITION. In this example, MAPHELP will
become the prefix used to access the bean. CREDIT_CARD is the topic name, and
DEFINITION is the type of help. The second string is the help text.

2. Register the managed bean in the faces-config.xml file. Example 17–8 shows the
bean shown in Example 17–7 registered in the faces-config.xml file.

Example 17–8 Managed Bean Registration in the faces-config.xml File.

<managed-bean>
 <managed-bean-name>helpTranslationMap</managed-bean-name>
 <managed-bean-class>
 oracle.adfdemo.view.webapp.ELHelpProviderMapDemo
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Note: All prefixes under which help providers are registered must be
unique. It is also not permissible for one prefix to begin with the same
characters as another prefix. For example, if help providers have
already been registered for the two prefixes AAB and AC, then the
following prefixes are all invalid and will cause an exception to be
thrown at registration time: AABC, A, AA, AC, ACB. However, the
following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name.
Therefore, if you use the same topic name for two different types of
help (as shown in Example 17–7), then both types of help will be
displayed by the UI component.

Note: If you wish to use external URL help, create a subclass of the
ELHelpProvider class. For more information, see Step 4.

Displaying Help for Components

17-20 Web User Interface Developer's Guide for Oracle Application Development Framework

For more information about using and registering managed beans, see Section 2.6,
"Creating and Using Managed Beans."

3. Register the managed bean as a help provider in the adf-settings.xml file (for
information on creating the adf-settings.xml file if one does not exist, see
Section A.5.1, "How to Configure for ADF Faces in adf-settings.xml").

To register the provider, open the adf-settings.xml file and add the following
elements:

■ <help-provider>: Create and use the prefix attribute to define the prefix that
UI components will use to access this help provider. This must be unique in
the application.

■ <help-provider-class>: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1.

■ <property>: Create as a child element to the <help-provider> element. The
property defines the map of help strings on the managed bean.

■ <property-name>: Create as a child element to the <property> element and
enter a property name, for example helpSource.

■ <value>: Create as a child element to the <property> element and enter an EL
expression that resolves to the help map on the managed bean.

Example 17–9 shows how the bean in Example 17–8 would be registered in the
adf-settings.xml file.

Example 17–9 Registering a Managed Bean as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MAPHELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{helpTranslationMap.helpMap}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

4. If you want to use External URL help with the managed bean provider, then
extend the ELHelpProvider class and implement the getExternalUrl method.
Example 17–10 shows an example method.

Example 17–10 Overriding the getExternalURL Method

protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {

Note: If the prefix attribute is missing, or is empty, then the help
provider will be registered as a special default help provider. It will be
used to produce help for help topic IDs that cannot be matched with
any other help provider. Only one default help provider is permitted.

Displaying Help for Components

Displaying Tips, Messages, and Help 17-21

 if (topicId == null)
 return null;
 if (topicId.contains("TOPICID_ALL") ||
 topicId.contains("TOPICID_DEFN_URL") ||
 topicId.contains("TOPICID_INSTR_URL") ||
 topicId.contains("TOPICID_URL"))
 return http://www.myURL.com;
 else
 return null;
 }

In Example 17–10, all the topics in the method return the same URL. You must
create separate if statements to return different URLs.

If you want the external window to be launched based on a component’s client
event instead of from a help icon, use a JavaScript function. For more information,
see Section 17.5.4, "How to Use JavaScript to Launch an External Help Window."

17.5.4 How to Use JavaScript to Launch an External Help Window
If you want to use external URL help, by default, the user clicks a help icon to launch
the help window. Instead, you can use JavaScript and a client event listener for a
specific component’s event to launch the help window.

To use JavaScript to launch an external help window:
1. Create a JavaScript function that uses the launchHelp API to launch a specific URL

or page.

Example 17–11 shows the launchHelp function used to launch the
helpClient.jspx.

Example 17–11 JavaScript to Launch an External Help Page

<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

2. Drag and drop a component whose client event will cause the function to be
called. You must set the clientId on this component to true.

3. In the Component Palette, from the Operations panel, drag and drop a Client
Listener as a child to the component created in Step 2. Configure the
clientListener to invoke the function created in Step 1. For more information
about using the clientListener tag, see Section 3.2, "Listening for Client Events."

Example 17–12 shows the code used to have a click event on a
commandToolbarButton component launch the helpClient.jspx page.

Example 17–12 Page Code Used to Launch an External Help Window

<af:toolbar id="tb1">
 <af:commandToolbarButton text="Launch help window" id="ctb1"
 icon="/images/happy_computer.gif">
 <af:clientListener method="launchHelp" type="click"/>
 </af:commandToolbarButton>
</af:toolbar>
<af:resource type="javascript">

Displaying Help for Components

17-22 Web User Interface Developer's Guide for Oracle Application Development Framework

 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

17.5.5 How to Create a Java Class Help Provider
Instead of using one of the ADF Faces help providers, create your own. Create the
actual text in some file that your help provider will be able to access and display. To
create a Java class help provider, extend the HelpProvider class. For more information
about this class, refer to the ADF Faces Javadoc.

To create a Java class help provider:
1. Create a Java class that extends oracle.adf.view.rich.help.HelpProvider.

2. Create a public constructor with no parameters. You also must implement the logic
to access and return help topics.

3. This class will be able to access properties and values that are set in the
adf-settings.xml file when you register this provider. For example, the ADF
Faces providers all use a property to define the actual source of the help strings. To
access a property in the adf-settings.xml file, create a method that sets a
property that is a String. For example:

public void setMyCustomProperty(String arg)

4. To register the provider, open the adf-settings.xml file and add the following
elements:

■ <help-provider>: Use the prefix attribute to define the prefix that UI
components will use to access this help provider. This must be unique in the
application.

■ <help-provider-class>: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1.

■ <property>: Create as a child element to the <help-provider> element and
use it to define the property that will be used as the argument for the method
created in Step 3.

■ <property-name>: Create as a child element to the <property> element and
enter the property name.

Note: If the prefix attribute is missing, or is empty, then the help
provider will be registered as a special default help provider. It will be
used to produce help for help topic IDs that cannot be matched with
any other help provider. Only one default help provider is permitted.
All prefixes under which help providers are registered must be
unique. It is also not permissible for one prefix to begin with the same
characters as another prefix. For example, if help providers have
already been registered for the two prefixes AAB and AC, then the
following prefixes are all invalid and will cause an exception to be
thrown at registration time: AABC, A, AA, AC, ACB. However, the
following are valid: AAD, AB, and so on.

Displaying Help for Components

Displaying Tips, Messages, and Help 17-23

■ <value>: Create as a child element to the <property> element and enter the
value for the property.

 Example 17–13 shows an example of a help provider class registered in the
adf-settings.xml file.

Example 17–13 Registering a Help Provider Class

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

17.5.6 How to Access Help Content from a UI Component
Use the HelpTopicId attribute on components to access and display the help.

To access help from a component:
1. In the Structure window, select the component to which you want to add help. For

a list of components that support help, see Table 17–1 and Table 17–2.

2. In the Property Inspector, expand the Appearance section, and enter a value for
the helpTopicId attribute. This should include the prefix to access the correct help
provider and the topic name. It should not include the help type, as all help types
registered with that name will be returned and displayed, for example:

<af:inputText label="Credit Card" helpTopicId="XLIFF_CREDIT_CARD"/>

This example will return both the definition and instruction help defined in the
XLIFF file in Example 17–5.

3. If you want to provide help for a component that does not support help, you can
instead add an outputText component to display the help text, and then bind that
component to the help provider, for example:

<af:outputFormatted
 value="#{adfFacesContext.helpProvider['XLIFF_CREDIT_CARD'].instructions}"/>

This will access the instruction help text.

17.5.7 What You May Need to Know About Combining Different Message Types
When you add help messages to input components that may already display messages
for validation and conversion, ADF Faces displays the messages in the following order
within the note window:

1. Validation and conversion error messages.

2. Validation and conversion hints.

3. For input and select components only, Instruction help. For panelHeader
components, Instruction help is always displayed below the header.

Displaying Help for Components

17-24 Web User Interface Developer's Guide for Oracle Application Development Framework

4. Value for shortDesc attribute.

Figure 17–21 shows an inputDate component that contains a converter, instruction
help, and a tip message.

Figure 17–21 Different Message Types Can Be Displayed at One Time

18

Working with Navigation Components 18-1

18Working with Navigation Components

This chapter describes how to use ADF Faces navigation components such as
commandButton, navigationPane, and train to provide navigation in web user
interfaces.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Navigation Components"

■ Section 18.2, "Using Buttons and Links for Navigation"

■ Section 18.3, "Configuring a Browser’s Context Menu for Command Links"

■ Section 18.4, "Using Buttons or Links to Invoke Functionality"

■ Section 18.5, "Using Navigation Items for a Page Hierarchy"

■ Section 18.6, "Using a Menu Model to Create a Page Hierarchy"

■ Section 18.7, "Creating a Simple Navigational Hierarchy"

■ Section 18.8, "Using Train Components to Create Navigation Items for a Multi-Step
Process"

18.1 Introduction to Navigation Components
Like any JSF application, an application that uses ADF Faces components contains a
set of rules for choosing the next page to display when a button or link (or other
navigation component) is clicked. You define the rules by adding JSF navigation rules
and cases in the application’s configuration resource file (faces-config.xml).

JSF uses an outcome string to select the navigation rule to use to perform a page
navigation. ADF Faces navigation components that implement
javax.faces.component.ActionSource interface generate an ActionEvent event when
users activate the component. The JSF NavigationHandler and default
ActionListener mechanisms use the outcome string on the activated component to
find a match in the set of navigation rules. When JSF locates a match, the
corresponding page is selected, and the Render Response phase renders the selected
page. For more information about the JSF lifecycle, see Chapter 4, "Using the JSF
Lifecycle with ADF Faces". Also note that navigation in an ADF Faces application may
use partial page rendering. For more information, see Section 7.4, "Using Partial Page
Navigation".

Command components in ADF Faces include:

■ Button and link components for navigating to another location with or without
server-side actions. See Section 18.2, "Using Buttons and Links for Navigation".

Using Buttons and Links for Navigation

18-2 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Components that render items such as tabs and breadcrumbs for navigating
hierarchical pages. See Section 18.5, "Using Navigation Items for a Page
Hierarchy".

■ Train components for navigating a multistep process. See Section 18.8, "Using
Train Components to Create Navigation Items for a Multi-Step Process".

In addition to using command components for navigation, ADF Faces also includes
listener tags that you can use in conjunction with command components to have
specific functionality execute when the action event fires. For more information, see
Section 18.4, "Using Buttons or Links to Invoke Functionality".

18.2 Using Buttons and Links for Navigation
Buttons and links in ADF Faces include the command components commandButton,
commandLink, and commandImageLink, as well as the go components goButton,
goImageLink, and goLink. The main difference between command components and go
components is that while command components submit requests and fire ActionEvent
events, go components navigate directly to another location without delivering an
action. Visually, the rendered command and go components look the same, as shown
in Figure 18–16.

Figure 18–1 Command Components and Go Components

The commandImageLink and goImageLink components render images as links, along
with optional text, as shown in Figure 18–2. You can determine the position of the
image relative to the optional text by setting a value for the iconPosition attribute. In
addition, you can set different icons for when the user hovers over an icon, or the icon
is depressed or disabled.

Tip: ADF Faces also provides specialized command components that
can be used inside menus and toolbars. For more information, see
Chapter 14, "Using Menus, Toolbars, and Toolboxes".

Using Buttons and Links for Navigation

Working with Navigation Components 18-3

Figure 18–2 Command Image Link and Go Image Link

ADF Faces also includes a toolbar button that provides additional functionality, such
as a popup facet that can open popup menus from a toolbar button. For more
information, see Section 14.3, "Using Toolbars".

You can configure your application to allow end users invoke a browser’s context
menu when they right-click a command component that renders a link. End users who
right-click the link rendered by a command component may use a browser’s context
menu to invoke an action that you do not want them to invoke (for example, open the
link in a new window). For more information, see Section 18.3, "Configuring a
Browser’s Context Menu for Command Links."

You can show a warning message to users if the page that they attempt to navigate
away from contains uncommitted data. Add the checkUncommittedDataBehavior
component as a child to command components that have their immediate attribute set
to true. If the user chooses not to navigate, the client event will be cancelled. You can
add the checkUncommittedDataBehavior component as a child to the following
components:

■ af:commandButton

■ af:commandLink

■ af:commandImageLink

■ af:commandToolbarButton

■ af:activeCommandToolbarButton

For the warning message to appear to end users, the page must contain uncommitted
data and you must have also set the document tag’s uncommittedDataWarning attribute
to on, as described in Section 8.2.5, "How to Configure the document Tag."

Using Buttons and Links for Navigation

18-4 Web User Interface Developer's Guide for Oracle Application Development Framework

18.2.1 How to Use Command Buttons and Command Links
Typically, you use commandButton, commandLink, and commandImageLink components
to perform page navigation and to execute any server-side processing.

To create and use command components:
1. Create a commandButton component by dragging and dropping a Button from the

Component Palette to the JSF page. Create a commandLink component by dragging
and dropping a Link. Create a commandImageLink component by dragging and
dropping an Image Link.

2. In the Property Inspector, expand the Common section and set the text attribute.

3. Set the icon attribute to the URI of the image file you want to use for inside a
commandButton or commandImageLink component (this is not supported for
commandLink). For a commandImageLink component, you can also set the
hoverIcon, disabledIcon, and depressedIcon attributes.

4. Set the action attribute to an outcome string or to a method expression that refers
to a backing bean action method that returns a logical outcome String. For more
information about configuring the navigation between pages, see Section 2.3,
"Defining Page Flows".

The default JSF ActionListener mechanism uses the outcome string to select the
appropriate JSF navigation rule, and tells the JSF NavigationHandler what page to
use for the Render Response phase. For more information about using managed
bean methods to open dialogs, see Chapter 13, "Using Popup Dialogs, Menus, and
Windows". For more information about outcome strings and navigation in JSF
applications, see the Java EE 6 tutorial at
http://download.oracle.com/javaee/index.html.

Note: A warning message may also appear for uncommitted data if
you set the document tag’s uncommittedDataWarning tag to on and
your page renders an ADF Controller bounded task flow that is
configured as critical, as described in the "How to Enable Implicit
Save Points" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Tip: Alternatively, you can use the textAndAccessKey attribute to
provide a single value that defines the label along with the access key
to use for the button or link. For information about how to define
access keys, see Section 22.3.4, "How to Define Access Keys for an
ADF Faces Component"

Tip: You can use either the text attribute (or textAndAccessKey
attribute) or the icon attribute, or both.

Using Buttons and Links for Navigation

Working with Navigation Components 18-5

5. Expand the Behavior section and set the disabled attribute to true if you want to
show the component as a non-interactive button or link.

6. Set the partialSubmit attribute to true to fire a partial page request each time the
component is activated. For more information, see Section 7.2, "Enabling Partial
Page Rendering Declaratively".

7. Set the immediate attribute to true if you want skip the Process Validations and
Update Model phases. The component’s action listeners (if any), and the default
JSF ActionListener handler are executed at the end of the Apply Request Values
phase of the JSF lifecycle. For more information, see Section 4.2, "Using the
Immediate Attribute".

8. Optionally, if you set the immediate attribute to true as described in step 7, you
can add the af:checkUncommittedDataBehavior component as a child to the
command component to display a warning message to the user if the page
contains uncommitted data. Drag the Check Uncommitted Data Behavior from
the Behavior section of the Operations panel in the Component Palette and drop it
as a child of the command component you added in step 1.

Command buttons and links can also be used to open secondary windows through
these attributes: useWindow, windowHeight, windowWidth, launchListener, and
returnListener. For information about opening secondary windows, see Chapter 18,
"Working with Navigation Components".

18.2.2 How to Use Go Buttons and Go Links
You use the goButton, goImageLink, and goLink components to perform direct page
navigation, without delivering an ActionEvent event.

To create and use go buttons and go links:
1. Create a goButton component by dragging and dropping a Go Button from the

Component Palette to the JSF page. Create a goLink component by dragging and
dropping a Go Link. Create a goImageLink component by dragging and dropping
a Go Image Link.

Tip: The actionListener attribute can also be used for navigation
when bound to a handler that returns an outcome. Usually, you
should use this attribute only to handle user interface logic and not
navigation.

For example, in the File Explorer application, the Search button in
Search panel does not navigate anywhere. Instead, it is used to
perform a search. It has the following value for its actionListener
attribute:

actionListener="#{explorer.navigatorManager.searchNavigator.
 searchForFileItem}"

This expression evaluates to a method that actually performs the
search.

Note: You must have also set the document tag’s
uncommittedDataWarning attribute to on, as described in Section 8.2.5,
"How to Configure the document Tag."

Configuring a Browser’s Context Menu for Command Links

18-6 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Property Inspector, expand the Common section and set the text attribute if
you created a goButton or goLink component. If you created a goImageLink
component, you set the text attribute in the Other section.

3. Set the icon attribute to the URI of the image file you want to use for inside a
goButton or goImageLink component (not supported for goLink). For a
goImageLink component, you can also set the hoverIcon, disabledIcon,
depressedIcon, and iconPosition attributes.

The iconPosition attribute supports two values: leading (default) and trailing.
Set to leading to render the icon before the text. Set to trailing to render the icon
after the text.

4. Set the destination attribute to the URI of the page to which the link should
navigate.

For example, in the File Explorer application, the goLink component in the
popups.jspx file has the following EL expression set for its destination attribute:

destination="http://www.oracle.com"

5. Set the targetFrame attribute to specify where the new page should display.
Acceptable values are:

■ _blank: The link opens the document in a new window.

■ _parent: The link opens the document in the window of the parent. For
example, if the link appeared in a dialog, the resulting page would render in
the parent window.

■ _self: The link opens the document in the same page or region.

■ _top: The link opens the document in a full window, replacing the entire page.

6. Expand the Behavior section and set the disabled attribute to true if you want to
show the component as a non-interactive button or link. You set the disabled
attribute for the goImageLink component in the Other section.

18.3 Configuring a Browser’s Context Menu for Command Links
The command components that render links at runtime allow your end users to invoke
actions. In addition you can configure your application so that the ADF Faces
framework allows the end user´s browser to render a context menu for these
command components. The context menu may present menu options that invoke a
different action (for example, open a link in a new window) to that specified by the
command component. The components for which you can configure this behavior
include the following:

■ af:commandLink

Tip: Instead, you can use the textAndAccessKey attribute to provide
a single value that defines the label and the access key to use for the
button or link. For information about how to define access keys, see
Section 22.3.4, "How to Define Access Keys for an ADF Faces
Component"

Tip: You can use either the text attribute (or textAndAccessKey
attribute) or the icon attribute, or both.

Configuring a Browser’s Context Menu for Command Links

Working with Navigation Components 18-7

■ af:commandImageLink

■ af:commandMenuItem (stand-alone or within an af:menuBar component)

■ af:commandNavigationItem if no value is specified for the destination attribute,
the ADF Faces framework enables the browser context menu in the following
scenarios:

– For the two anchors that af:commandNavigationItem renders when inside an
af:train component

– When an af:commandNavigationItem renders inside an af:breadCrumbs
component

– When an af:commandNavigationItem renders inside an af:navigationPane
component (any hint--tabs, bar, buttons, choice, list)

■ af:panelTabbed: the tabs and overflow indicators

■ af:panelAccordion: the disclosure link and overflow indicators

You cannot configure this behavior for components that specify a destination and do
not invoke an action. Examples of these components include the following:

■ af:goLink

■ af:goImageLink

■ af:commandNavigationItem where you specify a value for the destination
attribute and no value for the action attribute

18.3.1 How to Configure a Browser’s Context Menu for Command Links
Set the value of the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_
SUPPRESSION context parameter in your application’s web.xml file to no.

Before you begin:
It may help to understand what command components you can configure this
functionality for. For more information, Section 18.3, "Configuring a Browser’s Context
Menu for Command Links."

To configure a browser’s context menu for a command link:
1. In the Application Navigator, double-click web.xml to open the file.

By default, JDeveloper opens the web.xml file in the Overview editor.

2. In the Context Initialization Parameters table, add an entry for the
oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION parameter
and set it to no.

3. Save and close the web.xml file.

18.3.2 What Happens When You Configure a Browser’s Context Menu for Command
Links

If you followed the procedure outlined in Section 18.3, "Configuring a Browser’s
Context Menu for Command Links," JDeveloper writes a value to the web.xml file, as
shown in Example 18–1.

Example 18–1 Context Parameter to Configure a Browser’s Context Menu

<context-param>

Using Buttons or Links to Invoke Functionality

18-8 Web User Interface Developer's Guide for Oracle Application Development Framework

 <param-name>oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION</param-name>
 <param-value>no</param-value>
</context-param>

For more information about ADF Faces configuration options in your application’s
web.xml file, see Section A.2, "Configuration in web.xml."

At runtime, end users can invoke a browser’s context menu by right-clicking on the
links rendered by certain components, as described in Section 18.3, "Configuring a
Browser’s Context Menu for Command Links."

18.4 Using Buttons or Links to Invoke Functionality
In addition to using command components for navigation, ADF Faces also includes
listener tags that you can use in conjunction with command components to have
specific functionality execute when the action event fires. Listener tags included with
ADF Faces include:

■ exportCollectionActionListener: Use to export data from an ADF Faces
application to an Excel spreadsheet. For more information, see Section 10.11,
"Exporting Data from Table, Tree, or Tree Table".

■ fileDownloadActionListener: Use to initiate a file download from the server to
the local computer. For more information, see Section 18.4.1, "How to Use a
Command Component to Download Files".

■ resetActionListener: Use to reset submitted values. However, no data model
states will be altered. For more information, see Section 18.4.2, "How to Use a
Command Component to Reset Input Fields". If you want to reset the input
components to their previous state, which was partially or fully submitted
successfully to the server, then you can use a reset button. For more information,
see Section 9.2.3, "How to Add a Reset Button to a Form".

18.4.1 How to Use a Command Component to Download Files
You can create a way for users to download files by creating an action component such
as a command button and associating it with a fileDownloadActionListener tag.
When the user selects or clicks the action component, a popup dialog is displayed that
allows the user to select different download options, as shown in Figure 18–3.

Figure 18–3 File Download Dialog

Using Buttons or Links to Invoke Functionality

Working with Navigation Components 18-9

The fileDownloadActionListener tag is used declaratively to allow an action
component such as command button, command link, or menu item to
programmatically send the contents of a file to the user. You can also declare a specific
content type or file name. Because file download must be processed with an ordinary
request instead of the XMLHttp AJAX requests, the parent component’s partialSubmit
attribute, if supported, must be set to false.

After the content has been sent to the browser, how that content is displayed or saved
depends on the option selected in the dialog. If the Open with option was selected, the
application associated with that file type will be invoked to display the content. For
example, a text file may result in the Notepad application being started. If the Save to
Disk option was selected, depending on the browser, a popup dialog may appear to
select a file name and a location in which to store the content.

Example 18–2 shows the tags of a command button with the
fileDownloadActionListener tag to download the file content Hi there! to the user.

Example 18–2 File Download Using Command Button and fileDownloadActionListener
Tag

<af:commandButton value="Say Hello">
 <af:fileDownloadActionListener filename="hello.txt"
 contentType="text/plain; charset=utf-8"
 method="#{bean.sayHello}"/>
</af:commandButton>

Example 18–3 shows the managed bean method used to process the file download.

Example 18–3 Managed Bean Method Used to Process File Download

public void sayHello(FacesContext context, OutputStream out) throws IOException
{
 OutputStreamWriter w = new OutputStreamWriter(out, "UTF-8");
 w.write("Hi there!");
 . . .
}

To create a file download mechanism:
1. From the Component Palette, drag and drop any action component to your page

(for more information about action components, see Section 18.2, "Using Buttons
and Links for Navigation").

2. Expand the Operations section of the Component Palette, and drag and drop the
File Download Action Listener tag as a child to the action component.

3. In the Property Inspector set the following attributes:

■ contentType: Specify the MIME type of the file, for example text/plain,
text/csv, application/pdf, and so on.

■ filename: Specify the proposed file name for the object. When the file name is
specified, a Save File dialog will typically be displayed, though this is
ultimately up to the browser. If the name is not specified, the content will
typically be displayed inline in the browser, if possible.

Tip: For information about uploading a file to the server, see
Section 9.9, "Using File Upload".

Using Navigation Items for a Page Hierarchy

18-10 Web User Interface Developer's Guide for Oracle Application Development Framework

■ method: Specify the method that will be used to download the file contents.
The method takes two arguments, a FacesContext object and an OutputStream
object. The OutputStream object will be automatically closed, so the sole
responsibility of this method is to write all bytes to the OutputStream object.

For example, the code for a command button would be similar to the following:

<af:commandButton text="Load File">
 <af:fileDownloadActionListener contentType="text/plain"
 filename="MyFile.txt"
 method="#(mybean.LoadMyFile"/>
</af:commandButton>

18.4.2 How to Use a Command Component to Reset Input Fields
You can use the resetActionListener tag in conjunction with a command component
to reset input values. All values will be returned to null or empty. If you want to reset
the input components to their previous state, which was partially or fully submitted
successfully to the server, then you should use a reset button. For more information,
see Section 9.2.3, "How to Add a Reset Button to a Form".

To use the reset tag:
1. Create a command component as documented in Section 18.2, "Using Buttons and

Links for Navigation".

2. Drag and drop a Reset Action Listener from the Component Palette as a child to
the command component.

18.5 Using Navigation Items for a Page Hierarchy

An application may consist of pages that are related and organized in a tree-like
hierarchy, where users gain access to specific information on a page by drilling down a
path of links. For example, Figure 18–4 shows a simple page hierarchy with three
levels of nodes under the top-level node, Home. The top-level node represents the root
parent page; the first-level nodes, Benefits and Employee Data, represent parent pages
that contain general information for second-level child nodes (such as Insurance and
View Employee) that contain more specific information; the Insurance node is also a
parent node, which contains general information for third-level child nodes, Health
and Dental. Each node in a page hierarchy (except the root Home node) can be a
parent and a child node at the same time, and each node in a page hierarchy
corresponds to a page.

Note: If your application uses the Fusion technology stack with the
ADF Controller, then you should use ADF task flows and an
XMLMenuModel implementation to create the navigation system for
your application page hierarchy. For details, see the "Creating a Page
Hierarchy" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Using Navigation Items for a Page Hierarchy

Working with Navigation Components 18-11

Figure 18–4 Benefits and Employee Page Hierarchy

Navigation in a page hierarchy follows the parent-child links. For example, to view
Health information, the user would start drilling from the Benefits page, then move to
the Insurance page where two choices are presented, one of which is Health. The path
of selected links starting from Home and ending at Health is known as the focus path in
the tree.

In addition to direct parent-child navigation, some cross-level or cross-parent
navigation is also possible. For example, from the Dental page, users can jump to the
Paid Time Off page on the second level, and to the Benefits page or the Employee Data
page on the first level.

As shown in Figure 18–4, the Help node, which is not linked to any other node in the
hierarchy but is on the same level as the top-level Home node, is a global node. Global
nodes represent global pages (such as a Help page) that can be accessed from any page
in the hierarchy.

Typical widgets used in a web user interface for a page hierarchy are tabs, bars, lists,
and global links, all of which can be created by using the navigationPane component.
Figure 18–5 shows the hierarchy illustrated in Figure 18–4, as rendered using the
navigationPane and other components.

Using Navigation Items for a Page Hierarchy

18-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 18–5 Rendered Benefits and Employee Pages

In general, tabs are used as first-level nodes, as shown in Figure 18–5, where there are
tabs for the Benefits and Employee Detail pages. Second-level nodes, such as
Insurance and Paid Time Off are usually rendered as bars, and third-level nodes, such
as Health and Dental are usually rendered as lists. However, you may use tabs for both
first- and second-level nodes. Global links (which represent global nodes) are rendered
as text links. In Figure 18–5, the Home and Help global links are rendered as text links.

One navigationPane component corresponds to one level of nodes, whether they are
first-, second-, or third-level nodes, or global nodes. Regardless of the type of
navigation items the navigationPane component is configured to render for a level,
you always use the commandNavigationItem component to represent each item within
the navigationPane component.

The navigationPane component simply renders tabs, bars, lists, and global links for
navigation. To achieve the positioning and visual styling of the page background, as
shown in Figure 18–10 and Figure 18–11, you use the decorativeBox component as the
parent to the first level navigationPane component. The decorativeBox component
uses themes and skinning keys to control the borders and colors of its different facets.
For example, if you use the default theme, the decorativeBox component body is
white and the border is blue, and the top-left corner is rounded. If you use the medium
theme, the body is a medium blue. For information about using themes and skins, see
Chapter 20, "Customizing the Appearance Using Styles and Skins".

For each page of simpler hierarchies, you first use a series of navigationPane
components to represent each level of the hierarchy. Then you add
commandNavigationItem components as direct children of the navigationPane
components for each of links for each level. For example, to create the Health
insurance page as shown in Figure 18–5, you would first use a navigationPane
component for each level displayed on the page, in this case it would be four: one for

Tip: Because creating a page hierarchy requires that each page in the
hierarchy use the same layout and look and feel, consider using a
template to determine where the navigation components should be
placed and how they should be styled. For more information, see
Section 19.3, "Using Page Templates".

Using Navigation Items for a Page Hierarchy

Working with Navigation Components 18-13

the global links, one for the first-level nodes, one for the second-level nodes, and one
for the third-level nodes. You would then need to add commandNavigationItem
components as children to each of the navigationPane components to represent the
individual links. If instead you were creating the Benefits page, as shown in
Figure 18–6, you would create only three navigationPane components (one each for
the global, first, and second levels), and then create just the commandNavigationItem
components for the links seen from this page.

Figure 18–6 First-Level Page

As you can see, with large hierarchies, this process can be very time consuming and
error prone. Instead of creating each of the separate commandNavigationItem
components on each page, for larger hierarchies you can use an XMLMenuModel
implementation and managed beans to dynamically generate the navigation items on
the pages. The XMLMenuModel class, in conjunction with a metadata file, contains all the
information for generating the appropriate number of hierarchical levels on each page,
and the navigation items that belong to each level. Instead of using multiple
commandNavigationItem components within each navigationPane component and
marking the current items as selected on each page, you declaratively bind each
navigationPane component to the same XMLMenuModel implementation, and use one
commandNavigationItem component in the nodeStamp facet to provide the navigation
items. The commandNavigationItem component acts as a stamp for navigationPane
component, stamping out navigation items for nodes (at every level) held in the
XMLMenuModel object. The JSF navigation model, through the default ActionListener
mechanism, is used to choose the page to navigate to when users select a navigation
item. For more information about the menu model, see Section 18.6, "Using a Menu
Model to Create a Page Hierarchy".

On any page, to show the user’s current position in relation to the entire page
hierarchy, you use the breadCrumbs component with a series of
commandNavigationItem components or one commandNavigationItem component as a
nodeStamp, to provide a path of links from the current page back to the root page (that
is, the current nodes in the focus path).

For more information about creating a navigational hierarchy using the XMLMenuModel,
see Section 18.6, "Using a Menu Model to Create a Page Hierarchy". For more
information about manually creating a navigational hierarchy, see Section 18.7,
"Creating a Simple Navigational Hierarchy".

Using a Menu Model to Create a Page Hierarchy

18-14 Web User Interface Developer's Guide for Oracle Application Development Framework

18.6 Using a Menu Model to Create a Page Hierarchy

Section 18.5, "Using Navigation Items for a Page Hierarchy" describes how you can
create a navigation menu for a very simple page hierarchy using navigationPane
components with multiple commandNavigationItem children components. Using the
same method for more complex page hierarchies would be time consuming and error
prone. It is inefficient and tedious to manually insert and configure individual
commandNavigationItem components within navigationPane and breadCrumbs
components on several JSF pages to create all the available items for enabling
navigation. It is also difficult to maintain the proper selected status of each item, and to
deduce and keep track of the breadcrumb links from the current page back to the root
page.

For more complex page hierarchies (and even for simple page hierarchies), a more
efficient method of creating a navigation menu is to use a menu model. A menu model
is a special kind of tree model. A tree model is a collection of rows indexed by row keys.
In a tree, the current row can contain child rows (for more information about a tree
model, see Section 10.5, "Displaying Data in Trees"). A menu model is a tree model that
knows how to retrieve the rowKey of the node that has the current focus (the focus
node). The menu model has no special knowledge of page navigation and places no
requirements on the nodes that go into the tree.

The XMLMenuModel class creates a menu model from a navigation tree model. But
XMLMenuModel class has additional methods that enable you to define the hierarchical
tree of navigation in XML metadata. Instead of needing to create Java classes and
configuring many managed beans to define and create the menu model (as you would
if you used one of the other ADF Faces menu model classes), you create one or more
XMLMenuModel metadata files that contain all the node information needed for
XMLMenuModel class to create the menu model.

To create a page hierarchy using a menu model, you do the following:

Note: If you want to create menus that can be used to cause some
sort of change in an application (for example, a File menu that
contains the commands Open and Delete), then see Chapter 14, "Using
Menus, Toolbars, and Toolboxes".

Note: If your application uses the Fusion technology stack or the
ADF Controller, then you should use ADF task flows and an
XMLMenuModel implementation to create the navigation system for
your application page hierarchy. For details, see the "Creating a Page
Hierarchy" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Performance Tip: Using the navigationPane component with the
menu model results in a full page refresh every time the user switches
the tab. Instead, you can use the panelTabbed component (see
Section 8.10, "Displaying or Hiding Contents in Accordion Panels and
Tabbed Panels". This component has built-in support for partial page
rendering of the tabbed content. However, it cannot bind to any
navigational model and the whole content must be available from
within the page, so it has limited applicability.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-15

■ Create the JSF navigation rule and navigation cases for the page hierarchy and
then create the XMLMenuModel metadata. See Section 18.6.1, "How to Create the
Menu Model Metadata".

■ Configure the managed bean for the XMLMenuModel class. The application uses the
managed bean to build the hierarchy. This configuration is automatically done for
you when you use the Create ADF Menu Model dialog in JDeveloper to create the
XMLMenuModel metadata file. See Section 18.6.2, "What Happens When You Use the
Create ADF Menu Model Wizard".

■ Create a JSF page for each of the hierarchical nodes (including any global nodes).

■ On each page, bind the navigationPane and breadCrumbs components to the
XMLMenuModel class. See Section 18.6.3, "How to Bind to the XMLMenuModel in
the JSF Page" and Section 18.6.4, "How to Use the breadCrumbs Component".

18.6.1 How to Create the Menu Model Metadata
The XMLMenuModel metadata file is a representation of a navigation menu for a page
hierarchy in XML format. In the XMLMenuModel metadata file, the entire page hierarchy
is described within the menu element, which is the root element of the file. Every
XMLMenuModel metadata file is required to have a menu element and only one menu
element is allowed.

The remaining nodes in the hierarchy can be made up of item nodes, group nodes, and
shared nodes. Item nodes represent navigable nodes (or pages) in the hierarchy. For
example, say you wanted to build the hierarchy as depicted in Figure 18–7.

Figure 18–7 Sample Page Hierarchy

If you wanted each node in the hierarchy to have its own page to which a user can
navigate, then you would create an item node in the metadata for each page. You nest
the children nodes inside the parent node to create the hierarchy. However, say you
did not need a page for the Employee Data node, but instead wanted the user to
navigate directly to the View Employee page. You would then use a group node to
represent the Employee Data page and use the group node's idref attribute to
reference the page that opens (the View Employee page) when an end user clicks the

Tip: Typically, you would use a page template that contains a facet
for each level of items (including global items and breadcrumbs) to
create each JSF page. For example, the navigationPane component
representing global items might be wrapped in a facet named
navigationGlobal, and the navigationPane component representing
first level tabs might be wrapped in a navigation1 facet. For
information about creating page templates, see Chapter 19, "Creating
and Reusing Fragments, Page Templates, and Components".

Using a Menu Model to Create a Page Hierarchy

18-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Employee Data tab. The group node allows you to retain the hierarchy without needing
to create pages for nodes that are simply aggregates for their children nodes.

You can also nest menu models using the shared nodes. This approach is
recommended where you have sub trees in the hierarchy (for example, the Benefits
tree) as it makes the page hierarchy easier to maintain. For example, you might create
the entire Benefits tree as its own model so that it could be reused across an
application. Instead of creating the nodes for each use, you could instead create the
nodes once as a separate menu and then within the different hierarchies, use a shared
node to reference the Benefits menu model.

Example 18–4 shows an XMLMenuModel metadata file for defining a page hierarchy
illustrated in Figure 18–7.

Example 18–4 XMLMenuModel Metadata File Sample

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="Home" focusViewId="/home.jspx" label="Home" action="goHome">
 <itemNode id="benefits" focusViewId="/benefits.jspx" action="goBene"
 label="Benefits">
 <itemNode id="insurance" focusViewId="/insurance.jspx" action="goIns"
 label="Insurance">
 <itemNode id="health" focusViewId="/health.jspx" action="goHealth"
 label="Health"/>
 <itemNode id="dental" focusViewId="/dental.jspx" action="goDental"
 label="Dental"/>
 </itemNode>
 <itemNode id="pto" focusViewId="/pto.jspx" action="goPto"
 label="Paid Time Off">
 <itemNode id="vacation" focusViewId="/vacation.jspx"
 action="goVacation" label="Vacation"/>
 <itemNode id="sick" focusViewId="/sick.jspx" action="goSick"
 label="Sick Pay"/>
 </itemNode>
 </itemNode>
 <groupNode id="empData" idref="newEmp" label="Employee Data">
 <itemNode id="newEmp" focusViewId="/createemp.jspx" action="goCreate"
 label="Create New Employee"/>
 <itemNode id="viewdata" focusViewId="/viewdata.jspx" action="goView"
 label="View Data"/>
 </groupNode>
 </itemNode>
 <itemNode id="Help" focusViewId="/globalhelp.jspx" action="goHelp"
 label="Help"/>
 <itemNode id="Preferences" focusViewId="/preferences.jspx" action="goPref"
 label="Preferences"/>
</menu>

Within the root menu element, global nodes are any types of nodes that are direct
children of the menu element; in other words, the first level of elements under the menu
element are global nodes. For example, the code in Example 18–4 shows three global
nodes, namely, Home, Help, and Preferences. Within a first-level child node, nodes can
be nested to provide more levels of navigation. For example, the code in Example 18–4
shows two second-level nodes under Home, namely, Benefits and Employee Data.
Within Benefits, there are two third-level nodes, Insurance and Paid Time Off, and so
on.

JDeveloper simplifies creating metadata for an XMLMenuModel class by providing the
Create ADF Menu Model wizard.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-17

To create the XMLMenuModel metadata:
1. Create one global JSF navigation rule that has the navigation cases for all the

nodes in the page hierarchy.

For example, the page hierarchy shown in Figure 18–4 has 10 nodes, including the
global Help node. Thus, you would create 10 navigation cases within one global
navigation rule in the faces-config.xml file, as shown in Example 18–5.

For each navigation case, specify a unique outcome string, and the path to the JSF
page that should be displayed when the navigation system returns an outcome
value that matches the specified string.

Example 18–5 Global Navigation Rule for a Page Hierarchy in faces-config.xml

<navigation-rule>
 <navigation-case>
 <from-outcome>goHome</from-outcome>
 <to-view-id>/home.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHelp</from-outcome>
 <to-view-id>/globalhelp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goEmp</from-outcome>
 <to-view-id>/empdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goBene</from-outcome>
 <to-view-id>/benefits.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goIns</from-outcome>
 <to-view-id>/insurance.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goPto</from-outcome>
 <to-view-id>/pto.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goView</from-outcome>
 <to-view-id>/viewdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goCreate</from-outcome>
 <to-view-id>/createemp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHealth</from-outcome>
 <to-view-id>/health.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goDental</from-outcome>
 <to-view-id>/dental.jspx</to-view-id>
 </navigation-case>
...
</navigation-rule>

For more information about creating navigation cases in JDeveloper, see
Section 2.3, "Defining Page Flows".

Using a Menu Model to Create a Page Hierarchy

18-18 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Application Navigator, locate the project where you wish to create the
XMLMenuModel metadata file. Under the project’s Web Content - WEB-INF folder,
right-click the faces-config.xml file, and choose Create ADF Menu from the
context menu.

3. In the Create ADF Menu Model dialog, enter a file name for the XMLMenuModel
metadata file, for example, root_menu.

4. Enter a directory for the metadata file. By default, JDeveloper will save the
XMLMenuModel metadata file in the WEB-INF directory of the application.

When you click OK, JDeveloper automatically does the following for you:

■ Creates a managed bean for the model in the faces-config.xml file, using the
name specified in Step 3 for the managed bean name.

■ Sets the value of the managed bean's source managed property to the
XMLMenuModel metadata file, specified in Step 3, for example, /WEB-INF/root_
menu.xml.

■ Displays the source file (that is, /WEB-INF/root_menu.xml) as a blank
XMLMenuModel metadata file in the source editor, as shown in Example 18–6.

Example 18–6 Blank XMLMenuModel Metadata File

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"></menu>

For more information about the managed bean configuration JDeveloper
automatically adds for you, see Section 18.6.2, "What Happens When You Use the
Create ADF Menu Model Wizard".

5. Select the menu node in the Structure window and enter the appropriate
information in the Property Inspector.

Table 18–1 shows the attributes you can specify for the menu element.

Example 18–7 shows sample XMLMenuModel metadata code that uses EL
expressions to access a resource bundle for the navigation item labels.

Note: If your application uses ADF Controller, then this menu option
will not be available to you. You need to instead use a bounded task
flow to create the hierarchy. See the "Creating a Page Hierarchy"
section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Table 18–1 Menu Element Attributes

Attribute Description

resourceBundle Optional. This is the resource bundle to use for the labels (visible text)
of the navigation items at runtime. For example,
org.apache.myfaces.demo.xmlmenuDemo.resource.MenuBundle.

var If using a resource bundle, specify an ID to use to reference the bundle
in EL expressions for navigation item labels. For example,
#{bundle.somelabel}. See Example 18–7 for a sample XMLMenuModel
metadata file that uses a resource bundle.

xmlns Required. Set to http://myfaces.apache.org/trinidad/menu

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-19

Example 18–7 XMLMenuModel Using Resource Bundle

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"
 resourceBundle="org.apache.myfaces.demo.xmlmenuDemo.resource.MenuBundle"
 var="bundle">
 <itemNode id="in1" label="#{bundle.somelabel1}" ../>
 <itemNode id="in2" label="#{bundle.somelabel2}" ../>
</menu>

For more information about using resource bundles, see Chapter 21,
"Internationalizing and Localizing Pages".

6. In the Structure window, add the desired elements for the nodes in your hierarchy,
using itemNode, groupNode, or sharedNode as needed. To begin, right-click menu
and choose Insert inside menu, and then choose the desired element from the
context menu, as shown in Figure 18–8.

Figure 18–8 Context Menu for Inserting Elements into Menu

The elements can be one of the following:

■ itemNode: Specifies a node that performs navigation upon user selection.

■ groupNode: Groups child components; the groupNode itself does no navigation.
Child nodes node can be itemNode or another groupNode.

For example, say you did not need a page for the Employee Data node, but
instead, wanted the user to navigate directly to the View Employee page. You
would then use a group node to represent the Employee Data page by
specifying the id attribute of the desired child node as a value for the group
node’s idref attribute. The group node allows you to retain the hierarchy
without needing to create pages for nodes that are simply aggregates for their
children nodes.

■ sharedNode: References another XMLMenuModel instance. A sharedNode
element is not a true node; it does not perform navigation nor does it render
anything on its own.

Note: When you use a sharedNode element to create a submenu and
you use resource bundles for the navigation item labels, it is quite
possible that the shared menu model will use the same value for the
var attribute on the root menu element. The XMLMenuModel class
handles this possibility during parsing by ensuring that each resource
bundle is assigned a unique hash key.

Using a Menu Model to Create a Page Hierarchy

18-20 Web User Interface Developer's Guide for Oracle Application Development Framework

You can insert a sharedNode element anywhere within the hierarchy. For
example, in the code shown in Example 18–8, the sharedNode element adds a
submenu on the same level as the global nodes.

Example 18–8 SharedNode Sample Code

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu"
 <itemNode id="in1" label="Home" ../>
 <sharedNode ref="#{shared_menu}"/>
 <itemNode id="in6" label="Help" ../>
</menu>

As you build the XMLMenuModel metadata file, the tree structure you see in the
Structure window exactly mirrors the indentation levels of the menu metadata, as
shown in Figure 18–9.

Figure 18–9 Tree Structure of XMLMenuModel Metadata in Structure Window

7. For each element used to create a node, set the properties in the Property
Inspector, as described in Table 18–2 for itemNode elements, Table 18–3 for
groupNode elements, and Table 18–4 for sharedNode elements.

Table 18–2 itemNode Element Attributes

Attribute Description

action Specify either an outcome string or an EL method binding
expression that returns an outcome string. In either case, the
outcome string must match the from-outcome value to the
navigation case for that node as configured in the
faces-config.xml file.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-21

A groupNode element does not have the action or destination attribute that
performs navigation directly, but it points to a child node that has the action
outcome or destination URI, either directly by pointing to an itemNode child
(which has the action or destination attribute), or indirectly by pointing to a
groupNode child that will then point to one of its child nodes, and so on until an
itemNode element is reached. Navigation will then be determined from the action
outcome or destination URI of that itemNode element.

Consider the groupNode code shown in Example 18–9. At runtime, when users
click groupNode id="gn1", or groupNode id="gn11", or itemNode id="in1", the
navigation outcome is "goToSubTabOne", as specified by the first itemNode reached
(that is itemNode id="id1"). Table 18–3 shows the attributes you must specify
when you use a groupNode element.

Example 18–9 groupNode Elements

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns:"http://myfaces.apache.org/trinidad/menu">
 <groupNode id="gn1" idref="gn11" label="GLOBAL_TAB_0">
 <groupNode id="gn11" idref="in1" label="PRIMARY_TAB_0">
 <itemNode id="in1" label="LEVEL2_TAB_0" action="goToSubTabOne"
 focusViewId="/menuDemo/subtab1.jspx"/>
 <itemNode id="in2" label="LEVEL2_TAB_1" action="goToSubTabTwo"
 focusViewId="/menuDemo/subtab2.jspx"/>
 </groupNode>
 <itemNode id="in3" label="PRIMARY_TAB_1" focusViewId="/menuDemo/tab2.jspx"
 destination="/faces/menuDemo/tab2.jspx"/>

destination Specify the URI of the page to navigate to when the node is
selected, for example, http://www.oracle.com. If the destination
is a JSF page, the URI must begin with "/faces".

Alternatively, specify an EL method expression that evaluates to
the URI.

If both action and destination are specified, destination takes
precedence over action.

focusViewId Required. The URI of the page that matches the node’s
navigational result, that is, the to-view-id value of the
navigation case for that node as specified in the
faces-config.xml file.

For example, if the action outcome of the node navigates to
/page_one.jspx (as configured in the faces-config.xml file),
then focusViewId must also be /page_one.jspx.

The focusViewId does not perform navigation. Page navigation
is the job of the action or destination attributes. The
focusViewId, however, is required for the XMLMenuModel to
determine the correct focus path.

id Required. Specify a unique identifier for the node.

As shown in Example 18–4, it is good practice to use "inX" for
the ID of each itemNode, where for example, "inX" could be in1,
in11, in111, in2, in21, in 211, and so on.

label Specify the label text to display for the node. Can be an EL
expression to a string in a resource bundle, for example,
#{bundle.somelabel}, where bundle must match the root menu
element’s var attribute value.

Table 18–2 (Cont.) itemNode Element Attributes

Attribute Description

Using a Menu Model to Create a Page Hierarchy

18-22 Web User Interface Developer's Guide for Oracle Application Development Framework

 </groupNode>
 <itemNode id="gin1" label="GLOBAL_TAB_1" action="goToGlobalOne"
 focusViewId="/menuDemo/global1.jspx"/>
 <itemNode id="gin2" label="GLOBAL_TAB_2"
 destination="/faces/menuDemo/global2.jspx"
 focusViewId="/menuDemo/global2.jspx"/>
</menu>

18.6.2 What Happens When You Use the Create ADF Menu Model Wizard
When you use the Create ADF Menu Model wizard to create an XMLMenuModel
metadata file, JDeveloper automatically configures for you a managed bean for the
metadata file in the faces-config.xml file, using the metadata file name you provide
as the managed bean name.

Example 18–10 shows part of the faces-config.xml file that contains the
configuration of one XMLMenuModel metadata file. By default, JDeveloper uses the
oracle.adf.view.rich.model.MDSMenuModel class as the managed bean class, and
request as the managed bean scope, which is required and cannot be changed.

Example 18–10 Managed Bean Configuration for XMLMenuModel in faces-config.xml

<managed-bean>
 <managed-bean-name>root_menu</managed-bean-name>
 <managed-bean-class>oracle.adf.view.rich.model.
 MDSMenuModel</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>createHiddenNodes</property-name>

Table 18–3 GroupNode Element Attribute

Attribute Description

id A unique identifier for the group node.

As shown in Example 18–4, it is good practice to use gnX for the
ID of each groupNode, where for example, gnX could be gn1, gn2,
and so on.

idref Specify the ID of a child node, which can be an itemNode, or
another groupNode. When adding a groupNode as a child node,
that child in turn can reference another groupNode and so on, but
eventually an itemNode child must be referenced as the last
child.

The idref attribute can contain more than one child ID,
separated by spaces; the IDs are processed in the order they are
listed.

label Specify the label text to display for the group node. Can be an
EL expression to a string in a resource bundle, for example,
#{bundle.somelabel}.

Table 18–4 sharedNode Element Attribute

Attribute Description

ref Specify the managed bean name of another XMLMenuModel class,
as configured in the faces-config.xml file, for example,
#{shared_menu}.

At runtime, the referenced navigation menu is created, inserted
as a submenu into the main (root) menu, and rendered.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-23

 <value>false</value>
 </managed-property>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/root_menu.xml</value>
 </managed-property>
</managed-bean>

In addition, the following managed properties are added by JDeveloper for each
XMLMenuModel managed bean:

■ createHiddenNodes: When true, specifies that the hierarchical nodes must be
created even if the component’s rendered attribute is false. The
createHiddenNodes value is obtained and made available when the source menu
metadata file is opened and parsed. This allows the entire hierarchy to be created,
even when you do not want the actual component to be rendered.

The createHiddenNodes property must be placed before the source property,
which JDeveloper does for you when the managed bean is automatically
configured. The XMLMenuModel managed bean must have this value already set to
properly parse and create the menu's XML metadata from the source managed
property.

■ source: Specifies the source metadata file to use.

For each XMLMenuModel metadata file that you create in a project using the wizard,
JDeveloper configures a managed bean for it in the faces-config.xml file. For
example, if you use a sharedNode element in an XMLMenuModel to reference another
XMLMenuModel metadata file (as shown in Example 18–8), you would have created two
metadata files. And JDeveloper would have added two managed bean configurations
in the faces-config.xml file, one for the main (root) menu model, and a second
managed bean for the shared (referenced) menu model, as shown in Example 18–11.

Example 18–11 Managed Bean for Shared Menu Model in faces-config.xml

<!-- managed bean for referenced, shared menu model -->
<managed-bean>
 <managed-bean-name>shared_menu</managed-bean-name>
 <managed-bean-class>
 <managed-bean-class>oracle.adf.view.
 rich.model.MDSMenuModel</managed-bean-class>
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>createHiddenNodes</property-name>
 <value>true</value>
 </managed-property>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/shared_menu.xml</value>
 </managed-property>
</managed-bean>

This means, if you use shared nodes in your XMLMenuModel metadata file, the
faces-config.xml file will have a root menu model managed bean, plus menu model
managed beans for any menu models referenced through shared nodes.

Using a Menu Model to Create a Page Hierarchy

18-24 Web User Interface Developer's Guide for Oracle Application Development Framework

18.6.3 How to Bind to the XMLMenuModel in the JSF Page
Each node in the page hierarchy corresponds to one JSF page. On each page, you use
one navigationPane component for each level of navigation items that you have
defined in your XMLMenuModel metadata file, including global items. Levels are defined
by a zero-based index number: Starting with global nodes in the metadata file (that is,
direct children nodes under the menu element as shown in Example 18–4), the level
attribute value is 0 (zero), followed by 1 for the next level (typically tabs), 2 for the next
level after that (typically bars), and so on. For example, if you had a page hierarchy
like the one shown in Figure 18–7 and Example 18–4, you would use three
navigationPane components on a page such as Home (for the three levels of
navigation under the Home node), plus one more navigationPane component for the
global nodes.

As described in Section 18.7.1, "How to Create a Simple Page Hierarchy", you use the
hint attribute to specify the type of navigation item you want to use for each
hierarchical level (for example, buttons, tabs, or bar). But instead of manually adding
multiple commandNavigationItem components yourself to provide the navigation
items, you bind each navigationPane component to the XMLMenuModel managed bean,
and insert only one commandNavigationItem component into the nodeStamp facet of
each navigationPane component, as shown in Example 18–12.

Example 18–12 navigationPane Component Bound to XMLMenuModel Managed Bean

<af:navigationPane var="menuNode" value="#{root_menu}" level="1"
 hint="tabs">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"
 visible="#{menuNode.visible}"
 rendered="#{menuNode.rendered}"/>
 </f:facet>
</af:navigationPane>

The nodeStamp facet and its single commandNavigationItem component, in conjunction
with the XMLMenuModel managed bean, are responsible for:

■ Stamping out the correct number of navigation items in a level.

■ Displaying the correct label text and other properties as defined in the metadata.
For example, the EL expression #{menuNode.label} retrieves the correct label text
to use for a navigation item, and #{menuNode.doAction} evaluates to the action
outcome defined for the same item.

Tip: Because the menu model dynamically determines the hierarchy
(that is, the links that appear in each navigationPane component) and
also sets the current nodes in the focus path as selected, you can
practically reuse the same code for each page. You need to change
only the page’s document title, and add the specific page contents to
display on that page.

Because of this similar code, you can create a single page fragment
that has just the facets containing the navigationPane components,
and include that fragment in each page, where you change the page’s
document title and add the page contents.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-25

■ Marking the current items in the focus path as selected. You should not specify the
selected attribute at all for the commandNavigationItem components.

To bind to the XMLMenuModel managed bean:
1. If you want the menu tabs to be styled, create a decorativeBox component by

dragging and dropping a Decorative Box from the Layout section of the
Component Palette to the JSF page. Set the theme to determine how you want the
tabs to appear. Valid values are:

■ default: Body is white with a blue border. Top-left corner is rounded.

■ light: Body is light blue. Top-left corner is rounded.

■ medium: Body is medium blue. Top-left corner is rounded.

■ dark: Body is dark blue. Top-left corner is rounded.

You can change how the themes are displayed. For more information, see
Chapter 20, "Customizing the Appearance Using Styles and Skins".

2. Create a navigationPane component by dragging and dropping a Navigation
Pane from the Component Palette to the JSF page. Add a navigationPane
component for each level of the hierarchy.

For example, to create any of the pages as shown in the hierarchy in Figure 18–5,
you would drag and drop four navigationPane components.

3. For each navigationPane component, in the Property Inspector, expand the
Common section and set the Hint attribute to one of the following types of
navigation items to determine how the navigationPane will display the following:

■ bar: Displays the navigation items separated by a bar, for example the
Insurance and Paid Time Off links in Figure 18–11.

■ buttons: Displays the navigation items separated by a bar in a global area, for
example the Home and Help links in Figure 18–11.

■ choice: Displays the navigation items in a popup list when the associated
dropdown icon is clicked. You must include a value for the navigationPane
component’s icon attribute and you can associate a label to the dropdown list
using the title attribute.

■ list: Displays the navigation items in a bulleted list, for example the Health
and Dental links in Figure 18–11.

■ tabs: Displays the navigation items as tabs, for example the Benefits and
Employee Data tabs in Figure 18–11.

4. Set the level attribute to point to the appropriate level of metadata in the
XMLMenuModel metadata file. The level attribute is a zero-based index number:
Starting with global nodes in the metadata file (that is, direct children nodes under
the menu element as shown in Example 18–4), the level attribute value is 0 (zero),

Note: If there is no node information in the XMLMenuModel object for a
particular hierarchical level (for example, level 3 lists), ADF Faces
does not display those items on the page even though the page
contains the navigationPane code for that level.

Tip: The Navigation Pane component can be found in the Layout
pane of the Component Palette.

Using a Menu Model to Create a Page Hierarchy

18-26 Web User Interface Developer's Guide for Oracle Application Development Framework

followed by 1 for the next level (typically tabs), 2 for the next level after that
(typically bars), and so on.

The commandNavigationItem component is able to get its metadata from the
metadata file through the level attribute on the parent navigationPane
component. By default, if you do not specify a level attribute value, 0 (zero) is
used, that means the navigationPane component will take the metadata from the
first-level under the menu element for rendering by the commandNavigationItem
component.

5. In the Property Inspector, expand the Data section. Set the value attribute to the
menu model managed bean that is configured for the root XMLMenuModel class in
the faces-config.xml file.

6. Set the var attribute to text that you will use in the commandNavigationItem
components to get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for the
current node is copied into the var attribute, which can then be addressed using
an EL expression. You specify the name to use for this property in the EL
expression using the var property.

7. Drag and drop a Navigation Item from the Component Palette to the nodeStamp
facet of the navigationPane component.

8. Set the values for the remaining attributes that have corresponding values in the
metadata using EL expressions that refer to the menu model (whose metadata
contains that information). You access these values using the value of the var
attribute you set for the parent navigationPane component in Step 6 along with
the name of the corresponding itemNode element that holds the value in the
metadata. Table 18–5 shows the attributes on the navigation item that has
corresponding values in the metadata.

Note: The value attribute can reference root menu models and menu
models referenced by shared nodes. If you reference a shared node in
the value attribute, the faces-config.xml file needs to have a new
managed bean entry with a different managed bean name than the
one which is used in a root menu model definition in the menu model
metadata file. This promotes the menu model of a shared node to a
root menu model which can then be referred to in the value attribute.

Tip: You use the same value for the var attribute for every
navigationPane component on the page or in the application.

Table 18–5 Navigation Item Attributes and the Associated Menu Model Attributes

Navigation Item Attribute Associated Menu Model Element Attribute

text label

action doAction

icon icon

destination destination

visible visible

rendered rendered

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-27

For example, if you had set the var attribute on the parent navigationPane
component to menuNode, you would use #{menuNode.doAction} as the EL
expression for the value of the action attribute. This would resolve to the action
property set in the metadata for each node. Example 18–13 shows the JSF code for
binding to a menu model for the HR example.

Example 18–13 Binding to the XML Model

<af:form>
 <af:navigationPane hint="buttons" level="0" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="tabs" level="1" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="bar" level="2" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
 <af:navigationPane hint="list" level="3" value="#{root_menu}"
 var="menuNode">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"
 icon="#{menuNode.icon}"
 destination="#{menuNode.destination}"/>
 </f:facet>
 </af:navigationPane>
</af:form>

18.6.4 How to Use the breadCrumbs Component
Creating a breadcrumb using the menu model is similar to creating the page hierarchy;
you use the breadCrumbs component with a nodeStamp facet that stamps a
commandNavigationItem component with data from the model.

To create a breadcrumb:
1. Create a breadCrumbs component by dragging and dropping a Bread Crumbs

component from the Component Palette to the JSF page.

Using a Menu Model to Create a Page Hierarchy

18-28 Web User Interface Developer's Guide for Oracle Application Development Framework

2. By default, breadcrumb links are displayed in a horizontal line. To change the
layout to be vertical, in the Property Inspector, expand the Common section and
set the orientation attribute to vertical.

3. In the Property Inspector, expand the Data section. Set the value attribute to the
root menu model managed bean as configured in the faces-config.xml file. This
is the same bean to which the navigationPane component is bound.

4. Set the var attribute to text that you will use in the commandNavigationItem
components to get the needed data from the menu model.

As the hierarchy is created at runtime, and each node is stamped, the data for the
current node is copied into the var attribute, which can then be addressed using
an EL expression. You specify the name to use for this property in the EL
expression using the var property.

5. Add one commandNavigationItem component as a child by dragging and dropping
a Navigation Item from the Component Palette to the nodeStamp facet of the
breadCrumbs component.

6. Set the values for the remaining attributes that have corresponding values in the
metadata using EL expressions that refer to the menu model (whose metadata
contains that information). You access these values using the value of the var
attribute you set for the parent breadCrumbs component in Step 4 along with the
name of the corresponding itemNode element that holds the value in the metadata.
Table 18–5 shows the attributes on the navigation item that has corresponding
values in the metadata.

For example, if you had set the var attribute on the breadCrumbs component to
menuNode, you would use #{menuNode.doAction} as the EL expression for the
value of the action attribute. This would resolve to the action property set in the
metadata for each node.

Note: The value attribute should reference only a root menu model
and not any menu models referenced through shared nodes. For
example, if you use a shared node in your main XMLMenuModel element
(as shown in Example 18–8), JDeveloper would have created managed
bean configurations for the shared node and the root XMLMenuModel
bean that consumes the shared model. The shared model managed
bean is automatically incorporated into the root menu model
managed bean as the menu tree is parsed at startup.

Tip: You can use the same value for the var attribute for the
breadCrumbs component as you did for the navigationPane
components on the page or in the application.

Note: The nodeStamp facet of the breadCrumbs component
determines what links appear according to the menu model that you
specify for the value attribute of the breadCrumbs component. If you
do not specify the menu model you want to render for the value
attribute of the breadCrumbs component, no links appear at runtime.
Do not use a nodeStamp facet for the breadCrumbs component if you
do not use a menu model because no stamps will be required.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-29

Example 18–14 breadCrumbs Component Bound to a MenuModel

<af:breadCrumbs var="menuNode" value="#{root_menu}">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem text="#{menuNode.label}"
 action="#{menuNode.doAction}"/>
 </f:facet>
</af:breadCrumbs>

18.6.5 What Happens at Runtime
The value attribute of navigationPane component references the managed bean for
the XMLMenuModel element. When that managed bean is requested, the following takes
place:

■ The setSource() method of the XMLMenuModel class is called with the location of
the model’s metadata, as specified in the managed-property element in the
faces-config.xml file.

■ An InputStream object to the metadata is made available to the parser
(SAXParser); the metadata for the navigation items is parsed, and a call to
MenuContentHandler method is made.

■ The MenuContentHandler builds the navigation menu tree structure as a List
object in the following manner:

– The startElement() method is called at the start of processing a node in the
metadata.

– The endElement() method is called at the end of processing the node.

– As each node is processed, a List of navigation menu nodes that make up the
page hierarchy of the menu model is created.

■ A TreeModel object is created from the list of navigation menu nodes.

■ The XMLMenuModel object is created from the TreeModel object.

If a groupNode element has more than one child id in its idref attribute, the following
occurs:

■ The IDs are processed in the order they are listed. If no child node is found with
the current ID, the next ID is used, and so on.

■ Once a child node is found that matches the current ID in the idref list, then that
node is checked to see if its rendered attribute is set to true, its disabled attribute
is set to false, its readOnly attribute is set to false, and its visible attribute is set
to true. If any of the criteria is not met, the next ID in the idref list is used, and so
on.

■ The first child node that matches the criteria is used to obtain the action outcome
or destination URI. If no child nodes are found that match the criteria, an error is
logged. However, no error will be shown in the UI.

■ If the first child node that matches the criteria is another groupNode element, the
processing continues into its children. The processing stops when an itemNode
element that has either an action or destination attribute is encountered.

■ When the itemNode element has an action attribute, the user selection initiates a
POST action and the navigation is performed through the action outcome. When
the itemNode element has a destination attribute, the user selection initiates a GET
action and navigation is performed directly using the destination value.

Using a Menu Model to Create a Page Hierarchy

18-30 Web User Interface Developer's Guide for Oracle Application Development Framework

The XMLMenuModel class provides the model that correctly highlights and enables the
items on the navigation menus (such as tabs and bars) as you navigate through the
navigation menu system. The model is also instantiated with values for label,
doAction, and other properties that are used to dynamically generate the navigation
items.

The XMLMenuModel class does no rendering; the navigationPane component uses the
return value from the call to the getFocusRowKey() method to render the navigation
menu items for a level on a page.

The commandNavigationItem component housed within the nodeStamp facet of the
navigationPane component provides the label text and action outcome for each
navigation item. Each time the nodeStamp facet is stamped, the data for the current
navigation item is copied into an EL-reachable property, the name of which is defined
by the var attribute on the navigationPane component that houses the nodeStamp
facet. The nodeStamp displays the data for each item by getting further properties from
the EL-reachable property. Once the navigation menu has completed rendering, this
property is removed (or reverted back to its previous value). When users select a
navigation item, the default JSF actionListener mechanism uses the action outcome
string or destination URI to handle the page navigation.

The XMLMenuModel class, in conjunction with nodeStamp facet also controls whether or
not a navigation item is rendered as selected. As described earlier, the XMLMenuModel
object is created from a tree model, which contains viewId attribute information for
each node. The XMLMenuModel class has a method getFocusRowKey() that determines
which page has focus, and automatically renders a node as selected if the node is on
the focus path. The getFocusRowKey() method in its most simplistic fashion does the
following:

■ Gets the current viewId attribute.

■ Compares the viewId attribute value with the IDs in internal maps used to resolve
duplicate viewId values and in the viewIdFocusPathMap object that was built by
traversing the tree when the menu model was created.

■ Returns the focus path to the node with the current viewId attribute or returns
null if the current viewId attribute value cannot be found.

The viewId attribute of a node is used to determine the focus rowKey object. Each item
in the model is stamped based on the current rowKey object. As the user navigates and
the current viewId attribute changes, the focus path of the model also changes and a
new set of navigation items is accessed.

18.6.6 What You May Need to Know About Using Custom Attributes
Custom attributes that you have created can be displayed, but only for itemNode
elements. To add an itemNode element to access the value of a custom attribute, you
need to get the tree from the menu model by:

■ Calling the menu models getWrappedData() method

■ Calling the getFocusRowKey() method to get the current focus path

■ Using this focus path to traverse the tree and return a list of nodes in the focus
path

■ Testing one or more of these nodes for custom attribute(s) by calling the
getCustomProperty() API

 Example 18–15 shows an example of the required code.

Using a Menu Model to Create a Page Hierarchy

Working with Navigation Components 18-31

Example 18–15 Accessing Custom Attributes from the XMLMenuModel

 /**
 * Returns the nodes corresponding to a focus path
 *
 * @param tree
 * @param focusPath
 */
 public List getNodesFromFocusPath(TreeModel tree, ArrayList focusPath)
 {
 if (focusPath == null || focusPath.size() == 0)
 return null;

 // Clone the focusPath cause we remove elements
 ArrayList fp = (ArrayList) focusPath.clone();

 // List of nodes to return
 List nodeList = new ArrayList<Object>(fp.size());

 // Convert String rowkey to int and point to the
 // node (row) corresponding to this index
 int targetNodeIdx = Integer.parseInt((String)fp.get(0));
 tree.setRowIndex(targetNodeIdx);

 // Get the node
 Object node = tree.getRowData()

 // put the Node in the List
 nodeList.add(node);

 // Remove the 0th rowkey from the focus path
 // leaving the remaining focus path
 fp.remove(0);

 // traverse into children
 if (fp.size() > 0
 && tree.isContainer()
 && !tree.isContainerEmpty()
)
 {
 tree.enterContainer();

 // get list of nodes in remaining focusPath
 List childList = getNodesFromFocusPath(tree, fp);

 // Add this list to the nodeList
 nodeList.addAll(childList);

 tree.exitContainer();
 }

 return nodeList;
 }

 public String getElementLabel(XMLMenuModel model, Object myVal, String myProp)
 {
 TreeModel tree = model.getWrappedData();

 Object node = findNodeByPropertyValue(tree, myVal, myProp);

 FacesContext context = FacesContext.getCurrentInstance();

Creating a Simple Navigational Hierarchy

18-32 Web User Interface Developer's Guide for Oracle Application Development Framework

 PropertyResolver resolver = context.getApplication().getPropertyResolver();

 String label = (String) resolver.getValue(node, _LABEL_ATTR);

 return label;
 }

 public Object findNodeByPropertyValue(TreeModel tree, Object myVal, String
myProp)
 {
 FacesContext context = FacesContext.getCurrentInstance();
 PropertyResolver resolver = context.getApplication().getPropertyResolver();

 for (int i = 0; i < tree.getRowCount(); i++)
 {
 tree.setRowIndex(i);

 // Get a node
 Object node = tree.getRowData();

 // Get the value of the attribute of the node
 Obect propVal = resolver.getValue(node, myProp);

 if (propVal == myVal)
 {
 return node;
 }

 if (tree.isContainer() && !tree.isContainerEmpty())
 {
 tree.enterContainer();
 node = findNodeByPropertyValue(tree, myVal, myProp);

 if (node != null)
 return node;

 tree.exitContainer();
 }guap
 }
 return null;
 }

18.7 Creating a Simple Navigational Hierarchy
Figure 18–10 and Figure 18–11 show an example of what the user interface looks like
when the navigationPane component and individual commandNavigationItem
components are used to create a view for the page hierarchy shown in Figure 18–4.

Creating a Simple Navigational Hierarchy

Working with Navigation Components 18-33

Figure 18–10 Navigation Items Available from the View Employee Page

When you create the hierarchy manually, first determine the focus path of each page
(that is, where exactly in the hierarchy the page resides) in order to determine the exact
number of navigationPanes and commandNavigationItem components needed for
each page, as well as to determine whether or not each component should be
configured as selected when the user visits the page. For example, in Figure 18–10,
which shows the Employee Data page, only the child bars of Employee Data are
needed, and the Employee Data tab renders as selected.

Similarly in Figure 18–11, which shows the Health page, only the child bars of Benefits
are needed, and the Benefits tab must be configured as selected. Additionally for this
page, you would create the child nodes under Insurance, which can be presented as
vertical lists on the side of the page. The contents of the page are displayed in the
middle, to the right of the vertical lists.

Figure 18–11 Navigation Items Available from the Health Page

Regardless of the type of navigation items you use (such as tabs or bars), a series of
commandNavigationItem child components within each navigationPane component
provide the actual navigation items. For example, in Figure 18–11 the actual link for

Creating a Simple Navigational Hierarchy

18-34 Web User Interface Developer's Guide for Oracle Application Development Framework

the Employee Data tab, the Insurance and Paid Time Off bars, and the Health and
Dental links in the list are each provided by a commandNavigationItem component.

18.7.1 How to Create a Simple Page Hierarchy
When your navigational hierarchy contains only a few pages and is not very deep, you
can elect to manually create the hierarchy. Doing so involves creating the navigation
metadata, using the navigationPane component to create the hierarchy, and using the
commandNavigationItem component to create the links.

To manually create a navigation hierarchy:
1. Create one global JSF navigation rule that has the navigation cases for all the

nodes (that is, pages) in the page hierarchy.

For example, the page hierarchy shown in Figure 18–4 has 10 nodes, including the
global Help node. Thus, you would create 10 navigation cases within one global
navigation rule in the faces-config.xml file, as shown in Example 18–16.

For each navigation case, specify a unique outcome string, and the path to the JSF
page that should be displayed when the navigation system returns an outcome
value that matches the specified string.

Example 18–16 Global Navigation Rule for a Page Hierarchy in faces-config.xml

<navigation-rule>
 <navigation-case>
 <from-outcome>goHome</from-outcome>
 <to-view-id>/home.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHelp</from-outcome>
 <to-view-id>/globalhelp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goEmp</from-outcome>
 <to-view-id>/empdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goBene</from-outcome>
 <to-view-id>/benefits.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goIns</from-outcome>
 <to-view-id>/insurance.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goPto</from-outcome>
 <to-view-id>/pto.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goView</from-outcome>
 <to-view-id>/viewdata.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goCreate</from-outcome>
 <to-view-id>/createemp.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goHealth</from-outcome>

Creating a Simple Navigational Hierarchy

Working with Navigation Components 18-35

 <to-view-id>/health.jspx</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>goDental</from-outcome>
 <to-view-id>/dental.jspx</to-view-id>
 </navigation-case>
</navigation-rule>

For more information about creating navigation cases in JDeveloper, see
Section 2.3, "Defining Page Flows".

2. If you want the menu tabs to be styled, create a decorativeBox component by
dragging and dropping a Decorative Box from the Layout section of the
Component Palette to the JSF page. Set the theme to determine how you want the
tabs to appear. Valid values are:

■ default: Body is white with a blue border. Top-left corner is rounded.

■ light: Body is light blue. Top-left corner is rounded.

■ medium: Body is medium blue. Top-left corner is rounded.

■ dark: Body is dark blue. Top-left corner is rounded.

You can change how the themes are displayed. For more information, see
Chapter 20, "Customizing the Appearance Using Styles and Skins".

3. Create a navigationPane component by dragging and dropping a Navigation
Pane from the Layout section of the Component Palette as a child to the
decorativeBox component. Add a navigationPane component for each level of
the hierarchy.

For example, to create the Health page as shown in Figure 18–11, drag and drop
four navigationPane components. In the Health page, the components are
dropped into specific areas of a template that already contains layout components
to create the look and feel of the page.

4. For each navigationPane component, in the Property Inspector, expand the
Common section and set the Hint attribute to one of the following types of
navigation items to determine how the navigationPane component will be
displayed:

■ bar: Displays the navigation items separated by a bar, for example the
Insurance and Paid Time Off links in Figure 18–11.

■ buttons: Displays the navigation items separated by a bar in a global area, for
example the Home and Help links in Figure 18–11.

■ choice: Displays the navigation items in a popup list when the associated
dropdown icon is clicked. You must include a value for the navigationPane
component’s icon attribute and you can associate a label to the dropdown list
using title attribute.

■ list: Displays the navigation items in a bulleted list, for example the Health
and Dental links in Figure 18–11.

■ tabs: Displays the navigation items as tabs, for example the Benefits and
Employee Data tabs in Figure 18–11.

5. For each navigationPane component, add the needed commandNavigationItem
components to represent the different links by dragging and dropping a
Navigation Item from the Common Components section of the Component

Creating a Simple Navigational Hierarchy

18-36 Web User Interface Developer's Guide for Oracle Application Development Framework

Palette. Drop a Navigation Item as a child to the navigationPane component for
each link needed.

For example, to create the Health page as shown in Figure 18–11, you would use a
total of six commandNavigationItem components, two for each navigationPane
component.

6. For each commandNavigationItem component, set the navigation to the desired
page. In the Property Inspector, expand the Common section and provide a static
string outcome of an action or use an EL expression to reference an action method
through the action property. If you use a string, it must match the navigation
metadata set up in the navigation rules for the page created in Step 1. If
referencing a method, that method must return the required string.

7. In the Property Inspector, expand the Behavior section and set the selected
attribute. This attribute should be true if the commandNavigationItem component
should be displayed as selected when the page is first rendered, and false if it
should not.

At runtime, when a navigation item is selected by the user, that component’s
selected attribute changes to selected and the appearance changes to indicate to
the user that the item has been selected. For example, in Figure 18–11 the Benefits
tab, Insurance bar, and Health list item are shown as selected by a change in either
background color or font style. You do not have to write any code to show the
selected status; the selected attribute on the commandNavigationItem component
for that item takes care of turning on the selected status when the attribute value is
true.

Example 18–17 shows code used to generate the navigation items that are available
when the current page is Health. Because the Health page is accessed from the
Insurance page from the Benefits page, the commandNavigationItem components for
those three links have selected="true".

Example 18–17 Sample Code Using Individual Navigation Items on One Page

<af:navigationPane hint="buttons">
 <af:commandNavigationItem text="Home" action="goHome"/>
 <af:commandNavigationItem text="Help" action="goHelp"/>
</af:navigationPane>
.
.
.
<af:navigationPane hint="tabs">
 <af:commandNavigationItem text="Benefits" action="goBene"
 selected="true"/>
 <af:commandNavigationItem text="Employee Data" action="goEmp"/>
</af:navigationPane>
.

Performance Tip: At runtime, when available browser space is less
than the space needed to display the contents in a tab or bar of a
navigation pane, or the contents of the breadcrumb, ADF Faces
automatically displays overflow icons that enable users to select and
navigate to those items that are out of view. The number of child
components within a navigationPane or breadCrumbs component,
and the complexity of the children, will affect the performance of the
items within the overflow. You should set the size of the
navigationPane or breadCrumbs component to avoid overflow when
possible.

Creating a Simple Navigational Hierarchy

Working with Navigation Components 18-37

.

.
<af:navigationPane hint="bar">
 <af:commandNavigationItem text="Insurance" action="goIns"
 selected="true"/>
 <af:commandNavigationItem text="Paid Time Off" action="goPto"/>
</af:navigationPane>
.
.
.
<af:navigationPane hint="list">
 <af:commandNavigationItem text="Health" action="goHealth"
 selected="true"/>
 <af:commandNavigationItem text="Dental" action="goDental"/>
</af:navigationPane>

18.7.2 How to Use the breadCrumbs Component
In both Figure 18–10 and Figure 18–11, the user’s current position in the page
hierarchy is indicated by a path of links from the current page back to the root page.
The path of links, also known as breadcrumbs, is displayed beneath the secondary bars,
above the vertical lists (if any). To create such a path of links, you use the breadCrumbs
component with a series of commandNavigationItem components as children.

To create a breadcrumb:
1. Create a breadCrumbs component by dragging and dropping a Bread Crumbs

component from the Component Palette to the JSF page.

2. By default, breadcrumb links are displayed in a horizontal line. To change the
layout to be vertical, in the Property Inspector, expand the Common section and
set the orientation attribute to vertical.

3. For each link in the breadcrumb, create a commandNavigationItem component by
dragging and dropping a Navigation Item from the Component Palette as a child
to the breadCrumbs component. The last item should represent the current page.

4. For each commandNavigationItem component (except the last), set the navigation
to the desired page. In the Property Inspector, expand the Common section and
provide a static string outcome of an action or use an EL expression to reference an
action method through the action property. If you use a string, it must match the
navigation metadata set up in the navigation rule for the page created in Step 1. If
referencing a method, that method must return the required string.

For example, to create the breadcrumb as shown on the Health page in Figure 18–11,
drag and drop four navigationPane components, as shown in Example 18–18.

Example 18–18 BreadCrumbs Component With Individual CommandNavigationItem
Children

<af:breadCrumbs>
 <af:commandNavigationItem text="Home" action="goHome"/>

Tip: Depending on the renderer or client device type, the last link in
the breadcrumb may not be displayed, but you still must add the
commandNavigationItem component for it. On clients that do display
the last breadcrumb link, the link is always disabled automatically
because it corresponds to the current page.

Creating a Simple Navigational Hierarchy

18-38 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:commandNavigationItem text="Benefits" action="goBene"/>
 <af:commandNavigationItem text="Insurance" action="goIns"/>
 <af:commandNavigationItem text="Health"/>
</af:breadCrumbs>

18.7.3 What You May Need to Know About Removing Navigation Tabs
You can configure a navigationPane component whose hint attribute value is tabs so
that the individual tabs can be closed. You can set it such that all tabs can be closed, all
but the last tab can be closed, or no tabs can be closed. When navigation tabs are
configured to be removed, a close icon (for example, an X) is displayed at the end of
each tab as the mouse cursor hovers over the tab.

To enable tabs removal in a navigationPane component when hint="tabs", you need
to do the following:

■ Set the itemRemoval attribute on navigationPane hint="tabs" to all or
allExceptLast. When set to allExceptLast, all but one tab can be closed. This
means as a user closes tabs, when there is only one tab left, that single last tab
cannot be closed.

■ Implement a handler to do the tab removal. When a user closes a tab, an
ItemEvent of type remove is launched. Your code must handle this event and the
actual removal of the tab, and any other desired functionality (for example, show a
warning dialog or how to handle child components). For more information about
events, see Chapter 5, "Handling Events." For information about using popup
dialogs and windows, see Chapter 13, "Using Popup Dialogs, Menus, and
Windows."

■ Set the itemListener attribute on the commandNavigationItem component to an
EL expression that resolves to the handler method that will handle the actual tab
removal, as shown in Example 18–19.

Example 18–19 Using itemListener to Remove a Tab Item

JSF Page Code ----->
<af:navigationPane hint="tabs" itemRemoval="all">
 <af:commandNavigationItem text="Benefits" partialSubmit="true"
 itemListener="#{closebean.handleCloseTabItem}"/>
 .
 .
 .
</af:navigationPane>

Managed Bean Code ----->
import oracle.adf.view.rich.event.ItemEvent;
...
public void handleCloseTabItem(ItemEvent itemEvent)
{

Note: Similarly, instead of using individual commandNavigationItem
components, you can bind the value attribute of the breadCrumbs
component to an XMLMenuModel implementation, and use one
commandNavigationItem component in the nodeStamp facet of the
breadCrumbs component to stamp out the items for a page. For
information about the XMLMenuModel class, see Section 18.6, "Using a
Menu Model to Create a Page Hierarchy".

Creating a Simple Navigational Hierarchy

Working with Navigation Components 18-39

 if (itemEvent.getType().equals(ItemEvent.Type.remove))
 {
 Object item = itemEvent.getSource();
 if (item instanceof RichCommandNavigationItem)
 {
 RichCommandNavigationItem tabItem = (RichCommandNavigationItem) item;
 tabItem.setVisible(false);
 // do other desired functionality here ...
 }
 }
}

18.7.4 What You May Need to Know About Navigation Tabs in a Compressed Layout
Built-in overflow indicators appear if navigation tabs rendered by navigationPane
components display in an application window that is in a compressed layout. That is,
the application window is not wide enough to display all the navigation tabs. These
overflow indicators render dropdown lists where the user can choose the navigation
item to navigate to, as shown in Figure 18–12.

Figure 18–12 Overflow Indicator for a navigationPane Component in Compressed
Layout

Rather than display overflow indicators (the default behavior), as shown in
Figure 18–12, you can configure the -tr-layout-type skinning key for the
navigationPane component so that the component renders a conveyor belt where
users can scroll left or right to tabs that are not currently visible. Configuring the
-tr-layout-type skinning key also renders all navigation tabs in one dropdown list,
as shown in Figure 18–13. This configuration only takes effect if the navigationPane
component’s hint attribute is set to tabs. If the navigationPane component’s hint
attribute is set to another value, set the -tr-layout-type skinning key to its default
value (overflow).

Example 18–20 shows how you configure the -tr-layout-type skinning key in your
application’s ADF skin file to render a conveyor belt for the navigationPane and
panelTabbed components. For more information about skinning, see Chapter 20,
"Customizing the Appearance Using Styles and Skins."

Example 18–20 Configuring the -tr-layout-type Skinning Key to Render a Conveyor Belt

af|panelTabbed,
af|navigationPane {
 -tr-layout-type: conveyor;
}

Figure 18–13 shows the navigationPane component rendering a conveyor belt in a
compressed layout.

Using Train Components to Create Navigation Items for a Multi-Step Process

18-40 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 18–13 Conveyor Belt for a navigationPane Component in Compressed Layout

18.8 Using Train Components to Create Navigation Items for a Multi-Step
Process

If you have a set of pages that users should visit in a particular order, consider using
the train component on each page to display a series of navigation items that guide
users through the multistep process. Figure 18–14 shows an example of what a
rendered train component might look like on a page. Not only does a train display
the number of steps in a multistep process, it also indicates the location of the current
step in relation to the entire process.

Figure 18–14 Navigation Items Rendered by a train Component

The train component renders each configured step represented as a train stop, and
with all the stops connected by lines. Each train stop has an image (for example, a
square block) with a label underneath the image.

Each train stop corresponds to one step or one page in your multistep process. Users
navigate the train stops by clicking an image or label, which causes a new page to be
displayed. Typically, train stops must be visited in sequence, that is, a user must start
at step 1, move to step 2, then step 3, and so on; a user cannot jump to step 3 if the user
has not visited step 2.

As shown in Figure 18–14, the train component provides at least four styles for train
stops. The current stop where the user is visiting is indicated by a bold font style in the
train stop’s label, and a different image for the stop; visited stops before the current
stop are indicated by a different label font color and image color; the next stop
immediately after the current stop appears enabled; any other stops that have not been
visited are grayed-out.

A train stop can include a subtrain, that is, you configure a command component (for
example, a commandButton component) to start a child multistep process from a parent
stop, and then return to the correct parent stop after completing the subprocess.
Suppose stop number 4 has a subprocess train containing three stops, when the user
navigates into the first stop in the subprocess train, ADF Faces displays an icon

Note: If your application uses the Fusion technology stack or the
ADF Controller, then you should use ADF task flows to create the
navigation system for your application page hierarchy. For details, see
the "Creating a Train" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Using Train Components to Create Navigation Items for a Multi-Step Process

Working with Navigation Components 18-41

representation of the parent train before and after the subprocess train, as shown in
Figure 18–15.

Figure 18–15 Parent Train Icons At Start and End of a Subtrain

You can use the trainButtonBar component in conjunction with the train component
to provide additional navigation items for the train, in the form of Back and Next
buttons, as shown in Figure 18–16. These Back and Next buttons allow users to
navigate only to the next or previous train stop from the current stop. You can also use
the trainButtonBar component without a train component. For example, you may
want to display just the Back and Next buttons without displaying the stops when not
all of the stops will be visited based on some conditional logic.

Figure 18–16 Navigation Buttons Rendered by a trainButtonBar Component

Both train components work by having the value attribute bound to a train model of
type org.apache.myfaces.trinidad.model.MenuModel. The train menu model
contains the information needed to:

■ Control a specific train behavior (that is, how the train advances users through the
train stops to complete the multistep process).

■ Dynamically generate the train stops, including the train stop labels, and the status
of each stop (that is, whether a stop is currently selected, visited, unvisited, or
disabled).

Briefly, a menu model for the train is implemented by extending the MenuModel
abstract class, which in turn extends the TreeModel class (for more information, see
Chapter 10, "Using Tables, Trees, and Other Collection-Based Components"). A
MenuModel object represents the menu structure of a page or application or could
represent the hierarchy of pages and stops involved in a flow.

Because an instance of a MenuModel class is a special kind of a TreeModel object, the
nodes in the TreeModel object can represent the stops of a train. The node instance that
represents a train stop within the train component can be of type TrainStopModel, or it
can be any object as long as it provides the same EL structure as a TrainStopModel
object. However, the TrainStopModel class exposes methods to retrieve the outcome,
as well as the label of a stop and its immediate, disabled, and visited attribute states.

Note: In an application that uses the ADF Model layer and ADF
Controller, this navigation and display is set up and handled in a
different manner. For more information, see the "Creating a Train"
section of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Using Train Components to Create Navigation Items for a Multi-Step Process

18-42 Web User Interface Developer's Guide for Oracle Application Development Framework

The MenuModel class can also indicate where in the tree the current train stop (page) is
focused. The getFocusRowKey() method in the MenuModel class returns the rowKey
object of the focus page for the current viewId. The menu model implementation for
the train must also have a specific train behavior, which you can create by extending
the org.apache.myfaces.trinidad.model.ProcessMenuModel class. The train
behavior controls what stops along the train users can visit while visiting at a current
train stop.

To create a train stop model, you can either extend the TrainStopModel abstract class
and implement the abstract methods, or you can create your own class with the same
method signatures. Your class must return a rowData object.

Binding a train component to a train menu model is similar to binding a
navigationPane component to an XMLMenuModel class (described in Section 18.6.3,
"How to Bind to the XMLMenuModel in the JSF Page"). However, as long as your
TrainStopModel implementation returns a rowData object, you do not need to provide
the commandNavigationItem components for each stop. At runtime ADF Faces
dynamically creates the nodeStamp facet and commandNavigationItem component, and
automatically binds the methods in the train stop model to the appropriate properties
on the commandNavigationItem component. Example 18–21 shows the simplified
binding for a train.

Example 18–21 Simplified Train Model Binding

<af:train value="#{simpleTrainModel}"/>

The MenuModel implementation of your train model must provide specific train
behavior. Train behavior defines how you want to control the pages users can access
based on the page they are currently visiting. ADF Faces supports two train behaviors:
Plus One and Max Visited.

Suppose there are 5 pages or stops in a train, and the user has navigated from page 1
to page 4 sequentially. At page 4 the user jumps back to page 2. Where the user can go
next depends on which train behavior is used in the train model.

In Max Visited, from the current page 2 the user can go back to page 1, go ahead to
page 3, or jump ahead to page 4. That is, Max Visited allows the user to return to a
previous page or advance to any page up to the farthest page already visited. The user
cannot jump ahead to page 5 from page 2 because page 5 has not yet been visited.

Given the same situation, in the Plus One behavior the user can only go ahead to page
3 or go back to page 1. That is, Plus One allows the user to return to a previous page or
advance one more stop further than the current stop. The user cannot jump ahead to
page 4 even though page 4 has already been visited.

To define and use a train for all pages in a multistep process:

■ Create a JSF navigation rule and the navigation cases for the train. Creating a
navigation rule and its navigation cases for a train is similar to Section 18.7.1,
"How to Create a Simple Page Hierarchy", where you create one global navigation
rule that has the navigation cases for all the train stops in the train.

Tip: If you need to collate information for the train stops from
various places, then you will need to manually create the nodeStamp
facet and the individual commandNavigationItem components that
represent the train stops. For more information, see Section 18.8.3,
"How to Bind to the Train Model in JSF Pages".

Using Train Components to Create Navigation Items for a Multi-Step Process

Working with Navigation Components 18-43

■ Create a train model that implements a specific train behavior and provides the
train stop items for stamping. This includes creating a train stop model class and a
menu model class. See Section 18.8.1, "How to Create the Train Model".

■ Configure managed beans for the train model. See Section 18.8.2, "How to
Configure Managed Beans for the Train Model".

■ Create a JSF page for each train stop.

■ On each page, bind the train component to the train model. See Section 18.8.3,
"How to Bind to the Train Model in JSF Pages". Optionally, bind the
trainButtonBar component to the same train model, if you want to provide
additional navigation buttons for the train.

18.8.1 How to Create the Train Model
To define a train menu model, you create:

■ A train stop model that provides data for rendering a train stop.

■ A MenuModel implementation with a specific train behavior (either Max Visited or
Plus One) that controls what stops along the train users can visit while visiting at a
current train stop, which stops should be disabled or whether the train needs to be
navigated sequentially or not, among other things.

ADF Faces makes it easier for you to define a train menu model by providing
additional public classes, such as:

■ The abstract class TrainStopModel for implementing a train stop model

■ The classes ProcessMenuModel and ProcessUtils for implementing a train
behavior for the train model

For examples of train model classes, see the oracle.adfdemo.view.nav.rich package
of the ADF Faces Demonstration application.

To create the train model:
1. Create a train stop model class. A train stop model object holds the row data for

stamping each train stop. The train stop model implementation you create should
set and get the properties for each stop in the train, and define the methods
required to render a train stop. The properties of a train stop correspond to the
properties of the commandNavigationItem component. This will allow you to use
the simplified binding, as shown in Example 18–21.

Alternatively, you can extend the abstract class TrainStopModel, and implement
the abstract methods in the subclass.

The properties on the commandNavigationItem component that will be
automatically EL bound are:

Note: You may want to set the value of the redirect element to true
for each navigation case that you define within the JSF navigation rule
if each train stop is an individual page and you want the client
browser’s URL to reference each new page. If you enable partial page
rendering, the displayed URL may be different. For more information
about the redirect element, see the JavaServer Faces specification.
For more information about partial page rendering, see Chapter 7,
"Rerendering Partial Page Content".

Using Train Components to Create Navigation Items for a Multi-Step Process

18-44 Web User Interface Developer's Guide for Oracle Application Development Framework

■ action: A static action outcome or a reference to an action method that returns
an action outcome. The outcome is used for page navigation through the
default ActionListener mechanism in JSF.

■ disabled: A boolean value that indicates whether or not the train stop should
be non-interactive. Note that the train behavior you elect to use affects the
value of this property. For more information, see Step 2.

■ immediate: A boolean value that determines whether or not data validations
should be performed. Note that the train behavior you elect to use affects the
value of this property. For more information, see Step 2.

■ messageType: A value that specifies a message alert icon over the train stop
image. Possible values are none, error, warning, and info, and complete. For
more information about messages, see Chapter 17, "Displaying Tips,
Messages, and Help".

■ shortDesc: A value that is commonly used by client user agents to display as
tooltip help text for the train stop.

■ showRequired: A boolean value that determines whether or not to display an
asterisk next to the train stop to indicate that required values are contained in
that train stop page.

■ textAndAccessKey: A single value that sets both the label text to display for
the train stop, as well as the access key to use.

■ visited: A boolean value that indicates whether or not the train stop has
already been visited. Note that the train behavior you elect to use affects the
value of this property. For more information, see Step 2.

2. Create a class based on the MenuModel class to facilitate the construction of a train
model.

The MenuModel implementation of your train model must have a specific train
behavior. The ProcessMenuModel class in the
org.apache.myfaces.trinidad.model package is a reference implementation of
the MenuModel class that supports the two train behaviors: Plus One and Max
Visited. To implement a train behavior for a train model, you can either extend the
ProcessMenuModel class, or create your own.

In your train model class, you override the getFocusRowKey() method (see the
MenuModel class) and implement a train behavior (see the ProcessMenuModel and
ProcessUtils classes).

The train behaviors provided in the ProcessMenuModel class have an effect on the
visited, immediate, and disabled properties of the commandNavigationItem
component.

The visited attribute is set to true only if that page in the train has been visited.
The ProcessMenuModel class uses the following logic to determine the value of the
visited attribute:

■ Max Visited: A max visited stop is the farthest stop the user has visited in the
current session. visited is set to true for any stop if it is before a max visited
stop, or if it is the max visited stop itself.

■ Plus One: A plus one stop does not keep track of the farthest stop that was
visited. The visited attribute is set to true for the current stop, or a stop that
is before the current stop.

When the data on the current page does not have to be validated, the immediate
attribute should be set to true. Suppose page 4 in the Plus One behavior described

Using Train Components to Create Navigation Items for a Multi-Step Process

Working with Navigation Components 18-45

earlier has data that must be validated. If the user has advanced to page 4 and
then goes back to page 2, the user has to come back to page 4 again later to
proceed on to page 5. This means the data on page 4 does not have to be validated
when going back to page 1, 2, or 3 from page 4, but the data should be validated
when going ahead to page 5. For more information about how the immediate
attribute works, see Section 4.2, "Using the Immediate Attribute".

The ProcessMenuModel class uses the following logic to determine the value of the
immediate attribute:

■ Plus One: The immediate attribute is set to true for any previous step, and
false otherwise.

■ Max Visited: When the current page and the maximum page visited are the
same, the behavior is the same as the Plus One scenario. If the current page is
before the maximum page visited, then the immediate attribute is set to false.

The disabled attribute is set to true only if that page in the train cannot be
reached from the current page. The ProcessMenuModel class uses the following
logic to determine the value of the disabled attribute:

■ Plus One: The disabled attribute will be true for any page beyond the next
available page.

■ Max Visited: When the current stop and the maximum page visited are the
same, the behavior is the same as the Plus One behavior. If the current page is
before the maximum page visited, then disabled is set to true for any page
beyond the maximum page visited.

By default, ADF Faces uses the Max Visited behavior when a non-null maxPathKey
value is passed into the train model, as determined by the managed bean you will
create to support the behavior (for more information, see Section 18.8.2, "How to
Configure Managed Beans for the Train Model"). If the maxPathKey value is null, then
ADF Faces uses the Plus One behavior.

18.8.2 How to Configure Managed Beans for the Train Model
You use managed beans in a train model to gather the individual train stops into an
Arraylist object, which is turned into the tree model that is then injected into a menu
model to create the train model. You must instantiate the beans with the proper values
for injection into the models, and you also have to configure a managed bean for each
train stop or page in the train.

To configure managed beans for the train model:
1. Configure a managed bean for each stop in the train, with values for the properties

that require setting at instantiation, to create the train stops to pass into an
ArrayList.

Note: In an application that uses the ADF Model layer, the
pageDefinition element in a page definition file supports an attribute
(SkipValidation) that, when set to true, skips data validation for the
page. Set SkipValidation to true if you want users to navigate from
the page without invoking data validation. For more information, see
the "pageNamePageDef.xml" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Using Train Components to Create Navigation Items for a Multi-Step Process

18-46 Web User Interface Developer's Guide for Oracle Application Development Framework

If a train stop has subprocess train children, there should be a managed bean for
each subprocess train stop as well.

Each bean should be an instance of the train stop model class created in
Section 18.8.1, "How to Create the Train Model". Example 18–22 shows sample
managed bean code for train stops in the faces-config.xml file.

Example 18–22 Managed Beans for All Train Stops

<!-- First train stop -->
<managed-bean>
 <managed-bean-name>train1</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>First Step</value>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

<!-- Second train stop -->
<managed-bean>
 <managed-bean-name>train2</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train2.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train2</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>Second Step</value>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

<!-- And so on -->
.
.
.

Using Train Components to Create Navigation Items for a Multi-Step Process

Working with Navigation Components 18-47

The managed properties set the values to the train stop model object (the class
created in Step 1 in Section 18.8.1, "How to Create the Train Model").

The viewId value is the path and file name to the page that is navigated to when
the user clicks a train stop.

The outcome property value is the action outcome string that matches a JSF
navigation case. The default JSF ActionListener mechanism is used to choose the
page associated with the train stop as the view to navigate to when the train stop
is selected.

The label property value is the train stop label text that displays beneath the train
stop image. The value can be static or an EL expression that evaluates to a string in
a resource bundle.

The model property value is the managed bean name of the train model (see
Example 18–26).

If a train stop has subprocess train children, the managed bean configuration
should also include the property (for example, children) that lists the managed
bean names of the subprocess train stops in value expressions (for example,
#{train4a}), as shown in Example 18–23.

Example 18–23 Managed Bean for a Train Stop with Subprocess train Children

<managed-bean>
 <managed-bean-name>train4</managed-bean-name>
 <managed-bean-class>project1.DemoTrainStopModel</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>viewId</property-name>
 <value>/train4.jspx</value>
 </managed-property>
 <managed-property>
 <property-name>outcome</property-name>
 <value>guide.train4</value>
 </managed-property>
 <managed-property>
 <property-name>label</property-name>
 <value>Fourth Step</value>
 </managed-property>
 <managed-property>
 <property-name>children</property-name>
 <list-entries>
 <value-class>project1.DemoTrainStopModel</value-class>
 <value>#{train4a}</value>
 <value>#{train4b}</value>
 <value>#{train4c}</value>
 </list-entries>
 </managed-property>
 <managed-property>
 <property-name>model</property-name>
 <value>trainMenuModel</value>
 </managed-property>
</managed-bean>

2. Configure a managed bean that is an instance of an ArrayList object to create the
list of train stops to pass into the train tree model.

Example 18–24 shows sample managed bean code for creating the train stop list.

Using Train Components to Create Navigation Items for a Multi-Step Process

18-48 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 18–24 Managed Bean for Train List

<managed-bean>
 <managed-bean-name>trainList</managed-bean-name>
 <managed-bean-class>
 java.util.ArrayList
 </managed-bean-class>
 <managed-bean-scope>
 none
 </managed-bean-scope>
 <list-entries>
 <value-class>project1.DemoTrainStopModel</value-class>
 <value>#{train1}</value>
 <value>#{train2}</value>
 <value>#{train3}</value>
 <value>#{train4}</value>
 <value>#{train5}</value>
 </list-entries>
</managed-bean>

The list-entries element contains the managed bean names for the train stops
(excluding subprocess train stops) in value expressions (for example, #{train1}),
listed in the order that the stops should appear on the train.

3. Configure a managed bean to create the train tree model from the train list.

The train tree model wraps the entire train list, including any subprocess train
lists. The train model managed bean should be instantiated with a childProperty
value that is the same as the property name that represents the list of subprocess
train children (see Example 18–23).

Example 18–25 Managed Bean for Train Tree Model

<managed-bean>
 <managed-bean-name>trainTree</managed-bean-name>
 <managed-bean-class>
 org.apache.myfaces.trinidad.model.ChildPropertyTreeModel
 </managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>childProperty</property-name>
 <value>children</value>
 </managed-property>
 <managed-property>
 <property-name>wrappedData</property-name>
 <value>#{trainList}</value>
 </managed-property>
</managed-bean>

The childProperty property defines the property name to use to get the child list
entries of each train stop that has a subprocess train.

The wrappedData property value is the train list instance to wrap, created by the
managed bean in Step 2.

4. Configure a managed bean to create the train model from the train tree model.

This is the bean to which the train component on each page is bound. The train
model wraps the train tree model. The train model managed bean should be
instantiated with a viewIdProperty value that is the same as the property name
that represents the pages associated with the train stops.

Using Train Components to Create Navigation Items for a Multi-Step Process

Working with Navigation Components 18-49

Example 18–26 shows sample managed bean code for a train model.

Example 18–26 Managed Bean for Train Model

<managed-bean>
 <managed-bean-name>trainMenuModel</managed-bean-name>
 <managed-bean-class>
 org.apache.myfaces.trinidad.model.ProcessMenuModel
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>viewIdProperty</property-name>
 <value>viewId</value>
 </managed-property>
 <managed-property>
 <property-name>wrappedData</property-name>
 <value>#{trainTree}</value>
 </managed-property>
 <!-- to enable plusOne behavior instead, comment out the maxPathKey property -->
 <managed-property>
 <property-name>maxPathKey</property-name>
 <value>TRAIN_DEMO_MAX_PATH_KEY</value>
 </managed-property>
</managed-bean>

The viewIdProperty property value is set to the property that is used to specify
the page to navigate to when the user clicks the train stop.

The wrappedData property value is the train tree instance to wrap, created by the
managed bean in Step 3.

The maxPathKey property value is the value to pass into the train model for using
the Max Visited train behavior. ADF Faces uses the Max Visited behavior when a
non-null maxPathKey value is passed into the train model. If the maxPathKey value
is null, then ADF Faces uses the Plus One behavior.

18.8.3 How to Bind to the Train Model in JSF Pages
Each stop in the train corresponds to one JSF page. On each page, you use one train
component and optionally a trainButtonBar component to provide buttons that allow
the user to navigate through the train.

To bind the train component to the train model:
1. Create a train component by dragging and dropping a Train from the

Component Palette to the JSF page. Optionally drag and drop a Train Button Bar.

2. Bind the component. If your MenuModel implementation for a train model returns a
rowData object similar to the public abstract class
oracle.adf.view.rich.model.TrainStopModel, you can use the simplified form
of train binding in the train components, as shown in the following code:

<af:train value="#{trainMenuModel}"/>
 <af:trainButtonBar value="#{trainMenuModel}"/>

The trainMenuModel in the EL expression is the managed bean name for the train
model (see Example 18–26).

If you cannot use the simplified binding, you must bind the train value to the train
model bean, manually add the nodeStamp facet to the train, and to that, add a
commandNavigationItem component, as shown in Example 18–27.

Using Train Components to Create Navigation Items for a Multi-Step Process

18-50 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 18–27 Metadata to Bind a Train Component to the Train Model Bean

<af:train value="#{aTrainMenuModel}" var="stop">
 <f:facet name="nodeStamp">
 <af:commandNavigationItem
 text="#{stop.label}"
 action="#{stop.outcome}"
 ...
 </af:commandNavigationItem>
 </f:facet>
</af:train>

19

Creating and Reusing Fragments, Page Templates, and Components 19-1

19Creating and Reusing Fragments, Page
Templates, and Components

This chapter describes how you can create reusable content and then use that content
to build portions of your JSF pages or entire pages.

This chapter includes the following sections:

■ Section 19.1, "Introduction to Reusable Content"

■ Section 19.2, "Using Page Fragments"

■ Section 19.3, "Using Page Templates"

■ Section 19.4, "Using Declarative Components"

■ Section 19.5, "Adding Resources to Pages"

19.1 Introduction to Reusable Content
As you build JSF pages for your application, some pages may become complex and
long, making editing complicated and tedious. Some pages may always contain a
group of components arranged in a very specific layout, while other pages may always
use a specific group of components in multiple parts of the page. And at times, you
may want to share some parts of a page or entire pages with other developers.
Whatever the case is, when something changes in the UI, you have to replicate your
changes in many places and pages. Building and maintaining all those pages, and
making sure that some sets or all are consistent in structure and layout can become
increasingly inefficient.

Instead of using individual UI components to build pages, you can use page building
blocks to build parts of a page or entire pages. The building blocks contain the
frequently or commonly used UI components that create the reusable content for use
in one or more pages of an application. Depending on your application, you can use
just one type of building block, or all types in one or more pages. And you can share
some building blocks across applications. When you modify the building blocks, the
JSF pages that use the reusable content are automatically updated as well. Thus, by
creating and using reusable content in your application, you can build web user
interfaces that are always consistent in structure and layout, and an application that is
scalable and extensible.

ADF Faces provides the following types of reusable building blocks:

■ Page fragments: Page fragments allow you to create parts of a page. A JSF page
can be made up of one or more page fragments. For example, a large JSF page can
be broken up into several smaller page fragments for easier maintenance. For
details about creating and using page fragments, see Section 19.2, "Using Page

Using Page Fragments

19-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Fragments."

■ Page templates: By creating page templates, you can create entire page layouts
using individual components and page fragments. For example, if you are
repeatedly laying out some components in a specific way in multiple JSF pages,
consider creating a page template for those pages. When you use the page
template to build your pages, you can be sure that the pages are always consistent
in structure and layout across the application. For details about creating and using
page templates, see Section 19.3, "Using Page Templates," and Section 19.3.3, "How
to Create JSF Pages Based on Page Templates."

■ Declarative components: The declarative components feature allows you to
assemble existing, individual UI components into one composite, reusable
component, which you then declaratively use in one or more pages. For example,
if you are always inserting a group of components in multiple places, consider
creating a composite declarative component that comprises the individual
components, and then reusing that declarative component in multiple places
throughout the application. Declarative components can also be used in page
templates. For details about creating and using declarative components, see
Section 19.4, "Using Declarative Components."

Page templates, declarative components, and regions implement the
javax.faces.component.NamingContainer interface. At runtime, in the pages that
consume reusable content, the page templates, declarative components, or regions
create component subtrees, which are then inserted into the consuming page’s single,
JSF component tree. Because the consuming page has its own naming container, when
you add reusable content to a page, take extra care when using mechanisms such as
partialTargets and findComponent(), as you will need to take into account the
different naming containers for the different components that appear on the page. For
more information about naming containers, see Section 3.5, "Locating a Client
Component on a Page."

If you plan to include resources such as CSS or JavaScript, you can use the
af:resource tag to add the resources to the page. If this tag is used in page templates
and declarative components, the specified resources will be added to the consuming
page during JSP execution. For more information, see Section 19.5, "Adding Resources
to Pages."

19.2 Using Page Fragments
As you build web pages for an application, some pages may quickly become large and
unmanageable. One possible way to simplify the process of building and maintaining
complex pages is to use page fragments.

Large, complex pages broken down into several smaller page fragments are easier to
maintain. Depending on how you design a page, the page fragments created for one
page may be reused in other pages. For example, suppose different parts of several
pages use the same form, then you might find it beneficial to create page fragments

Tip: If your application uses the ADF Controller and the ADF Model
layer, then you can also use ADF regions. Regions used in conjunction
with ADF bounded task flows, encapsulate business logic, process
flow, and UI components all in one package, which can then be reused
throughout the application. For complete information about creating
and using ADF bounded task flows as regions, see the "Using Task
Flows as Regions" chapter of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Using Page Fragments

Creating and Reusing Fragments, Page Templates, and Components 19-3

containing those components in the form, and reuse those page fragments in several
pages. Deciding on how many page fragments to create for one or more complex
pages depends on your application, the degree to which you wish to reuse portions of
a page between multiple pages, and the desire to simplify complex pages.

Page fragments are incomplete JSF pages. A complete JSF page that uses ADF Faces
must have the document tag enclosed within an f:view tag. The contents for the entire
page are enclosed within the document tag. A page fragment, on the other hand,
represents a portion of a complete page, and does not contain the f:view or document
tags. The contents for the page fragment are simply enclosed within a jsp:root tag.

When you build a JSF page using page fragments, the page can use one or more page
fragments that define different portions of the page. The same page fragment can be
used more than once in a page, and in multiple pages.

For example, the File Explorer application uses one main page (index.jspx) that
includes the following page fragments:

■ popups.jspx: Contains all the popup code used in the application.

■ help.jspx: Contains the help content.

■ header.jspx: Contains the toolbars and menus for the application.

■ navigators.jspx: Contains the tree that displays the folder hierarchy of the
application.

■ contentViews.jspx: Contains the content for the folder selected in the navigator
pane.

Example 19–1 shows the abbreviated code for the included header.jspx page
fragment. Note that it does not contain an f:view or document tag.

Example 19–1 header.jspx Page Fragment

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://java.sun.com/jsf/core">
 <af:panelStretchLayout id="headerStretch">
 <f:facet name="center">
 <!-- By default, every toolbar is placed on a new row -->
 <af:toolbox id="headerToolbox"
 binding="#{explorer.headerManager.headerToolbox}">
.
.
.
 </af:toolbox>
 </f:facet>
 </af:panelStretchLayout>
</jsp:root>

Note: The view parts of a page (fragments, declarative components,
and the main page) all share the same request scope. This may result
in a collision when you use the same fragment or declarative
component multiple times on a page and the fragments or
components share a backing bean. For more information about scopes,
see Section 4.6, "Object Scope Lifecycles."

Using Page Fragments

19-4 Web User Interface Developer's Guide for Oracle Application Development Framework

When you consume a page fragment in a JSF page, at the part of the page that will use
the page fragment contents, you insert the jsp:include tag to include the desired page
fragment file, as shown in Example 19–2, which is abbreviated code from the
index.jspx page.

Example 19–2 File Explorer Index JSF Page Includes Fragments

<?xml version='1.0' encoding='utf-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:trh="http://myfaces.apache.org/trinidad/html">
 <jsp:directive.page contentType="text/html;charset=utf-8"/>
 <f:view>
.
.
.
 <af:document id="fileExplorerDocument"
 title="#{explorerBundle['global.branding_name']}">
 <af:form id="mainForm">
 <!-- Popup menu definition -->
 <jsp:include page="/fileExplorer/popups.jspx"/>
 <jsp:include page="/fileExplorer/help.jspx"/>
.
.
.
 <f:facet name="header">
 <af:group>
 <!-- The file explorer header with all the menus and toolbar buttons -->
 <jsp:include page="/fileExplorer/header.jspx"/>
 </af:group>
 </f:facet>
 <f:facet name="navigators">
 <af:group>
 <!-- The auxiliary area for navigating the file explorer -->
 <jsp:include page="/fileExplorer/navigators.jspx"/>
 </af:group>
 </f:facet>
 <f:facet name="contentViews">
 <af:group>
 <!-- Show the contents of the selected folder in the folders navigator -->
 <jsp:include page="/fileExplorer/contentViews.jspx"/>
 </af:group>
 </f:facet>
.
.
.
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

When you modify a page fragment, the pages that consume the page fragment are
automatically updated with the modifications. With pages built from page fragments,
when you make layout changes, it is highly probable that modifying the page
fragments alone is not sufficient; you may also have to modify every page that
consumes the page fragments.

Using Page Fragments

Creating and Reusing Fragments, Page Templates, and Components 19-5

Like complete JSF pages, page fragments can also be based on a page template, as
shown in Example 19–3. For information about creating and applying page templates,
see Section 19.3, "Using Page Templates," and Section 19.3.3, "How to Create JSF Pages
Based on Page Templates."

Example 19–3 Page Fragment Based on a Template

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:f="http://java.sun.com/jsf/core">
 <af:pageTemplate viewId="/someTemplateDefinition.jspx">
 .
 .
 .
 </af:pageTemplate>
</jsp:root>

19.2.1 How to Create a Page Fragment
Page fragments are just like any JSF page, except you do not use the f:view or
document tags in page fragments. You can use the Create JSF Page Fragment wizard to
create page fragments. When you create page fragments using the wizard, JDeveloper
uses the extension .jsff for the page fragment files. If you do not use the wizard, you
can use .jspx as the file extension (as the File Explorer application does); there is no
special reason to use .jsff other than quick differentiation between complete JSF
pages and page fragments when you are working in the Application Navigator in
JDeveloper.

To create a page fragment:
1. In the Application Navigator, right-click the folder where you wish to create and

store page fragments and choose New.

2. In the Categories tree, select the JSF node, in the Items pane select JSF Page
Fragment, and click OK.

3. Enter a name for the page fragment file.

4. Accept the default directory for the page fragment, or choose a new location.

By default, JDeveloper saves page fragments in the project’s /public_html
directory in the file system. For example, you could change the default directory to
/public_html/fragments.

5. You can have your fragment pre-designed for you by using either a template or a
Quick Start Layout.

■ If you want to create a page fragment based on a page template, select the
Page Template radio button and then select a template name from the
dropdown list. For more information about using page templates, see

Note: If the consuming page uses ADF Model data binding, the
included page fragment will use the binding container of the
consuming page. Only page fragments created as part of
ADF bounded task flows can have their own binding container. For
information about ADF bounded task flows, see the "Getting Started
With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Using Page Fragments

19-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Section 19.3.3, "How to Create JSF Pages Based on Page Templates."

■ If you want to use a Quick Start Layout, select the Quick Start Layout radio
button and then click Browse to select the layout you want your fragment to
use. Quick Start Layouts provide the correctly configured layout components
need to achieve specific behavior and look. For more information, see
Section 8.2.3, "Using Quick Start Layouts."

When the page fragment creation is complete, JDeveloper displays the page
fragment file in the visual editor.

6. To define the page fragment contents, drag and drop the desired components from
the Component Palette onto the page.

You can use any ADF Faces or standard JSF component, for example table,
panelHeader, or f:facet.

Example 19–4 shows an example of a page fragment that contains a menu component.

Example 19–4 Page Fragment Sample

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <!-- page fragment contents start here -->
 <af:menu id="viewMenu"
 <af:group>
 <af:commandMenuItem type="check" text="Folders"/>
 <af:commandMenuItem type="check" text="Search"/>
 </af:group>
 <af:group>
 <af:commandMenuItem type="radio" text="Table"/>
 <af:commandMenuItem type="radio" text="Tree Table"/>
 <af:commandMenuItem type="radio" text="List"/>
 </af:group>
 <af:commandMenuItem text="Refresh"/>
 </menu>
</jsp:root>

19.2.2 What Happens When You Create a Page Fragment
In JDeveloper, because page fragment files use a different file extension from regular
JSF pages, configuration entries are added to the web.xml file for recognizing and
interpreting .jsff files in the application. Example 19–5 shows the web.xml
configuration entries needed for .jsff files, which JDeveloper adds for you when you
first create a page fragment using the wizard.

Example 19–5 Entries in web.xml for Recognizing and Interpreting .jsff Files

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsff</url-pattern>
 <is-xml>true</is-xml>
 </jsp-property-group>
</jsp-config>

By specifying the url-pattern subelement to *.jsff and setting the is-xml
subelement to true in a jsp-property-group element, the application will recognize
that files with extension .jsff are actually JSP documents, and thus must be
interpreted as XML documents.

Using Page Templates

Creating and Reusing Fragments, Page Templates, and Components 19-7

19.2.3 How to Use a Page Fragment in a JSF Page
To consume a page fragment in a JSF page, add the page using either the Component
Palette or the Application Navigator.

19.2.3.1 Adding a Page Fragment Using the Component Palette
You can use the jsp:include tag to include the desired page fragment file

To add a page fragment using the Component Palette:
1. In the Component Palette, use the dropdown menu to choose JSP.

2. Add a jsp:include tag by dragging and dropping Include from the Component
Palette.

3. In the Insert Include dialog, use the dropdown list to select the JSF page to include.
Optionally, select whether or not to flush the buffer before the page is included.
For more information, click Help in the dialog.

19.2.3.2 Adding a Page Fragment Using the Application Navigator
You can drag and drop the page fragment directly onto the page.

To add a page fragment using the Application Navigator:
1. In the Application Navigator, drag and drop the page fragment onto the page.

2. In the Confirm Add Subview Element dialog, click Yes.

19.2.4 What Happens at Runtime: Resolving Page Fragments
When the page that contains the included page(s) is executed, the jsp:include tag
evaluates the view ID during JSF tree component build time and dynamically adds the
content to the parent page at the location of the jsp:include tag. The fragment
becomes part of the parent page after the component tree is built.

19.3 Using Page Templates
Page templates let you define entire page layouts, including values for certain
attributes of the page. When pages are created using a template, they all inherit the
defined layout. When you make layout modifications to the template, all pages that
consume the template will automatically reflect the layout changes. You can either
create the layout of your template yourself, or you can use one of the many quick
layout designs. These predefined layouts automatically insert and configure the
correct components required to implement the layout look and behavior you want. For
example, you may want one column’s width to be locked, while another column
stretches to fill available browser space. Figure 19–1 shows the quick layouts available
for a two-column layout with the second column split between two panes. For more
information about the layout components, see Chapter 8, "Organizing Content on Web
Pages."

Using Page Templates

19-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 19–1 Quick Layouts

To use page templates in an application, you first create a page template definition.
Page template definitions must be JSF documents written in XML syntax (with the file
extension of .jspx) because page templates embed XML content. In contrast to regular
JSF pages where all components on the page must be enclosed within the f:view tag,
page template definitions cannot contain an f:view tag and must have
pageTemplateDef as the root tag. Either the template or the page that uses the template
must contain the document tag, but they cannot both contain the tag (by default,
JDeveloper adds the document tag to the consuming page).

A page template can have fixed content areas and dynamic content areas. For example,
if a Help button should always be located at the top right-hand corner of pages, you
could define such a button in the template layout, and when page authors use the
template to build their pages, they do not have to add and configure a Help button.
Dynamic content areas, on the other hand, are areas of the template where page
authors can add contents within defined facets of the template or set property values
that are specific to the type of pages they are building.

The entire description of a page template is defined within the pageTemplateDef tag,
which has two sections. One section is within the xmlContent tag, which contains all
the page template component metadata that describes the template’s supported
content areas (defined by facets), and available properties (defined as attributes). The
second section (anything outside of the xmlContent tag) is where all the components
that make up the actual page layout of the template are defined. The components in
the layout section provide a JSF component subtree that is used to render the contents
of the page template.

Facets act as placeholders for content on a page. In a page that consumes a template,
page authors can insert content for the template only in named facets that have
already been defined. This means that when you design a page template, you must
define all possible facets within the xmlContent tag, using a facet element for each
named facet. In the layout section of a page template definition, as you build the

Using Page Templates

Creating and Reusing Fragments, Page Templates, and Components 19-9

template layout using various components, you use the facetRef tag to reference the
named facets within those components where content can eventually be inserted into
the template by page authors.

For example, the fileExplorerTemplate template contains a facet for copyright
information and another facet for application information, as shown in Example 19–6.

Example 19–6 Facet Definition in a Template

<facet>
 <description>
 <![CDATA[Area to put a commandLink to more information
 about the application.]]>
 </description>
 <facet-name>appAbout</facet-name>
</facet>
<facet>
 <description>
 <![CDATA[The copyright region of the page. If present, this area
 typically contains an outputText component with the copyright
 information.]]>
 </description>
 <facet-name>appCopyright</facet-name>
</facet>

In the layout section of the template as shown in Example 19–7, a panelGroupLayout
component contains a table whose cell contains a reference to the appCopyright facet
and another facet contains a reference to the appAbout facet. This is where a page
developer will be allowed to place that content.

Example 19–7 Facet References in a Page Template

<af:panelGroupLayout layout="vertical">
 <afh:tableLayout width="100%">
 <afh:rowLayout>
 <afh:cellFormat>
 <af:facetRef facetName="appCopyright"/>
 </afh:cellFormat>
 </afh:rowLayout>
 </afh:tableLayout>
 <af:facetRef facetName="appAbout"/>
</af:panelGroupLayout>

While the pageTemplateDef tag describes all the information and components needed
in a page template definition, the JSF pages that consume a page template use the
pageTemplate tag to reference the page template definition. Example 19–7 shows how
the index.jspx page references the fileExplorerTemplate template, provides values
for the template’s attributes, and places content within the template’s facet definitions.

At design time, page developers using the template can insert content into the
appCopyright facet, using the f:facet tag, as shown in Example 19–8

Note: To avoid component ID collisions at runtime, each named facet
can be referenced only once in the layout section of the page template
definition. That is, you cannot use multiple facetRef tags referencing
the same facetName value in the same template definition.

Using Page Templates

19-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 19–8 Using Page Templates Facets in a JSF Page

<af:pageTemplate id="fe"
 viewId="/fileExplorer/templates/fileExplorerTemplate.jspx">
 <f:attribute name="documentTitle"
 value="#{explorerBundle['global.branding_name']}"/>
 <f:attribute name="headerSize" value="70"/>
 <f:attribute name="navigatorsSize" value="370"/>
.
.
.
 <f:facet name="appCopyright">
 <!-- Copyright info about File Explorer demo -->
 <af:outputFormatted value="#{explorerBundle['about.copyright']}"/>
 </f:facet>
 .
 .
 .
</af:pageTemplate>

At runtime, the inserted content is displayed in the right location on the page, as
indicated by af:facetRef facetName="appCopyright" in the template definition.

Page template attributes specify the component properties (for example,
headerGlobalSize) that can be set or modified in the template. While facet element
information is used to specify where in a template content can be inserted, attribute
element information is used to specify what page attributes are available for passing
into a template, and where in the template those attributes can be used to set or
modify template properties.

For the page template to reference its own attributes, the pageTemplateDef tag must
have a var attribute, which contains an EL variable name for referencing each attribute
defined in the template. For example, in the fileExplorerTemplate template, the
value of var on the pageTemplateDef tag is set to attrs. Then in the layout section of
the template, an EL expression such as #{attrs.someAttributeName} is used in those
component attributes where page authors are allowed to specify their own values or
modify default values.

For example, the fileExplorerTemplate template definition defines an attribute for
the header size, which has a default int value of 100 pixels as shown in Example 19–9.

Example 19–9 Page Template AttributeDefinition

<attribute>
 <description>
 Specifies the number of pixels tall that the global header content should
 consume.
 </description>
 <attribute-name>headerGlobalSize</attribute-name>
 <attribute-class>int</attribute-class>
 <default-value>100</default-value>
</attribute>

Note: You cannot run a page template as a run target in JDeveloper.
You can run the page that uses the page template.

Using Page Templates

Creating and Reusing Fragments, Page Templates, and Components 19-11

In the layout section of the template, the splitterPosition attribute of the
panelSplitter component references the headerGlobalSize attribute in the EL
expression #{attrs.headerGlobalSize}, as shown in the following code:

<af:panelSplitter splitterPosition="#{attrs.headerGlobalSize}" ../>

When page authors use the template, they can modify the headerGlobalSize value
using f:attribute, as shown in the following code:

<af:pageTemplate ..>
 <f:attribute name="headerGlobalSize" value="50"/>
 .
 .
 .
</af:pageTemplate>

At runtime, the specified attribute value is substituted into the appropriate part of the
template, as indicated by the EL expression that bears the attribute name.

For a simple page template, it is probably sufficient to place all the components for the
entire layout section into the page template definition file. For a more complex page
template, you can certainly break the layout section into several smaller fragment files
for easier maintenance, and use jsp:include tags to include and connect the various
fragment files.

When you break the layout section of a page template into several smaller fragment
files, all the page template component metadata must be contained within the
xmlContent tag in the main page template definition file. There can be only one
xmlContent tag within a pageTemplateDef tag. You cannot have page template
component metadata in the fragment files; fragment files can contain portions of the
page template layout components only.

If your template requires resources such as custom styles defined in CSS or JavaScript,
then you need to include these on the consuming page, using the af:resource tag. For
more information, see Section 19.5, "Adding Resources to Pages."

19.3.1 How to Create a Page Template
JDeveloper simplifies creating page template definitions by providing the Create JSF
Page Template wizard, which lets you add named facets and attributes declaratively to
create the template component metadata section of a template. In addition to
generating the metadata code for you, JDeveloper also creates and modifies a
pagetemplate-metadata.xml file that keeps track of all the page templates you create
in a project.

Tip: If you define a resource bundle in a page template, the pages
that consume the template will also be able to use the resource bundle.
For information about using resource bundles, see Section 21.3,
"Manually Defining Resource Bundles and Locales."

Note: You cannot nest page templates inside other page templates.

Using Page Templates

19-12 Web User Interface Developer's Guide for Oracle Application Development Framework

To create a page template definition:
1. In the Application Navigator, right-click the folder where you wish to create and

store page templates and choose New.

2. In the Categories tree, select the JSF node, in the Items pane select JSF Page
Template, and click OK.

3. Enter a file name for the page template definition. Page template definitions must
be XML documents (with file extension .jspx) because they embed XML content.

4. Accept the directory name for the template definition, or choose a new location.

5. Enter a Page Template name for the page template definition.

6. If you want to use one of the predefined quick layouts, select Use a Quick Start
Layout and click Browse to select the one you want to use.

7. To add named facets, click the Facet Definitions tab and click the Add icon.

Facets are predefined areas on a page template where content can eventually be
inserted when building pages using the template. Each facet must have a unique
name. For example, you could define a facet called main for the main content area
of the page, and a facet called branding for the branding area of the page.

8. To add attributes, click the Attributes tab and click the Add icon.

Attributes are UI component attributes that can be passed into a page when
building pages using the template. Each attribute must have a name and class
type. Note that whatever consumes the attribute (for example an attribute on a
component that you configure in Step 12) must be able to accept that type. You can
assign default values, and you can specify that the values are mandatory by
selecting the Required checkbox.

9. If the page template contents use ADF Model data bindings, select the Create
Associated ADFm Page Definition checkbox, and click Model Parameters to add
one or more model parameters. For information about using model parameters
and ADF Model data bindings, see the "Using Page Templates" section of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Once you complete the wizard, JDeveloper displays the page template definition
file in the visual editor. Example 19–10 shows the code JDeveloper adds for you
when you use the wizard to define the metadata for a page template definition.
You can view this code in the source editor.

Performance Tip: Because page templates may be present in every
application page, templates should be optimized so that common
overhead is avoided. One example of overhead is round corners, for
example on boxes, which are quite expensive. Adding them to the
template will add overhead to every page.

Performance Tip: Avoid long names because they can have an
impact on server-side, network traffic, and client processing.

Tip: Once a template is created, you can add facets and attributes by
selecting the pageTemplateDef tag in the Structure window and using
the Property Inspector.

Using Page Templates

Creating and Reusing Fragments, Page Templates, and Components 19-13

Example 19–10 Component Metadata in Page Template Definition

<af:pageTemplateDef var="attrs">
 <af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <display-name>sampleTemplateDef1</display-name>
 <facet>
 <facet-name>main</facet-name>
 </facet>
 .
 .
 .
 <attribute>
 <attribute-name>Title</attribute-name>
 <attribute-class>java.lang.String</attribute-class>
 <default-value>Replace title here</default-value>
 <required>true</required>
 </attribute>
 .
 .
 .
 </component>
 </af:xmlContent>
 .
 .
 .
</af:pageTemplateDef>

10. Drag a component from the Component Palette and drop it onto the page in the
visual editor.

In the layout section of a page template definition (or in fragment files that contain
a portion of the layout section), you cannot use the f:view tag, because it is
already used in the JSF pages that consume page templates.

You can add any number of components to the layout section. If you did not
choose to use one of the quick start layouts, then typically, you would add a panel
component such as panelStretchLayout or panelGroupLayout, and then add the
components that define the layout into the panel component. For more
information, see Chapter 8, "Organizing Content on Web Pages."

Declarative components and databound components may be used in the layout
section. For information about using declarative components, see Section 19.4,
"Using Declarative Components." For information about using databound
components in page templates, see the "Using Page Templates" section of the

Note: When you change or delete any facet name or attribute name
in the template component metadata, you have to manually change or
delete the facet or attribute name referenced in the layout section of
the template definition, as well as the JSF pages that consume the
template.

Best Practice Tip: You should not use the document or form tags in
the template. While theoretically, template definitions can use the
document and form tags, doing so means the consuming page cannot.
Because page templates can be used for page fragments, which in turn
will be used by another page, it is likely that the consuming page will
contain these tags.

Using Page Templates

19-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

11. Within those components (in the layout section) where content can eventually be
inserted by page authors using the template, drag FacetRef from the Component
Palette and drop it in the desired location on the page.

For example, if you have defined a main facet for the main content area on a page
template, you might add the facetRef tag as a child in the center facet of
panelStretchLayout component to reference the main facet. At design time, when
the page author drops content into the main facet, the content is placed in the
correct location on the page as defined in the template.

When you use the facetRef tag to reference the appropriate named facet,
JDeveloper displays the Insert FacetRef dialog. In that dialog, select a facet name
from the dropdown list, or enter a facet name. If you enter a facet name that is not
already defined in the component metadata of the page template definition file,
JDeveloper automatically adds an entry for the new facet definition in the
component metadata within the xmlContent tag.

12. To specify where attributes should be used in the page template, use the page
template’s var attribute value to reference the relevant attributes on the
appropriate components in the layout section.

The var attribute of the pageTemplateDef tag specifies the EL variable name that is
used to access the page template’s own attributes. As shown in Example 19–10, the
default value of var used by JDeveloper is attrs.

For example, if you have defined a title attribute and added the panelHeader
component, you might use the EL expression #{attrs.title} in the text value of
the panelHeader component, as shown in the following code, to reference the
value of title:

<af:panelHeader text="#{attrs.title}">

13. To include another file in the template layout, use the jsp:include tag wrapped
inside the subview tag to reference a fragment file, as shown in the following code:

<f:subview id="secondaryDecoration">
 <jsp:include page="fileExplorerSecondaryDecoration.jspx"/>
</f:subview>

The included fragment file must also be an XML document, containing only
jsp:root at the top of the hierarchy. For more information about using fragments,
see Section 19.2.3, "How to Use a Page Fragment in a JSF Page."

By creating a few fragment files for the components that define the template
layout, and then including the fragment files in the page template definition, you
can split up an otherwise large template file into smaller files for easier
maintenance.

Note: Each facet can be referenced only once in the layout section of
the page template definition. That is, you cannot use multiple
facetRef tags referencing the same facetName value in the same
template definition.

Using Page Templates

Creating and Reusing Fragments, Page Templates, and Components 19-15

19.3.2 What Happens When You Create a Page Template

The first time you use the wizard to create a JSF page template in a project, JDeveloper
automatically creates the pagetemplate-metadata.xml file, which is placed in the
/ViewController/src/META-INF directory in the file system.

For each page template that you define using the wizard, JDeveloper creates a page
template definition file (for example, sampleTemplateDef1.jspx), and adds an entry to
the pagetemplate-metadata.xml file. Example 19–11 shows an example of the
pagetemplate-metadata.xml file.

Example 19–11 Sample pagetemplate-metadata.xml File

<pageTemplateDefs xmlns="http://xmlns.oracle.com/adf/faces/rich/pagetemplate">
 <pagetemplate-jsp-ui-def>/sampleTemplateDef1.jspx</pagetemplate-jsp-ui-def>
 <pagetemplate-jsp-ui-def>/sampleTemplateDef2.jspx</pagetemplate-jsp-ui-def>
</pageTemplateDefs>

The pagetemplate-metadata.xml file contains the names and paths of all the page
templates that you create in a project. This file is used to determine which page
templates are available when you use a wizard to create template-based JSF pages, and
when you deploy a project containing page template definitions.

19.3.3 How to Create JSF Pages Based on Page Templates
Typically, you create JSF pages in the same project where page template definitions are
created and stored. If the page templates are not in the same project as where you are
going to create template-based pages, first deploy the page templates project to an
ADF Library JAR. For information about deploying a project, see the "Reusing
Application Components" chapter of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework. Deploying a page template project
also allows you to share page templates with other developers working on the
application.

Note: If components in your page template use ADF Model data
binding, or if you chose to associate an ADF page definition when you
created the template, JDeveloper automatically creates files and
folders related to ADF Model. For information about the files used
with page templates and ADF Model data binding, the "Using Page
Templates" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Note: When you rename or delete a page template in the
Application Navigator, JDeveloper renames or deletes the page
template definition file in the file system, but you must manually
change or delete the page template entry in the
pagetemplate-metadata.xml file, and update or remove any
JSF pages that use the template.

Note: If the template uses jsp:include tags, then it cannot be
deployed to an ADF Library to be reused in other applications.

Using Page Templates

19-16 Web User Interface Developer's Guide for Oracle Application Development Framework

You can use page templates to build JSF pages or page fragments. If you modify the
layout section of a page template later, all pages or page fragments that use the
template are automatically updated with the layout changes.

In the page that consumes a template, you can add content before and after the
pageTemplate tag. In general, you would use only one pageTemplate tag in a page, but
there are no restrictions for using more than one.

JDeveloper simplifies the creation of JSF pages based on page templates by providing
a template selection option in the Create JSF Page or Create JSF Page Fragment wizard.

To create a JSF page or page fragment based on a page template:
1. Follow the instructions in Section 2.4.1, "How to Create JSF JSP Pages" to open the

Create JSF Page dialog. In the dialog, select a page template to use from the Use
Page Template dropdown list.

By default, JDeveloper displays the new page or page fragment in the visual
editor. The facets defined in the page template appear as named boxes in the
visual editor. If the page template contains any default values, you should see the
values in the Property Inspector, and if the default values have some visual
representation (for example, size), that will be reflected in the visual editor, along
with any content that is rendered by components defined in the layout section of
the page template definition.

2. In the Structure window, expand jsp:root until you see af:pageTemplate (which
should be under af:form).

Within the form tag, you can drop content before and after the pageTemplate tag.

3. Add components by dragging and dropping components from the Component
Palette in the facets of the template. In the Structure window, within
af:pageTemplate, the facets (for example, f:facet - main) that have been
predefined in the component metadata section of the page template definition are
shown.

The type of components you can drop into a facet may be dependent on the
location of the facetRef tag in the page template definition. For example, if you’ve
defined a facetRef tag to be inside a table component in the page template
definition, then only column components can be dropped into the facet because the
table component accepts only column components as children.

4. In the Structure window, select af:pageTemplate. Then, in the Property Inspector,
you can see all the attributes that are predefined in the page template definition.
Predefined attributes might have default values.

You can assign static values to the predefined attributes, or you can use EL
expressions (for example, #{myBean.somevalue}). When you enter a value for an

Tip: Only page templates that have been created using the template
wizard in JDeveloper are available for selection. If the Use Page
Template dropdown list is disabled, this means no page templates are
available in the project where you are creating new pages.

Tip: The content you drop into the template facets may contain
ADF Model data binding. In other words, you can drag and drop
items from the Data Controls panel. For more information about using
ADF Model data binding, see Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Using Page Templates

Creating and Reusing Fragments, Page Templates, and Components 19-17

attribute, JDeveloper adds the f:attribute tag to the code, and replaces the
attribute’s default value (if any) with the value you assign (see Example 19–12).

At runtime, the default or assigned attribute value is used or displayed in the
appropriate part of the template, as specified in the page template definition by
the EL expression that bears the name of the attribute (such as
#{attrs.someAttributeName}).

5. To include resources, such as CSS or JavaScript, you need to use the af:resource
tag. For more information, see Section 19.5, "Adding Resources to Pages."

19.3.4 What Happens When You Use a Template to Create a Page
When you create a page using a template, JDeveloper inserts the pageTemplate tag,
which references the page template definition, as shown in Example 19–12. Any
components added inside the template’s facets use the f:facet tag to reference the
facet. Any attribute values you specified are shown in the f:attribute tag.

Example 19–12 JSF Page that References a Page Template

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=windows-1252"/>
 <f:view>
 <af:document>
 <af:form>
 .
 .
 .
 <af:pageTemplate viewId="/sampleTemplateDef1.jspx" id="template1">
 <f:attribute name="title" value="Some Value"/>
 <f:facet name="main">
 <!-- add contents here -->
 </f:facet>
 </af:pageTemplate>
 .
 .
 .
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

Note: In addition to predefined template definition attributes, the
Property Inspector also shows other attributes of the pageTemplate
tag such as Id, Value, and ViewId.

The ViewId attribute of the pageTemplate tag specifies the page
template definition file to use in the consuming page at runtime.
JDeveloper automatically assigns the ViewId attribute with the
appropriate value when you use the wizard to create a template-based
JSF page. The ViewId attribute value cannot be removed, otherwise a
runtime error will occur, and the parts of the page that are based on
the template will not render.

Using Declarative Components

19-18 Web User Interface Developer's Guide for Oracle Application Development Framework

19.3.5 What Happens at Runtime: How Page Templates Are Resolved
When a JSF page that consumes a page template is executed:

■ The pageTemplate component in the consuming page, using the viewId attribute
(for example, <af:pageTemplate viewId="/sampleTemplateDef1.jspx"/>),
locates the page template definition file that contains the template component
metadata and layout.

■ The component subtree defined in the layout section of the pageTemplateDef tag is
instantiated and inserted into the consuming page’s component tree at the location
identified by the pageTemplate tag in the page.

■ The consuming page passes facet contents into the template using the facet tag.
The facet contents of each facet tag are inserted into the appropriate location on
the template as specified by the corresponding facetRef tag in the layout section
of the pageTemplateDef tag.

■ The consuming page passes values into the template by using the attribute tag.
The pageTemplateDef tag sets the value of the var attribute so that the
pageTemplate tag can internally reference its own parameters. The pageTemplate
tag just sets the parameters; the runtime maps those parameters into the attributes
defined in the pageTemplateDef tag.

■ Using template component metadata, the pageTemplate tag applies any default
values to its attributes and checks for required values.

For information about what happens when the page template uses ADF Model data
binding, see the "Using Page Templates" section of the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

19.3.6 What You May Need to Know About Page Templates and Naming Containers
The pageTemplate component acts as a naming container for all content in the
template (whether it is direct content in the template definition, or fragment content
included using the jsp:include action). When working with client-side events in
template-based pages, you must include the template’s ID when using code to locate a
component. For more details, see Section 5.3.7, "What You May Need to Know About
Using Naming Containers."

19.4 Using Declarative Components
Declarative components are reusable, composite UI components that are made up of
other existing ADF Faces components. Suppose you are reusing the same components
consistently in multiple circumstances. Instead of copying and pasting the commonly
used UI elements repeatedly, you can define a declarative component that comprises
those components, and then reuse that composite declarative component in multiple
places or pages.

Note: Page templates are processed during JSP execution, not during
JSF processing (that is, component tree creation). This means that
fragments built from page templates cannot be used within tags that
require the component tree creation. For example, you could not
include a fragment based on a template within an iterator tag and
expect it to be included in a loop.

Using Declarative Components

Creating and Reusing Fragments, Page Templates, and Components 19-19

To use declarative components in an application, you first create an XML-based
declarative component definition, which is a JSF document written in XML syntax
(with a file extension of .jspx). Declarative component JSF files do not contain the
f:view and document tags, and they must have componentDef as the root tag.

The entire description of a declarative component is defined within two sections. One
section is xmlContent, which contains all the page template component metadata that
describes the declarative component’s supported content areas. A declarative
component’s metadata includes the following:

■ Facets: Facets act as placeholders for the content that will eventually be placed in
the individual components that make up the declarative component. Each
component references one facet. When page designers use a declarative
component, they insert content into the facet, which in turn, allows the content to
be inserted into the component.

■ Attributes: You define attributes whose values can be used to populate attributes
on the individual components. For example, if your declarative component uses a
panelHeader component, you may decide to create an attribute named Title. You
may then design the declarative component so that the value of the Title attribute
is used as the value for the text attribute of the panelHeader component. You can
provide default values for attributes that the user can then override.

■ Methods: You can define a method to which you can bind a property on one of the
included components. For example, if your declarative component contains a
button, you can declare a method name and signature and then bind the
actionListener attribute to the declared method. When page developers use the
declarative component, they rebind to a method on a managed bean that contains
the logic required by the component.

For example, say your declarative component contains a button that you knew
always had to invoke an actionEvent method. You might create a declarative

Note: The view parts of a page (fragments, declarative components,
and the main page) all share the same request scope. This may result
in a collision when you use the same fragment or declarative
component multiple times on a page, and when they share a backing
bean. For more information about scopes, see Section 4.6, "Object
Scope Lifecycles."

Tip: Facets are the only area within a declarative component that can
contain content. That is, when used on a JSF page, a declarative
component may not have any children. Create facets for all areas
where content may be needed.

Tip: Because users of a declarative component will not be able to
directly set attributes on the individual components, you must be sure
to create attributes for all attributes that you want users to be able to
set or override the default value.

Additionally, if you want the declarative component to be able to use
client-side attributes (for example, attributeDragSource), you must
create that attribute and be sure to include it as a child to the
appropriate component used in the declarative component. For more
information, see Section 19.4.1, "How to Create a Declarative
Component."

Using Declarative Components

19-20 Web User Interface Developer's Guide for Oracle Application Development Framework

method named method1 that used the signature void
method(javax.faces.event.ActionEvent). You might then bind the
actionListener attribute on the button to the declared method. When page
developers use the declarative component, JDeveloper will ask them to provide a
method on a backing bean that uses the same signature.

■ Tag library: All declarative components must be contained within a tag library that
you import into the applications that will use them.

The second section (anything outside of the xmlContent tag) is where all the
components that make up the declarative component are defined. Each component
contains a reference back to the facet that will be used to add content to the
component.

To use declarative components in a project, you first must deploy the library that
contains the declarative component as an ADF Library. You can then add the deployed
ADF Library JAR to the project’s properties, which automatically inserts the JSP tag
library or libraries into the project’s properties. Doing so allows the component(s) to be
displayed in the Component Palette so that you can drag and drop them onto a JSF
page.

For example, say you want to create a declarative component that uses a panelBox
component. In the panelBox component’s toolbar, you want to include three buttons
that can be used to invoke actionEvent methods on a backing bean. To do this, create
the following:

■ One facet named Content to hold the content of the panelBox component.

■ One attribute named Title to determine the text to display as the panelBox
component’s title.

■ Three attributes (one for each button, named buttonText1, buttonText2, and
buttonText3) to determine the text to display on each button.

■ Three attributes (one for each button, named display1, display2, display3) to
determine whether or not the button will render, because you do not expect all
three buttons will be needed every time the component is used.

■ Three declarative methods (one for each button, named method1, method2, and
method3) that each use the actionEvent method signature.

■ One panelBox component whose text attribute is bound to the created Title
attribute, and references the Content facet.

■ Three toolbarButton components. The text attribute for each would be bound to
the corresponding buttonText attribute, the render attribute would be bound to
the corresponding display attribute, and the actionListener attribute would be
bound to the corresponding method name.

Figure 19–2 shows how such a declarative component would look in the visual editor.

Figure 19–2 Declarative Component in the Visual Editor

When a page developer drops a declarative component that contains required
attributes or methods onto the page, a dialog opens asking for values.

Using Declarative Components

Creating and Reusing Fragments, Page Templates, and Components 19-21

If the developer set values where only the first two buttons would render, and then
added a panelGroupLayout component with output text, the page would render as
shown in Figure 19–3.

Figure 19–3 Displayed Declarative Component

If your declarative component requires resources such as custom styles defined in CSS
or JavaScript, then you need to include these using the af:resource tag on the
consuming page. For more information, see Section 19.5, "Adding Resources to Pages."

19.4.1 How to Create a Declarative Component
JDeveloper simplifies creating declarative component definitions by providing the
Create JSF Declarative Component wizard, which lets you create facets, and define
attributes and methods for the declarative component. The wizard also creates
metadata in the component-extension tile that describes tag library information for
the declarative component. The tag library metadata is used to create the JSP tag
library for the declarative component.

First you add the template component metadata for facets and attributes inside the
xmlContent section of the componentDef tag. After you have added all the necessary
component metadata for facets and attributes, then you add the components that
define the actual layout of the declarative component in the section outside of the
xmlContent section.

To create a declarative component definition:
1. In the Application Navigator, right-click the folder where you wish to create and

store declarative components and choose New.

2. In the Categories tree, select the JSF node, in the Items pane select JSF Declarative
Component, and click OK.

Note: You cannot use fragments or ADF databound components in
the component layout of a declarative component. If you think some
of the components will need to be bound to the ADF Model layer, then
create attributes for those component attributes that need to be bound.
The user of the declarative component can then manually bind those
attributes to the ADF Model layer.

Additionally, because declarative components are delivered in
external JAR files, the components cannot use the jsp:include tag
because it will not be able to find the referenced files.

Best Practice Tip: Because the tag library definition (TLD) for the
declarative component must be generated before the component can
be used, the component must be deployed to a JAR file before it can be
consumed. It is best to create an application that contains only your
declarative components. You can then deploy all the declarative
components in a single library for use in multiple applications.

Using Declarative Components

19-22 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Enter a name and file name for the declarative component.

The name you specify will be used as the display name of the declarative
component in the Component Palette, as well as the name of the Java class
generated for the component tag. Only alphanumeric characters are allowed in the
name for the declarative component, for example, SampleName or SampleName1.

The file name is the name of the declarative component definition file (for
example, componentDef1.jspx). By default, JDeveloper uses .jspx as the file
extension because declarative component definition files must be XML documents.

4. Accept the default directory name for the declarative component, or choose a new
location.

By default, JDeveloper saves declarative component definitions in the
/ViewController/public_html directory in the file system. For example, you
could save all declarative component definitions in the /View
Controller/public_html/declcomps directory.

5. Enter a package name (for example, dcomponent1). JDeveloper uses the package
name when creating the Java class for the declarative component.

6. Select a tag library to contain the new declarative component. If no tag library
exists, or if you wish to create a new one, click Add Tag Library, and do the
following to create metadata for the tag library:

a. Enter a name for the JSP tag library to contain the declarative component (for
example, dcompLib1).

b. Enter the URI for the tag library (for example, /dcomponentLib1).

c. Enter a prefix to use for the tag library (for example, dc).

7. If you want to be able to add custom logic to your declarative component, select
the Use Custom Component Class checkbox and enter a class name.

8. To add named facets, click the Facet Definitions tab and click the Add icon.

Facets in a declarative component are predefined areas where content can
eventually be inserted. The components you use to create the declarative
component will reference the facets. When page developers use the declarative
components, they will place content into the facets, which in turn will allow the
content to be placed into the individual components. Each facet must have a
unique name. For example, your declarative component has a panelBox
component, you could define a facet named box-main for the content area of the
panelBox component.

9. To add attributes, click Attributes and click Add.

Attributes are UI component attributes that can be passed into a declarative
component. Each attribute must have a name and class type. Possible class types
to use are: java.lang.String, int, boolean, and float. You can assign default
values, and you can specify that the values are mandatory by selecting the
Required checkbox.

Tip: You must create attributes for any attributes on the included
components for which you want users to be able to set or change
values.

Remember to also add attributes for any tags you may need to add to
support functionality of the component, for example values required
by the attributeDragSource tag used for drag and drop functionality.

Using Declarative Components

Creating and Reusing Fragments, Page Templates, and Components 19-23

10. To add declarative methods, click the Methods tab and click the Add icon.

Declarative methods allow you to bind command component actions or action
listeners to method signatures, which will later resolve to actual methods of the
same signature on backing beans for the page on which the components are used.
You can click the ellipses button to open the Method Signature dialog, which
allows you to search for and build your signature.

When you complete the dialog, JDeveloper displays the declarative component
definition file in the visual editor.

11. Drag a component from the Component Palette and drop it as a child to the
componentDef tag in the Structure window.

Suppose you dropped a panelBox component. In the Structure window,
JDeveloper adds the component after the xmlContent tag. It does not matter where
you place the components for layout, before or after the xmlContent tag, but it is
good practice to be consistent.

You can use any number of components in the component layout of a declarative
component. Typically, you would add a component such as panelFormLayout or
panelGroupLayout, and then add the components that define the layout into the
panel component.

12. Within those components (in the layout section) where content can eventually be
inserted by page authors using the component, use the facetRef tag to reference
the appropriate named facet.

For example, if you have defined a content facet for the main content area, you
might add the facetRef tag as a child in the panelBox component to reference the
content facet. At design time, when the page developer drops components into
the content facet, the components are placed in the panelBox component.

When you drag FacetRef from the Component Palette and drop it in the desired
location on the page, JDeveloper displays the Insert FacetRef dialog. In that dialog,
select a facet name from the dropdown list, or enter a facet name. If you enter a
facet name that is not already defined in the component metadata of the definition
file, JDeveloper automatically adds an entry for the new facet definition in the
component metadata within the xmlContent tag.

Tip: Once a declarative component is created, you can add facets and
attributes by selecting the componentDef tag in the Structure window,
and using the Property Inspector.

Note: You cannot use fragments or ADF databound components in
the component layout of a declarative component. If you think some
of the components will need to be bound to the ADF Model layer, then
create attributes for those component attributes. The user of the
declarative component can then manually bind those attributes to the
ADF Model layer. For more information about using the ADF Model
layer, see the "Using ADF Model in a Fusion Web Application" chapter
in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Additionally, because declarative components are delivered in
external JAR files, the components cannot use the jsp:include tag
because it will not be able to find the referenced files.

Using Declarative Components

19-24 Web User Interface Developer's Guide for Oracle Application Development Framework

13. To specify where attributes should be used in the declarative component, use the
Property Inspector and the Expression Builder to bind component attribute values
to the created attributes.

For example, if you have defined a title attribute and added a panelBox as a
component, you might use the dropdown menu next to the text attribute in the
Property Inspector to open the Expression Builder, as shown in Figure 19–4.

Figure 19–4 Opening the Expression Builder for an Attribute in the Property Inspector

In the Expression Builder, you can expand the JSP Objects > attrs node to select
the created attribute that should be used for the value of the attribute in the
Property Inspector. For example, Figure 19–5 shows the title attribute selected in
the Expression Builder. Click the Insert Into Expression button and then click OK
to add the expression as the value for the attribute.

Note: Each facet can be referenced only once. That is, you cannot use
multiple facetRef tags referencing the same facetName value in the
same declarative component definition.

Using Declarative Components

Creating and Reusing Fragments, Page Templates, and Components 19-25

Figure 19–5 Expression Builder Displays Created Attributes

14. To specify the methods that command buttons in the declarative component
should invoke, use the dropdown menu next to that component’s actionListener
attribute and choose Edit to open the Edit Property dialog. This dialog allows you
to choose one of the declarative methods you created for the declarative
component.

In the dialog, select Declarative Component Methods, select the declarative
method from the dropdown list, and click OK.

19.4.2 What Happens When You Create a Declarative Component
When you first use the Create JSF Declarative Component wizard, JDeveloper creates
the metadata file using the name you entered in the wizard. The entire definition for
the component is contained in the componentDef tag. This tag uses two attributes. The
first is var, which is a variable used by the individual components to access the
attribute values. By default, the value of var is attrs. The second attribute is
componentVar, which is a variable used by the individual components to access the
methods. By default the value of componentVar is component.

The metadata describing the facets, attributes, and methods is contained in the
xmlContent tag. Facet information is contained within the facet tag, attribute
information is contained within the attribute tag, and method information is
contained within the component-extension tag, as is library information.
Example 19–13 shows abbreviated code for the declarative component shown in
Figure 19–2.

Example 19–13 Declarative Component Metadata in the xmlContent Tag

<af:xmlContent>
 <component xmlns="http://xmlns.oracle.com/adf/faces/rich/component">
 <display-name>myPanelBox</display-name>
 <facet>
 <description>Holds the content in the panel box</description>
 <facet-name>Content</facet-name>
 </facet>
 <attribute>
 <attribute-name>title</attribute-name>

Using Declarative Components

19-26 Web User Interface Developer's Guide for Oracle Application Development Framework

 <attribute-class>java.lang.String</attribute-class>
 <required>true</required>
 </attribute>
 <attribute>
 <attribute-name>buttonText1</attribute-name>
 <attribute-class>java.lang.String</attribute-class>
 </attribute>
 . . .
 <component-extension>
 <component-tag-namespace>component</component-tag-namespace>
 <component-taglib-uri>/componentLib1</component-taglib-uri>
 <method-attribute>
 <attribute-name>method1</attribute-name>
 <method-signature>
 void method(javax.faces.event.ActionEvent)
 </method-signature>
 </method-attribute>
 <method-attribute>
 <attribute-name>method2</attribute-name>
 <method-signature>
 void method(javax.faces.event.ActionEvent)
 </method-signature>
 </method-attribute>
. . .
 </component-extension>
 </component>
</af:xmlContent>

Metadata for the included components is contained after the xmlContent tag. The code
for these components is the same as it might be in a standard JSF page, including any
attribute values you set directly on the components. Any bindings you created to the
attributes or methods use the component’s variables in the bindings. Example 19–14
shows the code for the panelBox component with the three buttons in the toolbar.
Notice that the facetRef tag appears as a child to the panelBox component, as any
content a page developer will add will then be a child to the panelBox component.

Example 19–14 Components in a Declarative Component

<af:panelBox text="#{attrs.title}" inlineStyle="width:25%;">
 <f:facet name="toolbar">
 <af:group>
 <af:toolbar>
 <af:commandToolbarButton text="#{attrs.buttonText1}"
 actionListener="#{component.handleMethod1}"
 rendered="#{attrs.display1}"/>
 <af:commandToolbarButton text="#{attrs.buttonText2}"
 rendered="#{attrs.display2}"
 actionListener="#{component.handleMethod2}"/>
 <af:commandToolbarButton text="#{attrs.buttonText3}"
 rendered="#{attrs.display3}"
 actionListener="#{component.handleMethod3}"/>
 </af:toolbar>
 </af:group>
 </f:facet>
 <af:facetRef facetName="Content"/>
</af:panelBox>

The first time you use the wizard to create a declarative component in a project,
JDeveloper automatically creates the declarativecomp-metadata.xml file, which is
placed in the /ViewController/src/META-INF directory in the file system.

Using Declarative Components

Creating and Reusing Fragments, Page Templates, and Components 19-27

For each declarative component that you define using the wizard, JDeveloper creates a
declarative component definition file (for example, componentDef1.jspx), and adds an
entry to the declarativecomp-metadata.xml file. Example 19–15 shows an example of
the declarativecomp-metadata.xml file.

Example 19–15 Sample declarativecomp-metadata.xml File

<declarativeCompDefs
 xmlns="http://xmlns.oracle.com/adf/faces/rich/declarativecomp">
 <declarativecomp-jsp-ui-def>
 /componentDef1.jspx
 </declarativecomp-jsp-ui-def>
 <declarativecomp-taglib>
 <taglib-name>
 dCompLib1
 </taglib-name>
 <taglib-uri>
 /dcomponentLib1
 </taglib-uri>
 <taglib-prefix>
 dc
 </taglib-prefix>
 </declarativecomp-taglib>
</declarativeCompDefs>

The declarativecomp-metadata.xml file contains the names, paths, and tag library
information of all the declarative components you create in the project. When you
deploy the project, the metadata is used by JDeveloper to create the JSP tag libraries
and Java classes for the declarative components.

19.4.3 How to Deploy Declarative Components
Declarative components require a tag library definition (TLD) in order to be displayed.
JDeveloper automatically generates the TLD when you deploy the project. Because of
this, you must first deploy the project that contains your declarative components
before you can use them. This means before you can use declarative components in a
project, or before you can share declarative components with other developers, you
must deploy the declarative component definitions project to an ADF Library JAR. For
instructions on how to deploy a project to an ADF Library JAR, see the "Reusing
Application Components" chapter of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Briefly, when you deploy a project that contains declarative component definitions,
JDeveloper adds the following for you to the ADF Library JAR:

■ A component tag class (for example, the componentDef1Tag.class) for each
declarative component definition (that is, for each componentDef component)

Note: When you rename or delete a declarative component in the
Application Navigator, JDeveloper renames or deletes the declarative
component definition file in the file system, but you must manually
change or delete the declarative component entry in the
declarativecomp-metadata.xml file, and update or remove any
JSF pages that use the declarative component.

Using Declarative Components

19-28 Web User Interface Developer's Guide for Oracle Application Development Framework

■ One or more JSP TLD files for the declarative components, using information from
the project’s declarativecomp-metadata.xml file

To use declarative components in a consuming project, you add the deployed
ADF Library JAR to the project’s properties. For instructions on how to add an ADF
Library JAR, see the "Reusing Application Components" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework. By
adding the deployed JAR, JDeveloper automatically inserts the JSP tag library or
libraries (which contain the reusable declarative components) into the project’s
properties, and also displays them in the Component Palette.

19.4.4 How to Use Declarative Components in JSF Pages
In JDeveloper, you add declarative components to a JSF page just like any other UI
components, by selecting and dragging the components from the Component Palette,
and dropping them into the desired locations on the page. Your declarative
components appear in a page of the palette just for your tag library. Figure 19–6 shows
the page in the Component Palette for a library with a declarative component.

Figure 19–6 Component Palette with a Declarative Component

When you drag a declarative component that contains required attributes onto a page,
a dialog opens where you enter values for any defined attributes.

Once the declarative component is added to the page, you must manually bind the
declarative methods to actual methods on managed beans.

Before proceeding with the following procedure, you must already have added the
ADF Library JAR that contains the declarative components to the project where you
are creating JSF pages that are to consume the declarative components. For
instructions on how to add an ADF Library JAR, see the "Reusing Application
Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

To use declarative components in a JSF page:
1. In the Application Navigator, double-click the JSF page (or JSF page template) to

open it in the visual editor.

2. In the Component Palette, select the declarative components tag library name
from the dropdown list. Drag and drop the desired declarative component onto
the page. You can add the same declarative component more than once on the
same page.

If the declarative component definition contains any required attributes,
JDeveloper opens a dialog for you to enter the required values for the declarative
component that you are inserting.

Using Declarative Components

Creating and Reusing Fragments, Page Templates, and Components 19-29

3. Add components by dragging and dropping components from the Component
Palette in the facets of the template. In the Structure window, expand the structure
until you see the element for the declarative component, for example,
dc:myPanelBox, where dc is the tag library prefix and myPanelBox is the
declarative component name.

Under that are the facets (for example, f:facet - content) that have been
defined in the declarative component definition. You add components to these
facets.

You cannot add content directly into the declarative component; you can drop
content into the named facets only. The types of components you can drop into a
facet may be dependent on the location of the facetRef tag in the declarative
component definition. For example, if you have defined facetRef to be a child of
table in the declarative component definition, then only column components can
be dropped into the facet because table accepts column children only.

4. In the Structure window, again select the declarative component element, for
example, dc:myPanelBox. The Property Inspector displays all the attributes and
methods that have been predefined in the declarative component definition (for
example, title). The attributes might have default values.

You can assign static values to the attributes, or you can use EL expressions (for
example, #{myBean.somevalue}). For any of the methods, you must bind to a
method that uses the same signature as the declared method defined on the
declarative component.

At runtime, the attribute value will be displayed in the appropriate location as
specified in the declarative component definition by the EL expression that bears
the name of the attribute (for example, #{attrs.someAttributeName}).

5. If you need to include resources such as CSS or JavaScript, then you need to
include these using the af:resource tag. For more information, see Section 19.5,
"Adding Resources to Pages."

19.4.5 What Happens When You Use a Declarative Component on a JSF Page
After adding a declarative component to the page, the visual editor displays the
component’s defined facets as named boxes, along with any content that is rendered
by components defined in the component layout section of the declarative component
definition.

Like other UI components, JDeveloper adds the declarative component tag library
namespace and prefix to the jsp:root tag in the page when you first add a declarative
component to a page, for example:

<jsp:root xmlns:dc="/dcomponentLib1: ..>

Note: If you want to use ADF Model layer bindings as values for the
attributes, then to create these bindings manually by using the
Expression Builder to locate the needed binding property.

Note: You cannot place any components as direct children of a
declarative component. All content to appear within a declarative
component must be placed within a facet of that component.

Adding Resources to Pages

19-30 Web User Interface Developer's Guide for Oracle Application Development Framework

In this example, dc is the tag library prefix, and /dcomponentLib1 is the namespace.

JDeveloper adds the tag for the declarative component onto the page. The tag includes
values for the component’s attributes as set in the dialog when adding the component.
Example 19–16 shows the code for the MyPanelBox declarative component to which a
user has added a panelGroupLayout component that contains three outputFormatted
components.

Example 19–16 JSF Code for a Declarative Component that Contains Content

<dc:myPanelBox title="My Panel Box" buttonText1="Button 1"
 display1="true" display2="true" buttonText2="Button 2"
 display3="false">
 <f:facet name="Content">
 <af:panelGroupLayout layout="scroll">
 <af:outputFormatted value="outputFormatted1"
 styleUsage="instruction"/>
 <af:outputFormatted value="outputFormatted2"
 styleUsage="instruction"/>
 <af:outputFormatted value="outputFormatted3"
 styleUsage="instruction"/>
 </af:panelGroupLayout>
 </f:facet>
</dc:myPanelBox>

19.4.6 What Happens at Runtime
When a JSF page that consumes a declarative component is executed:

■ The declarative component tag in the consuming page locates the declarative
component tag class and definition file that contains the declarative component
metadata and layout.

■ The component subtree defined in the layout section of the componentDef tag is
instantiated and inserted into the consuming page’s component tree at the location
identified by the declarative component tag in the page.

■ The componentDef tag sets the value of the var attribute so that the declarative
component can internally reference its own attributes. The declarative component
just sets the attribute values; the runtime maps those values into the attributes
defined in the componentDef tag.

■ Using declarative component metadata, the declarative component applies any
default values to its attributes and checks for required values.

■ The consuming page passes facet contents into the declarative component by
using the facet tag. The facet contents of each facet tag are inserted into the
appropriate location on the declarative component as specified by the
corresponding facetRef tag in the layout section of the componentDef tag.

19.5 Adding Resources to Pages
You should use the af:resource tag to add CSS or JavaScript to pages, page templates,
or declarative components. This tag is especially useful for page templates and
declarative components because resources can only be added to the page (in the
HTML head element). When you can use this tag in page templates and declarative
components, the resources will be added to the consuming page during JSP execution.
If this tag is not used, browsers may need to re-layout pages that use page templates
and declarative components whenever it encounters a style or link tag. The resources

Adding Resources to Pages

Creating and Reusing Fragments, Page Templates, and Components 19-31

can be added to the page during any page request, but they must be added before the
document component is rendered.

The resource tag can be used with PPR. During PPR, the following requirements
apply:

■ URL resources are compared on the client before being added to the page. This
ensures duplicates are not added.

■ CSS resources are removed from the page during a PPR navigation. The new page
will have the new CSS resources.

19.5.1 How to Add Resources to Page Templates and Declarative Components
You use the af:resource tag to define the location of the resource. The resource will
then be added to the document header of the consuming page.

To add resources:
1. From the Operations section of the Component Palette, drag and drop a Resource

tag anywhere onto the consuming page.

2. In the Insert Resource dialog, select either css or javascript.

3. In the Property Inspector, enter the URI of the resource as the value for the source
attribute. Start the URI with a single forward slash (/) if the URI should be context
relative. Start the URI with two forward slashes if the URI should be server
relative. If you start the URI with something other than one or two slashes, the
URI will be resolved relative to URI location in the browser

19.5.2 What Happens at Runtime: Adding Resources to the Document Header
During JSP tag execution, the af:resource tag only executes if its parent component
has been created. When it executes, it adds objects to a set in the RichDocument
component. RichDocument then adds the specified resources (CSS or JavaScript) to the
consuming page.

Adding Resources to Pages

19-32 Web User Interface Developer's Guide for Oracle Application Development Framework

20

Customizing the Appearance Using Styles and Skins 20-1

20Customizing the Appearance Using Styles
and Skins

This chapter describes how to change the appearance of your application by changing
style properties using ADF Faces skins and component style attributes.

This chapter includes the following sections:

■ Section 20.1, "Introduction to Skins, Style Selectors, and Style Properties"

■ Section 20.2, "Applying Custom Skins to Applications"

■ Section 20.3, "Defining Skin Style Properties"

■ Section 20.4, "Changing the Style Properties of a Component"

■ Section 20.5, "Referring to URLs in a Skin’s CSS File"

■ Section 20.6, "Versioning Custom Skins"

■ Section 20.7, "Deploying a Custom Skin File in a JAR File"

20.1 Introduction to Skins, Style Selectors, and Style Properties
JDeveloper supports two options for applying style information to your ADF Faces
components:

■ Build a skin and a cascading style sheet (CSS) using defined style selectors and
configure your ADF application to use the skin and style sheet.

■ Use style properties to override the style information from the skin CSS to set
specific instances of component display.

ADF Faces components delegate the functionality of the component to a component
class, and the display of the component to a renderer. By default, all tags for ADF
Faces combine the associated component class with an HTML renderer, and are part of
the HTML render kit. HTML render kits are included with ADF Faces for display on
both desktop and PDA. You cannot customize ADF Faces renderers. However, you can
customize how components display using skins.

If you do not wish to change ADF Faces components throughout the entire
application, you can choose to change the styles for the instance of a component on a
page. You can also programmatically set styles conditionally. For example, you may
want to display text in red only under certain conditions. For more information, see
Section 20.4, "Changing the Style Properties of a Component".

The File Explorer application allows you to select several skins from a dropdown list.
It provides several CSS files to support skin selection. For more information, see
Section 1.4.3, "Overview of the File Explorer Application".

Introduction to Skins, Style Selectors, and Style Properties

20-2 Web User Interface Developer's Guide for Oracle Application Development Framework

It is beyond the scope of this guide to explain the concept of CSS. For extensive
information on style sheets, including the official specification, visit the W3C web site
at:

http://www.w3.org/

20.1.1 ADF Faces Skins
A skin is a style sheet based on the CSS 3.0 syntax specified in one place for an entire
application. Instead of providing a style sheet for each component, or inserting a style
sheet on each page, you can create one skin for the entire application. Every
component automatically uses the styles as described by the skin. You do not have to
make design-time changes to JSF pages to change their appearance when you use a
skin. The skin allows you to globally change the appearance of ADF Faces
components.

Existing ADF Faces applications use the skin that the application was configured to
use when the application was created. For example, if you create an application using
Oracle ADF 11g (11.1.1.7.0), the application uses the skyros skin. If you upgrade an
application, the application continues to use the skin that it was configured to use
when first created. You edit the trinidad-config.xml file, as described in
Section 20.2.4, "How to Configure an Application to Use a Custom Skin," if you want
your application to use another skin.

You can create your own custom skin by extending one of the skins provided by ADF
Faces. For more information, see Section 20.2.1, "How to Add a Custom Skin to an
Application." Create or edit the trinidad-skins.xml file, as described in
Section 20.2.3, "How to Register a Custom Skin," in addition to editing the
trinidad-config.xml file if you want your application to use a custom skin that you
created.

ADF Faces provides the following skins for use in your applications:

■ simple: Contains only minimal formatting.

■ fusion: Defines styles for ADF Faces components. This skin provides a significant
amount of styling.

■ fusion-11.1.1.3.0: Modifies the fusion skin to make the hierarchy structure in
certain components that render tabs clearer. These components are panelTabbed,
navigationPane (attribute hint="tabs"), and decorativeBox. This skin also
defines a more subtle background image for disclosed panelAccordion component
panes to make text that appears in these panes easier to read.

■ fusionFx-v1: This skin extends from the fusion-11.1.1.3.0 skin. If you create a
custom skin that extends any of the skins provided by ADF Faces, you need to
register it in the trinidad-skins.xml file. Use the following values in the
trinidad-skins.xml file if you extend the fusionFx-v1 skin:

<skin>

Note: The 11g Release 2 (11.1.2.0.0) introduced the ADF Skin Editor.
Using this standalone product, you can visually create and modify
skins for multiple releases of ADF Faces applications. The ADF Skin
Editor provides a range of features that simplify the process of
creating a skin. For more information, including how to install the
ADF Skin Editor, see the Downloads for Oracle ADF 11g page at
http://www.oracle.com/technetwork/developer-tools/ad
f/downloads/index.html.

http://www.w3c.org/

Introduction to Skins, Style Selectors, and Style Properties

Customizing the Appearance Using Styles and Skins 20-3

 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v1.desktop</extends>
</skin>

Use the following value in the trinidad-config.xml file if you want your
application to use the fusionFx-v1 skin:

<skin-family>fusionFx</skin-family>

The fusionFx-v1 contains design improvements and changes to address a number
of issues. Specifically, it adds:

– A background color to the .AFMaskingFrame global style selector to prevent
the display of content from an underlying frame when an inline popup
displays in certain browsers.

– A boolean ADF skin property, -tr-stretch-dropdown-table, for the
inputComboboxListOfValues component. This property determines whether
the table in the dropdown list stretches to show the content of the table
columns or limits the width of the table to the width of the input field in the
inputComboboxListOfValues component.

– The inlineFrame component displays an image that serves as a loading
indicator until the browser determines that the frame's contents have been
loaded.

You can implement this functionality in a custom skin that you create. The
af|inlineFrame selector has "busy" and "flow" pseudo-classes that enable you
to do this. The inlineFrame component only generates an IFrame element
when the parent component does not stretch the inlineFrame component (the
inlineFrame component is flowing). Use af|inlineFrame:busy:flow to
define a background-image style that references a loading indicator. When the
parent component stretches the inlineFrame component, the generated
content is more complex. This complexity allows you define a content image
URL using the af|inlineFrame::status-icon and an optional additional
background-image using the af|inlineFrame::status-icon-style. It also
allows you to reuse images that other component selectors use. For example,
the carousel component's af|carousel::status-icon and
af|carousel::status-icon-style selectors. Use skinning aliases to reuse
these images.

The following global selectors have also been introduced that you can use if
you implement this functionality in your ADF skin:

* .AFBackgroundImageStatus:alias: use to reference the background
image used in af|inlineFrame::busy:flow.

* .AFStatusIcon:alias use to reference the af|carousel::status-icon
and af|inlineFrame::status-icon.

* .AFStatusIconStyle:alias use to reference the
af|carousel::status-icon-style and
af|inlineFrame::status-icon-style.

A resource key (af_inlineFrame.LABEL_FETCHING) defines the string to
display for the inlineFrame component’s loading icon.

■ fusionFx-v1.1: This skin extends from the fusionFx-v1 skin. It adds supports for
the ability to clear Query-By-Example (QBE) filters in an af:table component.

Introduction to Skins, Style Selectors, and Style Properties

20-4 Web User Interface Developer's Guide for Oracle Application Development Framework

If you create a custom skin that extends any of the skins provided by ADF Faces,
you need to register it in the trinidad-skins.xml file. Use the following values in
the trinidad-skins.xml file if you want to extend the fusionFx-v1.1 skin:

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v1.1.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your
application to use the fusionFx-v1.1 skin:

<skin-family>fusionFx</skin-family>
 <skin-version>v1.1<skin-version>

■ fusionFx-v1.2: This skin extends from the fusionFx-v1.1 skin. It contains a
number of user interface enhancements including optimizations for when your
application renders in a touch screen device.

Use the following values in the trinidad-skins.xml file if you want to extend the
fusionFx-v1.2 skin.

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>fusionFx-v1.2.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your
application to use the fusionFx-v1.2 skin:

<skin-family>fusionFx</skin-family>
 <skin-version>v1.2<skin-version>

■ Fusion Simple: ADF Faces also provides the Fusion Simple family of skins. These
skins resemble the Fusion family of skins, but are easier to modify using the ADF
Skin Editor because they use fewer colors and fonts. There is a corresponding skin
from the Fusion Simple family for each skin in the Fusion family. For example, the
fusionFx-simple-v1 skin corresponds to the fusionFx-v1 skin.

■ Projector skins: ADF Faces provides skins that define styles for an application that
you want to demonstrate to an audience using a projector. Each projector skin
modifies a number of elements in its parent skin so that an application renders
appropriately when displayed using table-top projectors (particularly older
models of projector). For example, the fusion-projector skin modifies a number
of elements in the fusion skin. These skins are useful if the audience is present at
the same location as the projector. They may not be appropriate for an audience
that views an application online through a web conference. ADF Faces provides
the projector skins as a download from the Oracle Technology Network (OTN)
web site.

■ skyros: Defines the default styles for ADF Faces components. It extends the
simple skin to provide a colorful look and feel to applications that use it. It is also
fully compatible with the ADF Skin Editor. The skyros skin also introduces a
simpler DOM structure alternative for image borders in comparison to, for
example, the fusion skins. This latter feature can also be enabled for custom skins
that extend the simple skin by configuring the <feature> element in the

Introduction to Skins, Style Selectors, and Style Properties

Customizing the Appearance Using Styles and Skins 20-5

trinidad-skins.xml file. For more information, see Section 20.2.3, "How to
Register a Custom Skin."

Use the following values in the trinidad-skins.xml file if you want to extend the
skyros skin.

<skin>
 <id>yourSkin.desktop</id>
 <family>yourSkinFamily</family>
 <extends>skyros-v1.desktop</extends>
 ...
</skin>

Use the following value in the trinidad-config.xml file if you want your
application to use the skyros skin:

<skin-family>skyros</skin-family>
 <skin-version>v1<skin-version>

Figure 20–1 shows the default skyros skin applied to the File Explorer Application
index page.

Figure 20–1 Index Page Using the Skyros Skin

ADF Faces also provides the simple skin, shown in Figure 20–2 as applied to the File
Explorer Application index page.

Introduction to Skins, Style Selectors, and Style Properties

20-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 20–2 Index Page Using the Simple Skin

Skins provide more options than setting standard CSS styles and layouts. The skin's
CSS file is processed by the skin framework to extract skin properties and icons and
register them with the Skin object. For example, you can customize the skin file using
rules and pseudo classes that are supported by the skinning framework. Supported
rules and pseudo classes include @platform, @agent, @accessibility-profile, :rtl,
and @locale. For more information, see Section 20.1.2, "Skin Style Selectors."

20.1.2 Skin Style Selectors
Style sheet rules include a style selector, which identifies an element, and a set of style
properties, which describe the appearance of the components. ADF Faces components
include two categories of skin style selectors:

■ Global selectors

Global selectors determine the style properties for multiple ADF Faces
components. If the global selector name ends in the :alias pseudo-class, then the
selector is most likely included in other component-specific selectors and will
affect the skin for more than one component. For example, most, if not all,
components use the .AFDefaultFontFamily:alias definition to specify the font
family. If your skin overrides this selector with a different font family, that change
will affect all the components that have included it in their selector definition.
Example 20–1 shows the global selector for the default font family for ADF Faces
components in an application.

Example 20–1 Global Selector for Default Font Family

.AFDefaultFontFamily:alias {
 font-family: Tahoma, Verdana, Helvetica, sans-serif;
}

■ Component selectors

Component-specific selectors are selectors that can apply a skin to a particular
ADF Faces component. Example 20–2 shows the selector set to red as the
background color for the content area of the af:inputText component.

Introduction to Skins, Style Selectors, and Style Properties

Customizing the Appearance Using Styles and Skins 20-7

Example 20–2 af:inputText Component Selector

af|inputText::content {
 background-color: red;
}

Each category may include one or more of these types of ADF Faces skin selectors:

■ Standard selectors

Standard selectors are those that directly represent an element that can have styles
applied to it. For example, af|body represents the af:body component. You can set
CSS styles, properties, and icons for this type of element.

■ Selectors with pseudo-elements

Pseudo-elements are used to denote a specific area of a component that can have
styles applied. Pseudo-elements are denoted by a double colon followed by the
portion of the component the selector represents. For example,
af|chooseDate::days-row provides the styles and properties for the appearance
of the dates within the calendar grid.

■ Icon selectors

Some components render icons (tags) using a set of base icons. These icons
can have skins applied even though no entries appear in the CSS source file for the
icons in the way, for example, that entries appear for the background-image CSS
property. Instead, the icons are registered with the Skin object for use by the
renderer. As no entries for an icon selector appear in the CSS source file that a
browser interprets, you cannot create containment selector definitions for an icon
definition. You can only create a containment selector definition for items that
have an entry in the CSS source file.

Icon selectors are denoted by -icon for component selectors and Icon:alias for
global selectors. For example, the af:inputDate component has a changed icon
that can have a skin using the selector af|inputDate::changed-icon. The changed
icon can also be globally set for all components using that icon with the global
selector .AFChangedIcon:alias. For more information, see Section 20.3.2, "How to
Apply Skins to Icons".

■ Resource strings

The text rendered by ADF Faces components is translatable. The text is abstracted
as a resource string that has skins applied. For example, af_dialog.LABEL_OK is a
resource string for the text label of an af:dialog component when the OK button
has been configured. Resource strings do not have skins in the CSS skin file, but in
a resource bundle referenced from the skin definition file in the
trinidad-skins.xml file using the <bundle-name> parameter. You can also use the
<translation-source> parameter for an EL binding to point to a Map or
ResourceBundle. For more information, see Section 20.3.1, "How to Apply Skins to
Text".

■ Selectors with style properties

Skin style properties allow you to customize the rendering of a component
throughout the application. A CSS property is stored with a value in the Skin
object and is available when the component is being rendered. For example, in
af|breadCrumbs{-tr-show-last-item: false}, the skin property
-tr-show-last-item is set to hide the last item in the af:breadCrumbs navigation
path.

Introduction to Skins, Style Selectors, and Style Properties

20-8 Web User Interface Developer's Guide for Oracle Application Development Framework

The CSS specification defines pseudo-classes such as :hover and :active that can
apply to almost every component. ADF Faces provides additional pseudo-classes for
specialized functions. Pseudo-classes are denoted in the selector by a colon followed
by the class definition. The following are common pseudo-classes used by ADF Faces
style selectors:

■ Alias: The :alias pseudo-class is a special type of class that serves as a syntax aid
to organize code in your skin file. You can, for example, use it to set styles for more
than one component or more than one portion of a component. You can also create
your own alias classes that you can then include on other selectors. For example,
you can define an alias pseudo-class (.AFLabel:alias) where you define label
colors for a number of form components. Subsequent changes to the alias
pseudo-class impact all components referenced by the alias pseudo-class.

 af|inputText::label,
 af|inputChoice::label,
 af|selectOneChoice::label {-tr-rule-ref: ".AFLabel:alias"}
 .AFLabel:alias { color: blue }

The .AFLabel:alias pseudo-class has color set to blue, but you can change all the
component’s label color to red by simply changing .AFLabel:alias:

.AFLabel:alias {color: red}

For more information, see Section 20.3.5, "How to Create a Custom Alias".

■ Drag and drop: The two pseudo-classes available are :drag-source applied to the
component initiating the drag and removed once the drag is over, and
:drop-target applied to a component willing to accept the drop of the current
drag.

■ Standard: In CSS, pseudo-classes like :hover, :active, and :focus are considered
states of the component. This same concept is used in applying skins to
components. Components can have states like read-only or disabled. When
states are combined in the same selector, the selector applies only when all states
are satisfied.

■ Right-to-left: Use this pseudo-class to set a style or icon definition when the
browser is in a right-to-left language. Another typical use case is asymmetrical
images. You will want the image to be flipped when setting skin selectors that use
the image in a right-to-left reading direction. Be sure to append the :rtl
pseudo-class to the very end of the selector and point it to a flipped image file. For
example, the end image of the panelBox component will be the
panelBoxStart.png file when the browser is set to right-to-left. The panelBox end
image in right-to-left is the same as the flipped left-to-right panelBox start image.

af|panelBox::medium af|panelBox::top-end:rtl {
 background-image: url(/skins/purple/images/panelBoxStart.png);
 width:8px;
 height:8px
}

You can also use :rtl to apply to skin icons. For more information, see
Section 20.3.2, "How to Apply Skins to Icons".

■ Inline editing: This pseudo-class is applied when the application activates a
component subtree for editing in the browser. For example, :inline-selected is a
pseudo-class applied to currently selected components in the active inline-editable
subtree.

Introduction to Skins, Style Selectors, and Style Properties

Customizing the Appearance Using Styles and Skins 20-9

■ Message: This pseudo-class is used to set component-level message styles using
CSS pseudo-classes of :fatal, :error, :warning, :confirmation, and :info. For
more information, see Section 20.3.3, "How to Apply Skins to Messages".

You may not want your selector's CSS properties to be applied to all browsers, all
platforms, all locales, and both reading-directions. For example, you may need to add
some padding in Internet Explorer that you do not need on any other browser. You
may want the font style to be different on Windows than it is on other platforms. To
style a selector for a particular user environment, put that skinning information inside
a skinning framework rule or :rtl pseudo-class. The skinning framework picks the
styles based on the HTTP request information, such as agent and platform, and merges
them with the styles without rules. Those CSS properties that match the rules get
merged with those outside of any rules. The most specific rules that match a user's
environment take precedence. The skinning framework currently supports these rules
and pseudo-classes:

■ @platform and @agent

Define platform styles using @platform and browser styles using @agent.

The supported values to set a platform-specific style are windows, macos, linux,
solaris, and ppc. For a browser agent-specific style, the supported values are ie,
mozilla, gecko, webkit (maps to safari), ice, and email.

In this example, the content area of the af:inputText component is set to the color
pink for versions 7 and 8 of Internet Explorer, and set to version 1.9 of gecko on
Windows and Linux platforms:

@platform window, linux {
 @agent ie and (version: 7) and (version: 8), gecko and (version: 1.9) {
 af|inputText::content {background-color:pink
 }
 }
}

Note that the following syntax examples results in the same behavior:

@agent ie and (version: 7.*)
@agent ie and (version: 7)

In order to specify only version 7.0.x of Internet Explorer, use the following syntax:

@agent ie and (version: 7.0)

There is currently no syntax to specify a range of versions.

You can also use the @agent rule to determine styles to apply to agents that are
touchscreen devices. The following examples show the syntax that you write in a
custom skin file to configure this capability.

@agent (touchScreen:none) {
 /* Styles that should not render on touchscreen devices. */
}

@agent (touchScreen:single) {
 /* Styles specific for a touchscreen device with single touch. */
}

@agent (touchScreen:multiple) {
 /* Styles specific for a touchscreen with multiple touch. */
}

Introduction to Skins, Style Selectors, and Style Properties

20-10 Web User Interface Developer's Guide for Oracle Application Development Framework

@agent (touchScreen) {
 /* Touchscreen specific styles for all touchscreen devices: both single and
multiple touch. */
}

For more information about creating applications to render in touchscreen devices,
see Appendix D, "Creating Web Applications for Touch Devices Using ADF Faces."

■ @accessibility-profile

Define @accessibility-profile, which defines styles for high-contrast and
large-fonts accessibility profile settings from the trinidad-config.xml file.

The high-contrast value would be for cases where background and foreground
colors need to be highly contrasted with each other. The large-fonts value would be
for cases where the user must be allowed to increase or decrease the text scaling
setting in the web browser. Defining large-fonts does not mean that the fonts are
large, but rather that they are scalable fonts or dimensions instead of fixed pixel
sizes.

<!-- Enable both high-contrast and large-fonts content -->
 <accessibility-profile>high-contrast large-fonts</accessibility-profile>

■ :rtl

Use the :rtl pseudo-class to create a style or icon definition when the browser is
displaying a right-to-left language.

■ @locale

■ Suppress skin styles with the -tr-inhibit skin property.

Suppress or reset CSS properties inherited from a base skin with the -tr-inhibit
skin property. For example, the -tr-inhibit:padding property will remove any
inherited padding. Remove (clear) all inherited properties with the
-tr-inhibit:all property. The suppressed property name must be matched
exactly with the property name in the base skin.

■ Merge styles with the -tr-rule-ref property.

Create your own alias and combine it with other style selectors using the
-tr-rule-ref property. For more information, see Section 20.3.5, "How to Create a
Custom Alias".

■ Alter themes of child components with the -tr-children-theme property.

For more information, see Section 20.3.4, "How to Apply Themes to Components".

Example 20–3 shows several selectors in the CSS file that will be merged together to
provide the final style.

Example 20–3 Merging of Style Selectors

/** For IE and Gecko on Windows, Linux and Solaris, make the color pink. **/
@platform windows, linux, solaris
 {
 @agent ie, gecko
 {
 af|inputText::content {background-color:pink}
 }
 }

af|someComponent {color: red; width: 10px; padding: 4px}

Introduction to Skins, Style Selectors, and Style Properties

Customizing the Appearance Using Styles and Skins 20-11

/* For IE, we need to increase the width, so we override the width.
 We still want the color and padding; this gets merged in. We want to add
 height in IE. */

@agent ie
 {
 af|someComponent {width: 25px; height: 10px}
 }
/* For IE 7 and 8, we also need some margins.*/
@agent ie (version: 7) and (version: 8)
 {
 af|someComponent {margin: 5px;}
 }

/* For Firefox 3 (Gecko 1.9) use a smaller margin.*/
@agent gecko (version: 1.9)\
 {
 af|someComponent {margin: 4px;}
 }

/* The following selectors are for all platforms and all browsers. */
/* rounded corners on the top-start and top-end */
/* shows how to use :rtl mode pseudo-class. The start image in ltr mode is the */
 /* same as the end image in the right-to-left mode. */
af|panelBox::medium af|panelBox::top-start,
af|panelBox::medium af|panelBox::top-end:rtl {
 background-image: url(/skins/purple/images/panelBoxStart.png);
 width:8px;
 height:8px
 }

af|panelBox::medium af|panelBox::top-end,
af|panelBox::medium af|panelBox::top-start:rtl {
 background-image: url(/skins/purple/images/panelBoxEnd.png);
 height: 8px;
 width: 8px;
 }

The selectors used to apply skins to the ADF Faces components are defined in the
"Oracle ADF Faces Skin Selectors" and "Oracle ADF Data Visualization Tools Skin
Selectors" topics in JDeveloper’s Help Center. Expand the following nodes in the Help
Center’s Contents tab to view these reference documents:

Developing Oracle ADF Applications > Developing Oracle ADF Faces Applications

You can also apply themes as a way to implement look and feel at the component
level. For information about themes, see Section 20.3.4, "How to Apply Themes to
Components".

For information about defining skin style properties, see Section 20.3, "Defining Skin
Style Properties".

20.1.3 Component Style Properties
You can adjust the look and feel of any component at design time by changing the
style-related properties, inlineStyle and styleClass, both of which render on the root
DOM element. Any style-related property you specify at design time overrides the
comparable style specified in the application skin or CSS for that particular instance of
the component.

Applying Custom Skins to Applications

20-12 Web User Interface Developer's Guide for Oracle Application Development Framework

The inlineStyle attribute is a semicolon-delimited string of CSS styles that can set
individual attributes, for example, background-color:red; color:blue;
font-style:italic; padding:3px. The styleClass attribute is a CSS style class
selector used to group a set of inline styles. The style classes can be defined using an
ADF public style class, for example, .AFInstructionText, sets all properties for the
text displayed in an af:outputText component.

For information about applying component style properties, see Section 20.4,
"Changing the Style Properties of a Component".

Given a specific selector, you can get style properties for a custom component by
creating a class for a renderer. For more information, see Section 32.4.7, "How to Create
a Class for a Renderer".

20.2 Applying Custom Skins to Applications
Custom skins can change the colors, fonts, and even the location of portions of ADF
Faces components to represent your company’s preferred look and feel. You build the
skin by defining style selectors in a CSS file. After you create your custom style sheet,
register it as a valid skin in the application, and then configure the application to use
the skin. If you versioned multiple ADF skins in the same skin family, as described in
Section 20.6, "Versioning Custom Skins," use the <skin-version> element to identify
the specific version that you want the application to use.

By default, ADF Faces components use the skyros skin. Custom skins can extend to
any of the ADF Faces skins, skyros, fusion, or simple. To create a custom skin, you
declare selectors in a style sheet that override or inhibit the selectors in the style sheet
being extended. Any selectors that you choose not to override will continue to use the
style as defined in that skin.

Extending the simple skin does not require inhibiting as many properties as you
would if you extended one of the other skins. For example, the Skyros skin uses many
different colors for style properties, including text, background, and borders. The
simple skin uses the :alias pseudo-class, as in .AFDarkBackground:alias, instead of
specific colors. Changing a color scheme would require overriding far fewer global
skin selectors than component skin selectors that specify multiple colors.

The text used in a skin is defined in a resource bundle. As with the selectors for the
skyros skin, you can override the text by creating a custom resource bundle and
declaring only the text you want to change. After you create your custom resource
bundle, register it with the skin.

You can create and apply multiple skins. For example, you might create one skin for
the version of an application for the web, and another for when the application runs
on a handheld device. Or you can change the skin based on the locale set on the
current user’s browser. Additionally, you can configure a component, for example an
af:selectOneChoice component, to allow a user to switch between skins.

While you can bundle the custom skin resources and configuration files with the
application for deployment, you can also store skin definitions in a Java Archive (JAR)
file and then add it to the deployed application. The advantages to using a JAR file are
that the custom skin can be developed and deployed separately from the application,
improving consistency in the look and feel, and that skin definitions and image files
can be partitioned into their own JAR files, reducing the number of files that may have
to be deployed to an application.

The steps to apply a custom skin to your application are the following:

Applying Custom Skins to Applications

Customizing the Appearance Using Styles and Skins 20-13

1. Add a custom skin to your application. For details, see Section 20.2.1, "How to
Add a Custom Skin to an Application".

2. Register the custom skin. For details, see Section 20.2.2, "How to Register the XML
Schema Definition File for a Custom Skin" and Section 20.2.3, "How to Register a
Custom Skin".

3. Configure the application to use the custom skin. For details, see Section 20.2.4,
"How to Configure an Application to Use a Custom Skin".

4. Deploy a custom skin in a JAR file. For details, see Section 20.7, "Deploying a
Custom Skin File in a JAR File".

20.2.1 How to Add a Custom Skin to an Application
To add a custom skin to your application, create a CSS file within JDeveloper, which
places the CSS in a project’s source file for deployment with the application.

To add a custom skin to an application:
1. In JDeveloper, make sure that CSS Level 3 and ADF Faces are selected. From the

main toolbar, choose Tools > Preferences > CSS Editor. For Support Level, choose
CSS Level 3 from the dropdown menu, and for Supported Components, select
ADF Faces Extension.

2. In the Application Navigator, right-click the project that contains the code for the
user interface and choose New from the context menu.

3. In the New Gallery under Categories, expand Web Tier and select HTML.

4. Double-click the CSS File option.

5. In the Create Cascading Style Sheet dialog, enter a name and path for the CSS.

6. Click OK.

You can now open the CSS in the CSS editor and define styles for your application. For
information about setting ADF Faces component style selectors, see Section 20.3,
"Defining Skin Style Properties".

You can also create a CSS outside the context of Oracle JDeveloper and package the
CSS with the skin resources into a JAR file. For information about this recommended
option, see Section 20.7, "Deploying a Custom Skin File in a JAR File".

20.2.2 How to Register the XML Schema Definition File for a Custom Skin
You need to register the trindidad-skins.xsd file with JDeveloper if you plan to
register a custom skin, as described in Section 20.2.3, "How to Register a Custom Skin".
The trindidad-skins.xsd file defines the valid elements for a custom skin.

To register an XML schema definition file:
1. In JDeveloper, select Tools > Preferences.

2. In the Preferences dialog, select XML Schemas in the left pane and click Add.

3. In the Add Schema dialog, click Browse to navigate to the XML schemas included
in your version of JDeveloper.

The directory path to the XML schemas is similar to the following:

JDeveloper_Home/jdeveloper/modules/oracle.adf.view_
11.1.1/trinidad-impl.jar!/org/apache/myfaces/trinidadinternal/ui/laf/xm
l/schemas/skin/trinidad-skins.xsd

Applying Custom Skins to Applications

20-14 Web User Interface Developer's Guide for Oracle Application Development Framework

4. Click OK.

20.2.3 How to Register a Custom Skin
Registering a skin involves creating a file named trinidad-skins.xml and populating
it with values that identify the skin’s ID, family, location, and the custom resource
bundle if you are using one.

Before you begin:
Register the XML schema definition file that defines valid elements for the
trinidad-skins.xml file. For more information, see Section 20.2.2, "How to Register
the XML Schema Definition File for a Custom Skin".

To register a custom skin:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select XML.

3. Select XML Document from XML Schema and click OK.

4. In the Create XML from XML Schema - Step 1 of 2 dialog:

■ XML File: Enter trinidad-skins.xml.

■ Directory: Append \src\META-INF to the end of the Directory entry.

■ Select Use Registered Schemas, and click Next.

5. In the Create XML Schema - Step 2 of 2 dialog:

■ Target Namespace: Select http://myfaces.apache.org/trinidad/skin.

■ Root Element: Select skins.

■ Click Finish. The new file automatically opens in the XML Editor.

6. In the XML editor, enter values for the following elements:

■ <id>

A skin is required to have a unique ID. You can also use an EL expression to
reference the skin ID. For example, if you want to have different skins for
different locales, create an EL expression that selects the correct skin based on
its ID. The convention is to put a "desktop" or ".pda" or ".portlet" at the end of
the ID, such as "skin1.desktop".

■ <family>

You configure an application to use a particular family of skins. This allows
you to group skins together for an application, based on the render kit used.

For example, you can define the richDemo.desktop skin and the richDemo.pda
skin to be part of the richDemo family and the system automatically chooses
the right skin based on the render-kit-id.

<skin>
 <id>richdemo.desktop</id>

Note: In the Add Schema dialog, make sure the value in the
Extension input field is .xml. If you change it to .xsd, when you later
create XML files, you will not be able to use the XML schema you
have created.

Applying Custom Skins to Applications

Customizing the Appearance Using Styles and Skins 20-15

 <family>richDemo</family>
 <extends>skyros-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/richdemo/richdemo.css</style-sheet-name>
</skin>
<skin>
 <id>richdemo.pda</id>
 <family>richDemo</family>
 <extends>skyros-v1.pda</extends>
 <render-kit-id>pda</render-kit-id>
 <style-sheet-name>skins/richdemo/richdemo.css</style-sheet-name>
</skin>

■ <extends>

You extend a custom skin by using this element. The default value for this
element is simple.desktop. However, you can extend any skin by using this
element.

For example, you can easily change the font of the entire skin by extending the
skin and creating a CSS with the font alias. For example, extend the
skyros.desktop family as follows:

<extends>skyros-v1.desktop</extends>
<style-sheet-name>skins/fod_skin.css</style-sheet-name>

In the CSS, set the alias to change the font for the entire skin:

.AFDefaultFontFamily:alias {font-family: Tahoma}

.AFDefaultFont:alias {font-size: 16px}

■ <render-kit-id>

This value determines which render kit to use for the skin. You can enter one
of the following:

– org.apache.myfaces.trinidad.desktop: The skin will automatically be
used when the application is rendered on a desktop.

– org.apache.myfaces.trinidad.pda: The skin will be used when the
application is rendered on a PDA.

■ <style-sheet-name>

This is the URL of the custom style sheet. The style sheet name file is retrieved
as a URL object using the following methods:

– For nonstatic URLs, those that could change after the server has started,
the URL is created by calling new java.new.URL(style-sheet-name) if
style-sheet-name starts with http:, https:, file:, ftp:, or jar:.
Otherwise, the URL is created by calling <FacesContext>
<ExternalContext> getResource<style-sheet-name>. It will add a slash
(/) to delimit the URL parts if it is not already present. For example, the
slash is added between skins/bigfont/bigfont.css.

Note: If you create more than one skin in a particular family of skins,
you can version the skins that you create. For more information, see
Section 20.6, "Versioning Custom Skins."

Applying Custom Skins to Applications

20-16 Web User Interface Developer's Guide for Oracle Application Development Framework

– If still not retrieved, the URL is created using the <ClassLoader>
getResource in a style-sheet-name format similar to
META-INF/purpleSkin/styles/myPurpleSkin.css. Once the URL is
converted to this format, it can be searched for in JAR files that may
contain the style sheet.

■ <bundle-name>

This is the resource bundle created for the skin. If you did not create a custom
bundle, then you do not need to declare this element. For more information,
see Section 20.3.1, "How to Apply Skins to Text".

■ <translation-source>

This is an EL binding that can point to a Map or a ResourceBundle. You can use
this instead of the bundle name if you would like to be more dynamic in your
skin translations at runtime. The <bundle-name> tag takes precedence.

■ <feature>

This allows you to specify a simple border style for customs skins that extend
the simple skin. When you specify a simple border style for your custom skin,
it reduces the number of selectors that components, such as the decorativeBox
component and panel components (for example, panelBox and
panelAccordion), render at runtime and, as a result, simplifies the DOM
structure. Example 20–4 shows how you configure the <feature> element to
implement this change.

Example 20–4 shows the entry in the trinidad-skins.xml file for the mySkin skin.

Example 20–4 Skin Entry in the trinidad-skins.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>
 mySkin.desktop
 </id>
 <family>
 mySkin
 </family>
 <extends>simple.desktop</extends>
 <render-kit-id>
 org.apache.myfaces.trinidad.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/mySkin/mySkin.css
 </style-sheet-name>
 <bundle-name>

Note: If you have created localized versions of the resource bundle,
then you need to register only the base resource bundle.

Note: The skyros skin and custom skins that extend the skyros skin
implement the simple border style without requiring you to make
configuration changes in the trinidad-skins.xml file.

Applying Custom Skins to Applications

Customizing the Appearance Using Styles and Skins 20-17

 myBundle
 </bundle-name>
 <translation-source></translation-source>
 <features>
 <feature name="BORDER_STYLE">simple</feature>
 </features>
 </skin>
</skins>

7. Save the file.

20.2.4 How to Configure an Application to Use a Custom Skin
You set an element in the trinidad-config.xml file that determines which skin to use,
and if necessary, under what conditions.

To configure an application to use a skin:
1. Open the trinidad-config.xml file.

2. In the trinidad-config.xml file, write entries to specify the value of the
<skin-family> element for the skin you want to use and, optionally, the
<skin-version> element.

Example 20–5 shows the configuration to use for the mySkin skin family.

Example 20–5 Configuration to Use a Skin Family

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>mySkin</skin-family>
 <skin-version>v2</skin-version>
</trinidad-config>

3. To conditionally set the value, enter an EL expression that can be evaluated to
determine the skin to display.

For example, if you want to use the German skin when the user’s browser is set to
the German locale, and to use the English skin otherwise, you would have the
following entry in the trinidad-config.xml file:

<skin-family>#{facesContext.viewRoot.locale.language=='de' ? 'german' :
'english'}</skin-family>

4. Save the file.

During development, after you make changes to the custom skin, you can see your
CSS changes without restarting the server by setting the web.xml file parameter
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION to true, as shown in
Example 20–6. However, you must always restart the server to see icon and skin
property changes.

Example 20–6 web.xml Parameter to Check Skin Changes

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>

Note: If you do not see the skin, check to see whether or not the
af:document tag has been added to the page. The af:document tag
initializes the skin framework to create the CSS and link it to the page.

Defining Skin Style Properties

20-18 Web User Interface Developer's Guide for Oracle Application Development Framework

</context-param>

20.3 Defining Skin Style Properties
The ADF Faces skin style selectors support multiple options for applying skins to a
component to create a custom look and feel to your application. The af:goButton
component skin style selectors are described in Table 20–1.

Figure 20–3 shows the application of the default skyros skin on the af:goButton
component and the component icon.

Figure 20–3 af:goButton Component Default Appearance

Figure 20–4 shows the new appearance of the button and icon by setting style
properties in a custom skin:

af|goButton::access-key {color: red;}
af|goButton::icon-style {border: 1px solid black;}

Figure 20–4 af:goButton Component with Custom Skin Applied

The ADF Faces skin style selectors used by the default skin are defined in the "Skin
Selectors for Fusion’s ADF Faces Components" and "Skin Selectors for Fusion’s Data
Visualization Tools Components" topics in JDeveloper’s online help. They are located
in All Online Help > Developing Oracle ADF Faces Applications.

JDeveloper provides coding support while editing your CSS files. You can invoke the
CSS code editor when editing your file directly or when editing an ADF Faces
component in the JSP source editor. Code support is available for the following:

■ Code insight

Table 20–1 af:goButton Component Style Selectors

Name Description

af|goButton Style on the root element of the af:goButton component. You
can use any valid CSS-2.1 pseudo-class, like :hover, :active, or
:focus, as well as :disabled, to style the component for
different states. Note that for buttons, the :active and :focus
pseudo-classes do not work in Internet Explorer 7 (IE7). IE7 also
does not allow disabled buttons to be styled. You should use the
.AFButton*:alias selectors as a shortcut to apply a skin to all
button components in the same manner.

af|goButton::icon-style Style on the button icon, if the icon attribute is set on the
af:goButton.

af|goButton::access-key Style on the text of the button. This includes the
.AFButtonAccessKeyStyle:alias style.

Defining Skin Style Properties

Customizing the Appearance Using Styles and Skins 20-19

■ Error highlighting

■ Preview of styles

■ Refactoring

■ Finding usages

■ Quick comment

■ Formatting

■ Matching tag highlighting

20.3.1 How to Apply Skins to Text
In addition to using a CSS file to determine styles, skins also use a resource bundle to
determine the text within a component. The text that ADF Faces components render
can be translated and abstracted as a resource string. For example,
 af_chooseDate.LABEL_SELECT_YEAR is the resource string for the label of the field
used to select the year using an af:chooseDate component. All the ADF Faces skins
use the same resource bundle.

To apply a skin to the text in ADF Faces components, create a custom resource bundle
and override the default resource string values. Then, set the <bundle-name> property
for your custom resource bundle in the trinidad-skins.xml file.

To create and register a custom resource bundle:
1. In JDeveloper, create a new simple Java class:

■ In the Application Navigator, right-click where you want the file to be placed
and choose New to open the New Gallery.

■ In the Categories tree, select Java, and in the Items list, select Java Class.

■ Enter a name and package for the class. The class must extend
java.util.ListResourceBundle.

2. Add any keys to your bundle that you wish to override and set the text as needed.
Example 20–7 shows the SkinBundle custom resource bundle.

Example 20–7 Resource Strings Set in Custom SkinBundle

public class SkinBundle extends ListResourceBundle {
 @Override
 public Object[][] getContents() {
 return _CONTENTS;
 }

Note: ADF Faces components provide automatic translation. The
resource bundle used for the components’ skin is translated into 28
languages. If a user sets the browser to use the German (Germany)
language, any text contained within the components will
automatically be displayed in German. For this reason, if you create a
resource bundle for a custom skin, you must also create localized
versions of that bundle for any other languages the application
supports.

See Chapter 21, "Internationalizing and Localizing Pages" for more
information.

Defining Skin Style Properties

20-20 Web User Interface Developer's Guide for Oracle Application Development Framework

 static private final Object[][] _CONTENTS = {
 {"af_tableSelectMany.SELECT_COLUMN_HEADER", "Select A Lot"},
 {"af_tableSelectOne.SELECT_COLUMN_HEADER", "Select Just One"},
 {"af_showDetail.DISCLOSED_TIP", "Click to Hide"}
 };
 }

3. Set the name of your custom resource bundle in the <bundle-name> parameter of
the trinidad-skins.xml file. Example 20–8 shows the custom SkinBundle set in
the trinidad-skins.xml file.

Example 20–8 Custom SkinBundle Set in trinidad-skins.xml

<skin>
 <id>
 purple.desktop
 </id>
 <family>
 purple
 </family>
 <render-kit-id>
 org.apache.myfaces.trinidad.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/purple/purpleSkin.css
 </style-sheet-name>
 <bundle-name>
 org.apache.myfaces.trinidaddemo.resource.SkinBundle
 </bundle-name>
</skin>

Another option for applying skins to text is to use the <translation-source>
parameter instead of <bundle-name>. The <translation-source> parameter is an EL
binding that points to a Map or a ResourceBundle. The benefit of this option is that you
can automatically change the translation value based on any logic that you want at
runtime. The <bundle-name> tag takes precedence if both are set. Example 20–9 shows
the code for using an EL expression to set the <translation-source> parameter in a
bundle map.

Example 20–9 Custom Resource Bundle Map

public class SkinTranslationMapDemo
{
 /* Test a skin's translation-source EL pointing to a Map */
 public Map<String, String> getContents()
 {
 return _CONTENTS;
 }

 static private final Map<String, String> _CONTENTS = new HashMap<String,
String>();
 static
 {
 _CONTENTS.put("af_inputDate.LAUNCH_PICKER_TIP", "Launch PickerMap");
 _CONTENTS.put("af_showDetail.DISCLOSED_TIP", "Hide Tip Map");
 _CONTENTS.put("af_showDetail.DISCLOSED", "Hide Map");

 }
}

Defining Skin Style Properties

Customizing the Appearance Using Styles and Skins 20-21

Example 20–10 shows setting the <translation-source> parameter for the resource
map in the trinidad-skins.xml file.

Example 20–10 Custom Resource Bundle Map Set in trinidad-skins.xml

<skin>
 <id>
 purple.desktop
 </id>
 <family>
 purple
 </family>
 <render-kit-id>
 org.apache.myfaces.trinidad.desktop
 </render-kit-id>
 <style-sheet-name>
 skins/purple/purpleSkin.css
 </style-sheet-name>
 <translation-source>
 #{skinTranslationMap.resourceBundle}
 </translation-source>
 </skin>

20.3.2 How to Apply Skins to Icons
You can apply skins to the default icons associated with ADF Faces components by
specifying the URL path to the icon image in the icon style selector.

Note that CSS syntax like pseudo-classes (:hover, and so forth) and descendant
selectors and composite class selectors does not work with icon selectors.

Example 20–11 shows a selector for an icon.

Example 20–11 Selector for an Icon

.AFErrorIcon:alias {
 content:url(/adf/images/error.png);
 width:7px; height:18px
 }

Icons and buttons can both use the rtl pseudo-class. This defines an icon or button for
use when the application displays in right-to-left mode. Example 20–12 shows the rtl
pseudo-class used for an icon.

Example 20–12 Icon Selector Using the rtl Pseudo-Class

.AFErrorIcon:alias:rtl {
 content:url(/adf/images/error.png);
 width:16px; height:16px
 }

Note: If you are overriding a selector for an icon, use a
context-relative path for the URL to the icon image (that is, start with a
leading slash (/)), and do not use quotation marks.

Also, you must include the width and the height for the icon.

Defining Skin Style Properties

20-22 Web User Interface Developer's Guide for Oracle Application Development Framework

20.3.3 How to Apply Skins to Messages
You can apply style to ADF Faces input components based on whether or not they
have certain levels of messages associated with them. When a message of a particular
type is added to a component, the styles of that component are automatically modified
to reflect the new status. If styles are not defined for the status in question, then the
default styles are used.

In order to define styles for your input components based on message levels that are
tied to them, you would append a style pseudo-class to your component definition.
For example, to define the base style for the content region of the af:inputText
component to a background color of purple, use the style selector
af|inputText::content{background-color:purple}. To define the content region of
the component when an error message is present, use the skin style selector
af|inputText:error::content.

The valid message properties are :fatal, :error, :warning, :confirmation, and
:info.

20.3.4 How to Apply Themes to Components
Themes are a way of implementing a look and feel at a component level. The purpose
is to provides a consistent look and feel across multiple components for a portion of a
page. A common usage for themes is in a JSF page template where certain areas have a
distinct look. For example, a page may have a branding area at the top with a dark
background and light text, a navigation component with a lighter background, and a
main content area with a light background.

A component that sets a theme exposes that theme to its child components and
therefore the theme is inherited. Themes can be set (started or changed) by the
following components:

■ af:document

■ af:decorativeBox

The Skyros and Fusion skins support the following themes:

■ Dark

■ Medium

■ Light

■ None (default)

In the JSPX page, the theme is started by the af:document component, as in:

<af:document theme="dark">
 <af:panelTabbed>...</af:panelTabbed>
</af:document>

To set the theme for a component, specify a theme attribute in the skin selector in the
CSS file. For example, the selector to change the text color under an af:panelTabbed
component to a dark theme is:

af|panelTabbed[theme="dark"] {
 color: red;
}

If you do not want a child component to inherit modifications made to a parent
component in a JSPX page, set a value for the -tr-children-theme property in the CSS
file. For example, you do not want the af:panelTabbed child component to inherit the

Defining Skin Style Properties

Customizing the Appearance Using Styles and Skins 20-23

dark theme defined for the af:document parent component in the JSPX page. Set the
-tr-children-theme property in the CSS file as follows:

af|panelTabbed::content {
 -tr-children-theme: default;
}

By default, themes are not set for components or their child components. Because
themes are inherited, the following values are supported when a component has a
theme attribute that is not set:

■ not given - If no theme is given, the theme is inherited, as in
<af:decorativeBox>...

■ #{null}- The theme is inherited; same as not given.

■ inherit - The theme is inherited; same as null.

■ default - The theme is removed for the component and its child components.

■ empty string - If the theme is set to a blank string, it has the same behavior as
default. For example, <af:decorativeBox theme=""> will remove the theme for
the component and its child components.

Because the themes are added to every HTML element of a component that supports
themes and that has style classes, there is no need for containment-style CSS selectors
for themes. With the exception of :ltr and :rtl, all theme selectors should always
appear on the last element of the selector. For example, the selector to apply a dark
theme to each step of an af:breadCrumbs component would be:

af|breadCrumbs::step:disabled[theme="dark"] {
 color:#FFFFFF;
}

Color incompatibility may occur if a component sets its background color to a color
that is not compatible with its encompassing theme color. For example, if a
panelHeader component is placed in a dark theme, the CSS styles inside the
panelHeader component will set its component background to a light color without
changing its foreground color accordingly. The result is a component with a light
foreground on a light background. Many other components also set their foreground
color to a light color when placed in a dark theme. If color incompatibility occurs, you
can resolve color incompatibility between parent and child components by setting a
value for the -tr-children-theme property.

20.3.5 How to Create a Custom Alias
You can create your own alias that you can then include on other selectors.

To create a custom alias:
1. Create a selector class for the alias. For example, you can add an alias to set the

color of a link when a mouse cursor hovers over it:

.MyLinkHoverColor:alias {color: #CC6633;}

2. To include the alias in another selector, add a pseudo-element to an existing
selector to create a new selector, and then reference the alias using the
-tr-rule-ref:selector property.

For example, you can create a new selector for the af|menuBar::enabled-link
selector to style the hover color, and then reference the custom alias, as shown in
Example 20–13.

Changing the Style Properties of a Component

20-24 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 20–13 Referencing a Custom Alias in a New Selector

af|menuBar::enabled-link:hover
{
 -rt-rule-ref:selector(".MyLinkHoverColor:alias");
}

20.3.6 How to Configure a Component for Changing Skins Dynamically
To configure a component to dynamically change the skin, you must first configure the
component on the JSF page to set a scope value that can later be evaluated by the
configuration file. You then configure the skin family in the trinidad-config file to be
dynamically set by that value.

To conditionally configure a component to set the skin family:
1. Open the main JSF page (such as the index.jspx or a similar file) that contains the

component that will be used to set the skin family.

2. Configure the page to display the skin family by using the sessionScope
component.

Example 20–14 shows an af:selectOneChoice component that takes its selected
value, and sets it as the value for the skinFamily attribute in the sessionScope
component on the index.jspx page.

Example 20–14 Using a Component to Set the Skin Family

<af:selectOneChoice label="Choose Skin:" value="#{sessionScope.skinFamily}"
autoSubmit="true">
 <af:selectItem value="skyros-v1" label="skyros"/>
 <af:selectItem value="simple" label="simple"/>
 <af:selectItem value="richDemo" label="richDemo"/>
 <af:selectItem value="mySkin" label="mySkin"/>
</af:selectOneChoice>

The Refresh button on the page resubmits the page. Every time the page refreshes,
the EL expression is evaluated and if there is a change, the page is redrawn with
the new skin.

To conditionally configure a component for changing skins at runtime:
In the trinidad-config.xml file, use an EL expression to dynamically evaluate the
skin family:

<skin-family>#{sessionScope.skinFamily}</skin-family>

20.4 Changing the Style Properties of a Component
ADF Faces components use the CSS style properties based on the Cascading Style
Sheet (CSS) specification. Cascading style sheets contain rules, composed of selectors
and declarations, that define how styles will be applied. These are then interpreted by
the browser and override the browser’s default settings.

Changing the Style Properties of a Component

Customizing the Appearance Using Styles and Skins 20-25

20.4.1 How to Set an Inline Style
Set an inline style for a component by defining the inlineStyle attribute. You can use
inline style to specify the style of a component for that instance of the component. For
more information, see Section 8.3, "Arranging Contents to Stretch Across a Page".

To set an inline style:
1. Set the inlineStyle attribute of the component to the inline style you want to use.

2. If you use the Property Inspector to set a style, you can select the style features you
want from dropdown lists, as shown in Figure 20–5.

Figure 20–5 Setting an inlineStyle

JDeveloper adds the corresponding code for the component to the JSF page.
Example 20–15 shows the source for an af:outputText component with an
inlineStyle attribute.

Example 20–15 InlineStyle in the Page Source

<af:outputText value="outputText1"
 inlineStyle="color:Red; text-decoration:overline;"/>

3. You can use an EL expression for the inlineStyle attribute itself to conditionally
set inline style attributes. For example, if you want the date to be displayed in red

WARNING: Do not use styles to achieve stretching of components.
Using styles to achieve stretching is not declarative and, in many
cases, will result in inconsistent behavior across different web
browsers. Instead, you can use the geometry management provided
by the ADF Faces framework to achieve component stretching. For
more information about layouts and stretching, see Section 8.2.1,
"Geometry Management and Component Stretching.".

Referring to URLs in a Skin’s CSS File

20-26 Web User Interface Developer's Guide for Oracle Application Development Framework

when an action has not yet been completed, you could use the code similar to that
in Example 20–16.

Example 20–16 EL Expression Used to Set an inlineStyle Attribute

<af:outputText value="#{row.assignedDate eq
 null?res['srsearch.unassignedMessage']:row.assignedDate}"
 inlineStyle="#{row.assignedDate eq null?'color:rgb(255,0,0);':''}"/>

4. The ADF Faces component may have other style attributes not available for styling
that do not register on the root DOM element. For example, for the af:inputText
component, set the text of the element using the contentStyle property, as shown
in Example 20–17.

Example 20–17 Using the contentStyle Property

<af:inputText value="outputText1"
 contentStyle="color:Red;"/>

20.4.2 How to Set a Style Class
You can define the style for a component using a style class. You create a style class to
group a set of inline styles.

To set a style using a style class:
1. Set the styleClass attribute of the component to the style class you want to use.

Example 20–18 shows an example of a style class being used in the page source.

Example 20–18 Page Source for Using a Style Class

<af:outputText value="Text with a style class"
 styleClass="overdue"/>

2. You can also use EL expressions for the styleClass attribute to conditionally set
style attributes. For example, if you want the date to be displayed in red when an
action has not yet been completed, you could use code similar to that in
Example 20–16.

20.5 Referring to URLs in a Skin’s CSS File
You can refer to a URL from a skin’s CSS file in a number of different formats. The
supported formats are:

■ Absolute

You specify the complete URL to the resource. For example, a URL in the
following format:

http://www.mycompany.com/WebApp/Skin/skin1/img/errorIcon.gif

■ Relative

You can specify a relative URL if the URL does not start with / and no protocol is
present. A relative URL is based on the location of the skin’s CSS file. For example,
if the skin's CSS file directory is WebApp/Skin/skin1/ and the specified URL is
img/errorIcon.gif, the final URL is /WebApp/Skin/mySkin/img/errorIcon.gif

Versioning Custom Skins

Customizing the Appearance Using Styles and Skins 20-27

■ Context relative

This format of URL is resolved relative to the context root of your web application.
You start a context relative root with /. For example, if the context relative root of a
web application is:

/WebApp

and the specified URL is:

/img/errorIcon.gif

the resulting URL is:

/WebApp/img/errorIcon.gif

■ Server relative

A server relative URL is resolved relative to the web server. This differs to the
context relative URL in that it allows you reference a resource located in another
application on the same web server. You specify the start of the URL using //. For
example, write a URL in the following format:

//WebApp/Skin/mySkin/img/errorIcon.gif

20.6 Versioning Custom Skins
You can specify version numbers for your custom skins in the trinidad-skins.xml file
using the <version> element. Use this capability if you want to distinguish between
custom skins that have the same value for the <family> element in the
trinidad-skins.xml file. Note that when you configure an application to use a
particular custom skin, you do so by specifying values in the trinidad-config.xml
file, as described in Section 20.2, "Applying Custom Skins to Applications."

20.6.1 How to Version a Custom Skin
You specify a version for your custom skin by entering a value for the <version>
element in the trinidad-skins.xml file.

To version a custom skin:
1. In the Application Navigator, double-click the trinidad-skins.xml file. By

default, this is in the Web Content/WEB-INF node.

2. In the structure window, right-click the skin node for the custom skin that you
want to version and choose Insert inside skin > version.

3. In the Insert version dialog, select true from the default list if you want your
application to use this version of the custom skin when no value is specified in the
<skin-version> element of the trinidad-config.xml file, as described in
Section 20.2, "Applying Custom Skins to Applications."

4. Enter a value in the name field. For example, enter v1 if this is the first version of
the custom skin.

5. Click OK.

20.6.2 What Happens When You Version Custom Skins
Example 20–19 shows an example trinidad-skins.xml that references three source
files for custom skins (skin1.css, skin2.css, and skin3.css). Each of these custom
skins have the same value for the <family> element (test). The values for the child

Deploying a Custom Skin File in a JAR File

20-28 Web User Interface Developer's Guide for Oracle Application Development Framework

elements of the <version> elements distinguish between each of these custom skins.
At runtime, an application that specifies test as the value for the <skin-family>
element in the application’s trinidad-config.xml file uses skin3 because this custom
skin is configured as the default skin in the trinidad-skins.xml file
(<default>true</default>). You can override this behavior by specifying a value for
the <skin-version> element in the trinidad-config.xml file, as described in
Section 20.2, "Applying Custom Skins to Applications."

Example 20–19 trinidad-skins.xml with versioned custom skin files

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>skin1.desktop</id>
 <family>test</family>
 <extends>simple.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin1/skin1.css</style-sheet-name>
 <version>
 <name>v1</name>
 </version>
 </skin>
 <skin>
 <id>skin2.desktop</id>
 <family>test</family>
 <extends>skyros-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
 <version>
 <name>v2</name>
 </version>
 </skin>
 <skin>
 <id>skin3.desktop</id>
 <family>test</family>
 <extends>fusion.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin3/skin3.css</style-sheet-name>
 <version>
 <default>true</default>
 <name>v3</name>
 </version>
 </skin>
</skins>

20.7 Deploying a Custom Skin File in a JAR File
You may want to store skin definitions in a Java Archive (JAR) file and then add it to
the deployed application. The benefits of packaging skins into a JAR file as compared
to bundling them into the application are the following:

■ A skin can be deployed and developed separately from the application. This also
helps to reduce the number of files to be checked in case some changes must be
applied to the skin. Foremost is that using a skin definition contained in a JAR file
improves consistency in the look and feel of the application.

■ Skin definitions and images can be separated into their own JAR files. Therefore,
you can partition the image base into separate JAR files, so that not all files have to
be deployed with all applications.

Deploying a Custom Skin File in a JAR File

Customizing the Appearance Using Styles and Skins 20-29

To deploy a skin into a JAR file, follow these rules:

■ The trinidad-skins.xml file that defines the skin and that references the CSS file
must be within the META-INF directory.

■ All image resources and CSS files must also be under the META-INF directory. The
images must be in a directory that starts with an adf root directory or any
directory name that is mapped in the web.xml file for the resource servlet, as
shown in Example 20–20.

■ The JAR file must be placed in the WEB-INF/lib directory of the view layer project
of the application to deploy (or use a shared library at the application-server
level).

Example 20–20 web.xml File with Paths

<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
 </servlet-mapping>

To deploy a skin into a JAR file:
1. Create a directory structure similar to the following:

 c:\temp\META-INF\adf\oracle\skin\images
 META-INF\skins\skyrosskin.css
 META-INF\trinidad-skins.xml

2. Confirm that the directory in the META-INF directory starts with adf. The images
directory contains all the images used within the oracle.css skin. The CSS
reference to the images should have a path similar to this:

 af|inputColor::launch-icon:rtl {
 content:url(../adf/oracle/skin/images/cfsortl.png);
 width: 12; height: 12;
 left:-7px;
 position:relative;
 right:-7px;
 top:5px;
}

Note the two leading periods in front of the image path
../adf/oracle/skin/images/cfsortl.png. This allows the search for the
META-INF root to start one directory above the META-INF/skin directory in which
the CSS is located.

3. Check that the trinidad-skins.xml file is located in the META-INF directory and
that it contains content in a format similar to this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>richdemo.desktop</id>
 <family>richDemo</family>
 <extends>skyros-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>

Deploying a Custom Skin File in a JAR File

20-30 Web User Interface Developer's Guide for Oracle Application Development Framework

 <style-sheet-name>skins/richdemo/richdemo.css</style-sheet-name>
 </skin>
</skins>

This example defines the skin as richdemo.desktop in the richDemo family. The
trinidad-skins.xml file can have more than one skin definition. The
richdemo.css file (or your custom CSS file) is referenced from the
style-sheet-name element.

4. To create the JAR file, issue the following command from the c:\temp directory:

jar -cvf customSkin.jar META-INF/

5. Copy the resulting customSkin.jar file to the WEB-INF/lib directory of the
consuming ADF project. Configure the trinidad-skins.xml file located on the
WEB-INF directory of the ADF project.

 <?xml version="1.0" encoding="windows-1252"?>
 <trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>oracle</skin-family>
 </trinidad-config>

Because the skin can be discovered at runtime, you do not need to code the skin
family name.

Note: The skin definition in the JAR file is not displayed in the
JDeveloper visual editor. You may see a message in the log window
that the skin family could not be found. You can ignore this message.

21

Internationalizing and Localizing Pages 21-1

21Internationalizing and Localizing Pages

This chapter describes how to configure JSF pages or an application to display text in
the correct language of a user’s browser.

This chapter includes the following sections:

■ Section 21.1, "Introduction to Internationalization and Localization of ADF Faces
Pages"

■ Section 21.2, "Using Automatic Resource Bundle Integration in JDeveloper"

■ Section 21.3, "Manually Defining Resource Bundles and Locales"

■ Section 21.4, "Configuring Pages for an End User to Specify Locale at Runtime"

■ Section 21.5, "Configuring Optional ADF Faces Localization Properties"

21.1 Introduction to Internationalization and Localization of ADF Faces
Pages

Internationalization is the process of designing and developing products for easy
adaptation to specific local languages and cultures. Localization is the process of
adapting a product for a specific local language or culture by translating text and
adding locale-specific components. A successfully localized application will appear to
have been developed within the local culture. JDeveloper supports easy localization of
ADF Faces components using the abstract class java.util.ResourceBundle to provide
locale-specific resources.

When your application will be viewed by users in more than one country, you can
configure your JSF page or application to use different locales so that it displays the
correct language for the language setting of a user’s browser. For example, if you
know your page will be viewed in Italy, you can localize your page so that when a
user’s browser is set to use the Italian language, text strings in the browser page will
appear in Italian.

ADF Faces components may include text that is part of the component, for example
the af:table component uses the resource string af_table.LABEL_FETCHING for the
message text that is displayed in the browser while the table is fetching data during
the initial load of data or while the table is being scrolled. JDeveloper provides
automatic translation of these text resources into 28 languages. These text resources are
referenced in a resource bundle. If you set the browser to use the language in Italy, any
text contained within the components will automatically be displayed in Italian. For
more information on skins and resource bundles, see Chapter 20, "Customizing the
Appearance Using Styles and Skins".

Introduction to Internationalization and Localization of ADF Faces Pages

21-2 Web User Interface Developer's Guide for Oracle Application Development Framework

For any text you add to a component, for example if you define the label of an
af:commandButton component by setting the text attribute, you must provide a
resource bundle that holds the actual text, create a version of the resource bundle for
each locale, and add a <locale-config> element to define default and support locales
in the application’s faces-config.xml file. You must also add a <resource-bundle>
element to your application’s faces-config.xml file in order to make the resource
bundles available to all the pages in your application. Once you have configured and
registered a resource bundle, the Expression Language (EL) editor will display the key
from the bundle, making it easier to reference the bundle in application pages.

To simplify the process of creating text resources for text you add to ADF components,
JDeveloper supports automatic resource bundle synchronization for any translatable
string in the visual editor. When you edit components directly in the visual editor or in
the Property Inspector, text resources are automatically created in the base resource
bundle.

For instance, if the title of this page is My Purchase Requests, instead of having My
Purchase Requests as the value for the title attribute of the af:panelPage
component, the value is bound to a key in the UIResources resource bundle. The
UIResources resource bundle is registered in the faces-config.xml file for the
application, as shown in Example 21–1.

Example 21–1 Resource Bundle Element in JSF Configuration File

<resource-bundle>
 <var>res</var>
 <base-name>resources.UIResources</base-name>
</resource-bundle>

The resource bundle is given a variable name (in this case, res) that can then be used
in EL expressions. On the page, the title attribute of the af:panelPage component is
then bound to the myDemo.pageTitle key in that resource bundle, as shown in
Example 21–2.

Example 21–2 Component Text Referencing Resource Bundle

<af:panelPage text="#{res['myDemo.pageTitle']}"

The UIResources resource bundle has an entry in the English language for all static
text displayed on each page in the application, as well as for text for messages and
global text, such as generic labels. Example 21–3 shows the keys for the myDemo page.

Example 21–3 Resource Bundle Keys for the myDemo Page Displayed in English

#myDemo Screen
myDemo.pageTitle=My Purchase Requests
myDemo.menubar.openLink=Open Requests
myDemo.menubar.pendingLink=Requests Awaiting customer
myDemo.menubar.closedLink=Closed Requests
myDemo.menubar.allRequests=All Requests
myDemo.menubar.newLink=Create New Purchase Request
myDemo.selectAnd=Select and

Note: Any text retrieved from the database is not translated. This
document explains how to localize static text, not text that is stored in
the database.

Using Automatic Resource Bundle Integration in JDeveloper

Internationalizing and Localizing Pages 21-3

myDemo.buttonbar.view=View
myDemo.buttonbar.edit=Edit

Note that text in the banner image and data retrieved from the database are not
translated.

Example 21–4 shows the resource bundle version for the Italian (Italy) locale,
UIResources_it. Note that there is not an entry for the selection facet’s title, yet it was
translated from Select to Seleziona automatically. That is because this text is part of the
ADF Faces table component’s selection facet.

Example 21–4 Resource Bundle Keys for the myDemo Page Displayed in Italian

#myDemo Screen
myDemo.pageTitle=Miei Ticket
myDemo.menubar.openLink=Ticket Aperti
myDemo.menubar.pendingLink=Ticket in Attesa del Cliente
myDemo.menubar.closedLink=Ticket Risolti
myDemo.menubar.allRequests=Tutti i Ticket
myDemo.menubar.newLink=Creare Nuovo Ticket
myDemo.selectAnd=Seleziona e
myDemo.buttonbar.view=Vedere Dettagli
myDemo.buttonbar.edit=Aggiorna

21.2 Using Automatic Resource Bundle Integration in JDeveloper
By default, JDeveloper supports the automatic creation of text resources in the default
resource bundle when editing ADF Faces components in the visual editor. To treat
user-defined strings as static values, disable Automatically Synchronize Bundle in the
Project Properties dialog, as described in Section 21.2.1, "How to Set Resource Bundle
Options".

Automatic resource bundle integration can be configured to support one resource
bundle per page or project, or multiple shared bundles.

You can edit translatable text strings using any one of the following methods:

■ In the visual editor, enter the new text directly in the component. Click the
component to bring up a text input window, as shown in Figure 21–1.

Figure 21–1 Adding Text to a Component

■ From the text input window, choose Select Text Resource to launch the Select Text
Resource dialog, as shown in Figure 21–2. The dialog can also be accessed by
right-clicking the component and choosing Select Text Resource for, or from the
Property Inspector, by clicking the icon to the right of a translatable property and
selecting Select Text Resource.

Using Automatic Resource Bundle Integration in JDeveloper

21-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 21–2 Select Text Resource Dialog

■ From the text input window, select Expression Builder to launch the Expression
Builder dialog. The dialog can also be accessed from the Property Inspector by
clicking the icon to the right of a translatable property and selecting Expression
Builder.

■ In the Property Inspector, enter a valid expression language string for a
translatable property.

21.2.1 How to Set Resource Bundle Options
After you have created a project, you can set resource bundle options in the Project
Properties dialog.

To set resource bundle options for a project:
1. In the Application Navigator, double-click the project.

2. In the Project Properties dialog, select Resource Bundle to display the resource
bundle options, as shown in Figure 21–3.

Note: JDeveloper only writes strings to a resource bundle that you
enter using one of the previously-listed methods.

Using Automatic Resource Bundle Integration in JDeveloper

Internationalizing and Localizing Pages 21-5

Figure 21–3 Project Properties Resource Bundle dialog

3. If you want JDeveloper to automatically generate a default resource file, select
Automatically Synchronize Bundle.

4. Select one of the following resource bundle file options:

■ One Bundle Per Project - configured in a file named
<ProjectName>.properties.

■ One Bundle Per Page - configured in a file named <PageName>.properties.

■ Multiple Shared Bundles.

5. Select the resource bundle type from the dropdown list:

■ XML Localization Interchange File Format (XLIFF) Bundle

■ List Resource Bundle

■ Properties Bundle

6. Click OK.

21.2.2 What Happens When You Set Resource Bundle Options
JDeveloper generates one or more resource bundles of a particular type based on the
selections that you make in the resource bundle options part of the Project Properties
dialog, as illustrated in Figure 21–3. It generates a resource bundle the first time that
you invoke the Select Text Resource dialog illustrated in Figure 21–2.

Assume, for example, that you select the One Bundle Per Project checkbox and the
List Resource Bundle value from the Resource Bundle Type dropdown list. The first
time that you invoke the Select Text Resource dialog, JDeveloper generates one
resource bundle for the project. The generated resource bundle is a Java class named
after the default project bundle name in the Project Properties dialog (for example,
ViewControllerBundle.java).

JDeveloper generates a resource bundle as an .xlf file if you select the XML
Localization Interchange File Format (XLIFF) Bundle option and a .properties file if
you select the Properties Bundle option.

Using Automatic Resource Bundle Integration in JDeveloper

21-6 Web User Interface Developer's Guide for Oracle Application Development Framework

By default, JDeveloper creates the generated resource bundle in the view subdirectory
of the project’s Application Sources directory.

21.2.3 How to Create an Entry in a JDeveloper-Generated Resource Bundle
JDeveloper generates one or more resource bundles based on the values you select in
the resource bundle options part of the Project Properties dialog. It generates a
resource bundle the first time that you invoke the Select Text Resource dialog from a
component property in the Property Inspector.

JDeveloper writes key-value pairs to the resource bundle based on the values that you
enter in the Select Text Resource dialog. It also allows you to select an existing
key-value pair from a resource bundle to render a runtime display value for a
component.

To create an entry in the resource bundle generated by JDeveloper:
1. In the JSF page, select the component for which you want to write a runtime value.

For example, select an af:inputText component.

2. In the Property Inspector, use a property’s dropdown list to select Select Text
Resource to create a new entry in the resource bundle.

The Select Text Resource entry in the dropdown list only appears for properties
that support text resources. For example, the Label property of an af:inputText
component.

3. Write the value that you want to appear at runtime in the Display Value input
field, as illustrated in Figure 21–2.

JDeveloper generates a value in the Key input field.

4. Optionally, write a description in the Description input field.

5. Click Save and Select.

21.2.4 What Happens When You Create an Entry in a JDeveloper-Generated Resource
Bundle

JDeveloper writes the key-value pair that you define in the Select Text Resource dialog
to the resource bundle. The options that you select in the resource bundle options part
of the Project Properties dialog determine what type of resource bundle JDeveloper
writes the key-value pair to. For more information, see Section 21.2.2, "What Happens
When You Set Resource Bundle Options".

The component property for which you define the resource bundle entry uses an EL
expression to retrieve the value from the resource bundle at runtime. For example, an
af:inputText component’s Label property may reference an EL expression similar to
the following:

#{viewcontrollerBundle.NAME}

where viewcontrollerBundle references the resource bundle and NAME is the key for
the runtime value.

Note: JDeveloper displays a matching text resource in the Matching
Text Resource field if a text resource exists that matches the value you
entered in the Display Value input field exists.

Manually Defining Resource Bundles and Locales

Internationalizing and Localizing Pages 21-7

21.3 Manually Defining Resource Bundles and Locales
A resource bundle contains a number of named resources, where the data type of the
named resources is String. A bundle may have a parent bundle. When a resource is
not found in a bundle, the parent bundle is searched for the resource. Resource
bundles can be either Java classes, property files, or XLIFF files. The abstract class
java.util.ResourceBundle has two subclasses: java.util.PropertyResourceBundle
and java.util.ListResourceBundle. A java.util.PropertyResourceBundle is stored
in a property file, which is a plain-text file containing translatable text. Property files
can contain values only for String objects. If you need to store other types of objects,
you must use a java.util.ListResourceBundle class instead.

For more information about using XLIFF, see
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

To add support for an additional locale, replace the values for the keys with localized
values and save the property file, appending a language code (mandatory) and an
optional country code and variant as identifiers to the name, for example,
UIResources_it.properties.

The java.util.ListResourceBundle class manages resources in a name and value
array. Each java.util.ListResourceBundle class is contained within a Java class file.
You can store any locale-specific object in a java.util.ListResourceBundle class. To
add support for an additional locale, you create a subclass from the base class, save it
to a file with a locale or language extension, translate it, and compile it into a class file.

The ResourceBundle class is flexible. If you first put your locale-specific String objects
in a java.util.PropertyResourceBundle file, you can still move them to a
ListResourceBundle class later. There is no impact on your code, because any call to
find your key will look in both the java.util.ListResourceBundle class and the
java.util.PropertyResourceBundle file.

The precedence order is class before properties. So if a key exists for the same language
in both a class file and a property file, the value in the class file will be the value
presented to you. Additionally, the search algorithm for determining which bundle to
load is as follows:

1. (baseclass)+(specific language)+(specific country)+(specific variant)

2. (baseclass)+(specific language)+(specific country)

3. (baseclass)+(specific language)

4. (baseclass)+(default language)+(default country)+(default variant)

5. (baseclass)+(default language)+(default country)

6. (baseclass)+(default language)

For example, if your browser is set to the Italian (Italy) locale and the default locale of
the application is US English, the application attempts to find the closest match,
looking in the following order:

1. it_IT

2. it

3. en_US

4. en

5. The base class bundle

Manually Defining Resource Bundles and Locales

21-8 Web User Interface Developer's Guide for Oracle Application Development Framework

21.3.1 How to Define the Base Resource Bundle
You must create a base resource bundle that contains all the text strings that are not
part of the components themselves. This bundle should be in the default language of
the application. You can create a resource bundle as a property file, as an XLIFF file, or
as a Java class. After a resource bundle file has been created, you can edit the file using
the Edit Resource Bundles dialog.

To create a resource bundle as a property file or an XLIFF file:
1. In JDeveloper, create a new file.

■ In the Application Navigator, right-click where you want the file to be placed
and choose New from the context menu to open the New Gallery.

■ In the Categories tree, select General, and in the Items list, select File. Click
OK.

■ In the Create File dialog, enter a name for the file using the convention
<name><_lang>.properties for the using the properties file or <name><_
lang>.xlf for using the XLIFF file, where the <_lang> suffix is provided for
translated files, as in _de for German, and omitted for the base language.

2. Enter the content for the file. You can enter the content manually by entering the
key-value pairs. You can use the Edit Resource Bundle dialog to enter the
key-value pairs, as described in Section 21.3.2, "How to Edit a Resource Bundle
File".

■ If you are creating a property file, create a key and value for each string of
static text for this bundle. The key is a unique identifier for the string. The
value is the string of text in the language for the bundle. If you are creating a
localized version of the base resource bundle, any key not found in this
version will inherit the values from the base class.

Tip: The getBundle method used to load the bundle looks for the
default locale classes before it returns the base class bundle. If it fails
to find a match, it throws a MissingResourceException error. A base
class with no suffixes should always exist as a default. Otherwise, it
may not find a match and the exception is thrown.

Note: If you are creating a localized version of the base resource
bundle, save the file to the same directory as the base file.

Note: If you are creating a localized version of a base resource
bundle, you must append the ISO 639 lowercase language code to the
name of the file. For example, the Italian version of the UIResources
bundle is UIResources_it.properties. You can add the ISO 3166
uppercase country code (for example it_CH, for Switzerland) if one
language is used by more than one country. You can also add an
optional nonstandard variant (for example, to provide platform or
region information).

If you are creating the base resource bundle, do not append any codes.

Manually Defining Resource Bundles and Locales

Internationalizing and Localizing Pages 21-9

For example, the key and the value for the title of the myDemo page is:

myDemo.pageTitle=My Purchase Requests

■ If you are creating an XLIFF file, enter the proper tags for each key-value pair.
For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="myResources" datatype="xml">
 <body>
 <trans-unit id="NAME">
 <source>Name</source>
 <target/>
 <note>Name of employee</note>
 </trans-unit>
 <trans-unit id="HOME_ADDRESS">
 <source>Home Address</source>
 <target/>
 <note>Adress of employee</note>
 </trans-unit>
 <trans-unit id="OFFICE_ADDRESS">
 <source>Office Address</source>
 <target/>
 <note>Office building </note>
 </trans-unit>
 </body>
 </file>
</xliff>

3. After you have entered all the values, click OK.

To create a resource bundle as a Java class:
1. In JDeveloper, create a new Java class:

■ In the Application Navigator, right-click where you want the file to be placed
and choose New to open the New Gallery.

■ In the Categories tree, select General, and in the Items list, select Java Class.
Click OK.

■ In the Create Java Class dialog, enter a name and package for the class. The
class must extend java.util.ListResourceBundle.

Note: All non-ASCII characters must be UNICODE-escaped or the
encoding must be explicitly specified when compiling, for example:

javac -encoding ISO8859_5 UIResources_it.java

Note: If you are creating a localized version of the base resource
bundle, it must reside in the same directory as the base file.

Manually Defining Resource Bundles and Locales

21-10 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Implement the getContents() method, which simply returns an array of
key-value pairs. Create the array of keys for the bundle with the appropriate
values. Or use the Edit Resource Bundles dialog to automatically generate the
code, as described in Section 21.3.2, "How to Edit a Resource Bundle File".
Example 21–5 shows a base resource bundle Java class.

Example 21–5 Base Resource Bundle Java Class

package sample;

import java.util.ListResourceBundle;

public class MyResources extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
}
static final Object[][] contents {
 {"button_Search", Search"},
 {"button_Reset", "Reset"},
 };
}

21.3.2 How to Edit a Resource Bundle File
After you have created a resource bundle property file, XLIFF file, or Java class file,
you can edit it using the source editor.

To edit a resource bundle after it has been created:
1. In JDeveloper, choose Application > Edit Resource Bundles from the main menu.

2. In the Edit Resource Bundles dialog, select the resource bundle file you want to
edit from the Resource Bundle dropdown list, as shown in Figure 21–4, or click
the Search icon to launch the Select Resource Bundle dialog.

Note: If you are creating a localized version of a base resource
bundle, you must append the ISO 639 lowercase language code to the
name of the class. For example, the Italian version of the UIResources
bundle might be UIResources_it.java. You can add the ISO 3166
uppercase country code (for example it_CH, for Switzerland) if one
language is used by more than one country. You can also add an
optional nonstandard variant (for example, to provide platform or
region information).

If you are creating the base resource bundle, do not append any codes.

Note: Keys must be String objects. If you are creating a localized
version of the base resource bundle, any key not found in this version
will inherit the values from the base class.

Manually Defining Resource Bundles and Locales

Internationalizing and Localizing Pages 21-11

Figure 21–4 Edit Resource Bundle Dialog

3. In the Select Resource Bundle dialog, select the file type from the File type
dropdown list. Navigate to the resource bundle you want to edit, as shown in
Figure 21–5. Click OK.

Figure 21–5 Select Resource Bundle Dialog

4. In the Edit Resource Bundles dialog, click the Add icon to add a key-value pair, as
shown in Figure 21–6. When you have finished, click OK.

Manually Defining Resource Bundles and Locales

21-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 21–6 Adding Values to a Resource Bundle

21.3.3 How to Register Locales and Resource Bundles in Your Application
You must register the locales and resource bundles used in your application in the
faces-config.xml file.

To register a locale for your application:
1. Open the faces-config.xml file and click the Overview tab in the editor window.

The faces-config.xml file is located in the <View_Project>/WEB-INF directory.

2. In the editor window, select Application.

3. In the Locale Config area, click Add to open the Property Inspector to add the
code for the locale, as shown in Figure 21–7.

Manually Defining Resource Bundles and Locales

Internationalizing and Localizing Pages 21-13

Figure 21–7 Adding a Locale to faces-config.xml

After you have added the locales, the faces-config.xml file should have code
similar to the following:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>ca</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>zh_Ch</supported-locale>
 </locale-config>

To register the resource bundle:
1. Open the faces-config.xml file and click the Overview tab in the editor window.

The faces-config.xml file is located in the <View_Project>/WEB-INF directory.

2. In the editor window, select Application.

3. In the Resource Bundle section, click Add to enable editor input. Enter the fully
qualified name of the base bundle that contains messages to be used by the
application and a variable name that can be used to reference the bundle in an EL
expression, as shown in Figure 21–8.

Figure 21–8 Adding a Resource Bundle to faces-config.xml

After you have added the resource bundle, the faces-config.xml file should have
code similar to the following:

<resource-bundle>
 <base-name>oracle.fodemo.storefront.StoreFrontUIBundle</base-name>
 <var>res</var>
</resource-bundle>

Manually Defining Resource Bundles and Locales

21-14 Web User Interface Developer's Guide for Oracle Application Development Framework

21.3.4 How to Use Resource Bundles in Your Application
With JSF 1.2 you are not required to load the base resource bundle on each page in
your application with the <f:loadBundle> tag.

To use a base resource bundle on your page:
1. Set your page encoding and response encoding to be a superset of all supported

languages. If no encoding is set, the page encoding defaults to the value of the
response encoding set using the contentType attribute of the page directive.
Example 21–6 shows the encoding for a sample page.

Example 21–6 Page and Response Encoding

<?xml version='1.0' encoding='windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces"
 xmlns:afc="http://xmlns.oracle.com/adf/faces/webcache">
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>

2. Bind all attributes that represent strings of static text displayed on the page to the
appropriate key in the resource bundle, using the variable defined in the
faces-config.xml file for the <resource-bundle> element. Example 21–7 shows
the code for the View button on the myDemo page.

Example 21–7 Binding to a Resource Bundle

<af:commandButton text="#{res['myDemo.buttonbar.view']}"
 . . . />

3. You can also use the adfBundle keyword to resolve resource strings from specific
resource bundles as EL expressions in the JSF page.

The usage format is #{adfBundle[bundleID] [resource_Key]}, where
bundleID is the fully qualified bundle ID, such as project.EmpMsgBundle, and

Tip: By default JDeveloper sets the page encoding to windows-1252.
To set the default to a different page encoding:

1. From the menu, choose Tools > Preferences.

2. In the left-hand pane, select Environment if it is not already selected.

3. Set Encoding to the preferred default.

Tip: If you type the following syntax in the source editor, JDeveloper
displays a dropdown list of the keys that resolve to strings in the
resource bundle:

<af:commandButton text="#{res.

JDeveloper completes the EL expression when you select a key from
the dropdown list.

Configuring Pages for an End User to Specify Locale at Runtime

Internationalizing and Localizing Pages 21-15

resource_Key is the resource key in the bundle, such as Deptno_LABEL.
Example 21–8 shows how adfBundle is used to provide the button text with a
resource strings from a specific resource bundle.

Example 21–8 Binding Using adfBundle

<af:commandButton text="#{adfBundle[’project.EmpMsgBundle’] [’Deptno_LABEL’]}"

21.3.5 What You May Need to Know About Custom Skins and Control Hints
If you use a custom skin and have created a custom resource bundle for the skin, you
must also create localized versions of the resource bundle. Similarly, if your
application uses control hints to set any text, you must create localized versions of the
generated resource bundles for that text.

21.3.6 What You May Need to Know About Overriding a Resource Bundle in a
Customizable Application

If you are developing a customizable application using the Oracle Metadata Services
(MDS) framework and you create a resource bundle (an override bundle) that
overrides key-value pairs from the base resource bundle, you need to configure your
application’s adf-config.xml file to support the overriding of the base resource
bundle. An override bundle is a resource bundle that contains the key-value pairs that
differ from the base resource bundle that you want to use in your customizable
application. If, for example, you have a base bundle with the name
oracle.demo.CustAppUIBundle, you configure an entry in your application's
adf-config.xml file as shown in Example 21–9 to make it overrideable. Once it is
marked as overriden, any customizations of that bundle will be stored in your
application's override bundle.

Example 21–9 Entry for Override Bundle in adf-config.xml File

<adf-resourcebundle-config xmlns="http://xmlns.oracle.com/adf/resourcebundle/config">
 <applicationBundleName>oracle/app.../xliffBundle/FusionAppsOverrideBundle</applicationBundleName>
 <bundleList>
 <bundleId override="true">oracle.demo.CustAppUIBundle</bundleId>
 </bundleList>
</adf-resourcebundle-config>

For more information about the adf-config.xml file, see Section A.4, "Configuration
in adf-config.xml." For more information about creating customizable applications
using MDS, see the "Customizing Applications with MDS" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

21.4 Configuring Pages for an End User to Specify Locale at Runtime
You can configure an application so end users can specify the locale at runtime rather
than the default behavior where the locale settings of the end user’s browser
determine the runtime locale. Implement this functionality if you want your
application to allow end users to specify their preferred locale and save their
preference.

21.4.1 How to Configure a Page for an End User to Specify Locale
Create a new page or open an existing page. Configure it so that:

Configuring Pages for an End User to Specify Locale at Runtime

21-16 Web User Interface Developer's Guide for Oracle Application Development Framework

■ It references a backing bean to store locale information

■ An end user can invoke a control at runtime to update the locale information in
the backing bean

■ The locale attribute of the f:view tag references the backing bean

To configure a page for an end user to specify locale:
1. Create a page with a backing bean to store locale information.

For more information, see Section 2.4.1, "How to Create JSF JSP Pages".

2. Provide a control (for example, a selectOneChoice component) that an end user
can use to change locale.

For example, in the Components Palette, from the Common Components panel,
drag and drop a Select One Choice anywhere onto the page.

3. Bind the control to a backing bean that stores the locale value, as illustrated in the
following example.

<af:selectOneChoice label="Select Locale"
 binding="#{backingBeanScope.backing_changeLocale.soc1}"
 id="soc1">
 <af:selectItem label="French" value="FR"
 binding="#{backingBeanScope.backing_changeLocale.si1}"
 id="si1"/>
 ...
</af:selectOneChoice>

4. Bind the locale attribute of the f:view tag to the locale value in the backing bean.

1. In the Structure window for the JSF page, right-click the f:view tag and
choose Go to Properties.

2. In the Property Inspector, use the dropdown menu next to the locale attribute
to open the Expression Builder.

3. Use the Expression Builder to bind to the locale value in the backing bean, as
shown in Figure 21–9.

Configuring Pages for an End User to Specify Locale at Runtime

Internationalizing and Localizing Pages 21-17

Figure 21–9 Expression Builder Binding the Locale Attribute to a Backing Bean

5. Save the page.

21.4.2 What Happens When You Configure a Page to Specify Locale
JDeveloper generates a reference to the backing bean for the command component that
you use to change the locale. Example 21–10 shows an example using the
selectOneChoice component.

Example 21–10 selectOneChoice Component Referencing a Backing Bean

<af:selectOneChoice label="Select Locale"
 binding="#{backingBeanScope.backing_changeLocale.soc1}"
 id="soc1">
 <af:selectItem label="French" value="FR"
 binding="#{backingBeanScope.backing_changeLocale.si1}"
 id="si1"/>
 ...
</af:selectOneChoice>

JDeveloper also generates the required methods in the backing bean for the page.
Example 21–11 shows extracts for the backing bean that correspond to Example 21–10.

Example 21–11 Backing Bean Methods to Change Locale

package view.backing;

...
import oracle.adf.view.rich.component.rich.input.RichSelectOneChoice;

public class ChangeLocale {
 ...
 ...
 private RichSelectOneChoice soc1;
...

 ...

Configuring Optional ADF Faces Localization Properties

21-18 Web User Interface Developer's Guide for Oracle Application Development Framework

 ...
 public void setD2(RichDocument d2) {
 this.d2 = d2;
 }

 ...

 public void setSoc1(RichSelectOneChoice soc1) {
 this.soc1 = soc1;
 }

 public RichSelectOneChoice getSoc1() {
 return soc1;
 }

 public void setSi1(RichSelectItem si1) {
 this.si1 = si1;
 }
...
}

21.4.3 What Happens at Runtime When an End User Specifies a Locale
At runtime, an end user invokes the command component you configured to change
the locale of the application. The backing bean stores the updated locale information.
Pages where the locale attribute of the f:view tag reference the backing bean render
using the locale specified by the end user.

The locale specified by the end user must be registered with your application. For
more information about specifying a locale and associated resource bundles, see
Section 21.3.3, "How to Register Locales and Resource Bundles in Your Application".

21.5 Configuring Optional ADF Faces Localization Properties
Along with providing text translation, ADF Faces also automatically provides other
types of translation, such as text direction and currency codes. The application will
automatically be displayed appropriately, based on the user’s selected locale.
However, you can also manually set the following localization settings for an
application in the trinidad-config.xml file:

■ <currency-code>: Defines the default ISO 4217 currency code used by
oracle.adf.view.faces.converter.NumberConverter to format currency fields
that do not specify a currency code in their own converter.

■ <number-grouping-separator>: Defines the separator used for groups of numbers
(for example, a comma). ADF Faces automatically derives the separator from the
current locale, but you can override this default by specifying a value in this
element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses and
formats.

■ <decimal-separator>: Defines the separator used for the decimal point (for
example, a period or a comma). ADF Faces automatically derives the separator
from the current locale, but you can override this default by specifying a value in
this element. If set, this value is used by
oracle.adf.view.faces.converter.NumberConverter while it parses and
formats.

Configuring Optional ADF Faces Localization Properties

Internationalizing and Localizing Pages 21-19

■ <right-to-left>: Defines the direction in which text appears in a page. ADF
Faces automatically derives the rendering direction from the current locale, but
you can explicitly set the default page rendering direction by using the values
true or false.

■ <time-zone>: Defines the time zone appropriate to the selected locale. ADF Faces
automatically uses the time zone used by the client browser. This value is used by
oracle.adf.view.faces.converter.DateTimeConverter when it converts String
to Date.

■ <formatting-locale>: Defines the date and number format appropriate to the
selected locale. ADF Faces and Trinidad, will by default, format dates and numbers
in the same locale used for localized text. If you want dates and numbers
formatted in a different locale, you can use an IANA-formatted locale (for
example, ja, fr-CA). The contents of this element can also be an EL expression
pointing at an IANA string or a java.util.Locale object.

21.5.1 How to Configure Optional Localization Properties
You can configure optional localization properties by entering elements in the
trinidad-config.xml file.

To configure optional localization properties:
1. Open the trinidad-config.xml file. The file is located in the <View_

Project>/WEB-INF directory.

2. From the Component Palette, drag the element you wish to add to the file into the
Structure window. An empty element is added to the page.

3. Enter the desired value.

Example 21–12 shows a sample trinidad-config.xml file with all the optional
localization elements set.

Example 21–12 Configuring Currency Code and Separators for Numbers and Decimal
Point

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}
</decimal-separator>

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

<formatting-locale>
 #{request.locale}

Configuring Optional ADF Faces Localization Properties

21-20 Web User Interface Developer's Guide for Oracle Application Development Framework

</formatting-locale>

<!-- Set the time zone to Pacific Daylight Savings Time -->
<time-zone>PDT</time-zone>

22

Developing Accessible ADF Faces Pages 22-1

22Developing Accessible ADF Faces Pages

This chapter describes how to add accessibility support to ADF Faces components
with keyboard shortcuts and text descriptions of the component name and state.
Accessibility guidelines for ADF pages that use partial page rendering, scripting,
styles, and certain page and navigation structures are also described.

This chapter includes the following sections:

■ Section 22.1, "Introduction to Accessible ADF Faces Pages"

■ Section 22.2, "Exposing Accessibility Preferences"

■ Section 22.3, "Specifying Component-Level Accessibility Properties"

■ Section 22.4, "Creating Accessible Pages"

■ Section 22.5, "Running Accessibility Audit Rules"

22.1 Introduction to Accessible ADF Faces Pages
Accessibility involves making your application usable for persons with disabilities
such as low vision or blindness, deafness, or other physical limitations. This means
creating applications that can be used without a mouse (keyboard only), used with a
screen reader for blind or low-vision users, and used without reliance on sound, color,
or animation and timing.

Oracle software implements the U.S. Section 508 and Web Content Accessibility
Guidelines (WCAG) 1.0 AA standards. The interpretation of these standards is
available at http://www.oracle.com/accessibility/standards.html.

Additional framework and platform issues presented by client-side scripting, in
particular using asynchronous JavaScript and XML (AJAX) have been addressed in
Oracle’s accessibility strategy.

ADF Faces user interface components have built-in accessibility support for visually
and physically impaired users. User agents such as a web browser rendering to
nonvisual media such as a screen reader can read component text descriptions to
provide useful information to impaired users. Access key support provides an
alternative method to access components and links using only the keyboard. ADF
Faces accessibility audit rules provide direction to create accessible images, tables,
frames, forms, error messages and popup windows using accessible HTML markup.

While following provided ADF Faces accessibility guidelines for components, page,
and navigation structures is useful, it is not a substitute for familiarity with
accessibility standards and performing accessibility testing with assistive technology.

Exposing Accessibility Preferences

22-2 Web User Interface Developer's Guide for Oracle Application Development Framework

22.2 Exposing Accessibility Preferences
ADF Faces provides two levels of application accessibility support, configured in the
trinidad-config.xml file using the <accessibility-mode> element. The acceptable
values for <accessibility-mode> are:

■ default: By default, ADF Faces generates components that have rich user interface
interaction, and are also accessible through the keyboard. Note that in the default
mode, screen readers cannot access all ADF Faces components. If a visually
impaired user is using a screen reader, it is recommended to use the screenReader
mode.

■ screenReader: ADF Faces generates components that are optimized for use with
screen readers. The screenReader mode facilitates the display for visually
impaired users, but will degrade the display for sighted users (without visual
impairment).

It is recommended that you provide the ability to switch between the above
accessibility support levels in the application, so that users can choose their desired
type of accessibility support, if required.

You can also use the @accessibility-profile element to define finer-grain
accessibility preferences in the style sheet or you can specify the accessibility profile
options in the trinidad-config.xml file.The options are high-contrast, large-fonts,
or both. For more information, see Section 20.1.1, "ADF Faces Skins."

The acceptable values for <accessibility-profile> are:

■ high-contrast: ADF Faces can generate high-contrast–friendly visual content. The
high-contrast mode is intended to make ADF Faces applications compatible with
operating systems or browsers that have high-contrast features enabled. For
example, ADF Faces changes its use of background images and background colors
in high-contrast mode to prevent the loss of visual information. Note that the
high-contrast mode is more beneficial if it is used in conjunction with your
browser’s or operating system’s high-contrast mode. Also, some users might find
it beneficial to use the large-font mode along with the high-contrast mode.

■ large-fonts: ADF Faces can generate browser-zoom–friendly content. In default
mode, most text and many containers have a fixed size to provide a consistent and
defined look. In the large-font mode, text and containers have a scalable size. This
allows ADF Faces both to be compatible with browsers that are set to larger font
sizes and to work with browser-zoom capabilities. Note that if you are not using
the large-font mode or browser-zoom capabilities, you should disable the
large-font mode. Also, some users might find it beneficial to use the high contrast
mode along with the large-font mode.

22.2.1 How to Configure Accessibility Support in trinidad-config.xml
In JDeveloper, when you insert an ADF Faces component into a JSF page for the first
time, a starter trinidad-config.xml file is automatically created for you in the
/WEB-INF/ directory. The file has a simple XML structure that enables you to define
element properties using the JSF expression language (EL) or static values. The order
of elements in the file does not matter. You can configure accessibility support by
editing the XML file directly or by using the Structure window.

Note: The <accessibility-mode> and <accessibility-profile>
elements should be EL-bound to a session scope managed bean that
contains the user-specific preference.

Specifying Component-Level Accessibility Properties

Developing Accessible ADF Faces Pages 22-3

To configure accessibility support in trinidad-config.xml in JDeveloper:
1. In the Application Navigator, double-click trinidad.xml.

2. In the XML editor, enter the element name <accessibility-mode> and
accessibility support value (default, screenReader, or inaccessible). For
example:

<accessibility-mode>screenReader</accessibility-mode>

This code sets the application’s accessibility support to the screen reader mode.

3. Enter the element name <accessibility-profile> and accessibility profile value
(high-contrast, large-fonts). For example:

<!-- Enable both high-contrast and large-fonts content -->
<accessibility-profile>high-contrast large-fonts</accessibility-profile>

This code sets the application’s profile support to use both high contrast and large
fonts.

4. Alternatively, you can use the Structure window to insert the value:

a. In the Application Navigator, select the trinidad-config.xml file.

b. In the Structure window, right-click the XML file root element, choose the
Insert Inside menu item, and click the <accessibility-mode> element.

c. Double-click the newly inserted element in the Structure window to open the
Property Inspector. Enter a value or select one from the dropdown list.

Once you have configured the trinidad-config.xml file, you can retrieve the property
values programmatically or by using JSF EL expressions.

For example the following code returns nothing if the accessibility mode is not
explicitly set:

String mode=ADFFacesContext.getCurrentInstance().getAccessibilityMode;

In this EL expression example, a null is returned if the accessibility mode is not
explicitly set:

<af:outputText value="*#{requestContext.accessibilityMode}"/>

22.3 Specifying Component-Level Accessibility Properties
Guidelines for component-specific accessibility are provided in Section 22.3.1, "ADF
Faces Component Accessibility Guidelines." The guidelines include a description of
the relevant property with examples and tips. For information about auditing
compliance with ADF Faces accessibility rules, see Section 22.5, "Running Accessibility
Audit Rules."

Access key support for ADF Faces input or command and go components such as
af:inputText, af:commandButton, and af:goLink involves defining labels and
specifying keyboard shortcuts. While it is possible to use the tab key to move from one
control to the next in a web application, keyboard shortcuts are more convenient and
efficient.

To specify an access key for a component, set the component's accessKey attribute to a
keyboard character (or mnemonic) that is used to gain quick access to the component.
You can set the attribute in the Property Inspector or in the page source using &
encoding.

Specifying Component-Level Accessibility Properties

22-4 Web User Interface Developer's Guide for Oracle Application Development Framework

The same access key can be bound to several components. If the same access key
appears in multiple locations in the same page, the rendering agent will cycle among
the components accessed by the same key. That is, each time the access key is pressed,
the focus will move from component to component. When the last component is
reached, the focus will return to the first component.

Using access keys on af:goButton and af:goLink components may immediately
activate them in some browsers. Depending on the browser, if the same access key is
assigned to two or more go components on a page, the browser may activate the first
component instead of cycling through the components that are accessed by the same
key.

To develop accessible page and navigation structures follow the additional
accessibility guidelines described in Section 22.4, "Creating Accessible Pages."

22.3.1 ADF Faces Component Accessibility Guidelines
To develop accessible ADF Faces components, follow the guidelines described in
Table 22–1. Components not listed do not have accessibility guidelines.

Note: Access keys are not displayed if the accessibility mode is set to
screenReader mode. For more information, see Section 22.2,
"Exposing Accessibility Preferences."

Note: In cases where the label property is referenced in the
accessibility guidelines, the labelAndAccessKey property may be used
where available, and is the preferred option.

Unless noted otherwise, you can also label ADF Faces input and select
controls by:

■ Specifying the for property in an af:outputLabel component

■ Specifying the for property in an af:panelLabelAndMessage
component

Table 22–1 ADF Faces Components Accessibility Guidelines

Component Guidelines

af:chooseColor For every af:chooseColor component, there must be at
least one af:inputColor component with a chooseId
property which points to the af:chooseColor component.

af:chooseDate For every af:chooseDate component, there must be at
least one af:inputDate component with a chooseId
property which points to the af:chooseDate component

af:commandButton One of the following properties must be specified: text,
textAndAccessKey, or shortDesc. The text should specify
the action to be taken and make sense when read out of
context. For example use "go to index" instead of "click
here."

af:commandLink Specify the text property. The text should specify where
the link will take the user and make sense when read out of
context. For example use "go to index" instead of "click
here." Multiple links that go to the same location must use
the same text and unique links must have unique text.

Specifying Component-Level Accessibility Properties

Developing Accessible ADF Faces Pages 22-5

af:commandMenuItem

af:commandNavigationItem

af:comandToolbarButton

One of the following properties must be specified: text,
textAndAccessKey, or shortDesc.

af:dialog

af:document

Specify the title property.

af:goButton One of the following properties must be specified: text,
textAndAccessKey, or shortDesc. The text should specify
the action to be taken and make sense when read out of
context. For example use "go to index" instead of "click
here."

af:goLink Specify the text property. The text should specify where
the link will take the user and make sense when read out of
context. For example use "go to index" instead of "click
here." Multiple links that go to the same location must use
the same text and unique links must have unique text.

af:image Specify the shortDesc property. If the image is only present
for decorative purposes and communicates no information,
set shortDesc to the empty string.

Use the longDescURL property for images where a complex
explanation is necessary. For example, charts and graphs
require a description file that includes all details that make
up the chart.

af:inlineFrame Specify the shortDesc property.

af:inputColor

af:inputComboboxListOfValues

af:inputDate

af:inputFile

af:inputListOfValues

af:inputNumberSlider

af:inputNumberSpinbox

af:inputRangeSlider

af:inputText

Specify the label property.

For af:inputComboboxListOfValues and
af:inputListOfValues components, the searchDesc must
also be specified.

af:outputFormatted The value property must specify valid HTML.

af:outputLabel When using this component to label an ADF Faces input or
select control, the for property must be specified.

af:panelBox

af:panelHeader

Specify the text property.

af:panelLabelAndMessage When using this component to label an ADF Faces input or
select control, the for property must be specified.

af:panelSplitter

af:panelStretchLayout

Refer to Section 22.4.4, "How to Use Page Structures and
Navigation."

af:panelWindow Specify the title property.

af:poll When using polling to update content, allow end users to
control the interval, or to explicitly initiate updates instead
of polling.

Table 22–1 (Cont.) ADF Faces Components Accessibility Guidelines

Component Guidelines

Specifying Component-Level Accessibility Properties

22-6 Web User Interface Developer's Guide for Oracle Application Development Framework

22.3.2 Using ADF Faces Table components in Screen Reader mode
If you are using ADF Faces table components in your web application, you must
designate a column as the row header for screen reader mode. The row header is used
by the screen reader software to announce the row when the end user selects it.
Typically, a single column is used as a row header that allows multiple selections, but
you can mark multiple columns as row headers. When you mark multiple columns as
row headers, they appear as the initial columns of the table, and they are frozen.

Sometimes, for display purposes, you may not want to have a row header. In such a
case, you must define one column in the table to have the rowHeader attribute set to

af:query Specify the following properties:

■ headerText

■ addFieldsButtonAccessKey

■ addFieldsButtonText

■ resetButtonAccessKey

■ resetButtonText

■ saveButtonAccessKey

■ saveButtonText

■ searchButtonAccessKey

■ searchButtonText

af:quickQuery Specify the searchDesc property.

af:richTextEditor Specify the label property.

af:selectBooleanCheckbox

af:selectBooleanRadio

One of the following properties must be specified: text,
textAndAccessKey, or label.

af:selectItem Specify the label property. Note that using the for
attribute of af:outputLabel and
af:panelMessageAndLabel components is not an
acceptable alternative.

af:selectManyCheckbox

af:selectManyChoice

af:selectManyListbox

af:selectManyShuttle

af:selectOneChoice

af:selectOneListbox

af:selectOneRadio

af:selectOrderShuttle

Specify the label property.

For the af:selectManyShuttle and
af:selectOrderShuttle components, the leadingHeader
and trailingHeader properties must be specified.

af:showDetailHeader Specify the text property.

af:showDetailItem One of the following properties must be specified: text,
textAndAccessKey, or shortDesc.

af:table

af:treeTable

Specify the summary property. The summary should
describe the purpose of the table.

If the table is used for layout purposes, the summary
property must contain an empty string.

All table columns must have column headers.

Table 22–1 (Cont.) ADF Faces Components Accessibility Guidelines

Component Guidelines

Specifying Component-Level Accessibility Properties

Developing Accessible ADF Faces Pages 22-7

unstyled. In screen reader mode, the table or the tree table component with the
unstyled row header column is moved to the starting position with displayIndex set
to 0, and it is frozen. In default mode, the table or tree table component with the
unstyled row header column is not moved to the starting position, it is not frozen, and
it is rendered without any row header CSS style.

22.3.3 ADF Data Visualization Components Accessibility Guidelines
To develop accessible ADF Data Visualization components, follow the accessibility
guidelines described in Table 22–2. Components not listed do not have accessibility
guidelines.

Table 22–2 ADF Data Visualization Components Accessibility Guidelines

Component Guideline

dvt:projectGantt

dvt:resourceUtilizationG
antt

dvt:schedulingGantt

Specify the summary property. The summary should describe the
purpose of the Gantt chart component.

dvt:gauge Specify the shortDesc property.

Specifying Component-Level Accessibility Properties

22-8 Web User Interface Developer's Guide for Oracle Application Development Framework

dvt:areaGraph

dvt:barGraph

dvt:horizontalBarGraph

dvt:bubbleGraph

dvt:comboGraph

dvt:funnelGraph

dvt:lineGraph

dvt:paretoGraph

dvt:pieGraph

dvt:radarGraph

dvt:scatterGraph

dvt:stockGraph

Specify the shortDesc property. The shortDesc property should
describe the purpose of the graph.

Note that in screen reader mode, an instance of pivot table
component substitutes the graph component, and the end user
can then use the standard cursor keys to navigate through the
data.

In screen reader mode, the following visualization features of
the graph component are not supported:

■ Data change animation during partial page rendering.

■ Zoom and Scroll. Scrolling is supported in pivot table.

■ The seriesRolloverBehavior and hideAndShowBehavior
properties on simple graph tags.

■ The interactiveSliceBehavior property on pie graphs.

■ Precise control of data marker shapes and colors, including
the following:

■ Declarative properties on the
Series child tag

■ Declarative markerShape and
markerColor properties on
Scatter graphs

■ Callback APIs

■ Conditional formatting rules
from a backing bean

■ Marker underlays for bubble
and scatter graphs

In screen reader mode, the following interactive features of the
graph component are not supported:

■ Context menu facets

■ Popups

■ TimeSelector functionality through the
<dvt:timeSelector> child tag

■ The drillingEnabled property of simple graph tags

■ ShapeAttributes support, and access to fine-grained mouse
and key events from all graph components

■ Drag and drop in bubble and scatter graphs

■ DataSelection in bubble and scatter graphs

■ Programmatic TickLabelCallback support

dvt:hierarchyViewer

dvt:sunburst

dvt:treemap

Specify the summary property.

Note that in screen reader mode, an instance of the tree table
component substitutes for the hierarchy viewer component, and
the end user can then use the standard cursor keys to navigate
through the data.

dvt:map Specify the summary property.

Note that in screen reader mode, an instance of the table
component substitutes for the map component, and the end user
can then use the standard cursor keys to navigate through the
data.

Table 22–2 (Cont.) ADF Data Visualization Components Accessibility Guidelines

Component Guideline

Specifying Component-Level Accessibility Properties

Developing Accessible ADF Faces Pages 22-9

22.3.4 How to Define Access Keys for an ADF Faces Component
In the Property Inspector of the component for which you are defining an access key,
enter the mnemonic character in the accessKey attribute field. When simultaneously
setting the text, label, or value and mnemonic character, use the ampersand (&)
character in front of the mnemonic character in the relevant attribute field.

Use one of four attributes to specify a keyboard character for an ADF Faces input or
command and go component:

■ accessKey: Use to set the mnemonic character used to gain quick access to the
component. For command and go components, the character specified by this
attribute must exist in the text attribute of the instance component; otherwise,
ADF Faces does not display the visual indication that the component has an access
key.

Example 22–1 shows the code that sets the access key to the letter h for the
af:goLink component. When the user presses the keys ALT+H, the text value of
the component will be brought into focus.

Example 22–1 AccessKey Attribute Defined

<af:goLink text="Home" accessKey="h">

■ textAndAccessKey: Use to simultaneously set the text and the mnemonic character
for a component using the ampersand (&) character. In JSPX files, the conventional
ampersand notation is &. In JSP files, the ampersand notation is simply &. In
the Property Inspector, you need only the &.

Example 22–2 shows the code that specifies the button text as Home and sets the
access key to H, the letter immediately after the ampersand character, for the
af:commandButton component.

Example 22–2 TextAndAccessKey Attribute Defined

<af:commandButton textAndAccessKey="&Home"/>

■ labelAndAccessKey: Use to simultaneously set the label attribute and the access
key on an input component, using conventional ampersand notation.

Example 22–3 shows the code that specifies the label as Date and sets the access
key to a, the letter immediately after the ampersand character, for the
af:selectInputDate component.

Example 22–3 LabelAndAccessKey Attribute Defined

<af:inputSelectDate value="Choose date" labelAndAccessKey="D&ate"/>

■ valueAndAccessKey: Use to simultaneously set the value attribute and the access
key, using conventional ampersand notation.

dvt:pivotTable Specify the summary property. The summary should describe the
purpose of the pivot table component.

dvt:sparkChart Specify the shortDesc property.

Table 22–2 (Cont.) ADF Data Visualization Components Accessibility Guidelines

Component Guideline

Specifying Component-Level Accessibility Properties

22-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 22–4 shows the code that specifies the label as Select Date and sets the
access key to e, the letter immediately after the ampersand character, for the
af:outputLabel component.

Example 22–4 ValueAndAccessKey Attribute Defined

<af:outputLabel for="someid" valueAndAccessKey="Select Dat&e"/>
<af:inputText simple="true" id="someid"/>

Access key modifiers are browser and platform-specific. If you assign an access key
that is already defined as a menu shortcut in the browser, the ADF Faces component
access key will take precedence. Refer to your specific browser’s documentation for
details.

In some browsers, if you use a space as the access key, you must provide the user with
the information that Alt+Space or Alt+Spacebar is the access key because there is no
way to present a blank space visually in the component's label or textual label. For that
browser you could provide text in a component tooltip using the shortDesc attribute.

22.3.5 How to Define Localized Labels and Access Keys
Labels and access keys that must be displayed in different languages can be stored in
resource bundles where different language versions can be displayed as needed. Using
the <resource-bundle> element in the JSF configuration file available in JSF 1.2, you
can make resource bundles available to all the pages in your application without using
a f:loadBundle tag in every page.

To define localized labels and access keys:
1. Create the resource bundles as simple .properties files to hold each language

version of the labels and access keys. For details, see Section 21.3.1, "How to
Define the Base Resource Bundle."

2. Add a <locale-config> element to the faces-config.xml file to define the default
and supported locales for your application. For details, see Section 21.3.3, "How to
Register Locales and Resource Bundles in Your Application."

3. Create a key and value for each string of static text for each resource bundle. The
key is a unique identifier for the string. The value is the string of text in the
language for the bundle. In each value, place an ampersand (& or amp) in front of
the letter you wish to define as an access key.

For example, the following code defines a label and access key for an edit button
field in the UIStrings.properties base resource bundle as Edit:

srlist.buttonbar.edit=&Edit

In the Italian language resource bundle, UIStrings_it.properties, the following
code provides the translated label and access key as Aggiorna:

srlist.buttonbar.edit=A&ggiorna

4. Add a <resource-bundle> element to the faces-config.xml file for your
application. Example 22–5 shows an entry in a JSF configuration file for a resource
bundle.

Example 22–5 Resource Bundle in JSF Configuration File

<resource-bundle>
 <var>res</var>
 <base-name>resources.UIStrings</base-name>

Creating Accessible Pages

Developing Accessible ADF Faces Pages 22-11

</resource-bundle>

Once you set up your application to use resource bundles, the resource bundle keys
show up in the Expression Language (EL) editor so that you can assign them
declaratively.

In the following example, the UI component accesses the resource bundle:

<af:outputText value="#{res[’login.date’]}"/

For more information, see Chapter 21, "Internationalizing and Localizing Pages."

22.4 Creating Accessible Pages
In addition to component-level accessibility guidelines, you should also follow
page-level accessibility guidelines when you design your application. While
component-level guidelines may determine how you use a component, page-level
accessibility guidelines are more involved with the overall design and function of the
application as a whole.

The page-level accessibility guidelines are for:

■ Using partial page rendering

■ Using scripting

■ Using styles

■ Using page structures and navigation

■ Using WAI-ARIA landmark regions

22.4.1 How to Use Partial Page Rendering
Screen readers do not reread the full page in a partial page request. Partial page
rendering (PPR) causes the screen reader to read the page starting from the component
that triggered the partial action. Therefore, place the target component after the
component that triggers the partial request; otherwise, the screen reader will not read
the updated target.

For example, the most common PPR use case is the master-detail user interface, where
selecting a value in the master component results in partial page replacement of the
detail component. In such scenarios, the master component must always appear before
the detail component in the document order.

Screen reader or screen magnifier users may have difficulty determining exactly what
content has changed as a result of partial page rendering activity. It may be helpful to
provide guidance in the form of inline text descriptions that identify relationships
between key components in the page. For example, in the master-detail scenario, some
text that indicates that selecting a row on a master component will result in the detail
component being updated could be helpful. Alternatively, a help topic that describes
the structure of the page and the relationships between components may also be
helpful.

22.4.2 How to Use Scripting
Client-side scripting is not recommended for any application problem for which there
is a declarative solution and should be kept to a minimum.

Follow these accessibility guidelines when using scripting:

Creating Accessible Pages

22-12 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Do not interact with the component DOM (Document Object Model) directly.

ADF Faces components automatically synchronize with the screen reader when
DOM changes are made. Direct interaction with the DOM is not allowed.

■ Do not use JavaScript timeouts.

Screen readers do not reliably track modifications made in response to timeouts
implemented using the JavaScript setTimeout() or setInterval() APIs. Do not
call these methods.

■ Provide keyboard equivalents.

Some users may not have access to a mouse. For example, some users may be
limited to keyboard use only, or may use alternate input devices or technology
such as voice recognition software. When adding functions using client-side
listeners, the function must be accessible in a device-independent way. Practically
speaking this means that:

– All functions must be accessible using the keyboard events.

– Click events should be preferred over mouseover or mouseout.

– Mouseover or mouseout events should additionally be available through a
click event.

■ Avoid focus changes.

Focus changes can be confusing to screen reader users as these involve a change of
context. Applications should avoid changing the focus programmatically, and
should never do so in response to focus events. Additionally, popup windows
should not be displayed in response to focus changes because standard tabbing
will be disrupted.

■ Provide explicit popup triggers.

Screen readers do not automatically respond to inline popup startups. In order to
force the screen reader to read the popup contents when in the screen reader
mode, the rich client framework explicitly moves the keyboard focus to any popup
window just after it is opened. An explicit popup trigger such as a link or button
must be provided, or the same information must be available in some other
keyboard or screen reader accessible way.

22.4.3 How to Use Styles
ADF Faces components are already styled and you may not need to make any
changes. If you want to use cascading style sheet (CSS) to directly modify their default
appearance, you should follow these accessibility guidelines:

■ Be aware of accessibility implications when you override default component
appearance.

Using CSS to change the appearance of components can have accessibility
implications. For example, changing colors may result in color contrast issues.

■ Use scalable size units.

When specifying sizes using CSS, use size units that scale relative to the font size
rather than absolute units. For example, use em, ex or % units rather than px. This is
particularly important when specifying heights using CSS, because low-vision
users may scale up the font size, causing contents restricted to fixed or absolute
heights to be clipped.

■ Do not use CSS positioning.

Creating Accessible Pages

Developing Accessible ADF Faces Pages 22-13

CSS positioning should be used only in the case of positioning the stretched layout
component. Do not use CSS positioning elsewhere.

22.4.4 How to Use Page Structures and Navigation
Follow these accessibility guidelines when using these page structures and navigation
tools:

■ Use af:panelSplitter component for layouts.

When implementing geometry-managed layouts, using af:panelSplitter allows
users to:

– Redistribute space to meet their needs

– Hide or collapse content that is not of immediate interest.

If you are planning to use af:panelStretchLayout, you should consider using
af:panelStretchLayout instead when is appropriate

These page structure qualities are useful to all users, and are particularly helpful
for low-vision users and screen-reader users

As an example, a chrome navigation bar at the top of the page should be placed
within the first facet of a vertical af:panelSplitter component, rather than
within the top facet of af:panelStretchLayout component. This allows the user to
decrease the amount of space used by the bar, or to hide it altogether. Similarly, in
layouts that contain left, center, or right panes, use horizontal splitters to lay out
the panes.

■ Enable scrolling of flow layout contents.

When nesting flow layout contents such as layout controls inside of
geometry-managed parent components such as af:panelSplitter or
af:panelStretchLayout, wrap af:panelGroupLayout with layout="scroll"
around the flow layout contents. This provides scrollbars in the event that the font
size is scaled up such that the content no longer fits. Failure to do this can result in
content being clipped or truncated.

■ Use header-based components to identify page structure.

HTML header elements play an important role in screen readability. Screen
readers typically allow users to gain an understanding of the overall structure of
the page by examining or navigating across HTML headers. Identify major
portions of the page through components that render HTML header contents
including:

– af:panelHeader

– af:showDetailHeader

– af:showDetailItem in af:panelAccordion (each accordion in a pane renders
an HTML header for the title area)

■ Use af:breadCrumbs component to identify page location.

Accessibility standards require that users be able to determine their location
within a web site or application. The use of af:breadCrumbs achieves this purpose.

22.4.5 How to Use WAI-ARIA Landmark Regions
The WAI-ARIA standard defines different sections of the page as different landmark
regions. Together with WAI-ARIA roles, they convey information about the high-level

Running Accessibility Audit Rules

22-14 Web User Interface Developer's Guide for Oracle Application Development Framework

structure of the page and facilitate navigation across landmark areas. This is
particularly useful to users of assistive technologies such as screen readers.

ADF Faces includes landmark attributes for several layout components, as listed in
Table 22–3.

These attributes can be set to one of the WAI-ARIA landmark roles, including:

■ banner

■ complimentary

■ contentinfo

■ main

■ navigation

■ search

When any of the landmark-related attributes is set, ADF Faces renders a role attribute
with the value you specified.

22.5 Running Accessibility Audit Rules
JDeveloper provides ADF Faces accessibility audit rules to investigate and report
compliance with many of the common requirements described in Section 22–1, " ADF
Faces Components Accessibility Guidelines." Running an audit report involves
creating and running an audit profile.

To create an audit profile:
1. From the main menu, choose Tools > Preferences.

2. Select Audit > Profiles.

3. In the Audit: Profiles dialog, deselect all checkboxes except ADF Faces
Accessibility Rules.

4. Save the profile with a unique name and click OK.

To run the audit report:
1. From the main menu, choose Build > Audit target.

Table 22–3 ADF Faces Components with Landmark Attributes

Component Attribute

decorativeBox topLandmark

centerLandmark

panelGroupLayout landmark

panelSplitter firstLandmark

secondLandmark

panelStretchLayout topLandmark

startLandmark

centerLandmark

endLandmark

bottomLandmark

Running Accessibility Audit Rules

Developing Accessible ADF Faces Pages 22-15

2. Select the audit profile you created from the list.

3. Click OK to generate the report.

The audit report results are displayed in the Log window. After the report completes,
you can export the results to HTML by clicking the Export icon in the Log window
toolbar.

Running Accessibility Audit Rules

22-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Part IV
Part IV Using ADF Data Visualization

Components

Part IV contains the following chapters:

■ Chapter 23, "Introduction to ADF Data Visualization Components"

■ Chapter 24, "Using ADF Graph Components"

■ Chapter 25, "Using ADF Gauge Components"

■ Chapter 26, "Using ADF Geographic Map Components"

■ Chapter 27, "Using ADF Pivot Table Components"

■ Section 28, "Using ADF Timeline Components"

■ Chapter 29, "Using ADF Gantt Chart Components"

■ Chapter 30, "Using ADF Treemap and Sunburst Components"

■ Chapter 31, "Using ADF Hierarchy Viewer Components"

23

Introduction to ADF Data Visualization Components 23-1

23Introduction to ADF Data Visualization
Components

This chapter highlights the common characteristics and focus of the ADF Data
Visualization components, which are an expressive set of interactive ADF Faces
components. The remaining chapters in this part of the guide provide detailed
information about how to create and customize each component.

This chapter includes the following sections:

■ Section 23.1, "Introduction to ADF Data Visualization Components"

■ Section 23.2, "Defining the ADF Data Visualization Components"

■ Section 23.3, "Providing Data for ADF Data Visualization Components"

■ Section 23.4, "Downloading Custom Fonts for Flash Images"

23.1 Introduction to ADF Data Visualization Components
The ADF Data Visualization components provide significant graphical and tabular
capabilities for displaying and analyzing data. These components provide the
following common features:

■ They are full ADF Faces components that support the use of ADF data controls.

■ They provide for declarative design time creation using the Data Controls Panel,
the JSF Visual Editor, Property Inspector, and Component Palette.

■ Each component offers live data preview during design. This feature is especially
useful to let you see the effect of your design as it progresses without having to
compile and run a page.

For information about the data binding of ADF Data Visualization Components, see
the "Creating Databound ADF Data Visualization Components" chapter in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

23.2 Defining the ADF Data Visualization Components
The ADF Data Visualization components include the following: graph, gauge, pivot
table, geographic map, Gantt chart, hierarchy viewer, treemap, and sunburst.

23.2.1 Graph
The graph component gives you the capability of producing more than 50 types of
graphs, including a variety of bar graphs, pie graphs, line graphs, scatter graphs, and

Defining the ADF Data Visualization Components

23-2 Web User Interface Developer's Guide for Oracle Application Development Framework

stock graphs. This component lets you evaluate multiple data points on multiple axes
in many ways. For example, a number of graphs assist you in the comparison of
results from one group against the results from another group.

The following kinds of graphs can be produced by the graph component:

■ Area graph: Creates a graph in which data is represented as a filled-in area. Use
area graphs to show trends over time, such as sales for the last 12 months. Area
graphs require at least two groups of data along an axis. The axis is often labeled
with increments of time such as months.

■ Bar graph: Creates a graph in which data is represented as a series of vertical bars.
Use to examine trends over time or to compare items at the same time, such as
sales for different product divisions in several regions.

■ Bar (horizontal) graph: Creates a graph that displays bars horizontally along the
Y-axis. Use to provide an orientation that allows you to show trends or compare
values.

■ Bubble graph: Creates a graph in which data is represented by the location and
size of round data markers (bubbles). Use to show correlations among three types
of values, especially when you have a number of data items and you want to see
the general relationships. For example, use a bubble graph to plot salaries (X-axis),
years of experience (Y-axis), and productivity (size of bubble) for your work force.
Such a graph allows you to examine productivity relative to salary and experience.

■ Combination graph: Creates a graph that uses different types of data markers
(bars, lines, or areas) to display different kinds of data items. Use to compare bars
and lines, bars and areas, lines and areas, or all three.

■ Funnel graph: Creates a graph that is a visual representation of data related to
steps in a process. The steps appear as vertical slices across a horizontal cylinder.
As the actual value for a given step or slice approaches the quota for that slice, the
slice fills. Typically a funnel graph requires actual values and target values against
a stage value, which might be time. For example, use this component to watch a
process (such as a sales pipeline) move towards a target across the stage of the
quarters of a fiscal year.

■ Line graph: Creates a graph in which data is represented as a line, as a series of
data points, or as data points that are connected by a line. Line graphs require data
for at least two points for each member in a group. For example, a line graph over
months requires at least two months. Typically a line of a specific color is
associated with each group of data such as Americas, Europe, and Asia. Use to
compare items over the same time.

■ Pareto graph: Creates a graph in which data is represented by bars and a
percentage line that indicates the cumulative percentage of bars. Each set of bars
identifies different sources of defects, such as the cause of a traffic accident. The
bars are arranged by value, from the largest number to the lowest number of
incidents. A Pareto graph is always a dual-Y graph in which the first Y-axis
corresponds to values that the bars represent and the second Y-axis runs from 0 to
100% and corresponds to the cumulative percentage values. Use the Pareto graph
to identify and compare the sources of defects.

■ Pie graph: Creates a graph in which one group of data is represented as sections of
a circle causing the circle to look like a sliced pie. Use to show the relationship of
parts to a whole such as how much revenue comes from each product line.

■ Radar graph: Creates a graph that appears as a circular line graph. Use to show
patterns that occur in cycles, such as monthly sales for the last three years.

Defining the ADF Data Visualization Components

Introduction to ADF Data Visualization Components 23-3

■ Scatter/polar graph: Creates a graph in which data is represented by the location
of data markers. Use to show correlation between two different kinds of data
values such as sales and costs for top products. Scatter graphs are especially useful
when you want to see general relationships among a number of items.

■ Sparkchart: Creates a simple, condensed graph that displays trends or variations,
often in the column of a table or inline with text. Sparkcharts are simple in design,
with limited features and formatting options, showing as much data as possible.

■ Stock graph: Creates a graph in which data shows the high, low, and closing prices
of a stock. Each stock marker displays three separate values.

In JDeveloper, you can create and data bind a graph by dragging a data control from
the Data Controls Panel. A Component Gallery displays available graph categories,
types, and descriptions to provide visual assistance when designing graphs and
defining a quick layout. Figure 23–1 shows the Component Gallery that displays when
creating a graph from a data control.

For information about the data binding of graphs, see the "Creating Databound
Graphs" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Figure 23–1 Component Gallery for Graphs from Data Controls Panel

You can also create a graph on your page by dragging a graph component from the
Component Palette. This approach allows you the option of designing the graph user
interface before binding the component to data. Figure 23–2 shows the Component
Gallery that displays when creating a pie graph from the Component Palette.

Note: The sparkchart component can only be inserted from the
Component Palette and bound to data afterwards.

Defining the ADF Data Visualization Components

23-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 23–2 Component Gallery for Pie Graphs from Component Palette

All graphs support HTML5, Flash, SVG, and PNG rendering. Graph components
support interactivity on initial display and data change including the use of zooming
and scrolling, the use of an adjustable time selector window to highlight specific
sections on a time axis, the use of line and legend highlighting and fading to filter the
display of data points, and the use of dynamic reference lines and areas.

Figure 23–3 show an application dashboard that illustrates some of the available graph
types.

Defining the ADF Data Visualization Components

Introduction to ADF Data Visualization Components 23-5

Figure 23–3 Dashboard Showing Multiple Graph Types

Figure 23–4 shows a line sparkchart displaying stock prices in a table column.

Figure 23–4 Sparkchart of Sales Trends

23.2.2 Gauge
The gauge component renders graphical representations of data. Unlike the graph, a
gauge focuses on a single data point and examines that point relative to minimum,
maximum, and threshold indicators to identify problem areas.

One gauge component can create a single gauge or a set of gauges depending on the
data provided.

The following kinds of gauges can be produced by this component:

■ Dial gauge: Creates a gauge that indicates its metric value along an 180-degree arc.
This type of gauge usually has an indicator in the shape of a line or an arrow that
points to the value that the gauge is plotting.

■ Status meter gauge: Creates a gauge that indicates the progress of a task or the
level of some measurement along a horizontal rectangular bar. An inner rectangle

Defining the ADF Data Visualization Components

23-6 Web User Interface Developer's Guide for Oracle Application Development Framework

shows the current level of a measurement against the ranges marked on an outer
rectangle.

■ Status meter gauge (vertical): Creates a gauge that indicates the progress of a task
of the level of some measurement along a vertical rectangular bar.

■ LED (lighted electronic display) gauge: Creates a gauge that depicts graphically a
measurement, such as key performance indicator (KPI). Several styles of graphics
are available for LED gauges such as arrows that indicate good (up arrow), fair
(left- or right-pointing arrow), or poor (down arrow).

You can specify any number of thresholds for a gauge. However, some LED gauges
(such as those with arrow or triangle indicators) support a limited number of
thresholds because there are a limited number of meaningful directions for them to
point. For arrow or triangle indicators, the threshold limit is three.

In JDeveloper, a Component Gallery displays available gauges categories, types, and
descriptions to provide visual assistance when designing gauges and defining a quick
layout. Figure 23–5 shows the Component Gallery for gauges.

Figure 23–5 Component Gallery for Gauges

All gauge components can use HTML5, Flash, SVG, and PNG rendering.

Figure 23–6 shows a set of dial gauges set with thresholds to display warehouse stock
levels.

Defining the ADF Data Visualization Components

Introduction to ADF Data Visualization Components 23-7

Figure 23–6 Dial Gauges set with Thresholds

Figure 23–7 shows a set of status meter gauges set with thresholds.

Figure 23–7 Status Meter Gauges set with Thresholds

23.2.3 Pivot Table
The pivot table produces a grid that supports multiple layers of data labels on rows or
columns. An optional pivot filter bar can be associated with the pivot table to filter
data not displayed in the row or column edge. When bound to an appropriate data
control such as a row set, the component also supports the option of generating
subtotals and totals for grid data, and drill operations at runtime. In JDeveloper, a
Create Pivot Table wizard provides declarative support for databinding and
configuring the pivot table. For more information, see the "Creating Databound Pivot
Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Pivot tables let you swap data labels from one edge (row or column) or pivot filter bar
(page edge) to another edge to obtain different views of your data. For example, a
pivot table might initially display total sales data for products within regions on the
row edge, broken out by years on the column edge. If you swap region and year at
runtime, then you end up with total sales data for products within years, broken out
by region.

Pivot tables support horizontal and vertical scrolling, header and cell formatting, and
drag-and-drop pivoting. Pivot tables also support ascending and descending group
sorting of rows at runtime. Figure 23–8 shows an example pivot table with a pivot
filter bar.

Defining the ADF Data Visualization Components

23-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 23–8 Pivot Table with Pivot Filter Bar

23.2.4 Geographic Map
The geographic map provides the functionality of Oracle Spatial within the ADF
framework. This component represents business data on a map and lets you
superimpose multiple layers of information on a single map. This component supports
the simultaneous display of a color theme, a graph theme (bar or pie graph), and point
themes. You can create any number of each type of theme and you can use the map
toolbar to select the desired themes at runtime.

As an example of a geographic map, consider a base map of the United States with a
color theme that provides varying color intensity to indicate the popularity of a
product within each state, a pie chart theme that shows the stock levels of warehouses,
and a point theme that identifies the exact location of each warehouse. When all three
themes are superimposed on the United States map, you can easily evaluate whether
there is sufficient inventory to support the popularity level of a product in specific
locations. Figure 23–9 shows a geographic map with color theme, pie graph theme,
and point theme.

Figure 23–9 Geographic Map with Color Theme, Pie Graph Theme, and Point Theme

Defining the ADF Data Visualization Components

Introduction to ADF Data Visualization Components 23-9

23.2.5 Gantt Chart
The Gantt chart is a type of horizontal bar graph (with time on the horizontal axis) that
is used in planning and tracking projects to show resources or tasks in a time frame
with a distinct beginning and end.

A Gantt chart consists of two ADF Faces tree tables combined with a splitter. The
left-hand table contains a list of tasks or resources while the right-hand table consists
of a single column in which progress is graphed over time.

There are three types of gantt components:

■ Project Gantt: Creates a Gantt chart that shows tasks vertically, and the duration of
the task is represented as a bar on a horizontal timeline.

■ Resource utilization Gantt: Creates a Gantt chart that shows graphically whether
resources are over or under allocated. It shows resources vertically while showing
their allocation and, optionally, capacity on the horizontal time axis.

■ Scheduling Gantt: Creates a Gantt chart that shows resource management and is
based on manual scheduling boards. It shows resources vertically with
corresponding activities on the horizontal time axis.

Figure 23–10 shows a project Gantt view of staff resources and schedules.

Figure 23–10 Project Gantt

23.2.6 Timeline
The timeline component is an interactive data visualization tool that allows users to
view events in chronological order and easily navigate forwards and backwards
within a defined time range. Events are represented as timeline items using simple
ADF components to display information such as text and images, or supply actions
such a links. A dual timeline can be configured to display two series of events to allow
a side-by-side comparison of related information.

A timeline is composed of the display of events as timeline items along a time axis, a
movable overview window that corresponds to the period of viewable time in the
timeline, and an overview time axis that displays the total time increment for the
timeline. A horizontal zoom control is available to change the viewable time range.
Timeline items corresponding to events display associated information or actions and
are connected to the date of the event in the time axis. Timelines items are represented
by a marker in the overview panel. No more that two series of events are supported by
the timeline component.

Defining the ADF Data Visualization Components

23-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 23–11 shows a timeline displaying the chronological order of the hire dates of
employees in the Summit DVT example. In this example, timeline items representing
each event display information about the employee using an image and text with
labels. When selection is configured, the timeline item, line feeler, and the event
marker in the overview panel are highlighted.

Figure 23–11 Timeline of Employee Hire Dates

23.2.7 Hierarchy Viewer
The hierarchy viewer component displays hierarchical data as a set of linked nodes in
a diagram. The nodes and links correspond to the elements and relationships to the
data. The component supports pan and zoom operations, expanding and collapsing of
the nodes, rendering of simple ADF Faces components within the nodes, and search of
the hierarchy viewer data. A common use of the hierarchy viewer is to display an
organization chart, as shown in Figure 23–12.

Defining the ADF Data Visualization Components

Introduction to ADF Data Visualization Components 23-11

Figure 23–12 Hierarchy Viewer as Organizational Chart

In JDeveloper, a Component Gallery displays available hierarchy viewer types and
descriptions to provide visual assistance when designing the component and defining
a quick layout. Figure 23–13 shows the Component Gallery for the hierarchy viewer.

Defining the ADF Data Visualization Components

23-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 23–13 Component Gallery for Hierarchy Viewer

23.2.8 Treemap and Sunburst
The treemap and sunburst components display quantitative hierarchical data across
two dimensions, represented visually by size and color. For example, you can use a
treemap or sunburst to display quarterly regional sales and to identify sales trends,
using the size of the node to indicate each region’s sales volume and the node’s color
to indicate whether that region’s sales increased or decreased over the quarter.

Treemaps and sunbursts use a shape called a node to reference the data in the
hierarchy. Treemaps display nodes as a set of nested rectangles. Each branch of the
tree is given a rectangle, which is then tiled with smaller rectangles representing
sub-branches.

Figure 23–14 shows a treemap displaying United States census data grouped by
regions, with the color attribute used to indicate median income levels. States with
larger populations display in larger-sized nodes than states with smaller populations.

Defining the ADF Data Visualization Components

Introduction to ADF Data Visualization Components 23-13

Figure 23–14 Treemap Displaying United States Census Data by Region

Sunbursts display the nodes in a radial rather than a rectangular layout, with the top
of the hierarchy at the center and deeper levels farther away from the center.
Figure 23–15 shows the same census data displayed in a sunburst.

Figure 23–15 Sunburst Displaying United States Census Data by Region

Treemaps and sunbursts can display thousands of data points in a relatively small
spatial area. These components are a good choice for identifying trends for large
hierarchical data sets, where the proportional size of the nodes represents their

Providing Data for ADF Data Visualization Components

23-14 Web User Interface Developer's Guide for Oracle Application Development Framework

importance compared to the whole. Color can also be used to represent an additional
dimension of information

Use treemaps if you are primarily interested in displaying two metrics of data using
size and color at a single layer of the hierarchy. Use sunbursts instead if you want to
display the metrics for all levels in the hierarchy. Drilling can be enabled to allow the
end user to traverse the hierarchy and focus in on key parts of the data.

For additional information about treemaps and sunbursts and how to use them in
your application, see Chapter 30, "Using ADF Treemap and Sunburst Components."

23.3 Providing Data for ADF Data Visualization Components
All data visualization components can be bound to row set data collections in an ADF
data control. For information and examples of data binding these components to data
controls, see the "Creating Databound ADF Data Visualization Components" chapter
in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Graphs and gauges have a tabularData method that lets you provide CSV (Comma
Separated Value) data from a method that is stored in a managed bean.

The Gantt chart component supports the use of a basic tree data control when you
want to provide data not only for tasks and resources but also for subtasks and
subresources.

23.4 Downloading Custom Fonts for Flash Images
Graph and gauge components provide text rotation, high fidelity display, and
embedded fonts using Flash image types. The Flash engine is a prebuilt Shockwave
Flash (SWF) file containing precompiled ActionScript code used to display a graph
or gauge by using an XML definition of a chart. The Flash engine is downloaded and
instantiated by a Flash Player embedded in the client browser at runtime.

Embedded fonts are used for display and printing purposes, they are not installed on
the client, and they cannot be edited. They are used by the Flash Player, in memory,
and are cleared when the player terminates. Although embedded fonts require a
roundtrip to the server to download the font SWF file, they provide a consistent look
across all clients, support text rotation, and minimize distortion or anti-aliasing.

Oracle provides one font, Albany WT, for use in Flash images when necessary. This
font does not provide any non-plain variations such as Bold or Italic. The Albany WT
font is used instead of the default font to support certain animations not supported by
Flash with device fonts, if the application does not specify and provide its own
embedded font to use instead.

Specific fonts and their respective SWF files can be added to your application as
embedded fonts to be passed to the Flash engine. The engine will defer-load any font
specified in the list until that font is required by any text or labels in a graph or gauge
definition. Example 23–1 defines the Georgia font with a Bold and Italic combination.

Example 23–1 SWF File

package
{
 import.flash.display.Sprite;
 import.flash.text.Font;
public class fGeorgiaBoldItalic extends Srite
(

Downloading Custom Fonts for Flash Images

Introduction to ADF Data Visualization Components 23-15

 [Embed (source="c:\\WINDOWS\\Fonts\\GEORGIABI.TTF",
 fontName="Georgia Bold Italic",
 fontWeight="Bold",
 fontStyle="Italic".
 mimType="application/x-font-truetype")]
 private statis car font1:Class;
 public function fGeorgiaBoldItalic() {
 Font registerFont(font1);
}
 }
}

You can set graph and gauge font attributes as follows:

■ fontEmbedding: Defines whether or not the embedded fonts are used. Some
performance may be gained by setting the attribute to none.

■ fontMap: Contains the actual map of the fonts that should be used for embedding.
The map contains the name of a font and a URL where the custom font SWF file
can be found.

Downloading Custom Fonts for Flash Images

23-16 Web User Interface Developer's Guide for Oracle Application Development Framework

24

Using ADF Graph Components 24-1

24Using ADF Graph Components

This chapter describes how to use an ADF graph component to display data and
provides the options for graph customization.

This chapter includes the following sections:

■ Section 24.1, "Introduction to the Graph Component"

■ Section 24.2, "Understanding the Graph Tags"

■ Section 24.3, "Understanding Data Requirements for Graphs"

■ Section 24.4, "Creating a Graph"

■ Section 24.5, "Changing the Graph Type"

■ Section 24.6, "Customizing the Appearance of Graphs"

■ Section 24.7, "Customizing the Appearance of Specific Graph Types"

■ Section 24.8, "Adding Specialized Features to Graphs"

■ Section 24.9, "Animating Graphs"

For information about the data binding of ADF graphs, see the "Creating Databound
Graphs" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

24.1 Introduction to the Graph Component
The graph component gives you the capability of producing more than 50 types of
graphs, including a variety of area, bar, bubble, combination, funnel, line, Pareto, pie,
radar, scatter, sparkchart, and stock graphs. This component lets you evaluate multiple
data points on multiple axes in many ways. For example, a number of graphs assist
you in the comparison of results from one group with the results from another group.

A Component Gallery displays available graph categories, types, and descriptions to
provide visual assistance when you are creating graphs and specifying a quick-start
layout. Figure 24–1 shows the Component Gallery for horizontal bar graphs.

Introduction to the Graph Component

24-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 24–1 Component Gallery for Horizontal Bar Graphs

When a graph is inserted into a JSF page using the Component Gallery, a set of child
tags that support customization of the graph is automatically inserted. Example 24–1
shows the source code for a horizontal bar graph with the quick-start layout selected
in the Component Gallery in Figure 24–1.

Example 24–1 Horizontal Bar Graph Sample Code

<dvt:horizontalBarGraph id="horizontalBarGraph1"
 subType="BAR_HORIZ_CLUST">
 customLayout="CL_NONE"
 <dvt:background>
 <dvt:specialEffects/>
 </dvt:background>
 <dvt:graphPlotArea/>
 <dvt:seriesSet>
 <dvt:series/>
 </dvt:seriesSet>
 <dvt:o1Axis/>
 <dvt:y1Axis/>
 <dvt:legendArea automaticPlacement="AP_NEVER" position="LAP_BOTTOM"/>
 <dvt:legendTitle text="Legend Title"/>
 <dvt:graphSubtitle horizontalAlignment="CENTER" text="Subtitle"/>
 <dvt:graphTitle horizontalAlignment="CENTER" text="Title"/>
</dvt:horizontalBarGraph>

Figure 24–2 shows the visual editor display of the horizontal bar graph created with
the Component Gallery in Figure 24–1.

Introduction to the Graph Component

Using ADF Graph Components 24-3

Figure 24–2 Horizontal Bar Graph in Visual Editor

When editing a graph in the visual editor, graph components such as the title, legend
area, plot area, background, axis labels, and display of bars can be selected to display a
context menu with editing choices. For more information about editing a graph in the
visual editor, see Section 24.6, "Customizing the Appearance of Graphs."

Graphs are displayed in a default size of 400 X 300 pixels. You can customize the size
of a graph or specify dynamic resizing to fit an area across different browser window
sizes. When graphs are displayed in a horizontally or vertically restricted area, for
example in a web page sidebar, the graph is displayed in a fully featured, although,
simplified display.

To support visually impaired users who read web pages with a screen reader, graphs
are automatically replaced with pivot tables when screen reader mode is enabled for
the application. Screen readers can more easily navigate and read the data in a pivot
table than in a graph. For information about enabling screen reader mode, see
Section 22.2, "Exposing Accessibility Preferences." For information about ADF pivot
tables, see Section 27.1, "Introduction to the ADF Pivot Table Component."

By default, graphs in new applications are displayed in the HTML5 image format if
the client supports it. Alternatively, graphs can be displayed using Flash or a Portable
Network Graphics (PNG) output format. For more information about graph image
formats, see Section 24.4.4, "What You May Need to Know About Graph Image
Formats."

HTML5, Flash, and PNG image formats for graphs support bi-directional locales.
Figure 24–3 shows bi-directional support in multiple pie graphs.

Figure 24–3 Bi-directional Support in Graphs

Understanding the Graph Tags

24-4 Web User Interface Developer's Guide for Oracle Application Development Framework

24.2 Understanding the Graph Tags
Because of the many graph types and the significant flexibility of the graph
components, graphs have a large number of DVT tags. The prefix (dvt:) occurs at the
beginning of each graph tag name indicating that the tag belongs to the ADF Data
Visualization Tools (DVT) tag library. The following list identifies groups of tags
related to the graph component:

■ Graph-specific tags: The 13 graph-specific tags provide a convenient and quick
way to create one commonly used graph type. They are represented in the
Component Gallery as categories of graphs with one or more types, and a variety
of quick-start layout options from which to choose. For a list and description of
these tags, see Section 24.2.1, "Graph-Specific Tags."

■ Common graph child tags: These tags are supported by most graph types to
provide customization. For a list and description of these tags, see Section 24.2.2,
"Common Graph Child Tags."

■ Graph-type child tags: These tags apply either to specific graph types or to specific
parts of a graph. For a list and description of these tags, see Section 24.2.3,
"Graph-Specific Child Tags."

■ Child set tags: These tags wrap a set of an unlimited number of related tags. For a
list and description of these tags, see Section 24.2.4, "Child Set Tags."

For complete descriptions of all the tags, their attributes, and a list of valid values,
consult the DVT tag documentation. To access this documentation for a specific tag in
JDeveloper, select the tag in the Structure window and press F1. To access the full ADF
Data Visualization Tools tag library in JDeveloper Help, expand the Javadoc and Tag
Library References node in the online Help Table of Contents and click the link to the
tag library in the JDeveloper Tag Library Reference topic.

24.2.1 Graph-Specific Tags
There are 13 graph-specific tags:

■ dvt:areaGraph: Supports an area graph in which data is represented as a filled-in
area. Use area graphs to show trends over time, such as sales for the last 12
months. Area graphs require at least two groups of data along an axis. The axis is
often labeled with increments of time such as months.

■ dvt:barGraph: Supports a bar graph in which data is represented as a series of
vertical bars. Use bar graphs to examine trends over time or to compare items at
the same time, such as sales for different product divisions in several regions.

■ dvt:horizontalBarGraph: Creates a graph that displays bars horizontally along
the y-axis. Use horizontal bar graphs to provide an orientation that allows you to
show trends or compare values.

■ dvt:bubbleGraph: Creates a graph in which data is represented by the location and
size of round data markers (bubbles). Use bubble graphs to show correlations
among three types of values, especially when you have a number of data items
and you want to see the general relationships. For example, use a bubble graph to
plot salaries (x-axis), years of experience (y-axis), and productivity (size of bubble)
for your work force. Such a graph allows you to examine productivity relative to
salary and experience.

■ dvt:comboGraph: Creates a graph that uses different types of data markers (bars,
lines, or areas) to display different kinds of data items. Use combination graphs to
compare bars and lines, bars and areas, lines and areas, or all three combinations.

Understanding the Graph Tags

Using ADF Graph Components 24-5

■ dvt:funnelGraph: Creates a graph that is a visual representation of data related to
steps in a process. The steps appear as vertical slices across a horizontal
cone-shaped section. As the actual value for a given step or slice approaches the
quota for that slice, the slice fills. Typically, a funnel graph requires actual values
and target values against a stage value, which might be time. For example, use the
funnel graph to watch a process where the different sections of the funnel
represent different stages in the sales cycle.

■ dvt:lineGraph: Creates a graph in which data is represented as a line, as a series
of data points, or as data points that are connected by a line. Line graphs require
data for at least two points for each member in a group. For example, a line graph
over months requires at least two months. Typically a line of a specific color is
associated with each group of data such as the Americas, Europe, and Asia. Use
line graphs to compare items over the same time.

■ dvt:paretoGraph: Creates a graph in which data is represented by bars and a
percentage line that indicates the cumulative percentage of bars. Each set of bars
identifies different sources of defects, such as the cause of a traffic accident. The
bars are arranged by value, from the largest number to the lowest number of
incidents. A Pareto graph is always a dual-Y graph in which the first y-axis
corresponds to values that the bars represent and the second y-axis runs from 0%
to 100% and corresponds to the cumulative percentage values. Use Pareto graphs
to identify and compare the sources of defects.

■ dvt:pieGraph: Creates a graph in which one group of data is represented as
sections of a circle causing the circle to look like a sliced pie. Use pie graphs to
show the relationship of parts to a whole such as how much revenue comes from
each product line.

■ dvt:radarGraph: Creates a graph that appears as a circular line graph. Use radar
graphs to show patterns that occur in cycles, such as monthly sales for the last
three years.

■ dvt:scatterGraph: Creates a graph in which data is represented by the location of
data markers. Use scatter graphs to show correlation between two different kinds
of data values such as sales and costs for top products. Use scatter graphs in
particular to see general relationships among a number of items. A scatter graph
can display data in a directional manner as a polar graph.

■ dvt:sparkChart: Creates a simple, condensed graph that displays trends or
variations in a single data value, typically stamped in the column of a table or in
line with related text. Sparkcharts have basic conditional formatting.

■ dvt:stockGraph: Creates a graph in which data shows the high, low, and closing
prices of a stock. Each stock marker displays two to four separate values (not
counting the optional volume marker) depending on the specific type of stock
graph chosen.

24.2.2 Common Graph Child Tags
Types of common customization and related child tags include:

Note: In this release sparkcharts are created by inserting the
dvt:sparkChart tag from the Component Palette and then binding the
component to data. Sparkcharts cannot be created using the Data
Controls panel.

Understanding the Graph Tags

24-6 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Animation effects for graphs: dvt:animationOnDisplay and
dvt:animationOnDataChange tags.

■ Alerts that highlight a data point with a custom icon: dvt:alertSet and
dvt:alert tags.

■ Annotations that insert notes for specific data points: dvt:annotationSet and
dvt:annotation tags.

■ Appearance and titles for the graph: dvt:background, dvt:graphFont,
dvt:graphFootnote, dvt:graphPlotArea, dvt:graphSubtitle, and
dvt:graphTitle tags.

■ Colors and appearance of bars, areas, lines, and pie slices (also known as series
items): dvt:seriesSet and dvt:series tags.

■ Formatting categorical attributes in the ordinal axis and marker tooltips:
dvt:attributeFormat.

■ Legend appearance: dvt:legendArea, dvt:legendText, and dvt:legendTitle tags.

■ Marker customization related to each axis: dvt:markerText, dvt:x1Format,
dvt:y1Format, dvt:y2Format, and dvt:zFormat tags.

■ Reference lines and reference areas: dvt:referenceObjectSet and
dvt:referenceObject tags.

■ Customization for the ordinal axis (also known as the category axis) used with bar,
area, combination, line, radar, and stock graphs with group labels: dvt:o1Axis,
dvt:o1MajorTick, dvt:o1TickLabel, and dvt:o1Title tags.

■ Customization for the x-axis used with scatter and bubble graphs with numerical
labels: dvt:x1Axis, dvt:x1MajorTick, dvt:x1TickLabel, dvt:x1MinorTick, and
dvt:x1Title tags.

■ Customization for the y1-axis: dvt:y1Axis, dvt:y1BaseLine, dvt:y1MajorTick,
dvt:y1TickLabel, dvt:y1MinorTick, and dvt:y1Title tags.

■ Customization for the y2-axis: dvt:y2Axis, dvt:y2BaseLine, dvt:y2MajorTick,
dvt:y2TickLabel, dvt:y2MinorTick, and dvt:y2Title tags.

24.2.3 Graph-Specific Child Tags
Types of graph-specific customizations and related child tags include:

■ Gradients that are used for a graph only in conjunction with dvt:background,
dvt:legendArea, dvt:graphPlotArea, dvt:graphPieFrame, dvt:series,
dvt:referenceObject, or dvt:timeSelector subcomponents:
dvt:specialEffects and dvt:gradientStopStyle tags.

■ Interactivity specifications for subcomponents of a graph: dvt:shapeAttrbutesSet
and dvt:shapeAttributes tags.

■ Formatting numerical data values for graph: dvt:sliceLabel, dvt:x1TickLabel,
dvt:y1TickLabel, dvt:y2TickLabel, dvt:x1Format, dvt:y1Format, dvt:y2Format,
dvt:zFormat, and dvt:stockVolumeFormat.

■ Time axis customization for area, bar, combination, line, and stacked bar graphs:
dvt:timeAxisDateFormat, and dvt:timeSelector tags.

■ Selection of a range on a time axis for master-detail graphs: dvt:timeSelector tag.

■ Pareto graphs: dvt:paretoLine and dvt:paretoMarker tags.

Understanding Data Requirements for Graphs

Using ADF Graph Components 24-7

■ Pie graphs: dvt:graphPieFrame, dvt:pieFeeler, dvt:slice, and dvt:sliceLabel
tags.

■ Sparkcharts: dvt:sparkItem tag provides data for the sparkchart.

■ Stock graphs: dvt:stockMarker, dvt:stockVolumeformat, and dvt:volumeMarker
tags.

24.2.4 Child Set Tags
Child set tags include:

■ dvt:alertSet tag: Wraps dvt:alert tags that define an additional data point that
needs to be highlighted with a separate symbol, such as an error or warning.

■ dvt:annotationSet tag: Wraps dvt:annotation tags that define an annotation on
a graph. An annotation is associated with a specific data point on a graph

■ dvt:referenceObjectSet tag: Wraps dvt:referenceObject tags that define a
reference line or a reference area for a graph. You can define an unlimited number
of reference objects for a given graph.

■ dvt:seriesSet tag: Wraps dvt:series tags that define a set of data markers or
series on a graph.

■ dvt:shapeAttributesSet tag: Wraps dvt:shapeAttributes tags that specified
interactivity properties on a subcomponent of a graph.

In each case, during design, you must create the wrapper tag first, followed by a
related tag for each item in the set. Example 24–2 shows the sequence of the tags when
you create a set of alert tags to define two alert points for an area graph.

Example 24–2 Sample Code for a Set of Alert Tags

<dvt:areaGraph id="areaGraph1" subType="AREA_VERT_ABS">
 <dvt:background>
 <dvt:specialEffects/>
 </dvt:background>
 <dvt:graphPlotArea/>
 <dvt:alertSet>
 <dvt:alert xValue="Boston" yValue="3.50"
 yValueAssignment="Y1AXIS" imageSource="myWarning.gif"/>
 <dvt:alert xValue="Boston" yValue="5.50"
 yValueAssignment="Y1AXIS" imageSource="myError.gif"/>
 </dvt:alertSet>
 <dvt:o1Axis/>
 <dvt:y1Axis/>
 <dvt:legendArea automaticPlacement="AP_NEVER"/>
</dvt:areaGraph>

24.3 Understanding Data Requirements for Graphs
Data requirements for graphs differ with graph type. Data requirements can be any of
the following kinds:

■ Geometric: Some graph types need a certain number of data points in order to
display data. For example, a line graph requires at least two groups of data
because a line requires at least two points.

■ Complex: Some graph types require more than one data point for each marker
(which is the component that actually represents the data in a graph). A scatter
graph, for example, needs two values for each group so that it can position the

Understanding Data Requirements for Graphs

24-8 Web User Interface Developer's Guide for Oracle Application Development Framework

marker along the x-axis and along the y-axis. If the data that you provide to a
graph does not have enough data points for each group, the graph component
does its best to display a graph.

■ Logical: Some graph types cannot accept certain kinds of data. The following
examples apply:

– Negative data issues: Do not pass negative data to a pie graph or to a
percentage bar, line, or area graph. Markers will not display for negative data
in percentage graphs.

– Null or zero data: You cannot see markers for null data because markers will
not be produced for null data. Also, if a graph receives zero data and the axis
line is at zero, the marker is not visible. However, if the axis line is at nonzero,
the zero marker is visible.

– Insufficient sets (or series) of data: Dual-Y graphs require a set of data for each
y-axis. Usually, each set represents different information. For example, the
y1-axis might represent sales for specific countries and time periods, while the
y2-axis might represent total sales for all countries. If you pass only one set of
y-axis data, then the graph cannot display data on two different Y-axes. It
displays the data on a single y-axis.

Similar graphs share similar data requirements. For example, you can group the
following graphs under the category of area graphs:

■ Absolute area graph.

■ Stacked area graph.

■ Percentage area graph.

24.3.1 Area Graph Data Requirements
An area graph is one in which data is represented as a filled-in area. The following
kinds of area graphs are available:

■ Absolute: Each area marker connects a series of two or more data values. This kind
of graph has the following variations: Absolute area graph with a single y-axis and
absolute area graph with a split dual-Y axis.

In a split dual-Y graph, the plot area is split into two sections, so that sets of data
assigned to the different Y-axes appear in different parts of the plot area.

■ Stacked: Area markers are stacked. The values of each set of data are added to the
values for previous sets. The size of the stack represents a cumulative total. This
kind of graph has the following variations: Stacked area graph with a single y-axis
and stacked area graph with a split dual y-axis.

■ Percentage: Area markers show the percentage of the cumulative total of all sets of
data.

Data guidelines for area graphs are:

■ Area graphs require at least two groups of data. A group is represented by a
position along the horizontal axis that runs through all area markers. In a graph
that shows data for a three-month period, the groups might be labeled Jan, Feb,
and Mar.

■ Area graphs require one or more series of data. A filled-in area represents a series
or set of data and is labeled by legend text, such as the continent of the Americas,
Europe, and Asia.

Understanding Data Requirements for Graphs

Using ADF Graph Components 24-9

■ Percentage area graphs cannot have negative numbers.

■ Dual-Y graphs require two sets of data.

24.3.2 Bar Graph Data Requirements
A bar graph is one in which data is represented as a series of bars. The following kinds
of bar graphs are available:

■ Clustered: Each cluster of bars represents a group of data. For example, if data is
grouped by employee, one cluster might consist of a Salary bar and a Commission
bar for a given employee. This kind of graph includes the following variations:
Vertical clustered bar graphs and horizontal clustered bar graphs. All variations of
clustered bar graphs can be arranged as single y-axis, dual y-axis, and split dual
y-axis graphs.

■ Stacked: Bars for each set of data are appended to previous sets of data. The size of
the stack represents a cumulative data total. This kind of graph includes the
following variations: Vertical stacked bar graphs and horizontal stacked bar
graphs. All variations of stacked bar graphs can be arranged as single y-axis, dual
y-axis, and split dual y-axis graphs.

■ Percentage: Bars are stacked and show the percentage of a given set of data
relative to the cumulative total of all sets of data. Percentage bar graphs are
arranged only with a single y-axis.

Data guidelines for bar graphs are:

■ Percentage bar graphs cannot have negative numbers.

■ Dual-Y graphs require two sets of data.

24.3.3 Bubble Graph Data Requirements
A bubble graph is one in which data is represented by the location and size of round
data markers (bubbles). Each data marker in a bubble graph represents three group
values:

■ The first data value is the X value. It determines the marker’s location along the
x-axis.

■ The second data value is the Y value. It determines the marker’s location along the
y-axis.

■ The third data value is the z value. It determines the size of the marker.

The following kinds of bubble graphs are available: Bubble graph with a single y-axis
and bubble graph with a dual y-axis.

Data guidelines for a bubble graph are:

■ Bubble graphs require at least three data values for a data marker.

■ For more than one group of data, bubble graphs require that data must be in
multiples of three. For example, in a specific bubble graph, you might need three
values for Paris, three for Tokyo, and so on. An example of these three values
might be: X value is average life expectancy, Y value is average income, and z
value is population.

Understanding Data Requirements for Graphs

24-10 Web User Interface Developer's Guide for Oracle Application Development Framework

24.3.4 Combination Graph Data Requirements
A combination graph uses different types of data markers to display different sets of
data. The data markers used are bar, area, and line.

Data guidelines for combination graphs are:

■ Combination graphs require at least two sets of data or else the graph cannot show
different marker types.

■ Combination graphs require at least two groups of data or else the graph cannot
render an area marker or a line marker.

24.3.5 Funnel Graph Data Requirements
A funnel graph is a visual representation of data related to steps in a process. As the
value for a given step (or slice) of the funnel approaches the quota for that slice, the
slice fills. A funnel renders a three-dimensional chart that represents target and actual
values, and levels by color. A funnel graph displays data where the target is
considered to be 100%. Therefore, if the actual value is 50 and target is 200, then 25% of
the slice will be filled.

Data guidelines for funnel graphs are:

■ Funnel graphs require two series (or sets of data). These two sets of data serve as
the target and actual data values. Threshold values appear in the graph legend.

Another variation of the funnel graph requires only one set of data, where the data
values shown are percentages of the total values. To produce this type of funnel
graph, you must set the funnelPercentMeasure property on the graph to be True.
This setting should be done in the XML for the graph.

■ Funnel graphs require at least one group of data to be used as a stage.

24.3.6 Line Graph Data Requirements
A line graph represents data as a line, as a series of data points, or as data points that
are connected by a line. The following kinds of line graphs are available:

■ Absolute: Each line segment connects two data points. This kind of graph can have
its axes arranged as single y-axis, dual y-axis, and split dual y-axis.

■ Stacked: Lines for each set of data are appended to previous sets of data. The size
of the stack represents a cumulative data total. This kind of graph can have its axes
arranged as single y-axis, dual y-axis, and split dual y-axis.

■ Percentage: Lines are stacked and each line shows the percentage of a given set of
data relative to the cumulative total of all sets of data. Percentage line graphs are
arranged only with a single y-axis.

Data guidelines for line graphs are:

■ Line graphs require at least two groups of data because lines require at least two
points. A group is represented by a marker of each color. The group has a tick label
such as the name of a month.

Note: When you look at a bubble graph, you can identify groups of
data by examining tooltips on the markers. However, identifying
groups is not as important as looking more at the overall pattern of
the data markers.

Understanding Data Requirements for Graphs

Using ADF Graph Components 24-11

■ Percentage line graphs cannot have negative numbers.

■ Dual-Y graphs require two sets of data.

24.3.7 Pareto Graph Data Requirements
Pareto graphs are specifically designed for identifying sources of defects. In a Pareto
graph, a series of bars identifies different sources of defects. These bars are arranged
by value, from the greatest number to the lowest number. A line shows the percentage
of the cumulative values of the bars to the total values of all the bars in the graph. The
line always ends at 100%.

Pareto graphs are always dual-Y graphs. The y1-axis corresponds to values that the
bars represent. The y2-axis corresponds to the cumulative percentage values.

Data guidelines for Pareto graphs are:

■ Pareto graphs require at least two groups of data.

■ Pareto graphs cannot have negative numbers.

■ If you pass more than one set of data to a Pareto graph, the graph uses only the
first set of data.

■ Do not pass percentage values as part of the data for a Pareto graph. The graph
calculates the percentages based on the data that you pass.

24.3.8 Pie Graph Data Requirements
A pie graph represents data as sections of one or more circles, making the circles look
like sliced pies. The following varieties of pie graphs are available:

■ Pie: The center of each circle is full. Pie graphs can consist of a single pie or
multiple pies.

■ Ring: The center of each circle has a hole in which the total pie value is displayed.
Ring graphs can consist of a single ring or multiple rings.

The data structure of a pie graph follows:

■ Each pie or ring represents one group of data and has a pie or ring label such as
the name of a month. If you have only one group of data, then only one pie or ring
appears even if you selected a multiple pie or ring graph type. Also, if any group
has all zero data, then the pie or ring for that group is not displayed.

■ A series or set of data is represented by all the slices of the same color. You see
legend text for each set of this data. For example, if there is a separate set of data
for each country, then the name of each country appears in the legend text.

Data guidelines for pie graphs are:

■ Pie graphs cannot have negative numbers.

■ Multiple pie graphs require at least two groups of data.

24.3.9 Polar Graph Data Requirements
A polar graph is a circular scatter graph. In a polar graph, as in a scatter graph, data is
represented by the location of data markers. In a polar graph, the plot area, where the
markers appear, is circular. For information about scatter graphs, see Section 24.3.11,
"Scatter Graph Data Requirements."

Understanding Data Requirements for Graphs

24-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Like scatter graphs, polar graphs are especially useful when you want to see general
relationships among a number of data items. Use polar graphs rather than scatter
graphs when the data has a directional aspect.

Each data marker in a polar graph represents two data values:

■ The first data value is the X value. It determines the location of the marker along
the x-axis, which is the location around the circle, clockwise.

■ The second data value is the Y value. It determines the location of the marker
along the y-axis, which is the distance from the center of the graph.

Data guidelines for a polar graph require at least two data values for each marker.

24.3.10 Radar Graph Data Requirements
A radar graph is a polygonal line graph similar to how a polar graph is a circular scatter
graph. Use radar graphs to show patterns that occur in cycles, such as monthly sales
for the last three years.

The data structure of a radar graph follows:

■ The number of sides on the polygon is equal to the number of groups of data. Each
corner of the polygon represents a group.

■ A series or set of data is represented by a line, all the markers of the same color, or
both. It is labeled by legend text.

Data guidelines for radar graphs require at least three groups of data.

24.3.11 Scatter Graph Data Requirements
A scatter graph represents data by the location of data markers. Scatter graphs are
especially useful when you want to see general relationships among a number of data
points. For example, you can use a scatter graph to examine the relationships between
Sales and Profit values for specific products.

Scatter graphs have either a single y-axis or a dual y-axis. Each data marker in a scatter
graph represents two values:

■ The first data value is the X value. It determines the marker’s location along the
x-axis.

■ The second data value is the Y value. It determines the marker’s location along the
y-axis.

Data guidelines for scatter graphs are:

■ Scatter graphs require two data values for each marker.

■ For more than one group of data, the data must be in multiples of two.

24.3.12 Sparkchart Data Requirements
Sparkcharts are used for displaying trends or variations in a single series of data values.
They are condensed, simple visualizations designed to be stamped in a table or used
inline with text. Since sparkcharts contain no labels, the adjacent columns of a table or
surrounding text provide context for sparkchart content.

Sparkcharts do not accept tabular data or graphDataModel. Data guidelines for
sparkcharts are:

Understanding Data Requirements for Graphs

Using ADF Graph Components 24-13

■ Line, bar, and area sparkcharts require a single series of data values. Figure 24–4
shows an example of a line sparkchart in a table column.

Figure 24–4 Line Sparkchart

■ Floating bar sparkcharts require two series of data values, one for the float offset,
and one for the bar value. Figure 24–5 shows an example of a floating bar
sparkchart.

Figure 24–5 Floating Bar Sparkchart

24.3.13 Stock Graph Data Requirements
Stock graphs display stock prices and, optionally, the volume of trading for one or more
stocks in a graph. When any stock or candle stock graph includes the volume of
trading, the volume appears as bars in the lower part of the graph.

Candle stock graphs display stock prices and, optionally, the volume of trading for
only a single stock. When a candle stock graph includes the volume of trading, the
volume appears as bars in the lower part of the graph.

Candle stock graphs also show the lesser of the open and close values at the bottom of
the candle. The greater value appears at the top of the candle. If the closing value is
greater than the opening value, then the candle is green. If the opening value is higher
than the closing value, then the candle is red.

24.3.13.1 Stock Graphs: High-Low-Close
Data requirements for a high-low-close stock graph are:

■ Each stock marker requires a group of three data values in the following sequence:
High, Low, Close. To display stock data for more than one day, data must be in
multiples of three, such as three data values for Monday, three data values for
Tuesday, and so on.

■ A series (or set) of data is represented by markers of the same color that represent
one stock. A series is labeled by legend text such as Stock A. The legend appears
even if you have only one stock with the except of candle stock graphs. Most
high-low-close stock graphs have only one series. If you show more than one
series and the prices of the different stocks overlap, then some stock markers
obscure other stock markers.

Understanding Data Requirements for Graphs

24-14 Web User Interface Developer's Guide for Oracle Application Development Framework

24.3.13.2 Stock Graphs: High-Low-Close with Volume
Data requirements for a high-low-close stock graph with volume are:

■ Each stock marker requires a group of four data values in the following sequence:
High, Low, Close, Volume. To display stock data for more than one day, data must
be in multiples of four and sequenced as follows: Monday High, Monday Low,
Monday Close, Monday Volume, and so on for each additional day.

■ High-low-close stock graphs that also show volume can display the data for only
one stock. The label for this stock appears in the legend of the graph.

24.3.13.3 Stock Graphs: Open-High-Low-Close
Data requirements for an open-high-low-close stock graph are:

■ Each stock marker requires a group of four data values in the following sequence:
Open, High, Low, Close. To display stock data for more than one day, data must be
in multiples of four, such as four data values for Monday, four data values for
Tuesday, and so on.

■ A series (or set) of data is represented by markers that have the same color and
represent one stock. A series is labeled by legend text such as Stock A. The legend
appears even if you have only one stock. Most open-high-low-close stock graphs
have only one series. If you show more than one series and the prices of the
different stocks overlap, then some stock markers obscure other stock markers.

24.3.13.4 Stock Graphs: Open-High-Low-Close with Volume
Data requirements for an open-high-low-close stock graph with volume are:

■ Each stock marker requires a group of five data values in the following sequence:
Open, High, Low, Close, Volume. To display stock data for more than one day,
data must be in multiples of five and sequenced as follows: Monday Open,
Monday High, Monday Low, Monday Close, Monday Volume, and so on for each
additional day.

■ Open-high-low-close stock graphs that also show volume can display the data for
only one stock. The label for this stock appears in the legend of the graph.

24.3.13.5 Candle Stock Graphs: Open-Close
Data requirements for an open-close candle stock graph are:

■ Each stock marker requires a group of two data values in the following sequence:
Open, Close. To display stock data for more than one day, data must be in
multiples of two, such as two data values for Monday, two data values for
Tuesday, and so on.

■ A series (or set of data) is represented by markers for one stock. Candle stock
graphs allow the display of values for only one stock. For this reason, no legend
appears in these graphs and you should show the series label (which is the name
of the stock) in the title of the graph.

24.3.13.6 Candle Stock Graphs: Open-Close with Volume
Data requirements for an open-close candle stock graph with volume are:

■ Each stock marker requires a group of three data values in the following sequence:
Open, Close, Volume. To display stock data for more than one day, data must be in
multiples of three, such as three data values for Monday, three data values for
Tuesday, and so on.

Creating a Graph

Using ADF Graph Components 24-15

■ A series (or set of data) is represented by markers for one stock. Candle stock
graphs allow the display of values for only one stock. For this reason, no legend
appears in these graphs and you should show the series label (which is the name
of the stock) in the title of the graph.

24.3.13.7 Candle Stock Graphs: Open-High-Low-Close
Data requirements for an open-high-low-close candle stock graph are:

■ Each stock marker requires a group of four data values in the following sequence:
Open, High, Low, Close. To display stock data for more than one day, data must be
in multiples of four, such as four data values for Monday, four data values for
Tuesday, and so on.

■ A series (or set) of data is represented by markers for one stock. Candle stock
graphs allow the display of values for only one stock. For this reason, no legend
appears in these graphs and you should show the series label (which is the name
of the stock) in the title of the graph.

24.3.13.8 Candle Stock Graphs: Open-High-Low-Close with Volume
Data requirements for an open-high-low-close candle stock graph with volume are:

■ Each stock marker requires a group of five data values in the following sequence:
Open, High, Low, Close, Volume. To display stock data for more than one day,
data must be in multiples of five, such as five data values for Monday, five data
values for Tuesday, and so on.

■ A series (or set) of data is represented by markers for one stock. Candle stock
graphs allow the display of values for only one stock. For this reason, no legend
appears in these graphs and you should show the series label (which is the name
of the stock) in the title of the graph.

24.4 Creating a Graph
You can use any of the following data sources to create a graph component:

■ ADF Data Controls: You declaratively create a databound graph by dragging and
dropping a data collection from the ADF Data Controls panel. You can create a
graph using a data collection that provides row set data as described in the
"Creating Databound Graphs" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

■ Hierarchical data: You can create a graph from a data control that provides
hierarchical data. However, the current release does not include an
implementation of a hierarchical data control that is supported by graph.

■ Tabular data: You can provide CSV (comma-separated value) data to a graph
through the tabularData attribute as shown in Section 24.4.2, "How to Create a
Graph Using Tabular Data.".

24.4.1 How to Add a Graph to a Page
When you are designing your page using simple UI-first development, you use the
Component Gallery to add a graph to a JSF page. When you drag and drop a graph
component onto the page, a Create Graph dialog displays available categories of graph
types, with descriptions, to provide visual assistance when creating graphs. You can
also specify a quick-start layout of the graph’s title and legend. Figure 24–6 shows the

Creating a Graph

24-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Create Bar Graph dialog for bar graphs with the default vertical clustered bar graph
type selected.

Figure 24–6 Create Bar Graph Dialog for Vertical Clustered Bar Graphs

Once you complete the dialog, and the graph is added to your page, you can use the
Property Inspector to specify data values and configure additional display attributes
for the graph.

In the Property Inspector you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 24–7 shows the dropdown menu for a bar
graph component value attribute.

Creating a Graph

Using ADF Graph Components 24-17

Figure 24–7 Bar Graph Component Value Attribute Dropdown Menu

To add a graph to a page:
1. In the ADF Data Visualizations page of the Component Palette, from the Graph

and Gauge panel, drag and drop the desired graph category onto the page to open
the Create Graph dialog.

Use the dialog to select the graph type and the quick start layout for display of
graph title, legend, and labels. For help with the dialog, press F1 or click Help.

2. In the Property Inspector, view the attributes for the graph. Use the help button to
display the complete tag documentation for the graph type component.

3. Expand the Common section. Use this section to set the following attribute:

■ SubType: If you wish to change the variation of the graph type, select the
desired type from the attribute dropdown menu. The valid values will vary
depending on the graph.

For example, the valid values for a bar graph are:

– BAR_VERT_CLUST: Clustered bar graph that has a vertical orientation.

– BAR_VERT_CLUST_SPLIT2Y: Clustered, vertical, split dual-y bar graph.

– BAR_VERT_CLUST2Y: Clustered, vertical, dual-y bar graph.

– BAR_VERT_FLOAT_STACK: Floating, vertical, stacked bar graph.

– BAR_VERT_PERCENT: Percent, vertical bar graph.

– BAR_VERT_STACK: Stacked, vertical bar graph.

– BAR_VERT_STACK_SPLIT2Y: Stacked, vertical, split dual-y bar graph.

– BAR_VERT_STACK2Y: Stacked, vertical, dual-y bar graph.

Note: If your application uses the Fusion technology stack, then you
can use data controls to create a graph and the binding will be done
for you. For more information, see the "Creating Databound Graphs"
section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework

Creating a Graph

24-18 Web User Interface Developer's Guide for Oracle Application Development Framework

4. Expand the Graph Data section. Specify data values for the graph by setting the
value in these fields:

■ Value: Specify the data model, which must be an instance of DataModel, using
an EL Expression. Alternatively, set a metric value as either a
Java.lang.Number object or a String.

■ TabularValue: Alternatively, specify a tabular data set as a Java.util.List
object. For more information, see Section 24.4.2, "How to Create a Graph Using
Tabular Data."

5. Expand the Appearance section. Specify display attributes by setting the value in
these fields:

■ ShortDesc: Enter a statement of the graph’s purpose and structure for use by
screen readers

■ EmptyText: Specify the error text to display if the graph has no data.

The new graph will display on the client in the HTML5 image format if the client
supports it. For more information about graph image formats, see Section 24.4.4,
"What You May Need to Know About Graph Image Formats."

24.4.2 How to Create a Graph Using Tabular Data
The process of creating a graph from tabular data includes the following steps:

■ Storing tabular data in a method in the graph’s managed bean.

■ Creating a graph that uses the tabular data stored in the managed bean.

24.4.2.1 Storing Tabular Data for a Graph in a Managed Bean
The tabularData attribute of a dvt:graph component lets you specify a list of data
that the graph uses to create a grid and populate itself. To construct this list, you
require an understanding of series and groups of data in a graph as well as knowledge
of the structure of the list.

24.4.2.1.1 Series and Groups of Data A graph displays series and groups of data. Series
and groups are analogous to the rows and columns of a grid. Usually the rows in the
grid appear as a series in a graph and the columns in the grid appear as groups in the
graph.

For most graphs, a series appears as a set of markers that are the same color. Usually
the graph legend shows the identification and associated color of each series. For
example, in a bar graph, the yellow bars might represent the sales of shoes and the
green bars might represent the sales of boots.

Groups appear differently in different graph types. In a clustered bar graph, each
cluster is a group. In a stacked bar graph, each stack is a group. In a multiple pie
graph, each pie is a group. A group might represent time periods, such as years. A
group might also represent geographical locations such as regions.

Depending on the data requirements for a graph type, a single group might require
multiple data values. For example, a scatter graph requires two values for each data
marker. The first value determines where the marker appears along the x-axis while
the second value determines where the marker appears along the y-axis.

24.4.2.1.2 Structure of the List of Tabular Data The list that contains the tabular data
consists of a three-member Object array for each data value to be passed to the graph.
The members of each array must be organized as follows:

Creating a Graph

Using ADF Graph Components 24-19

■ The first member (index 0) is the column label, in the grid, of the data value. This
is generally a String. If the graph has a time axis, then this should be a Java Date.
Column labels typically identify groups in the graph.

■ The second member (index 1) is the row label, in the grid, of the data value. This is
generally a String. Row labels appear as series labels in the graph, usually in the
legend.

■ The third member (index 2) is the data value, which is usually Double.

24.4.2.1.3 Example of a List of Data Figure 24–8 has three columns: 2006, 2007, and 2008.
This graph also has two rows: Shoes and Boots. This data produces a graph that
compares annual sales for boots and shoes over a three-year period.

Figure 24–8 Comparison of Annual Sales

Example 24–3 shows code that creates the list of data required for a graph to compare
annual sales of shoes and boots for a three-year period.

Example 24–3 Code to Create a List of Data for a Graph

public List getTabularData()
{
 ArrayList list = new ArrayList();
 String[] rowLabels = new String[] {"Boots", "Shoes"};
 String[] colLabels = new String[] {"2006", "2007", "2008"};
 Double [] [] values = new Double[][]{
 {120000.0, 122000.0, 175000.0},
 {90000.0, 110000.0, 150000.0}
 };
 for (int c = 0; c < colLabels.length; c++)
 {
 for (int r = 0; r < rowLabels.length; r++)
 {
 list.add (new Object [] {colLabels[c], rowLabels[r],
 new Double (values[r][c])});
 }
 }
 return list;
}

24.4.2.2 Creating a Graph Using Tabular Data
Use the tabularData attribute of a graph tag to reference data that is stored in a
method in a managed bean.

To create a graph that uses data from a managed bean:
1. In the Structure window, right-click the dvt:<type>graph node and choose Go to

Properties.

2. In the Graph Data section of the Property Inspector, click the TabularData
attribute dropdown menu and choose Expression Builder.

3. From the ensuing dialog, use the search box to locate the managed bean.

Creating a Graph

24-20 Web User Interface Developer's Guide for Oracle Application Development Framework

4. Expand the managed bean node and select the method that contains the list of
tabular data.

5. Click OK.

In the Expression Builder, the tabularData attribute is set to reference the method that
you selected in the managed bean. For example, for a managed bean named named
sampleGraph and a method named getTabularData, the tabularData attribute has the
following setting: #(sampleGraph.tabularData).

24.4.3 What Happens When You Create a Graph Using Tabular Data
When you create a graph that is powered by data obtained from a list referenced the
tabularData attribute a vertical clustered bar graph is created by default. You have the
option of changing the settings of the graphType attribute to any of the more than 50
graphs that are available as long as the tabular data meets the data requirements for
that graph type. You can also change the settings of the many additional attributes on
the graph tag.

Customize the graph by dragging any of the graph child tags to the dvt:<type>graph
node in the Structure window and providing settings for the attributes that you want
to specify.

24.4.4 What You May Need to Know About Graph Image Formats
Graphs support the following image formats: HTML5, Flash, and PNG. The image
format used depends upon the application’s settings and the client’s environment. By
default, graphs will be displayed using the HTML5 image format when using the
Skyros skin. New applications default to this skin.

If your application uses a custom skin, you can configure your application to use the
HTML5 format by adding the following parameter to the application’s web.xml file:
oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT. For more information about the
web.xml context initialization parameter, see Section A.2.3.24, "Graph and Gauge
Image Format." For information about skinning and styles, see Chapter 20,
"Customizing the Appearance Using Styles and Skins."

If the specified image format isn’t available on the client, the application will default to
an available format. For example, if the client does not support HTML5, the
application will use:

■ Flash, if the Flash Player is available.

You can disable the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Section A.4.3, "Configuring Flash as Component Output Format."

■ Portable Network Graphics (PNG) output format. A PNG output format is used
also when printing graphs. Although static rendering is fully supported when
using a PNG output format, certain interactive features are not available
including:

– Animation

– Context menus

– Drag and drop gestures

– Interactive pie slice behavior

– Reference object hover behavior

Customizing the Appearance of Graphs

Using ADF Graph Components 24-21

– Popup support

– Selection

– Series rollover behavior

24.5 Changing the Graph Type
When you insert a graph using the Data Controls panel or the Component Palette, the
Component Gallery displays available graph categories, types, and quick-start layout
options from which to choose. Selecting a graph type sets the subType attribute for that
graph. You can change the type for all graphs except the funnel and radar graphs.

To change the type of a graph:
1. In the Structure window, right-click the dvt:<type>graph node and choose Go to

Properties.

2. In the Common attributes category of the Property Inspector, for the SubType
attribute, select the desired type from the attribute dropdown menu. The valid
values will vary depending on the graph.

For example, the valid values for a bar graph are:

■ BAR_VERT_CLUST: Clustered bar graph that has a vertical orientation.

■ BAR_VERT_CLUST_SPLIT2Y: Clustered, vertical, split dual-Y bar graph.

■ BAR_VERT_CLUST2Y: Clustered, vertical, dual-Y bar graph.

■ BAR_VERT_FLOAT_STACK: Floating, vertical, stacked bar graph.

■ BAR_VERT_PERCENT: Percent, vertical bar graph.

■ BAR_VERT_STACK: Stacked, vertical bar graph.

■ BAR_VERT_STACK_SPLIT2Y: Stacked, vertical, split dual-Y bar graph.

■ BAR_VERT_STACK2Y: Stacked, vertical, dual-Y bar graph.

24.6 Customizing the Appearance of Graphs
Most graph types have common features that are available for customization. The
following types of customization are supported by most graph types:

■ Changing the color, style, and display of graph data values. For information, see
Section 24.6.1, "Changing the Color, Style, and Display of Graph Data Values."

■ Formatting categorical and numerical data values in graphs. For information, see
Section 24.6.2, "Formatting Data Values in Graphs."

■ Formatting text in graphs. For information, see Section 24.6.3, "Formatting Text in
Graphs."

When you edit graph components in the visual editor, specialized context menus and
Property Inspector buttons are available to support the customization of graph
features. Popups in the editor provide confirmation of selection of the graph feature to

Note: In order to avoid invalid color values, JDeveloper provides a
color selection dialog when you specify color-related attributes in
graph elements.

Customizing the Appearance of Graphs

24-22 Web User Interface Developer's Guide for Oracle Application Development Framework

be customized. For example, Figure 24–9 shows the popup displayed in the plot area
of a line graph.

Figure 24–9 Visual Editor Popup in Line Graph

When the graph feature is selected in the visual editor, a specialized editing context
menu is made available. Figure 24–10 shows the line graph plot area context menu
from which you can choose a variety of options including removing the default
display of the horizontal grid marks. You can also use the context menu or the
Property Inspector buttons to configure special fill effects in the plot area. The selection
of the graph tags is synchronized in the visual editor, Structure window, Property
Inspector, and source editor.

Figure 24–10 Line Graph Plot Area Context Menu

For additional information about configuring line graphs, see Section 24.7.2,
"Changing the Appearance of Lines in Graphs." For additional information about
configuring special fill effects, see Section 24.8.2, "Using Gradient Special Effects in
Graphs."

24.6.1 Changing the Color, Style, and Display of Graph Data Values
For most graph types, an entry appears in the legend for each set of data values
represented as graph bars, lines, areas, points, and slices. This entry identifies a set of
related data values and displays the color that represents the set in the graph. For
example, a bar graph might use yellow bars to represent the sales of shoes and green

Customizing the Appearance of Graphs

Using ADF Graph Components 24-23

bars to represent the sales of boots. The graph component refers to each set of related
data values as a series.

The graph automatically assigns a different color to each set of data values. You can
customize the colors assigned to each series, including the fill color and the border
color. For some graph types, you can enable filtering the display of data values in a
graph by hiding or showing the series from the graph legend.

You can specify additional characteristics for specific graph types such as the width
and style of lines in a line graph with choices including solid lines, dotted lines, lines
with dashes, and so on. For more information, see Section 24.7.2, "Changing the
Appearance of Lines in Graphs."

For scatter graphs you can separate data marker shape and color from the series to
display the interdependence of data values. For more information, see Section 24.7.4,
"Customizing Scatter Graph Series Markers."

You can also customize the colors of each series in a graph by adding gradient special
effects. For more information, see Section 24.8.2, "Using Gradient Special Effects in
Graphs."

24.6.1.1 How to Specify the Color and Style for Individual Series Items
Use one dvt:seriesSet tag to wrap all the individual dvt:series tags for a graph and
set attributes for color and style of graph data markers.

To specify the color and style for series items in a graph:
1. In the Structure window, right-click the dvt:seriesSet child tag in the

dvt:<type>Graph node, and choose Go to Properties.

2. Optionally, use the Property Inspector to specify values for attributes of the
dvt:seriesSet tag.

The attributes of this tag determine default settings for all series tags in the set.
However, you can override these settings for a given series by entering values in
the corresponding attributes of a dvt:series tag.

3. In the Structure window, expand the dvt:seriesSet node.

4. Right-click the dvt:series node and choose Go to Properties.

The first dvt:series tag represents the first series item that appears in the Create
Graph Binding dialog.

5. Use the Property Inspector to specify colors and other characteristics as needed for
the dvt:series tag.

6. To configure additional series items, in the Structure window, right-click the
dvt:seriesSet node and choose Insert inside dvt:seriesSet > Series.

7. Use the Property Inspector to specify colors and other characteristics as needed for
the dvt:series tag.

8. Repeat Step 6 and Step 7 for each series item.

24.6.1.2 How to Enable Hiding and Showing Series Items
For graph types including area, bar, bubble, combination, line, pie, radar, and scatter,
you can enable the hiding or showing of the series in a graph at runtime. Although at
least one series must be displayed in the graph, users can filter the display of data
values by clicking on the corresponding legend item.

Customizing the Appearance of Graphs

24-24 Web User Interface Developer's Guide for Oracle Application Development Framework

To enable hiding and show series items:
1. In the Structure window, right-click the dvt:<type>graph node and choose Go to

Properties.

2. In the Property Inspector, in the Series section of the Appearance section, set the
hideAndShowBehavior attribute of the graph. Valid values include:

■ none: Default value, no hide and show series behavior is enabled.

■ withRescale: Rescales the graph to show only the visible series.

■ withoutRescale: Hides the series, but does not rescale the graph.

24.6.2 Formatting Data Values in Graphs
The attributes in a data collection can be data values or categories of data values. Data
values are numbers represented by markers, such as bar height or points in a scatter
graph. Categories of data values are members represented as an ordinal axis label, or
appear as additional properties in a tooltip. You can format both numerical and
categorical attributes by using ADF Faces converter tags, including af:convertNumber
for numerical data values, and af:convertNumber, af:convertDateTime, and
af:convertColor for categorical data values.

Converter tag attributes let you format percents, scale numbers, control the number of
decimal places, placement of signs, and so on. For more information about ADF Faces
converters, see Chapter 6, "Validating and Converting Input."

24.6.2.1 How to Format Categorical Data Values
Categorical data values in graphs are represented by the name in the page definition
file (<pagename>PageDef.xml) that defines the graph’s data model. Example 24–4
shows the XML code in a page definition file for a page with a graph displaying
categorical data values for the hire date and the bonus cost for employees.

Example 24–4 Categorical Data Value Names in Page Definition File

<graph IterBinding="EmpView1Iterator" id="EmpView1"
 xmlns="http://xmlns.oracle.com/adfm/dvt" type="BAR_VERT_CLUST">
 <graphDataMap leafOnly="true">
 <series>
 <data>
 <item value="Bonus"/>
 </data>
 </series>
 <groups>
 <item value="Hiredate"/>
 </groups>
 </graphDataMap>
</graph>

For each categorical attribute to be formatted, use the dvt:attributeFormat tag to
specify the name of the categorical data value, and specify the child converter tag to be
used when formatting the attribute. You can use af:convertNumber,
af:convertDateTime, and af:convertColor to specify formatting for a categorical
attribute.

For example, you can format the hire date and bonus categorical data values defined
in the page definition file in Example 24–4.

Customizing the Appearance of Graphs

Using ADF Graph Components 24-25

To format categorical data values defined in a page definition file:
1. In the Structure window, right-click the dvt:<type>Graph and choose Insert

inside dvt:<type>Graph > ADF Data Visualizations > Attribute Format.

2. In the Property Inspector, enter the information for the Name attribute.

For example, to specify a value for the hire date in Example 24–4, enter Hiredate
for the Name attribute.

3. In the Structure window, right-click the attribute format tag you named and
choose Insert inside dvt:attributeFormat > Convert <Type>.

For example, to continue formatting Hiredate, right-click the dvt:attributeFormat
node and choose Insert inside dvt:attributeFormat > Convert Date Time.

4. In the Structure window, right-click the af:convert<Type> node and choose Go to
Properties.

5. Use the Property Inspector to enter values for the converter. For additional help,
see Chapter 6, "Validating and Converting Input."

6. Repeat Step 1 through Step 5 for each additional attribute.

For example, to complete the formatting for categorical data values in
Example 24–4, repeat Step 1 through Step 5, setting Bonus as the name of the
attribute, adding an af:convertNumber converter, and formatting the attribute for
currency.

Example 24–5 shows the XML code that is generated if you format the categorical data
values in a bar graph.

Example 24–5 Formatting Categorical Data Values in a Bar Graph

<dvt:barGraph id="barGraph1" value="#{bindings.EmpView1.graphModel}"
 subType="BAR_VERT_CLUST">
 <dvt:attributeFormat id="af1" name="Hiredate">
 <af:convertDateTime pattern = "yyyy-MM-dd hh:mm:ss a" timeZone="US/Pacific"/>
 </dvt:attributeFormat>
 <dvt:attributeFormat id="af2" name="Bonus">
 <af:convertNumber type = "currency" currencySymbol = "$"
 </dvt:attributeFormat>
</dvt:barGraph

24.6.2.2 How to Format Numerical Data Values
Use the ADF Faces af:convertNumber tag to specify formatting for numeric data
values related to any of the following graph tags:

■ dvt:sliceLabel

■ dvt:stockVolumeFormat

■ dvt:x1TickLabel

Note: If there is a single categorical date attribute being displayed on
the ordinal (O1) axis, then the graph displays a time axis. The time
axis will show dates in a hierarchical format as opposed to a single
label on the axis, for example, June 27, 2001. To display a single label
on the ordinal axis, the time axis should be turned off, for example
timeAxisType="TAT_OFF" and a dvt:attributeFormat tag should be
used to specify the date format.

Customizing the Appearance of Graphs

24-26 Web User Interface Developer's Guide for Oracle Application Development Framework

■ dvt:x1Format

■ dvt:y1TickLabel

■ dvt:y1Format

■ dvt:y2TickLabel

■ dvt:y2Format

■ dvt:zFormat

For example, by default a pie graph shows the relationship of parts to a whole,
represented as slices in a pie, and each slice label displays the percentage that each
slice represents. You can configure a pie graph to represent each slice as a value such
as the cost of materials, labor, and profit that make up the list price. Specify the
textType attribute of the dvt:sliceLabel tag to display the value represented in the
slice, and format the number accordingly.

To format numbers in the slice label of a pie graph:
1. In the Structure window, right-click the child dvt:sliceLabel tag of the pie graph

tag and choose Go to Properties.

2. In the Property Inspector, choose LD_VALUE from the TextType attribute
dropdown list to specify that the pie slice in the graph represents a value.

3. In the Property Inspector, click Configure Slice Label and choose Number Format
from the dropdown list.

4. In the Property Inspector, for the af:convertNumber tag, specify the values as
currency, using a dollar sign as the currency symbol.

Example 24–6 shows the XML code that is generated if you format the numerical data
values in the slice label of a pie graph to appear as currency, and use the dollar sign
symbol.

Example 24–6 Formatting Numerical Data Values in the Slice Label of a Pie Graph

<pieGraph>
...
 <dvt:sliceLabel textType="LD_Value">
 <af:convertNumber type="currency" currencySymbol="$"/>
 </dvt:sliceLabel>
...
</pieGraph>

You can also use the ADF Faces af:convertNumber tag to format numbers in the
marker text of a graph.

For example, you can provide different formatting for the marker text of each axis in
the graph. In this procedure, the af:convertNumber tag is used to format the marker
text on dvt:y1Format.

To format numerical values in the marker text associated with the y1-axis of a
graph:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Insert

inside dvt:<type>Graph > ADF Data Visualizations > Marker Text.

2. In the Property Inspector, optionally enter values for attributes of dvt:markerText.

For example, select true for the rendered attribute to display the text in the graph.

3. In the Property Inspector, click Configure Marker and choose Y1 Format.

Customizing the Appearance of Graphs

Using ADF Graph Components 24-27

4. In the Property Inspector, optionally enter values as needed for the dvt:y1Format
attributes.

5. In the Property Inspector, click Configure Number Format and specify values as
needed for the attributes of the af:convertNumber tag.

For example, select a percent value for the type attribute to place a percentage
sign after the marker text.

Example 24–7 shows the XML code that is generated when you format the numbers in
the marker text for the y1-axis of a graph. This example specifies that numbers are
followed by a percentage sign and the text appears above the markers. For example, in
a bar graph, the text will appear above the bars.

Example 24–7 Formatting Numbers in Graph Marker Text

<dvt:barGraph>
 <dvt:markerText rendered="true" markerTextPlace="MTP_OUTSIDE_MAX">
 <dvt:y1Format>
 <af:convertNumber type="percent"/>
 </dvt:y1Format>
 </dvt:markerText>
</dvt:barGraph>

24.6.2.3 What You May Need to Know About Automatic Scaling and Precision
In order to achieve a compact and clean display, graphs automatically determine the
scale and precision of the values being displayed in axis labels, marker text, and
tooltips. For example, a value of 40,000 will be formatted as 40K, and 0.230546 will be
displayed with 2 decimal points as 0.23.

Automatic formatting still occurs when af:convertNumber is specified. Graph tags
that support af:convertNumber child tags have scaling and autoPrecision attributes
that can be used to control the graph's automatic number formatting. By default, these
attribute values are set to scaling="auto" and autoPrecision="on". Fraction digit
settings specified in af:convertNumber, such as minFractionDigits,
maxFractionDigits, or pattern, are ignored unless autoPrecision is set to off.

24.6.3 Formatting Text in Graphs
You can format text in any of the following subcomponents of a graph:

■ Annotation: Includes only the dvt:annotation tag.

■ Axis title: Includes the dvt:o1Title, dvt:x1Title, dvt:y1Title, and dvt:y2Title
tags.

■ Axis tick label: Includes the dvt:o1TickLabel, dvt:x1TickLabel,
dvt:y1TickLabel, and dvt:y2TickLabel tags.

Note: When the textType attribute of a pie slice label is set to percent
(LD_PERCENT), or the markerTooltipType attribute of a graph
tooltip is set to percent (MTT_PERCENT_XXX), a child
af:convertNumber tag, if used, will be automatically set to percent for
its type attribute. When af:convertNumber is forced to percent, graph
clears the pattern attribute. This means that patterns are ignored when
a graph forces percent formatting. This is applicable for pie, Pareto,
funnel and any bar, line, or area percent graph.

Customizing the Appearance of Graphs

24-28 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Graph title: Includes the dvt:graphFootnote, dvt:graphSubtitle, and
dvt:graphTitle tags.

■ Legend: Includes only the dvt:legendText tag.

■ Marker: Includes only the dvt:markerText tag.

Use the dvt:graphFont tag as a child of the specific subcomponent for which you want
to format text. For an example of formatting text in a graph, see Section 24.6.5.2, "How
to Specify Titles and Footnotes in a Graph,".

24.6.3.1 How to Globally Set Graph Font Using a Skin
You can set the font attributes of graph components globally across all pages in your
application by using a cascading style sheet (CSS) to build a skin, and configuring
your application to use the skin. By applying a skin to define the fonts used in graph
components, the pages in an application will be smaller and more organized, with a
consistent style easily modified by changing the CSS file.

You can use the ADF Data Visualization Tools Skin Selectors to define the font styles
for graph components. Graph component skin selectors that support font styling
include the following:

■ af|dvt-graph

■ af|dvt-graphFootnote

■ af|dvt-graphSubtitle

■ af|dvt-graphTitle

■ af|dvt-o1Title

■ af|dvt-x1Title

■ af|dvt-y1Title

■ af|dvt-y2Title

■ af|dvt-pieLabel

■ af|dvt-ringTotalLabel

■ af|dvt-legendTitle

■ af|dvt-legendText

■ af|dvt-markerText

■ af|dvt-o1TickLabel

■ af|dvt-x1TickLabel

■ af|dvt-y1TickLabel

■ af|dvt-y2TickLabel

■ af|dvt-annotation

■ af|dvt-sliceLabel

■ af|dvt-tooltips

You can also use ADF Data Visualization Tools global skin selectors to define the font
attributes across multiple graph components. Global skin selector names end in the
:alias pseudo-class and affect the skin for more than one component. Global graph
font skin selectors include the following:

■ .AFDvtGraphFont:alias: Specifies the font attributes for all graph components.

Customizing the Appearance of Graphs

Using ADF Graph Components 24-29

■ .AFDvtGraphTitlesFont:alias: Specifies the font attributes for all graph title
components.

■ .AFDvtGraphLabelsFont:alias: Specifies the font attributes for all graph label
components.

To use a custom skin to set graph fonts:
1. Add a custom skin to your application containing the defined skin style selectors

for the graph subcomponents. You can specify values for the following attributes:

■ -tr-font-family: Specifies the font family (name). It may not contain more
than one font. If multiple fonts are specified, the first font will be used.

■ -tr-font-size: Specifies the size of the font. Units of absolute size are defined
as:

– pt: Points - the standard font size used by CSS2, where 1 point equals
1/72nd of an inch.

– in: Inches, where 1 inch equals 72 points.

– cm: Centimeters, where 1 centimeter equals approximately 28 points.

– mm: Millimeters, where 1 millimeter equals approximately 2.8 points.

– pc: Picas, where 1 pica equals 12 points.

You can also use font size names for this attribute, including the following:

– xx-small: 8 points

– x-small: 9 points

– small: 10 points

– medium: 12 points

– large: 14 points

– x-large: 16 points

– xx-large: 18 points

■ -tr-font-style: Specifies the style of the font. Valid values are normal or
italic.

■ -tr-font-weight: Specifies the weight of the font. Valid values are normal or
bold.

■ -tr-text-decoration: Specifies whether or not the underline emphasis is
rendered. Valid values are none or underline.

■ -tr-color: Specifies the color of the font. Valid values are color names for
HTML and CSS. The World Wide Consortium lists 17 valid color names
including aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
orange (CSS 2.1), purple, red, silver, teal, white, and yellow.

You can also use 3, 6, or 8 digits HEX (alpha channel is first 2 digit in 8 digit
HEX), RGB, or RGBA.

For example, specify the font family for all graph titles in a mySkin.css file as
follows:

af|dvt-graphTitle
{
 -tr-font-family: Comic Sans MS;
}

Customizing the Appearance of Graphs

24-30 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Register the custom skin with the application in the trinidad-skins.xml file.

For help with registering a custom skin, see Section 20.2.3, "How to Register a
Custom Skin."

3. Configure the application to use the custom skin in the trinidad-config.xml file.

For help with configuring trinidad-config.xml, see Section 20.2.4, "How to
Configure an Application to Use a Custom Skin."

4. Package the custom skin into a jar file to deploy with the application. The
trinidad-skins.xml file that defines the skin and that references the CSS file must
be within the META-INF directory.

For help with packaging the custom skin, see Section 20.7, "Deploying a Custom
Skin File in a JAR File."

For additional information about applying a custom skin to applications, see
Chapter 20, "Customizing the Appearance Using Styles and Skins."

24.6.4 Changing Graph Size and Style
You can customize the width and height of a graph and you can allow for dynamic
resizing of a graph based on changes to the size of its container. You can also control
the style sheet used by a graph. These two aspects of a graph are interrelated in that
they share the use of the graph inlineStyle attribute.

24.6.4.1 How to Specify the Size of a Graph at Initial Display
You can specify the initial size of a graph by setting values for attributes of the
dvt:<type>Graph tag. If you do not also provide for dynamic resizing of the graph,
then the initial size becomes the only display size for the graph.

To specify the size of a graph at its initial display:
1. In the Structure window, right-click the dvt:<type>graph node and choose Go to

Properties.

2. In the Style section of the Property Inspector, enter a value for the inlineStyle
attribute of the graph tag. For example:

inlineStyle="width:200px;height:200px"

24.6.4.2 How to Provide for Dynamic Resizing of a Graph
You must enter values in each of two attributes of the dvt:<type>Graph tag to allow
for a graph to resize when its container in a JSF page changes in size. The values that
you specify for this capability also are useful for creating a graph component that fills
an area across different browser window sizes.

To allow dynamic resizing of a graph:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Go to

Properties.

2. In the Behavior attributes category of the Property Inspector for the
DynamicResize attribute, select the value DYNAMIC_SIZE.

3. In the Style attributes category of the Property Inspector for the InlineStyle
attribute, enter a fixed number of pixels or a relative percent for both width and
height.

Customizing the Appearance of Graphs

Using ADF Graph Components 24-31

For example, to create a graph that fills 50% of its container’s width and has a
height of 200 pixels, use the following setting for the inlineStyle attribute:
"width:50%;height:200px;".

24.6.4.3 How to Use a Specific Style Sheet for a Graph
You have the option of selecting any of the standard styles available for the
dvt:<type>Graph tag. You can also specify a custom style sheet for use with a graph.

To select a specific style sheet for a graph:
1. If you want to use one of the standard style sheets provided with the graph, do the

following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Go to Properties.

b. In the Appearance attributes category, select the desired style sheet from the
style attribute dropdown list.

2. If you want to use a custom style sheet, then set the following attributes in the
Style section of the Property Inspector:

a. For the StyleClass attribute, select Edit from the Property menu choices, and
select the CSS style class to use for this gauge.

b. In the InlineStyle attribute, enter a fixed number of pixels or a relative
percent for both width and height.

For example, to create a graph that fills 50% of its container’s width and has a
height of 200 pixels, use the following setting for the inlineStyle attribute:
"width:50%;height:200px;"

24.6.5 Changing Graph Background, Plot Area, and Title
The graph automatically provides default settings for its background and plot area
based on the style it is using. You can customize these settings using child tags of the
graph.

The graph also provides title, subtitle, and footnote options that you can specify. By
default, no text is provided for titles and footnotes. When you enter this information,
you can also specify the font and font characteristics that you want to use for the text.

24.6.5.1 How to Customize the Background and Plot Area of a Graph
 You can customize the following parts of graphs related to background and plot area:

■ Background: The area on which the graph is plotted.

■ Plot area: A frame in which data is plotted for all graphs other than pie graphs.
Axes are displayed on at least two borders of the plot area.

■ Pie frame: A frame in which pie graphs are plotted without the use of axes.

To customize the background and plot area of a graph:
1. If you want to customize the background of a graph, do the following:

a. In the Structure window, right-click the dvt:background node and choose Go
to Properties.

Best Practice Tip: To specify a width of 100%, set the styleClass
attribute to AFStretchWidth.

Customizing the Appearance of Graphs

24-32 Web User Interface Developer's Guide for Oracle Application Development Framework

b. To change the background fill color, choose Edit from the FillColor attribute's
pull down menu and select the color to use in the Property Editor.

2. If you want to customize the plot area of any graph other than a pie graph, do the
following:

a. In the Structure window, right-click the dvt:graphPlotArea node and choose
Go to Properties.

b. Use the Property Inspector to enter colors in the attributes that you want to
customize in the dvt:graphPlotArea tag.

3. If you want to customize the plot area of a pie graph, do the following:

a. In the Structure window, right-click the dvt:graphPieFrame node and choose
Go to Properties.

b. Use the Property Inspector to enter colors in the attributes that you want to
customize in the dvt:graphPieFrame tag.

24.6.5.2 How to Specify Titles and Footnotes in a Graph
You have the option of specifying a title, subtitle, and footnote for a graph. You use a
separate child tag of the graph for each of these text entries. The attributes of each of
these child tags let you define the horizontal alignment of the text field, the text
content, and whether or not the text should be rendered.

The tags for title, subtitle, and footnote support the use of a child graph font tag to let
you identify the exact font characteristics to be used for each text field.

To specify titles and a footnote for a graph:
1. If you want to enter a graph title, do the following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Insert inside dvt:<type>Graph > ADF Data Visualizations > Graph Title.

b. Use the Property Inspector to specify values in the attributes of the
dvt:graphTitle tag.

c. If you want to provide specific font characteristics for the text, then in the
Structure window, right-click the dvt:graphTitle node and choose Insert
inside dvt:graphTitle > Font.

d. Use the Property Inspector to specify values for the attributes of the
dvt:graphFont tag.

2. If you want to enter a graph subtitle, do the following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Insert inside dvt:<type>Graph > ADF Data Visualizations > Subtitle.

b. Use the Property Inspector to specify values in the attributes of the
dvt:graphSubtitle tag.

c. If you want to provide specific font characteristics for the text, in the Structure
window, right-click the dvt:graphSubtitle node and choose Insert inside
dvt:graphSubtitle > Font.

Note: You can also customize the colors of the background and plot
area in a graph by adding gradient special effects. For more
information, see Section 24.8.2, "Using Gradient Special Effects in
Graphs."

Customizing the Appearance of Graphs

Using ADF Graph Components 24-33

d. Use the Property Inspector to specify values for the attributes of the
dvt:graphFont tag.

3. If you want to enter a graph footnote, do the following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Insert inside dvt:<type>Graph > ADF Data Visualizations > Footnote.

b. Use the Property Inspector to specify values in the attributes of the
dvt:graphFootnote tag.

c. If you want to provide specific font characteristics for the text, then in the
Structure window, right-click the dvt:graphFootnote node and choose Insert
inside dvt:graphFootnote > Font.

d. Use the Property Inspector to specify values for the attributes of the
dvt:graphFont tag.

24.6.6 Customizing Graph Axes and Labels
Graphs can have the following axes:

■ Ordinal axis (also known as the o1-axis): The ordinal (or category) axis of a graph
shows ordered data, such as ratings or stages, or shows nominal data, such as
different cities or different products. The ordinal axis appears on bar, line, area,
combination, or radar graphs. When the ordinal axis is horizontal and contains
time data, it is called a time axis.

An example of an ordinal axis is the horizontal line across the bottom of the plot
area of a vertical bar graph. The values along this axis do not identify the extent of
the data shown. Instead, they identify the different groups to which the data
belongs.

■ x1-axis: The x1-axis shows the values that appear along the horizontal axis in a
graph. This axis has regular intervals of numbers instead of group labels. It is
referred to as the x-axis.

■ y1-axis: The y1-axis is the primary y-axis. It is usually the vertical value axis along
the left side of the plot area. It has regular intervals of numbers.

■ y2-axis: The y2-axis is the secondary y-axis. It is usually the vertical axis along the
right side of the plot area. It has regular intervals of numbers.

For each axis, there are several graph child tags that support customization. The
following sections discuss the options available for various kinds of customization of
an axis.

24.6.6.1 How to Specify the Title, Appearance, and Scaling of an Axis
The following graph child tags support customization of the title, and appearance of
an axis:

■ Title: Specifies the text and alignment for an axis title. Includes the following tags:
dvt:o1Title, dvt:x1Title, dvt:y1Title, and dvt:y2Title. An axis does not
show a title unless you use the appropriate title tag.

■ Axis: Controls the color, line width, scaling, increment between tick marks,
visibility of the axis, and scrolling in specific graph types. Includes the following
tags: dvt:o1Axis, dvt:x1Axis, dvt:y1Axis, dvt:y2Axis.

Customizing the Appearance of Graphs

24-34 Web User Interface Developer's Guide for Oracle Application Development Framework

To specify the title and appearance of an x1-axis:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Insert

inside dvt:<type>Graph > ADF Data Visualizations > x1 Title.

2. In the Property Inspector, enter the text for the axis title and optionally specify
values for other attributes of this tag.

3. If you want to specify font characteristics for the title, do the following:

a. In the Structure window, right-click the dvt:x1Title node and choose Insert
inside dvt:x1Title > Font.

b. In the Property Inspector, enter the desired values for the characteristics of the
font.

The procedure for controlling the title and appearance of any graph axis is similar to
the procedure for the x-axis. However, insert the title tag associated with the specific
axis that you want to customize.

24.6.6.2 How to Specify Scrolling on an Axis
Scrolling on a graph axis can be specified for the following graph types:

■ Area, bar, and line graphs for the dvt:o1Axis, dvt:y1Axis, and dvt:y2Axis tags.

■ Bubble and scatter graphs for the dvt:x1Axis,dvt:y1Axis, and dvt:y2Axis tags.

By default, a graph axis scrolling attribute is set to off. You can specify these values
for the scrolling attribute:

■ off: Scrolling is disabled (default).

■ on: Scrolling is enabled and the scroll bar is always present.

■ asNeeded: Scrolling is enabled, but the scrollbar is not initially present. After
zooming on the graph, the scrollbar displays and remains visible for the session.

■ hidden: Scrolling is enabled but the scroll bar is always hidden. User may use pan
scrolling.

24.6.6.3 How to Control the Appearance of Tick Marks and Labels on an Axis
Tick marks are used to indicate specific values along a scale on a graph. The following
graph child tags support customization of the tick marks and their labels on an axis:

■ Major tick: Controls the color, width, and style of tick marks on the axis. Includes
the following tags: dvt:o1MajorTick, dvt:x1MajorTick, dvt:y1MajorTick, and
dvt:y2MajorTick. Major tick increments are calculated automatically by default,
or you can specify the tick steps with the majorIncrement attribute.

■ Minor tick: Controls the color, width, and style of minor tick marks on the axis.
Includes the following tags: dvt:x1MinorTick, dvt:y1MinorTick, and
dvt:y2MinorTick. Minor tick increments are one-half of the major tick increment
by default, or you can specify the tick steps with the minorIncrement attribute.
Minor ticks do not support labels.

■ Tick label: Controls the rotation of major tick label text and lets you specify font
characteristics for the label. Includes the following tags: dvt:o1TickLabel,

Note: Scaling attributes are not present on the dvt:o1Axis tag
because the ordinal axis does not display numeric values.

Customizing the Appearance of Graphs

Using ADF Graph Components 24-35

dvt:x1TickLabel, dvt:y1TickLabel, and dvt:y2TickLabel. These tags can also
have a dvt:graphFont child tag to change font characteristics of the label.

To control the appearance of the ordinal axis tick labels:
1. In the visual editor, select the o1 Tick Label element on the graph.

Alternatively, you can select the dvt:o1Axis element in the Structure window,
then in the Property Inspector click the Configure o1Axis button and choose
Value Labels.

2. In the Property Inspector enter values as needed for the following properties:

■ TextRotation: Use to specify the degree of text rotation to improve readability
of the tick labels.

■ TickLabelSkipMode: Use to specify if and how tick labels will be displayed
on the ordinal axis. When you set the value at TLS_MANUAL, you can optionally
use the tickLabelSkipCount to set the number of tick labels to display
between tick labels and tickLabelSkipFirst to set the index of the first tick
label to be skipped.

3. Optionally, in the Property Inspector, click the Configure Font button to set
properties for the child dvt:graphFont tag.

To control the appearance of tick marks and labels on an x-axis:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Insert

inside dvt:<type>Graph > ADF Data Visualizations > X1 Major Tick.

2. In the Property Inspector, enter desired values for the attributes of this tag and
click the Configure Tick Label button to add an X1 Tick Label tag to the graph.

3. In the Property Inspector, enter desired values for the X1 Tick Label and if desired,
click the Configure Font button to specify font characteristics for the tick label.

4. If you want to specify minor ticks in the graph, do the following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Insert inside dvt:<type>Graph > ADF Data Visualizations > X1 Minor Tick.

b. In the Property Inspector, enter desired values for the characteristics of the
font.

The procedure for controlling the appearance of tick marks on any graph axis is
similar to the procedure for the x-axis. However, you customize the major tick and
label tags and insert the minor ticks associated with the specific axis that you want to
customize.

Note: Use rotation angles that are multiples of 90 degrees to achieve
best results. For Flash image types, embedded fonts are required to
support rotated text in non-90 degree angles, and embedded fonts are
not available for all locales.

Note: For the tickStyle attribute you must specify a value other
than GS_NONE or GS_AUTOMATIC.

Customizing the Appearance of Graphs

24-36 Web User Interface Developer's Guide for Oracle Application Development Framework

24.6.6.4 How to Format Numbers on an Axis
The dvt:markerText tag lets you to control the format of numbers on an axis. The
following dvt:markerText child tags wrap the number format for specific axes:
dvt:x1Format, dvt:y1Format, and dvt:y2Format.

To format numbers on these axes, insert child tags for the appropriate axis as shown in
Section 24.6.2, "Formatting Data Values in Graphs."

24.6.6.5 How to Set Minimum and Maximum Values on a Data Axis
The Y-axes have the following graph child tags to support the starting value of the
axis: dvt:y1Axis, and dvt:y2Axis. You have the option of specifying different scaling
on each y-axis in a dual y-axis graph. For example, the y1-axis might represent units in
hundreds while the y2-axis might represent sales in thousands of dollars.

Some graphs, such as scatter and bubble graphs, contain a dvt:x1Axis child tag for
which the minimum and maximum values can also be set.

To specify the starting value on a y1-axis:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Insert

inside dvt:<type>Graph > ADF Data Visualizations > y1 Axis.

2. In the Property Inspector, for the AxisMinValue field, enter the starting value for
the y1-axis.

3. In the AxisMinAutoScaled field, select false from the attribute dropdown list.

You must set this attribute in order for the minimum value to be honored.

To establish the starting value on a y2-axis, use a similar procedure, but insert the
dvt:y2Axis tag as a child of the graph.

24.6.7 Customizing Graph Legends
Graph components provide child tags for the following kinds of customization for the
legend:

■ Specifying the color, border, visibility, positioning, and scrollability of the legend
area relative to the graph, dvt:legendArea tag

■ Specifying the font characteristics and positioning of the text that is related to each
colored entry in the legend, dvt:legendText tag

■ Specifying an optional title and font characteristics for the legend area,
dvt:legendTitle tag

To customize the legend area, legend text, and title:
1. In the Structure window, right-click the dvt:legendArea node and choose Go to

Properties.

2. Use the Property Inspector to specify values for the attributes of this tag. For
example, you can specify the following attributes for the legend area:

■ AutomaticPlacement and Position: Specify automatic positioning of the
legend area on the right or the bottom of the graph with the default value of
AP_ALWAYS. Setting the value at AP_NEVER requires the value of the position
attribute to be used for positioning of the legend area.

■ Scrolling: Specify scrolling in the legend area when required space exceeds
available space using the value asNeeded. By default the value is set to off.

Customizing the Appearance of Graphs

Using ADF Graph Components 24-37

■ PositionHint: Specify the alignment of the legend toward the center of the
plot area using the value alignToCenter. By default the value is set to
alignToEdge which aligns the legend toward the edge of the graph frame.

■ MaxWidth: Specify the maximum width of the legend area as a percentage of
the graph’s area. By default the value is set to an empty string which
automatically sets the width based on the graph’s settings.

For example, to set the maximum width of the legend to 50% of the graph’s
area, enter 50%.

3. If you want to customize the legend text, do the following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Insert inside dvt:<type>Graph > ADF Data Visualizations > Legend Text.

b. Use the Property Inspector to enter values for the attributes of this tag.

c. Right-click the dvt:legendText node and choose Insert inside dvt:legendText
> Font.

d. Use the Property Inspector to specify values for the attributes of the font tag.

4. If you want to enter a title for the legend, do the following:

a. In the Structure window, right-click the dvt:<type>Graph node and choose
Insert inside dvt:<type>Graph > ADF Data Visualizations > Legend Title.

b. Use the Property Inspector to enter values for the attributes of this tag.

c. Right-click the dvt:legendTitle node and choose Insert inside dvt:legendTitle
> Font.

d. Use the Property Inspector to specify values for the attributes of the font tag.

24.6.8 Customizing Tooltips in Graphs
Tooltips are useful to display identification or detail information for data markers.
They can be very useful in smaller graphs without enough space to display
markerText. Graphs automatically displays tooltips for components like title, subtitle,
footnote, legend text, and annotations when their text is truncated.

In most graphs, if you move the cursor over a data marker, then a tooltip is displayed.
In a line or area graph, you must move the cursor over a data marker or at the corners
of the line or area and not merely over the line or area.

You can specify that each graph marker (such as bars) displays a tooltip with
information. The following graph attributes are used together to customize a graph
tooltip:

■ MarkerTooltipType: Specifies whether tooltips are displayed for markers (such as
bars) and identifies the kind of information that appears in the tooltips. You have
the option to display the following information: text only, values only, or text and
values. For specific graph types, options include displaying cumulative data value
for each stacked graph marker or displaying percentage data value for each pie
slice marker.

■ SeriesTooltipLabel: Specifies whether tooltips are displayed for each set of values
that appear in a legend. This attribute also controls the kind of information that
appears in a series tooltip. For example, you could choose to display text that
identifies a general term for the entire series (such as Product) or a specific term
for a given member of the series (such as a specific Product name).

Customizing the Appearance of Specific Graph Types

24-38 Web User Interface Developer's Guide for Oracle Application Development Framework

■ GroupTooltipLabelType: Specifies whether tooltip labels are displayed for data
groups along an axis. For example, sales for specific products might be grouped by
years or quarters. You can choose to display text that identifies a general term for
the entire group (such as Time) or specific terms for each member of the group
(such as Q1, Q2, Q3, or Q4 for quarters).

You can quickly format all the marker tooltips in a graph by setting the graph’s
markerTooltipTemplate attribute to a tokenized String. The attribute accepts a String
that may contain any number of a set of predefined tokens. For example:

<dvt:lineGraph markerTooltipTemplate="Template Based Tooltip NEW_LINE SERIES_LABEL
GROUP_LABEL NEW_LINE Value: Y_VALUE"/>

The list of supported tokens is described in Table 24–1.

24.7 Customizing the Appearance of Specific Graph Types
The graph components support more than 50 graph types. Some of the graph
attributes and several child tags relate only to specific graph types.

Note: The graph displays series tooltip labels only if the graph’s
markerTooltipType attribute has a setting that includes text.

Table 24–1 markerTooltipTemplate String Tokens

Token Description

NEW_LINE Inserts a new line.

SERIES_LABEL The series label for the series of this marker.

GROUP_LABEL The group label for the group of this marker.

X_VALUE The X value of a scatter or bubble marker or continuous time
axis marker.

Y_VALUE The Y value of this marker (if this marker has a Y value).

Z_VALUE The Z value (bubble size) of a bubble marker.

PIE_VALUE The value of a pie slice.

PIE_PERCENT The pie slice percentage value.

ACTUAL_VALUE The actual value for a funnel slice.

TARGET_VALUE The target value for a funnel slice.

HIGH_VALUE The high value for a stock marker.

LOW_VALUE The low value for a stock marker.

CLOSE_VALUE The close value for a stock marker.

OPEN_VALUE The open value for a stock marker.

VOLUME_VALUE The volume value for a stock volume marker.

CUM_VALUE The cumulative stacked value for a stacked graph.

CUM_PERCENT The cumulative percentage value for a stacked percent graph or
Pareto graph.

Customizing the Appearance of Specific Graph Types

Using ADF Graph Components 24-39

24.7.1 Changing the Appearance of Pie Graphs
You can customize the appearance of pie graphs and you can specify that you want
one slice of a pie to be separated from the other slices in the pie.

24.7.1.1 How to Customize the Overall Appearance of Pie Graphs
You can customize the appearance of a pie graph by inserting any of the following
child tags within the graph tag:

■ dvt:pieFeeler tag: Specifies the color of a line, called a pie feeler, that extends from
a pie slice to a slice label.

■ dvt:slice tag: Specifies the location of a label for a pie slice.

■ dvt:sliceLabel tag: Specifies the characteristics of the labels that describe each
slice of a pie or ring graph. Each slice represents a data value. Use the textType
attribute of this tag to indicate whether the slice label should show text only, value
only, percent only, or text and percent. If you want to format numbers or specify
font characteristics, you can add the following tags as a child to the
dvt:sliceLabel tag: dvt:graphFont and af:convertNumber.

24.7.1.2 How to Customize an Exploding Pie Slice
When one slice is separated from the other slices in a pie, this display is referred to as
an exploding pie slice. The reason for separating one slice is to highlight that slice
possibly as having the highest value of the quantity being measured in the graph.

The slices of a pie graph are the sets of data that are represented in the graph legend.
As such, the slices are the series items of a pie graph.

Before you begin:
Follow the procedure in Section 24.6.1.1, "How to Specify the Color and Style for
Individual Series Items" to create a series set that wraps individual series items.

To customize one slice in a pie graph:
1. To separate one slice in a pie graph, in the Property Inspector, for the series tag

that represents the pie slice that you want to separate from the pie, set the
PieSliceExplode attribute between 0 to 100, where 100 is the maximum exploded
distance available.

2. To animate the slices in a pie graph, in the Property Inspector, set the
InteractiveSliceBehavior attribute on the dvt:pieGraph tag. Valid values are any
combination of the following:

■ none: No interactive slice behavior enabled.

■ explode: User can click to explode the slices in a pie graph.

■ explodeAll: Add Explode All and Unite All options to a context menu.

For example, you can specify that users can explode the slices in a pie graph, and
use a context menu to explode or collapse all the slices in the graph in the code:

<dvt:pieGraph interactiveSliceBehavior="explode explodeAll"/>

Note: The interactiveSliceBehavior attribute is only available in a
Flash image format, while the pieSliceExplode attribute is available
in all image formats.

Customizing the Appearance of Specific Graph Types

24-40 Web User Interface Developer's Guide for Oracle Application Development Framework

24.7.2 Changing the Appearance of Lines in Graphs
You can use attributes of the dvt:seriesSet child of a graph tag to change the
appearance of lines in graphs.

24.7.2.1 How to Display Either Data Lines or Markers in Graphs
You have the option of displaying data lines or data markers in a line, combination, or
radar graph. If you display markers rather than data lines, then the markers appear in
the legend automatically.

In the Property Inspector, set the following attributes of the dvt:seriesSet tag to
display data lines or data markers:

■ LineDisplayed: Specifies whether data lines appear in the graph. You can set these
values:

– True indicates that data lines are displayed in the graph.

– False indicates that markers are displayed in the graph rather than data lines.

■ MarkerDisplayed: Specifies whether markers or data lines appear in graph. You
can set these values:

– True indicates that markers are displayed in a graph.

– False indicates that data lines are displayed in a graph.

24.7.2.2 How to Change the Appearance of Lines in a Graph Series
You can customize the appearance of lines by using the dvt:seriesSet tag and the
dvt:series tag as described in the following list:

■ On the dvt:seriesSet tag, you can affect all the dvt:series tags within that set
by specifying values for the following attributes:

– defaultMarkerShape: Used only for line, scatter, and combination graphs.
Identifies a default marker shape for all the series in the series set.

– defaultMarkerType: Used only for combination graphs. Valid values include
MT_AREA, MT_BAR, MT_MARKER, and MT_DEFAULT.

■ On the dvt:series tag, you can specify settings for each individual series using
the following line attributes:

– lineWidth: Specifies the width of a line in pixels

– lineStyle: Specifies whether you want the graph to use solid lines, dotted
lines, dashed lines, or dash-dot combination lines.

See the procedures in Section 24.6.1.1, "How to Specify the Color and Style for
Individual Series Items" for more information about using the dvt:seriesSet tag and
the dvt:series tag.

24.7.3 Customizing Pareto Graphs
A Pareto graph identifies the sources of defects using a series of bars. The bars are
arranged by value, from the greatest to the lowest number. The Pareto line shows the
percentage of cumulative values of the bars, to the total values of all the bars in the
graph. The line always ends at 100 percent.

Note: Do not set both the lineDisplayed attribute and the
markerDisplayed attribute to False.

Customizing the Appearance of Specific Graph Types

Using ADF Graph Components 24-41

You can customize the Pareto line and the Pareto marker by using the following graph
child tags:

■ dvt:paretoLine tag: Lets you specify the color, line width, and line style (such as
solid, dashed, dotted, or a combination of dash-dot).

■ dvt:paretoMarker tag: Lets you specify the shape of the Pareto markers.

To customize a Pareto graph:
1. In the Structure window, right-click the dvt:paretoLine node and choose Go to

Properties.

2. In the Property Inspector, specify values for the attributes of this tag.

3. In the Structure window, right-click the dvt:paretoMarker node and choose Go to
Properties.

4. In the Property Inspector, select a value for the markerShape attribute.

24.7.4 Customizing Scatter Graph Series Markers
In scatter graphs, related data values in a series are represented by the data marker’s
shape and color. You can separate marker shape and color from the series to display
the interdependence of data values.

For example, Figure 24–11 shows a scatter graph that uses Product and Brand
attributes collectively to determine the series represented by the data marker’s shape
and color.

Figure 24–11 Scatter Graph with Series Marker

The row header attributes can be used to override the default series specification.
Figure 24–12 shows a scatter graph that displays the data values for the Brand attribute
mapped to shapes and the Product attribute mapped to colors.

Adding Specialized Features to Graphs

24-42 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 24–12 Scatter Graph with Series Item Markers

Use the following attributes to customize the scatter graph series markers:

■ markerShape - Specifies the row header attribute name to use to set the marker
color. The graph will display the default index based series marker colors if this
attribute is not specified.

■ markerColor - Specifies the row header attribute name to use to set the marker
shape. The graph will display the default index based series marker shapes if this
attribute is not specified.

For example, specify brand and product as separate series item markers using this
code:

<dvt:scatterGraph markerColor="Product" markerShape="Brand"
value="#{bindings.View1.graphModel}"/>

24.8 Adding Specialized Features to Graphs
There are graph customization features that include the ability to define series-related
reference lines and axis-related reference areas, the option of adding gradient special
effects to several parts of a graph, the option of setting some parts of a graph to
transparent colors, and the use of alerts and annotations in graphs. These special
features also let you use the interactive capabilities of the graph such as providing
context menus, reacting to changes in the zoom or scroll levels, and reacting to user
clicks on the graph’s data markers.

24.8.1 Adding Reference Lines or Areas to Graphs
Reference lines and areas can be set to display always, on rollover only, or never,
regardless of how many there are and whether they are associated with a series or an
axis.

You can create reference lines that are associated with a series (that is a set of data
values that appears as a single color in the graph legend). If there are multiple series
with reference lines, then the reference lines show only when you move the cursor
over a series marker or the corresponding series legend item. This is because multiple
reference lines can be confusing to users.

You can also create reference areas that are associated with an axis. Typically, these
areas are associated with a y-axis. If there are multiple reference areas, then these areas
are also displayed when you move the cursor over the related axis.

Adding Specialized Features to Graphs

Using ADF Graph Components 24-43

If your application does not know how many reference lines or areas it will need until
it is running, then you can create reference lines or areas dynamically at runtime.

24.8.1.1 How to Create Reference Lines or Areas During Design
Both reference lines and reference areas are created by the use of the following tags:

■ dvt:referenceObjectSet: Wraps all the reference object tags for reference lines or
reference areas for this graph.

■ dvt:referenceObject: Identifies whether the tag represents a reference line or a
reference area and specifies characteristics for the tag.

To add reference lines or areas to a graph during design:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Insert

inside dvt:<type>Graph > ADF Data Visualizations > Reference Object Set.

2. Right-click the dvt:referenceObjectSet node and choose Go to Properties.

3. In the Property Inspector, if you are defining reference areas related to specific
axes, then use the associated display attribute’s dropdown menu to specify when
the reference areas are displayed. You can specify when to display reference areas
for the x1-axis, y1-axis, and y2-axis (displayX1, displayY1, and displayY2
attributes), or you can specify display settings for a data series (displaySeries)
attribute.

For example, if you associate a reference area with the default y1-axis, then use the
displayY1 attribute’s dropdown menu to change the reference area display to RO_
DISPLAY_AUTOMATIC or RO_DISPLAY_NEVER. By default, this value is set to RO_
DISPLAY_ALWAYS, and the graph will always display the reference area.

The value RO_DISPLAY_AUTOMATIC enables the display of a reference area only
when the mouse moves over the related axis. This choice prevents the confusion
that might occur if multiple reference areas were displayed all the time.

Optionally, you can apply a gradient special effect to the reference area. For more
information see Section 24.8.2.1, "How to Add Gradient Special Effects to a
Graph."

4. In the Structure window, right-click the dvt:referenceObjectSet node and
choose Insert inside dvt:referenceObjectSet > Reference Object.

5. Right-click the dvt:referenceObject node and choose Go to Properties.

6. In the Property Inspector, do the following:

a. In the Common section, specify values for the index attribute of the reference
object, the type attribute of the reference object (RO_LINE or RO_AREA), the
associated object in the association attribute (a series for a reference line or a
specific axis for a reference area). Also specify if the object should be displayed
in the legend using the displayedInLegend attribute, and specify the text, if
any, to display in the legend.

b. If you are creating a reference line, then specify values for the attributes
related to the line. This includes specifying the series number of the series to
which the line is related. The series number refers to the sequence in which the
series appear in the Graph data binding dialog.

c. If you are creating a reference area, then specify the low value and the high
value that represent the reference area on the specified axis.

d. Configure any additional attributes as needed.

Adding Specialized Features to Graphs

24-44 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, use the Color attribute's dropdown menu to enter a color for the
reference line or area. For additional help, press F1 or click Help.

24.8.1.2 What Happens When You Create Reference Lines or Areas During Design
When you create reference lines or areas during design, XML code is generated within
the graph XML on the JSF page. The reference objects (both lines and areas) are
wrapped by the dvt:referenceObjectSet tags. Example 24–8 shows the code for three
reference areas associated with the y1-axis, one reference area associated with the
y2-axis, and four reference lines associated with different series.

Example 24–8 XML Code for Reference Lines and Areas in a Graph

<dvt:barGraph value ="#{sampleGraph.graphDataModel}" graphType="BAR_VERT_CLUST2Y">
 <dvt:referenceObjectSet displayX1="RO_DISPLAY_AUTOMATIC"
 displayY2="RO_DISPLAY_AUTOMATIC">
 <dvt:referenceObject index="1" type="RO_AREA" association="Y1AXIS"
 location="RO_BACK" color="#55FF0000" lowValue="0"
 highValue="4000"
 displayedInLegend="true" text="Low"/>
 <dvt:referenceObject index="2" type="RO_AREA" association="Y1AXIS"
 location="RO_BACK" color="#55FFFF00" lowValue="4000"
 highValue="10000"
 displayedInLegend="true" text="Medium"/>
 <dvt:referenceObject index="3" type="RO_AREA" association="Y1AXIS"
 location="RO_BACK" color="#5500FF00" lowValue="10000"
 highValue="18000"
 displayedInLegend="true" text="High"/>
 <dvt:referenceObject index="4" type="RO_AREA" association="Y2AXIS"
 location="RO_FRONT" color="#550000FF" lowValue="300"
 highValue="700"/>
 <dvt:referenceObject index="5" type="RO_LINE" association="SERIES" series="0"
 location="RO_FRONT" color="#ffff66" lineValue="5000"
 lineWidth="3" lineStyle="LS_SOLID"/>
 <dvt:referenceObject index="6" type="RO_LINE" association="SERIES" series="0"
 location="RO_FRONT" color="#ffff66" lineValue="16730"
 lineWidth="3" lineStyle="LS_SOLID"/>
 <dvt:referenceObject index="7" type="RO_LINE" association="SERIES" series="1"
 location="RO_BACK" color="#99cc66" lineValue="500"
 lineWidth="3" lineStyle="LS_SOLID"/>
 <dvt:referenceObject index="8" type="RO_LINE" association="SERIES" series="1"
 location="RO_BACK" color="#99cc66" lineValue="1711"
 lineWidth="3" lineStyle="LS_SOLID"/>
 </dvt:referenceObjectSet>
</dvt:barGraph>

24.8.1.3 How to Create Reference Lines or Areas Dynamically
If you want to create reference objects dynamically at runtime, then you use only the
dvt:referenceObjectSet tag. You set the referenceObjectMap attribute on this tag
with a method reference to the code that creates a map of the child component
reference objects. The method that creates this map must be stored in a managed bean.

To create reference lines or areas dynamically:
1. Write a method that creates a map of the child component reference objects that

you want to create during runtime. Example 24–9 shows sample code for creating
this method.

Adding Specialized Features to Graphs

Using ADF Graph Components 24-45

2. In the Structure window, right-click the dvt:<type>Graph node, then choose Insert
inside dvt:<type>Graph > ADF Data Visualizations > Reference Object Set.

3. Right-click the dvt:referenceObjectSet node and choose Go to Properties.

4. In the Property Inspector, in the referenceObjectMap attribute, specify a method
reference to the code that creates the map of child component reference objects.

For example, for the managed bean (sampleGraph) and the method
getReferenceObjectMapList, the attribute should be set to the following value:
referenceObjectMap="#{sampleGraph.referenceObjectMapList}"

Example 24–9 Code for a Map of Child Reference Objects

Managed bean SampleGraph.java :
 public Map getReferenceObjectMapList() {
 HashMap map = new HashMap();
 ReferenceObject referenceObject = new ReferenceObject();
 referenceObject.setIndex(1);
 referenceObject.setColor(Color.red);
 referenceObject.setLineValue(30);
 referenceObject.setLineWidth(3);
 map.put(new Integer(1), referenceObject);
 return map;
 }

24.8.2 Using Gradient Special Effects in Graphs
A gradient is a special effect in which an object changes color gradually. Each color in a
gradient is represented by a stop. The first stop is stop 0, the second is stop 1, and so
on. You can specify any number of stops in the special effects for a subcomponent of a
graph that supports special effects.

You can define gradient special effects for the following subcomponents of a graph:

■ Graph background: Use the dvt:background tag.

■ Graph plot area: Use the dvt:graphPlotArea tag.

■ Graph pie frame: Use the dvt:graphPieFrame tag.

■ Legend area: Use the dvt:legendArea tag.

■ Series: Use the dvt:series tag.

■ Time selector: Use the dvt:timeSelector tag.

■ Reference area: Use the dvt:referenceObject tag.

The approach that you use to define gradient special effects is identical for each part of
the graph that supports these effects.

24.8.2.1 How to Add Gradient Special Effects to a Graph
For each subcomponent of a graph to which you want to add special effects, you must
insert a dvt:specialEffects tag as a child tag of the subcomponent if it doesn’t

Note: By default, a graph’s series gradient is set in the seriesEffect
attribute with a value of SE_AUTO_GRADIENT to make the data markers
appear smoother and apply graphic antialiasing. You must set the
attribute to SE_NONE in order to specify a custom series gradient.

Adding Specialized Features to Graphs

24-46 Web User Interface Developer's Guide for Oracle Application Development Framework

already exist. For example, if you want to add a gradient to the plot area of a graph,
then you would create one dvt:specialEffects tag that is a child of the
dvt:graphPlotArea tag.

Then, optionally if you want to control the rate of change for the fill color of the
subcomponent, you would insert as many dvt:gradientStopStyle tags as you need to
control the color and rate of change for the fill color of the component. These
dvt:gradientStopStyle tags must be inserted as child tags of the single
dvt:specialEffects tag.

To add a gradient special effect to a graph:
1. In the Structure window, locate the graph's child node for the component that will

contain the gradient special effect and expand if needed.

For example, to set a gradient special effect on the graph's plot area, locate the
dvt:graphPlotArea node and expand if needed.

2. If the selected child node does not contain a dvt:specialEffects child node,
right-click the node that is a child of the graph node, then choose Insert inside
dvt:<childnode>, then Special Effects.

3. Right-click the dvt:specialEffects node and choose Go to Properties.

4. Use the Property Inspector to enter values for the attributes of the
dvt:specialEffects tag:

a. For fillType attribute, choose FT_GRADIENT.

For gradientDirection attribute, select the direction of change that you want
to use for the gradient fill.

b. For numStops attribute, enter the number of stops to use for the gradient.

5. Optionally, in the Structure window, right-click the dvt:specialEffects node and
choose Insert inside dvt:specialEffects > dvt:gradientStopStyle if you want to
control the color and rate of change for each gradient stop.

6. Use the Property Inspector to enter values for the attributes of the
dvt:gradientStopStyle tag:

a. For the stopIndex attribute, enter a zero-based integer as an index within the
dvt:gradientStopStyle tags that are included within the specialEffects tag.

b. For the gradientStopColor attribute, enter the color that you want to use at
this specific point along the gradient.

c. For the gradientStopPosition attribute, enter the proportional distance along
a gradient for the identified stop color. The gradient is scaled from 0 to 100. If 0
or 100 is not specified, default positions are used for those points.

7. Repeat Step 5 and Step 6 for each gradient stop that you want to specify.

24.8.2.2 What Happens When You Add a Gradient Special Effect to a Graph
Example 24–10 shows the XML code that is generated when you add a gradient fill to
the background of a graph and specify two stops.

Example 24–10 XML Code Generated for Adding a Gradient to the Background of a
Graph

<dvt:graph >
 <dvt:background borderColor="#848284">
 <dvt:specialEffects fillType="FT_GRADIENT" gradientDirection="GD_RADIAL"

Adding Specialized Features to Graphs

Using ADF Graph Components 24-47

 gradientNumStops="2">
 <dvt:gradientStopStyle stopIndex="0" gradientStopPosition="60"
 gradientStopColor="FFFFCC"/>
 <dvt:gradientStopStyle stopIndex="1" gradientStopPosition="90"
 gradientStopColor="FFFF99"/>
 </dvt:specialEffects>
 </dvt:background>
</dvt:graph>

24.8.3 Specifying Transparent Colors for Parts of a Graph
You can specify that various parts of a graph show transparent colors by setting the
borderTransparent and fillTransparent attributes on the graph child tags related to
these parts of the graph. The following list identifies the parts of the graph that
support transparency:

■ Graph background: Use the dvt:background tag. By default the fillTransparent
attribute is set to true.

■ Graph legend area: Use the dvt:legendArea tag.

■ Graph pie frame: Use the dvt:graphPieFrame tag.

■ Graph plot area: Use the dvt:graphPlotArea tag.

24.8.4 Adding Data Marker Selection Support for Graphs
Add selection support to respond programmatically when a user selects one or more
of the graph’s data markers, such as bubbles in a bubble graph or shapes in a scatter
graph.

Figure 24–13 shows a bar graph enabled for selection. Each data marker is highlighted
as the user moves over it to provide a visual clue that the marker is selectable.

Figure 24–13 Bar Graph With Selection Support Enabled

Graphs can be enabled for single and multiple selection support. Enabling selection is
required for context menus and for responding programmatically to user clicks on the
data markers.

For example, Figure 24–14 displays a bar graph supporting single and multiple
selection to output information about each selected series. To make multiple selections,
users press Control on the keyboard while selecting the data markers.

Adding Specialized Features to Graphs

24-48 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 24–14 Bar Graph Displaying Multiple Selection Support

24.8.4.1 How to Add Selection Support to Graphs
To add selection support, create a listener in a managed bean that will handle the
selection event and perform the needed logic. You then enable selection support in the
graph’s dataSelection attribute and bind the selectionListener attribute of the
graph to that listener.

Example 24–11 shows sample code to create a managed bean that returns the selection
state as the formatted string displayed below the bar graph in Figure 24–14.

Example 24–11 Managed Bean Example for Graph Selection Support

import java.util.List;
import java.util.Set;
import oracle.adf.view.faces.bi.component.graph.DataSelection;
import oracle.adf.view.faces.bi.component.graph.GraphSelection;
import oracle.adf.view.faces.bi.event.graph.SelectionEvent;
import oracle.adf.view.faces.bi.model.KeyMap;

public class graphSelection {
 public void selectionListener(SelectionEvent selectionEvent) {
 StringBuilder eventInfo = new StringBuilder();
 Set<? extends GraphSelection> selectionSet =
selectionEvent.getGraphSelection();
 eventInfo.append(convertSelectionStateToString(selectionSet));

 // Store on the selection string
 m_selectionInfo = eventInfo.toString();
 }

 /**
 * Returns the selection state as a formatted String with one selected data
point per line.
 * @param selectionSet
 * @return
 */
 public static String convertSelectionStateToString(Set<? extends GraphSelection>
selectionSet) {
 StringBuilder selectionState = new StringBuilder();
 for(GraphSelection selection: selectionSet) {
 if(selection instanceof DataSelection) {
 DataSelection ds = (DataSelection) selection;

Adding Specialized Features to Graphs

Using ADF Graph Components 24-49

 Set seriesKeySet = ds.getSeriesKey().keySet();
 for(Object key : seriesKeySet) {
 selectionState.append(key).append(":
").append(ds.getSeriesKey().get((String)key));
 }

 List<KeyMap> groupKeys = ds.getGroupKeys();
 for(KeyMap groupKey : groupKeys) {
 Set groupKeySet = groupKey.keySet();
 for(Object key : groupKeySet) {
 selectionState.append("; ").append(key).append(":
").append(groupKey.get((String)key));
 }
 }

 selectionState.append("
");
 }
 }

 return selectionState.toString();
 }

 private String m_selectionInfo = "Select a marker to see information here.
Multiple objects can be selected by holding CTRL while selecting.";
 public String getSelectionInfo() {
 return m_selectionInfo;
 }
}
Example 24–12 shows the code sample for configuring the JDeveloper page for
multiple selection support and to bind the selectionListener attribute of the graph
to the selection listener. The sample uses the af:outputFormatted component to
display the selected information on the page.

Example 24–12 Code Sample for Configuring Graph Selection Support on a Page

<af:panelGroupLayout id="pgl1">
 <dvt:barGraph id="graph1" subType="BAR_VERT_CLUST" shortDesc="BarGraph"
 selectionListener="#{graphSelection.selectionListener}"
 dataSelection="multiple">
 <dvt:background>
 <dvt:specialEffects/>
 </dvt:background>
 <dvt:graphPlotArea/>
 <dvt:seriesSet>
 <dvt:series/>
 </dvt:seriesSet>
 <dvt:o1Axis/>
 <dvt:y1Axis/>
 <dvt:legendArea automaticPlacement="AP_NEVER"/>
 </dvt:barGraph>
 <af:outputFormatted id="selectionText"
 inlineStyle="font-size:120.0%;"
 partialTriggers="graph1" value="#{graphSelection.selectionInfo}"/>
</af:panelGroupLayout>

To add selection support to graphs:
1. Add methods to a managed bean to define the listener methods that will respond

to the selection events. For help with managed beans, see Section 2.6.1, "How to
Create a Managed Bean in JDeveloper."

Adding Specialized Features to Graphs

24-50 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Add a graph to your page. For more information, see Section 24.4, "Creating a
Graph."

To duplicate the multiple selection support example in this section, create a bar
graph.

3. In the Structure window, right-click the dvt:<type>Graph node and choose Go to
Properties.

4. In the Property Inspector, expand the Behavior section and specify the values for
the following attributes:

a. DataSelection: Specify single or multiple to enable selection support for
single or multiple data markers. The default is none which means that
selection is not enabled by default.

b. SelectionListener: Specify a reference to the selection listener.

For example, to specify the selectionListener method in a managed bean
named graphSelection, enter the following in the SelectionListener field:
#{graphSelection.selectionListener}.

5. Complete any additional configuration as needed.

For example, to duplicate the multiple selection example in this section, add an
af:outputFormatted component to the page and configure it to return the
selection details as shown in Example 24–12. For help with configuring the
af:outputFormatted component, see Chapter 16, "Using Output Components."

24.8.4.2 What You May Need to Know About Graph Data Marker Selection
The selection listener responds to click events on graph data markers only.

JDeveloper also provides a clickListener listener that can respond to click events on
other graph components. The click listener, however, provides only single selection
support and does not provide the same hover and click feedback that the
selectionListener listener can provide. The clickListener attribute is also not
available on newer components, and its use is generally discouraged in favor of the
selection listener.

24.8.5 Adding Context Menus to Graphs
Graphs support right-click context menus using facets for any of three types:

■ Context menus displayed on any unselectable area within the component, for
example, the plot area

■ Context menus displayed on any selectable element, for example, the marker in a
scatter graph

■ Context menus displayed on multiple selectable elements

24.8.5.1 How to Configure Graph Context Menus
Context menus can be defined for graph components using these context menu facets:

■ bodyContextMenu: Specifies a context menu that is displayed on unselectable
elements in the graph component.

■ contextMenu: Specifies a context menu that is displayed on any selectable element
in the graph component.

■ multiSelectContextMenu: Specifies a content menu that is displayed when
multiple elements are selected in the graph component.

Adding Specialized Features to Graphs

Using ADF Graph Components 24-51

Each facet supports a single child component. For all of these facets to work, selection
must be enabled and supported for the specific graph type. Context menus are
currently only displayed in Flash and HTML5 image formats.

Due to technical limitations when using the Flash rendering format, context menu
contents are currently displayed using the Flash Player's context menu. This imposes
several limitations defined by the Flash Player. For more information, see
Section 24.8.5.2, "What You May Need to Know About Flash Rendering Format."

Figure 24–15 shows a scatter graph context menu with custom menu items rendered in
the HTML5 image format.

Figure 24–15 Scatter Graph Custom Context Menu

Example 24–13 shows a code sample for configuring a scatter graph context menu.

Example 24–13 Code Sample for Scatter Graph Context Menu

<dvt:scatterGraph binding="#{contextMenu.graph}" subType="SCATTER"
 dataSelection="multiple" id="graph" shortDesc="ScatterGraph">
 <f:facet name="contextMenu">
 <af:popup contentDelivery="lazyUncached" id="p1">
 <af:menu id="m1">
 <af:commandMenuItem text="Show Details"
 actionListener="#{contextMenu.menuItemListener}"
 id="cmi1"/>
 <af:group id="g1">
 <af:commandMenuItem text="Add Task for #{contextMenu.currentSeriesId}"
 actionListener="#{contextMenu.menuItemListener}"
 id="cmi2"/>
 <af:commandMenuItem text="Add Task"
 actionListener="#{contextMenu.menuItemListener}"
 id="cmi3"/>
 <af:commandMenuItem text="Add Notes"
 actionListener="#{contextMenu.menuItemListener}"
 id="cmi4"/>
 </af:group>
 </af:menu>
 </af:popup>
 </f:facet>
 <f:facet name="bodyContextMenu">
 <af:popup contentDelivery="immediate" id="p2">
 <af:menu id="m2">
 <af:goMenuItem text="www.oracle.com"
 destination="http://www.oracle.com"

Adding Specialized Features to Graphs

24-52 Web User Interface Developer's Guide for Oracle Application Development Framework

 id="gmi1"/>
 </af:menu>
 </af:popup>
 </f:facet>
 <f:facet name="multiSelectContextMenu">
 <af:popup contentDelivery="lazyUncached" id="p3">
 <af:menu id="m3">
 <af:commandMenuItem text="Compare Selected Objects"
 actionListener="#{contextMenu.menuItemListener}"
 id="cmi5"/>
 </af:menu>
 </af:popup>
 </f:facet>
</dvt:scatterGraph>

Example 24–14 shows a code sample for a managed bean to create a custom context
menu. For help with managed beans, see Section 2.6, "Creating and Using Managed
Beans."

Example 24–14 Managed Bean to Create Custom Context Menu

import java.util.Set;
import javax.faces.component.UIComponent;
import javax.faces.event.ActionEvent;
import oracle.adf.view.faces.bi.component.graph.DataSelection;
import oracle.adf.view.faces.bi.component.graph.GraphSelection;
import oracle.adf.view.faces.bi.component.graph.UIGraph;
import oracle.adf.view.faces.bi.model.KeyMap;
import oracle.adf.view.rich.component.rich.nav.RichCommandMenuItem;
import oracle.adf.view.rich.component.rich.output.RichOutputFormatted;
import org.apache.myfaces.trinidad.context.RequestContext;

public class ContextMenu {
 private RichOutputFormatted m_outputFormatted;
 public RichOutputFormatted getOutputFormatted() {
 if(m_outputFormatted == null)
 m_outputFormatted = new RichOutputFormatted();
 return m_outputFormatted;
 }
 public void setOutputFormatted(RichOutputFormatted text) {
 m_outputFormatted = text;
 }
 private String m_status = "Click Menu Item for Status";
 public String getStatus() {
 return m_status;
 }
 private UIGraph m_graph;
 public UIGraph getGraph() {
 if(m_graph == null)
 m_graph = new UIGraph();
 return m_graph;
 }
 public void setGraph(UIGraph graph) {
 m_graph = graph;
 }
 public String getCurrentSeriesId() {
 if(m_graph != null) {
 Set<? extends GraphSelection> set = m_graph.getSelection();
 if(set != null && !set.isEmpty()) {
 GraphSelection selection = set.iterator().next();

Adding Specialized Features to Graphs

Using ADF Graph Components 24-53

 if(selection instanceof DataSelection) {
 DataSelection dataSelection = (DataSelection) selection;
 KeyMap seriesKey = dataSelection.getSeriesKey();
 Set seriesKeySet = seriesKey.keySet();
 for(Object key : seriesKeySet) {
 return seriesKey.get((String)key);
 }
 }
 }
 }
 return null;
 }
 /**
 * Called when a commandMenuItem is clicked. Updates the outputText with
information about the menu item clicked.
 * @param actionEvent
 */
 public void menuItemListener(ActionEvent actionEvent) {
 UIComponent component = actionEvent.getComponent();
 if(component instanceof RichCommandMenuItem) {
 RichCommandMenuItem cmi = (RichCommandMenuItem) component;
 // Add the text of the item into the status message
 StringBuilder s = new StringBuilder();
 s.append("You clicked on \"").append(cmi.getText()).append("\".

");
 // If graph data is selected, add that too
 Set<? extends GraphSelection> selectionSet = m_graph.getSelection();
 if(!selectionSet.isEmpty()) {
 // Write out the selection state
 s.append("The current graph selection is:
");
 s.append(SelectionSample.convertSelectionStateToString(selectionSet));
 }
 m_status = s.toString();
 RequestContext.getCurrentInstance().addPartialTarget(m_outputFormatted);
 }
 }
}

The managed bean in the preceding example calls the SelectionSample class which is
displayed in Example 24–15. Store the code for this class in an additional managed
bean.

Example 24–15 Managed Bean for Custom Context Menu SelectionSample Class

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import javax.faces.model.SelectItem;
import oracle.adf.view.faces.bi.component.graph.DataSelection;
import oracle.adf.view.faces.bi.component.graph.GraphSelection;
import oracle.adf.view.faces.bi.event.graph.SelectionEvent;
import oracle.adf.view.faces.bi.model.KeyMap;
public class SelectionSample {
 public void selectionListener(SelectionEvent selectionEvent) {
 StringBuilder eventInfo = new StringBuilder();
 Set<? extends GraphSelection> selectionSet =
 selectionEvent.getGraphSelection();
 eventInfo.append(convertSelectionStateToString(selectionSet));
 // Store on the selection string
 m_selectionInfo = eventInfo.toString();
 }

Adding Specialized Features to Graphs

24-54 Web User Interface Developer's Guide for Oracle Application Development Framework

 /**
 * Returns selection state formatted with one selected data point per line.
 * @param selectionSet
 * @return
 */
 public static String convertSelectionStateToString
 (Set<? extends GraphSelection> selectionSet) {
 StringBuilder selectionState = new StringBuilder();
 for(GraphSelection selection: selectionSet) {
 if(selection instanceof DataSelection) {
 DataSelection ds = (DataSelection) selection;
 Set seriesKeySet = ds.getSeriesKey().keySet();
 for(Object key : seriesKeySet) {
 selectionState.append(key).append(": ").
 append(ds.getSeriesKey().get((String)key));
 }
 List<KeyMap> groupKeys = ds.getGroupKeys();
 for(KeyMap groupKey : groupKeys) {
 Set groupKeySet = groupKey.keySet();
 for(Object key : groupKeySet) {
 selectionState.append("; ").append(key).append(": ").
 append(groupKey.get((String)key));
 }
 }
 selectionState.append("
");
 }
 }
 return selectionState.toString();
 }
 private String m_selectionInfo = "Select a marker to see information here.";
 public String getSelectionInfo() {
 return m_selectionInfo;
 }
 private String graphType = "bubbleGraph";
 public String getGraphType() {
 return graphType;
 }
 public void setGraphType(String type) {
 graphType = type;
 }
 private List graphList;
 public List getGraphList() {
 graphList = new ArrayList();
 SelectItem graph = new SelectItem("bubbleGraph", "Bubble Graph");
 graphList.add(graph);
 graph = new SelectItem("scatterGraph", "Scatter Graph");
 graphList.add(graph);
 return graphList;
 }
}

24.8.5.2 What You May Need to Know About Flash Rendering Format
Due to technical limitations when using the Flash rendering format, context menu
contents are currently displayed using the Flash Player's context menu. This imposes
several limitations defined by the Flash Player:

■ Flash does not allow for submenus it its context menu.

Adding Specialized Features to Graphs

Using ADF Graph Components 24-55

■ Flash limits custom menu items to 15. Any built-in menu items for the component,
for example, a pie graph interactiveSliceBehavior menu item, will count
towards the limit,

■ Flash limits menu items to text-only. Icons or other controls possible in ADF Faces
menus are not possible in Flash menus.

■ Each menu caption must contain at least one visible character. Control characters,
new lines, and other white space characters are ignored. No caption can be more
than 100 characters long.

■ Menu captions that are identical to another custom item are ignored, whether the
matching item is visible or not. Menu captions are compared to built-in captions or
existing custom captions without regard to case, punctuation, or white space.

■ The following captions are not allowed, although the words may be used in
conjunction with other words to form a custom caption: Save, Zoom In, Zoom
Out, 100%, Show All, Quality, Play, Loop, Rewind, Forward, Back, Movie not
loaded, About, Print, Show Redraw Regions, Debugger, Undo, Cut, Copy, Paste,
Delete, Select All, Open, Open in new window, and Copy link.

■ None of the following words can appear in a custom caption on their own or in
conjunction with other words: Adobe, Macromedia, Flash Player, or Settings.

Additionally, since the request from Flash for context menu items is a synchronous
call, a server request to evaluate EL is not possible when the context menu is invoked.
To provide context menus that vary by selected object, the menus will be pre-fetched if
the context menu popup uses the setting contentDelivery="lazyUncached". For
context menus that may vary by state, this means that any EL expressions within the
menu definition will be called repeatedly at render time, with different selection and
currency states. When using these context menus that are pre-fetched, the application
must be aware of the following:

■ Long running or slow code should not be executed in any EL expression that may
be used to determine how the context menu is displayed. This does not apply to
af:commandMenuItem attributes that are called after a menu item is selected, such
as actionListener.

■ In the future, if the Flash limitations are solved, the ADF context menu may be
displayed in place of the Flash context menu. To ensure upgrade compatibility,
you should code such that an EL expression will function both in cases where the
menu is pre-fetched, and also where the EL expression is evaluated when the
menu is invoked. The only component state that applications should rely on are
selection and currency.

24.8.6 How to React to Changes in the Zoom and Scroll Levels
You can provide custom code that will be executed when the zoom and scroll levels
change on a graph. In a managed bean you store methods that takes as input a
ZoomEvent or ScrollEvent. With these events, users can determine which axis is
zoomed, as well as the current extent of the zoomed axes.

To provide custom behavior in response to zooming and scrolling in a graph:
1. In a managed bean, write a custom method that performs the desired behavior

when a zoom or scroll event is triggered. Example 24–16 shows sample code for
creating this method.

2. In the Structure window, right-click the dvt:<type>Graph node and choose Go to
Properties.

Adding Specialized Features to Graphs

24-56 Web User Interface Developer's Guide for Oracle Application Development Framework

3. In the Property Inspector, if not already enabled, configure scrolling on the axes
that the methods will manage.

For example, to use the sample code in Example 24–16, configure scrolling on the
dvt:o1Axis node. For additional help with configuring scrolling, see
Section 24.6.6.2, "How to Specify Scrolling on an Axis."

4. In the Property Inspector, expand the Behavior section and do one or both of the
following:

■ In the zoomListener field, specify a reference to the method that you stored in
the managed bean.

For example, if the method setZoom is stored in the managed bean
SampleGraph, then the setting becomes: "#{sampleGraph.setZoom)".

■ In the scrollListener field, specify a reference to the method that you stored
in the managed bean.

For example, if the method setScroll is stored in the managed bean
SampleGraph, then the setting becomes: "#{sampleGraph.setScroll)".

Example 24–16 Sample Code to Set Zoom and Scroll

Managed bean sampleGraph.java
public void setZoom(ZoomEvent event) {
 System.out.println("Start Group: " +
event.getAxisStartGroup(ZoomEvent.O1AXIS));
 System.out.println("Group Count: " +
event.getAxisGroupCount(ZoomEvent.O1AXIS));
 System.out.println("Start Group Label: " +
event.getAxisStartGroupLabel(ZoomEvent.O1AXIS));
}
public void setScroll(ScrollEvent event) {
 System.out.println("End Group Label: " +
event.getAxisEndGroupLabel(ScrollEvent.O1AXIS));
 System.out.println("Axis Min: " +
event.getAxisMin(ScrollEvent.O1AXIS));
 System.out.println("Axis Max: " +
event.getAxisMax(ScrollEvent.O1AXIS));
}

24.8.7 How to Provide Marker and Legend Dimming
You can force all the data markers for a given set of data to be highlighted when you
move the cursor over one data marker in the set or over the corresponding entry in the
graph legend. Markers include lines, bars, areas, scatter markers, bubbles, and pie
slices. The highlighting effect is visually achieved by dimming the other data markers
in the set. For example, if a bar graph displays sales by month for four products (P1,
P2, P3, P4), when you move the cursor over product P2 in January, all the P2 bars are
highlighted, and the P1, P3, and P4 bars are dimmed.

Because the graph refers to all the data markers in a given set of data (such as all the
P2 bars) as a series, then the ability to highlight the data markers in a series is part of
the graph’s series rollover behavior feature.

Series rollover behavior is available only in the following graph types: bar, line, area,
pie, scatter, polar, radar, and bubble graphs.

Adding Specialized Features to Graphs

Using ADF Graph Components 24-57

To dim all the data markers in a series:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Go to

Properties.

2. In the Appearance attributes category, in the SeriesRolloverBehavior field, use
the dropdown list to select RB_DIM.

24.8.8 Providing an Interactive Time Axis for Graphs
You can define relative ranges and explicit ranges for the display of time data. You can
also add a time selector to allow users to select a time range on the time axis.

24.8.8.1 How to Define a Relative Range of Time Data for Display
You can define a simple relative range of time data to be displayed, such as the last
seven days. This will force old data to scroll off the left edge of the graph as new data
points are added to the display of an active data graph. Relative time range
specifications are not limited to use in active data graphs.

To specify a relative range of time data for display:
1. In the Structure window, right click the dvt:<type>Graph node and choose Go to

Properties.

2. In the Property Inspector, expand the Appearance section and specify values for
the following attributes:

a. In the TimeRangeMode field, specify the value TRM_RELATIVE_LAST or
TRM_RELATIVE_FIRST depending on whether the relative range applies to
the end of the time range (such as the last seven days) or to the beginning of
the time range (such as the first seven days).

b. In the TimeRelativeRange field, specify the relative range in milliseconds.

For example, if you wish to specify a seven day range, enter the number of
days (7) multiplied by the number of milliseconds in a day (86400000):
604800000.

24.8.8.2 How to Define an Explicit Range of Time Data for Display
You can define an explicit range of time data to be displayed, such as the period
between March 15 and March 25. In this example, the year, hour, minute, and second
use default values because they were not stated in the start and end values.

To specify an explicit range of time data for display:
1. Create methods in a managed bean to return the start and end dates for the time

range. For help with managed beans, see Section 2.6, "Creating and Using
Managed Beans."

2. In the Structure window, right click the dvt:<type>Graph node and choose Go to
Properties.

3. In Property Inspector, expand the Appearance section and specify the values for
the following attributes:

a. In the TimeRangeMode field, choose TRM_EXPLICIT from the attribute’s
dropdown menu.

b. In the TimeRangeStart field, specify a reference to a method that returns the
initial date for the time range.

Adding Specialized Features to Graphs

24-58 Web User Interface Developer's Guide for Oracle Application Development Framework

c. In the TimeRangeEnd field, specify a reference to a method that returns the
ending date for the time range.

24.8.8.3 How to Add a Time Selector to a Graph
You can add a time selector to any graph that is configured to display a time axis. The
time selector permits the user to select a range of data on the time axis. Typically, the
time selector is used in master-detail graphs where the detail is based on the time
selector’s date range.

To add a time selector to a graph, add the dvt:timeSelector component to your graph
and add methods to a managed or backing bean to return the start and end dates for
the range. If you are configuring master-detail graphs, add a listener to the time
selector to update the detail graph when the user moves the time selector.

Figure 24–16 shows a simple example of a master-detail graph configured to use a time
selector. The bar graph display updates automatically when the user moves the time
selector to another date range on the master graph.

Figure 24–16 Time Selector in Master-Detail Graph

Before you begin:
It may be helpful to have an understanding of how graph attributes and graph child
tags can affect functionality. For more information, see Section 24.2, "Understanding
the Graph Tags."

You will need to complete these tasks:

■ Create a graph that displays an axis based on time values on your page. For
additional information, see Section 24.4.1, "How to Add a Graph to a Page."

Adding Specialized Features to Graphs

Using ADF Graph Components 24-59

Area, bar, line, combination, and stock graphs display a time axis when dates of
object type java.util.Date are specified for the column labels. To use the time
selector, ensure that the dates are sorted in ascending order and use regular
intervals such as days, weeks, or months.

For example, the line graph in Figure 24–16 uses sales dates for the o1-axis and
gross sales for the series. Figure 24–17 shows the sample data.

Figure 24–17 Sample Data for Time Selector Example

■ If you are configuring master-detail graphs, create the graph that will display the
detail based on the start and end dates of the time selector.

For example, the bar graph in Figure 24–16 also uses sales dates for the o1-axis but
includes the net sales data in addition to the gross sales.

■ Create methods in a managed or backing bean to return the start and end dates for
the time range. For help with managed beans, see Section 2.6.1, "How to Create a
Managed Bean in JDeveloper."

Example 24–17 shows two sample methods that return the start and end dates for
the time selector’s time range.

Example 24–17 Sample Methods to Return Start and End Dates for Time Selector

// Add this import to your bean
import java.util.Date;

// Add these variables to your bean
private static java.sql.Date m_startDate = java.sql.Date.valueOf("2011-01-02");
private static java.sql.Date m_endDate = java.sql.Date.valueOf("2011-01-04");

// Add these methods to your bean
public Date getTimeAxisStartDate() {
 return m_startDate;
}
public Date getTimeAxisEndDate() {
 return m_endDate;
}
■ Optionally, add a method to the managed bean for the time selector’s listener.

Example 24–18 shows a sample listener for the time selector displayed in
Figure 24–16.

Example 24–18 Sample Code for Time Selector Listener

// Add these imports to your bean
import java.util.Date;
import oracle.adf.view.faces.bi.component.graph.UIGraph;
import oracle.adf.view.faces.bi.event.TimeSelectorEvent;
import javax.faces.event.AbortProcessingException;
import java.text.DateFormat;

Adding Specialized Features to Graphs

24-60 Web User Interface Developer's Guide for Oracle Application Development Framework

// Add this method to your bean
public void processTimeSelectorEvent(TimeSelectorEvent event) throws
AbortProcessingException
{
 java.sql.Date startDate = new java.sql.Date(event.getStartDate().getTime());
 java.sql.Date endDate = new java.sql.Date(event.getEndDate().getTime());
 DateFormat formatter = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.MEDIUM);
 if (barGraph1 != null)
 {
 barGraph1.setTimeRangeStart(startDate);
 barGraph1.setTimeRangeEnd(endDate);
 }
}

In this example, the barGraph1 variable is declared as a UIGraph in the page’s
backing bean. When the user changes the time selector range on the master graph,
the listener code sets the new time range on the detail graph.

To add a time selector to a graph:
1. In the Structure window, right-click the dvt:<type>Graph component and choose

Insert Inside GraphType > ADF Data Visualizations > Time Selector.

2. Right-click the dvt:timeSelector node and choose Go to Properties.

3. In the Property Inspector, enter values for the following attributes:

■ In the ExplicitStart field, specify a reference to a method that returns the initial
starting date for the time range.

For example, for a bean named timeSelectorDemo and the
getTimeAxisStartDate() method referenced in Example 24–18, enter the
following for the initial date: #{timeSelectorDemo.timeAxisStartDate}.

■ In the ExplicitEnd field, specify a reference to a method that returns the initial
ending date for the time range.

■ From the Mode attribute’s dropdown menu, choose EXPLICIT to enable the
time selector display. By default, this attribute is set to OFF.

■ From the FillColor attribute’s dropdown menu, choose the color for the fill of
the time selector.

By default, the color is defined as a 6 digit RGB hexadecimal value. When the
time selector displays, the data behind the time selector is hidden. To display
the data, enable transparency for the time selector by adding 2 digits before
the color value. For example, in Figure 24–16, the fill color is defined as
#88c6d6ff.

■ Optionally, to enable transparency which determines whether the time selector
is visible on the screen, from the FillTransparent dropdown menu, choose
TRUE.

If you set FillTransparent and BorderTransparent to TRUE, the time selector
will not be displayed, but the user can still select it.

■ From the BorderColor attribute’s dropdown menu, choose the color for the
border of the time selector.

■ Optionally, to enable transparency, from the BorderTransparent dropdown
menu, choose TRUE.

Adding Specialized Features to Graphs

Using ADF Graph Components 24-61

■ Optionally, in the TimeSelectorListener field, specify a reference to a method
that returns the listener for the time selector.

For example, for a managed bean named timeSelectorDemo and the
processTimeSelectorEvent method referenced in Example 24–18, enter the
following for the time selector listener:
#{timeSelectorDemo.processTimeSelectorEvent}.

Example 24–19 shows the code on the JSF page for the example time selector.

Example 24–19 Time Selector Code on JSF Page

<dvt:timeSelector explicitStart="#{timeSelectorDemo.timeAxisStartDate}"
 explicitEnd="#{timeSelectorDemo.timeAxisEndDate}"
 fillColor="#88c6d6ff" borderColor="#a5c6ff" mode="EXPLICIT"
 timeSelectorListener="#{timeSelectorDemo.processTimeSelectorEvent}"/>

4. If you created a detail graph, update the detail graph to use an explicit time range
and configure it to update when the time selector changes.

1. In the Structure window, right-click the detail graph node and choose Go to
Properties.

2. In the Property Inspector, expand the Appearance section.

3. From the TimeRangeMode attribute’s dropdown menu, choose TRM_
EXPLICIT.

4. In the TimeRangeStart field, specify a reference to a method that returns the
starting time for the time range.

For example, for a bean named timeSelectorDemo and the
getTimeAxisStartDate() method referenced in Example 24–17, enter the
following for the initial date: #{timeSelectorDemo.timeAxisStartDate}.

5. In the TimeRangeEnd field, specify a reference to a method that returns the
ending time for the time range.

6. In the Property Inspector, expand the Behavior section.

7. In the PartialTriggers field, enter the ID of the master graph to enable the
detail graph to update when the user changes the time selector range.

For example, enter ::lineGraph1 to reference the ID of the line graph in
Figure 24–16. You can also choose Edit from the PartialTriggers dropdown
menu to select the partial trigger.

24.8.9 Adding Alerts and Annotations to Graphs
Alerts define a data value on a graph that must be highlighted with a separate symbol,
such as an error or warning. An icon marks the location of the alert. When the cursor
moves over the alert icon, the text of that alert is displayed. An unlimited number of
alerts can be defined for a graph using dvt:alert tags. The alerts are wrapped in a
dvt:alertSet tag, that is a child of graph tag. Example 24–20 shows a set of alerts for
an area graph.

Example 24–20 Sample Code for Set of Graph Alerts

<dvt:areaGraph>
 <dvt:alertSet>
 <dvt:alert xValue="Boston" yValue="3.50" yValueAssignment="Y1AXIS"
 imageSource="myWarning.gif"/>

Adding Specialized Features to Graphs

24-62 Web User Interface Developer's Guide for Oracle Application Development Framework

 <dvt:alert xValue="Boston" yValue="5.50" yValueAssignment="Y1AXIS"
 imageSource="myError.gif"/>
 </dvt:alertSet>
</dvt:areaGraph>

Annotations are associated with a data value on a graph to provide information when
the cursor moves over the data value. An unlimited number of annotations can be
defined for a graph using dvt:annotation tags and multiple annotations can be
associated with a single data value. The annotations are wrapped in a
dvt:annotationSet tag that is a child of the graph tag.

The data marker associated with the annotation is defined using these attributes of the
dvt:annotation tag:

■ series - Specifies the zero-based index of a series in a graph. In most graphs, each
series appears as a set of markers that are the same color. For example, in a
multiple pie graph, each yellow slice might represent sales of shoes, while each
green slice represents the sales of boots. In a bar graph, all of the yellow bars might
represent the sales of shoes, and the green bars might represent the sales of boots.

■ group - Specifies the zero-based index of a group in a graph. Groups appear
differently in different graph types. In a clustered bar graph, each cluster of bars is
a group. In a stacked bar graph, each stack is a group. In a multiple pie graph,
each pie is a group.

Example 24–21 shows a set of annotations for an area graph.

Example 24–21 Sample Code for a Set of Annotations

<dvt:areaGraph>
 <dvt:annotationSet>
 <dvt:annotation series="0" group="0" text="annotation #1"/>
 <dvt:annotation series="0" group="7" fillColor="#55FFFF00"
 borderColor="#55FF0000" text="second annotation"/>
 </dvt:annotationSet>
</dvt:areaGraph>

You can control the position of the annotation in the plot area of a graph using these
attributes:

■ position - Specifies the type of positioning to use for the annotation. Valid values
are:

– dataValue (default) - Positions the annotation by the data value defined in the
series and group attributes. Overlap with other annotations is avoided.

– absolute - Positions the annotation at the exact point defined by the xValue
and the yValue in graphs with both those axes. Overlap with other
annotations is not avoided.

– percentage - Positions the annotation at the exact point defined by using the
xValue and yValue as a percentage between 0 and 100 of the plot area of
graphs with both those axes. Overlap with other annotations is not avoided.

■ xValue - Specifies the X value at which to position the annotation. This setting only
applies when the annotation position is absolute or percentage.

■ yValue - Specifies the Y value at which to position the annotation. This setting only
applies when the annotation position is absolute or percentage.

Animating Graphs

Using ADF Graph Components 24-63

■ horizontalAlignment - Specifies the horizontal positioning of the annotation. This
setting only applies when the annotation position attribute is absolute or
percentage. Valid values are LEFT (default), CENTER, LEADING, or RIGHT.

■ verticalAlignment - Specifies the vertical positioning of the annotation. This
setting only applies when the annotation position attribute is absolute or
percentage. Valid values are CENTER (default), TOP, or BOTTOM.

24.9 Animating Graphs
Graph components dvt:areaGraph, dvt:bubbleGraph, dvt:barGraph, dvt:lineGraph,
dvt:comboGraph, dvt:pieGraph, and dvt:scatterGraph support animation effects
such as slideshow transition for initial display of the graph component and for partial
page refresh (PPR) events. Animation effects are specified in the graph’s
animationOnDisplay and animationOnDataChange properties with these values:

■ alphaFade

■ conveyorFromLeft

■ conveyorFromRight

■ cubeToLeft

■ cubeToRight

■ flipLeft

■ flipRight

■ slideToLeft

■ slideToRight

■ transitionToLeft

■ transitionToRight

■ zoom

Animation effects can also be performed using active data. The Active Data Service
(ADS) allows you to bind ADF Faces components to an active data source using the
ADF model layer. To allow this, you must configure the components and the bindings
so that the components can display the data as it is updated in the source.
Alternatively, you can configure the application to poll the data source for changes at
prescribed intervals.

24.9.1 How to Configure Graph Components to Display Active Data
To use the Active Data Service, you must have a data source that publishes events
when data is changed, and you must create business services that react to those events
and the associated data controls to represent those services. For more information
about ADS and configuring your application, see the "Using the Active Data Service"
chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Configure databound graphs to display active data by setting a value on the binding
element in the corresponding page definition file.

To configure a graph to display active data:
1. In the Structure window, right-click the dvt:<type>Graph node and choose Go to

Page Definition.

Animating Graphs

24-64 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Property Inspector, from the ChangeEventPolicy attribute’s dropdown
menu, select Push.

24.9.2 How to Specify Animation Effects for Graphs
In the Property Inspector for the graph you wish to animate, set the following
attributes:

■ animationOnDisplay: Optional. Use with or without ADS to specify the type of
initial rendering effect to apply. Valid values are:

– none (default): Do not show any initial rendering effect.

– auto: Apply an initial rendering effect automatically chosen based on graph or
gauge type.

– alphaFade

– conveyorFromLeft or conveyorFromRight

– cubeToLeft or cubeToRight

– flipLeft or flipRight

– slideToLeft or slideToRight

– transitionToLeft or transitionToRight

– zoom

■ animationOnDataChange: Use to specify the type of data change animation to
apply. Valid values are:

– none: Apply no data change animation effects.

– activeData (default): Apply Active Data Service (ADS) data change animation
events.

– auto: Apply partial page refresh (PPR) and ADS data change animation
events.

– alphaFade

– conveyorFromLeft or conveyorFromRight

– cubeToLeft or cubeToRight

– flipLeft or flipRight

– slideToLeft or slideToRight

– transitionToLeft or transitionToRight

– zoom

■ animationDuration: Use to specify the animation duration in milliseconds.

■ animationIndicators: Use to specify the type of data change indicators to show.
Valid values are:

– none: Show no data change indicators.

– all (default): Show all data change indicators.

■ animationUpColor: Use to specify the RGB hexadecimal color used to indicate that
a data value has increased.

■ animationDownColor: Use to specify the RGB hexadecimal color used to indicate
that a data value has decreased.

25

Using ADF Gauge Components 25-1

25Using ADF Gauge Components

This chapter describes how to use an ADF gauge component to display data and
provides the options for gauge customization.

This chapter includes the following sections:

■ Section 25.1, "Introduction to the Gauge Component"

■ Section 25.2, "Understanding Data Requirements for Gauges"

■ Section 25.3, "Creating a Gauge"

■ Section 25.4, "Customizing Gauge Type, Layout, and Appearance"

■ Section 25.5, "Adding Gauge Special Effects and Animation"

■ Section 25.6, "Using Custom Shapes in Gauges"

For information about the data binding of gauges, see the "Creating Databound
Gauges" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

25.1 Introduction to the Gauge Component
Gauges identify problems in data. A gauge usually plots one data point with an
indication of whether that point falls in an acceptable or an unacceptable range.
Frequently, you display multiple gauges in a single gauge set. The gauges in a set
usually appear in a grid-like format with a configurable layout.

A Component Gallery displays available gauge categories, types, and descriptions to
provide visual assistance when creating gauges and using a quick-start layout.
Figure 25–1 shows the Component Gallery for gauges.

Introduction to the Gauge Component

25-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 25–1 Component Gallery for Gauges

When a gauge component is inserted into a JSF page using the Component Gallery, a
set of child tags that support customization of the gauge is automatically inserted.
Example 25–1 shows the code inserted in the JSF page for a dial gauge with the
quick-start layout selected in the Component Gallery in Figure 25–1.

Example 25–1 Gauge Sample Code

<dvt:gauge id="gauge1" gaugeType="DIAL">
 <dvt:gaugeBackground>
 <dvt:specialEffects/>
 </dvt:gaugeBackground>
 <dvt:gaugeFrame/>
 <dvt:indicator/>
 <dvt:indicatorBase/>
 <dvt:gaugePlotArea/>
 <dvt:tickLabel/>
 <dvt:tickMark/>
 <dvt:topLabel/>
 <dvt:bottomLabel/>
 <dvt:metricLabel position="LP_WITH_BOTTOM_LABEL"/>
</dvt:gauge>

Gauges are displayed in a default size of 200 X 200 pixels. You can customize the size
of a gauge or specify dynamic resizing to fit an area across different browser window
sizes. When gauges are displayed in a horizontally or vertically restricted area, for
example in a web page sidebar, the gauge is displayed in a small image size. Although
fully featured, the smaller image is a simplified display.

By default, gauges will be displayed using the HTML5 image format when using the
Skyros skin. New applications default to this skin. Alternatively, gauges can be

Introduction to the Gauge Component

Using ADF Gauge Components 25-3

displayed using Flash or a Portable Network Graphics (PNG) output format. For more
information about gauge image formats, see Section 25.3.5, "What You May Need to
Know About Gauge Image Formats."

HTML5, Flash, and PNG image formats for gauges support bi-directional locales.
Support includes text strings containing bi-directional characters, label positions,
legend display, and gauge set display.

25.1.1 Types of Gauges
The following types of gauges are supported by the gauge component:

■ Dial: Indicates its metric along a 220 degree arc. This is the default gauge type.
Figure 25–2 shows a dial gauge indicating the stock level for a beginner’s ski boot
is within an acceptable range.

Figure 25–2 Dial Gauge with Thresholds

■ Status Meter: Indicates the progress of a task or the level of some measurement
along a rectangular bar. An inner rectangle shows the current level of a
measurement against the ranges marked on an outer rectangle. Figure 25–3 shows
the Bunny Boot stock level using a status meter gauge.

Figure 25–3 Status Meter Gauge with Thresholds

■ Status Meter (vertical): Indicates the progress of a task or the level of some
measurement along a vertical rectangular bar. Figure 25–4 shows the Bunny Boot
stock level using a vertical status meter gauge.

Introduction to the Gauge Component

25-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 25–4 Vertical Status Meter Gauge with Thresholds

■ LED (light-emitting diode): Graphically depicts a measurement, such as a key
performance indicator (KPI). Several styles of graphics are available for LED
gauges, such as arrows that indicate good (up arrow), fair (left- or right-pointing
arrow), or poor (down arrow). Figure 25–5 shows the Bunny Boot stock level using
a LED bulb indicator.

Figure 25–5 LED Bulb Gauge

Figure 25–6 shows the same stock level using a LED arrow.

Figure 25–6 LED Arrow Gauge

For dial and status meter gauges, a tooltip of contextual information automatically
displays when a users moves a mouse over the plot area, indicator, or threshold
region. Figure 25–7 shows the indicator tooltip for a dial gauge.

Introduction to the Gauge Component

Using ADF Gauge Components 25-5

Figure 25–7 Indicator Tooltip for Dial Gauge

25.1.2 Gauge Terminology
Gauge terms identify the many aspects of a gauge and gauge set that you can
customize. The gauge component includes approximately 20 child tags that provide
options for this customization.

The parts of a gauge that can be customized are:

■ Overall gauge customization: Each item in this group is represented by a gauge
child tag:

– Gauge Background: Controls border color and fill color for the background of
a gauge.

– Gauge Set Background: Controls border color and fill color for the background
of a gauge set.

– Gauge Frame: Refers to the frame behind the dial gauge.

– Plot Area: Represents the area inside the gauge itself.

– Indicator: Points to the value that is plotted in a dial gauge. It is typically in
the form of a line or an arrow.

– Indicator Bar: The inner rectangle in a status meter gauge.

– Indicator Base: The circular base of a line or needle style indicator in a dial
gauge.

– Threshold Set: Specifies the threshold sections for the metrics of a gauge. You
can create an infinite number of thresholds for a gauge.

■ Data values: These include the metric (which is the actual value that the gauge is
plotting), minimum value, maximum value, and threshold values. Section 25.2,
"Understanding Data Requirements for Gauges" describes these values.

■ Labels: The gauge supports the following elements with a separate child tag for
each item:

– Bottom Label: Refers to an optional label that appears below or inside the
gauge. By default displays the label for the data row.

– Lower Label Frame: Controls the colors for the background and border of the
frame that contains the bottom label. The metric label can also appear inside
the lower label frame, to the right of the bottom label.

– Metric Label: Shows the value of the metric that the gauge is plotting in text.

– Tick Marks: Refers to the markings along the value axis of the gauge. These
can identify regular intervals, from minimum value to maximum value, and
can also indicate threshold values. Tick marks can specify major increments
that may include labels or minor increments.

Understanding Data Requirements for Gauges

25-6 Web User Interface Developer's Guide for Oracle Application Development Framework

– Tick Labels: Displays text that is displayed to identify major tick marks on a
gauge.

– Top Label: Refers to the label that appears at the top or inside of a gauge. By
default, a title separator is used with a label above the gauge. By default,
displays the label for the data column.

– Upper Label Frame: Refers to the background and border of the frame that
encloses the top label. You can specify border color and fill color for this frame.
Turn off the default title separator when using this frame.

■ Legend: The gauge supports the gauge legend area, text, and title elements with a
separate child tag for each item.

■ Shape Attributes Set: The gauge supports interactivity properties for its child
elements. For example, the alt text of a gauge plot area can be displayed as a
tooltip when the user moves the mouse over that area at runtime. For more
information, see Section 25.5.3, "How to Add Interactivity to Gauges."

25.2 Understanding Data Requirements for Gauges
You can provide the following kinds of data values for a gauge:

■ Metric: The value that the gauge is to plot. This value can be specified as static
data in the Gauge Data attributes category in the Property Inspector. It can also be
specified through data controls or through the tabularData attribute of the
dvt:gauge tag. This is the only required data for a gauge. The number of metric
values supplied affects whether a single gauge is displayed or a series of gauges
are displayed in a gauge set.

■ Minimum and maximum: Optional values that identify the lowest and highest
points on the gauge value axis. These values can be provided as dynamic data
from a data collection. They can also be specified as static data in the Gauge Data
attributes category in the Property Inspector for the dvt:gauge tag. For more
information, see Section 25.4.4, "How to Add Thresholds to Gauges."

■ Threshold: Optional values that can be provided as dynamic data from a data
collection to identify ranges of acceptability on the value axis of the gauge. You
can also specify these values as static data using gauge threshold tags in the
Property Inspector. For more information, see Section 25.4.4, "How to Add
Thresholds to Gauges."

The only required data element is the metric value. All other data values are optional.

25.3 Creating a Gauge
You can use any of the following ways to supply data to a gauge component:

■ ADF Data Controls: You declaratively create a databound gauge by dragging and
dropping a data collection from the ADF Data Controls panel. Figure 25–8 shows
the Create Gauge dialog where you configure the metric value, and optionally the
minimum and maximum and threshold values for a gauge you are creating.

Creating a Gauge

Using ADF Gauge Components 25-7

Figure 25–8 Create Gauge Dialog

For more information, see the “Creating Databound Gauges" section in the Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

■ Tabular data: You can provide CSV (comma-separated value) data to a gauge
through the tabularData attribute of the dvt:gauge tag.

25.3.1 How to Add a Gauge to a Page
When you are designing your page using simple UI-first development, you use the
Component Palette to add a gauge to a JSF page. When you drag and drop a gauge
component onto the page, a Create Gauge dialog displays available categories of
gauge types, with descriptions, to provide visual assistance when creating gauges. You
can also specify a quick-start layout of the gauge’s title and legend. Figure 25–9 shows
the Create Gauge dialog with the dial gauge type selected.

Creating a Gauge

25-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 25–9 Create Gauge Dialog for Gauges

Once you complete the dialog, and the gauge is added to your page, you can use the
Property Inspector to specify data values and configure additional display attributes
for the gauge.

In the Property Inspector you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 25–10 shows the dropdown menu for a
gauge component value attribute.

Creating a Gauge

Using ADF Gauge Components 25-9

Figure 25–10 Gauge Component Value Attribute Dropdown Menu

To add a gauge to a page:
1. In the ADF Data Visualizations page of the Component Palette, from the Gauge

panel, drag and drop a Gauge onto the page to open the Create Gauge dialog in
the Component Palette.

Use the dialog to select the gauge category and type, and the quick start layout for
display of gauge title, legend, and labels. For help with the dialog, press F1 or click
Help.

2. In the Property Inspector, view the attributes for the gauge or gauge set. Use the
help button to display the complete tag documentation for the gauge component.

3. Expand the Common section. Use this section to set the following attributes:

■ GaugeType: If you wish to change the category of gauge type, use the
dropdown list to select any of the following valid values: DIAL, LED,
STATUSMETER, or VERTICALSTATUSMETER.

■ GaugeSetColumnCount, GaugeSetAlignment, and GaugeSetDirection: Use
one or more of these attributes to determine the layout of gauges in a gauge
set. For more information, see Section 25.4.2, "How to Determine the Layout of
Gauges in a Gauge Set."

4. Expand the Gauge Data section. Specify data values for the gauge by setting the
value in these fields:

■ Value: For a single gauge, specify the data model, which can be an attribute
from a data control or an instance of DataModel, using an EL Expression.
Alternatively, set a metric value as either a Java.lang.Number object or a
String.

Note: If your application uses the Fusion technology stack, then you
can use data controls to create a gauge and the binding will be done
for you. For more information, see the "Creating Databound Gauges"
section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework

Creating a Gauge

25-10 Web User Interface Developer's Guide for Oracle Application Development Framework

■ TabularData: For a gauge set, specify a tabular data set as a Java.util.List
object. For more information, see Section 25.3.3, "How to Create a Gauge
Using Tabular Data."

■ MinValue and MaxValue: Optionally, set the lowest and greatest values on
the gauge axis. These values are set automatically if not specified.

5. Expand the Appearance section. Specify display attributes by setting the value in
these fields:

■ LedStyle: If you wish to change the shape of the LED gauge, use the
dropdown list to select any of the following valid values: LS_DOT, LS_
ARROW, LS_RECTANGLE, or LS_TRIANGLE. You can also use the LS_
CUSTOM value if you wish to specify a custom image.

■ ThresholdDialStyle: If you wish to change the default style (TDS_
SEGMENTS) of thresholds in dial gauges, use the dropdown list to select any
of the following valid values: TDS_PIE_FILL, TDS_RING_FILL.

■ AngleExtent: Use to specify the range of degrees that sweeps through angles
other than the standard 220-degree arc in a dial gauge.

■ CustomShapesPath: Use to specify the path to the custom shape definition
file. For more information, see Section 25.6, "Using Custom Shapes in Gauges."

■ ShortDesc: Enter a description of the gauge. This description is accessed by
screen reader users.

■ AnimationOnDisplay, AnimationOnDataChange, AnimationDuration
(Animation sub-section): Use one or more of these attributes to set animation
effects for the gauge. For more information, see Section 25.5.4, "How to
Animate Gauges."

The gauge will display on the client in the HTML5 image format if the client supports
it and your application uses the default Skyros skin. For more information about
gauge image formats, see Section 25.3.5, "What You May Need to Know About Gauge
Image Formats."

25.3.2 Creating a Gauge Using Tabular Data
The process of creating a gauge from tabular data includes the following steps:

■ Storing the data in a method in the gauge’s managed bean.

■ Creating a gauge that uses the data stored in the managed bean.

25.3.2.1 Storing Tabular Data for a Gauge in a Managed Bean
The tabularData attribute of a gauge component lets you specify a list of metric
values that the gauge uses to create a grid and to populate itself. You can provide only
the metric value through the tabularData attribute. Therefore, you must specify any
desired thresholds and minimum or maximum values through the Property Inspector.

A gauge component displays rows and columns of gauges. The text that you specify as
column labels appears in the top label of the gauges. The text that you specify as row
labels appears in the bottom label of the gauges.

25.3.2.2 Structure of the List of Tabular Data
The list that contains the tabular data consists of a three-member Object array for each
data value to be passed to the gauge. The members of each array must be organized as
follows:

Creating a Gauge

Using ADF Gauge Components 25-11

■ The first member (index 0) is the column label, in the grid, of the data value. This
is generally a String.

■ The second member (index 1) is the row label, in the grid, of the data value. This is
generally a String.

■ The third member (index 2) is the data value, which is usually Double.

Figure 25–11 has five columns: Quota, Sales, Margin, Costs, and Units. The example
has three rows: London, Paris, and New York. This data produces a gauge set with five
gauges in each row and lets you compare values such as sales across the three cities.

Figure 25–11 Comparison of Annual Results

Example 25–2 shows code that creates the list of tabular data required for the gauge
that compares annual results for three cities.

Example 25–2 Code to Create a List of Tabular Data for a Gauge

public List getGaugeData()
{
 ArrayList list = new ArrayList();
 String[] rowLabels = new String[] {"London", "Paris", "New York"};
 String[] colLabels = new String[] {"Quota", "Sales", "Margin", "Costs",
"Units"};
 double [] [] values = new double[][]{
 {20, 90, 135},
 {50, 20, 80},
 {130, 140, 150},
 {70, 80, 90},
 {110, 120, 130}
 };
 for (int c = 0; c < colLabels.length; c++)
 {
 for (int r = 0; r < rowLabels.length; r++)
 {
 list.add (new Object [] {colLabels[c], rowLabels[r],
 new Double (values [c][r])});
 }
 }
 return list;
}

25.3.3 How to Create a Gauge Using Tabular Data
Use the tabularData attribute of the gauge tag to reference the tabular data that is
stored in a managed bean.

To create a gauge that uses tabular data from a managed bean:
1. In the ADF Data Visualizations page of the Component Palette, Gauge panel, drag

and drop a Gauge onto the page.

2. In the Component Gallery, select the category, type, and quick-start layout style for
the gauge that you are creating.

Creating a Gauge

25-12 Web User Interface Developer's Guide for Oracle Application Development Framework

3. In the Gauge Data category of the Property Inspector, from the tabularData
attribute dropdown menu, choose Expression Builder.

4. In the Expression Builder dialog, use the search box to locate the managed bean.

5. Expand the managed bean node and select the method that creates the list of
tabular data.

6. Click OK.

The Expression is created.

For example, if the name of the managed bean is sampleGauge and the name of the
method that creates the list of tabular data is getGaugeData, the Expression Builder
generates the code #{sampleGauge.gaugeData} as the value for the tabularData
attribute of the dvt:gauge tag.

25.3.4 What Happens When You Create a Gauge Using Tabular Data
When you create a gauge tag that is powered by data obtained from a list referenced in
the tabularData attribute, the following results occur:

■ A gauge is generated with a setting in its tabularData attribute. The settings for
all other attributes for this gauge are provided by default.

■ You have the option of changing the setting of the gaugeType attribute in the
Property Inspector to DIAL, LED, STATUSMETER, or VERTICALSTATUSMETER.

25.3.5 What You May Need to Know About Gauge Image Formats
Gauges support the following image formats: HTML5, Flash, and PNG. The image
format used depends upon the application’s settings and the client’s environment. By
default, gauges will be displayed using the HTML5 image format when using the
Skyros skin. New applications default to this skin.

If your application uses a custom skin, you can configure your application to use the
HTML5 format by adding the following parameter to the application’s web.xml file:
oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT. For more information about the
web.xml parameter, see Section A.2.3.24, "Graph and Gauge Image Format." For
information about skinning and styles, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

If the specified image format isn’t available on the client, the application will default to
an available format. For example, if the client does not support HTML5, the
application will use:

■ Flash, if the Flash Player is available.

You can disable the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Section A.4.3, "Configuring Flash as Component Output Format."

■ Portable Network Graphics (PNG) output format. A PNG output format is also
used when printing gauges. Although static rendering is fully supported when
using a PNG output format, certain interactive features are not available
including:

– Animation

– Context menus

– Popup support

Customizing Gauge Type, Layout, and Appearance

Using ADF Gauge Components 25-13

– Interactivity

25.4 Customizing Gauge Type, Layout, and Appearance
Gauge components can be customized in the following ways:

■ Change the gauge type

■ Specify the layout of gauges in a gauge set

■ Change a gauge size and style

■ Add thresholds

■ Format numbers and text

■ Specify an N-degree dial gauge

■ Customize gauge labels

■ Customize indicators and tick marks

■ Specifying transparency in gauges

25.4.1 How to Change the Type of the Gauge
You can change the type of a gauge using the gaugeType attribute of the dvt:gauge tag.
The gauge type is reflected in the visual editor default gauge.

To change the type of a gauge:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Property Inspector, choose a gauge type from the GaugeType attribute
dropdown list. Valid values are DIAL, LED, STATUSMETER, or VERTICALSTATUSMETER.

25.4.2 How to Determine the Layout of Gauges in a Gauge Set
A single gauge can display one row of data bound to a gauge component. A gauge set
displays a gauge for each row in multiple rows of data in a data collection.

You can specify the location of gauges within a gauge set by specifying values for
attributes in the dvt:gauge tag.

To specify the layout of gauges in a gauge set:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Property Inspector, select the Common attributes category.

3. To determine the number of columns of gauges that will appear in a gauge set,
specify a value for the gaugeSetColumnCount attribute.

A setting of zero causes all gauges to appear in a single row. Any positive integer
determines the exact number of columns in which the gauges are displayed. By
default, the layout is determined automatically.

4. To determine the placement of gauges in columns, specify a value for the
gaugeSetDirection attribute.

Customizing Gauge Type, Layout, and Appearance

25-14 Web User Interface Developer's Guide for Oracle Application Development Framework

If you select GSD_ACROSS, then the default layout of the gauges is used and the
gauges appear from left to right, then top to bottom. If you select GSD_DOWN,
the layout of the gauges is from top to bottom, then left to right.

5. To control the alignment of gauges within a gauge set, specify a value for the
gaugeSetAlignment attribute.

This attribute defaults to the setting GSA_NONE, which divides the available
space equally among the gauges in the gauge set. Other options use the available
space and optimal gauge size to allow for alignment towards the left or right and
the top or bottom within the gauge set. You can also select GSA_CENTER to
center the gauges within the gauge set.

25.4.3 Changing Gauge Size and Style
Gauges are displayed in a default size of 200 X 200 pixels. You can customize the size
of a gauge or specify dynamic resizing to fit an area across different browser window
sizes. When gauges are displayed in a horizontally or vertically restricted area, for
example in a web page sidebar, the gauge is displayed in a small image size. Although
fully featured, the smaller image is a simplified display.

You can customize the width and height of a gauge, and you can allow for dynamic
resizing of a gauge based on changes to the size of its container. These two aspects of a
gauge are interrelated in that they share the use of the gauge inlineStyle attribute.

You can also apply CSS styles such as active, focus, hover, link, and visited to use
for a gauge.

25.4.3.1 Specifying the Size of a Gauge at Initial Display
You can specify the initial size of a gauge by setting values for attributes of the
dvt:gauge tag. If you do not also provide for dynamic resizing of the gauge, then the
initial size becomes the only display size for the gauge.

To specify the size of a gauge at its initial display:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Style attributes category of the Property Inspector, enter a value for the
InlineStyle attribute of the dvt:gauge tag. For example:

inlineStyle="width:200px;height:200px"

25.4.3.2 Providing Dynamic Resizing of a Gauge
You can enter a value for the DynamicResize attribute to allow for a gauge to resize
when its container in a JSF page changes in size. The value that you specify for this
capability is also useful for creating a gauge component that fills an area across
different browser window sizes.

To allow dynamic resizing of a gauge:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Behavior attributes category of the Property Inspector for the
DynamicResize attribute, select the value DYNAMIC_SIZE.

3. In the InlineStyle attribute, enter a fixed number of pixels or a relative percent
for both width and height.

Customizing Gauge Type, Layout, and Appearance

Using ADF Gauge Components 25-15

For example, to create a gauge that fills 50% of its container’s width and has a
height of 200 pixels, use the following setting for the inlineStyle attribute:
"width:50%;height:200px;".

25.4.3.3 Using a Custom Style Class for a Gauge
You have the option of specifying a custom style class for use with a gauge. However,
you must specify width and height in the inlineStyle attribute.

To specify a custom style class for a gauge:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Style attributes category of the Property Inspector, for the StyleClass
attribute, enter the CSS style class to use for this gauge.

3. In the InlineStyle attribute, enter a fixed number of pixels or a relative percent
for both width and height.

For example, to create a gauge that fills 50% of its container’s width and has a
height of 200 pixels, use the following setting for the inlineStyle attribute:
"width:50%;height:200px;".

25.4.4 How to Add Thresholds to Gauges
Thresholds are data values in a gauge that highlight a particular range of values.
Thresholds must be values between the minimum and the maximum value for a
gauge. The range identified by a threshold is filled with a color that is different from
the color of other ranges.

The data collection for a gauge can provide dynamic values for thresholds when the
gauge is databound. After the gauge is created, you can also insert a
dvt:thresholdSet tag and individual dvt:threshold tags to create static thresholds. If
threshold values are supplied in both the data collection and in threshold tags, then
the gauge honors the values in the threshold tags.

25.4.4.1 Adding Static Thresholds to Gauges
You can create an indefinite number of thresholds in a gauge. Each threshold is
represented by a single dvt:threshold tag. One dvt:thresholdSet tag must wrap all
the threshold tags.

To add static thresholds to a gauge:
1. In the Structure window, right-click the gauge node and choose Insert inside

dvt:gauge > ADF Data Visualization > Threshold Set.

You do not need to specify values for attributes on the dvt:thresholdSet tag.

2. Right-click the dvt:thresholdSet node and choose Insert inside dvt:thresholdSet >
threshold.

3. In the Property Inspector, enter values for the attributes that you want to
customize for this threshold.

You have the option of entering a specific fill color and border color for the section
of the gauge related to the threshold. You can also identify the maximum value for

Best Practice Tip: To specify a width of 100%, set the styleClass
attribute to AFStretchWidth.

Customizing Gauge Type, Layout, and Appearance

25-16 Web User Interface Developer's Guide for Oracle Application Development Framework

the threshold and any text that you want to display in the legend to identify the
threshold.

4. Repeat Step 2 and Step 3 to create each threshold in the gauge from the lowest
minimum value to the highest maximum value.

You have the option of adding any number of thresholds to gauges. However, arrow
and triangle LED gauges support thresholds only for the three directions to which they
point.

25.4.5 How to Format Numeric Values in Gauges
For gauges, the dvt:metricLabel and dvt:tickLabel tags may require numeric
formatting.

25.4.5.1 Formatting the Numeric Value in a Gauge Metric or Tick Label
The metric label tag has a numberType attribute that lets you specify whether you want
to display the value itself or a percentage that the value represents. In some cases, this
might be sufficient numeric formatting.

You can also use the af:convertNumber tag to specify formatting for numeric values in
the metric label. For example, the af:convertNumber tag lets you format data values as
currency or display positive or negative signs.

To format numbers in a gauge metric or tick label:
1. In the Structure window, right-click the dvt:metricLabel or dvt:tickLabel node

and choose Go to Properties.

2. In the Property Inspector, if you want to display the metric value as a percentage
rather than as a value, then set the NumberType attribute of the dvt:metricLabel
tag to NT_PERCENT.

3. If you want to specify additional formatting for the number in the metric or tick
label, do the following:

a. In the Structure window, right-click the dvt:metricLabel or dvt:tickLabel node
and choose Insert inside dvt:<type>Label > Convert Number.

b. In the Property Inspector, specify values in the attributes of the
af:convertNumber tag to produce additional formatting.

Note: For the final threshold, the maximum value of the gauge is
used as the threshold maximum value regardless of any entry you
make in the threshold tag for the final threshold.

Note: When the numberType attribute of metric or tick labels is set
to percent (NT_PERCENT), a child af:convertNumber tag, if used,
will be automatically set to percent for its type attribute. When
af:convertNumber is forced to percent, gauge clears the pattern
attribute. This means that patterns are ignored when a gauge forces
percent formatting.

Customizing Gauge Type, Layout, and Appearance

Using ADF Gauge Components 25-17

25.4.6 What Happens When You Format the Numbers in a Gauge Metric Label
When you add a number formatting to a metric label, XML code is generated.
Example 25–3 shows a sample of the XML code that is generated.

Example 25–3 XML Code Generated When Formatting a Number in a Metric Label

<dvt:gauge>
 <dvt:metricLabel position="LP_BELOW_GAUGE" numberType="NT_PERCENT">
 <af:convertNumber type="percent"/>
 </dvt:metricLabel>
</dvt:gauge>

25.4.7 What You May Need to Know About Automatic Scaling and Precision
In order to achieve a compact and clean display, gauges automatically determine the
scale and precision of the values being displayed in metric labels and tick labels. For
example, a value of 40,000 will be formatted as 40K, and 0.230546 will be displayed
with 2 decimal points as 0.23.

Automatic formatting still occurs when af:convertNumber is specified. Gauge tags
that support af:convertNumber child tags have scaling and autoPrecision attributes
that can be used to control the gauge's automatic number formatting. By default, these
attribute values are set to scaling="auto" and autoPrecision="on". Fraction digit
settings specified in af:convertNumber, such as minFractionDigits,
maxFractionDigits, or pattern, are ignored unless autoPrecision is set to off.

25.4.8 How to Format Text in Gauges
You can format text in any of the following gauge tags that represent titles and labels
in a gauge:

■ dvt:bottomLabel

■ dvt:gaugeMetricLabel

■ dvt:gaugeLegendText

■ dvt:gaugeLegendTitle

■ dvt:tickLabel

■ dvt:topLabel

The procedure for formatting text in gauge labels and titles is similar except that you
insert the appropriate child tag that represents the gauge label or title. For example,
you can use a dvt:gaugeFont child tag to a dvt:metricLabel tag to specify gauge
metric label font size, color, and if the text should be bold or italic.

To format text in a gauge metric label:
1. In the Structure window, right-click the metricLabel node and choose Insert

inside dvt:metricLabel > Font.

2. In the Property Inspector, specify values in the attributes of the dvt:gaugeFont tag
to produce the desired formatting.

When you format text in a gauge metric label using the gaugeFont tag, XML code is
generated. Example 25–4 shows a sample of the XML code that is generated.

Example 25–4 XML Code Generated When You Format Text in a Gauge Metric Label

<dvt:gauge>

Customizing Gauge Type, Layout, and Appearance

25-18 Web User Interface Developer's Guide for Oracle Application Development Framework

 <dvt:metricLabel>
 <dvt:gaugeFont name="Tahoma" size="11" color="#3C3C3C" bold="true"/>
 </dvt:metricLabel>
</dvt:gauge>

25.4.9 How to Specify an N-Degree Dial
You can specify a gauge that sweeps through angles other than the standard
220-degree arc in a dial gauge. Set the angleExtent attribute to specify the range of
degrees in the gauge.

For example, to create a 270 degree dial gauge, set the angleExtent attribute as
follows: <dvt:gauge angleExtent="270"/>.

25.4.10 How to Customize Gauge Labels
You can control the positioning of gauge labels. You can also control the colors and
borders of the gauge label frames.

25.4.10.1 Controlling the Position of Gauge Labels
You can specify whether you want labels to appear outside or inside a gauge by using
the position attribute of the appropriate label tag. The following label tags are
available as child tags of dvt:gauge:

■ dvt:bottomLabel

■ dvt:metricLabel

■ dvt:topLabel

The procedure for controlling the position of metric and top labels is similar.

To specify the position of the bottom label:
1. In the Structure window, right-click the dvt:bottomLabel node and choose Go to

Properties.

2. In the Property Inspector, for the position attribute, select the desired location of
the label.

3. In the text attribute, enter the text that you want the label to display.

Use a similar procedure to customize the position of the top and metric labels.

25.4.10.2 Customizing the Colors and Borders of Gauge Labels
You can control the fill color and border color of the frames for the top label and the
bottom label. The dvt:upperLabelFrame and dvt:lowerLabelFrame gauge child tags
serve as frames for these labels.

To customize the color and border of the upper label frame:
1. In the Structure window, right-click the gauge node and choose Insert inside

dvt:gauge > ADF Data Visualization > Upper Label Frame.

2. In the Property Inspector, select the desired colors for the borderColor attribute
and the fillColor attribute.

Use a similar procedure to customize the color and border of the bottom label frame
using the dvt:bottomLabel tag as a child of the gauge node.

Customizing Gauge Type, Layout, and Appearance

Using ADF Gauge Components 25-19

25.4.11 How to Customize Indicators and Tick Marks
There are a variety of options available for customizing the indicators of gauges and
the location and labeling of tick marks.

25.4.11.1 Controlling the Appearance of Gauge Indicators
The following gauge child tags are available to customize the indicator of a gauge:

■ dvt:indicator: Specifies the visual properties of the dial gauge indicator needle
or the status meter bar. Includes the following attributes:

– borderColor: Specifies the color of the border of the indicator.

– fillColor: Specifies the color of the fill for the indicator.

– type: Identifies the kind of indicator: a line indicator, a fill indicator, or a
needle indicator.

– useThresholdFillColor: Determines whether the color of the threshold area
in which the indicator falls should override the specified color of the indicator.

■ dvt:indicatorBar: Contains the fill properties of the inner rectangle (bar) of a
status meter gauge.

■ dvt:indicatorBase: Contains the fill properties of the circular base of a line and
needle style indicator of a dial gauge.

To customize the appearance of gauge indicators:
1. In the Structure window, right-click the dvt:indicator node and choose Go to

Properties.

2. In the Property Inspector, specify values for the desired attributes.

3. If you want to customize the fill attributes of the inner bar on a status meter gauge,
in the Structure window, right-click the dvt:gauge node and choose Insert inside
dvt:gauge > ADF Data Visualization > Indicator Bar.

4. In the Property Inspector, specify values for the desired attributes.

5. If you want to customize the circular base of a line style indicator on a dial gauge,
in the Structure window, right-click the dvt:indicatorBase node and choose Go to
Properties.

6. In the Property Inspector, specify values for the desired attributes.

25.4.11.2 Specifying Tick Marks and Labels
The following gauge child tags are available to customize tick marks and tick labels for
a gauge:

■ dvt:tickMark: Specifies the display, spacing, and color of major and minor tick
marks. Only major tick marks can include value labels. Includes the following
attributes:

– majorIncrement and minorIncrement: Sets the distance between two major
tick marks and two minor tick marks, respectively. If the value is less than zero
for either attribute, the tick marks are not displayed.

– majorTickColor and minorTickColor: Sets the hexidecimal color of major tick
marks and minor tick marks, respectively.

– content: Specifies where tick marks occur within a gauge set. Valid values are
any combination separated by spaces or commas including:

Customizing Gauge Type, Layout, and Appearance

25-20 Web User Interface Developer's Guide for Oracle Application Development Framework

* TC_INCREMENTS: Display tick marks in increments.

* TC_MAJOR_TICK: Display tick marks for minimum, maximum, and
incremental values.

* TC_MIN_MAX: Display tick marks for minimum and maximum values.

* TC_METRIC: Display tick marks for actual metric values.

* TC_NONE: Display no tick marks.

* TC_THRESHOLD: Display tick marks for threshold values.

■ dvt:tickLabel: Identifies major tick marks that will have labels, the location of the
labels (interior or exterior of the gauge), and the format for numbers displayed in
the tick labels.

To customize the tick marks and tick labels of a gauge:
1. In the Structure window, right-click the dvt:tickMark node and choose Go to

Properties.

2. In the Property Inspector, specify values for the desired attributes.

3. In the Structure window, right-click the dvt:tickLabel node and choose Go to
Properties.

4. In the Property Inspector, specify values for the desired attributes.

25.4.11.3 Creating Exterior Tick Labels
By default, the dial gauge displays interior tick labels to provide a cleaner look when
the gauge is contained entirely within the gauge frame. Because the tick labels lie
within the plot area, the length of the tick labels must be limited to fit in this space.
You can customize your gauge to use exterior labels.

To create interior tick labels on a gauge:
1. In the Structure window, right-click the dvt:tickLabel node and choose Go to

Properties.

2. In the Property Inspector, select TLP_EXTERIOR for the Position attribute.

25.4.12 Specifying Transparency for Parts of a Gauge
You can specify that various parts of a gauge show transparent colors by setting the
borderColor and fillColor attributes on the gauge child tags related to these parts of
the gauge. These color properties accept a 6 or 8 RGB hexidecimal value. When an
8-digit value is used, the first two digits represent transparency. For example, you can
set transparency by using a value of 00FFFFFF.

Any gauge child tag that supports borderColor or fillColor attributes can be set to
transparency. The following list are examples of parts of the gauge that support
transparency:

■ Gauge background: Use the dvt:gaugeBackground tag.

■ Gauge gauge frame: Use the dvt:gaugeFrame tag.

■ Gauge plot area: Use the dvt:gaugePlotArea tag.

■ Gauge legend area: Use the dvt:gaugeLegendArea tag.

Adding Gauge Special Effects and Animation

Using ADF Gauge Components 25-21

25.5 Adding Gauge Special Effects and Animation
These gauge features are used less frequently than the common gauge features. These
special features include applying gradient effects to parts of a gauge, adding
interactivity to gauges, animating gauges, and taking advantage of the gauge support
for active data.

25.5.1 How to Use Gradient Special Effects in a Gauge
A gradient is a special effect in which an object changes color gradually. Each color in a
gradient is represented by a stop. The first stop is stop 0, the second is stop 1, and so
on. You must specify the number of stops in the special effects for a subcomponent of a
gauge that supports special effects.

You can define gradient special effects for the following subcomponents of a gauge:

■ Gauge background: Uses the dvt:gaugeBackground tag.

■ Gauge set background: Uses the dvt:gaugeSetBackground tag.

■ Gauge plot area: Uses the dvt:gaugePlotArea tag.

■ Gauge frame: Uses the dvt:gaugeFrame tag.

■ Gauge legend area: Uses the dvt:gaugeLegendArea tag.

■ Lower label frame: Uses the dvt:lowerLabelFrame tag.

■ Upper label frame: Uses the dvt:upperLabelFrame tag.

■ Indicator: Uses the dvt:indicator tag.

■ Indicator bar: Uses the dvt:indicatorBar tag.

■ Indicator base: Uses the dvt:indicatorBase tag.

■ Threshold: Uses the dvt:threshold tag.

The approach that you use to define gradient special effects is identical for each part of
the gauge that supports these effects.

25.5.1.1 Adding Gradient Special Effects to a Gauge
For each subcomponent of a gauge to which you want to add special effects, you must
insert a dvt:specialEffects tag as a child tag of the subcomponent if the tag does not
already exist. For example, if you want to add a gradient to the indicator of a gauge,
then you would create one dvt:specialEffects tag that is a child of the
dvt:indicator tag. You must also set the dvt:specialEffects tag fillType property
to FT_GRADIENT.

Then, optionally if you want to control the rate of change for the fill color of the
subcomponent, you would add as many dvt:gradientStopStyle tags as you need to
control the color and rate of change for the fill color of the component. These
dvt:gradientStopStyle tags then must be entered as child tags of the single
dvt:specialEffects tag.

To add a gradient special effect to a gauge indicator:
1. In the Structure window, right-click the dvt:indicator node and choose Insert

inside dvt:indicator > Special Effects.

2. Use the Property Inspector to enter values for the attributes of the
dvt:specialEffects tag:

a. For fillType attribute, select FT_GRADIENT.

Adding Gauge Special Effects and Animation

25-22 Web User Interface Developer's Guide for Oracle Application Development Framework

b. For gradientDirection attribute, select the direction of change that you want
to use for the gradient fill.

c. For the numStops attribute, enter the number of stops to use for the gradient.

3. Optionally, in the Structure window, right-click the special effects node and choose
Insert within dvt:specialEffects > dvt:gradientStopStyle if you want to control
the color and rate of change for each gradient stop.

4. Use the Property Inspector to enter values for the attributes of the
dvt:gradientStopStyle tag:

a. For the stopIndex attribute, enter a zero-based integer as an index within the
dvt:gradientStopStyle tags that are included within the
dvt:specialEffects tag.

b. For the gradientStopColor attribute, enter the color that you want to use at
this specific point along the gradient.

c. For the gradientStopPosition attribute, enter the proportional distance along
a gradient for the identified stop color. The gradient is scaled from 0 to 100. If 0
or 100 is not specified, default positions are used for those points.

5. Repeat Step 3 and Step 4 for each gradient stop that you want to specify.

25.5.2 What Happens When You Add a Gradient Special Effect to a Gauge
When you add a gradient fill to the background of a gauge and specify two stops,
XML code is generated. Example 25–5 shows the XML code that is generated.

Example 25–5 XML Code Generated for Adding a Gradient to the Background of a
Gauge

<dvt:gauge >
 <dvt:gaugeBackground borderColor="#848284">
 <dvt:specialEffects fillType="FT_GRADIENT" gradientDirection="GD_RADIAL">
 <dvt:gradientStopStyle stopIndex="0" gradientStopPosition="60"
 gradientStopColor="FFFFCC"/>
 <dvt:gradientStopStyle stopIndex="1" gradientStopPosition="90"
 gradientStopColor="FFFF99"/>
 </dvt:specialEffects>
 </dvt:gaugeBackground>
</dvt:gauge>

25.5.3 How to Add Interactivity to Gauges
You can specify interactivity properties on subcomponents of a gauge using one or
more dvt:shapeAttributes tags wrapped in a dvt:shapeAttributesSet tag. The
interactivity provides a connection between a specific subcomponent and an HTML
attribute or a JavaScript event. Each dvt:shapeAttributes tag must contain a
subcomponent and at least one attribute in order to be functional.

For example, Example 25–6 shows the code for a dial gauge where the tooltip of the
indicator changes from "Indicator" to "Indicator is Clicked" when the user clicks the
indicator, and the tooltip for the gauge metric label displays "Metric Label" when the
user mouses over that label at runtime.

Example 25–6 Sample Code for Gauge shapeAttributes Tag

<dvt:gauge >
 <dvt:shapeAttributesSet>

Adding Gauge Special Effects and Animation

Using ADF Gauge Components 25-23

 <dvt:shapeAttributes component="GAUGE_INDICATOR" alt="Indicator"
onClick="document.title="onClick";"/>
 <dvt:shapeAttributes component="GAUGE_METRICLABEL" alt="Metric Label"
onMouseMove="document.title="onMouseMove";"/>
 </dvt:shapeAttributesSet>
</dvt:gauge>

You can also use a backing bean method to return the value of the attribute.
Example 25–7 shows sample code for referencing a backing bean and Example 25–8
shows the backing bean sample code.

Example 25–7 Gauge shapeAttributes Tag Referencing a Backing Bean

<dvt:gauge >
 <dvt:shapeAttributesSet>
 <dvt:shapeAttributes component="GAUGE_INDICATOR" alt="#{sampleGauge.alt}"
onClick="#{sampleGauge.onClick}"/>
 <dvt:shapeAttributes component="GAUGE_METRICLABEL"
alt="#{sampleGauge.alt}" onMouseMove="#{sampleGauge.onMouseMove}"/>
 </dvt:shapeAttributesSet>
</dvt:gauge>

Example 25–8 Sample Backing Bean Code

public String alt(oracle.dss.dataView.ComponentHandle handle) {
 return handle.getName(); }
 public String onClick(oracle.dss.dataView.ComponentHandle handle) {
 return ("document.title=\"onClick\";"); }
 public String onMouseMove(oracle.dss.dataView.ComponentHandle handle) {
 return ("document.title=\"onMouseMove\";"); }

The following gauge subcomponents support the dvt:shapeAttributes tag:

■ GAUGE_BOTTOMLABEL - the label below the gauge

■ GAUGE_INDICATOR - the indicator in the gauge

■ GAUGE_LEGENDAREA - the legend area of the gauge

■ GAUGE_LEGENDTEXT - the text label of the legend area

■ GAUGE_METRICLABEL - the label showing the metric value

■ GAUGE_TOPLABEL - the label above the gauge

■ GAUGE_PLOTAREA - the area inside the gauge

■ GAUGE_THRESHOLD - the threshold area of the gauge

25.5.4 How to Animate Gauges
You can animate gauges (not gauge sets) to show changes in data, for example, a dial
gauge indicator can change color when a data value increases or decreases.
Figure 25–12 shows a dial gauge with the dial indicator animated to display the data
change at each threshold level.

Adding Gauge Special Effects and Animation

25-24 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 25–12 Animated Dial Gauge

The attributes for setting animation effects on gauges are:

■ animationOnDisplay: Use to specify the type of initial rendering effect to apply.
Valid values are:

– NONE (default): Do not show any initial rendering effect.

– AUTO: Apply an initial rendering effect automatically chosen based on graph or
gauge type.

■ animationOnDataChange: Use to specify the type of data change animation to
apply. Valid values are:

– NONE: Apply no data change animation effects.

– AUTO (default): Apply Active Data Service (ADS) data change animation
events. For more information about ADS, see Section 25.5.5, "How to Animate
Gauges with Active Data."

– ON: Apply partial page refresh (PPR) data change animation events. Use this
setting to configure the application to poll the data source for changes at
prescribed intervals.

25.5.5 How to Animate Gauges with Active Data
Animation effects using Active Data Service (ADS) can be added to dial and status
meter gauge types. ADS allows you to bind ADF Faces components to an active data
source using the ADF model layer. To allow this, you must configure the components
and the bindings so that the components can display the data as it is updated in the
data source.

Before you begin:
In order to use the Active Data Service, you must:

■ Have a data source that publishes events when data is changed

■ Create business services that react to those events and the associated data controls
to represent those services

For more information about ADS and configuring your application, see the "Using the
Active Data Service" chapter in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

25.5.5.1 Configuring Gauge Components to Display Active Data
You configure a databound gauge to display active data by setting a value on the
binding element in the corresponding page definition file.

To configure a gauge to display active data:
1. In the Structure window, right-click the dvt:gauge node, and choose Go to Page

Definition.

Using Custom Shapes in Gauges

Using ADF Gauge Components 25-25

2. In the Property Inspector, expand the Advanced section and select Push for the
ChangeEventPolicy attribute.

25.5.5.2 Adding Animation to Gauges
After configuring the gauge component to display active data, set animation effects
using the attributes defined in Section 25.5.4, "How to Animate Gauges."

25.6 Using Custom Shapes in Gauges
You can directly specify the graphics for a gauge to create custom gauge shapes. The
customShapesPath attribute is set to point to the vector graphics file that is processed
into graphics used for output. JDeveloper also provides a set of custom shape styles
accessible by using the customShapesPath attribute.

25.6.1 How to Create a Custom Shapes Graphic File
Due to the requirements for rotating and resizing a gauge’s components, such as the
plot area or tick marks, a vector graphics file is required when creating a custom
shapes graphic file. Scalable Vector Graphics (SVG) is the supported file format for
creating custom shapes for gauges.

After designing the gauge and exporting it to an SVG file, a designer can add
information to identify, scale, and position the gauge shapes and components, and to
specify other metadata used in processing.

In the SVG file, gauge components are identified using an ID. For example, an SVG file
with <polygon id="indicator"/> would be interpreted as using a polygon shape for
the indicator component. To specify multiple shapes to create the desired visual for a
component, the ID can be modified as in id="indicator_0", id="indicator_1", and
id="indicator_2".

Table 25–1 shows the gauge component IDs and their descriptions.

Table 25–1 Gauge Component IDs for Custom Shapes

ID Description

indicator Points to the value represented by the gauge. If not specified, the
gauge will use the indicator specified in the application.

For the dial gauge, the indicator must be specified while
pointing up (90 degrees), so that the shape can be properly
rotated.

For the status meter gauge, the indicator should be specified
with its full extent, and the gauge will be cropped to point to the
metric value.

indicatorBase For a dial gauge, refers to the object that appears at the base of
the indicator component. If specified, and the indicatorCenter
is not, then the center of the indicatorBase will be taken as the
indicatorCenter.

gaugeFrame Refers to the optional component that adds visual distinction to
the plotArea. It can be turned on or off in the application by
setting the rendered property. Used primarily when the user
wants to use the default gauge plotArea. If no plotArea is
specified, then the gauge will insert the default plotArea within
the plotAreaBounds. This provides a quick way to change the
look of the gauge without having to create a custom plotArea or
tickMark.

Using Custom Shapes in Gauges

25-26 Web User Interface Developer's Guide for Oracle Application Development Framework

Table 25–2 shows the metadata IDs and the descriptions used for internal calculations,
not rendered in the gauge.

lowerLabelFrame Refers to the frame that contains the bottomLabel when its
position is LP_BELOW_GAUGE; allows the user to customize the
look of this frame. The gauge will position the lowerLabelFrame
in the same relative position to other gauge components when it
is found in the custom shapes file.

plotArea For the dial gauge, refers to the circular area within which the
indicator moves.

For the status meter gauge, refers to the area that contains the
indicator.

For the LED gauge, refers to the area that contains any graphics
that will not be filled with the LED fill color.

When a plotArea is not specified, the gauge will draw the
default plotArea. For tick marks to be drawn, a specification of
the plotArea also requires either tickMarkPath or a set of tick
marks.

tickMark Used to define increments on the gauge. When a set of tick
marks is specified with no tickMarkPath, the gauge will use the
tick marks exactly where they appear on the plotArea. In this
case, it is up to the user to ensure that the tick marks appear at
equal increments. If a tickMarkPath is specified, the gauge will
accept a single tickMark, at 90 degrees for the dial, and it will
rotate and position the tickMark along the tickMarkPath.

upperLabelFrame Refers to the frame that contains the topLabel when its position
is LP_ABOVE_GAUGE. Setting the upperLabelFrame allows the user
to customize the look of this frame. The gauge will position the
upperLabelFrame in the same relative position to other gauge
components when it is found in the custom shapes file.

Table 25–2 Metadata IDs for Custom Shapes

ID Description

indicatorBarBounds Specifies the box containing the minimum and maximum
extent of the indicator bar. If not specified, the bounding box is
taken to be the entire indicator as specified in the input file.

indicatorCenter Specifies the center of rotation for the indicator that rotates
around in a dial gauge. The center of the shape with this ID is
considered to be the indicator center. If not specified, it is
assumed to be the center of the bottom edge of the plot area
for an 180-degree dial gauge, and the center of the plot area for
an N-degree dial gauge.

ledFillArea Specifies the area of the LED gauge that should be filled with
the appropriate threshold color. If not specified, then the entire
plotArea shape specified in the graphics file will be filled with
the threshold color.

lowerLabelFrameTextBox For complex lowerLabelFrame shapes, specifies a rectangle
that can be set as the lowerLabelFrameTextBox. This box
determines the position of the bottom label within the
lowerLabelFrame.

Table 25–1 (Cont.) Gauge Component IDs for Custom Shapes

ID Description

Using Custom Shapes in Gauges

Using ADF Gauge Components 25-27

Example 25–9 shows a sample SVG file used to specify custom shapes for the
components of a gauge.

Example 25–9 Sample SVG File Used for Gauge Custom Shapes

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"
 version="1.0">

 <rect width="264.72726" height="179.18887" rx="8.2879562"
 ry="10.368411" x="152.76225" y="202.13995"
 style="fill:#c83737;fill-opacity:1;stroke:none"
 id="gaugeFrame"/>
 <rect width="263.09058" height="42.581127" rx="3.0565372"
 ry="3.414634" x="155.11697" y="392.35468"
 fill="#c83737"
 id="lowerLabelFrame" />
 <rect width="241.79999" height="120.13961"
 x="164.2415" y="215.94714"
 style="fill:#ffeeaa"
 id="plotAreaBounds"/>
 <rect width="74.516975" height="44.101883"
 rx="2.6630435" ry="3.5365853"
 x="247.883" y="325.4415"
 style="fill:#ffd5d5;fill-opacity:1;stroke:none"
 id="indicatorBase"/>
 <rect width="6.0830183" height="98.849045" rx="2.6630435"
 ry="2.2987804" x="282.86035" y="237.23772"
 style="fill:#00aa00;fill-opacity:1;stroke:none"
 id="indicator"/>
</svg>

plotAreaBounds Specified the bounding box for the plotArea. If no plotArea
has been specified in this file, then a bounding box is needed
for the gauge to draw the plot area of the gauge. If not
specified, then the gaugeFrame will use its own bounding box
for this purpose.

thresholdFillArea Defines the area that will be filled with the threshold colors.

For a dial gauge, specifies the thresholdFillArea that will be
filled by sweeping an arc from the indicatorCenter.

For a status meter gauge, specifies the thresholdFillArea that
will be filled based on the orientation of the status meter
gauge.

tickMarkPath Defines the path in which to draw tick marks. This is necessary
for the gauge to calculate where tick marks should be drawn
on a custom plot area, and the gauge will be unable to change
the majorTickCount if this is not specified.

upperLabelFrameTextBox For complex upperLabelFrame shapes, specifies a rectangle
that can be set as the upperLabelFrameTextBox. This box
determines the position of the topLabel within the
upperLabelFrame.

Table 25–2 (Cont.) Metadata IDs for Custom Shapes

ID Description

Using Custom Shapes in Gauges

25-28 Web User Interface Developer's Guide for Oracle Application Development Framework

25.6.2 How to Use a Custom Shapes File
After creating the SVG file to be used to specify the custom shapes for your gauge, set
the customShapesPath attribute to point to the file.

To specify a custom shapes file:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Appearance attributes category of the Property Inspector, for the
CustomShapesPath attribute, enter the path to the custom shapes file. For example,
customShapesPath="/path/customShapesFile.svg".

25.6.3 What You May Need to Know About Supported SVG Features
The custom shapes available to you support the following SVG features:

■ Transformations

■ Paths

■ Basic shapes

■ Fill and stroke painting

■ Linear and radial gradients

SVG features that are not supported by custom shapes in JDeveloper include:

■ Unit Identifiers: All coordinates and lengths should be specified without the unit
identifiers, and are assumed to be in pixels. The parser does not support unit
identifiers, because the size of certain units can vary based on the display used.
For example, an inch may correspond to different numbers of pixels on different
displays. The only exceptions to this are gradient coordinates, which can be
specified as percentages.

■ Text: All text on the gauge is considered data, and should be specified through the
tags or data binding.

■ Specifying Paint: The supported options are none, 6-digit hexadecimal, and a
<uri> reference to a gradient.

■ Fill Properties: The fill-rule attribute is not supported.

■ Stroke Properties: The stroke-linecap, stroke-linejoin, stroke-miterlimit,
stroke-disarray, and stroke-opacity attributes are not supported.

■ Linear Gradients and Radial Gradients: The gradientUnits, gradientTransform,
spreadMethod, and xlink:href are not supported. Additionally, the r, fx, and fy
attributes on the radial gradient are not supported.

■ Elliptical Arc Out-of-Range Parameters: If rx, ry, and x-axis-rot are too small
such that there is no solution, the ellipse should be scaled uniformly until there is
exactly one solution. The SVG parser will not support this.

■ General Error Conditions: The SVG input is expected to be well formed and
without errors. The SVG parser will not perform any error checking or error
recovery for incorrectly formed files, and it will stop parsing when it encounters
an error in the file.

Using Custom Shapes in Gauges

Using ADF Gauge Components 25-29

25.6.4 How to Set Custom Shapes Styles
In addition to the ability to specify custom shapes for gauges, there are a set of prebuilt
custom shapes styles for use with the gauge components. The available styles are:

■ Rounded rectangle

■ Full circle

■ Beveled circle

Figure 25–13 shows a dial gauge displayed with each of the custom shapes styles
applied.

Figure 25–13 Dial Gauges with Custom Shapes Styles

To apply a custom shapes style to a gauge:
1. In the Structure window, right-click the dvt:gauge node and choose Go to

Properties.

2. In the Appearance attributes category of the Property Inspector, select the custom
shapes style from the CustomShapesPath attribute dropdown list.

Using Custom Shapes in Gauges

25-30 Web User Interface Developer's Guide for Oracle Application Development Framework

26

Using ADF Geographic Map Components 26-1

26 Using ADF Geographic Map Components

This chapter describes how to use an ADF geographic map component with
databound themes to display data, and provides the options for map customization.

This chapter includes the following sections:

■ Section 26.1, "Introduction to Geographic Maps"

■ Section 26.2, "Understanding Data Requirements for Geographic Maps"

■ Section 26.3, "Customizing Map Size, Zoom Control, and Selection Area Totals"

■ Section 26.4, "Customizing Map Themes"

■ Section 26.5, "Adding a Toolbar to a Map"

For information about the data binding of ADF geographic map themes, see the
"Creating Databound Geographic Maps" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

26.1 Introduction to Geographic Maps
A geographic map component is a data visualization component that provides the
functionality of Oracle Spatial within the framework. This component lets users
represent business data on a geographic map and superimpose multiple layers of
information (known as themes) on a single map.

When you create a map, you are prompted to select a base map that an administrator
has already configured using the Map Builder tool of Oracle Spatial. During
configuration, the map administrator defines the zoom levels that the map supports.
These levels also determine the zoom capability of the ADF geographic map.

Administrators also have the option of creating predefined map themes using the Map
Builder tool. For example, a predefined theme might use specific colors to identify
regions. In the ADF geographic map component, you can select such a predefined map
theme, but you cannot modify it because this theme is part of the base map.

The base map becomes the background on which you build interactive layers of
information in JDeveloper using the ADF geographic map component. The ADF
geographic map requires that you define at least one layer but you can create as many
layers as you wish.

26.1.1 Available Map Themes
The ADF geographic map provides a variety of map themes, each of which must be
bound to a data collection. Figure 26–1 shows a map with several themes. The
following kinds of map themes are available:

Introduction to Geographic Maps

26-2 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Color: Applies to regions. For example, a color theme might identify a range of
colors to represent the population in the states of a region or the popularity of a
product in the states of a region. A map can have multiple color themes visible at
different zoom levels. For example, a color theme at zoom levels 1 to 5 might
represent the population of a state, and the county median income at zoom levels 6
to 10.

■ Point: Displays individual latitude/longitude locations in a map. For example, a
point theme might identify the locations of warehouses in a map. If you customize
the style of the point that is displayed, you might choose to use a different image
for the type of inventory (electronics, housewares, garden supplies) in a set of
warehouses to differentiate them from each other.

■ Graph: Creates any number of pie graph themes and bar graph themes. However,
only one graph theme can be visible at a given time. You select the desired theme
from the View menu of the map toolbar. Graph themes can show statistics related
to a given region such as states or counties. For example, a graph theme could
display the sales values for a number of products in a state.

Figure 26–1 Geographic Map of Southwest US with Color, Point, and Pie Graph Themes

26.1.2 Geographic Map Terminology
The following list gives a brief description of the terminology used in a geographic
map:

■ Base map: Provides the background geographic data, zoom levels, and the
appearance and presence of items such as countries, cities, and roads. The base
map can be any image that can be configured using a map viewer and map
builder, for example, the floor maps of office buildings.

■ Zoom control: Consists of pan icons and a zoom slider that render in the upper
left-hand corner of the map. Figure 26–2 shows a map zoom control that is

Introduction to Geographic Maps

Using ADF Geographic Map Components 26-3

zoomed-out all the way (that is, the zoom level is set to 0). At zero, the entire map
is displayed.

You can customize the location and the initial setting of the zoom control in the
dvt:map tag. The View menu (which appears in the map toolbar just above the
sample map) lets you determine the visibility of the zoom control. By default, the
initial zoom level for a map is set to 0.

Figure 26–2 Zoom Control of a Map

– Pan icons: Consists of icons (with arrows that point north, south, east, west,
northeast, northwest, southeast, and southwest) at the top of the zoom control.
You can use these icons to move the entire map in specific directions.

– Zoom slider: Consists of a slider with a thumb for large scale zooming and
icons for zooming a single level. You can use the plus icon to zoom in and the
minus icon to zoom out one level at a time. When the thumb is at the bottom
of the slider, the zoom level is zero.

■ Scale: Consists of two horizontal bars that display in the lower left-hand corner of
the map below the information panel and above the copyright. Figure 26–3 shows
the scale. The top bar represents miles (mi) and the bottom bar represents
kilometers (km). Labels appear above the miles bar and below the kilometers bar
in the format: [distance] [unit of measure]. The length and distance values of the
bars change as the zoom level changes and as the map is panned.

Figure 26–3 Map Information Panel, Scale, and Copyright

■ Information panel: Displays latitude and longitude in the lower left-hand corner
above the scale. Figure 26–3 shows the information panel. By default, the
information panel is not visible. You can display this panel from the View menu or
by clicking the Information button on the toolbar.

■ Measurement panel: Displays either distance, area, or radius depending on which
tools in the toolbar are currently in use. Text appears in the following format:
[label] [value] [unit of measure] to the right of the information panel. Figure 26–4
shows the measurement panel with a distance measurement. Area measurement
and radius measurement appear in a similar manner with the appropriate labels.

Introduction to Geographic Maps

26-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 26–4 Map Measurement Panel Beside the Information Panel

The following tools provide information in the measurement panel:

– Area measurement: Appears only when the Area, Rectangular Selection, or
Multi-Point Selection tools are active.

– Distance measurement: Appears only when the Distance tool is active.

– Radius measurement: Appears only when the Circular Selection tool is active.

■ Copyright: Appears in the lower left-hand corner of the map and contains text that
you can customize in the dvt:map tag.

■ Overview map: Consists of a miniature view of the main map as shown in
Figure 26–5. This map appears in the lower right-hand corner of the main map and
lets you change the viewable region of the main map without having to use the
pan tool or the pan icons.

Figure 26–5 Overview Map

The following items are part of the overview map:

– Reticule: Appears as a small window that you can move across a miniature
view of the main map. The position of the reticule in the miniature map
determines the viewable area of the main map. As you move the reticule, the
main map is updated automatically.

– Show/Hide icon: Appears in the upper left-hand corner when the overview
map is displayed. When you click the Show/Hide icon, the overview map
becomes invisible and only the icon can be seen in the lower right corner of
the main map.

■ Toolbar: Contains the following elements in the sequence listed:

– View menu: Lets you control which themes are visible, select a specific theme
for display, and determine the visibility of the zoom control, legend, and the
information panel.

– Toolbar buttons: Provide the following tools for interaction with the map: Pan,
Zoom In, Zoom Out, Rectangular Selection, Circular Selection, Polygon
Selection, Point Selection, Distance, Area, Legend, and Information.

26.1.3 Geographic Map Component Tags
The geometric map has parent tags, map child tags, and tags that modify map themes.

Introduction to Geographic Maps

Using ADF Geographic Map Components 26-5

26.1.3.1 Geographic Map Parent Tags
The map component includes the following parent tags:

■ Map tag dvt:map: The parent tag for the main map component. Unlike other data
visualization parent tags, the map tag is not bound to data. Instead, all the map
theme child tags are bound individually to data collections. The map tag contains
general information about the map including the identification of the base map,
the URL for the remote server that is running Oracle Application Server
MapViewer service and the URL for the Geocoder web service that converts street
addresses into longitude and latitude coordinates for mapping. For a list and
description of the child tags, see Section 26.1.3.2, "Geographic Map Child Tags."

■ Map toolbar dvt:mapToolbar: A parent tag that allows the map toolbar to be
placed in any location on a JSF page that contains a map. This toolbar contains a
mapID attribute that points to the map associated with the toolbar. The toolbar lets
you perform significant interaction with the map at runtime including the ability
to display the map legend and to perform selection and distance measurement.
The map toolbar tag has no child tags.

26.1.3.2 Geographic Map Child Tags
The dvt:map tag has the following child tags:

■ Color theme dvt:mapColorTheme: One of the optional map layers that you bind to
a data collection.

■ Point theme dvt:mapPointTheme: One of the optional map layers that you bind to
a data collection. The point theme identifies individual locations on a map.

■ Bar graph theme dvt:mapBarGraphTheme: One of the optional map layers that you
must bind to a data collection. This theme displays a bar graph at points to
represent multiple data values related to that location. For example, this tag might
be used to display a graph that shows inventory levels at warehouse locations.

■ Pie graph theme dvt:mapPieGraphTheme: One of the optional map layers that you
must bind to a data collection. This theme displays a pie graph at specific points to
represent multiple values at that location. For example, this tag might be used to
display a graph that shows inventory levels at warehouse locations.

■ Map legend dvt:mapLegend: Created automatically when you create a map. Use
this tag to customize the map legend.

■ Overview map dvt:mapOverview: Created automatically when you create a map.
Use this tag to customize the overview map that appears in the lower right-hand
corner of the map.

26.1.3.3 Tags for Modifying Map Themes
The following tags modify various map themes:

■ Point style item dvt:mapPointStyleItem: An optional child tag of the
dvt:mapPointTheme tag. Use this tag only if you want to customize the image that
represents points that fall in a certain data value range. To define multiple images,
create a tag for each image and specify the associated data value range and image.

■ Pie slice set dvt:mapPieSliceSet: A child of the dvt:mapPieGraphTheme tag. This
is an optional tag that you use to wrap dvt:mapPieSliceItem tags, if you want to
customize the color of the slices in a map pie graph.

■ Pie slice item dvt:mapPieSliceItem: A child of the dvt:mapPieSliceSet tag. Each
pie slice item tag customizes the color of one slice in a map pie graph.

Understanding Data Requirements for Geographic Maps

26-6 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Bar graph series set dvt:mapBarSeriesSet: A child of the dvt:mapBarGraphTheme
tag. This is an optional tag that you use to wrap dvt:mapBarSeriesItem tags if you
want to customize the color of bars in a map bar graph.

■ Bar graph series item dvt:mapBarSeriesItem: A child of the
dvt:mapBarSeriesSet tag. Each bar graph series item tag customizes the color of
one bar in a map bar graph.

26.2 Understanding Data Requirements for Geographic Maps
The following data requirements apply to the geographic map:

■ Configuration requirements include the following information:

– Map Viewer URL: You must provide a URL for the location of the Oracle
Application Server MapViewer service. This service is required to run the base
map that provides the background for the layers in the ADF geographic map
component. OracleAS MapViewer is a programmable tool for rendering maps
using spatial data managed by Oracle Spatial.

– Geocoder URL: If you want to convert street addresses into coordinates, then
you must provide the URL for the Geocoder for the geographic map. A
Geocoder is a Web service that converts street addresses into longitude and
latitude coordinates for mapping.

■ Base map: You must have a base map created by the Map Builder tool in OracleAS
MapViewer. This base map must define polygons at the level of detail that you
require for your map themes to function as desired. For example, if you have a
map pie graph or bar graph theme that you want to use for creating graphs in each
state of a certain region, then you must have a base map that defines polygons for
all these states at some zoom level. You can display only one graph in a polygon.

■ Data controls for map themes: Each map theme must be bound to a data control.
The data control must contain location information that can be bound to similar
information in the base map.

26.3 Customizing Map Size, Zoom Control, and Selection Area Totals
You can customize the map size, zoom strategy, appearance of selected regions, and
the initial display of the information window and the scale bar.

26.3.1 How to Adjust the Map Size
You can control the width and height of the map by using the inlineStyle attribute in
the dvt:map tag.

To adjust the size of a map:
1. In the Structure window, right-click the dvt:map node and choose Go to

Properties.

2. In the Style attributes category of the Property Inspector, enter the width and
height in the inlineStyle attribute.

For example, to specify a width of 600 pixels and a height of 400 pixels, use the
following setting: inlineStyle="width:600px;height:400px".

For a width that uses the entire available width of the page and a height of 400
pixels, use the following setting: inlineStyle="width:600px;height:400px".

Customizing Map Size, Zoom Control, and Selection Area Totals

Using ADF Geographic Map Components 26-7

26.3.2 How to Specify Strategy for Map Zoom Control
Several attributes on the dvt:map tag let you control the initial zoom level, starting
location, initial map theme, and zoom strategy.

To control the initial zoom and starting location on a map:
1. In the Structure window, right-click the dvt:map node and choose Go to

Properties.

2. In the Appearance attributes category of the Property Inspector, enter values for
the following attributes:

a. In AutoZoomThemeID, enter the ID of the first theme that will be displayed.

b. In ZoomBarStrategy, select the default value MAXZOOM to direct the map to
zoom down to the maximum level where all objects in the autoZoomThemeId
are visible, or select CENTERATZOOMLEVEL to direct the map to center on the
theme in autoZoomThemeId and to set the zoom level to the value in the
mapZoom attribute.

c. If you want to change the starting location on the map, enter latitude and
longitude in startingX and startingY respectively.

d. In MapZoom, enter the beginning zoom level for the map. This setting is
required for the zoom bar strategy CENTERATZOOMLEVEL.

26.3.3 How to Total Map Selection Values
You can provide a selection listener that totals the values associated with a map area
selected with one of the map selection tools such as the rectangular selection. The total
is displayed in an area under the map. Provide a class that takes MapSelectionEvent
as an argument in a backing bean method. Example 26–1 shows sample code for a
backing bean.

Example 26–1 Sample Code in Backing Bean for Selection Listener

package view;

import java.util.Iterator;

import oracle.adf.view.faces.bi.component.geoMap.DataContent;
import oracle.adf.view.faces.bi.event.MapSelectionEvent;

public class SelectionListener {
 private double m_total = 0.0;

 public SelectionListener() {
 }

 public void processSelection(MapSelectionEvent mapSelectionEvent) {
 // Add event code here...
 m_total = 0.0;
 Iterator selIterator = mapSelectionEvent.getIterator();
 while (selIterator.hasNext())
 {
 DataContent dataContent = (DataContent) selIterator.next();

Note: The property autoZoomThemeID takes precedence over the
property set in mapZoom.

Customizing Map Themes

26-8 Web User Interface Developer's Guide for Oracle Application Development Framework

 if (dataContent.getValues() != null)
 {
 Double allData[] = dataContent.getValues();
 m_total += allData[0];
 }
 }
 }

 public double getTotal () {
 return m_total;
 }

 public void setTotal (double total) {
 m_total = total;
 }
}

To provide a selection listener to total map values:
1. In the Structure window, right-click the geographic map node and choose Go to

Properties.

2. In the Behavior attributes category, for the SelectionListener field, enter a
method reference that points to the backing bean. For example,

26.4 Customizing Map Themes
You can customize each type of map theme using one or more of the following: the
map theme binding dialogs, the attributes of the theme tag, or the child tags of the
theme tag.

26.4.1 How to Customize Zoom Levels for a Theme
For all map themes, verify that the theme specifies zoom levels that match the related
zoom levels in the base map. For example, if the base map shows counties only at
zoom levels 6 through 8, then a theme that displays points or graphs by county should
be applied only at zoom levels 6 through 8.

To customize the zoom levels of a map theme:
1. In the Structure window, locate the map theme tag (dvt:mapColorTheme,

dvt:mapPointTheme, dvt:mapBarGraphTheme, or dvt:mapPieGraphTheme) that you
want to customize.

2. Right-click the tag and choose Go to Properties.

3. In the Appearance attributes category of the Property Inspector, enter the desired
low and high zoom values for the MinZoom and the MaxZoom attributes respectively.

26.4.2 How to Customize the Labels of a Map Theme
By default, the ID of the map theme is used as the label when that theme is displayed
in the legend or in the Theme Selection dialog. However, each map theme tag has the
following attributes that serve as optional labels for the theme:

■ shortLabel: Specifies a label for the theme when displayed in the map legend.

■ menuLabel: Specifies a label for the theme in the Theme Selection dialog.

Customizing Map Themes

Using ADF Geographic Map Components 26-9

Use these attributes to create meaningful labels that identify both the theme type
(color, point, bar graph, or pie graph) and the data (such as population, sales, or
inventory) so that users can easily recognize the available themes.

To customize the labels of a map theme:
1. In the Structure Window, locate the map theme tag that you want to customize.

2. Right-click the tag node and choose Go to Properties.

3. In the Appearance attributes category of the Property Inspector, enter text in the
shortLabel attribute (for display in the legend) and in the menuLabel attribute (for
display in the Theme Selection Dialog).

For example, you might want to enter the following text for a color theme that
colors New England states according to population:

shortLabel="Color - Population, NE Region"

26.4.3 How to Customize Color Map Themes
When you create a color map theme, you can customize the colors used for the
coloring of the background layer. You can specify the colors associated with the
minimum and maximum ranges, and then specify the number of color ranges for the
theme. For example, if the colors relate to the population on the map, the least
populated areas display the minimum color and the most populated areas display the
maximum color. Graduated colors between the minimum and maximum color are
displayed for ranges between these values.

To customize the colors of a color map theme:
1. In the Structure window, right-click the dvt:mapColorTheme node and choose Go

to Properties.

2. In the Theme Data attributes category of the Property Inspector:

■ If you want to change the default colors associated with the minimum and
maximum range of data values, then select the desired colors for the MinColor
and MaxColor attributes respectively.

■ If you want to change the default number of color ranges for this theme,
change the integer in the bucketCount attribute.

For example, if <dvt:mapColorTheme minColor="#000000" maxColor= "#ffffff"
bucketCount="5"/>, then the color for the five buckets are: #000000, #444444,
#888888, #bbbbbb, #ffffff.

Alternatively, you can specify the color for each bucket. To specify colors for multiple
buckets, for the colorList attribute of dvt:mapColorTheme, bind a color array to the
attribute or use a semicolon-separated string. Color can be specified using RGB
hexadecimal. For example, if the value is colorList="#ff0000;#00ff00;#0000ff",
then the value of the first bucket is red, the second bucket is green, and the third
bucket is blue.

26.4.4 How to Customize Point Images in a Point Theme
A map point theme uses a default image to identify each point. However, you can
specify multiple custom images for a point theme and identify the range of data values
that each image should represent.

You define a dvt:mapPointStyleItem tag for each custom image that you want to use
in a map point theme.

Customizing Map Themes

26-10 Web User Interface Developer's Guide for Oracle Application Development Framework

To customize the images for points in a map point theme:
1. In the Structure window, right-click the dvt:mapPointTheme node and select

Insert inside dvt:mapPointTheme > Point Style Item.

2. In the ensuing Insert Point Style Item wizard, provide settings for the data value
range of this custom point by doing the following:

a. In Step 1 of the wizard (Common Properties), you must specify the URL for
the image that should be displayed on the map for a point that falls in the data
value range for this custom image.

b. In Step 2 of the wizard (Advanced Properties), specify the data value range
that this custom image should represent by entering values in MaxValue and
MinValue fields.

c. In the Id field, enter a unique identifier for the custom image that you are
defining.

d. In the Short Label field, specify the descriptive text that you want to display in
front of the actual data value when a user hovers the cursor over a point that
falls in the range represented by this tag.

For example, you might want to enter the following text for a custom point
that falls in the lowest data value range: Low Inventory.

e. Optionally, specify different image URLs for a hover image and a selected
image.

f. Click Finish.

3. Repeat Step 1 and Step 2 for each custom image that you want to create for your
point theme.

26.4.5 What Happens When You Customize the Point Images in a Map
When you use the Insert Point Style Item wizard to specify a custom image
representing a range of data values for a point theme, a child dvt:mapPointStyleItem
tag is defined inside the parent dvt:mapPointTheme tag. Example 26–2 shows the code
generated on a JSF page for a map point theme that has three custom point images that
represent ranges of inventory at each warehouse point.

The initial point style setting (ps0) applies to values that do not exceed 500. This point
style displays an image for very low inventory and provides corresponding tooltip
information.

The second point style setting (ps1) applies to values between 500 and 1000. This point
style displays an image for low inventory and provides corresponding tooltip
information.

The final point style setting (ps2) applies to values between 1000 and 1600. This point
style displays an image for high inventory and provides corresponding tooltip
information.

Example 26–2 Map Point Theme Code with Custom Point Images

<dvt:map id="map1"
 .
 .
 .
 <dvt:mapPointTheme id="mapPointTheme1"
 shortLabel="Warehouse Inventory"
 value="{bindings.WarehouseStockLevelsByProduct1.geoMapModel}">

Customizing Map Themes

Using ADF Geographic Map Components 26-11

 <dvt:mapPointStyleItem id="ps0" minValue="0"
 maxValue="500"
 imageURL="/images/low.png"
 selectedImageURL="/images/lowSelected.png"
 shortLabel="Very Low Inventory"/>
 <dvt:mapPointStyleItem id="ps1" minValue="500"
 maxValue="1000"
 imageURL="/images/medium.png"
 selectedImageURL="/images/mediumSelected.png"
 shortLabel="Low Inventory"/>
 <dvt:mapPointStyleItem id="ps2" minValue="1000"
 maxValue="1600"
 imageURL="/images/regularGreen.png"
 selectedImageURL="/images/regularGreenSelected.png"
 shortLabel="High Inventory"/>
 </dvt:mapPointTheme>
</dvt:map>

26.4.6 How to Customize the Bars in a Bar Graph Theme
When you create a map bar graph theme, default colors are assigned to the bars in the
graph. You can customize the colors of the bars by using the mapBarSeriesSet tag and
the mapBarSeriesItem tag.

Use one mapBarSeriesSet tag to wrap all the mapBarSeriesItem tags for a bar graph
theme and insert a mapBarSeriesItem tag for each bar in the graph.

To customize the color of the bars in a map bar graph theme:
1. In the Structure window, right-click the dvt:mapBarGraphTheme tag and choose

Insert inside dvt:mapBarGraphTheme > Map Bar Series Set.

There are no attributes to set for this tag. It is used to wrap the individual bar
series item tags.

2. In the Structure window, right-click the dvt:mapBarSeriesSet tag and choose
Insert inside dvt:mapBarSeriesSet > Map Bar Series Item.

3. In the Property Inspector, enter any unique ID and color you want to use for the
first bar that appears in the graph.

To find the sequence of the bars in the graph, examine the Edit Bar Graph Map
Theme Binding dialog. The sequence of the entries in the Series Attribute column
of that dialog determines the sequence that bars appear in the graph. For example,
in Figure 26–6, the first bar in the graph represents Income2000 and the second bar
represents Income2005.

Customizing Map Themes

26-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 26–6 Edit Bar Graph Map Theme Binding Dialog

4. Repeat Step 3 for every bar in the graph.

26.4.7 What Happens When You Customize the Bars in a Map Bar Graph Theme
When you use the Edit Bar Graph Map Theme Binding dialog to customize the bars in
a map bar graph theme, the sequence of the bars reflect the sequence of the entries in
the Series Attribute column in the dialog. Example 26–3 shows sample XML code
generated when you customize the bars in a map bar graph.

Example 26–3 Code for Customizing the Bars in a Map Bar Graph

<dvt:map
 .
 .
 .
 <dvt:mapBarGraphTheme
 .
 .
 .
 <dvt:mapBarSeriesSet>
 <dvt:mapBarSeriesItem color="#333399" id="bar1"/>
 <dvt:mapBarSeriesItem color="#0000ff" id="bar2"/>
 </dvt:mapBarSeriesSet>
 </dvt:mapBarGraphTheme>
</dvt:map>

26.4.8 How to Customize the Slices in a Pie Graph Theme
When you create a map pie graph theme, default colors are assigned to the slices in the
graph. You can customize the colors of the slices by using the mapPieSlicesSet tag
and the mapPieSliceItem tag.

Use one mapPieSliceSet tag to wrap all the mapPieSliceItem tags for a pie graph
theme, and insert a mapPieSliceItem tag for each slice in the graph.

To customize the color of the slices in a map pie graph theme:
1. In the Structure window, right-click the dvt:mapPieGraphTheme tag and choose

Insert inside dvt:mapPieGraphTheme > Pie Slice Set.

Customizing Map Themes

Using ADF Geographic Map Components 26-13

There are no attributes to set for this tag. It is used to wrap the individual pie
graph item tags.

2. In the Structure window, right-click the dvt:mapPieSliceSet node and choose
Insert inside dvt:mapPieSliceSet > Pie Slice Item.

3. In the Property Inspector, enter any unique ID and color you want to use for the
first slice that appears in the graph.

To find the sequence of the slices in the graph, examine the Edit Pie Graph Map
Theme Binding dialog. The sequence of the entries in the Pie Slices Attribute
column of that dialog determines the sequence that slices appear in the graph. For
example, in Figure 26–7, the first slice in the graph represents Sales, the second
slice represents Profit, and the third slice represents Cost.

Figure 26–7 Edit Pie Graph Map Theme Binding Dialog

4. Repeat Step 3 for every slice in the graph.

26.4.9 What Happens When You Customize the Slices in a Map Pie Graph Theme
When you use the Edit Pie Graph Map Theme Binding dialog to customize the slices
in a map pie graph theme, the sequence of the slices reflect the sequence of the entries
in the Pie Slices Attribute column of the dialog. Example 26–4 shows sample XML
code generated in a JSF page when you customize the slices in a map pie graph.

Example 26–4 Code for Customizing the Slices in a Map Pie Graph

<dvt:map
 .
 .
 .
 <dvt:mapPieGraphTheme
 .
 .
 .
 <dvt:mapPieSliceSet>
 <dvt:mapPieSliceItem color="#ffffff" id="slice1"/>
 <dvt:mapPieSliceItem color="#ffff00" id="slice2"/>
 <dvt:mapPieSliceItem color="#ff0000" id="slice3"/>
 </dvt:mapPieSliceSet>
 </dvt:mapPieGraphTheme>

Adding a Toolbar to a Map

26-14 Web User Interface Developer's Guide for Oracle Application Development Framework

</dvt:map>

26.5 Adding a Toolbar to a Map
When you create an ADF geographic map, also create a map toolbar if you want to be
able to display the legend and the information panel, select themes (if you have
multiple themes of the same type), or use any of the distance measurement, area
measurement, or selection tools.

26.5.1 How to Add a Toolbar to a Map
Because the map toolbar is a component that is separate from the map, you can
position the toolbar on the JSF page above or below the map. The following procedure
assumes that a map component exists on the JSF page.

To create a map toolbar:
1. In the Structure window, right-click the dvt:map node and choose Insert before

dvt:map or Insert after dvt:map > ADF Data Visualization.

2. From the ADF Data Visualization Item dialog, select Toolbar.

3. In the Insert Toolbar wizard that displays, enter the ID of the map on which this
toolbar will operate and click Next.

4. Enter a unique ID for the toolbar and optionally change the settings that control
the visibility of each tool.

26.5.2 What Happens When You Add a Toolbar to a Map
When you add a toolbar to a map, the following occur:

■ A toolbar appears in the JSF page above or below the map as requested. The
toolbar contains all the tools unless you change the visibility of one or more tools.

■ XML code is generated and appears in the JSF page above or below the code for
the map.

Example 26–5 shows sample code for a toolbar that is associated with a map with the
ID of map_us. It also shows the location of the code for the map.

Example 26–5 Code Generated for a Map Toolbar

<af:form>
 <dvt:mapToolbar mapId="map_us" id="T1"/>
 <dvt:map id="map_us"
 .
 .
 .
 </dvt:map>
</af:form>

27

Using ADF Pivot Table Components 27-1

27Using ADF Pivot Table Components

This chapter describes how to use a databound ADF pivot table component to display
data, and provides the options for pivot table customization.

This chapter includes the following sections:

■ Section 27.1, "Introduction to the ADF Pivot Table Component"

■ Section 27.2, "Understanding Data Requirements for a Pivot Table"

■ Section 27.3, "Pivoting Layers"

■ Section 27.4, "Displaying Large Data Sets in Pivot Tables"

■ Section 27.5, "Using Selection in Pivot Tables"

■ Section 27.6, "Sorting in a Pivot Table"

■ Section 27.7, "Sizing in a Pivot Table"

■ Section 27.8, "Updating Pivot Tables with Partial Page Rendering"

■ Section 27.9, "Exporting from a Pivot Table"

■ Section 27.10, "Displaying Pivot Tables in Printable Mode"

■ Section 27.11, "Customizing the Cell Content of a Pivot Table"

■ Section 27.12, "Pivot Table Data Cell Stamping and Editing"

■ Section 27.13, "Using a Pivot Filter Bar with a Pivot Table"

For information about the data binding of ADF pivot tables, see the "Creating
Databound Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

27.1 Introduction to the ADF Pivot Table Component
The ADF pivot table component displays a grid of data with rows and columns.
Similar to spreadsheets, this component provides the option of automatically
generating subtotals and totals for grid data. The pivot table lets you pivot or move
data labels and the associated data layer from one row or column edge to another to
obtain different views of your data, supporting interactive analysis.

The power of the pivot table’s interactive capability is based in its display of multiple
nested attributes on row and column headers. You can dynamically change the layout
of these attributes using drag-and-drop operations.

Figure 27–1 shows a pivot table with multiple attributes nested on its rows and
columns.

Introduction to the ADF Pivot Table Component

27-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 27–1 Sales Pivot Table with Multiple Rows and Columns

A pivot filter bar is a component that can be added to a pivot table to provide the user
with a way to filter pivot table data in layers not displayed in one of the other edges of
the pivot table. Users can also drag and drop these layers between the pivot filter bar
and the associated pivot table to change the view of the data. Figure 27–2 shows a
pivot filter bar for a pivot table.

Figure 27–2 Pivot Filter Bar Component

27.1.1 Pivot Table Elements and Terminology
The following list of pivot table terms uses Figure 27–1 as a Sales Pivot Table sample in
its descriptions of terms:

■ Edges: The axes in pivot tables, including:

– Row edge: The vertical axis to the left of the body of the pivot table. In
Figure 27–1, the row edge contains two layers, Year and Product, and each row
in the pivot table represents the combination of a particular year and a
particular product.

– Column edge: The horizontal axis above the body of the pivot table. In
Figure 27–1, the column edge contains three layers, Measure, Channel, and
Geography, and each column in the pivot table represents the combination of a
particular measure value (Sales or Units), a particular channel indicator (All
Channels), and a particular geographic location (World or Boston).

– Page edge: The edge represented by the pivot filter bar, whose layers can be
filtered or pivoted with the layers in the row and column edges.

■ Layers: Nested attributes that appear in a single edge. In Figure 27–1, the
following three layers appear in the column edge: Measure, Channel, and
Geography. The following two layers appear in the row edge: Year and Product.

■ Header cell: The labels that identify the data displayed in a row or column. Row
header cells appear on the row edge, and column header cells appear on the
column edge.

Pivoting Layers

Using ADF Pivot Table Components 27-3

■ Data cell: The cells within the pivot table that contain data values, not header
information. In the sample, the first data cell contains a value of 20,000.000.

■ QDR (Qualified Data Reference): A fully qualified data reference to a row, a
column, or an individual cell. For example, in Figure 27–1, the QDR for the first
data cell in the pivot table must provide the following information:

– Year=2007

– Product=Tents

– Measure=Sales

– Channel=All Channels

– Geography=World

27.2 Understanding Data Requirements for a Pivot Table
The pivot table component uses a model to display and interact with data. The specific
model class used is oracle.adf.view.faces.bi.model.DataModel.

You can use any row set (flat file) data collection to supply data to a pivot table.
During the data binding operation, you have the opportunity to drag each data
element to the desired location on the row edge or column edge of the pivot table in
the data binding dialog.

During data binding, you also have the option of specifying subtotals and totals for
pivot table rows and columns, specifying drill operations at runtime, defining how to
aggregate duplicate records, and setting up initial sort criteria.

For information about the data binding of ADF pivot tables, see the "Creating
Databound Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

27.3 Pivoting Layers
You can drag any layer in a pivot table to a different location on the same edge or to a
different edge. This operation is called pivoting and is enabled by default.

When you move the mouse over a layer, the layer’s pivot handle and an optional pivot
label are displayed. If you move the mouse over the pivot handle, the cursor changes
to a four-point arrow drag cursor. You can then use the handle to drag the layer to the
new location. If you move the mouse over a layer on the row edge, the pivot handle
appears above the layer, as shown in Figure 27–3.

Figure 27–3 Display of Pivot Handle on the Row Edge

If you move the cursor over a layer in the column edge, the pivot handle appears to
the left of the layer, as shown in Figure 27–4.

Displaying Large Data Sets in Pivot Tables

27-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 27–4 Display of Pivot Handle on the Column Edge

If, in Figure 27–3, you drag the pivot handle of the Time (Year) layer from the row edge
to the column edge between the Measure (Sales) layer and the Channel layer, the pivot
table will change shape as shown in Figure 27–5.

Figure 27–5 Sales Pivot Table After Pivot of Year

You can customize pivoting to disable pivot labels and pivoting.

To customize pivoting in a pivot table:
1. In the Structure window, right-click the dvt:pivotTable component and choose Go

to Properties.

2. Optionally, in the Appearance category of the Property Inspector, in the
PivotLabelVisible field, select false from the dropdown list to disable the
display of the label in the pivot handle.

3. Optionally, in the Behavior category of the Property Inspector, in the
PivotEnabled field, select false from the dropdown list to disable the pivoting.

27.4 Displaying Large Data Sets in Pivot Tables
By default pivot tables support on-demand data scrolling for large data sets. Only the
data being viewed in the pivot table is loaded. As the user scrolls vertically or
horizontally, data is fetched or discarded to fill the new pivot table view. Figure 27–6
shows a pivot table with a large data set using on-demand data scrolling.

Displaying Large Data Sets in Pivot Tables

Using ADF Pivot Table Components 27-5

Figure 27–6 On-Demand Data Scrolling in a Pivot Table

Instead of scroll bars, you can configure a page control to navigate large data sets in
pivot tables for desktop applications and for mobile browsers on touch devices. This
control is only available when there are more rows than the data fetch size, and the
component is not being stretched by its containing layout component. For example,
the page control for columns display at the top of the pivot table and the page control
for rows display at the foot of the pivot table as shown in Figure 27–7.

Figure 27–7 Pivot Table Column and Row Page Controls

When you are developing an ADF Faces web application, by default pivot tables use a
vertical or horizontal scroll bar for displaying rows over the size of the data being
fetched. To configure an alternative page control for the pivotTable component, set
the scrollPolicy attribute to page. For example:

scrollPolicy="page"

While a standard ADF Faces web application will run in mobile browsers, because the
user interaction is different and because screen size is limited, when your application

Using Selection in Pivot Tables

27-6 Web User Interface Developer's Guide for Oracle Application Development Framework

needs to run in a mobile browser, you should create touch device-specific versions of
the pages. For more information, see Appendix D, "Creating Web Applications for
Touch Devices Using ADF Faces."

By default, when rendered on mobile devices, pivot tables display a page control that
allows the user to jump to specific pages of rows. For pivot tables to display on a
mobile device, you should:

■ Place the pivot table component within a flowing container (that is, a component
that does not stretch its children). For more information about flowing container
components, see Section 8.2.1, "Geometry Management and Component
Stretching."

■ Set the scrollPolicy attribute to auto (if the page may also run on a desktop
device) or page (if the page will only run on a mobile device.

If the pivot table is not in a flowing container, or if those attributes are not set correctly,
the pivot table will display a scroll bar instead of pages.

When displaying large data sets using scroll bars or page controls, you can also
improve readability by configuring the pivot table to always display the labels that
appear above each row header layer and beside each column header layer. To
configure consistent display of the row and column header labels for the pivotTable
component, set the layerLabelMode attribute to rendered. The default value is hidden.

27.5 Using Selection in Pivot Tables
Selection in a pivot table allows a user to select one or more cells in a pivot table. Only
one of the three areas including the row header, column header, or data cells can be
selected at one time.

An application can implement features such as displaying customized content for a
context menu, based on currently selected cells. Example 27–1 shows sample code for
getting the currently selected header cells.

Example 27–1 Sample Code to Get Selected Header Cells

UIPivotTable pt = getPivotTable()
if (pt == null)
 return null;
HeaderCellSelectionSet headerCells = null;
if (pt.getSelection().getColumnHeaderCells().size() > 0) {
 headerCells = pt.getSelection().getColumnHeaderCells();
} else if (pt.getSelection().getRowHeaderCells().size() > 0) {
 headerCells = pt.getSelection().getRowHeaderCells();
}

At runtime, selection in a data cell highlights the cell, as shown in Figure 27–8.

Figure 27–8 Selected Data Cell

Sizing in a Pivot Table

Using ADF Pivot Table Components 27-7

Editable data cells are opened for editing by double-clicking the cell or selecting the
cell and pressing F2. Data cells selected for direct editing are displayed as shown in
Figure 27–9.

Figure 27–9 Data Cell Open for Direct Editing

Data cells selected for dropdown list editing are displayed as shown in Figure 27–10.

Figure 27–10 Data Cell Open for Dropdown List Editing

For more information about enabling data cell editing, see Section 27.12, "Pivot Table
Data Cell Stamping and Editing."

27.6 Sorting in a Pivot Table
Pivot tables support sorting of data within the pivot table. When sorting is enabled,
ascending and descending sort icons are displayed as the user hovers the cursor over
the innermost layer of the column header. By default, the sortMode attribute of the
dvt:pivotTable component is set to grouped, effectively sorting the data grouped by
the row edge outermost layer. Figure 27–11 shows the sort icons in the World Sales
column of the pivot table, where the data is grouped by the Year row edge outermost
layers.

Figure 27–11 Ascending and Descending Sorting Icons in a Pivot Table

27.7 Sizing in a Pivot Table
When you create a pivot table, default settings determine the overall size of that pivot
table. The pivot table also automatically sizes rows, columns, and layers within the

Sizing in a Pivot Table

27-8 Web User Interface Developer's Guide for Oracle Application Development Framework

space allowed for the overall size. You have the option of changing the overall size of
the pivot table, resizing rows and columns, and resizing layers.

27.7.1 How to Set the Overall Size of a Pivot Table
The default size of a pivot table is a width of 300 pixels and a height of 300 pixels.
Instead of entering pixels for width and height, you have the option of specifying a
percentage value for width, height, or both. This percentage value refers to the portion
of the page that you want the pivot table to use.

To customize the default settings of a pivot table:
1. In the visual editor, display the page that contains the pivot table.

2. Click Source to display the XML code on the JSPX page.

3. Enter the following code for the inlineStyle attribute of the pivotTable tag,
where value1 is an integer with the unit type for the width of the pivot table and
value2 is an integer with the unit type for the height of the pivot table:
inlineStyle="width:value1;height:value2".

Example 27–2 shows the setting of the inlineStyle attribute that specifies the width
of the table as 50 percent of the page size and the height of the table as 400 pixels.

Example 27–2 XML Code for Customizing Pivot Table Size

<dvt:pivotTable
.
.
.
 inlineStyle="width:50%;height:400px">
</dvt:pivotTable>

27.7.2 How to Resize Rows, Columns, and Layers
The pivot table autosizes rows, columns, and layers when the pivot table is initially
displayed. At runtime, you can change the size of rows, columns, or layers by
dragging the row, column, or layer separator to a new location.

To resize rows, columns, and layers at runtime:
1. If you want to resize a row, do the following:

a. Position the cursor in the row header on the separator between the row you
want to resize and the next row.

b. When the cursor changes to a double-sided arrow, click and drag the row
separator to the desired location.

2. If you want to resize a column, do the following:

a. Position the cursor in the column header on the separator between the column
you want to resize and the next column.

b. When the cursor changes to a double-sided arrow, click and drag the column
separator to the desired location.

3. If you want to resize a layer, do the following:

a. Position the cursor in the row or column header on the separator between the
layer you want to resize and the next layer.

Exporting from a Pivot Table

Using ADF Pivot Table Components 27-9

b. When the cursor changes to a double-sided arrow, click and drag the layer
separator to the desired location.

27.7.3 What You May Need to Know About Resizing Rows, Columns, and Layers
When you resize rows, columns, or layers, the new sizes remain until you perform a
pivot operation. After a pivot operation, the new sizes are cleared and the pivot table
rows, columns, and layers return to their original sizes.

If you do not perform a pivot operation, then the new sizes remain for the life of the
session. However, you cannot save these sizes through MDS (Metadata Services)
customization.

27.8 Updating Pivot Tables with Partial Page Rendering
You can update pivot tables, for example, to display the totals in a pivot table when
triggered by a checkbox, by using partial page rendering (PPR). PPR allows only
certain components on a page to be rerendered without the need to refresh the entire
page. For more information about PPR, see Chapter 7.1, "Introduction to Partial Page
Rendering."

For a component to be rerendered based on an event caused by another component, it
must declare which other components are the triggers. Use the partialTriggers
attribute to provide a list of IDs of the components that should trigger a partial update
of the pivot table. The pivot table listens on the trigger components and if one of the
trigger components receives an event that will cause it to update in some way, the
pivot table is also updated.

Example 27–3 shows sample code for updating a pivot table by displaying the totals
when a checkbox is triggered. The triggering component uses the ID as the
partialTriggers value.

Example 27–3 Partial Update of a Pivot Table

<dvt:pivotTable id="goodPT"
 value="#{richPivotTableModel.dataModel}"
 partialTriggers="showTotals"/>

 <af:selectBooleanCheckbox id="showTotals" autoSubmit="true" label="Show Totals"
 value="#{richPivotTableModel.totalsEnabled}"/>

27.9 Exporting from a Pivot Table
You can export the data from a pivot table to a Microsoft Excel spreadsheet. Create an
action source, such as a command button or command link, and add a
dvt:exportPivotTableData component and associate it with the data you wish to
export. You can configure the dvt:exportPivotTableData component so that the
entire pivot table will be exported, or so that only the rows selected by the user will be
exported. For example, Figure 27–12 shows a pivot table that includes command
button components that allow users to export the data to an Excel spreadsheet.

Exporting from a Pivot Table

27-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 27–12 Pivot Table with Export to Excel Command Buttons

When the user clicks the command button, by default all the rows and columns are
exported in an Excel format written to the file specified in the filename attribute of the
tag. Alternatively, you can configure the dvt:exportPivotTableData component so
that only the rows the user selects are exported, by setting the exportedData attribute
to selected. Example 27–4 shows the sample code for the Export to Excel command
button.

Example 27–4 Sample Code for Export to Excel Command Button

<af:commandButton text="Export To Excel" immediate="true">
 <dvt:exportPivotTableData type="excelHTML" exportedId="goodPT"
 filename="updated_export.xls" title="PivotTable export"/>
</af:commandButton>

Figure 27–13 shows the resulting Excel spreadsheet.

Figure 27–13 Pivot Table Export to Excel Spreadsheet

Customizing the Cell Content of a Pivot Table

Using ADF Pivot Table Components 27-11

27.10 Displaying Pivot Tables in Printable Mode
ADF Faces allows you to output your JSF page from an ADF Faces web application in
a simplified mode for printing. For example, you may want users to be able to print a
page (or a portion of a page), but instead of printing the page exactly as it is rendered
in a web browser, you want to remove items that are not needed on a printed page,
such as scrollbars and buttons. For information about creating simplified pages for
these outputs, see Chapter 35, "Using Different Output Modes."

When a pivot table and pivot filter bar is displayed on a JSF page to be output in
printable pages:

■ All data cells in the pivot table are displayed.

■ Limited client interactivity including cell select and row or column resizing is
supported.

■ Pivoting, drilling, and sorting operations are not supported.

■ Context menus including the ability to resize rows or columns is not supported.

■ If configured, the pivot table data filter displayed in the pivot filter bar will be
displayed, although the contents cannot be changed.

27.11 Customizing the Cell Content of a Pivot Table
All cells in a pivot table are either header cells or data cells. Before rendering a cell, the
pivot table calls a method expression. You can customize the content of pivot table
header cells and data cells by providing method expressions for the following
attributes of the dvt:pivotTable tag:

■ For header cells, use one of the following attributes:

– headerFormat: Use to create formatting rules to customize header cell content.

– headerFormatManager: Use only if you want to provide custom state saving
for the formatting rules of the application’s pivot table header cells.

■ For data cells, use one of the following attributes:

– dataFormat: Use to create formatting rules to customize data cell content.

– dataFormatManager: Use only if you want to provide custom state saving for
the formatting rules of the application’s pivot table data cells.

27.11.1 How to Create a CellFormat Object for a Data Cell
To specify customization of the content of a data cell, you must code a method
expression that returns an instance of
oracle.dss.adf.view.faces.bi.component.pivotTable.CellFormat.

To create an instance of a CellFormat object for a data cell:
1. Construct an

oracle.adf.view.faces.bi.component.pivotTable.DataCellContext object for

Note: You may receive a warning from Excel stating that the file is in
a different format than specified by the file extension. This warning
can be safely ignored.

Customizing the Cell Content of a Pivot Table

27-12 Web User Interface Developer's Guide for Oracle Application Development Framework

the data cells that you want to format. The DataCellContext method requires the
following parameters in its constructor:

– model: The name of the dataModel used by the pivot table.

– row: An integer that specifies the zero-based row that contains the data cell on
which you are operating.

– column: An integer that specifies the zero-based column that contains the data
cell that you want to format.

– qdr: The QDR that is a fully qualified reference for the data cell that you want to
format.

– value: A java.lang.Object that contains the value in the data cell that you
want to format.

2. Pass the DataCellContext to a method expression for the dataFormat attribute of
the pivot table.

3. In the method expression, write code that specifies the kind of formatting you
want to apply to the data cells of the pivot table. This method expression must
return a CellFormat object.

27.11.2 How to Construct a CellFormat Object
An instance of a CellFormat object lets you specify the following arguments:

■ Converter: An instance of javax.faces.convert.Converter, which is used to
perform number, date, or text formatting of a raw value in a cell.

■ CSS style: Used to change the CSS style of a cell. For example, you might use this
argument to change the background color of a cell.

■ CSS text style: Used to change the CSS style of the text in a cell. For example, you
might use this argument to set text to bold.

■ New raw value: Used to change the cell’s underlying value that was returned from
the data model. For example, you might choose to change the abbreviated names
of states to longer names. In this case, the abbreviation NY might be changed to
New York.

27.11.3 How to Change Format and Text Styles
You can apply formatting and text styles to emphasize aspects of the data displayed in
the pivot table. Figure 27–14 shows a pivot table with sales totals generated for
products and for product categories. In the rows that contain totals, this pivot table
displays bold text (a text style change) against a shaded background (a style change).
These changes show in both the row header cells and the data cells for the pivot table.
The row headers for totals contain the text "Sales Total."

The pivot table also shows stoplight and conditional formatting of data cells. For more
information, see Section 27.11.4, "How to Create Stoplight and Conditional Formatting
in a Pivot Table."

Customizing the Cell Content of a Pivot Table

Using ADF Pivot Table Components 27-13

Figure 27–14 Sales Data Per Product Category

Example 27–5 shows sample code that produces the required custom formats for the
sales totals, but not for the stoplight formatting. The example includes the code for
method expressions for both the dataFormat attribute and the headerFormat attribute
of the dvt:pivotTable tag. If you want to include stoplight formatting in the pivot
table, you might want to include the code from Example 27–6.

Example 27–5 Sample Code to Change Style and Text Style in a Pivot Table

public CellFormat getDataFormat(DataCellContext cxt)
{
 CellFormat cellFormat = new CellFormat(null, null, null);
 QDR qdr = cxt.getQDR();
 //Obtain a reference to the product category column.
 Object productCateg = qdr.getDimMember("ProductCategory");
 //Obtain a reference to the product column.
 Object product = qdr.getDimMember("ProductId");

 if (productCateg != null && productCateg.toString().equals("Sales Total"))
 {
 cellFormat.setTextStyle("font-weight:bold")
 cellFormat.setStyle("background-color:#C0C0C0");
 }
 else if (product != null && product.toString().equals("Sales Total")
 {
 cellFormat.setTextStyle("font-weight:bold");
 cellFormat.setStyle("background-color:#C0C0C0");
 }
 return cellFormat;
}

public CellFormat getHeaderFormat(HeaderCellContext cxt)
{
 if (cxt.getValue() != null)
 {
 String header = cxt.getValue().toString();
 if (header.equals("Sales Total"))
 {

Customizing the Cell Content of a Pivot Table

27-14 Web User Interface Developer's Guide for Oracle Application Development Framework

 return new CellFormat(null, "background-color:#C0C0C0",
 "font-weight:bold");
 }
 }
 return null;
 }

27.11.4 How to Create Stoplight and Conditional Formatting in a Pivot Table
Stoplight and conditional formatting of the cells in a pivot table are examples of
customizing the cell content. For this kind of customization, an application might
prompt a user for a high value and a low value to be associated with the stoplight
formatting. Generally three colors are used as follow:

■ Values equal to and above the high value are colored green to indicate they have
no issues.

■ Values above the low value but below the high value are colored yellow to warn
that they are below the high standard.

■ Values at or below the low value are colored red to indicate that they fall below the
minimum acceptable level.

Figure 27–14 shows data cells with stoplight formatting for minimum, acceptable, and
below standards sales for States.

Example 27–6 shows code that performs stoplight formatting in a pivot table that does
not display totals. If you want to do stoplight formatting for a pivot table that displays
totals, then you might want to combine the code from Example 27–5 (which addresses
rows with totals) with the code for stoplight and conditional formatting.

Example 27–6 Sample Code for Stoplight and Conditional Formatting

public CellFormat getDataFormat(DataCellContext cxt)
{
 //Use low and high values provided by the application.
 double low = m_rangeValues.getMinimum().doubleValue() * 100;
 double high = m_rangeValues.getMaximum().doubleValue() * 100;

 CellFormat cellFormat = new CellFormat(null, null, null);

 // Create stoplight format
 if (isStoplightingEnabled())
 {
 String color = null;
 Object value = cxt.getValue();
 if (value != null && value instanceof Number)
 {
 double dVal = ((Number)value).doubleValue();
 if (dVal <= low)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_belowColor) + ";";
 }
 else if (dVal > low && dVal <= high)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_goodColor) + ";";
 }
 else if (dVal > high)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_aboveColor) + ";";
 }

Pivot Table Data Cell Stamping and Editing

Using ADF Pivot Table Components 27-15

 }
 cellFormat.setStyle(color);
 }
 return cellFormat;
}

27.12 Pivot Table Data Cell Stamping and Editing
The content in a pivot table data cell can be stamped using the dvt:dataCell child
component to place a read-only or input component in each data cell. When you use
stamping, child components are not created for every data cell in a pivot table. Rather,
the content of the dvt:dataCell component is repeatedly rendered, or stamped, once
per data attribute, such as the rows in a pivot table. Only certain types of components
are supported, including all components with no activity and most components that
implement the EditableValueHolder or ActionSource interfaces. You can also use
stamping to specify custom CSS styles for the data cell.

Each time a child component is stamped, the data for the current cell is copied into a
var property used by the data cell component in an EL Expression. Once the pivot
table has completed rendering, the var property is removed, or reverted back to its
previous value.

Data cell editing is enabled by using an input component as the child component of
dvt:dataCell. At runtime you can open the cell for editing by double-clicking the cell
in the pivot table, or by selecting the cell and pressing F2.

Example 27–7 shows sample code for data cell stamping.

Example 27–7 Data Cell Stamping Sample Code

<dvt:pivotTable var="cellData" varStatus="cellStatus">
 <dvt:dataCell>
 <af:switcher defaultFacet="default"
facetName="#{cellStatus.members.MeasDim.value}">
 <f:facet name="Sales">
 <af:inputText value="#{cellData.dataValue}" />
 </f:facet>
 <f:facet name="Weight">
 <af:outputText value="#{cellData.dataValue}"
inlineStyle="#{cellStatus.cellFormat.textStyle}"/>
 </f:facet>
 <f:facet name="Available">
 <af:selectBooleanCheckbox id="idselectbooleancheckbox"
label="Availability" text="Item Available" autoSubmit="true"
value="#{cellData.dataValue}"/>
 </f:facet>
 <f:facet name="default">
 <af:outputText value="#{cellData.dataValue}" />
 </f:facet>
 </af:switcher>
 </dvt:dataCell>
</dvt:pivotTable>

Figure 27–15 shows the resulting pivot table.

Pivot Table Data Cell Stamping and Editing

27-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 27–15 Pivot Table Using Data Cell Stamping

27.12.1 How to Specify Custom Images for Data Cells
With data cell stamping you can use the dvt:dataCell tag to specify a custom image
for a data cell using af:image, af:icon, or af:commandImageLink as a child tag.
Example 27–8 shows sample code for using an af:commandImageLink as a custom
image in a pivot table data cell.

Example 27–8 Using a Custom Image for a Data Cell

<dvt:pivotTable var="cellData" varStatus="cellStatus">

 <!-- This is the default data cell that will be used for all data attributes-->
 <dvt:dataCell>
 <af:commandImageLink text="Go"
 icon="/images/go.gif"
 actionListener="#{pivotTableBean.imageLinkClick}"/>
 <af:outputText value="#{cellData.dataValue}" />
 </dvt:dataCell>
</dvt:pivotTable>

Actions associated with the image are handled through a registered listener,
actionListener. In a bean class you specify the method to be called when the image
link is clicked, for example:

public void imageLinkClick (javax.faces.event.ActionEvent.action)

27.12.2 How to Specify Images, Icons, Links, and Read-Only Content in Header Cells
In the same way that you use stamping in data cells, you can customize the content in
header cells using the dvt:headerCell child component to place a read-only
component in each header cell. Only read-only components or noneditable
components are supported, including af:outputText, af:image, af:icon,
af:commandImageLink, and af:commandLink.

By default, header cells do not support word wrapping for long text strings. You can
use the dvt:headerCell component whiteSpace attribute to change the setting from
the default noWrap to normal to specify header cell word wrapping.

Example 27–9 shows sample code for using word wrapping for af:outputText, an
af:commandImageLink as a custom image, and af:icon as a custom icon in pivot table
header cells.

Example 27–9 Using Custom Components in Header Cells

<dvt:pivotTable id="goodPT"
 binding="#{pivotTableHeaderCellDemo.pivotTable}"

Note: In order to temporarily or permanently write values back to a
set of cells within a cube, called a writeback, the pivot table must be
bound to a data control or data model that supports writeback
operations. A row set based data control is transformed into a cube
and therefore cannot support writeback operations.

Pivot Table Data Cell Stamping and Editing

Using ADF Pivot Table Components 27-17

 contentDelivery="immediate"
 value="#{pivotTableHeaderCellDemo.dataModel}"
 var="cellData"
 varStatus="cellStatus">
<!-- header cell components -->
<dvt:headerCell whiteSpace="normal">
 <af:switcher defaultFacet="default" facetName="#{cellData.layerName}">
 <f:facet name="Geography">
 <af:outputText value="#{cellData.label}"
 shortDesc="#{cellData.label}"/>
 <af:icon name="info" shortDesc="#{cellData.indent}" />
 </f:facet>
 <f:facet name="Channel">
 <af:outputText value="#{cellData.label}" />
 <af:commandImageLink shortDesc="Sample commandImageLink"
 icon="/resources/images/pivotTableCSVDemo/smily-normal.gif"
 hoverIcon="/resources/images/pivotTableCSVDemo/smily-glasses.gif"
 />
 <af:commandButton text="Go to Tag Guide page" immediate="true"
 action="guide" />
 </f:facet>

 <f:facet name="Product">
 <af:outputText value="#{cellData.label}" />
 <af:commandButton text="Go to Tag Guide page" immediate="true"
 action="guide" />
 </f:facet>

 <f:facet name ="default">
 <af:commandLink text="#{cellData.label}"
 immediate="true" action="guide"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>
...
</dvt:pivotTable>

Figure 27–16 shows the resulting pivot table.

Figure 27–16 Pivot Table with Customized Header Cells

Using a Pivot Filter Bar with a Pivot Table

27-18 Web User Interface Developer's Guide for Oracle Application Development Framework

27.13 Using a Pivot Filter Bar with a Pivot Table
You can enhance the data filtering capacity in a pivot table by adding a pivot filter bar.
Zero or more layers of data not already displayed in the pivot table row edge or
column edge are displayed in the page edge. Figure 27–17 shows a pivot filter bar with
Component and Geography layers that can be used to filter the data displayed in the
pivot table.

Figure 27–17 Pivot Filter Bar with Data Layer Filters

You can also change the display of data in the pivot table by pivoting layers between
the row, column, or page edges. Use the pivot handle to drag the layers between the
edges as desired. Figure 27–18 shows the modified pivot table and pivot filter bar
when the Channel data layer is pivoted to the page edge.

Figure 27–18 Pivot Table and Pivot Filter Bar After Pivot

27.13.1 How to Associate a Pivot Filter Bar with a Pivot Table
You associate a pivot filter bar component, dvt:pivotFilterBar, to work with a pivot
table component, dvt:pivotTable, by configuring the data model and associated
properties to work with both components. Example 27–10 shows sample code for
associating a pivot filter bar with a pivot table.

Example 27–10 Sample Code for Pivot Filter Bar

<dvt:pivotFilterBar id="pf1" value="#{binding.pt.pivotFilterBarModel}"
 modelName="pt1Model"/>
<dvt:pivotTable id="pt1" value="#{binding.pt.dataModel}" modelName="pt1Model"
 partialTriggers="pf1"/>

You can associate a pivot filter bar with a pivot table in any of the following ways:

■ Create a pivot table using the Data Controls Panel.

When you drag a data collection from the Data Controls Panel to create a pivot
table on your page, the Select Display Attributes page of the Create Pivot Table
wizard provides the option to create a pivot filter bar to associate with the pivot
table. You can choose to specify zero or more attributes representing data layers in
the page edge. The data model and associated properties are automatically

Using a Pivot Filter Bar with a Pivot Table

Using ADF Pivot Table Components 27-19

configured for you. For detailed information, see the "Creating Databound Pivot
Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

■ Add a pivot filter bar to a pivot table bound to data.

From the ADF Data Visualizations page of the Component Palette, Pivot Table
panel, you can drag a dvt:pivotFilterBar element above a dvt:pivotTable
element that has been bound to a data collection. In this instance, you must
configure the data model and associated properties in order for the pivot filter bar
to work with the pivot table.

■ Add a pivot filter bar to a pivot table not bound to data.

From ADF Data Visualizations page of the Component Palette, Pivot Table panel,
you can drag a dvt:pivotFilterBar element above a dvt:pivotTable element
that has not been bound to a data collection. In this instance, you must configure
the data model and associated properties in order for the pivot filter bar to work
with the pivot table.

Using a Pivot Filter Bar with a Pivot Table

27-20 Web User Interface Developer's Guide for Oracle Application Development Framework

28

Using ADF Timeline Components 28-1

28Using ADF Timeline Components

This chapter describes how to use the ADF Data Visualization timeline component to
display data using simple UI-first development. The chapter defines the data
requirements, tag structure, and options for customizing the look and behavior of the
component.

If your application uses the Fusion technology stack, then you can also use data
controls to create timelines. For more information, see the "Creating Databound
Timelines" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

This chapter includes the following sections:

■ Section 28.1, "Introduction to ADF Timeline Components"

■ Section 28.2, "Using Timeline Components"

■ Section 28.3, "Adding Data to Timeline Components"

■ Section 28.4, "Customizing Timeline Display Elements"

■ Section 28.5, "Adding Interactive Features to Timelines"

28.1 Introduction to ADF Timeline Components
A timeline is an interactive data visualization tool that allows users to view events in
chronological order and easily navigate forwards and backwards within a defined
time range. Events are represented as timeline items using simple ADF components to
display information such as text and images, or supply actions such a links. A dual
timeline can be configured to display two series of events to allow a side-by-side
comparison of related information.

The timeline component supports expanding and collapsing a group of related
timeline items, such as shared hire dates, or a group of related activities such as
completion of a number of employee forms. The timeline component also supports an
adjustable time range to change the view for zooming in or out.

28.1.1 Timeline Use Cases and Examples
A timeline is composed of the display of events as timeline items along a time axis, a
movable overview window that corresponds to the period of viewable time in the
timeline, and an overview time axis that displays the total time increment for the
timeline. A horizontal zoom control is available to change the viewable time range.
Timeline items corresponding to events display related information or actions and are
represented by a line feeler to the time axis and a marker in the overview time axis.

Introduction to ADF Timeline Components

28-2 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, the timeline in Figure 28–1 is configured to display the chronological
order of the hire dates of employees in the Summit DVT example. In this example,
timeline items representing each event display information about the employee using
an image and text with labels. The overview window defines the time range for the
display of the timeline items, adjustable by changing the zoom control or by changing
the edges of the window to a larger or smaller size. When selection is configured, the
timeline item, line feeler, and the event marker in the overview panel are highlighted.

Figure 28–1 Timeline of Employee Hire Dates

A dual timeline can be used for comparison of up to two series of events. Figure 28–2
illustrates a dual timeline comparing employee change events for two employees over
a ten year time period. Timeline events are displayed using a quarterly year time axis
within the three plus year overview window. The red colored line in the overview
time axis indicates the current date.

Introduction to ADF Timeline Components

Using ADF Timeline Components 28-3

Figure 28–2 Dual Timeline Comparing Employee Change Events

Timelines are useful in providing information in association with other Data
Visualization components. For example, Figure 28–3 illustrates the use of a timeline
linked from an organizational chart created using a dvt:hierarchyViewer component.
For more information, see Chapter 31, "Using ADF Hierarchy Viewer Components."

Figure 28–3 Employee Timeline Linked from Organizational Chart

28.1.2 End User and Presentation Features
To understand how timelines are used and can be customized, it is helpful to
understand these elements and features.

Introduction to ADF Timeline Components

28-4 Web User Interface Developer's Guide for Oracle Application Development Framework

28.1.2.1 Layout Options
By default, timelines are displayed in a horizontal orientation with events laid out
along a horizontal time axis and overview panel. You can change the layout to a
vertical orientation with events displayed along a vertical time axis and overview
panel. While you can specify that timeline items in a horizontal orientation will not
overlap each other in the display, you cannot apply that configuration to items in a
vertical orientation. Figure 28–4 illustrates the comparison of a timeline using a
horizontal orientation with the same timeline using a vertical orientation.

Figure 28–4 Timeline Horizontal and Vertical Orientations

28.1.2.2 Timeline Item Selection
Each event displayed in the timeline is represented as a timeline item that can include
data display components such as images, text, and text labels, or actions such as links,
buttons, and menus. A line feeler connects the event to the date in the time axis of the
timeline. Events are represented in the overview panel as a configurable marker.

By default timeline items are not configured for selection at runtime. You can
configure selection of a single or multiple timeline items. At runtime the event, the line
feeler, and the marker in the overview panel are highlighted.

28.1.2.3 Timeline Grouping and Sorting
Timeline items that share a common date can be configured to display as a group that can be
expanded or collapsed at runtime. By default, a number counter displaying the number of items
in a group is provided in the collapsed view. Clicking anywhere in the grouped timeline item
opens all items in the collapsed view and clicking in the timeline collapses the expanded view.
Figure 28–5 shows a timeline item with a counter opened into an expanded view.

Introduction to ADF Timeline Components

Using ADF Timeline Components 28-5

Figure 28–5 Timeline Group Counter and Expanded View

In the default horizontal orientation of the timeline, an overview panel is displayed at
the bottom of the timeline. The overview panel includes a movable overview window
that corresponds to the period of viewable time in the timeline, and an overview time
axis that displays the total time increment for the timeline.

28.1.2.4 Drag and Drop Support
Timeline components support drag and drop operations to and from another
collection component, for example, a table. Figure 28–6 shows a timeline configured as
a drop target and drag source. When the user drags one of the rows in the table onto
the timeline, attributes are displayed as a timeline item. Timeline items can also be
selected and dragged to the table to display attributes on a row.

Figure 28–6 Timeline Configured as a Drop Target and Drag Source

Introduction to ADF Timeline Components

28-6 Web User Interface Developer's Guide for Oracle Application Development Framework

28.1.2.5 Content Delivery
Timelines can be configured for how data is delivered from the data source. The data
con be delivered to the timeline either immediately upon rendering, as soon as the
data is available, or lazily fetch after the shell of the component has been rendered. By
default, timelines support the delivery of content from the data source when it is
available. The contentDelivery attribute is set to whenAvailable by default.

Timelines are virtualized, meaning not all data on the server is delivered to and
displayed on the client. You can configure timelines to fetch a certain number of rows
or columns at a time from your data source based on date related values. Use
fetchStartTime and fetchEndTime to configure fetch size.

28.1.2.6 Timeline Image Formats
Timelines support the following image formats: HTML5, Flash, and Portable Network
Graphics (PNG).

By default, timelines will display in the best output format supported by the client
browser. If the best output format is not available on the client, the application will
default to an available format. For example, if the client does not support HTML5, the
application will use:

■ Flash, if the Flash Player is available.

You can control the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Section A.4.3, "Configuring Flash as Component Output Format."

■ PNG output format. Although static rendering is fully supported when using a
PNG output format, certain interactive features are not available including:

– Animation

– Context menus

– Drag and drop gestures

– Popup support

– Selection

28.1.2.7 Timeline Display in Printable or Emailable Modes
ADF Faces allows you to output your JSF page from an ADF Faces web application in
a simplified mode for printing or emailing. For example, you may want users to be
able to print a page (or a portion of a page), but instead of printing the page exactly as
it is rendered in a web browser, you want to remove items that are not needed on a
printed page, such as scrollbars and buttons. If a page is to be emailed, the page must
be simplified so that email clients can correctly display it. For information about
creating simplified pages for these outputs, see Chapter 35, "Using Different Output
Modes."

When a timeline is displayed on a JSF page to be output in printable or emailable
pages:

■ Only the events currently in view on the timeline will be included in the content.

■ In email mode, the events will be displayed as a table.

■ In print mode, the timeline overview is not rendered.

Introduction to ADF Timeline Components

Using ADF Timeline Components 28-7

28.1.2.8 Active Data Support (ADS)
Timelines support ADS by sending a Partial Page Refresh (PPR) request when an
active data event is received. The PPR response updates the components, animating
the changes as needed. Supported ADS events include:

■ Timeline item content updates

■ Timeline item insertion and deletion

28.1.3 Additional Functionality for Timeline Components
You may find it helpful to understand other ADF Faces features before you implement
your timeline component. Additionally, once you have added a timeline to your
page, you may find that you need to add functionality such as validation and
accessibility. Following are links to other functionality that timeline components can
use:

■ Partial page rendering: You may want a timeline to refresh to show new data
based on an action taken on another component on the page. For more
information, see Chapter 7, "Rerendering Partial Page Content."

■ Personalization: When enabled, users can change the way the timeline displays at
runtime. Those values will not be retained once the user leaves the page unless
you configure your application to allow user customization. For information, see
Chapter 33, "Allowing User Customization on JSF Pages."

■ Accessibility: You can make your timeline components accessible. For more
information, see Chapter 22, "Developing Accessible ADF Faces Pages."

■ Content Delivery: You can configure your timeline to fetch data from the data
source immediately upon rendering the components, or on a second request after
the components have been rendered using the contentDelivery attribute. For
more information, see Section 10.1.1, "Content Delivery."

■ Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound timelines based on how your ADF Business
Components are configured. For more information, see the "Creating Databound
Timelines" section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality,
such as how content is delivered, automatic partial page rendering (PPR), and how
data can be displayed and edited.

Note: If you know the UI components on your page will eventually
use ADF data binding, but you need to develop the pages before the
data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using
placeholder data controls will provide the same declarative
development experience as using developed data controls. For more
information, see the "Designing a Page Using Placeholder Data
Controls" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Using Timeline Components

28-8 Web User Interface Developer's Guide for Oracle Application Development Framework

28.2 Using Timeline Components
To use the timeline component in UI-first development, define the data, add the
timeline to a page and complete the additional configuration in JDeveloper.

28.2.1 Timeline Component Data Requirements
The data layer for the timeline component is specified in its child, the
timelineSeries component. You must specify at least one timeline series, at most two
in the case of a dual timeline, using a model to access data from the underlying source.
The specific model class to use is an instance of
org.apache.myfaces.trinidad.model.CollectionModel. This class extends the JSF
DataModel class and adds on support for row keys. In the DataModel class, rows are
identified entirely by index. However, to avoid issues if the underlying data changes,
the CollectionModel class is based on row keys instead of indexes.

You may use other model instances, such as java.util.List, java.util.ArrayList,
and javax.faces.model.DataModel. The timeline series component will automatically
convert the instance into a CollectionModel, but without any additional functionality.
For more information about the CollectionModel class, see the MyFaces Trinidad
Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

Timelines require that the following attributes be set for the timelineSeries
component in JDeveloper:

■ value: An EL Expression that references the data model represented in the
timeline.

■ var: The name of a variable to be used during the rendering phase to reference
each element in the timeline collection. This variable is removed or reverted back
to its initial value once rendering is complete.

Each immediate child of a timelineSeries component must be at most one
timelineItem component. This component makes it possible to customize the event
content through stamping. When you use stamping, child components are not created
for every event represented in a timeline. Rather, the content of the component is
repeatedly rendered, or stamped, once per timeline item, such as the events in the
timeline.

Each time a timeline item is stamped, the value for the current item is copied into a
var property, and optionally, additional data for the item is copied into a varStatus
property. These properties can be accessed in EL expressions inside the timeline item
component, for example, to pass the item value to a stamped af:outputText
component. Once the timeline has completed rendering, the var and varStatus
properties are removed, or reverted back to their previous values.

The values for the value, var, and optionally, varStatus attributes must be stored in
the timeline’s data model or in classes and managed beans if you are using UI-first
development.

Example 28–1 shows a code sample that adds a TimelineCBBean managed bean to
your application that references the class or bean that contains the data, and optionally,
adds any other methods to customize the timeline. Not all list items in the data set
specified by the ArrayList class are included in the example.

Example 28–1 Managed Bean Example to Specify Timeline Data

 //imports needed by methods
import java.text.DateFormat;

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Using Timeline Components

Using ADF Timeline Components 28-9

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.Set;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.bean.RequestScoped;
import javax.faces.component.behavior.ClientBehavior;
import javax.faces.component.behavior.ClientBehaviorHint;
import javax.faces.event.AjaxBehaviorEvent;
import oracle.adf.view.faces.bi.component.timeline.UITimelineSeries;
import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.ModelUtils;
import org.apache.myfaces.trinidad.model.RowKeySet;
@ManagedBean(name="cb")
public class TimelineCBBean
{
 private CollectionModel m_model;
 public TimelineCBBean()
 {
 super();
 }
 public CollectionModel getModel()
 {
 if (m_model != null)
 return m_model;
 ArrayList _list = new ArrayList(10);
 _list.add(new EmpEvent("0", parseDate("01.13.2010"), "Oracle Application
 Express", "se198AyXcsk", null));
 _list.add(new EmpEvent("1", parseDate("01.27.2010"), "Larry Ellison on the
 Sun-Oracle Close", "ylNgcD2Ay6M", null));
 ...

 m_model = ModelUtils.toCollectionModel(_list);
 return m_model;
 }
 public void handleKey(AjaxBehaviorEvent event)
 {
 ClientBehavior _behavior = (ClientBehavior)event.getBehavior();
 Set<ClientBehaviorHint> _hints = _behavior.getHints();
 UITimelineSeries _series =
 (UITimelineSeries)event.getComponent().findComponent("ts1");
 if (_series == null)
 return;
 RowKeySet _rowKeySet = _series.getSelectedRowKeys();
 Iterator _iterator = _rowKeySet.iterator();
 ArrayList _list = (ArrayList)m_model.getWrappedData();
 while (_iterator.hasNext())
 {
 Object _rowKey = _iterator.next();
 Object _event = m_model.getRowData(_rowKey);
 _list.remove(_event);
 }
 }
 private static Date parseDate(String date)
 {
 Date ret = null;
 try

Using Timeline Components

28-10 Web User Interface Developer's Guide for Oracle Application Development Framework

 {
 ret = s_format.parse(date);
 }
 catch (ParseException e)
 {
 e.printStackTrace();
 }
 return ret;
 }
static DateFormat s_format = new SimpleDateFormat("MM.dd.yyyy");

The managed bean example provides the data model for the Employee Presentations
timeline displayed in Figure 28–7.

Figure 28–7 Timeline of Employee Presentations

You can find the complete source code for the TimelineCBBean in the ADF Faces demo
application. For more information about the demo application, see Section 1.4, "ADF
Faces Demonstration Application."

28.2.2 Configuring Timelines
The timeline component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the timeline. The prefix
dvt: occurs at the beginning of each timeline component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure timeline child components, attributes, and supported facets in the
following areas:

■ Timeline component (timeline): The parent component that wraps the timeline
child components and facets.

■ Timeline series (timelineSeries): The immediate child of the timeline component
used to specify the data layer for the timeline. You must specify at least one series
in a timeline. You can also specify up to one additional series to be used for a
comparison between timelines.

Using Timeline Components

Using ADF Timeline Components 28-11

The timeline series component supports facets that can be used to configure
context menus including:

– bodyContextMenu: Specifies a context menu that is displayed on non-selectable
elements in the timeline component.

– contextMenu: Specifies a context menu that is displayed on any selectable
element in the timeline component.

■ Timeline item (timelineItem): The child of timelineSeries that represents an
event in the timeline. The components supports the use of many ADF Faces
components, such as af:outputText, af:image, and af:panelGroupLayout.

■ Marker (marker): A configurable shape that represents the event in the overview
panel. The attributes are specified in a named overviewItem facet child of the
timelineItem component.

■ Time axis (timeAxis): Child of timeline used to specify the time axis and
timelineOverview used to specify the overview time axis.

■ Timeline overview (timelineOverview): An optional component used to provide a
macro view of all of the events from all timeline series in the timeline. Users can
scroll through the timeline using a zoom control.

28.2.3 How to Add a Timeline to a Page
When you are designing your page using UI-first development, you use the
Component Palette to add a timeline to a JSF page. When you drag and drop a
timeline component onto the page, a timeline artifact and source code is added to the
Visual Editor, and the tag structure is added to the Structure window.

After the timeline is added to your page, you can use the Property Inspector to specify
data values and configure display attributes. In the Property Inspector you can use the
dropdown menu for each attribute field to display a property description and options
such as displaying an EL Expression Builder or other specialized dialogs. Figure 28–8
shows the dropdown menu for a timeline endTime attribute.

Figure 28–8 Timeline endTime Attribute Value

Using Timeline Components

28-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Before you begin:
It may be helpful to have an understanding of how timeline attributes and timeline
child tags can affect functionality. For more information, see Section 28.2.2,
"Configuring Timelines."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 28.1.3, "Additional
Functionality for Timeline Components."

To add a timeline to a Page:
1. In the ADF Data Visualization page of the Component Palette, from the Gantt

section, drag and drop a Timeline component onto the page.

2. In the Property Inspector, view the attributes for the timeline. Use the help button
to display the complete tag documentation for the timeline component.

3. Expand the Appearance section, and enter values for the following attributes:

■ EndTime: Enter the ending date to use for the timeline time range using the format
yyyy-mm-dd. Select an end date that will include events in the data collection you wish
to display on the timeline. By default the current date is used for this attribute.

■ StartTime: Enter the starting date to use for the timeline time range using the format
yyyy-mm-dd. Select a start date that will include events in the data collection you wish
to display on the timeline. By default the current date is used for this attribute.

4. Optionally, enter values for the following attributes:

■ Orientation: Use the attribute’s dropdown menu to change the default layout
from horizontal to vertical.

For sample images of timeline orientation, see Section 28.1.2.1, "Layout
Options."

■ ItemPosition: If you are using a vertical orientation for the timeline, by default
timeline items will not overlap each other vertically in the available space for
the timeline. The default value is noOverlap. In a vertical orientation, this
attribute does not apply to the horizontal display of timeline items.

You can use an attribute value of random to specify that timeline items will
randomly lay out the items vertically in the available space for the timeline.

■ Summary: Enter a summary of the timeline’s purpose and structure for screen
reader support.

■ TimeZone: Enter the time zone to use for the timeline. If not set, the value is
identified from the AdfFacesContext.

5. Expand the Behavior section, and optionally enter values for the following
attributes:

■ ItemSelection: Use the dropdown list to specify whether or not timeline items
in the timeline are selectable. Valid values are single (default), multiple, or
none. This setting applies to both timeline series in a dual timeline.

Note: If your application uses the Fusion technology stack, then you
can use data controls to create a timeline and the binding will be done
for you. For more information, see the "Creating Databound
Timelines" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Adding Data to Timeline Components

Using ADF Timeline Components 28-13

■ SortData: Use to set whether timeline events are sorted automatically by the
timeline based on the time of the event, or manually sorted by the data model
to which it is bound. Valid values are auto (default) or none.

■ FetchStartTime and FetchEndTime: Use these attributes to specify the start
and end dates to use for delivering content from the data source.

6. To set the time axis for the timeline, do the following:

a. In the Structure window, right-click the timeline node and select Insert
inside dvt:timeline > Time Axis.

b. In the Insert Time Axis dialog, enter the scale to use for the time axis of the
timeline. Valid values are twoyears, years, quarters, twomonths, months,
twoweeks, weeks, days, sixhours, threehours, hours, halfhours, and
quarterhours.

7. To add a timeline overview to the timeline, do the following:

a. In the Structure window, right-click the timeline node and select Insert
inside dvt:timeline > Timeline Overview.

b. In the Structure window, right-click the timelineOverview node and select
Insert inside dvt:timelineOverview > Time Axis.

c. In the Insert Time Axis dialog, enter the scale to use for the overview time axis
display of the timeline. Valid values are twoyears, years, quarters,
twomonths, months, twoweeks, weeks, days, sixhours, threehours, hours,
halfhours, and quarterhours.

28.2.4 What Happens When You Add a Timeline to a Page
JDeveloper generates only a single tag when you drag and drop a timeline from the
Component Palette onto a JSF page without setting any additional attributes in the
Property Inspector. Example 28–2 shows the generated code.

Example 28–2 Timeline Sample Code in UI-First Development

<dvt:timeline
 startTime="2012-06-27" endTime="2012-06-27" id="t1"/>

If you choose to use the Data Controls panel to bind the data to a data control when
creating the timeline, JDeveloper generates code based on the data model. For more
information, see the "Creating Databound Timelines" section in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

28.3 Adding Data to Timeline Components
Timeline components require a collection data model to display attributes. For
example, to create the Employee Presentation timeline illustrated in Figure 28–7, you
must provide a data model that includes a qualifying date value and details about the
events.

28.3.1 How to Add Data to a Timeline
To add data to the timeline using UI-first development, create the classes, managed
beans, and methods that will create the model and reference the classes, beans, or
methods in JDeveloper.

Adding Data to Timeline Components

28-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Before you begin:
It may be helpful to have an understanding of how timeline attributes and timeline
child tags can affect functionality. For more information, see Section 28.2.2,
"Configuring Timelines."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 28.1.3, "Additional
Functionality for Timeline Components."

Add a timeline to your page. For help with adding a timeline to a page, see
Section 28.2.3, "How to Add a Timeline to a Page." Confirm that the start time and end
time for the timeline is consistent with the data model you are using.

Create the classes and managed beans that will define the timeline’s data model and
supply the data to the timeline. For additional information and examples, see
Section 28.2.1, "Timeline Component Data Requirements." If you need help creating
classes, see the Cue Cards > Build Hello World > Create a Java Class topic in the
JDeveloper Online Help. For help with managed beans, see Section 2.6, "Creating and
Using Managed Beans."

To add data to the timeline in UI-first development:
1. In the Structure window, right-click the timeline node and choose Insert inside

dvt:timeline > Timeline Series.

2. Right-click the timelineSeries node and choose Go to Properties.

3. In the Property Inspector, expand the Common section, and set the following
attributes:

■ Value: Specify an EL expression for the model to which you want the timeline
to be bound. This must be an instance of
org.apache.myfaces.trinidad.model.CollectionModel.

For example, reference the managed bean you created to instantiate the
timeline. In the employee presentation example, the timeline managed bean is
named cb, and the data is instantiated when the timeline is referenced. To use
the employee presentation data example with a timeline, enter the following
in the Value field for the EL expression: #{cb.Model}.

For help with creating EL expressions, see Section 2.5.1, "How to Create an EL
Expression."

■ Var: Enter the name of a variable to be used during the rendering phase to
reference each element in the timeline collection. This variable is removed or
reverted back to its initial value once rendering is complete.

For example, enter evt in the Var field to reference each element in the
employees presentation data example.

■ VarStatus: Optionally, enter the name of a variable during the rendering
phase to access contextual information about the state of the component, such
as the collection model or loop counter information. This variable is removed
or reverted back to its initial value once rendering is complete.

Note: You may use other model instances, such as java.util.List,
array, and javax.faces.model.DataModel. The timeline component
will automatically convert the instance into a CollectionModel.

Adding Data to Timeline Components

Using ADF Timeline Components 28-15

4. In the Structure window, right-click the timelineSeries node and choose Insert
Inside Timeline Series > Timeline Item to add a component to display the
timeline series data through stamping.

5. In the Property Inspector for the dvt:timelineItem, expand the Common section
and enter the following values

■ Value: Enter an EL Expression that references the date-related value you wish to
display as an item on the timeline. For example, in a collection of date-related
employee presentations, you could display presentation date as a timeline item.

For example, to reference the employee presentations data source, enter
#{evt.date}.

■ Group: Optionally, you can configure timeline items that share a common date to
display as a group that can be expanded or collapsed at runtime. By default, a number
counter displaying the number of items in a group is provided in the collapsed view.

6. To configure the timeline item to display the data collection attributes in the
timeline item, do the following:

a. Use the Structure window context menu to insert components to define the
layout of the timeline item.

b. Use the Property Inspector to specify the content and display attributes for the
timeline item. For the value attribute use an EL Expression that references the
row in the data collection.

For example, the code highlighted in Example 28–3 shows the component
structure and attribute definitions for the timeline item stamped in the
employee presentations timeline in Figure 28–7.

7. To configure the marker representing the timeline item that displays in the
timeline overview, do the following:

a. In the Structure window, right-click the overviewItem facet and select Insert
inside f:facet-overviewItem > Marker.

b. In the Property Inspector, set values to specify shape, size, and fill color as
desired.

Example 28–3 Code Sample for Timeline Bound to Data

<dvt:timeline id="tl1" startTime="2010-01-01" endTime="2011-12-31"
 inlineStyle="width:1000px;height:500px" itemSelection="single">
 <dvt:timelineSeries id="ts1" var="evt" value="#{cb.model}">
 <dvt:timelineItem id="ti1" value="#{evt.date}">
 <af:panelGroupLayout id="pg1" layout="horizontal">
 <af:image id="img1" inlineStyle="width:30px;height:30px"
 source="/resources/images/timeline/employment.png"/>
 <af:spacer width="3"/>
 <af:panelGroupLayout id="pg2" layout="vertical">
 <af:outputText id="ot1" inlineStyle="color:#084B8A"
 value="#{evt.description}" noWrap="true"/>
 <af:outputText id="ot2" value="#{evt.date}" inlineStyle="color:#6e6e6e"
 noWrap="true">
 <af:convertDateTime dateStyle="medium"/>

Note: You can specify the layout and contents of a timeline item in a
number of ways. For more information, see Section 28.4.1,
"Configuring Timeline Items."

Customizing Timeline Display Elements

28-16 Web User Interface Developer's Guide for Oracle Application Development Framework

 </af:outputText>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </dvt:timelineItem>
 </dvt:timelineSeries>
 <dvt:timeAxis id="ta1" scale="weeks"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="years"/>
 </dvt:timelineOverview>
 <f:ajax event="keyUp" execute="@this" listener="#{cb.handleKey}"/>
</dvt:timeline>

28.3.2 What You May Need to Know About Configuring Data for a Dual Timeline
You can add up to one additional timeline series to configure a dual timeline to
compare two series of events. The procedure for adding and configuring another
timelineSeries component is the same.

28.3.3 What You May Need to Know About Adding Data to Timelines
The examples in this chapter use classes and managed beans to provide the data to the
timeline. If your application uses the Fusion technology stack, then you can use data
controls to create a timeline and the binding will be done for you. For more
information, see the "Creating Databound Timelines" section in the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Alternatively, if you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls are ready,
then you should consider using placeholder data controls, rather than manually
binding the components. Using placeholder data controls will provide the same
declarative development experience as using developed data controls. For more
information, see the "Designing a Page Using Placeholder Data Controls" section of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

28.4 Customizing Timeline Display Elements
You can configure timeline items and add a custom time scale to your timeline.

28.4.1 Configuring Timeline Items
Timeline items represent the events displayed in the timeline. The timelineItem
component supports the following ADF components to display information and
provide actions associated with the event:

■ Layout components including: af:panelFormLayout, af:panelGroupLayout,
af:separator, af:showDetailItem, and af:spacer. For more information about
using these components, see Chapter 8, "Organizing Content on Web Pages."

■ Menu component af:menu. For more information about these components, see
Chapter 14, "Using Menus, Toolbars, and Toolboxes."

■ Output components including: af:outputFormatted and af:outputText. For
more information about these components, see Chapter 16, "Using Output
Components."

Customizing Timeline Display Elements

Using ADF Timeline Components 28-17

■ Message component af:outputLabelMessage. For more information about this
component, see Chapter 17, "Displaying Tips, Messages, and Help."

■ Navigation components including: af:commandButton and af:commandLink. For
more information about these components, see Chapter 18, "Working with
Navigation Components."

■ Image component af:image. For information about how to use the af:image
component, see Section 16.4, "Displaying Images."

■ af:showPopupBehavior: For information about how to use the
af:showPopupBehavior component, see Section 13.4, "Invoking Popup Elements."

Timeline items are represented in the timeline overview as a configurable shape. You
can specify the following attributes for a timeline item marker:

■ fillColor: The color of the marker shape. Valid values are RGB hexadecimal colors.

■ opacity: The opacity of the fill color of the marker. Valid values range from 0 percent for
transparent, to 100 percent for opaque.

■ shape: The shape of the overview marker for each selected timeline series value. Valid
values are one of seven prebuilt shapes circle (default), diamond, human, plus, square,
triangleDown, and triangleUp. This attribute is not supported for timelines with a
vertical orientation.

■ scaleX and scaleY: The scaleX (horizontal) and scaleY (vertical) scale factor. Valid
value is a numerical percentage. JDeveloper will automatically resize a marker to fit
within the timeline overview area if the marker is too large. These attributes are
not supported for timelines with a vertical orientation.

28.4.2 How to Add a Custom Time Scale to a Timeline
You can create a custom time scale for the timeline and overview axes. The custom
time scale is configured in the scale attribute of the dvt:timeAxis.

Before you begin:
It may be helpful to have an understanding of how timeline attributes and timeline
child components can affect functionality. For more information, see Section 28.2.2,
"Configuring Timelines."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 28.1.3, "Additional
Functionality for Timeline Components."

You should already have a timeline on your page. If you do not, follow the instructions
in this chapter to create a timeline. For information, see Section 28.2.3, "How to Add a
Timeline to a Page."

To create and use a custom time axis:
1. Implement the CustomTimescale.java interface to call the method

getNextDate(Date currentDate) in a loop to build the time axis. Example 28–4
show sample code for the interface.

Example 28–4 Interface to Build Custom Dates

public interface CustomTimescale
{
 public String getScaleName();
 public Date getPreviousDate(Date timelineStartDate);

Adding Interactive Features to Timelines

28-18 Web User Interface Developer's Guide for Oracle Application Development Framework

 public Date getNextDate(Date currentDate);
 public String getLabel(Date date);
}

2. In the Structure window, right-click a timeline node and choose Go to Properties.

3. Expand the Advanced category of the Property Inspector, for the
CustomTimeScales attribute, register the implementation of the interface for the
custom time axis.

The customTimeScales attribute's value is a java.util.Map object. The specified
map object contains pairs of key/values. The key is the time scale name
(fiveyears), and the value is the implementation of the CustomTimeScale.java
interface. For example:

customTimesScales="#{timeline.customTimescales}"

4. To use the custom time scale in the time axis or overview time axis, in the
Structure window, right-click the dvt:timeAxis node and in the Property
Inspector, enter the custom time scale name.

Example 28–5 shows sample code for setting a threeyears time axis and a
fiveyears overview time axis.

Example 28–5 Custom Time Axis

<dvt:timeline>
 <dvt:timeAxis id="ta1" scale="threeyears"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="fiveyears"/>
 </dvt:timelineOverview>
</dvt:timeline>

28.5 Adding Interactive Features to Timelines
You can add interactive features to timelines, including support for popups, custom
context menus, and drag and drop operations.

28.5.1 How to Add Popups to Timeline Items
The timelineItem components can be configured to display popup dialogs, windows,
and menus that provide information or request input from end users. Using the
af:popup component with other ADF Faces components, you can configure
functionality to allow your end users to show and hide information in secondary
windows, input additional data, or invoke functionality such as a context menu.

With ADF Faces components, JavaScript is not needed to show or hide popups. The
af:showPopupBehavior tag provides a declarative solution, so that you do not have to
write JavaScript to open a popup component or register a script with the popup
component. For more information about these components, see Chapter 13, "Using
Popup Dialogs, Menus, and Windows."

28.5.2 How to Configure Timeline Context Menus
Define timeline context menus using these context menu facets:

■ bodyContextMenu: Specifies a context menu that is displayed on non-selectable
elements in the timeline component.

Adding Interactive Features to Timelines

Using ADF Timeline Components 28-19

■ contextMenu: Specifies a context menu that is displayed on any selectable element
in the timeline component.

Each facet on a JSP or JSPX page supports a single child component. For these facets to
work, selection must be enabled in the timeline’s properties. Context menus are
currently only supported in Flash.

You create a context menu by using af:menu components within an af:popup
component. You can then invoke the context menu popup from another component,
based on a specified trigger. For more information about configuring context menus,
see Chapter 13, "Using Popup Dialogs, Menus, and Windows."

28.5.3 How to Add Drag and Drop to a Timeline
You can configure timelines as a drop target or drag source between collection
components on a page. For example, you can drag an item from one collection (for
example, a row from a table), and drop it into a timeline, or drag an event from a
timeline and drop it into a table, as illustrated in Figure 28–6.

To add drop support to a timeline, add the af:dropTarget tag to the timeline
component and include the data flavors that the timeline will support. Add a
dropListener method to a timeline managed bean that will respond to the drop event.

To add drag support from a timeline to a collection component, add the
af:dragSource tag to the timeline component and add the af:collectionDropTarget
tag to the component receiving the drag. The component receiving the drag must
include the org.apache.myfaces.trinidad.model.RowKeySet data flavor as a child of
the af:collectionDropTarget and also define a dropListener method to respond to
the drop event.

Example 28–6 shows the JSF page sample code for the ADF Faces demo application
illustrated in Figure 28–6. For additional information about the af:table component,
see Chapter 10, "Using Tables, Trees, and Other Collection-Based Components."

Example 28–6 Sample Code for Timeline Drop Target and Drag Source

<dvt:timeline id="tl1" startTime="2010-01-01" endTime="2011-12-31"
 inlineStyle="width:800px;height:400px" itemSelection="single">
 <f:attribute name="horizontalFetchSizeOverride" value="3000"/>
 <dvt:timelineSeries id="ts1" var="evt" value="#{dnd.timelineModel}">
 <dvt:timelineItem id="ti1" value="#{evt.date}" group="#{evt.group}">
 <af:panelGroupLayout id="pg1" layout="horizontal">
 <af:image id="img1" inlineStyle="width:30px;height:30px"
 source="/resources/images/timeline/employment.png"/>
 <af:spacer width="3"/>
 <af:panelGroupLayout id="pg2" layout="vertical">
 <af:outputText id="ot1" inlineStyle="color:#084B8A"
 value="#{evt.description}" noWrap="true"/>
 <af:outputText id="ot2" value="#{evt.date}"
 inlineStyle="color:#6e6e6e" noWrap="true">
 <af:convertDateTime dateStyle="medium"/>
 </af:outputText>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </dvt:timelineItem>
 <af:dragSource actions="COPY" discriminant="model"/>
 <af:dropTarget actions="COPY" dropListener="#{dnd.handleDropOnTimeline}">
 <af:dataFlavor flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"
 discriminant="model2"/>
 </af:dropTarget>

Adding Interactive Features to Timelines

28-20 Web User Interface Developer's Guide for Oracle Application Development Framework

 </dvt:timelineSeries>
 <dvt:timeAxis id="ta1" scale="weeks"/>
 <dvt:timelineOverview id="ov1">
 <dvt:timeAxis id="ta2" scale="years"/>
 </dvt:timelineOverview
</dvt:timeline>
<af:table var="row" value="#{dnd.tableModel}" rowSelection="single"
 inlineStyle="width:370px;height:400px">
 <af:column headerText="ID" width="20">
 <af:outputText value="#{row.id}"/>
 </af:column>
 <af:column headerText="Event" width="340">
 <af:outputText value="#{row.description}"/>
 </af:column>
 <af:dragSource actions="COPY" discriminant="model2"/>
 <af:collectionDropTarget actions="COPY" modelName="model"
 dropListener="#{dnd.handleDropOnTable}"/>
</af:table>

The data model for this example is defined in the TimelineDnDBean managed bean
using an ArrayList class. You can find the source code for the class and the
supporting EmpEvent class in the ADF Faces demo application. For more information
about the demo application, see Section 1.4, "ADF Faces Demonstration Application."

Before you begin:
It may be helpful to have an understanding of how timeline attributes and child tags
can affect functionality. For more information, see Section 28.2.2, "Configuring
Timelines."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 28.1.3, "Additional
Functionality for Timeline Components."

You will need to complete these tasks:

■ Add a timeline to your page. For more information, see Section 28.2.3, "How to
Add a Timeline to a Page"

■ If you are configuring timeline items as a drag source and you did not bind the
timeline to a data control when you added the component to the page, add data to
the timeline. For information about adding data to timelines using UI-first
development, see Section 28.3.1, "How to Add Data to a Timeline."

■ Create any additional components needed to support the drag and drop.

For example, if you are using a table as the drag source or drop target, you will
need to add a table to your page.

To add drag and drop support to a timeline:
1. In the Structure window, right-click the timeline component, and select Insert

Inside Timeline > Drop Target.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the timeline’s
managed bean. Alternatively, use the dropdown menu to choose Expression
Builder and enter an EL Expression for the drop listener.

For example, to add a method named handleDropOnTimeline() on a managed
bean named dnd, choose Edit, select dnd from the dropdown menu, and click New
on the right of the Method field to create the handleDropOnTimeline() method.

Adding Interactive Features to Timelines

Using ADF Timeline Components 28-21

Example 28–7 shows the sample drop listener and supporting methods for the
timeline displayed in Figure 28–6.

Example 28–7 Sample Drop Listener for a Timeline

// imports needed by methods
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.bean.RequestScoped;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.ModelUtils;
import org.apache.myfaces.trinidad.model.RowKeySet;
// drop listener
public DnDAction handleDropOnTimeline(DropEvent event)
 {
 Date _date = (Date)event.getDropSite();
 Transferable _transferable = event.getTransferable();
 RowKeySet _rowKeySet = _transferable.getData(DataFlavor.ROW_KEY_SET_FLAVOR);
 Object _rowKey = _rowKeySet.iterator().next();
 EmpEvent _event = (EmpEvent)m_tableModel.getRowData(_rowKey);
 _event.setDate(_date);
 orderInsert(_event);
 RequestContext.getCurrentInstance().addPartialTarget
 (event.getDragComponent());
 return DnDAction.COPY;
 }
 private void orderInsert(EmpEvent event)
 {
 int _index = -1;
 ArrayList _list = (ArrayList)m_timelineModel.getWrappedData();
 for (int i=0; i<_list.size(); i++)
 {
 EmpEvent _current = (EmpEvent)_list.get(i);
 if (event.getDate().before(_current.getDate()))
 {
 _index = i;
 break;
 }
 }
 if (_index == -1)
 _list.add(event);
 else
 _list.add(_index, event);
 ArrayList _list2 = (ArrayList)m_tableModel.getWrappedData();
 _list2.remove(event);
}

3. Click OK, and in the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

Adding Interactive Features to Timelines

28-22 Web User Interface Developer's Guide for Oracle Application Development Framework

4. In the Structure window, right-click the af:dropTarget component and choose Go
to Properties to set the following attributes in the Property Inspector:

■ Actions: Enter a list of the operations that the drop target will accept,
separated by spaces. Allowable values are: COPY, MOVE, or LINK. If you do not
specify a value, the drop target will use COPY.

■ Discriminant: Specify the model name shared by the drop target and drag
source for compatibility purposes. The value of this attribute must match the
value of the of the discriminant attribute of the af:dragSource component
you will set for the collection component receiving the drags from the timeline
in Step 5.

5. To configure another collection component as the drag source for drops into the
timeline, do the following:

a. In the Component Palette, from the Operations panel, drag and drop a Drag
Source tag as a child to the component that will be the source of the drag.

For example, drag and drop a Drag Source tag as a child to an af:table
component.

b. In the Property Inspector, for the component’s Actions field, enter a list of the
operations that the drop target will accept, separated by spaces.

c. For the component’s Discriminant field, specify the model name shared by
the drop target and drag source for compatibility purposes.

6. To configure the timeline as a drag source, in the Component Palette, from the
Operations panel, drag and drop a Drag Source tag as a child to the timeline.

7. In the Structure window, right-click the af:dragSource component and choose Go
to Properties to set the following attributes in the Property Inspector:

■ Actions: Enter a list of the operations that the collection drop target
component will accept, separated by spaces.

■ Discriminant: Specify the name of the model shared by the drag source and
collection drop target for compatibility purposes. The value of this attribute
must match the value of the of the modelName attribute of the
af:collectionDropTarget component you will set for the collection
component receiving the drags from the timeline in Step 8.

8. To make another collection component the drop target for drops from the timeline,
do the following:

a. In the Component Palette, from the Operations panel, drag and drop a
Collection Drop Target onto the component that will receive the drop.

For example, drag and drop a Collection Drop Target as a child to an
af:table component that displays the results of the drop.

b. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the
appropriate managed bean.

Example 28–8 shows the sample drop listener for the timeline displayed in
Figure 28–6. This example uses the same imports and helper methods used in
Example 28–7, and they are not included here.

Example 28–8 Sample Drop Listener for a Table Using a Timeline as a Drag Source

//Drop Listener
public DnDAction handleDropOnTable(DropEvent event)

Adding Interactive Features to Timelines

Using ADF Timeline Components 28-23

{
 Integer _dropSite = (Integer)event.getDropSite();
 Transferable _transferable = event.getTransferable();
 RowKeySet _rowKeySet = _transferable.getData(DataFlavor.ROW_KEY_SET_FLAVOR);
 Object _rowKey = _rowKeySet.iterator().next();
 EmpEvent _event = (EmpEvent)m_timelineModel.getRowData(_rowKey);
 ArrayList _list = (ArrayList)m_tableModel.getWrappedData();
 _list.add(_dropSite.intValue(), _event);
 ArrayList _list2 = (ArrayList)m_timelineModel.getWrappedData();
 _list2.remove(_event);
 RequestContext.getCurrentInstance().addPartialTarget
 (event.getDragComponent());
 return DnDAction.COPY;
}
private static Date parseDate(String date)
{
 Date ret = null;
 try
 {
 ret = s_format.parse(date);
 }
 catch (ParseException e)
 {
 e.printStackTrace();
 }
 return ret;
}

c. Click OK, and in the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

d. In the Structure window, right-click the af:dropTarget component and
choose Go to Properties.

e. In the Property Inspector, in the Actions field, enter a list of the operations that
the drop target will accept, separated by spaces.

f. In the ModelName field, define the model for the collection.The value of the
modelName attribute is a String object used to identify the drag source for
compatibility purposes. The value of this attribute must match the value of the
discriminant attribute of the af:dragSource component you set in Step 7.

For more detailed information about configuring drag and drop on ADF Faces or
ADF Data Visualization components, see Chapter 34, "Adding Drag and Drop
Functionality."

Adding Interactive Features to Timelines

28-24 Web User Interface Developer's Guide for Oracle Application Development Framework

29

Using ADF Gantt Chart Components 29-1

29Using ADF Gantt Chart Components

This chapter describes how to use a databound ADF Gantt chart component to display
data, and provides the options for customizing Gantt charts.

This chapter includes the following sections:

■ Section 29.1, "Introduction to the ADF Gantt Chart Components"

■ Section 29.2, "Understanding Gantt Chart Tags and Facets"

■ Section 29.3, "Understanding Gantt Chart User Interactivity"

■ Section 29.4, "Understanding Data Requirements for the Gantt Chart"

■ Section 29.5, "Creating an ADF Gantt Chart"

■ Section 29.6, "Customizing Gantt Chart Legends, Toolbars, and Context Menus"

■ Section 29.7, "Working with Gantt Chart Tasks and Resources"

■ Section 29.8, "Specifying Nonworking Days, Read-Only Features, and Time Axes"

■ Section 29.9, "Using Page Controls in Gantt Charts"

■ Section 29.10, "Printing a Gantt Chart"

■ Section 29.11, "Using Gantt Charts as a Drop Target or Drag Source"

For information about the data binding of ADF Gantt charts, see the "Creating
Databound Gantt Charts" section in the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

29.1 Introduction to the ADF Gantt Chart Components
A Gantt chart is a type of horizontal bar graph that you use to plan and track projects.
It shows resources or tasks in a time frame with a distinct beginning and end. An ADF
Gantt chart component is composed of two regions, one displaying the Gantt chart
data in a table, and the other displaying the Gantt chart data graphically with a
resizable splitter between the two regions. The table and chart regions share the same
data and selection model, supporting and synchronizing scrolling, and expanding and
collapsing of rows between the two regions.

At runtime, Gantt charts provide interaction capabilities in the table region to the user
such as entering data, expanding and collapsing rows, showing and hiding columns,
navigating to a row, and sorting and totaling columns. In the chart region, users can
drag a task to a new date, select multiple tasks to create dependencies, and extend the
task date. A Gantt chart toolbar is available to support user operations such as
changing or filtering the view of the data, and creating, deleting, cutting, copying, and
pasting tasks.

Introduction to the ADF Gantt Chart Components

29-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Both Gantt chart regions are based on an ADF Faces tree table component. For more
information about ADF tree tables, including virtualization of rows, see Chapter 10,
"Using Tables, Trees, and Other Collection-Based Components".

29.1.1 Types of Gantt Charts
The Gantt chart provides the following components:

■ Project Gantt chart: A project Gantt chart is used for project management. The
chart lists tasks vertically and shows the duration of each task as a bar on a
horizontal time line. It graphs each task on a separate line as shown in Figure 29–1.

Figure 29–1 Project Gantt Chart for a Software Application

■ Resource Utilization Gantt chart: A resource utilization Gantt chart graphically
shows the metrics for a resource, for example, whether resources are over or under
allocated. It shows resources vertically while showing their metrics, such as
allocation and capacity on the horizontal time axis. Figure 29–2 shows a resource
utilization Gantt chart illustrating how many hours are allocated and utilized for a
particular developer resource in a given time period.

Figure 29–2 Resource Utilization Gantt Chart for a Software Application

■ Scheduling Gantt chart: A scheduling Gantt chart is used for resource scheduling.
The chart is based on manual scheduling boards and shows resources vertically,
with corresponding activities on the horizontal time axis. Examples of resources
include people, machines, or rooms. The scheduling Gantt chart uses a single line
to graph all the tasks that are assigned to a resource as shown in Figure 29–3.

Introduction to the ADF Gantt Chart Components

Using ADF Gantt Chart Components 29-3

Figure 29–3 Scheduling Gantt Chart for a Software Application

29.1.2 Functional Areas of a Gantt Chart
A Gantt chart consists of the following functional areas:

■ Table region: Displays Gantt chart data attributes in a table with columns. The
table region requires a minimum of one column, but you can define attributes for
as many columns as desired in the Gantt chart data binding dialogs.

For example, in Figure 29–1, the table region contains the following columns:
Name (of the task), Priority, Orig. Est., Curr. Est., Elapsed (days), Remaining
(days), and Resources.

■ Chart region: Displays a bar graph of the Gantt chart data along a horizontal time
axis. The time axis provides for major and minor settings to allow for zooming.
The major setting is for larger time increments and the minor setting is for smaller
time increments.

For example, in Figure 29–1, the chart region graphs tasks on a time axis that
shows days within weeks.

■ Information panel: Displays both the information region that displays text about
the selected task or metrics about the selected resource, and the optional legend
that displays task types in the area beneath the table region and the chart region.
Note that the Gantt chart legend is not present unless you insert the legend child
tag inside the parent Gantt chart tag.

■ Toolbar: Lets users perform operations on the Gantt chart. The toolbar is visible in
the Gantt chart by default. You can change the visibility of the toolbar by setting
the ShowToolbar attribute on the Appearance page of the Property Inspector for
the Gantt chart.

The toolbar consists of the following sections:

– Menu bar: The left section of the toolbar contains a set of menus for the Gantt
chart. Each Gantt chart type has a set of default options. Figure 29–4 displays
the menu bar, which is visible in the Gantt chart by default. You can change
the visibility of the menu bar by setting the ShowMenuBar attribute in the
Appearance page of the Property Inspector for the Gantt chart. You can
customize menu items by using the menubar facet.

Note: The View menu items do not require that you write application
code to make them functional. However, you must provide
application code for any items that you want to use on the other
menus.

Introduction to the ADF Gantt Chart Components

29-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 29–4 Sample Menu Bar for a Gantt Chart

– Toolbar buttons: The right section of the toolbar displays a set of action
buttons for working with the Gantt chart. Each Gantt chart type has a set of
default options. Figure 29–5 shows a sample toolbar for a project Gantt chart.

Figure 29–5 Sample Toolbar for a Project Gantt Chart

 You can customize toolbar buttons by using the toolbar facet.

■ Context menu: Right-clicking in the Gantt chart table or chart regions provides a
popup context menu with a standard set of menu items. You can provide your
own set of menu items by using the tablePopupMenu or chartPopupMenu facet.

■ Printing service: The Gantt chart provides printing capability in conjunction with
XML Publisher by generating PDF files. For more information, see Section 29.10,
"Printing a Gantt Chart".

29.1.3 Description of Gantt Chart Tasks
Project and scheduling Gantt charts use predefined tasks with a set of formatting
properties that describe how the tasks will be rendered in the chart area. All supported
tasks must have a unique identifier. The following describes the supported tasks and
how they appear in a Gantt chart:

■ Normal: The basic task type. It is a plain horizontal bar that shows the start time,
end time, and duration of the task.

■ Summary: The start and end date for a group of subtasks. A summary task cannot
be moved or extended. Instead, it is the responsibility of the application to execute
code to recalculate the start and end date for a summary task when the date of a
subtask changes. Summary tasks are available only for the project Gantt chart.

■ Milestone: A specific date in the Gantt chart. There is only one date associated
with a milestone task. A milestone task cannot be extended but it can be moved. A
milestone task is available only for the project Gantt chart.

■ Recurring: A task that is repeated in a Gantt chart, each instance with its own start
and end date. Individual recurring tasks can optionally contain a subtype. All
other properties of the individual recurring tasks come from the task which they
are part of. However, if an individual recurring task has a subtype, this subtype
overrides the task type.

■ Split: A task that is split into two horizontal bars, usually linked by a line. The time
between the bars represents idle time due to traveling or down time.

■ Scheduled: The basic task type for a scheduling Gantt chart. This task type shows
the starting time, ending time, and duration of a task, as well as startup time if one
is specified.

For normal, summary, and milestone tasks, additional attributes are supported that
would change the appearance and activity of a task. These style attributes include:

■ percentComplete, completedThrough: An extra bar would be drawn to indicate
how far the task is completed. This is applicable to normal and summary task
types.

Understanding Gantt Chart Tags and Facets

Using ADF Gantt Chart Components 29-5

■ critical: The color of the bar would be changed to red to mark it as critical. This
is applicable to normal, summary, and milestone task types.

■ actualStart and actualEnd: When these attributes are specified, instead of
drawing one bar, two bars are drawn. One bar indicates the base start and end
date, the other bar indicates the actual start and end date. This is applicable to
normal and milestone task types.

Figure 29–6 displays a legend that shows common task types in a project Gantt chart.

Figure 29–6 Project Gantt Chart Legend for Task Types

29.2 Understanding Gantt Chart Tags and Facets
The three Gantt chart components beginning with the prefix dvt: for each Gantt chart
tag name indicates that the tag belongs to the ADF Data Visualization Tools (DVT) tag
library:

■ dvt:projectGantt

■ dvt:resourceUtilizationGantt

■ dvt:schedulingGantt

All Gantt chart components support the child tag dvt:ganttLegend to provide an
optional legend in the information panel of a Gantt chart. Some menu bar and toolbar
functions may or may not be available depending on whether the Gantt legend is
specified.

In the Gantt chart table region, the ADF Faces af:column tag is used to specify the
header text, icons and alignment for the data, the width of the column, and the data
bound to the column. To display data in hierarchical form, a nodeStamp facet specifies
the primary identifier of an element in the hierarchy. For example, the "Task Name"
column might be used as the nodeStamp facet for a project Gantt chart. Example 29–1
shows sample code for a project Gantt chart with "Task Name" as the nodeStamp facet,
with columns for Resource, Start Date, and End Date.

Example 29–1 Sample Code for Project Gantt Chart Columns

<dvt:projectGantt startTime="2008-04-12"
 endTime="2009-04-12"
 value="#{project.model}"
 var="task">
 <f:facet name="major">
 <dvt:timeAxis scale="months"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="weeks"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>

Understanding Gantt Chart User Interactivity

29-6 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
</dvt:projectGantt>

In addition to the nodeStamp facet, other facets are used for customizations by the
Gantt chart components. Table 29–1 shows the facets supported by Gantt chart
components.

For complete descriptions of all the Gantt chart tags, their attributes, and a list of valid
values, consult the DVT tag documentation. To access this documentation for a specific
tag in JDeveloper, select the tag in the Structure window and press F1. To access the
full ADF Data Visualization Tools tag library in JDeveloper Help, expand the Javadoc
and Tag Library References node in the online Help Table of Contents and click the
link to the tag library in the JDeveloper Tag Library Reference topic.

29.3 Understanding Gantt Chart User Interactivity
At runtime, users can perform a wide range of operations on a Gantt chart, including
navigation and display, as well as actions that change the data in the table or chart
region.

When a user interaction involves a change in data, the Gantt chart processes the
change by performing validation, event handling, and update of the data model.
Validation ensures that the data submitted meets basic requirements, for example, that
a date is valid and does not fall into a nonworking time period. When validation fails,
the update of the data model is omitted, and an error message is returned.

Table 29–1 Facets Supported by Gantt Chart Components

Name Description

chartPopupMenu Specifies the component to use to identify additional controls to
appear in the context menu of the chart region. Must be an
af:popup component.

customPanel Specifies the component to use to identify controls to appear in
the custom tab of the task properties dialog.

major Specifies the component to use to identify the major time axis.
Must be a dvt:timeAxis component.

menuBar Specifies the component to use to identify additional controls to
appear in the Gantt menu bar. Must be an af:menu component

minor Specifies the component to use to identify the minor time axis.
Must be a dvt:timeAxis component.

nodeStamp Specifies the component to use to stamp each element in the
Gantt chart. Only certain types of components are supported,
including all components with no activity and most components
that implement the EditableValueHolder or ActionSource
interfaces. Must be an af:column component.

tablePopupMenu Specifies the component to use to identify additional controls to
appear in the context menu of the table region. Must be an
af:popup component.

toolbar Specifies the component to use to identify additional controls to
appear in the Gantt toolbar. Must be an af:toobar component.

Understanding Gantt Chart User Interactivity

Using ADF Gantt Chart Components 29-7

When a Gantt chart server-side event is fired, an event with validated information
about the change is sent to the registered listener. The listener is then responsible for
updating the underlying data model. A customized event handler can be registered by
specifying a method binding expression on the dataChangeListener attribute of the
Gantt chart component.

Server-side events supported by the Gantt chart include:

■ Update of data in the table cells of the Gantt chart table region

■ Create, update, delete, move, cut, copy, paste, indent, outdent of tasks

■ Reassignment of resource by dragging the task bar from one row to another

■ Drag the task bar to another date

■ Extend the duration of a task

■ Link or unlink tasks

■ Select a row or multiple rows in the Gantt chart table region

■ Undo or redo of user actions

■ Double-click on a task bar

Users can filter the data in a Gantt chart using a dropdown list from the toolbar. You
can create a custom filter.

29.3.1 Navigating in a Gantt Chart
You can browse through Gantt chart regions by scrolling, or you can access a specific
date in the chart region. You can also control if columns in the table region are visible.

29.3.1.1 Scrolling and Panning the List Region or the Chart Region
The Gantt chart design lets you perform horizontal scrolling of the table and the chart
regions independently. This is especially helpful when you want to hold specific task
or resource information constant in the table region while scrolling through multiple
time periods of information in the chart region.

Users can also zoom in and out on the time scale of a Gantt chart by holding the Ctrl
key and using the mouse scroll wheel.

In project and scheduling Gantt charts, users can pan the chart area by dragging it
vertically and horizontally using the mouse. A move cursor displays when the user
clicks inside the chart area, other than on a task.

29.3.1.2 How to Navigate to a Specific Date in a Gantt Chart
You can move the chart region of the Gantt chart rapidly to a specific date.

To navigate to a specific date in a Gantt chart:
1. From the View menu, choose Go to Date.

2. In the Go to Date dialog, specify the desired date by clicking the Select Date icon
and indicating the date in the calendar.

3. Click OK.

The display of the chart region of the Gantt chart begins at the date you requested.

Understanding Gantt Chart User Interactivity

29-8 Web User Interface Developer's Guide for Oracle Application Development Framework

29.3.1.3 How to Control the Visibility of Columns in the Table Region
By default, all the columns that you define when you create a databound Gantt chart
are visible in the table region. You can selectively cause one or more of these columns
to be hidden.

To control the display of columns in the table region of a Gantt chart:
1. From the View menu, select List Pane.

2. From the context menu, select Columns.

3. In the Columns menu, deselect any column that you want to be hidden in the table
region of the Gantt chart. You can also select any column that you want to make
visible in the table region.

29.3.2 How to Display Data in a Hierarchical List or a Flat List
If a Gantt chart is using a hierarchical data model, then you have the option of
displaying all the Gantt chart data in a collapsed form or in an expanded form.

To control the display of Gantt chart data in a list:
1. From the View menu, select List Pane.

2. From the ensuing menu, select either Show As List, for an expanded list, or Show
As Hierarchy, for a collapsed list.

29.3.3 How to Change the Gantt Chart Time Scale
You can change the time scale display in a Gantt chart and you can zoom in and out on
a time axis to display the chart region in different time units. You can also use a
specialized zoom-to-fit feature in which you select the amount of time that you want
to display in the chart region without a need to scroll the chart.

To change the settings of a time axis:
1. From the View menu, select Time Scale.

2. In the ensuing Time Scale dialog, in the Time Unit column, select a new unit value
for either the major axis, the minor axis, or both axes. A sample box displays
sample settings for the time unit that you select. Figure 29–7 shows the Time Scale
dialog.

Figure 29–7 Time Scale Dialog

3. Click OK.

Note: You must keep at least one column visible in the table region.

Understanding Data Requirements for the Gantt Chart

Using ADF Gantt Chart Components 29-9

To zoom in or out on a time axis:
1. Optionally, on the toolbar, click the Zoom In icon to display the time axis at a

lower level time unit.

2. Optionally, on the toolbar, click the Zoom Out icon to display the time axis at a
higher level time unit.

3. Optionally, in the box on the toolbar after the zoom icons, select a time period that
represents the amount of time on the chart that you want to display without the
need to scroll.

4. Optionally, right-click the time axis for which you wish to change the scale and
select an available time unit from the submenu.

29.4 Understanding Data Requirements for the Gantt Chart
The data model for a Gantt chart can be either a tree (hierarchical) model or a
collection model that contains a row set or flat list of objects. For more information, see
the "Creating Databound Gantt Charts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

When you bind a Gantt chart to a data control, you specify how the collection in the
data control maps to the node definitions of the Gantt chart.

29.4.1 Data for a Project Gantt Chart
The data model for a project Gantt chart supports hierarchical data and uses
TreeModel to access the data in the underlying list. The specific model class is
org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by the TreeModel must have, at a minimum, the
following properties:

■ taskId: The ID of the task.

■ startTime: The start time of the task.

■ endTime: The end time of the task.

Optionally, the object could implement the oracle.adf.view.faces.bi.model.Task
interface to ensure it provides the correct properties to the Gantt chart.

When binding the data to an ADF data control, the following node definitions are
available in a project Gantt chart:

■ Task node: Represents a collection of tasks. The task node definition has the
following types of optional accessors:

– subTask (available only for project Gantt chart)

– splitTask

■ Split task node: Represents a collection of split tasks. A split task node definition
does not have accessors.

■ Dependency node: Represents a collection of dependencies for a task. A
dependency node definition does not have accessors.

■ Recurring task node: Represents a collection of recurring tasks. A recurring task
node definition does not have accessors.

Table 29–2 shows a complete list of data object keys for the project Gantt chart.

Understanding Data Requirements for the Gantt Chart

29-10 Web User Interface Developer's Guide for Oracle Application Development Framework

29.4.2 Data for a Resource Utilization Gantt Chart
The data model for a resource utilization Gantt chart supports hierarchical data and
uses TreeModel to access the data in the underlying list. The specific model class is
org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by TreeModel must have, at a minimum, the
following properties:

■ resourceId: The ID of the task.

■ timeBuckets: A collection of time bucket objects for this resource.

Table 29–2 Data Object Keys for Project Gantt Chart

Data Object Key Data Type and Description

actualEnd Date. The actual end time for normal and milestone tasks.

actualStart Date. The actual start time for normal and milestone tasks.

completedThrough Date. Completed through for normal and summary tasks.

critical Boolean. Specifies whether or not the task is critical for all tasks.

Dependency (node) A list of dependencies for a task. Data object keys for
dependencies include:

■ fromId: The ID of the task where the dependency begins.

■ toId: The ID of the task where the dependency ends.

■ type: The type of the dependency. Valid values are
start-start, start-finish, finish-finish, finish-start,
start-before, start-together, finish-after, and
finish-together.

endTime (required) Date. The end time for all tasks.

icon1 String. The first icon associated with the task bar for all tasks.
The icon might change depending on other attributes

icon2 String. The second icon associated with the tasks bar for all
tasks.

icon3 String. The third icon associated with the tasks bar for all tasks.

iconPlacement String. The alignment of the icon in the task bar for all tasks.
Valid values are left (default), right, inside, start, end,
innerLeft, innerRight, innerCenter, innerStart, innerEnd.

isContainer Boolean. Specifies whether or not a node definition is a
container.

label String. The label associated with the task bar for all tasks.

labelPlacement String. The alignment of the label in the task bar for all tasks.
Valid values are left (default), right, inside, start, end,
innerLeft, innerRight, innerCenter, innerStart, innerEnd.

percentComplete Integer. Percentage completed for normal and summary tasks.

Recurring tasks (node) The list of recurring tasks for all tasks.

Split tasks (node) The list of tasks without a continuous time line for all tasks.

startTime (required) Date. The starting time for all tasks.

Subtasks (node) An optional list of subtasks for all tasks.

taskId (required) String. The unique identifier for all tasks.

type Sting. The type of the tasks for all tasks.

Understanding Data Requirements for the Gantt Chart

Using ADF Gantt Chart Components 29-11

 Optionally, the object could implement the
oracle.adf.view.faces.bi.model.Resource interface to ensure it provides the correct
properties to the Gantt chart.

The collection of objects returned by the timeBuckets property must also have the
following properties:

■ time: The date represented by the time bucket.

■ values: A list of metrics for this resource.

When binding the data to an ADF data control, the following node definitions are
available in a Resource Utilization Gantt chart:

■ Resource node: Represents a collection of resources. The resource node definition
has an optional subResources accessor that returns a collection of subresources for
the current resource.

■ Time bucket node: Represents a collection of time slots with metrics defined.

Table 29–3 shows a complete list of data object keys for the resource utilization Gantt
chart.

29.4.3 Data for a Scheduling Gantt Chart
The data model for a scheduling Gantt chart supports hierarchical data and uses
TreeModel to access the data in the underlying list. The specific model class is
org.apache.myfaces.trinidad.model.TreeModel.

The collection of objects returned by TreeModel must have, at a minimum, the
following properties:

■ resourceId: The ID of the task.

■ tasks: A collection of task objects for this resource.

Optionally, the object could implement the
oracle.adf.view.faces.bi.model.ResourceTask interface to ensure it provides the
correct properties to the Gantt chart.

The collection of objects returned by the tasks property must also have the following
properties:

■ taskId: The ID of the task.

■ startTime: The start time of the task.

■ endTime: The end time of the task.

When binding the data to an ADF data control, the scheduling Gantt chart has a
Resource node definition. The Resource node has the following types of accessors:

Table 29–3 Data Object Keys for the Resource Utilization Gantt Chart

Data Object Key Data Type and Description

label String. The label associated with the task bar.

labelAlign String. The alignment of the label in the task bar. Valid values are
top (default) and inside.

resourceId (required) String. The unique identifier of a resource.

timeBuckets (required) List. The list of tasks associated with a resource.

time (required) Date. The start time of the time bucket.

values (required) Double. The values of the metrics.

Creating an ADF Gantt Chart

29-12 Web User Interface Developer's Guide for Oracle Application Development Framework

■ subResources: Returns a collection of subresources for the current resource. This
accessor is optional.

■ tasks: Returns a collection of tasks for the current resource. This accessor is
required. Tasks can also include a splitTask accessor.

Table 29–4 shows a complete list of data object keys for a scheduling Gantt chart.

29.5 Creating an ADF Gantt Chart
You can use any of the following data sources to create an ADF Faces Gantt chart
component:

Table 29–4 Data Object Keys for Scheduling Gantt Charts

Data Object Key Data Type and Description

Dependency (node) A list of dependencies for a task. Data object keys for
dependencies include:

■ fromId: The ID of the task where the dependency begins.

■ toId: The ID of the task where the dependency ends.

■ type: The type of the dependency. Valid values are
start-start, start-finish, finish-finish, finish-start,
start-before, start-together, finish-after, and
finish-together.

endTime (required) Date. The end time for the all tasks.

icon1 String. The first icon associated with the task bar for all tasks.
The icon might change depending on other attributes.

icon2 String. The second icon associated with the task bar for all tasks.

icon3 String. The third icon associated with the task bar for all tasks.

iconPlacement String. The alignment of the icon in the task bar for all tasks.
Valid values are left (default), right, inside, inside_left,
inside_right, and inside_center.

isContainer Boolean. Specifies whether or not a node definition is a
container.

label String. The label associated with the task bar for all tasks.

labelPlacement String. The alignment of the label in the task bar for all tasks.
Valid values are left (default), right, inside, inside_left,
inside_right, and inside_center.

Recurring tasks (node) A list of recurring tasks for all tasks.

resourceId (required) String. The unique identifier of a resource.

Split tasks (node) A collection of tasks without a continuous time line for all tasks.

startTime (required) Date. The start time for all tasks.

startupTime Date. The startup time before a task begins.

Tasks (node) (required) A list of tasks associated with a resource.

taskId (required) String. The unique identifier of the task for all tasks.

taskType String. The type of the task for all tasks.

workingDaysOfTheWeek Object. A list of the working days of the week.

workingEndTime Date. The work end time for the resource.

workingStartTime Date. The work start time for the resource.

Customizing Gantt Chart Legends, Toolbars, and Context Menus

Using ADF Gantt Chart Components 29-13

■ ADF Data Controls: You declaratively create a databound Gantt chart by dragging
and dropping a data collection from the ADF Data Controls panel. You can create
a Gantt chart using a data collection that provides row set data as described in the
"Creating Databound Gantt Charts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

■ Data Model: You programmatically specify the data model for the Gantt chart by
providing an EL expression that references a backing bean method using the value
attribute of the Gantt tag.

29.6 Customizing Gantt Chart Legends, Toolbars, and Context Menus
You can modify default Gantt chart features including the information panel and
legend that are displayed below the Gantt chart, menu bar options and toolbar
buttons, and the popup menu that is displayed when you right-click in the Gantt chart
table or chart regions.

29.6.1 How to Customize a Gantt Chart Legend
The optional Gantt chart legend subcomponent includes an area that displays detailed
information about the selected task, or metrics about the selected time bucket, and a
legend that displays the symbol and color code bar used to represent each type of task
in a Gantt chart. At runtime, users can hide or show the information panel using a
toolbar button.

The dvt:ganttLegend tag must be added as a child of the Gantt chart tag in order to
provide the legend areas. The content of the legend areas is automatically generated
based on the properties for each type of task registered with the
taskbarFormatManager.

You can customize the information displayed when a task or time bucket is selected by
using the keys and label attributes on the Gantt chart legend tag. The keys attribute
should specify the data object keys used to retrieve the value to display and the labels
attribute should contain the corresponding labels for the values retrieved with the
keys. If these attributes are not specified, the legend will use the entire space of the
information panel.

You can also add icons to the legend by using the iconKeys and iconLabels attributes
on the Gantt chart legend tag. Icons will be automatically resized to 12 by 12 pixels if
the icon size is too large.

Example 29–2 show sample code to display information about an On Hold task in the
legend of a project Gantt chart.

Example 29–2 Adding a Gantt Chart Legend

<dvt:projectGantt var="task">
 <dvt:ganttLegend id="gl" keys="TaskName StartTime EndTime" labels="Name Start
Finish" icons="images/wait.png" iconLabels="OnHold"/>
</dvt:projectGantt>

29.6.2 Customizing Gantt Chart Toolbars
The Gantt chart toolbar subcomponent allows users to perform operations on the
Gantt chart. The left section of the toolbar is a menu bar that contains a set of default
menu options for each Gantt chart type. The right section of the toolbar displays a set
of default action buttons for working with each Gantt chart type.

Customizing Gantt Chart Legends, Toolbars, and Context Menus

29-14 Web User Interface Developer's Guide for Oracle Application Development Framework

You can supply your own menu items and toolbar buttons by using the menu and
toolbar facets in your Gantt chart. The Gantt chart merges the new menu items with
the standard items in the Gantt chart. Example 29–3 shows sample code for specifying
a new menu item.

Example 29–3 Sample Code for Custom Menu Item

<dvt:projectGantt var="task">
<f:facet name=”menus”>
 <af:menu text=”My Menu”>
 <af:commandMenuItem text="Add..." />
 <af:commandMenuItem text="Create.." />
 </af:menu>
</f:facet>
</dvt:projectGantt>

Example 29–4 shows sample code for specifying a new toolbar button.

Example 29–4 Sample Code for Custom Toolbar Button

<dvt:schedulingGantt var="task">
<f:facet name="toolbar">
 <af:toolbar>
 <af:commandToolbarButton text="Custom" disabled="true"/>
 </af:toolbar>
</dvt:schedulingGantt>

Actions initiated on the menu bar and toolbar buttons are handled through a
registered listener, DataChangeListener, on the Gantt chart component. For example,
when a user presses the delete button in the toolbar, a DataChangeEvent with the ID of
the task selected for deletion would be fired on the server. The registered listener is
then responsible for performing the actual deletion of the task, and the Gantt chart
data model is refreshed with the updated information.

You can register DataChangeListener by specifying a method binding using the
dataChangeListener attribute on the Gantt chart tag. For example, if you put the code
in a backing bean in a method called handleDataChange, then the setting for the
dataChangeListener attribute becomes: "#{myBackingBean.handleDataChange}".

Example 29–5 shows sample code in a backing bean.

Example 29–5 Backing Bean for Handling Data Change

public void handleDataChanged(DataChangeEvent evt)
{
if (DataChangeEvent.DELETE == evt.getActionType())
 …………
}

29.6.3 Customizing Gantt Chart Context Menus
When users right-click in the Gantt chart table or chart regions, a context menu is
displayed to allow users to perform operations on the Gantt chart. A standard set of
options is provided for each region.

You can supply your own menu items using the tablePopupMenu and chartPopupMenu
facets in your Gantt chart. The Gantt chart merges the new menu items with the
standard items in the Gantt chart. Example 29–6 shows sample code for specifying a
custom menu item in the table region context menu.

Customizing Gantt Chart Legends, Toolbars, and Context Menus

Using ADF Gantt Chart Components 29-15

Example 29–6 Sample Code for Custom Context Menu Item

<dvt:projectGantt startTime="#{test.startTime}" endTime="#{test.endTime}"
 value="#{test.treeModel}" var="task">

 <f:facet name="tablePopupMenu">
 <af:popup>
 <af:commandMenuItem text="Custom" disabled="true"/>
 </af:popup>
 </f:facet>
</dvt:projectGantt>

You can also dynamically change the context menu at runtime. Example 29–7 shows
sample code to update a custom popup menu on a task bar based on which task is
selected in the chart region of a project Gantt chart.

Example 29–7 Sample Code for Dynamic Context Menu

<dvt:projectGantt var="task"
 taskSelectionListener="#{backing.handleTaskSelected}">
 <f:facet name="chartPopupMenu">
 <af:popup id="p1" contentDelivery="lazyUncached">
 <af:menu>
 </af:menu>
 </af:popup>
 </f:facet>
</dvt:projectGantt>

The handleTaskSelected method is specified in a backing bean. Example 29–8 shows
sample code for the backing bean.

Example 29–8 Backing Bean for Handling Task Selection

public void handleTaskSelected(TaskSelectionEvent evt)
{
 JUCtrlHierNodeBinding _task = (JUCtrlHierNodeBinding)evt.getTask();
 String _type = _task.getAttribute("TaskType");

 RichPopup _popup = m_gantt.getFacet("chartPopupMenu");
 if (_popup != null)
 {
 RichMenu _menu = (RichMenu)_popup.getChildren().get(0);
 _menu.getChildren().clear();
 if ("Summary".equals(_type))
 {
 RichCommandMenuItem _item = new RichCommandMenuItem();
 _item.setId("i1");
 _item.setText("Custom Action 1");
 _menu.getChildren().add(_item); }
 else if ("Normal".equals(_type))
 {
 RichCommandMenuItem _item = new RichCommandMenuItem();
 _item.setId("i1");
 _item.setText("Custom Action 2");
 _menu.getChildren().add(_item); }
 }
}

For more information about using the af:popup components see Chapter 13, "Using
Popup Dialogs, Menus, and Windows".

Working with Gantt Chart Tasks and Resources

29-16 Web User Interface Developer's Guide for Oracle Application Development Framework

29.7 Working with Gantt Chart Tasks and Resources
You can customize Gantt chart tasks to create a new task type, specify a custom data
filter, and add a double-click event to a task bar.

29.7.1 How to Create a New Task Type
A task type is represented visually as a bar in the chart region of a Gantt chart. You can
create a new task type in one of three ways:

■ Defining the task type style properties in the .jspx file or in a separate CSS file.

■ Defining a TaskbarFormat object and registering the object with the
taskbarFormatManager.

■ Modifying the properties of a predefined task type by retrieving the associated
TaskbarFormat object and updating its properties through a set method.

The TaskBarFormat object exposes the following properties:

■ Fill color

■ Fill image pattern

■ Border color

■ Images used for a milestone task

■ Images used for the beginning and end of a summary task

For tasks that have more than one bar, such as a split or recurring task, properties are
defined for each individual bar.

Example 29–9 shows sample code to define the properties for a custom task type in the
.jspx file.

Example 29–9 Sample Code to Define Custom Task Type Properties

<af:document>
 <f:facet name="metaContainer">
 <f:verbatim>
 <![CDATA[
 <style type="text/css">
 .onhold
{
 background-image:url('images/Bar_Image.png');
 background-repeat:repeat-x;
 height:13px;
 border:solid 1px #000000;
}
 </style>
]]>
 </f:verbatim>
 </f:facet>

shows sample code to define a TaskbarFormat object fill and border color and register
the object with the taskbarFormatManager.

Example 29–10 Custom TaskbarFormat Object Registered with TaskbarFormat Manager

TaskbarFormat _custom = new TaskbarFormat("Task on hold", null, "onhold", null);
// _gantt.getTaskbarFormatManager().registerTaskbarFormat("FormatId", _
custom);
TaskbarFormat _custom = new TaskbarFormat("Task on hold", "#FF00FF", null,

Working with Gantt Chart Tasks and Resources

Using ADF Gantt Chart Components 29-17

"#00FFDD", 13);
// _gantt.getTaskbarFormatManager().registerTaskbarFormat("FormatId", _custom);

29.7.2 How to Specify Custom Data Filters
You can change the display of data in a Gantt chart using a data filter dropdown list on
the toolbar. Gantt charts manage all predefined and user-specified data filters using a
FilterManager. Filter objects contain information including:

■ A unique ID for the filter

■ The label to display for the filter in the dropdown list

■ An optional JavaScript method to invoke when the filter is selected

You can define your own filter by creating a filter object and then registering the object
using the addFilter method on the FilterManager. Example 29–11 shows sample
code for registering a Resource filter object with the FilterManager.

Example 29–11 Custom Filter Object Registered with FilterManager

FilterManager _manager = m_gantt.getFilterManager();

// ID for filter display label javascript callback (optional)
_manager.addFilter((new Filter(RESOURCE_FILTER, "Resource...",
"showResourceDialog")));

When the user selects a filter, a FilterEvent is sent to the registered FilterListener
responsible for performing the filter logic. The filterListener attribute on the Gantt
chart component is used to register the listener. When implemented by the
application, the data model is updated and the Gantt chart component displays the
filtered result. Example 29–12 shows sample code for a FilterListener.

Example 29–12 FilterListener for Custom Filter

public void handleFilter(FilterEvent event)
 {
 String _type = event.getType();
 if (FilterEvent.ALL_TASKS.equals(_type))
 {
 // update the gantt model as appropriate
 }
 }

To specify a custom data filter:
1. In the Structure window, right-click the Gantt chart node and choose Go to

Properties.

2. In the Behavior category of the Property Inspector, in the FilterListener field,
enter a method reference to the FilterListener you defined. For example,
"#{project.handleFilter}".

29.7.3 How to Add a Double-Click Event to a Task Bar
Gantt chart components support a double-click event on a task bar. For example, you
may want to display detailed information about a task in a popup window.
Figure 29–8 shows a project Gantt chart with a double-click event on a task bar.

Specifying Nonworking Days, Read-Only Features, and Time Axes

29-18 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 29–8 Task Bar with Double-Click Event

Example 29–13 show sample code for adding a double-click event to a task bar.

Example 29–13 Sample Code for Double-Click Event

<dvt:projectGantt id="projectGanttDoubleClick"
 startTime="2008-04-01" endTime="2008-09-30"
 value="#{projectGanttDoubleClick.model}"
 var="task"
 doubleClickListener="#{projectGanttDoubleClick.handleDoubleClick}">
</dvt:projectGantt>

Implement the handleDoubleClick method in a backing bean, for example:

public void handleDoubleClick(DoubleClick event)

29.8 Specifying Nonworking Days, Read-Only Features, and Time Axes
You can customize a Gantt chart to display nonworking days of the week, turn off user
interaction features, and specify the time axes.

29.8.1 Identifying Nonworking Days in a Gantt Chart
You can specify nonworking days in a Gantt chart. By default, nonworking days are
shaded gray, but you can select a custom color to be used for nonworking days.

29.8.1.1 How to Specify Weekdays as Nonworking Days
If certain weekdays are always nonworking days, then you can indicate the days of the
week that fall in this category.

To identify weekdays as nonworking days:
1. In the Structure window, right-click a Gantt chart node and choose Go to

Properties.

2. In the Appearance category of the Property Inspector, in the
NonWorkingDaysOfWeek field, enter the string of days that you want to identify as
nonworking days for each week. For example, to specify that Saturday and
Sunday are nonworking days, enter the following string: "sat sun".

Alternatively, you can create a method in a backing bean to programmatically
identify the nonworking days. For example, if you put the code in a backing bean

Specifying Nonworking Days, Read-Only Features, and Time Axes

Using ADF Gantt Chart Components 29-19

in a method called getNonWorkingDaysOfWeek, then the setting for the
nonWorkingDaysOfWeek attribute becomes: "#{myBackingBean.nonWorkingDays}".
Example 29–14 shows sample code in a backing bean.

Example 29–14 Backing Bean to Identify Nonworking Days

public int[] getNonWorkingDaysOfWeek()
{
 if (locale == Locale.EN_US
 return new int[] {Calendar.SATURDAY, Calendar.SUNDAY};
 else

}

3. Optionally, specify a custom color in the NonWorkingDaysColor field. The value
you enter for this attribute must be a hexadecimal color string.

29.8.1.2 How to Identify Specific Dates as Nonworking Days
You can enter specific dates as nonworking days in a Gantt chart when individual
weekdays are not sufficient.

To identify specific dates as nonworking days:
1. In the Structure Window, right-click a Gantt chart and choose Go to Properties.

2. In the Property Inspector, select the Appearance attributes category.

3. In the nonWorkingDays field, enter the string of dates that you want to identify as
nonworking days. For example: "2008-07-04 2008-11-28 2008-12-25".

Alternatively, for more flexibility, you can create a method in a backing bean to
programmatically identify the nonworking days. For example, if you put the code
in a backing bean in a method called getNonWorkingDays, then the setting for the
nonWorkingDays attribute becomes: "#{myBackingBean.nonWorkingDays}".

4. Optionally, specify a custom color in the nonWorkingDaysColor field. The value
you enter for this attribute must be a hexadecimal color string.

29.8.2 How to Apply Read-Only Values to Gantt Chart Features
User interactions with a Gantt chart can be customized to disable features by setting
the featuresOff property to specify read-only values. Table 29–5 shows the valid
values and the disabled feature for the Gantt chart types.

Table 29–5 Valid Values for Read-Only Attributes

Value Feature Disabled

clipboard Cut, copy, and paste tasks for all Gantt charts.

edit Changes to the data model for all Gantt charts.

indenting Indent and outdent tasks for project and scheduling Gantts
charts.

legend Hide and show legend and task information for all Gantt charts.

linking Link and unlink tasks for scheduling Gantt charts.

print Print task for all Gantt charts.

properties Show property dialogs for all Gantt charts.

split Split task for project Gantt.

Specifying Nonworking Days, Read-Only Features, and Time Axes

29-20 Web User Interface Developer's Guide for Oracle Application Development Framework

To set read-only values on Gantt chart features:
1. In the Structure window, right-click the Gantt chart node and choose Go to

Properties.

2. In the Behavior attributes category of the Property Inspector, for the featuresOff
attribute, enter one or more String values to specify the Gantt chart features to
disable.

For example, to disable user interactions for editing the data model, printing, or
changing the zoom level of a Gantt chart, use the following setting for the
featuresOff attribute: edit print zoom

Alternatively, you can create a method in a backing bean to programmatically
identify the features to be disabled. For example, if you put the code in a backing
bean in a method called whatToTurnOff that returns a String array of the values,
then the setting for the featuresOff attribute becomes:
"#{BackingBean.whatToTurnOff}".

29.8.3 Customizing the Time Axis of a Gantt Chart
Every Gantt chart is created with a major time axis and a minor time axis. Each time
axis has a facet that identifies the level of the axis as major or minor. The default time
axis settings for all Gantt charts are:

■ Major time axis: Weeks

■ Minor time axis: Days

You can customize the settings of a time axis. However, the setting of a major axis
must be a higher time level than the setting of a minor axis. The following values for
setting the scale on a dvt:timeAxis component are listed from highest to lowest:

■ twoyears

■ year

■ halfyears

■ quarters

■ twomonths

■ months

■ twoweeks

■ weeks

■ days

■ sixhours

■ threehours

■ hours

undo Undo and redo tasks for all Gantt charts.

view Show as list, Show as hierarchy, Columns, Expand and Collapse
tasks for all Gantt charts.

zoom Changes to the zoom level for all Gantt charts.

Table 29–5 (Cont.) Valid Values for Read-Only Attributes

Value Feature Disabled

Specifying Nonworking Days, Read-Only Features, and Time Axes

Using ADF Gantt Chart Components 29-21

■ halfhours

■ quarterhours

Example 29–18 shows sample code to set the time axis of a Gantt chart to use months
as a major time axis and weeks as the minor time axis.

Example 29–15 Gantt Chart Time Axis Set to Months and Weeks

<f:facet name="major">
 <dvt:timeAxis scale="months"/>
</f:facet>
<f:facet name="minor">
 <dvt:timeAxis scale="weeks"/>
</f:facet>

The time units you specify for the major and minor axes apply only to the initial
display of the Gantt chart. At runtime, the user can zoom in or out on a time axis to
display the time unit level at a different level.

29.8.3.1 How to Create and Use a Custom Time Axis
You can create a custom time axis for the Gantt chart and specify that axis in the scale
attribute of dvt:timeAxis. The custom time axis will be added to the Time Scale dialog
at runtime.

To create and use a custom time axis:
1. Implement the CustomTimescale.java interface to call the method

getNextDate(Date currentDate) in a loop to build the time axis. Example 29–16
show sample code for the interface.

Example 29–16 Interface to Build Custom Dates

public interface CustomTimescale
{
 public String getScaleName();
 public Date getPreviousDate(Date ganttStartDate);
 public Date getNextDate(Date currentDate);
 public String getLabel(Date date);
}

2. In the Structure window, right-click a Gantt chart node and choose Go to
Properties.

3. In the Other attributes category of the Property Inspector, for the
CustomTimeScales attribute, register the implementation of the interface for the
custom time axis.

The customTimeScales attribute's value is a java.util.Map object. The specified
map object contains pairs of key/values. The key is the time scale name
(fiveyears), and the value is the implementation of the CustomTimeScale.java
interface. For example:

customTimesScales="#{project.customTimescales}"

4. Also in the Property Inspector, set the Scale attribute for major and minor time
axis, and specify the ZoomOrder attribute to zoom to the custom times scales.
Example 29–17 shows sample code for setting a threeyears minor time axis and a
fiveyears major time axis.

Using Page Controls in Gantt Charts

29-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 29–17 Custom Time Axis

<f:facet name="major">
 <dvt:timeAxis scale="fiveyears" id="ta1" zoomOrder="fiveyears threeyears years
halfyears quarters months weeks days hours"/>
</f:facet>
<f:facet name="minor">
 <dvt:timeAxis scale="threeyears" id="ta2"/>
</f:facet>

29.9 Using Page Controls in Gantt Charts
For Gantt chart table regions, you can use a page control as an alternative to vertical
scrolling for both desktop applications and for mobile browsers on touch devices. This
control is only available when there are more rows than the data fetch size, and the
component is not being stretched by its containing layout component. The page
control displays as a footer to the table region as shown in Figure 29–9.

Figure 29–9 Gantt Chart Page Control

When you are developing an ADF Faces web application, by default Gantt chart table
regions use a vertical scroll bar for displaying rows over the size of the data being
fetched. To configure an alternative page control for the schedulingGantt,
projectGantt, or resourceUtilizationGantt component table region, set the
scrollPolicy attribute to page. For example:

scrollPolicy="page"

While a standard ADF Faces web application will run in mobile browsers, because the
user interaction is different and because screen size is limited, when your application
needs to run in a mobile browser, you should create touch device-specific versions of
the pages. For more information, see Appendix D, "Creating Web Applications for
Touch Devices Using ADF Faces."

By default, when rendered on mobile devices, Gantt chart table regions display a page
control that allows the user to jump to specific pages of rows. For all Gantt charts to
display on a mobile device, you should:

■ Place the Gantt chart component within a flowing container (that is, a component
that does not stretch its children). For more information about flowing container
components, see Section 8.2.1, "Geometry Management and Component
Stretching."

■ Set the scrollPolicy attribute to auto (if the page may also run on a desktop
device) or page (if the page will only run on a mobile device.

If the Gantt chart is not in a flowing container, or if those attributes are not set
correctly, the table region will display a scroll bar instead of pages.

29.10 Printing a Gantt Chart
The ADF Gantt chart provides a helper class (GanttPrinter) that can generate a
Formatted Object (FO) for use with XML Publisher to produce PDF files.

Printing a Gantt Chart

Using ADF Gantt Chart Components 29-23

29.10.1 Print Options
In general, the GanttPrinter class prints the Gantt chart content as it appears on your
screen. For example, if you hide the legend in the Gantt chart, then the legend will not
be printed. Similarly, if you deselect a column in the List Pane section of the View
Menu, then that column will not be visible in the Gantt chart and will not appear in
the printed copy unless you take advantage of the column visibility print option.

You can use the following print options in the GanttPrinter class:

■ Column visibility: The setColumnVisible method lets you control whether
individual columns in the list region of the Gantt chart will appear in the printed
output.

For example, to hide the first column in the list region of a Gantt chart, use the
following code, where the first parameter of the method is the zero-based index of
the column and the second parameter indicates if the column should be visible in
the printed Gantt chart: _printer.setColumnVisible(o, false);

■ Margins: The setMargin method of the GanttPrinter lets you specify the top,
bottom, left, and right margins in pixels as shown in the following code, where _
printer is an instance of the GanttPrinter class:

_printer.setMargin(25, 16, 66, 66);

■ Page size: The setPageSize method of the GanttPrinter class lets you specify the
height and width of the printed page in pixels as shown in the following code,
where _printer is an instance of the GanttPrinter class:

_printer.setPageSize (440, 600);

■ Time period: The setStartTime and setEndTime methods of the GanttPrinter
class let you identify the time period of the Gantt chart that you want to print.

Example 29–18 shows sample code for setting a specific time period in the Gantt
chart for printing, where startDate and endDate are variables that represent the
desired dates and _printer is an instance of the GanttPrinter class.

Example 29–18 Code for Setting the Time Period Option for Printing a Gantt Chart

_printer.setStartTime(startDate);
_printer.setEndTime(endDate);

29.10.2 Action Listener to Handle the Print Event
The Gantt chart toolbar includes a print button that initiates a print action. To print a
Gantt chart, you must create an ActionListener to handle the print event. The code in
the ActionListener should include the following processes:

1. Access the servlet’s output stream.

2. Generate the FO. This process includes creating an instance of the GanttPrinter
class and entering the code for any print options that you want to use.

3. Generate the PDF.

Example 29–19 shows the code for an ActionListener that handles the print event.
This listener includes settings for all the print options available in the GanttPrinter
helper class.

Example 29–19 Sample ActionListener for Handling the Gantt Chart Print Event

public void handleAction(GanttActionEvent evt)

Using Gantt Charts as a Drop Target or Drag Source

29-24 Web User Interface Developer's Guide for Oracle Application Development Framework

{
 if (GanttActionEvent.PRINT == evt.getActionType())
 {
 FacesContext _context = FacesContext.getCurrentInstance();
 ServletResponse _response = (ServletResponse)
 _context.getExternalContext().getResponse();
 _response.setContentType("application/pdf");
 ServletOutputStream _sos = _response.getOutputStream();
 // Generate FO.
 GanttPrinter _printer = new GanttPrinter(m_gantt);
 // Set column visibility by column index.
 _printer.setColumnVisible(0, false);
 // Set start and end date.
 _printer.setStartTime(startDate);
 _printer.setEndTime(endDate);
 // Set top, bottom, left, and right margins in pixels.
 _printer.setMargin(25, 16, 66, 66);
 // Set height and width in pixels.
 _printer.setPageSize(440, 660);
 File _file = File.createTempFile("gantt", "fo");
 OutputStream _out = new FileOutputStream(_file);
 _printer.print(_out);
 _out.close();
 // generate PDF.
 FOProcessor _processor = new FOProcessor();
 _processor.setData(new FileInputStream(_file),"UTF-8"));
 _processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 _processor.setOutput(_sos);
 _processor.generate();
 _context.responseComplete();
 }
}

29.11 Using Gantt Charts as a Drop Target or Drag Source
You can add drag and drop functionality that allows users to drag an item from a
collection, for example, a row from a table, and drop it into another collection
component, such as a tree. Project and scheduling Gantt chart components can be
enabled as drag sources as well as drop targets for ADF table or tree table components.
A resource utilization Gantt chart component can be enabled only as a drop target.

The application must register the Gantt chart component as a drag source or drop
target by adding the af:collectionDragSource or af:collectionDropTarget
behavior tags respectively as a child to the Gantt tag. For example, you can use the
af:collectionDragSource to register a drop listener that would be invoked when a
project Gantt chart task is dragged from a table region onto a separate table. shows a
project Gantt chart with tasks dragged from the table region onto a table of tasks.

Using Gantt Charts as a Drop Target or Drag Source

Using ADF Gantt Chart Components 29-25

Figure 29–10 Project Gantt Chart as Drag Source

Example 29–20 shows sample code for adding drag and drop functionality to a project
Gantt chart.

Example 29–20 Sample Code for Adding Drag and Drop Functionality

<dvt:projectGantt value="#{test.treeModel}"

 <af:collectionDragSource actions="COPY MOVE" modelName="treeModel" />
</dvt:projectGantt>

Example 29–21 shows sample code for the listener method for handling the drop
event.

Example 29–21 Event Handler Code for a dropListener for a Collection

public DnDAction onTableDrop(DropEvent evt)
{
 Transferable _transferable = evt.getTransferable();

 // Get the drag source, which is a row key, to identify which row has been
dragged.
 RowKeySetImpl _rowKey = (RowKeySetImpl)_
transferable.getTransferData(DataFlavor.ROW_KEY_SET_FLAVOR).getData();

 // Set the row key on the table model (source) to get the data.
 // m_tableModel is the model for the Table (the drag source).
 object _key = _rowKey.iterator().next();
 m_tableModel.setRowKey(_key);

 // See on which resource this is dropped (specific for scheduling Gantt
chart).
 String _resourceId = _transferable.getData(String.class);
 Resource _resource = findResourceById(_resourceId);

 // See on what time slot did this dropped.
 Date _date = _transferable.getData(Date.class);

 // Add code to update your model here.

 // Refresh the table and the Gantt chart.
 RequestContext.getCurrentInstance().addPartialTarget(_evt.getDragComponent());

Using Gantt Charts as a Drop Target or Drag Source

29-26 Web User Interface Developer's Guide for Oracle Application Development Framework

 RequestContext.getCurrentInstance().addPartialTarget(m_gantt);

 // Indicate the drop is successful.
 return DnDAction.COPY;
}

For a detailed procedure about adding drag and drop functionality for collections, see
Section 34.4, "Adding Drag and Drop Functionality for Collections".

30

Using ADF Treemap and Sunburst Components 30-1

30Using ADF Treemap and Sunburst
Components

This chapter describes how to use the ADF Data Visualization treemap and sunburst
components to display hierarchical data in treemaps and sunbursts using simple
UI-first development. The chapter defines the data requirements, tag structure, and
options for customizing the look and behavior of the components.

If your application uses the Fusion technology stack, then you can also use data
controls to create treemaps and sunbursts. For more information, see the "Creating
Databound Treemaps and Sunbursts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

This chapter includes the following sections:

■ Section 30.1, "Introduction to Treemaps and Sunbursts"

■ Section 30.2, "Using the Treemap and Sunburst Components"

■ Section 30.3, "Adding Data to Treemap and Sunburst Components"

■ Section 30.4, "Customizing Treemap and Sunburst Display Elements"

■ Section 30.5, "Adding Interactive Features to Treemaps and Sunbursts"

30.1 Introduction to Treemaps and Sunbursts
Use treemaps and sunbursts to display quantitative hierarchical data across two
dimensions, represented visually by size and color. For example, you can use a
treemap or sunburst to display quarterly regional sales and to identify sales trends,
using the size of the node to indicate each region’s sales volume and the node’s color
to indicate whether that region’s sales increased or decreased over the quarter.

Treemaps and sunbursts use a shape called a node to reference the data in the
hierarchy. The appearance and content of the nodes is configurable at each level of the
hierarchy.

30.1.1 Treemap and Sunburst Use Cases and Examples
Treemaps display nodes as a set of nested rectangles. Each branch of the tree is given a
rectangle, which is then tiled with smaller rectangles representing sub-branches.
Figure 30–1 shows a treemap displaying United States census data grouped by
regions, with the color attribute used to indicate median income levels. States with
larger populations display in larger-sized nodes than states with smaller populations.

Introduction to Treemaps and Sunbursts

30-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–1 Treemap Displaying United States Population and Median Income by
Regions

Sunbursts display the nodes in a radial rather than a rectangular layout, with the top
of the hierarchy at the center and deeper levels farther away from the center.
Figure 30–2 shows the same census data displayed in a sunburst.

Figure 30–2 Sunburst Displaying United States Population and Median Income by
Regions

Both treemaps and sunbursts can display thousands of data points in a relatively small
spatial area. These components are a good choice for identifying trends for large
hierarchical data sets, where the proportional size of the nodes represents their

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-3

importance compared to the whole. Color can also be used to represent an additional
dimension of information.

Use treemaps if you are primarily interested in displaying two metrics of data using
size and color at a single layer of the hierarchy. Use sunbursts instead if you want to
display the metrics for all levels in the hierarchy. Drilling can be enabled to allow the
end user to traverse the hierarchy and focus in on key parts of the data.

If your application uses a smaller data set or you wish to emphasize the parent/child
relationship between the nodes, then consider using the tree, treeTable, or
hierarchyViewer component. For information about using trees and tree tables, see
Chapter 10, "Using Tables, Trees, and Other Collection-Based Components." For
information about using hierarchy viewers, see Chapter 31, "Using ADF Hierarchy
Viewer Components."

30.1.2 End User and Presentation Features of Treemaps and Sunbursts
The ADF Data Visualization treemap and sunburst components provide a range of
features for end users, such as drilling, grouping, and filtering. They also provide a
range of presentation features, such as layout variations, legend display, and
customizable colors and label styles.

To use and customize treemap and sunburst components, it may be helpful to
understand these features and components:

30.1.2.1 Treemap and Sunburst Layouts
You define the initial layout of the treemap or sunburst when you insert the
component on the page from either the Data Controls panel to bind a data collection to
the treemap or sunburst component or from the Component Palette to insert the
component.

The sunburst component has only one layout, as shown in Figure 30–2.

The layout of nodes in a treemap component is configurable and includes the
following types of layouts:

■ Squarified, nodes are laid out to be as square as possible.

The squarified layout is optimized so that the user can most easily compare the
relative sizes of the nodes and is the layout displayed in Figure 30–1.

■ Slice and dice horizontal, nodes are first laid out horizontally across the width of
the treemap and then vertically across the height of the treemap.

This layout is optimized for animation because the relative ordering of the nodes
remains constant. Figure 30–3 displays the sample United States census data in the
slice and dice horizontal layout.

Introduction to Treemaps and Sunbursts

30-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–3 Treemap Displaying United States Census Data in Slice and Dice Horizontal
Layout

■ Slice and dice vertical, nodes are first laid out vertically across the height of the
treemap and then horizontally across the width of the treemap.

This layout is also optimized for animation because the relative ordering of the
nodes remains constant. Figure 30–4 displays the sample United States census data
in the slice and dice vertical layout.

Figure 30–4 Treemap Displaying United States Census Data in Slice and Dice Vertical
Layout

30.1.2.2 Attribute Groups
Treemaps and sunbursts support the use of the dvt:attributeGroups tag to generate
stylistic attribute values such as colors for each unique group in the data set.

In treemaps and sunbursts, the data values determine which color to display. Both
components display continuous data by selecting a color across a gradient, in which
the nodes change color gradually based on the data values. The treemap in Figure 30–1

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-5

uses gradients to display the median income as a range of data.

For discrete data, treemaps and sunbursts display a specific color, also based on the
data value. Figure 30–5 shows the same United States census population using two
colors to distinguish between high and low median incomes.

Figure 30–5 Treemap Displaying Discrete Attribute Groups

30.1.2.3 Legend Support
Treemaps and sunbursts display legends below the components to provide a visual
clue to the type of data controlling the size and color. If the component uses attribute
groups to specify colors based on conditions such as income levels, the legend can also
display the colors used and indicate what value each color represents.

The treemap in Figure 30–5 displays a legend for a treemap using discrete attribute
groups. The legend makes it easy to determine which colors are used to indicate low
or high median incomes.

If your treemap uses continuous attribute groups, the legend displays the colors used
as a gradient. The treemap in Figure 30–1 shows a legend for a treemap using
continuous attribute groups to indicate median income levels.

30.1.2.4 Pattern Support
Treemaps and sunbursts display patterns when values are specified for the
fillPattern attribute on the child nodes. The pattern is drawn with a white
background, and the fillColor value determines the foreground color.

Figure 30–6 shows a sunburst configured with an assortment of fill patterns.

Introduction to Treemaps and Sunbursts

30-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–6 Sunburst Illustrating Pattern Fill

30.1.2.5 Node Selection Support
Treemaps and sunbursts support the ability to respond to user clicks on one or more
nodes to display information about the selected node(s).

Figure 30–7 shows a treemap configured for multiple selection support.

Figure 30–7 Treemap Illustrating Multiple Selection Support

30.1.2.6 Tooltip Support
Treemaps and sunbursts support the ability to display additional information about a
node when the user moves the mouse over a node.

Figure 30–8 shows the tooltip that is displayed when the user moves the mouse over
the Alaska node.

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-7

Figure 30–8 Treemap Displaying a Tooltip

The tooltip permits the user to see information about the data that may not be obvious
from the visual display. Configuring tooltips on treemaps and sunbursts is
recommended due to the space-constrained nature of the components.

30.1.2.7 Popup Support
Treemap and sunburst components can be configured to display popup dialogs,
windows, and menus that provide information or request input when the user clicks
or hovers the mouse over a node. Figure 30–9 shows a sample popup displayed when
a user hovers the mouse over one of the treemap nodes.

Figure 30–9 Treemap Popup on Mouse Hover

Figure 30–10 shows a similar popup window that is displayed when the user clicks on
one of the sunburst nodes.

Introduction to Treemaps and Sunbursts

30-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–10 Sunburst Popup on Mouse Click

30.1.2.8 Context Menus
Treemaps and sunbursts support the ability to display context menus to provide
additional information about the selected node. Figure 30–11 shows a context menu
displayed when the user right-clicks on one of the sunburst nodes.

Figure 30–11 Sunburst Context Menu

30.1.2.9 Drilling Support
Treemap and sunburst components support drilling to navigate through the hierarchy
and display more detailed information about a node.

Figure 30–12 shows the treemap that is displayed when a user clicks on the West
Region header text in Figure 30–5. The user can navigate back up the hierarchy by
clicking on the United States > West Region breadcrumb.

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-9

Figure 30–12 Treemap Drilled on a Group Node Header

The user can also double-click on a node to set the node as the root of the hierarchy as
shown in Figure 30–13.

Figure 30–13 Treemap Drilled on a Node

To drill on a sunburst component, the user double-clicks a sunburst node to set it as
the root of the hierarchy as shown in Figure 30–14. The user can navigate back up the
hierarchy by clicking the United States > West Region breadcrumb or by pressing the
shift key and double-clicking the West Region node.

Introduction to Treemaps and Sunbursts

30-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–14 Sunburst Drilled on a Node

Sunbursts also provide the ability to expand or collapse the children of a selected
node. Users click the Expand icon that appears when the user moves the mouse over
the node to expand it. To collapse the children, users click Collapse.

Figure 30–15 shows a sunburst configured for asymmetric drilling.

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-11

Figure 30–15 Sunburst Configured for Asymmetric Drilling

30.1.2.10 Other Node Support
Treemap and sunburst components provide the ability to aggregate data if your data
model includes a large number of smaller contributors in relation to the larger
contributors.

Figure 30–16 shows the census treemap displayed in Figure 30–5 with the Other node
configured. In this example, the South Carolina, Delaware, West Virginia, and
District of Columbia nodes in the South Atlantic region are represented by the Other
node.

Introduction to Treemaps and Sunbursts

30-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–16 Treemap Displaying Other Node

30.1.2.11 Drag and Drop Support
Treemap and sunburst components support drag and drop both as a drop source and a
drop target.

Figure 30–17 shows a treemap configured as a drag source. When the user drags one of
the nodes to the text on the right, the text changes to reflect which node was dragged.

Figure 30–17 Treemap Configured as a Drag Source

Figure 30–18 shows a treemap configured as a drop target. When the user drags the
text on the right to one of the nodes, the text changes to reflect which node received
the text.

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-13

Figure 30–18 Treemap Configured as a Drop Target

30.1.2.12 Sorting Support
Treemap and sunburst components support sorting to display nodes with the same
parent by size. This feature is useful if your data model is not already sorted because it
makes comparison of the nodes easier.

Figure 30–19 shows a sorted treemap. The nodes are arranged in decreasing size,
making it easy to see which regions have the largest population.

Figure 30–19 Sorted Treemap

Note: Treemaps support sorting in the slice and dice layouts only.

Introduction to Treemaps and Sunbursts

30-14 Web User Interface Developer's Guide for Oracle Application Development Framework

30.1.2.13 Treemap and Sunburst Image Formats
Treemaps and sunbursts support the following image formats: HTML5, Flash, and
Portable Network Graphics (PNG).

By default, treemaps and sunbursts will display in the best output format supported
by the client browser. If the best output format is not available on the client, the
application will default to an available format. For example, if the client does not
support HTML5, the application will use:

■ Flash, if the Flash Player is available.

You can control the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. For more information,
see Section A.4.3, "Configuring Flash as Component Output Format."

■ PNG output format. Although static rendering is fully supported when using a
PNG output format, certain interactive features are not available including:

– Animation

– Context menus

– Drag and drop gestures

– Popup support

– Selection

30.1.2.14 Advanced Node Content
Treemaps and sunbursts provide a content facet on the nodes to add content that
would not normally fit into a text label. For sunbursts, the advanced content is
displayed on the root node. For treemaps, the advanced content is displayed on the
leaf nodes.

Figure 30–20 shows an example of a sunburst using advanced node content on the root
node. In this example, the root node displays an image and title in addition to the node
text.

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-15

Figure 30–20 Sunburst Displaying Advanced Root Node Content

Figure 30–21 shows an example of a treemap using advanced node content.

Figure 30–21 Treemap Displaying Advanced Node Content

30.1.2.15 Printing and Email Support
ADF Faces allows you to output your JSF page in a simplified mode for printing or for
emailing. For example, you may want users to be able to print a page (or a portion of a
page), but instead of printing the page exactly as it is rendered in a web browser, you
want to remove items that are not needed on a printed page, such as scroll bars and
buttons. If a page is to be emailed, the page must be simplified so that email clients can

Introduction to Treemaps and Sunbursts

30-16 Web User Interface Developer's Guide for Oracle Application Development Framework

correctly display it. For more information, see Chapter 35, "Using Different Output
Modes."

30.1.2.16 Active Data Support (ADS)
Treemaps and sunbursts support ADS by sending a Partial Page Refresh (PPR) request
when an active data event is received. The PPR response updates the components,
animating the changes as needed. Supported ADS events include:

■ Node size updates

■ Node color updates

■ Node label updates

■ Node insertion

■ Node deletion

■ Enhanced node content changes

30.1.2.17 Isolation Support (Treemap Only)
Treemaps provide isolation support to focus on comparisons within groups of
displayed data. Users click the Isolate icon that appears when the user moves the
mouse over the group header to maximize the group.

Figure 30–22 shows the Isolate icon that appears when the user moves the mouse over
the South Atlantic group header.

Figure 30–22 Isolate Icon Displayed on Treemap Group Header

Figure 30–23 shows the treemap that is displayed when the users click Isolate for the
South Atlantic region in Figure 30–22.

To restore the treemap to the original view, users click Restore.

Introduction to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-17

Figure 30–23 Treemap Isolated on a Group

30.1.2.18 Treemap Group Node Header Customization (Treemap Only)
When the treemap displays multiple levels, the parent level is displayed in a group
header. By default, the group header is displayed with a white background, and the
group’s title is aligned to the left in left-to-right mode and displayed with black text.

Figure 30–24 shows a portion of a treemap with node headers. In this example, the
South Region and South Atlantic headers are formatted with the default formatting.

Figure 30–24 Treemap Showing Default Node Header Formatting

You can customize the headers to use the node’s color, change the text alignment or
customize the font.

Figure 30–25 shows the same treemap with the node header formatted to use the
node’s color, align the title to the center and change the font size and color.

Introduction to Treemaps and Sunbursts

30-18 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–25 Treemap Showing Formatted Group Node Headers

In this example, the treemap nodes are displayed in red when the income levels are
lower than $50,000, and the treemap nodes are displayed in blue when the income
levels are higher than $50,000.

The South Atlantic node header is displayed in blue because the color is calculated
from the same rules that were used to calculate the color of the individual nodes. In
this case, the income levels of all nodes contained within the South Atlantic division
are higher than $50,000. However, the South Region node header is displayed in red
because it also includes the West South Central and East South Central divisions. In
this case, the income levels of all nodes contained within the South Region is less than
$50,000.

30.1.3 Additional Functionality for Treemap and Sunburst Components
You may find it helpful to understand other ADF Faces features before you implement
your treemap or sunburst component. Additionally, once you have added a treemap
or sunburst to your page, you may find that you need to add functionality such as
validation and accessibility. Following are links to other functionality that treemap and
sunburst components can use:

■ Partial page rendering: You may want a treemap or sunburst to refresh to show
new data based on an action taken on another component on the page. For more
information, see Chapter 7, "Rerendering Partial Page Content."

■ Personalization: When enabled, users can change the way the treemap or sunburst
displays at runtime. Those values will not be retained once the user leaves the
page unless you configure your application to allow user customization. For
information, see Chapter 33, "Allowing User Customization on JSF Pages."

■ Skins and styles: You can customize the appearance of pivot table and pivot filter
bar components using an ADF skin that you apply to the application or by
applying CSS style properties directly using a style-related property (styleClass
or inlineStyle). For more information, see Chapter 20, "Customizing the
Appearance Using Styles and Skins."

■ Accessibility: You can make your treemap and sunburst components accessible.
For more information, see Chapter 22, "Developing Accessible ADF Faces Pages."

■ Automatic data binding: If your application uses the Fusion technology stack, then
you can create automatically bound treemaps and sunbursts based on how your
ADF Business Components are configured. For more information, see the
"Creating Databound Treemaps and Sunbursts" section of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-19

30.2 Using the Treemap and Sunburst Components
To use the treemap and sunburst components, define the data, add the treemap or
sunburst to a page and complete the additional configuration in JDeveloper.

30.2.1 Treemap and Sunburst Data Requirements
Treemap and sunburst components require data collections where a master-detail
relationship exists between one or more detail collections and a master detail
collection. Both components use the same data model as the ADF Faces tree
component. For more information about the tree component, see Section 10.5,
"Displaying Data in Trees."

Treemaps and sunbursts require that the following attributes be set in JDeveloper:

■ value: the size of the node

■ fillColor: the color of the node

■ label: a text identifier for the node

The values for the value and label attributes must be stored in the treemap’s or
sunburst’s data model or in classes and managed beans if you are using UI-first
development. You can specify the fillColor values in the data model, classes, and
managed beans, or declaratively in the Property Inspector.

Figure 30–26 shows a subset of the data used to generate the treemap in Figure 30–1.
This is the same data used to generate the sunburst in

Figure 30–26 Treemap and Sunburst Sample Data

In this example, United States is the root node with three child levels: region,
division, and state.

In order to configure a treemap or sunburst successfully, ensure that the data adheres
to the following rules:

■ Each child node can have only one parent node.

Note: If you know the UI components on your page will eventually
use ADF data binding, but you need to develop the pages before the
data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using
placeholder data controls will provide the same declarative
development experience as using developed data controls. For more
information, see the "Designing a Page Using Placeholder Data
Controls" section of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

Using the Treemap and Sunburst Components

30-20 Web User Interface Developer's Guide for Oracle Application Development Framework

■ There can be no skipped levels.

To create a treemap or sunburst model in UI-first development, use classes and
managed beans to define the tree node and tree model, populate the tree with data and
add additional methods as needed to configure the treemap or sunburst.

Example 30–1 shows a code sample defining the tree node in the census data example.
Note that the required settings for label, size, and color are passed in as parameters to
the tree node.

Example 30–1 Code Sample to Create a Treemap or Sunburst Tree Node

import java.awt.Color;
import java.util.ArrayList;
import java.util.List;

public class TreeNode {
 private final String m_text;
 private final Number m_size;
 private final Color m_color;
 private final List<TreeNode> m_children = new ArrayList<TreeNode>();

 public TreeNode(String text, Number size, Color color) {
 m_text = text;
 m_size = size;
 m_color = color;
 }
 public String getText() {
 return m_text;
 }
 public Number getSize() {
 return m_size;
 }
 public Color getColor() {
 return m_color;
 }
 public void addChild(TreeNode child) {
 m_children.add(child);
 }
 public void addChildren(List<TreeNode> children) {
 m_children.addAll(children);
 }
 public List<TreeNode> getChildren() {
 return m_children;
 }
 @Override
 public String toString() {
 return m_text + ": " + m_color + " " + Math.round(m_size.doubleValue());
 }
}

To supply data to the treemap or sunburst in UI-first development, add a class or
managed bean to your application that extends the tree node in Example 30–1 and
populates it with data. The class to set up the tree model must be an implementation of
the org.apache.myfaces.trinidad.model.TreeModel class. Once the tree model is
defined, create a method that implements the
org.apache.myfaces.trinidad.model.ChildPropertyTreeModel to complete the tree
model. See Example 30–2 for the class that sets up the root and child node structure,
populates the child levels with data and defines the color and node sizes in the census
data example.

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-21

Example 30–2 Code Sample Creating Census Data Model for Treemap and Sunburst

import java.awt.Color;

import java.util.ArrayList;
import java.util.List;

import org.apache.myfaces.trinidad.model.ChildPropertyTreeModel;
import org.apache.myfaces.trinidad.model.TreeModel;

public class CensusData {

 public static TreeModel getUnitedStatesData() {
 return getModel(ROOT);
 }

 public static TreeModel getRegionWestData() {
 return getModel(REGION_W);
 }

 public static TreeModel getRegionNortheastData() {
 return getModel(REGION_NE);
 }

 public static TreeModel getRegionMidwestData() {
 return getModel(REGION_MW);
 }

 public static TreeModel getRegionSouthData() {
 return getModel(REGION_S);
 }

 public static TreeModel getDivisionPacificData() {
 return getModel(DIVISION_P);
 }

 private static TreeModel getModel(DataItem rootItem) {
 TreeNode root = getTreeNode(rootItem);
 return new ChildPropertyTreeModel(root, "children");
 }

 private static TreeNode getTreeNode(DataItem dataItem)
 {
 // Create the node itself
 TreeNode node = new CensusTreeNode(dataItem.getName(),
 dataItem.getPopulation(),
 getColor(dataItem.getIncome(), MIN_INCOME, MAX_INCOME),
 dataItem.getIncome());

 // Create its children
 List<TreeNode> children = new ArrayList<TreeNode>();
 for(DataItem childItem : dataItem.children) {
 children.add(getTreeNode(childItem));
 }

 // Add the children and return
 node.addChildren(children);
 return node;
 }

Using the Treemap and Sunburst Components

30-22 Web User Interface Developer's Guide for Oracle Application Development Framework

 private static Color getColor(double value, double min, double max) {
 double percent = Math.max((value - min) / max, 0);
 if(percent > 0.5) {
 double modifier = (percent - 0.5) * 2;
 return new Color((int)(modifier*102), (int)(modifier*153),
(int)(modifier*51));
 }
 else {
 double modifier = percent *2;
 return new Color((int)(modifier*204), (int)(modifier*51), 0);
 }
 }

 public static class DataItem {
 private final String name;
 private final int population;
 private final int income;
 private final List<DataItem> children;

 public DataItem(String name, int population, int income) {
 this.name = name;
 this.population = population;
 this.income = income;
 this.children = new ArrayList<DataItem>();
 }

 public void addChild(DataItem child) {
 this.children.add(child);
 }

 public String getName() {
 return name;
 }

 public int getPopulation() {
 return population;
 }

 public int getIncome() {
 return income;
 }

 public List<CensusData.DataItem> getChildren() {
 return children;
 }
 }

 private static final int MIN_INCOME = 0;
 private static final int MAX_INCOME = 70000;

 private static final DataItem ROOT = new DataItem("United States", 301461533,
51425);

 private static final DataItem REGION_NE = new DataItem("Northeast Region",
54906297, 57208);
 private static final DataItem REGION_MW = new DataItem("Midwest Region",
66336038, 49932);
 private static final DataItem REGION_S = new DataItem("South Region", 110450832,
47204);

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-23

 private static final DataItem REGION_W = new DataItem("West Region", 69768366,
56171);

 private static final DataItem DIVISION_NE = new DataItem("New England",
14315257, 61511);
 private static final DataItem DIVISION_MA = new DataItem("Middle Atlantic",
40591040, 55726);
 private static final DataItem DIVISION_ENC = new DataItem("East North Central",
46277998, 50156);
 private static final DataItem DIVISION_WNC = new DataItem("West North Central",
20058040, 49443);
 private static final DataItem DIVISION_SA = new DataItem("South Atlantic",
57805475, 50188);
 private static final DataItem DIVISION_ESC = new DataItem("East South Central",
17966553, 41130);
 private static final DataItem DIVISION_WSC = new DataItem("West South Central",
34678804, 45608);
 private static final DataItem DIVISION_M = new DataItem("Mountain", 21303294,
51504);
 private static final DataItem DIVISION_P = new DataItem("Pacific", 48465072,
58735);

 static {
 // Set up the regions
 ROOT.addChild(REGION_NE);
 ROOT.addChild(REGION_MW);
 ROOT.addChild(REGION_S);
 ROOT.addChild(REGION_W);

 // Set up the divisions
 REGION_NE.addChild(DIVISION_NE);
 REGION_NE.addChild(DIVISION_MA);
 REGION_MW.addChild(DIVISION_ENC);
 REGION_MW.addChild(DIVISION_WNC);
 REGION_S.addChild(DIVISION_SA);
 REGION_S.addChild(DIVISION_ESC);
 REGION_S.addChild(DIVISION_WSC);
 REGION_W.addChild(DIVISION_M);
 REGION_W.addChild(DIVISION_P);

 // Set up the states
 DIVISION_NE.addChild(new DataItem("Connecticut", 3494487, 67721));
 DIVISION_NE.addChild(new DataItem("Maine", 1316380, 46541));
 DIVISION_NE.addChild(new DataItem("Massachusetts", 6511176, 64496));
 DIVISION_NE.addChild(new DataItem("New Hampshire", 1315419, 63033));
 DIVISION_NE.addChild(new DataItem("Rhode Island", 1057381, 55569));
 DIVISION_NE.addChild(new DataItem("Vermont", 620414, 51284));

 DIVISION_MA.addChild(new DataItem("New Jersey", 8650548, 68981));
 DIVISION_MA.addChild(new DataItem("New York", 19423896, 55233));
 DIVISION_MA.addChild(new DataItem("Pennsylvania", 12516596, 49737));

 DIVISION_ENC.addChild(new DataItem("Indiana", 6342469, 47465));
 DIVISION_ENC.addChild(new DataItem("Illinois", 12785043, 55222));
 DIVISION_ENC.addChild(new DataItem("Michigan", 10039208, 48700));
 DIVISION_ENC.addChild(new DataItem("Ohio", 11511858, 47144));
 DIVISION_ENC.addChild(new DataItem("Wisconsin", 5599420, 51569));

 DIVISION_WNC.addChild(new DataItem("Iowa", 2978880, 48052));
 DIVISION_WNC.addChild(new DataItem("Kansas", 2777835, 48394));

Using the Treemap and Sunburst Components

30-24 Web User Interface Developer's Guide for Oracle Application Development Framework

 DIVISION_WNC.addChild(new DataItem("Minnesota", 5188581, 57007));
 DIVISION_WNC.addChild(new DataItem("Missouri", 5904382, 46005));
 DIVISION_WNC.addChild(new DataItem("Nebraska", 1772124, 47995));
 DIVISION_WNC.addChild(new DataItem("North Dakota", 639725, 45140));
 DIVISION_WNC.addChild(new DataItem("South Dakota", 796513, 44828));

 DIVISION_SA.addChild(new DataItem("Delaware", 863832, 57618));
 DIVISION_SA.addChild(new DataItem("District of Columbia", 588433, 56519));
 DIVISION_SA.addChild(new DataItem("Florida", 18222420, 47450));
 DIVISION_SA.addChild(new DataItem("Georgia", 9497667, 49466));
 DIVISION_SA.addChild(new DataItem("Maryland", 5637418, 69475));
 DIVISION_SA.addChild(new DataItem("North Carolina", 9045705, 45069));
 DIVISION_SA.addChild(new DataItem("South Carolina", 4416867, 43572));
 DIVISION_SA.addChild(new DataItem("Virginia", 7721730, 60316));
 DIVISION_SA.addChild(new DataItem("West Virginia", 1811403, 37356));

 DIVISION_ESC.addChild(new DataItem("Alabama", 4633360, 41216));
 DIVISION_ESC.addChild(new DataItem("Kentucky", 4252000, 41197));
 DIVISION_ESC.addChild(new DataItem("Mississippi", 2922240, 36796));
 DIVISION_ESC.addChild(new DataItem("Tennessee", 6158953, 42943));

 DIVISION_WSC.addChild(new DataItem("Arkansas", 2838143, 38542));
 DIVISION_WSC.addChild(new DataItem("Louisiana", 4411546, 42167));
 DIVISION_WSC.addChild(new DataItem("Oklahoma", 3610073, 41861));
 DIVISION_WSC.addChild(new DataItem("Texas", 23819042, 48199));

 DIVISION_M.addChild(new DataItem("Arizona", 6324865, 50296));
 DIVISION_M.addChild(new DataItem("Colorado", 4843211, 56222));
 DIVISION_M.addChild(new DataItem("Idaho", 1492573, 46183));
 DIVISION_M.addChild(new DataItem("Montana", 956257, 43089));
 DIVISION_M.addChild(new DataItem("Nevada", 2545763, 55585));
 DIVISION_M.addChild(new DataItem("New Mexico", 1964860, 42742));
 DIVISION_M.addChild(new DataItem("Utah", 2651816, 55642));
 DIVISION_M.addChild(new DataItem("Wyoming", 523949, 51990));

 DIVISION_P.addChild(new DataItem("Alaska", 683142, 64635));
 DIVISION_P.addChild(new DataItem("California", 36308527, 60392));
 DIVISION_P.addChild(new DataItem("Hawaii", 1280241, 64661));
 DIVISION_P.addChild(new DataItem("Oregon", 3727407, 49033));
 DIVISION_P.addChild(new DataItem("Washington", 6465755, 56384));
 }

 public static class CensusTreeNode extends TreeNode {
 private int income;

 public CensusTreeNode(String text, Number size, Color color, int income) {
 super(text, size, color);
 this.income = income;
 }

 public int getIncome() {
 return income;
 }
 }
}

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-25

Finally, to complete the tree model in UI-first development, add a managed bean to
your application that references the class or bean that contains the data and, optionally,
add any other methods to customize the treemap or sunburst.

Example 30–3 shows a code sample that will instantiate the census treemap and
populate it with census data. The example also includes a sample method
(convertToString) that will convert the treemap node’s row data to a string for label
display. To use this code on a sunburst, substitute sunburst for every reference to
treemap in the sample code below.

Example 30–3 Managed Bean Example to Set Census Data Treemap

import org.apache.myfaces.trinidad.component.UIXHierarchy;
import org.apache.myfaces.trinidad.model.RowKeySet;
import org.apache.myfaces.trinidad.model.TreeModel;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;

public class SampleTreemap {
 // Data Model Attrs
 private TreeModel currentModel;
 private final CensusData censusData = new CensusData();
 private String censusRoot = "United States";
 private UITreemap treemap;

 public TreeModel getCensusRootData() {
 return censusData.getUnitedStatesData();
 }
 public TreeModel getCensusData() {
 if ("West Region".equals(censusRoot))
 return censusData.getRegionWestData();
 else if ("South Region".equals(censusRoot))
 return censusData.getRegionSouthData();
 else if ("Midwest Region".equals(censusRoot))
 return censusData.getRegionMidwestData();
 else if ("Northeast Region".equals(censusRoot))
 return censusData.getRegionNortheastData();
 else if ("Pacific Division".equals(censusRoot))
 return censusData.getDivisionPacificData();
 else
 return censusData.getUnitedStatesData();
 }
 public TreeModel getData() {
 // Return cached data model if available
 if(currentModel != null)
 return currentModel;
 currentModel = getCensusData();
 return currentModel;
 }
 public void setCensusRoot(String censusRoot) {
 this.censusRoot = censusRoot;
 }
 public String getCensusRoot() {
 return censusRoot;
 }
 //Converts the rowKeySet into a string of node text labels.
 public static String convertToString(RowKeySet rowKeySet,
 UIXHierarchy hierarchy) {
 StringBuilder s = new StringBuilder();
 // save the current rowkey because we will lose this state in the for-loop
 // when we setRowKey and then get the rowData

Using the Treemap and Sunburst Components

30-26 Web User Interface Developer's Guide for Oracle Application Development Framework

 Object savedKey = hierarchy.getRowKey();
 try {
 if (rowKeySet != null) {
 for (Object rowKey : rowKeySet) {
 hierarchy.setRowKey(rowKey);
 TreeNode rowData = (TreeNode)hierarchy.getRowData();
 s.append(rowData.getText()).append(", ");
 }
 // Remove the trailing comma
 if (s.length() > 0)
 s.setLength(s.length() - 2);
 }
 } finally {
 hierarchy.setRowKey(savedKey);
 }
 return s.toString();
 }
 public void setTreemap(UITreemap treemap) {
 this.treemap = treemap;
 }
 public UITreemap getTreemap() {
 return treemap;
 }
}

30.2.2 Using the Treemap Component
To use the treemap component, add the treemap to a page and complete the additional
configuration in JDeveloper.

30.2.2.1 Configuring Treemaps
The treemap component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the treemap. The prefix
dvt: occurs at the beginning of each treemap component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure treemap child components, attributes, and supported facets in the
following areas:

■ Treemap (dvt:treemap): Wraps the treemap nodes. Configure the following
attributes to control the treemap display.

– Labels: Use the colorLabel and sizeLabel attributes to identify the color and
size metrics for the treemap. Treemaps require these labels for legend display.

– Legend source (legendSource): Use this attribute to display a legend for
treemaps configured with attribute groups. Specify the id of the attribute
group.

– Display child levels (displayLevelsChildren): Specify the number of child
levels to display. By default, treemaps display the root and the first two child
levels.

– Animation: Use the animationOnDisplay attribute to control the initial
animation and the animationOnDataChange attribute to control subsequent
animations. To change the animation duration from the default duration of 500
milliseconds, modify the animationDuration attribute.

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-27

– Empty text (emptyText): Use the emptyText attribute to specify the text to
display if a treemap node contains no data.

– Group gaps (groupGaps): Specify the gaps to display between groups. By
default, this attribute is set to outer, and the treemap displays gaps between
the outer nodes only. You can remove all gaps by setting this attribute to none
or add gaps between all groups by setting this attribute to all.

– Sorting (sorting): Use this attribute to sort all nodes having the same parent
in descending size.

– Other group: Use the otherThreshold, otherColor, and otherPattern
attributes to aggregate child data into an Other node.

■ Treemap node (dvt:treemapNode): child of the treemap component. This tag
defines the size and color for each node in the treemap and is stamped for each
row in the data model. If you want to vary the stamp by row, use the ADF Faces
af:switcher component, and insert a treemap node for each row. Configure the
following attributes to control the node display:

– value (required): Specify the value of the treemap node. The value determines
the relative size of the node within the treemap.

– fillColor (required): Specify the fill color for the node in RGB hexadecimal.
This value is also required for the treemap to display properly.

– fillPattern: Specify an optional fill pattern to use. The pattern is drawn with
a white background and the foreground color uses the color specified in the
fillColor attribute.

– groupLabelDisplay: Specify where you want the group label to appear. By
default this value is set to header which will display the label on the group
header. You can also set it to off to turn off the label display or node to
display the label inside the node.

– label: Specify the label for the node.

– labelDisplay: Specify where you want the node label to appear. By default,
this attribute is set to node which will display the label inside the node, but
you can also set it to off to turn off the label display.

You can further customize the label display by setting the labelHalign,
labelStyle, and labelValign attributes.

■ Treemap node header (dvt:treemapNodeHeader): optional child of the treemap
node. Add this attribute to configure the following node header attributes:

– isolate: By default, this attribute is set to on, but you can set it to off to
disable isolation support.

– labelStyle: Specify the font style.

– useNodeColor: By default, this attribute is set to off. Set this to on to display
the node’s color in the header.

– titleHalign: Specify where you want the title to appear in the header. By
default, this attribute is set to start which aligns the title to the left in
left-to-right mode and aligns it to the right in to right-to-left mode.

■ Attribute group (dvt:attributeGroup): optional child of the treemap node. Add
this attribute to generate fillColor and fillPattern values automatically based
on categorical bucketing or continuous classification of the data set.

Using the Treemap and Sunburst Components

30-28 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Supported facets: optional children of the treemap or treemap node. The treemap
component supports facets for displaying popup components, and the treemap’s
node component supports a content facet for providing additional detail when the
treemap node’s label is not sufficient.

Treemaps also share much of the same functionality and tags as other DVT
components. For a complete list of treemap tags, consult the Oracle Fusion
Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces. For
information about additional functionality for treemap components, see Section 30.1.3,
"Additional Functionality for Treemap and Sunburst Components."

30.2.2.2 How to Add a Treemap to a Page
When you are designing your page using simple UI-first development, you use the
Component Palette to add a treemap to a JSF page. When you drag and drop a
treemap component onto the page, a Create Treemap dialog displays. Figure 30–27
shows the Create Treemap dialog.

Figure 30–27 Create Treemap Dialog Using UI-First Development

If you click OK, the treemap is added to your page, and you can use the Property
Inspector to specify data values and configure additional display attributes.
Alternatively, you can choose to bind the data during creation and use the dialog to
configure the associated node data.

In the Property Inspector you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 30–28 shows the dropdown menu for a
treemap value attribute.

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-29

Figure 30–28 Treemap Value Attribute Dropdown Menu

Before you begin:
It may be helpful to have an understanding of how treemap attributes and treemap
child tags can affect functionality. For more information, see Section 30.2.2.1,
"Configuring Treemaps."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

To add a treemap to a page:
1. In the ADF Data Visualization page of the Component Palette, from the Common

panel, drag and drop a Treemap component onto the page to open the Create
Treemap dialog.

2. In the Create Treemap dialog, click OK to add the treemap to the page.

Optionally, use the dialog to bind the treemap by selecting Bind Data Now and
navigating to the ADF data control that represents the data you wish to display on
the treemap. If you choose this option, the data binding fields in the dialog will be
available for editing. For help with the dialog, press F1 or click Help.

3. In the Property Inspector, view the attributes for the treemap. Use the help button
to display the complete tag documentation for the treemap component.

4. Expand the Appearance section, and enter values for the following attributes:

■ Layout: Use the attribute’s dropdown menu to change the default layout from
squarified to sliceAndDiceHorizontal or sliceAndDiceVertical.

See Section 30.1.2.1, "Treemap and Sunburst Layouts" for sample images of
treemap layouts.

■ Summary: Enter a summary of the treemap’s purpose and structure for screen
reader support.

Note: If your application uses the Fusion technology stack, then you
can use data controls to create a treemap and the binding will be done
for you. For more information, see the "Creating Databound Treemaps
and Sunbursts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Using the Treemap and Sunburst Components

30-30 Web User Interface Developer's Guide for Oracle Application Development Framework

30.2.2.3 What Happens When You Add a Treemap to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a treemap
from the Component Palette onto a JSF page and choose not to bind the data during
creation. Example 30–4 shows the generated code.

Example 30–4 Treemap Sample Code in UI-First Development

<dvt:treemap id="t1">
 <dvt:treemapNode id="tn1"/>
</dvt:treemap>

If you choose to bind the data to a data control when creating the treemap, JDeveloper
generates code based on the data model. For more information, see the "Creating
Databound Treemaps and Sunbursts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

30.2.3 Using the Sunburst Component
To use the sunburst component, add the sunburst to a page and complete the
additional configuration in JDeveloper.

30.2.3.1 Configuring Sunbursts
The sunburst component has configurable attributes and child components that you
can add or modify to customize the display or behavior of the treemap. The prefix
dvt: occurs at the beginning of each treemap component name indicating that the
component belongs to the ADF Data Visualization Tools (DVT) tag library.

You can configure sunburst child components, attributes, and supported facets in the
following areas:

■ Sunburst (dvt:sunburst): Wraps the sunburst nodes. Configure the following
attributes to control the sunburst display.

– Labels: Use the colorLabel and sizeLabel attributes to identify the color and
size metrics for the sunburst. Sunbursts require these labels for legend display.

– Legend source (legendSource): Use this attribute to display a legend for
sunbursts configured with attribute groups. Specify the id of the attribute
group.

– Display child levels (displayLevelsChildren): Specify the number of child
levels to display. By default, sunbursts display the root and the first two child
levels.

– Animation: Use the animationOnDisplay attribute to control the initial
animation and the animationOnDataChange attribute to control subsequent
animations. To change the animation duration from the default duration of 500
milliseconds, modify the animationDuration attribute.

– Rotation (rotation): Use this attribute to enable client-side sunburst rotation.

– Start angle (startAngle): Specify the starting angle of the sunburst.

– Empty text (emptyText): Use the emptyText attribute to specify the text to
display if a sunburst node contains no data.

– Sorting (sorting): Use this attribute to sort all nodes having the same parent
in descending size.

– Other group: Use the otherThreshold, otherColor, and otherPattern
attributes to aggregate child data into an Other node.

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-31

■ Sunburst node (dvt:sunburstNode): child of the sunburst component. This tag
defines the size and color for each node in the sunburst and is stamped for each
row in the data model. If you want to vary the stamp by row, use the ADF Faces
af:switcher component, and insert a sunburst node for each row. Configure the
following attributes to control the node display:

– value (required): Specify the value of the sunburst node. The value determines
the relative size of the node within the sunburst.

– fillColor (required): Specify the fill color for the node in RGB hexadecimal.
This value is also required for the sunburst to display properly.

– fillPattern: Specify an optional fill pattern to use. The pattern is drawn with
a white background and the foreground color uses the color specified in the
fillColor attribute.

– label: Specify the label for the node.

– labelDisplay: Specify how you want the node label to appear. By default, this
attribute is set to rotated which will display the rotated labels inside the node,
but you can also set it to off to turn off the label display or on to display
horizontal labels within the nodes.

■ Attribute group (dvt:attributeGroup): optional child of the sunburst node. Add
this attribute to generate fillColor and fillPattern values automatically based
on categorical bucketing or continuous classification of the data set.

■ Supported facets: optional children of the sunburst or sunburst node. The
sunburst component supports facets for displaying popup components, and the
sunburst’s node component supports a content facet for providing additional
detail when the sunburst node’s label is not sufficient.

Sunbursts also share much of the same functionality and tags as other DVT
components. For a complete list of sunburst tags, consult the Oracle Fusion
Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces. For
information about additional functionality for sunburst components, see
Section 30.1.3, "Additional Functionality for Treemap and Sunburst Components."

30.2.3.2 How to Add a Sunburst to a Page
When you are designing your page using simple UI-first development, you use the
Component Palette to add a sunburst to a JSF page. When you drag and drop a
sunburst component onto the page, a Create Sunburst dialog displays. Figure 30–29
shows the Create Sunburst dialog.

Note: Rotated text is not supported on all client technologies. In
particular, rotated text is not supported on clients using the Flash
image format.

Using the Treemap and Sunburst Components

30-32 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–29 Create Sunburst Dialog Using UI-First Development

If you click OK, the sunburst is added to your page, and you can use the Property
Inspector to specify data values and configure additional display attributes.
Alternatively, you can choose to bind the data during creation and use the dialog to
configure the associated node data.

In the Property Inspector you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 30–30 shows the dropdown menu for a
sunburst value attribute.

Figure 30–30 Sunburst Value Attribute Dropdown Menu

Using the Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-33

Before you begin:
It may be helpful to have an understanding of how sunburst attributes and sunburst
child tags can affect functionality. For more information, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

To add a sunburst to a page:
1. In the ADF Data Visualization page of the Component Palette, from the Common

panel, drag and drop a Sunburst component onto the page to open the Create
Sunburst dialog.

2. In the Create Sunburst dialog, click OK to add the treemap to the page.

Optionally, use the dialog to bind the sunburst by selecting Bind Data Now and
navigating to the ADF data control that represents the data you wish to display on
the treemap. If you choose this option, the data binding fields in the dialog will be
available for editing. For help with the dialog, press F1 or click Help.

3. In the Property Inspector, view the attributes for the sunburst. Use the help button
to display the complete tag documentation for the sunburst component.

4. Expand the Other section, and set a value for the following attributes:

■ Summary: Enter text to describe the sunburst’s purpose and structure for
screen reader support. Alternatively, choose Select Text Resource or
Expression Builder from the attribute’s dropdown menu to select a text
resource or EL expression.

■ Rotation: Use the dropdown menu to specify whether or not rotation is
enabled on the sunburst. By default, this rotation is set to on, but you can also
set it to off to disable rotation. Alternatively, choose Expression Builder from
the attribute’s dropdown menu to create an EL expression that sets the
rotation.

■ StartAngle: Enter a value for the start angle of the sunburst. By default, the
angle is set to 90, but you can enter any value between 0 and 360.
Alternatively, choose Expression Builder from the attribute’s dropdown menu
to create an EL expression that sets the start angle.

30.2.3.3 What Happens When You Add a Sunburst to a Page
JDeveloper generates only a minimal set of tags when you drag and drop a sunburst
from the Component Palette onto a JSF page and choose not to bind the data during
creation. Example 30–5 shows the generated code.

Example 30–5 Sunburst Sample Code in UI-First Development

<dvt:sunburst id="s1">
 <dvt:sunburstNode id="sn1"/>

Note: If your application uses the Fusion technology stack, then you
can use data controls to create a sunburst and the binding will be done
for you. For more information, see the "Creating Databound Treemaps
and Sunbursts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Adding Data to Treemap and Sunburst Components

30-34 Web User Interface Developer's Guide for Oracle Application Development Framework

</dvt:sunburst>

If you choose to bind the data to a data control when creating the sunburst, JDeveloper
generates code based on the data model. For more information, see the "Creating
Databound Treemaps and Sunbursts" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

30.3 Adding Data to Treemap and Sunburst Components
To add data to the treemap or sunburst using UI-first development, create the classes,
managed beans, and methods that will create the tree model and reference the classes,
beans, or methods in JDeveloper.

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

30.3.1 How to Add Data to Treemap or Sunburst Components
Because treemaps and sunbursts use the same data model, the process for adding data
to the treemap or sunburst is similar.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a treemap or sunburst to your page. For help with adding a treemap to a page,
see Section 30.2.2.2, "How to Add a Treemap to a Page." For help with sunbursts, see
Section 30.2.3.2, "How to Add a Sunburst to a Page."

To add data to the treemap or sunburst in UI-first development:
1. Create the classes and managed beans that will define the treemap’s tree model

and supply the data to the treemap. See Section 30.2.1, "Treemap and Sunburst
Data Requirements" for additional information and examples. For help with
managed beans, see Section 2.6, "Creating and Using Managed Beans."

2. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go To Properties.

3. In the Property Inspector, in the Appearance section, enter a value for the
DisplayLevelsChildren attribute to change the number of child levels displayed
on the treemap. By default, this value is set to 2.

For example, the treemap and sunburst in the census data example have three
child levels to represent regions, divisions, and states, and you would set this
value to 3 to duplicate the example.

4. In the Common section, set the following attributes:

Adding Data to Treemap and Sunburst Components

Using ADF Treemap and Sunburst Components 30-35

■ Value: Specify an EL expression for the object to which you want the treemap
or sunburst to be bound. This must be an instance of
org.apache.myfaces.trinidad.model.TreeModel.

For example, reference the managed bean you created to instantiate the
treemap or sunburst. In the census data example, the treemap managed bean
is named treemap, and the census data is instantiated when the treemap is
referenced. To use the census data example with a treemap, enter the
following in the Value field for the EL expression: #{treemap.censusData}.

For help with creating EL expressions, see Section 2.5.1, "How to Create an EL
Expression."

■ Var: Enter the name of a variable to be used during the rendering phase to
reference each element in the treemap collection. This variable is removed or
reverted back to its initial value once rendering is complete.

For example, enter row in the Var field to reference each element in the census
data example.

■ VarStatus: Optionally, enter the name of a variable during the rendering phase
to access contextual information about the state of the component, such as the
collection model or loop counter information. This variable is removed or
reverted back to its initial value once rendering is complete.

5. In the Structure window, right-click the dvt:treemapNode node or
dvt:sunburstNode and choose Go To Properties.

6. In the Common section, use the Value attribute’s dropdown menu to choose
Expression Builder.

7. In the Expression Builder dialog, create the EL expression that will reference the
size data for the treemap or sunburst node, using the variable you specified for the
Var attribute when creating your component and the method you created to return
the size of the node.

For example, in the census data example, the Var attribute is named row and the
size is stored in the m.size variable which is returned by the getSize() method in
the TreeNode class shown in Example 30–1, "Code Sample to Create a Treemap or
Sunburst Tree Node". To reference the size data in the census data example, create
the following expression: #{row.size}.

8. In the Property Inspector, expand the Appearance section and enter values for the
following attributes:

■ FillColor: Specify the fill color of the node. You can enter the color in RGB
hexadecimal or use the attribute’s dropdown menu to choose Expression
Builder and create an EL expression.

For example, you could enter #FF0000 to set the node’s fill color to red.
However, you might want your treemap or sunburst node to change color
based on the color metric. In the census data example in Section 30–1,
"Treemap Displaying United States Population and Median Income by
Regions," the fill color is calculated from income data.

Example 30–6 shows the sample method used by the census data example. To
reference this example in the Expression Builder, create the following
expression: #{row.color}.

Example 30–6 Sample Method to Set Treemap or Sunburst Node Fill Color

import java.awt.Color;

Customizing Treemap and Sunburst Display Elements

30-36 Web User Interface Developer's Guide for Oracle Application Development Framework

private static Color getColor(double value, double min, double max) {
 double percent = Math.max((value - min) / max, 0);
 if(percent > 0.5) {
 double modifier = (percent - 0.5) * 2;
 return new Color((int)(modifier*102), (int)(modifier*153),
(int)(modifier*51));
 }
 else {
 double modifier = percent *2;
 return new Color((int)(modifier*204), (int)(modifier*51), 0);
 }
}

■ Label: Specify the node’s label. You can enter text or use the attribute’s
dropdown menu to choose Expression Builder and create an EL expression.

For example, the census data example uses a method that converts the node
data into strings for label display. See Example 30–3 for the convertToString
() method. The TreeNode class uses the output from the convertToString()
method to set the text variable which is used for the label display. To
reference this example in the Expression Builder dialog, create the following
expression: #{row.text}.

30.3.2 What You May Need to Know about Adding Data to Treemaps and Sunbursts
The examples in this chapter use classes and managed beans to provide the data to the
treemap and sunburst. If your application uses the Fusion technology stack, then you
can use data controls to create a sunburst and the binding will be done for you. For
more information, see the "Creating Databound Treemaps and Sunbursts" section in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Alternatively, if you know the UI components on your page will eventually use ADF
data binding, but you need to develop the pages before the data controls are ready,
then you should consider using placeholder data controls, rather than manually
binding the components. Using placeholder data controls will provide the same
declarative development experience as using developed data controls. For more
information, see the "Designing a Page Using Placeholder Data Controls" section of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

30.4 Customizing Treemap and Sunburst Display Elements
You can configure treemap and sunburst display elements, including patterns,
attribute groups, legends, labels, animation, aggregation of smaller data contributors,
skinning, sizing, and ordering of the nodes by size.

Note: You can also use attribute groups to set the fillColor and
label attribute. Attribute groups are optional, but you must use them
if you want your treemap or sunburst to change color or pattern based
on a given condition, such as high versus low income. For information
about configuring attribute groups, see Section 30.4.3.1, "How to
Configure Treemap and Sunburst Discrete Attribute Groups."

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-37

30.4.1 Configuring Treemap and Sunburst Display Size and Style
You can configure the treemap or sunburst’s size and style using the inlineStyle or
styleClass attributes. Both attributes are available in the Style section in the Property
Inspector for the dvt:treemap or dvt:sunburst component. Using these attributes,
you can customize stylistic features such as fonts, borders, and background elements.

Treemaps and sunbursts also support skinning to customize the color and font styles
for the top level components as well as the nodes, node headers, and icons used for
treemap isolation and sunburst expansion and collapse. You can also use skinning to
define the styles for a treemap or sunburst node or a treemap node header when the
user hovers the mouse over or selects a node or node header. If the node or node
header is drillable, you can use skinning to define the styles when the user hovers the
mouse over or selects it.

Example 30–7 shows the skinning key for a sunburst configured to show the node’s
text in bold when the user selects it.

Example 30–7 Using a Skinning Key to Change Font Weight When Node is Selected

af|dvt-sunburstNode::selected
 {
 -tr-font-weight: bold;
 }
For the complete list of treemap and sunburst skinning keys, see the Oracle Fusion
Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces Skin Selectors. For
additional information about customizing your application using skinning and styles,
see Chapter 20, "Customizing the Appearance Using Styles and Skins."

The page containing the treemap or sunburst may also impose limitations on the
ability to change the size or style. For more information about page layouts, see
Chapter 8, "Organizing Content on Web Pages."

30.4.2 Configuring Pattern Display
You can configure the treemap or sunburst node to display patterns. The available
patterns are:

■ none (default)

■ smallChecker

■ smallCrosshatch

■ smallDiagonalLeft

■ smallDiagonalRight

■ smallDiamond

■ smallTriangle

■ largeChecker

■ largeCrosshatch

■ largeDiagonalLeft

■ largeDiagonalRight

■ largeDiamond

■ largeTriangle

Customizing Treemap and Sunburst Display Elements

30-38 Web User Interface Developer's Guide for Oracle Application Development Framework

To configure the treemap or sunburst node to display patterns, specify the
fillPattern attribute on the dvt:treemapNode or dvt:sunburstNode node. You can
also use discrete attribute groups to specify the fill pattern. For more information
about discrete attribute groups, see Section 30.4.3.1, "How to Configure Treemap and
Sunburst Discrete Attribute Groups."

30.4.3 Configuring Treemap and Sunburst Attribute Groups
Use attribute groups to generate stylistic attribute values such as colors or shapes
based on categorical bucketing of a data set. Treemaps and sunbursts support both
discrete and continuous attribute groups for setting the color and pattern of the child
nodes.

Use a discrete attribute group if you want the color or pattern to depend upon a given
condition, such as high or low income levels. Use the continuous attribute group if you
want the color to change gradually between low and high values.

30.4.3.1 How to Configure Treemap and Sunburst Discrete Attribute Groups
Configure discrete attribute groups by adding the dvt:attributeGroups tag to your
treemap or sunburst and defining the conditions under which the color or pattern will
be displayed.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

To configure a treemap or sunburst discrete attribute group:
1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode

node and choose Insert inside dvt:<component>Node > Attribute Groups.

For example, to configure a treemap discrete attribute group, right-click the
dvt:treemapNode node and choose Insert inside dvt:treemapNode > Attribute
Groups.

2. Right-click the dvt:attributeGroups element and choose Go to Properties.

3. In the Property Inspector, expand the Appearance section.

4. From the Value attribute’s dropdown menu, choose Expression Builder and
create an expression that references the color metric and the condition that will
control the color display.

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-39

For example, if you want your treemap to display different colors for median
income levels higher or lower than $50,000 as shown in Figure 30–5, create an
expression similar to the following expression for the Value field:

#{row.income > 50000}

For help with creating EL expressions, see Section 2.5.1, "How to Create an EL
Expression."

5. From the Label attribute’s dropdown menu, choose Expression Builder and create
an expression for the legend that describes what the discrete colors or patterns
represent.

For example, to let the user know that the colors represent high and low median
income levels, create an expression similar to the following expression for the
Label field:

#{row.income > 50000 ? 'High Income' : 'Low Income'}

6. From the Type attribute’s dropdown menu, choose Edit.

7. From the Edit Property dialog, choose color, pattern, or both, and click OK.

If you choose both color and pattern and build the page now, the treemap or
sunburst will use default colors and patterns for the discrete attribute group.

Figure 30–31 shows the treemap that displays if you accept the default colors and
patterns in the census data example.

Figure 30–31 Treemap Discrete Attribute Group with Default Colors and Patterns

8. Optionally, to change the attribute group’s default colors, do the following:

1. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert inside dvt:attributeGroups > Attribute Match Rule.

The dvt:attributeMatchRule tag is used to replace an attribute when the data
matches a given condition. In the census data example, the condition is
median income higher than $50,000.

2. Right-click the dvt:attributeMatchRule element and choose Go to Properties.

Customizing Treemap and Sunburst Display Elements

30-40 Web User Interface Developer's Guide for Oracle Application Development Framework

3. In the Group field, enter true if you want the color to display when the
condition is true, or enter false if you want the color to display when the
condition is false.

For example, enter true to choose the color to display in the census data
example when the median income level is higher than 50000.

4. In the Structure window, right-click the dvt:attributeMatchRule element and
choose Insert inside dvt:attributeMatchRule > Attribute.

5. In the Insert Attribute dialog, enter color for the name field and a color in the
value field, and click OK.

The value field accepts a six-digit RGB hexadecimal value. For example, to set
the value to green, enter the following in the value field: #00AA00.

6. Repeat step 1 through step 5 if you want to change the default color for the
other half of the condition.

For example, add another match rule to define the color that displays when
the income is under 50000, and set the Group field to false.

9. Optionally, to change the attribute group’s default patterns, do the following:

1. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert inside dvt:attributeGroups > Attribute Match Rule.

2. Right-click the dvt:attributeMatchRule element and choose Go to Properties.

3. In the Group field, enter true if you want the pattern to display when the
condition is true, or enter false if you want the pattern to display when the
condition is false.

4. In the Structure window, right-click the dvt:attributeMatchRule element and
choose Insert inside dvt:attributeMatchRule > Attribute.

5. In the Insert Attribute dialog, enter pattern for the name field and a
supported pattern in the value field, and click OK.

For example, enter smallDiamond in the value field to change the pattern to
small diamonds. For the list of available patterns, see Section 30.4.2,
"Configuring Pattern Display."

6. Repeat step 1 through step 5 if you want to change the default color for the
other half of the condition.

For example, add another match rule to define the color that displays when
the income is under 50000, and set the Group field to false.

Example 30–8 shows the code on the JSF page if you configure a discrete attribute
group for the treemap shown in Figure 30–5, "Treemap Displaying Discrete Attribute
Groups".

Example 30–8 Sample Code on JSF Page for Discrete Attribute Group

<dvt:treemap id="t1" summary="SampleTreemap" value="#{treemap.censusData}"
 var="row" colorLabel="Median Household Income" sizeLabel="Population"
 displayLevelsChildren="3" emptyText="No Data to Display"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low
Income'}"
 type="color">

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-41

 <dvt:attributeMatchRule id="amr1" group="true">
 <f:attribute name="color" value="#00AA00"/>
 </dvt:attributeMatchRule>
 <dvt:attributeMatchRule id="amr2" group="false">
 <f:attribute name="color" value="#AA0000"/>
 </dvt:attributeMatchRule>
 </dvt:attributeGroups>
 <f:facet name="content"/>
 </dvt:treemapNode>
</dvt:treemap>

30.4.3.2 How to Configure Treemap or Sunburst Continuous Attribute Groups
Configure continuous attribute groups by adding the dvt:attributeGroups tag to
your treemap or sunburst and defining the colors to be displayed at the minimum and
maximum levels of the data range. The attribute group will use the data to determine
the data range and display labels in the legend with corresponding values, but you can
also configure the attribute group to use different ranges or labels.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

To configure a treemap or sunburst continuous attribute group:
1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode

node and choose Insert inside dvt:<component>Node > Attribute Groups.

For example, to configure a treemap continuous attribute group, right-click the
dvt:treemapNode node and choose Insert inside dvt:treemapNode > Attribute
Groups.

2. Right-click the dvt:attributeGroups element and choose Go to Properties.

3. In the Property Inspector, expand the Appearance section.

4. From the Value attribute’s dropdown menu, choose Expression Builder and enter
an expression that references the color metric.

For example, to specify an EL expression that returns the income data from the
census example, choose Expression Builder and enter the following value in the
Value field: #{row.income}. For help with creating EL expressions, see
Section 2.5.1, "How to Create an EL Expression."

Customizing Treemap and Sunburst Display Elements

30-42 Web User Interface Developer's Guide for Oracle Application Development Framework

5. In the Type field, enter color.

6. In the AttributeType field, use the attribute’s dropdown menu to choose
continuous.

7. Optionally, set values for the following minimum or maximum range and labels:

■ MinValue: Enter the minimum boundary for the range. Alternatively, choose
Expression Builder from the attribute’s dropdown menu and enter the
expression that returns the minimum boundary.

For example, enter 35000 in the MinValue field to set the lower boundary of
the range to 35,000.

■ MaxValue: Enter the maximum boundary for the range. Alternatively, choose
Expression Builder from the attribute’s dropdown menu and enter the
expression that returns the maximum bound.

■ MinLabel: Enter the label for the minimum value to be displayed in the
legend. Alternatively, choose Select Text Resource or Expression Builder from
the attribute’s dropdown menu to select a text resource or EL expression.

For example, enter $35000 in the MinLabel field to set the label displayed in
the legend to $35000.

■ MaxLabel: Enter the label for the maximum value to be displayed in the
legend. Alternatively, choose Select Text Resource or Expression Builder from
the attribute’s dropdown menu to select a text resource or EL expression.

8. To define the colors used for the minimum and maximum bounds of the range, do
the following:

1. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert inside dvt:attributeGroups > Attribute.

2. In the Insert Attribute dialog, enter color1 for the name and a value for the
minimum boundary, and click OK.

The value field accepts a six-digit RGB hexadecimal value. For example, to set
the value of the minimum bound to black, which is the color used in the
attribute group in Figure 30–1, enter the following in the value field: #000000.

3. In the Structure window, right-click the dvt:attributeGroups element and
choose Insert inside dvt:attributeGroups > Attribute.

4. In the Insert Attribute dialog, enter color2 for the name and a value for the
maximum boundary, and click OK.

The value field accepts a six-digit RGB hexadecimal value. For example, to set
the value of the maximum bound to a light green, which is the color used in
the attribute group in Figure 30–1, enter the following in the value field:
#00AA00.

Example 30–9 shows the code on the JSF page if you configure the continuous attribute
group shown in Figure 30–1.

Example 30–9 Sample Code on JSF Page for Continuous Attribute Group

<dvt:treemap id="t1" summary="SampleTreemap" value="#{treemap.censusData}"
 var="row" colorLabel="Median Household Income" sizeLabel="Population"
 displayLevelsChildren="3" emptyText="No Data to Display"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income}" type="color"

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-43

 attributeType="continuous" minValue="35000"
 maxValue="70000" minLabel="$35000" maxLabel="$70000">
 <f:attribute name="color1" value="#000000"/>
 <f:attribute name="color2" value="#00AA00"/>
 </dvt:attributeGroups>
 <f:facet name="content"/>
 </dvt:treemapNode>
</dvt:treemap>

30.4.3.3 What You May Need to Know About Configuring Attribute Groups
If you use the Other node to aggregate nodes for display, the Other node will not use
the color or pattern of the configured attribute group. For more information, see
Section 30.4.5.2, "What You May Need to Know About Configuring the Treemap and
Sunburst Other Node."

30.4.4 How to Configure Treemap and Sunburst Legends
Legends display automatically when you specify values for the following attributes:

■ sizeLabel: Specify the text that describes the size metric of the component.
Alternatively, choose Select Text Resource or Expression Builder from the
attribute’s dropdown menu to select a text resource or EL expression.

■ colorLabel: Specify the text that describes the color metric of the component.
Alternatively, choose Select Text Resource or Expression Builder from the
attribute’s dropdown menu to select a text resource or EL expression.

■ legendSource: Optionally, specify the id of the attribute group used in the treemap
or sunburst display.

If your treemap or sunburst does not use attribute groups, the legend display will
be limited to the text descriptions that you specified for the size and color labels.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

To configure a treemap or sunburst legend:
1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and

choose Go to Properties.

Customizing Treemap and Sunburst Display Elements

30-44 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Property Inspector, expand the Appearance section.

3. In the SizeLabel field, enter the text that the legend will display to describe the
size metric.

For example, enter Population in the SizeLabel field to indicate that the size of
the nodes in the treemap or sunburst is based on population.

You can also use the dropdown menu to choose a text resource or EL expression
from the Expression Builder dialog. For example, to specify an EL expression that
returns the size from the census data example, choose Expression Builder and
enter the following value in the SizeLabel field: #{row.size}. For help with
creating EL expressions, see Section 2.5.1, "How to Create an EL Expression."

4. In the ColorLabel field, enter the text that the legend will display to describe the
color metric.

For example, enter Median Household Income in the ColorLabel field to indicate
that the size of the nodes in the treemap or sunburst is based on population.

Alternatively, use the dropdown menu to enter a text resource or select an
expression from the Expression Builder. For example, to specify an EL expression
that returns the color from the census data example, choose Expression Builder
and enter the following value in the ColorLabel field: #{color.size}.

5. If your treemap or sunburst uses attribute groups, reference the id of the
attributeGroups component as follows:

1. From the LegendSource property’s dropdown menu, choose Edit.

2. In the Edit Property: LegendSource dialog, expand each component and locate
the attributeGroups component.

3. Select the attributeGroups component and click OK.

30.4.5 Configuring the Treemap and Sunburst Other Node
Use the Other node to aggregate smaller data sets visually into one larger set for easier
comparison.

30.4.5.1 How to Configure the Treemap and Sunburst Other Node
Configure the treemap Other node by setting values for the following attributes:

■ otherThreshold: Specify the percentage of the parent under which a node would
be aggregated into the Other node. Valid values range from 0 (default) to 1.

For example, a value of 0.1 would cause all nodes which are less than 10% of their
parent to be aggregated into the Other node. In Figure 30–16, the otherThreshold
is set to .08 or eight percent which aggregated the South Carolina, Delaware,
West Virginia, and District of Columbia nodes in the South Atlantic region.

If you increase the value to .1 or 10%, the Maryland node is added to the
aggregation. Figure 30–32 shows the same treemap with the otherThreshold
attribute set to .1.

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-45

Figure 30–32 Treemap Showing Other Node With otherThreshold Set to 10 Percent

■ otherColor: Specify a reference to a method that takes the RowKeySet of all nodes
contained within the current Other node and returns a String for the color of the
Other node.

For example, the census data example uses a method to calculate the mean income
of all the nodes contained within the Other node. If the mean household income is
less than 50,000, the method returns the same color value used to display low
income as the non-aggregated nodes in the treemap. Notice how the color changed
on the Other node in Figure 30–32 to reflect the higher mean income when the
Maryland node is included in the Other node.

Example 30–10 shows the sample method to specify the otherColor value based
on the mean income in the census data example.

Example 30–10 Sample Method to Set Treemap otherColor Value

import org.apache.myfaces.trinidad.model.RowKeySet;
import org.apache.myfaces.trinidad.model.TreeModel;

public String otherColor(RowKeySet set) {
 // The color should be the mean income of the contained regions. Note that it
should actually
 // be the median, but we can't calculate that with the available information.
 TreeModel tree = getCensusRootData();
 // Loop through and get the population + average income
 double population = 0;
 double average = 0;
 for(Object rowKey : set) {
 CensusData.CensusTreeNode item = (CensusData.CensusTreeNode)
tree.getRowData(rowKey);
 population += item.getSize().doubleValue();
 average += item.getSize().doubleValue() * item.getIncome();
 }
 // Calculate the average
 average = average / population;
 // Match the attr groups used by the demos
 return average > 50000 ? "#CC3300" : "#003366";

Customizing Treemap and Sunburst Display Elements

30-46 Web User Interface Developer's Guide for Oracle Application Development Framework

}

■ otherPattern: Optionally, specify a reference to a method that takes the RowKeySet
of all nodes contained within the current Other node and returns a String for the
pattern of the Other node.

Example 30–11 shows the sample code for a method that sets the pattern fill to
smallDiamond on the Other node.

Example 30–11 Sample Method to Set Treemap or Sunburst otherPattern Value

import org.apache.myfaces.trinidad.model.RowKeySet;
public String otherPattern(RowKeySet rowKeySet) {
 return "smallDiamond";
}

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

■ Create the method that takes the RowKeySet of all nodes contained within the
current Other node and returns a String for the color of the Other node.

To use the United States census data example, add the sample method in
Example 30–10 to a managed bean.

If you need help with managed beans, see Section 2.6, "Creating and Using
Managed Beans."

■ Optionally, create the method that takes the RowKeySet of all nodes contained
within the current Other node and returns a String for the pattern of the Other
node.

To use the United States census data example, add the sample method in
Example 30–11 to a managed bean.

To add the otherColor node to a treemap or sunburst:
1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and

choose Go to Properties.

2. In the Property Inspector, expand the Other section and enter a value for the
following attributes:

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-47

■ OtherThreshold: Enter the percentage of nodes to be aggregated as a value
between 0 and 1.

■ OtherColor: Choose Edit from the dropdown menu and select the managed
bean and method that sets the otherColor attribute.

For example, for a managed bean named treemap and a method named
otherColor, enter the following in the OtherColor field:
#{treemap.otherColor}.

■ OtherPattern: Choose Edit from the dropdown and select the managed bean
and method that sets the otherPattern attribute.

For example, for a managed bean named treemap and a method named
otherPattern, enter the following in the OtherPattern field:
#{treemap.otherPattern}.

30.4.5.2 What You May Need to Know About Configuring the Treemap and
Sunburst Other Node
Because the Other node is an aggregation of individual nodes, its behavior will be
different than other treemap and sunburst child nodes when managing children,
attribute groups, selection, tooltips, and popup support. Specifically, you should be
aware of the following differences:

■ Child nodes: Children of the aggregated nodes are not displayed.

■ Other node display with attribute groups: If you use attribute groups to specify a
color or pattern, that color or pattern will not be displayed on the Other node. If
you want the Other node to display the same color or pattern as the attribute
group, you must create methods in a managed bean to return a color or pattern
that makes sense.

■ Selection behavior: Other nodes are not selectable if you change node selection
support from the default value of multiple selection to single node selection.

■ Tooltips: Tooltips display the number of nodes within the Other node and are not
customizable.

■ Popups: By default, popups will not display on the Other node.

When a user invokes a popup on a node, that node is made current on the
component (and its model), allowing the application to determine context.
Treemaps and sunbursts use the af:showPopupBehavior tag to determine context,
but this tag does not support making multiple nodes current. If you want your
treemap or sunburst to display a popup on the Other node, you must create a
method in a managed bean that calls the getPopupContext() method on the
UITreemap or UISunburst component to determine the context of the aggregated
nodes.

30.4.6 Configuring Treemap and Sunburst Sorting
Sorting is enabled by default if your treemap or sunburst uses the Other node.
Otherwise you must enable it by setting the dvt:treemap or dvt:sunburst sorting
attribute to on in the Property Inspector.

Treemaps support sorting in the slice and dice layouts only.

Customizing Treemap and Sunburst Display Elements

30-48 Web User Interface Developer's Guide for Oracle Application Development Framework

30.4.7 Configuring Treemap and Sunburst Advanced Node Content
Configure advanced node content by defining a content facet on the treemap or
sunburst node.

Both treemaps and sunbursts support the following Oracle Application Development
Framework tags:

■ af:image

■ af:outputText

■ af:panelGroupLayout

■ af:spacer

Only a single child is supported for layout reasons, and you must use
af:panelGroupLayout to wrap multiple child components. Interactive behaviors are
also not supported for components within this facet.

30.4.7.1 How to Add Advanced Node Content to a Treemap
Configure advanced node content on a treemap by defining the content facet on the
dvt:treemapNode node.

Before you begin:
It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes
and child tags, see Section 30.2.2.1, "Configuring Treemaps."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a treemap to your page. For more information, see Section 30.2.2.2, "How to Add
a Treemap to a Page."

To add advanced node content to a treemap:
1. In the Structure window, right-click the dvt:treemapNode and choose Insert

inside dvt:treemapNode > Facet content.

2. To configure the facet, in the Structure window, right-click the f:facet - content
node and choose to Insert inside f:facet - content one of the following:

■ Image

■ Output Text

■ Panel Group Layout

■ Spacer

To insert more than one component, choose the Panel Group Layout and add
the image, output text, or spacers as required by your application. For help
with configuring panel group layouts, see Section 8.13.1, "How to Use the
panelGroupLayout Component."

For help with configuring images and output text, see Chapter 16, "Using
Output Components."

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-49

30.4.7.2 How to Add Advanced Root Node Content to a Sunburst:
Configure advanced node content on a treemap by defining the rootContent facet on
the dvt:sunburstNode node.

Before you begin:
It may be helpful to have an understanding of sunburst attributes and child tags can
affect functionality. For information about configuring sunburst attributes and child
tags, see Section 30.2.3.1, "Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a sunburst to your page. For more information, see Section 30.2.3.2, "How to Add
a Sunburst to a Page."

To add advanced root node content to a sunburst:
1. In the Structure window, right-click the dvt:sunburst node and choose Insert

inside dvt:sunburstNode > Facet root Content.

2. To configure the facet, in the Structure window, right-click the f:facet - content
node and choose to Insert inside f:facet - rootContent one of the following:

■ Image

■ Output Text

■ Panel Group Layout

■ Spacer

To insert more than one component, choose the Panel Group Layout and add
the image, output text, or spacers as required by your application. For help
with configuring panel group layouts, see Section 8.13.1, "How to Use the
panelGroupLayout Component."

For help with configuring images and output text, see Chapter 16, "Using
Output Components."

30.4.7.3 What You May Need to Know About Configuring Advanced Node Content
on Treemaps
Treemaps are meant to display two dimensions of data using size and color. Node
content should be used to identify the treemap node, such as with labels or images,
and should not be relied upon to display many additional dimensions of data.
Applications should consider using popups for additional content since they will not
have aspect ratio or small size issues like treemap nodes.

30.4.8 How to Configure Animation in Treemaps and Sunbursts
Treemaps and sunbursts support multiple types of animations. By default, no
animation is displayed, but you can add animation to the treemap or sunburst when it
initially displays. You can also customize the animation effects when a data change
occurs on the component.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For

Customizing Treemap and Sunburst Display Elements

30-50 Web User Interface Developer's Guide for Oracle Application Development Framework

information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a treemap or sunburst to your page. For more information, see Section 30.2.2.2,
"How to Add a Treemap to a Page" or Section 30.2.3.2, "How to Add a Sunburst to a
Page."

To add animation effects to a treemap or sunburst:
1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and

choose Go to Properties.

2. In the Property Inspector, expand the Appearance section and set a value for the
following attributes:

■ AnimationDuration: Specify the duration of the animation in milliseconds.
The default value is 500. For data changes, the animation occurs in stages, and
the default value is 500 for each stage of the animation.

■ AnimationDisplay: Use the dropdown menu to specify the type of animation
to apply when the component is initially rendered. By default, this is set to
none.

■ AnimationOnDataChange: Use the dropdown menu to specify the type of
animation to apply when data is changed in the treemap or sunburst. By
default, this is set to activeData for Active Data Service data change events.

For treemap and sunburst, the auto type is recommended because it will
apply animation for both Partial Page Refresh and Active Data Service Events.

Table 30–1 shows the list of supported animation effects.

Table 30–1 Treemap and Sunburst Animation Effects

Animation Effect AnimationOnDisplay AnimationOnDataChange

none x x

activeData x

alphaFade x x

auto x

cubeToLeft x (treemap only)

cubeToRight x (treemap only)

fan x (sunburst only)

flipLeft x (sunburst only)

flipRight x (sunburst only)

slideToLeft x

slideToRight x

transitionToLeft x

transitionToRight x

zoom x x

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-51

30.4.9 Configuring Labels in Treemaps and Sunbursts
Treemaps and sunbursts support customization of label display for the following
elements:

■ colorLabel and sizeLabel: These labels are used in the legend display. For
additional information about configuring these labels, see Section 30.4.4, "How to
Configure Treemap and Sunburst Legends."

■ treemapNodeHeader: The title displayed in treemap node headers is configurable.
For additional information about customizing the treemap node header title, see
Section 30.4.10, "Configuring Treemap Node Headers and Group Gap Display."

■ node labels: You can configure the size, style, and display of node labels on both
treemaps and sunbursts. The options for configuration are slightly different
between the components, due to the differences in layouts.

30.4.9.1 How to Configure Treemap Leaf Node Labels
Configure treemap node labels by setting label attributes on the treemap node.

Before you begin:
It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes
and child tags, see Section 30.2.2.1, "Configuring Treemaps."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a treemap to your page. For more information, see Section 30.2.2.2, "How to Add
a Treemap to a Page."

To configure treemap leaf node labels:
1. In the Structure window, right-click the dvt:treemapNode node and choose Go to

Properties.

2. In the Property Inspector, expand the Appearance section and set a value for the
following attributes:

■ LabelDisplay: Use the dropdown menu to specify whether or not labels are
displayed on the leaf nodes. The default is node which displays the label
inside the leaf node. To turn off the label display, choose off.

■ LabelHalign: Use the dropdown menu to specify the horizontal alignment for
labels displayed within the node. The default value is center. To align the title
to the left in left-to-right mode and to the right in right-to-left more, set this
value to start.You can also set this to end which aligns the title to the right in
left-to-right mode and to the left in right-to-left mode.

■ LabelValign: Use the dropdown menu to specify the vertical alignment for
labels displayed within the node. The default value is center. You can change
this to top or bottom.

■ LabelStyle: Specify the font style for the label displayed in the header. This
attribute accepts CSS style attributes such as font-size or color.

For example, to change the size of the title to 14 pixels and the color to white,
enter the following value for LabelStyle:

font-size:14px;color: #FFFFFF

Customizing Treemap and Sunburst Display Elements

30-52 Web User Interface Developer's Guide for Oracle Application Development Framework

For the complete list of CSS attributes, visit the World Wide Web Consortium’s
web site at:

http://www.w3.org/TR/CSS21/

■ GroupLabelDisplay: Use the dropdown menu to specify the label display
behavior for group nodes. The default value is header which will display the
group node label in the node header. You can also set this to off or to node
which will display the label inside the node.

30.4.9.2 How to Configure Sunburst Node Labels
Configure sunburst node labels by setting label attributes on the sunburst node.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a sunburst to your page. For more information, see Section 30.2.3.2, "How to Add
a Sunburst to a Page."

To configure sunburst node labels:
1. In the Structure window, right-click the dvt:sunburstNode node and choose Go to

Properties.

2. In the Property Inspector, expand the Appearance section and set a value for the
following attributes:

■ LabelStyle: Specify the font style for the label displayed in the header. This
attribute accepts CSS style attributes such as font-size or color.

For example, to change the size of the title to 14 pixels and the color to white,
enter the following value for LabelStyle:

font-size:14px;color: #FFFFFF

For the complete list of CSS attributes, visit the World Wide Web Consortium’s
web site at:

http://www.w3.org/TR/CSS21/

■ LabelDisplay: Use the dropdown menu to specify the label display for the
nodes. The default value is rotated which displays rotated labels within the
nodes if the client’s environment supports rotated text. You can also set this to
off to turn off the label display or to on which will display horizontal labels
within the nodes.

Note: If the labelDisplay attribute is set to rotated and the client’s
environment does not support rotated text, the sunburst will display
horizontal labels within the nodes.

Customizing Treemap and Sunburst Display Elements

Using ADF Treemap and Sunburst Components 30-53

30.4.10 Configuring Treemap Node Headers and Group Gap Display
Treemap node headers are displayed by default whenever there are two or more child
levels in the treemap. Configure the node header if you wish to change the default
display.

Group gaps are displayed between the outer group nodes by default. Configure group
gaps if you wish to change the way group gaps are displayed between the nodes.

30.4.10.1 How to Configure Treemap Node Headers
Configure treemap node headers by adding the dvt:treemapNodeHeader element to
your treemap node and setting values for the following attributes:

■ labelStyle: Specify the font style for the label displayed in the header. This
attribute accepts CSS style attributes such as font-size or color.

For the complete list of CSS attributes, visit the World Wide Web Consortium’s
web site at:

http://www.w3.org/TR/CSS21/

■ titleHalign: Specify the horizontal alignment of the header’s title. By default, this
attribute is set to start which aligns the title to the left in left-to-right mode and to
the right in right-to-left mode. You can set this to center which aligns the title to
the center or to end which aligns the title to the right in left-to-right mode and to
the left in right-to-left mode.

■ useNodeColor: Set this to on to have the header use the node color of the parent
node.

Before you begin:
It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes
and child tags, see Section 30.2.2.1, "Configuring Treemaps."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap to your page. For more information, see Section 30.2.2.2, "How to
Add a Treemap to a Page."

■ If you did not bind the treemap to a data control when you added the component
to the page, add data to the treemap. For information about adding data to
treemaps or sunbursts using UI-first development, see Section 30.3, "Adding Data
to Treemap and Sunburst Components."

To configure a treemap node header:
1. In the Structure window, right-click the dvt:treemapNode node and choose Insert

inside dvt:treemapNode > Treemap Node Header.

2. Right-click the dvt:treemapNodeHeader element and choose Go to Properties.

3. In the Property Inspector, enter a value for the following attributes:

■ LabelStyle: Enter the style for the node header title.

For example, to change the size of the title to 14 pixels and the color to white,
enter the following value for LabelStyle:

Adding Interactive Features to Treemaps and Sunbursts

30-54 Web User Interface Developer's Guide for Oracle Application Development Framework

font-size:14px;color: #FFFFFF

■ TitleHalign: Use the attribute’s dropdown menu to change the default
alignment to center or end.

■ UseNodeColor: Use the attribute’s dropdown menu to change the default to
on.

30.4.10.2 What You May Need to Know About Treemap Node Headers
When you choose to use the node color in the header, the node color used is the color
that would have been displayed in the treemap if that node was the bottom level of the
treemap.

If your treemap is using the same color scheme across all hierarchical levels, then
using the node color in the header can provide useful information. However, if you
have specified a different color scheme for different levels of the hierarchy, using the
node color may not make sense.

30.4.10.3 How to Customize Treemap Group Gaps
Customize the group gaps displayed between nodes by setting a value for the
groupGaps attribute.

Before you begin:
It may be helpful to have an understanding of how treemap attributes and child tags
can affect functionality. For more information about configuring treemap attributes
and child tags, see Section 30.2.2.1, "Configuring Treemaps."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a treemap to your page. For more information, see Section 30.2.2.2, "How to Add
a Treemap to a Page."

To customize treemap group gap display:
1. In the Structure window, right-click the dvt:treemap node and choose Go to

Properties.

2. In the Property Inspector, expand the Appearance section.

3. Use the GroupGaps dropdown menu to select a value for the group gap display.
Valid values are:

■ outer (default): Gaps are displayed between the outer group nodes.

■ all: Gaps are displayed between all group nodes.

■ none: No gaps are displayed between group nodes.

30.5 Adding Interactive Features to Treemaps and Sunbursts
You can add interactive features to treemaps and sunbursts, including tooltips,
popups, selection support, context menus, and drilling. Treemaps also provide support
for isolation of group nodes.

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-55

30.5.1 Configuring Treemap and Sunburst Tooltips
Define tooltips by specifying a value for the dvt:treemapNode or dvt:sunburstNode
shortDesc attribute. You can specify simple text in this attribute, or you can specify an
EL expression that pulls data from the treemap or sunburst and displays the additional
detail about the node.

Figure 30–33 shows a sunburst displaying the name and size of one of the sunburst
nodes.

Figure 30–33 Sunburst Tooltip

To configure the tooltip to display detail about the node’s label and size data, reference
the label and size attributes in an EL expression. The EL expression pulls data from
the managed bean that references the methods for setting the label and size
attributes.

For example, to specify the values for the label and size attributes in the United States
census example, enter the following for the shortDesc attribute in JDeveloper:

#{row.text}
#{row.size}

30.5.2 Configuring Treemap and Sunburst Popups
Define popups in treemaps or sunbursts using the af:popup and
af:showPopupBehavior tags.

Using the af:popup component with treemap and sunburst components, you can
configure functionality to allow your end users to show and hide information in
secondary windows, input additional data, or invoke functionality such as a context
menu. See Section 30.5.4, "Configuring Treemap and Sunburst Context Menus" to see
how to display a context menu using the af:popup component.

Adding Interactive Features to Treemaps and Sunbursts

30-56 Web User Interface Developer's Guide for Oracle Application Development Framework

30.5.2.1 How to Add Popups to Treemap and Sunburst Components
With ADF Faces components, JavaScript is not needed to show or hide popups. The
af:showPopupBehavior tag provides a declarative solution, so that you do not have to
write JavaScript to open a popup component or register a script with the popup
component. This section provides an example for configuring a sunburst or treemap
component to display popups using the af:showPopupBehavior tag.

To configure a popup using the af:showPopupBehavior and af:popup tags, define the
af:popup component and associated methods, insert the af:showPopupBehavior tag as
a child of the dvt:treemapNode or dvt:sunburstNode component and configure the
af:showPopupBehavior component’s tags for the trigger type and reference to the
af:popup component’s id attribute.

Figure 30–34 shows a treemap configured to display a brief message and the name of
the treemap node as the user hovers the mouse over the treemap.

Figure 30–34 Treemap Showing Popup on Mouse Hover

Example 30–12 shows the code on the page to declare the popup.

Example 30–12 Sample Code for Treemap Popup on Mouse Hover

<af:group id="g1">
 <af:outputText value="Hover on a node to show a popup."
 inlineStyle="font-size:medium;" id="ot1"/>
 <af:panelGroupLayout layout="horizontal" id="pgl1">
 <dvt:treemap id="treemap" value="#{treemap.censusData}" var="row"
 inlineStyle="width:450px; height:350px;"
 summary="Treemap Popup"
 displayLevelsChildren="3">
 <dvt:treemapNode id="tn1" value="#{row.size}" fillColor="#{row.color}
 label="#{row.text}">
 <af:showPopupBehavior popupId="::noteWindowPopup"
 triggerType="mouseHover"/>
 </dvt:treemapNode>
 </dvt:treemap>
 </af:panelGroupLayout>
 <af:popup childCreation="deferred" autoCancel="disabled"
 id="noteWindowPopup" launcherVar="source" eventContext="launcher"
 clientComponent="true" contentDelivery="lazyUncached">
 <af:setListener from="#{source.currentRowData.text}"

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-57

 to="#{treemap.noteWindowMessage}" type="popupFetch"/>
 <af:noteWindow id="nw1">
 <af:outputFormatted value="Hello from #{treemap.noteWindowMessage}"
id="of8"/>
 </af:noteWindow>
 </af:popup>
</af:group>

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

■ Add the ADF Faces popup component to your page and insert the menu, dialog, or
window that you want the popup to display.

For example, the popup in Figure 30–34 uses a note window to display the "Hello
from Texas" message. To use this example, insert the ADF Faces noteWindow
component inside the popup component, and insert the ADF Faces
outputFormatted component inside the note window. The sample code is
displayed in Example 30–12.

The example popup also includes the ADF Faces setListener component that
retrieves the data from the treemap for use by the note window. In this example,
the data is retrieved from the text attribute of the current node
(source.currentRowData.text) and then stored in the noteWindowMessage string
variable in the treemap managed bean. To use this example, add the code in
Example 30–13 to the treemap bean:

Example 30–13 Code Fragment to Add noteWindowMessage Variable to Treemap
Managed Bean

private String noteWindowMessage = null;

public void setNoteWindowMessage(String noteWindowMessage) {
 this.noteWindowMessage = noteWindowMessage;
}
public String getNoteWindowMessage() {
 return noteWindowMessage;
}

Adding Interactive Features to Treemaps and Sunbursts

30-58 Web User Interface Developer's Guide for Oracle Application Development Framework

If you need help with managed beans, see Section 2.6, "Creating and Using
Managed Beans." For additional details about using popup windows to display
dialogs, menus, and windows, see Chapter 13, "Using Popup Dialogs, Menus, and
Windows."

■ Create any additional components needed to display the selection.

For example, the page in Figure 30–34 uses an af:outputText component to
prompt the user to hover on a node to show a popup. For additional information
about configuring af:outputText components, see Section 16.2, "Displaying
Output Text and Formatted Output Text."

To add a popup to a treemap or sunburst:
1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode

node and choose Insert inside dvt:<component>Node > Show Popup Behavior.

For example, to add the popup to a treemap, right-click the dvt:treemapNode
node and choose Insert inside dvt:treemapNode > Show Popup Behavior.

2. Right-click the af:showPopupBehavior node and choose Go to Properties.

3. In the Property Inspector, enter a value for the following attributes:

■ TriggerType: Enter a value for the actions that will trigger the popup. Valid
values are click and mouseHover.

■ PopupId: Reference the id of the popup component. You can enter the id
directly or use the attribute’s dropdown menu to choose Edit and select the id
in the Edit Property: PopupId dialog.

For example, to reference the popup in the census data example, enter the
following value for the PopupId: ::noteWindowPopup.

30.5.2.2 What You May Need to Know About Adding Popups to Treemaps and
Sunburst Components
Treemaps and sunbursts currently support only the click and mouseHover trigger
types.

Popups do not display on the Other node. For additional information, see
Section 30.4.5.2, "What You May Need to Know About Configuring the Treemap and
Sunburst Other Node."

30.5.3 Configuring Treemap and Sunburst Selection Support
The treemap and sunburst components support single or multiple node selection. If
the component allows multiple selections, users can select multiple nodes using a
Control+click operation.

30.5.3.1 How to Add Selection Support to Treemap and Sunburst Components
When a user selects or deselects a node, the treemap or sunburst component invokes a
selectionEvent event. You can register a custom selectionListener instance that can
do post-processing on the treemap or sunburst component based on the selected node
or nodes.

Figure 30–35 shows a simple example of a sunburst configured to use a custom
selection listener. As the user makes single or multiple selections, the console displays
the name of the node or nodes selected and the number of nodes added or removed
from the selection.

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-59

Figure 30–35 Sunburst Illustrating Custom Selection Listener

Example 30–14 shows the selectionListener method used to respond to the user
clicks and generate the output to the console. Store this method in the sunburst’s
managed or backing bean.

Example 30–14 Code Sample for Sunburst selectionListener Method

import javax.faces.component.UIComponent;
import oracle.adf.view.faces.bi.component.sunburst.UISunburst;
import org.apache.myfaces.trinidad.event.SelectionEvent;
import org.apache.myfaces.trinidad.model.RowKeySet;

public void selectionListener(SelectionEvent event) {
 UIComponent component = event.getComponent();
 if(component instanceof UISunburst) {
 UISunburst sunburst = (UISunburst) component;
 UIXHierarchy hierarchy = (UIXHierarchy) component;
 StringBuilder s = new StringBuilder();
 // Get the selected row keys and print
 RowKeySet selectedRowKeys = sunburst.getSelectedRowKeys();
 System.out.println(selectedRowKeys.size() + " Nodes Currently Selected:");
 if (selectedRowKeys != null) {
 for (Object rowKey : selectedRowKeys) {
 hierarchy.setRowKey(rowKey);
 TreeNode rowData = (TreeNode)sunburst.getRowData (rowKey);
 s.append (rowData.getText()).append(", ");
 }
 if (s.length() > 0)
 s.setLength (s.length() - 2);
 System.out.println(s);
 }
 // Get the row keys that were just added to the selection
 RowKeySet addedRowKeys = event.getAddedSet();
 System.out.println(addedRowKeys.size() + " Nodes Added");
 // Get the row keys that were just removed from the selection
 RowKeySet removedRowKeys = event.getRemovedSet();
 System.out.println(removedRowKeys.size() + " Nodes Removed");
 }
 }
You declare the selection listener method in the treemap or sunburst component’s
selectionListener attribute and add any additional components to display the

Adding Interactive Features to Treemaps and Sunbursts

30-60 Web User Interface Developer's Guide for Oracle Application Development Framework

selection to the JSF page. In the example in this section, the listener is simply
displaying the output to the console, and only the prompt to the user to make the
selection is added to the page. Example 30–15 shows the portion of the page used to
set up the sunburst. The selectionListener attribute is highlighted in bold font.

Example 30–15 Sunburst Sample Page Declaring Selection Listener

<af:panelGroupLayout id="pgl12">
 <af:group id="g5">
 <af:outputText value="Click on a node to make a selection. Use Ctrl-click for
multiple nodes."
 inlineStyle="font-size:large;" id="ot3"/>
 <dvt:sunburst id="s1" summary="SampleSunburst"
 value="#{sunburst.censusData}"
 var="row"
 colorLabel="Income"
 sizeLabel="Population" displayLevelsChildren="3"
 selectionListener="#{sunburst.selectionListener}">
 <dvt:sunburstNode id="sn1" value="#{row.size}" fillColor="#{row.color}"
 label="#{row.text}"
 shortDesc="#{row.text}
#{row.size}"/>
 </dvt:sunburst>
 </af:group>
</af:panelGroupLayout>

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

■ Create the method that will define the selectionListener and return the selection
state and store it in the treemap or sunburst component’s managed or backing
bean.

To use the same census data example, copy the example code into a managed bean
named sunburst. If you need help with managed beans, see Section 2.6, "Creating
and Using Managed Beans."

■ Create any additional components needed to display the selection.

For example, the page in Figure 30–35 uses an af:outputText component to
prompt the user to click on a node to make a selection. For additional information
about configuring af:outputText components, see Section 16.2, "Displaying
Output Text and Formatted Output Text."

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-61

To add selection support to a treemap or sunburst:
1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and

choose Go to Properties.

2. In the Property Inspector, expand the Behavior section and set the following
properties:

■ NodeSelection: Set to single to enable selection support for single nodes only.
Multiple selection is enabled by default.

■ SelectionListener: Enter the name of the method to be called when the user
clicks on the nodes.

For example, for a managed bean named sunburst and a method named
selectionListener, enter the following in the SelectionListener field:
#{sunburst.selectionListener}.

30.5.3.2 What You May Need to Know About Adding Selection Support to Treemaps
and Sunbursts
Because treemaps and sunbursts use the same data model as the Tree component,
selection events are defined in the
org.apache.myfaces.trinidad.event.SelectionEvent library. For additional
information about selection support in a tree model, see Section 10.5.3, "What Happens
at Runtime: Tree Component Events."

For additional information about event handling in JDeveloper, see Chapter 5,
"Handling Events."

30.5.4 Configuring Treemap and Sunburst Context Menus
You can configure both treemaps and sunbursts to display context menus when a user
right-clicks a node.

30.5.4.1 How to Configure Treemap and Sunburst Context Menus
Define treemap and sunburst context menus using these context menu facets:

■ bodyContextMenu: Specifies a context menu that is displayed on non-selectable
elements in the treemap or sunburst component.

■ contextMenu: Specifies a context menu that is displayed on any selectable element
in the treemap or sunburst component.

■ multiSelectContextMenu: Specifies a content menu that is displayed when
multiple elements are selected in the treemap or sunburst component.

Each facet on a JSP or JSPX page supports a single child component. Facelets support
multiple child components. For all of these facets to work, selection must be enabled in
the treemap or sunburst’s properties. Context menus are currently only supported in
Flash.

You create a context menu by using af:menu components within an af:popup
component. You can then invoke the context menu popup from another component,
based on a specified trigger. For more information about configuring context menus,
see Chapter 13, "Using Popup Dialogs, Menus, and Windows."

Figure 30–36 shows a sample treemap configured to display a context menu using the
contextMenu facet when the user right-clicks on one of the treemap’s regions,
divisions, or nodes.

Adding Interactive Features to Treemaps and Sunbursts

30-62 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 30–36 Treemap Context Menu

If the user selects View Details for Midwest Region, the application can provide
additional information about the Midwest Region node.

Figure 30–37 shows the text output that is displayed below the treemap after the user
chooses to view the details for the Midwest Region. In this example, the output simply
verifies what the user clicked on, but this context menu could also be used to present
additional details about the Midwest Region.

Figure 30–37 Context Menu Sample Output After Click

Example 30–16 shows the sample code used to configure the example treemap and the
context menu.

Example 30–16 Code Sample for Treemap Context Menu

<af:group id="g1">
 <af:outputFormatted value="Right click to display context menu." id="of1"/>
 <dvt:treemap id="t1" displayLevelsChildren="3" summary="Sample Treemap"
 var="row" value="#{treemap.censusData}"

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-63

 binding="#{treemapContextMenu.treemap}">
 <dvt:treemapNode id="tn1" value="#{row.size}" fillColor="#{row.color}"
 label="#{row.text}"/>
 <f:facet name="contextMenu">
 <af:popup id="p1" contentDelivery="lazyUncached">
 <af:menu text="menu 1" id="m1">
 <af:commandMenuItem text="View Details for
#{treemapContextMenu.selectionState}"
 id="cmi1"
 actionListener="#{treemapContextMenu.menuItemListener}"/>
 <af:group id="g2">
 <af:commandMenuItem text="Add Task" id="cmi2"
 actionListener="#{treemapContextMenu.menuItemListener}"/>
 <af:commandMenuItem text="Add Notes" id="cmi3"
 actionListener="#{treemapContextMenu.menuItemListener}"/>
 </af:group>
 </af:menu>
 </af:popup>
 </f:facet>
 </dvt:treemap>
 <af:outputFormatted value="#{treemapContextMenu.status}" id="of2"
 clientComponent="true"
 binding="#{treemapContextMenu.outputFormatted}"/>
</af:group>

The example uses a backing bean named treemapContextMenu for the methods to set
the treemap, return the selection state and respond to user clicks on the context menu.
This example also uses the same classes and methods to set up the data for the
treemap as described in Section 30.3, "Adding Data to Treemap and Sunburst
Components." Example 30–17 shows the code for the ContextMenuSample class.

Example 30–17 ContextMenuSample Class Code

import javax.faces.component.UIComponent;
import javax.faces.event.ActionEvent;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;
import oracle.adf.view.rich.component.rich.nav.RichCommandMenuItem;
import oracle.adf.view.rich.component.rich.output.RichOutputFormatted;
import org.apache.myfaces.trinidad.context.RequestContext;

public class ContextMenuSample {
 private UITreemap treemap;
 private String status;
 private RichOutputFormatted outputFormatted;
public ContextMenuSample() {
}
public void setTreemap(UITreemap treemap) {
 this.treemap = treemap;
}
public UITreemap getTreemap() {
 return treemap;
}
public String getSelectionState() {
 if (treemap != null) {
 return TreemapSample.convertToString(treemap.getSelectedRowKeys(), treemap);
 } else
 return null;
 }
public String getStatus() {
 return status;

Adding Interactive Features to Treemaps and Sunbursts

30-64 Web User Interface Developer's Guide for Oracle Application Development Framework

 }
public void setOutputFormatted(RichOutputFormatted outputFormatted) {
 this.outputFormatted = outputFormatted;
 }
public RichOutputFormatted getOutputFormatted() {
 return outputFormatted;
 }
/**
 * Called when a commandMenuItem is clicked. Updates the outputText with
information about the menu item clicked.
 * @param actionEvent
 */
public void menuItemListener(ActionEvent actionEvent) {
 UIComponent component = actionEvent.getComponent();
 if (component instanceof RichCommandMenuItem) {
 RichCommandMenuItem cmi = (RichCommandMenuItem)component;
 // Add the text of the item into the status message
 StringBuilder s = new StringBuilder();
 s.append("You clicked on \"").append(cmi.getText()).append("\".

");
 this.status = s.toString();
 // Update the status text component
 RequestContext.getCurrentInstance().addPartialTarget(this.outputFormatted);
 }
 }
}

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

■ Create the managed bean that will define the actionListener and return the
selection state.

To use the same census data example, copy the example code in Example 30–17,
"ContextMenuSample Class Code" into a backing bean named
treemapContextMenu. If you need help with managed beans, see Section 2.6,
"Creating and Using Managed Beans."

■ Create any additional components needed to support the context menu.

For example, the example in Figure 30–36 uses an af:outputText component to
prompt the user to right-click to display a context menu. When the user selects the

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-65

custom context menu item, the page uses an af:outputFormatted component to
display a message confirming which node the user selected.

See the code sample in Example 30–17 for the details needed to configure the
additional components. For additional information about af:outputText and
af:outputFormatted components, see Section 16.2, "Displaying Output Text and
Formatted Output Text."

To add a context menu to a treemap or sunburst:
1. If your application is using a backing bean, do the following:

1. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Go to Properties.

2. Expand the Advanced section and enter a value for the Binding attribute to
associate the treemap with the managed bean that contains the methods for
the context menu. Alternatively, choose Edit from the attribute’s dropdown
menu to create or select an existing bean and method.

The binding attribute is needed for the census data example because it includes
the code to set up the treemap, but it also uses the data and methods from the
same classes and methods that were described in Section 30.3.1, "How to Add
Data to Treemap or Sunburst Components." For example, for a backing bean
named treemapContextMenu, enter the following in the Binding field:
#{treemapContextMenu.treemap}.

2. In the Structure window, right-click the dvt:treemap or dvt:sunburst node and
choose Insert inside dvt:treemap > Facet.

3. In the Insert Facet dialog, enter the name of the facet that corresponds to the type
of context menu that you wish to create.

For example, to define a contextMenu facet, enter the following in the Name field:
contextMenu.

4. Click OK.

The facet is created as a child of the dvt:treemap node.

5. In the Structure window, right-click the f:facet - contextMenu node and choose
Insert inside f:facet - contextMenu > ADF Faces > Popup.

6. Right-click the af:popup node and choose Go to Properties.

7. In the Property Inspector, set the following properties:

■ ContentDelivery: Set this to LazyUncached.

■ AutoCancel: Set this to <default> enabled.

■ ChildCreation: Set this to <default> immediate.

8. In the Structure window, right-click the af:popup node and choose Insert inside
af:popup > Menu.

9. In the Structure window, right-click the af:menu node and choose Insert inside
af:menu > Menu Item to create a menu item.

10. Right-click the af:commandMenuItem and choose Go to Properties.

11. In the Property Inspector, expand the Common section and set the following
properties:

■ Text: Enter the text to display in the menu.

Adding Interactive Features to Treemaps and Sunbursts

30-66 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, to duplicate the treemap census data example, enter the
following in the Text field: View Details for
#{treemapContextMenu.selectionState}.

■ ActionListener: Enter the name of the method to be called when the user
selects the menu item.

For example, for a managed bean named treemapContextMenu and a method
named menuItemListener, enter the following in the ActionListener field:
#{treemapContextMenu.menuItemListener}.

12. Repeat Step 9 through Step 11 for each menu item that you want the context menu
to display.

13. To configure additional context menu facets, repeat Steps 1 through Step 12.

30.5.4.2 What You May Need to Know About Configuring Treemap and Sunburst
Context Menus
Context menus are supported in HTML5 and Flash image formats only. When context
menus are rendered in Flash, the context menus use the Flash Player’s context menu.
This imposes several limitations defined by the Flash Player:

■ Flash does not allow for submenus it its context menu.

■ Flash limits custom menu items to 15. Any built-in menu items for the component,
for example, a pie graph interactiveSliceBehavior menu item, will count
towards the limit,

■ Flash limits menu items to text-only. Icons or other controls possible in ADF Faces
menus are not possible in Flash menus.

■ Each menu caption must contain at least one visible character. Control characters,
new lines, and other white space characters are ignored. No caption can be more
than 100 characters long.

■ Menu captions that are identical to another custom item are ignored, whether the
matching item is visible or not. Menu captions are compared to built-in captions or
existing custom captions without regard to case, punctuation, or white space.

■ The following captions are not allowed, although the words may be used in
conjunction with other words to form a custom caption: Save, Zoom In, Zoom
Out, 100%, Show All, Quality, Play, Loop, Rewind, Forward, Back, Movie not
loaded, About, Print, Show Redraw Regions, Debugger, Undo, Cut, Copy, Paste,
Delete, Select All, Open, Open in new window, and Copy link.

■ None of the following words can appear in a custom caption on their own or in
conjunction with other words: Adobe, Macromedia, Flash Player, or Settings.

Additionally, since the request from Flash for context menu items is a synchronous
call, a server request to evaluate EL is not possible when the context menu is invoked.
To provide context menus that vary by selected object, the menus will be pre-fetched if
the context menu popup uses the setting contentDelivery="lazyUncached". For
context menus that may vary by state, this means that any EL expressions within the
menu definition will be called repeatedly at render time, with different selection and

Tip: To group related menu items, wrap the ADF Faces af:group
component around the af:commandMenuItem as shown in
Example 30–16. For more information about the af:group component,
see Section 8.13, "Grouping Related Items."

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-67

currency states. When using these context menus that are pre-fetched, the application
must be aware of the following:

■ Long running or slow code should not be executed in any EL expression that may
be used to determine how the context menu is displayed. This does not apply to
af:commandMenuItem attributes that are called after a menu item is selected, such
as actionListener.

■ In the future, if the Flash limitations are solved, the ADF context menu may be
displayed in place of the Flash context menu. To ensure upgrade compatibility,
you should code such that an EL expression will function both in cases where the
menu is pre-fetched, and also where the EL expression is evaluated when the
menu is invoked. The only component state that applications should rely on are
selection and currency.

30.5.5 Configuring Treemap and Sunburst Drilling Support
Drilling support enables the user to navigate through the treemap or sunburst
hierarchy by clicking the component’s group headers or by double-clicking the
individual nodes.

30.5.5.1 How to Configure Treemap and Sunburst Drilling Support
Enable drilling support through the treemap or sunburst node’s drilling attribute.

JDeveloper includes the necessary code to support drilling. However, you may want
the application to perform some other task when the node is drilled. You can define a
method to perform the additional task and add it as a drill listener to the treemap’s or
sunburst’s managed or backing bean.

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

■ If you wish to add a drill listener, create the method that will define the listener
and add it to the treemap’s managed or backing bean.

For more information about handling events, see Chapter 5, "Handling Events." If
you need help with beans, see Section 2.6, "Creating and Using Managed Beans."

Adding Interactive Features to Treemaps and Sunbursts

30-68 Web User Interface Developer's Guide for Oracle Application Development Framework

To add drilling support to a treemap or sunburst
1. In the Structure window, right-click the dvt:treemapNode or dvt:sunburstNode

node and choose Go to Properties.

2. In the Property Inspector, expand the Advanced section, and use the Drilling
attribute’s dropdown menu to set the drilling attribute to one of the following
values:

■ replace: allows the user to double-click a node to set it as the new root of the
treemap or sunburst

■ insert (sunburst only): allows the user to expand or collapse the children of a
node

■ insertAndReplace (sunburst only): allows the user to double-click a node to
set it as the root of the hierarchy and allows the user to expand or collapse the
children of a node

3. If your application includes a drill listener, do the following:

1. In the Structure window, right-click the dvt:treemap node and choose Go to
Properties.

2. In the Property Inspector, expand the Behavior section.

3. From the DrillListener attribute’s dropdown menu, choose Edit.

4. In the Edit Property dialog, use the search box to locate the treemap’s
managed bean.

5. Expand the managed bean node and select the method that contains the drill
listener.

6. Click OK.

The expression is created.

For example, for a managed bean named sampleTreemap and a method named
sampleDrillListener, the Expression Builder generates the
code#{sampleTreemap.sampleDrillListener} as the value for the drill
listener.

30.5.5.2 What You May Need to Know About Treemaps and Drilling Support
Drilling is recommended when there are additional layers of data that can be
displayed. Unlike isolation, it is a server side operation that will fetch additional data
from the tree model. To focus on group data that is already displayed, use the treemap
isolate feature. For more information, see Section 30.5.7, "Configuring Isolation
Support (Treemap Only)."

30.5.6 How to Add Drag and Drop to Treemaps and Sunbursts
You can configure treemaps and sunbursts as drag sources and drop targets for drag
and drop operations between supported components on a page.

To add drag support to a treemap or sunburst, add the af:dragSource tag to the
treemap and add the af:dropTarget tag to the component receiving the drag. The
component receiving the drag must include the
org.apache.myfaces.trinidad.model.RowKeySet data flavor as a child of the
af:dropTarget and also define a dropListener method to respond to the drop event.

To add drop support to a treemap or sunburst, add the af:dropTarget tag to the
treemap or sunburst and include the data flavors that the treemap or sunburst will

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-69

support. Add a dropListener method to a treemap or sunburst managed bean that
will respond to the drop event.

The following procedure shows how to set up a treemap or sunburst as a simple drag
source or drop target. For more detailed information about configuring drag and drop
on ADF Faces or ADF Data Visualization components, see Chapter 34, "Adding Drag
and Drop Functionality."

Before you begin:
It may be helpful to have an understanding of how treemap and sunburst attributes
and child tags can affect functionality. For more information about configuring
treemap attributes and child tags, see Section 30.2.2.1, "Configuring Treemaps." For
information about configuring sunburst attributes and child tags, see Section 30.2.3.1,
"Configuring Sunbursts."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

You will need to complete these tasks:

■ Add a treemap or sunburst to your page. For more information, see
Section 30.2.2.2, "How to Add a Treemap to a Page" or Section 30.2.3.2, "How to
Add a Sunburst to a Page."

■ If you did not bind the treemap or sunburst to a data control when you added the
component to the page, add data to the treemap or sunburst. For information
about adding data to treemaps or sunbursts using UI-first development, see
Section 30.3, "Adding Data to Treemap and Sunburst Components."

■ Create any additional components needed to support the drag and drop.

For example, the sample in Figure 30–17 uses an af:outputText component to
prompt the user to drag a treemap node to the indicated text. When the user drags
a node to the text, the page uses an af:outputFormatted component to display a
message confirming which node the user dragged.

Example 30–18 shows the sample code for the completed page. For additional
information about af:outputText and af:outputFormatted components, see
Section 16.2, "Displaying Output Text and Formatted Output Text."

Example 30–18 Sample Code for Treemap Drag Source Example

<af:group id="g1">
 <af:panelGroupLayout id="pgl2" layout="horizontal">
 <af:outputText value="Drag Source Demo" inlineStyle="font-size:large;"
id="ot2"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:outputText value="Drag a Treemap Node to the Text" id="ot1"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3"
 colorLabel="Median Household Income"
 sizeLabel="Population" summary="Discrete Treemap"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}"
 shortDesc="#{row.text}
Population: #{row.size}
Income:
#{row.income}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low Income'}"

Adding Interactive Features to Treemaps and Sunbursts

30-70 Web User Interface Developer's Guide for Oracle Application Development Framework

 type="color"/>
 </dvt:treemapNode>
 <af:dragSource defaultAction="MOVE" actions="COPY MOVE LINK"/>
 </dvt:treemap>
 <af:spacer width="20" id="s2"/>
 <af:outputFormatted value="#{treemap.dropText}" id="of1">
 <af:dropTarget dropListener="#{treemap.fromDropListener}">
 <af:dataFlavor flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"/>
 </af:dropTarget>
 </af:outputFormatted>
 </af:panelGroupLayout>
</af:group>

Example 30–19 shows the sample code for the page in Figure 30–18. In this
example, the treemap is configured as the drop target.

Example 30–19 Sample Code for Treemap Drop Target Example

<af:group id="g1">
 <af:panelGroupLayout id="pgl4" layout="horizontal">
 <af:outputText value="Drop Target Demo" inlineStyle="font-size:large;"/>
 <af:spacer width="10" id="s2"/>
 <af:outputText value="Drag From the Text to the Treemap" id="ot1"/>
 </af:panelGroupLayout>
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3"
 colorLabel="Median Household Income"
 sizeLabel="Population" summary="Discrete Treemap"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}"
 shortDesc="#{row.text}
Population: #{row.size}
Income:
#{row.income}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dropTarget dropListener="#{treemap.toDropListener}"
 actions="MOVE COPY LINK">
 <af:dataFlavor flavorClass="java.lang.Object"/>
 </af:dropTarget>
 </dvt:treemap>
 <af:spacer width="20" id="s1"/>
 <af:outputFormatted value="#{treemap.dragText}" id="of1"
 clientComponent="true">
 <af:componentDragSource/>
 </af:outputFormatted>
 </af:panelGroupLayout>
</af:group>

To add drag and drop support to a treemap or sunburst:
1. To configure the treemap or sunburst as a drop target, in the Component Palette,

from the Operations panel, drag a Drop Target tag and drop it as a child to the
treemap or sunburst component.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the treemap’s or
sunburst’s managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-71

For example, to add a method named toDropListener() on a managed bean
named treemap, choose Edit, select treemap from the dropdown menu, and click
New on the right of the Method field to create the toDropListener() method.

Example 30–20 shows the sample drop listener and supporting methods for the
treemap displayed in Figure 30–18.

Example 30–20 Sample Drop Listener for a Treemap

// imports needed by methods
import java.util.Map;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.render.ClientRowKeyManager;
import javax.faces.context.FacesContext;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;
import javax.faces.component.UIComponent;
// variables need by methods
private String dragText = "Drag this text onto a node";
// drop listener
public DnDAction toDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<Object> dataFlavor = DataFlavor.getDataFlavor(Object.class);
 Object transferableObj = transferable.getData(dataFlavor);
 if(transferableObj == null)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 UIComponent dropComponent = event.getDropComponent();
 Object dropSite = event.getDropSite();
 if(dropSite instanceof Map) {
 String clientRowKey = (String) ((Map) dropSite).get("clientRowKey");
 Object rowKey = getRowKey(dropComponent, clientRowKey);
 if(rowKey != null) {
 sb.append("Drop Site: ");
 sb.append(getLabel(dropComponent, rowKey));
 }
 }
 // Update the output text
 this.dragText = sb.toString();
 RequestContext.getCurrentInstance().addPartialTarget(event.getDragComponent());
 return event.getProposedAction();
}

Adding Interactive Features to Treemaps and Sunbursts

30-72 Web User Interface Developer's Guide for Oracle Application Development Framework

public String getDragText() {
 return dragText;
}

private String getLabel(UIComponent component, Object rowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 TreeNode rowData = (TreeNode) treemap.getRowData(rowKey);
 return rowData.getText();
 }
 return null;
}

private Object getRowKey(UIComponent component, String clientRowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 ClientRowKeyManager crkm = treemap.getClientRowKeyManager();
 return crkm.getRowKey(FacesContext.getCurrentInstance(), component,
clientRowKey);
 }
 return null;
}

3. Click OK to enter the Insert Data Flavor dialog.

4. In the Insert Data Flavor dialog, enter the object that the drop target will accept.
Alternatively, use the dropdown menu to navigate through the object hierarchies
and choose the desired object.

For example, to allow the af:outputFormatted component to drag text to the
treemap, enter java.lang.Object in the Insert Data Flavor dialog.

5. In the Structure window, right-click the af:dropTarget component and choose Go
to Properties.

6. In the Property Inspector, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

7. To use the treemap or sunburst as the drop target, do the following:

1. In the Component Palette, from the Operations panel, drag and drop a Drag
Source tag as a child to the component that will be the source of the drag.

For example, drag and drop a Drag Source tag as a child to an
af:outputFormatted component.

2. In the component’s value field, reference the public variable that you created
in the drop listener for the treemap or sunburst in Step 2.

For example, for a drop listener named toDropListener() and a variable
named dropText, enter the following in the component’s Value field:

#{treemap.dropText}

8. To configure the treemap or sunburst as a drag source, in the Component Palette,
from the Operations panel, drag and drop a Drag Source tag as a child to the
treemap or sunburst.

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-73

9. In the Property Inspector, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

10. To specify the default action that the drag source will support, use the
DefaultAction attribute’s dropdown menu to choose COPY, MOVE, or LINK.

The treemap in the drag and drop example in Figure 30–17, "Treemap Configured
as a Drag Source" uses MOVE as the default action.

11. To add the treemap or sunburst as a drop target to another component, do the
following:

1. In the Component Palette, from the Operations panel, drag and drop a Drop
Target onto the component that will receive the drop.

For example, the page in the drag and drop example in Figure 30–18,
"Treemap Configured as a Drop Target" contains an af:outputFormatted
component that displays the results of the drop.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the
appropriate managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named fromDropListener() on a managed
bean named treemap, choose Edit, select treemap from the dropdown menu,
and click New on the right of the Method field to create the
fromDropListener() method.

Example 30–21 shows the sample drop listener for the treemap displayed in
Figure 30–17. This example uses the same imports and helper methods used in
Example 30–20, and they are not included here.

Example 30–21 Sample Drop Listener for a Component Using a Treemap as a Drag
Source

// Additional import needed for listener
import org.apache.myfaces.trinidad.model.RowKeySet;
// Variables needed by method
private String dropText = "Drop a node here";
// Drop listener
public DnDAction fromDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<RowKeySet> dataFlavor = DataFlavor.getDataFlavor(RowKeySet.class);
 RowKeySet rowKeySet = transferable.getData(dataFlavor);
 if(rowKeySet == null || rowKeySet.getSize() <= 0)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");

Adding Interactive Features to Treemaps and Sunbursts

30-74 Web User Interface Developer's Guide for Oracle Application Development Framework

 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 sb.append("Nodes: ");
 UIComponent dragComponent = event.getDragComponent();
 for(Object rowKey : rowKeySet) {
 sb.append(getLabel(dragComponent, rowKey));
 sb.append(", ");
 }
 // Remove the trailing ,
 sb.setLength(sb.length()-2);
 // Update the output text
 this.dropText = sb.toString();
 RequestContext.getCurrentInstance().addPartialTarget(event.getDropComponent());
 return event.getProposedAction();
}

3. Click OK to enter the Insert Data Flavor dialog.

4. In the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

For example, to allow the af:outputFormatted component to drag text to the
treemap, enter org.apache.myfaces.trinidad.model.RowKeySet in the Insert
Data Flavor dialog.

5. In the Structure window, right-click the af:dropTarget component and choose
Go to Properties.

6. In the Property Inspector, in the Actions field, enter a list of the operations that
the drop target will accept, separated by spaces. Allowable values are: COPY,
MOVE, or LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

7. In the component’s value field, reference the public variable that you created
in the drop listener for the treemap or sunburst in Step 2.

For example, for a drop listener named fromDropListener() and a variable
named dragText, enter the following in the component’s Value field:

#{treemap.dragText}

30.5.7 Configuring Isolation Support (Treemap Only)
Isolation allows the user to click a group header to maximize the display of the group’s
data. The isolation feature is enabled by default when the group header is displayed.

30.5.7.1 How to Disable Isolation Support
If you wish to disable isolation, set the Isolate attribute of the
dvt:treemapNodeHeader node to off.

Before you begin:
It may be helpful to have an understanding of how treemap attributes and treemap
child tags can affect functionality. For more information, see Section 30.2.2.1,

Adding Interactive Features to Treemaps and Sunbursts

Using ADF Treemap and Sunburst Components 30-75

"Configuring Treemaps."

You may also find it helpful to understand functionality that can be added using other
ADF Faces features. For more information, see Section 30.1.3, "Additional
Functionality for Treemap and Sunburst Components."

Add a treemap to your page. For more information, see Section 30.2.2.2, "How to Add
a Treemap to a Page."

Add treemap node headers to your treemap. For more information, see
Section 30.4.10.1, "How to Configure Treemap Node Headers."

To disable isolation support on a treemap group:
1. In the Structure window, expand the dvt:treemapNode node.

2. Right-click the dvt:treemapNodeHeader node and choose Go to Properties.

3. In the Property Inspector, expand the Advanced section.

4. From the Isolate attribute’s dropdown menu, choose off.

5. If your treemap has multiple nodes, repeat Step 1 through Step 4 to disable
isolation support for each of the nodes.

30.5.7.2 What You May Need to Know About Treemaps and Isolation Support
Isolation is a client-side operation that allows the user to focus on data that is already
displayed. If your treemap has multiple child levels and you want the user to access
levels that are not already displayed, use drilling instead. To add drilling support, see
Section 30.5.5.1, "How to Configure Treemap and Sunburst Drilling Support."

Adding Interactive Features to Treemaps and Sunbursts

30-76 Web User Interface Developer's Guide for Oracle Application Development Framework

31

Using ADF Hierarchy Viewer Components 31-1

31 Using ADF Hierarchy Viewer Components

This chapter describes how to use an ADF hierarchy viewer component to display
data, and provides the options for hierarchy view customization.

This chapter includes the following sections:

■ Section 31.1, "Introduction to Hierarchy Viewers"

■ Section 31.2, "Data Requirements for Hierarchy Viewers"

■ Section 31.3, "Creating a Hierarchy Viewer"

■ Section 31.4, "Managing Nodes in a Hierarchy Viewer"

■ Section 31.5, "Navigating in a Hierarchy Viewer"

■ Section 31.6, "Adding Interactivity to a Hierarchy Viewer Component"

■ Section 31.7, "Using Panel Cards"

■ Section 31.8, "Customizing the Appearance of a Hierarchy Viewer"

■ Section 31.9, "Adding Search to a Hierarchy Viewer"

For information about the data binding of ADF hierarchy viewers, see the "Creating
Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

31.1 Introduction to Hierarchy Viewers
A hierarchy viewer component can be used to display hierarchical data visually.
Hierarchical data contains master-detail relationships within the data. For example,
you could create a hierarchy viewer component that renders an organization chart
from a data collection that contains information about the relationships between
employees in an organization.

31.1.1 Understanding the Hierarchy Viewer Component
JDeveloper generates the following elements in JSF pages when you drag and drop
components from the Component Gallery onto a JSF page or when you use the Create
Hierarchy Viewer dialog to create a hierarchy viewer component as described in the
"Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

■ dvt:hierarchyViewer

This element wraps the dvt:node and the dvt:link elements.

■ dvt:node

Introduction to Hierarchy Viewers

31-2 Web User Interface Developer's Guide for Oracle Application Development Framework

A node is a shape that references the data in a hierarchy, for example, employees in
an organization or computers in a network. You configure the child elements of
the dvt:node element to reference whatever data you want to display. The
dvt:node element supports the use of one or more f:facet elements that display
content at different zoom levels (100%, 75%, 50%, and 25%). The f:facet element
supports the use of many ADF Faces components, such as af:outputText,
af:image, and af:panelGroupLayout, in addition to the ADF Data Visualization
dvt:panelCard component.

At runtime, the node contains controls that allow users to navigate between nodes
and to show or hide other nodes by default. For information about specifying
node content and defining zoom levels, see Section 31.4.1, "How to Specify Node
Content."

■ dvt:link

You set values for the attributes of the dvt:link element to connect one node with
another node. For information about how to customize the appearance of the link
and add labels, see Section 31.8.4, "How to Configure the Display of Links and
Labels."

■ dvt:panelCard

The panel card element provides a method to dynamically switch between
multiple sets of content referenced by a node element using animation by, for
example, horizontally sliding the content or flipping a node over.

The f:facet tag for each zoom level supports the use of a dvt:panelCard element
that contains one or more af:showDetailItem elements defining the content to be
displayed at the specified zoom level. At runtime, the end user uses the controls
on the node to switch dynamically between the content that the
af:showDetailItem elements reference. For more information, see Section 31.7,
"Using Panel Cards."

The hierarchy viewer component uses elements such as af:panelGroupLayout,
af:spacer, and af:separator to define how content is displayed in the nodes.
Example 31–1 shows the code generated when the component is created by insertion
from the Component Palette. Code related to the hierarchy viewer elements is
highlighted in the example.

Example 31–1 Hierarchy Viewer Sample Code

<dvt:hierarchyViewer id="hierarchyViewer1" layout="hier_vert_top"
 styleClass="AFStretchWidth">
 <dvt:link linkType="orthogonalRounded" id="l1"/>
 <dvt:node width="233" height="330" id="n1">
 <f:facet name="zoom100">
 <af:panelGroupLayout layout="vertical"
 styleClass="AFStretchWidth AFHVNodeStretchHeight
AFHVNodePadding"
 id="pgl3">
 <af:panelGroupLayout layout="horizontal" id="pgl4">

Note: Unlike the other elements, the dvt:panelCard element is not
generated if you choose the default quick layout option when using
the Component Gallery to create a hierarchy viewer. For more
information see, Section 31.1.3, "Available Hierarchy Viewer Layout
Options."

Introduction to Hierarchy Viewers

Using ADF Hierarchy Viewer Components 31-3

 <af:panelGroupLayout styleClass="AFHVNodeImageSize" id="pgl2">
 <af:image id="i1"/>
 </af:panelGroupLayout>
 <af:spacer width="5" height="5" id="s1"/>
 <af:panelGroupLayout layout="vertical" id="pgl1">
 <af:outputText value=" attribute value1 "
 styleClass="AFHVNodeTitleTextStyle" id="ot6"/>
 <af:outputText value=" attribute value2"
 styleClass="AFHVNodeSubtitleTextStyle" id="ot8"/>
 <af:outputText value=" attribute value3"
 styleClass="AFHVNodeTextStyle" id="ot7"/>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 <af:spacer height="5" id="s4"/>
 <af:separator id="s3"/>
 <af:spacer height="5" id="s2"/>
 <dvt:panelCard effect="slide_horz" styleClass="AFHVNodePadding" id="pc1">
 <af:showDetailItem text="first group title " id="sdi1">
 <af:panelFormLayout styleClass="AFStretchWidth AFHVNodeStretchHeight
AFHVNodePadding"
 id="pfl2">
 <af:panelLabelAndMessage label="attribute label4"
 styleClass="AFHVPanelCardLabelStyle"
 id="plam4">
 <af:outputText value="attribute value4"
 styleClass="AFHVPanelCardTextStyle" id="ot4"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label5"
 styleClass="AFHVPanelCardLabelStyle"
 id="plam2">
 <af:outputText value="attribute value5"
 styleClass="AFHVPanelCardTextStyle" id="ot2"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label6"
 styleClass="AFHVPanelCardLabelStyle"
 id="plam3">
 <af:outputText value="attribute value6"
 styleClass="AFHVPanelCardTextStyle" id="ot3"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 <af:showDetailItem text="second group title " id="sdi2">
 <af:panelFormLayout styleClass="AFStretchWidth AFHVNodeStretchHeight
AFHVNodePadding"
 id="pfl1">
 <af:panelLabelAndMessage label="attribute label7"
 styleClass="AFHVPanelCardLabelStyle"
 id="plam5">
 <af:outputText value="attribute value7"
 styleClass="AFHVPanelCardTextStyle" id="ot5"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label8"
 styleClass="AFHVPanelCardLabelStyle"
 id="plam1">
 <af:outputText value="attribute value8"
 styleClass="AFHVPanelCardTextStyle" id="ot1"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="attribute label9"
 styleClass="AFHVPanelCardLabelStyle"
 id="plam6">

Introduction to Hierarchy Viewers

31-4 Web User Interface Developer's Guide for Oracle Application Development Framework

 <af:outputText value="attribute value9"
 styleClass="AFHVPanelCardTextStyle" id="ot9"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 </dvt:panelCard>
 </af:panelGroupLayout>
 </f:facet>
 </dvt:node>
</dvt:hierarchyViewer>

31.1.2 Hierarchy Viewer Elements and Terminology
A hierarchy viewer visually displays hierarchical data and the master-detail
relationships. Figure 31–1 shows a segment of a hierarchy viewer component at
runtime that includes a control panel, a number of nodes, and links that connect the
nodes.

Figure 31–1 Hierarchy Viewer Component with Control Panel and Nodes

The Control Panel provides controls so that a user can manipulate the position and
appearance of a hierarchy viewer component at runtime. By default, it appears in a
hidden state in the upper left-hand corner of the hierarchy viewer component, as
illustrated by Figure 31–2.

Introduction to Hierarchy Viewers

Using ADF Hierarchy Viewer Components 31-5

Figure 31–2 Control Panel in Hidden State

You cannot configure the Control Panel to appear in another location. Users click the
Hide or Show Control Panel button shown in Figure 31–2 to hide or expand the
Control Panel. Figure 31–3 shows the expanded Control Panel.

Figure 31–3 Control Panel in Show State

You can configure the hierarchy viewer component so that the Control Panel does not
appear to the user at runtime. For information about the procedure, see Section 31.8.3,
"How to Configure the Display of the Control Panel."

Table 31–1 describes the functionality that the controls in the Control Panel provide to
users. The Panel Selector is automatically enabled if a node in your hierarchy viewer
component contains a dvt:panelCard element with one or more af:showDetailItem
elements. The Layout Selector appears automatically if the hierarchy viewer
component uses one of the following layouts:

■ Vertical top down

■ Horizontal left to right

■ Tree

■ Radial

■ Circle

For more information about layouts for a hierarchy viewer component, see
Section 31.1.3, "Available Hierarchy Viewer Layout Options."

Table 31–1 Elements in the Control Panel

Control Name Description

Pan Control Allows user to reposition the hierarchy viewer
component within the viewport.

Introduction to Hierarchy Viewers

31-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Hierarchy viewers support state management for node selection, expansion, and
lateral navigation. When a user selects a node, expands a node or navigates to the left
or right within the same parent to view the next set of nodes, that state is maintained if
the user returns to a page after navigating away, as in a tabbed panel. State
management is supported through hierarchy viewer attributes including
disclosedRowKeys, selectedRowKeys and lateralNavigationRowKeys.

Hierarchy viewers support bi-directional text in node content, the search panel, and
the display of search results. Bi-directional text is text containing text in both text
directionalities, both right-to-left (RTL) and left-to-right (LTR). It generally involves
text containing different types of alphabets such as Arabic or Hebrew scripts.
Hierarchy viewers also support bi-directional support for flipping panel cards from
one node view to the next.

Zoom to Fit Allows user to zoom a hierarchy viewer component so
that all nodes are visible within the viewport.

Zoom Control Allows user to zoom the hierarchy viewer component.

Hide or Show Hides or shows the Control Panel.

Panel Selector Displays a list of node panels that you have defined.
Users can use the panel selector to show the same panel
on all nodes at once.

Layout Selector Allows a choice of layouts. Users can change the layout
of the hierarchy viewer component from the layout you
defined to one of the layout options presented by the
component. For more information, see Section 31.1.3,
"Available Hierarchy Viewer Layout Options."

Table 31–1 (Cont.) Elements in the Control Panel

Control Name Description

Introduction to Hierarchy Viewers

Using ADF Hierarchy Viewer Components 31-7

31.1.3 Available Hierarchy Viewer Layout Options
The hierarchy viewer can use any of the following layouts, specified by the
component’s type attribute:

■ hier_vert_top - Vertical top down

■ hier_vert_bottom - Vertical bottom up

■ hier_horz_left - Horizontal left to right

■ hier_horz_right - Horizontal right to left

■ hier_horz_start - Horizontal, direction depends on the locale

■ hier_horz_end - Horizontal, direction depends on the locale

■ tree - Tree, indented tree

■ radial - Radial, root node in center and successive child levels radiating outward
from their parent nodes

■ circle - Circle, root node in center and all leaf nodes arranged in concentric circle,
with parent nodes arranged within the circle

Figure 31–4 shows an example of a circle layout for a hierarchy viewer component.

Figure 31–4 Hierarchy Viewer Circle Layout

You can define the initial layout of the hierarchy viewer when you insert the
component on the page from either the Data Controls panel to bind a data collection to
the hierarchy viewer component, or from the Component Palette to insert the
component and bind to data later. The available layouts are displayed in the Hierarchy
Viewer Types area of the Component Gallery, shown in Figure 31–5.

Note: The circle layout is not available in the Component Gallery. In
order to create a hierarchy viewer with a circle layout, you must
specify a circle value in the dvt:hierarchyViewer tag type attribute
in the Property Inspector.

Introduction to Hierarchy Viewers

31-8 Web User Interface Developer's Guide for Oracle Application Development Framework

In the Quick Start Layouts area of the Component Gallery you can also choose to
generate the dvt:panelCard element to support multiple sets of content for a node, the
selection shown in Figure 31–5.

Figure 31–5 Component Gallery for Hierarchy Viewer Components

31.1.4 What You May Need to Know About Hierarchy Viewer Rendering and HTML
By default, the hierarchy viewer component renders in a Flash Player. When Flash 10
or higher is not available on the client or for the purpose of printing, the hierarchy
viewer is rendered in HTML. While HTML rendering follows Flash rendering as
closely as possible, there are some differences. For the most part, hierarchy viewer
display and features are supported with the following exceptions:

■ Isolate and restore nodes is not available.

■ Node shapes are limited to rectangular.

■ For links, the link end connector is not supported, link type is limited to
orthogonal, and link style is limited to a solid line.

■ For the control panel, all panel cards cannot be switched, panning is limited to
scroll bars, and zooming and zoom to fit is limited to four zoom facets.

■ Search is not supported.

■ Emailable page is not supported.

■ Node detail hover window is not supported.

Creating a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-9

31.2 Data Requirements for Hierarchy Viewers
A hierarchy viewer component requires data collections where a master-detail
relationship exists between one or more detail collections and a master detail
collection. The hierarchy viewer component uses the same data model as the ADF
Faces tree component. You can test whether it is possible to bind a data collection to a
hierarchy viewer component by first binding it to an ADF Faces tree component. If
you can navigate the data collection using the ADF Faces tree component, it should
be possible to bind it to a hierarchy viewer component.

When you add a hierarchy viewer component to a JSF page, JDeveloper adds a tree
binding to the page definition file for the JSF page. For information about how to
populate nodes in a tree binding with data, see the "Using Trees to Display
Master-Detail Objects" section in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

The data collections that you bind to nodes in a hierarchy viewer component must
contain a recursive accessor if you want users to be able to navigate downward from
the root node of the hierarchy viewer component. For more information about
navigating a hierarchy viewer component, see Section 31.5, "Navigating in a Hierarchy
Viewer."

31.3 Creating a Hierarchy Viewer
You can create a hierarchy viewer by dragging a hierarchy viewer from the
Component Palette to the page. You can choose to bind the data when you create the
hierarchy viewer, or you can add the binding after you create the hierarchy viewer.

If your application uses the Fusion technology stack, then you can also use data
controls to create hierarchy viewers. For more information, see the "Creating
Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

31.3.1 How to Add a Hierarchy Viewer to a Page
You use the Component Palette to add a hierarchy viewer to a JSF page. When you
drag and drop a hierarchy viewer component onto the page, the Create Hierarchy
Viewer dialog displays available categories of hierarchy viewer layouts, with
descriptions, to provide visual assistance when creating hierarchy viewers. Figure 31–5
shows the Component Gallery dialog for hierarchy viewers with the vertical top down
layout type selected.

Once you select the hierarchy viewer layout, and the hierarchy viewer is added to
your page, you can use the Property Inspector to specify data values and configure
additional display attributes for the hierarchy viewer. Alternatively, you can choose to
bind the data during creation and use the Property Inspector to configure additional
display attributes.

In the Property Inspector you can use the dropdown menu for each attribute field to
display a property description and options such as displaying an EL Expression
Builder or other specialized dialogs. Figure 31–6 shows the dropdown menu for a
hierarchy viewer component Ancestor Levels attribute.

Creating a Hierarchy Viewer

31-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 31–6 Hierarchy Viewer Ancestor Levels Attribute Dropdown Menu

To add a hierarchy viewer to a page:
1. In the ADF Data Visualizations page of the Component Palette, from the

Hierarchy Viewer panel, drag and drop a Hierarchy Viewer onto the page to open
the Create Hierarchy Viewer dialog.

Use the dialog to select the hierarchy viewer layout type. For help with the dialog,
click Help or press F1.

2. In the Property Inspector, view the attributes for the hierarchy viewer. Use the
Help button to display the complete tag documentation for the hierarchyViewer
component.

3. Expand the Common section. Use this section to set the following attributes:

■ Layout: Specify the hierarchical layout of the hierarchy viewer.

■ Ancestor Levels (show sub-menu): Use to set the displayLevelsAncestor
attribute that specifies the number of ancestor levels to display during initial
render. This property is zero-based. A value of 0 means that no ancestor levels
above the root will be shown. The default value is 0.

You can click Configure to open a Configure Ancestor Display dialog and
specify the ancestor data collection to use.

■ Descendent Levels (show sub-menu): Use to set the displayLevelsChildren
attribute that specifies the number of child levels to display during initial
render. This property is zero-based. A value of 0 means that no child levels

Note: If your application uses the Fusion technology stack, then you
can use data controls to create a hierarchy viewer and the binding will
be done for you. For more information, see the "Creating Databound
Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

Managing Nodes in a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-11

below the root will be shown; the root itself will be shown. The default value
is 1, which means that the root and the first level of children will be shown.

■ Nodes Per Level (show sub-menu): Use to set the levelFetchSize attribute
that specified the number of child nodes that will be fetched and displayed at
a single time for each expanded parent node. Additional child nodes may be
fetched and displayed by using the lateral navigation controls shown in the
hierarchy viewer. The default value is 25.

4. Expand the Hierarchy Viewer Data section. Use this section to set the following
attributes:

■ Value: Specify the data model for the hierarchy viewer; can be an instance of
javax.faces.TreeModel.

■ Var: Specify the variable used to reference each element of the hierarchy
viewer data collection. Once this component has completed rendering, this
variable is removed or reverted back to its previous value.

5. Expand the Appearance section. Use this section to set the following attributes:

■ Summary: Enter a description of the hierarchy viewer. This description is
accessed by screen reader users.

■ EmptyText: Specify the text to display when a hierarchy viewer does not
display data.

6. Expand the Behavior section. Use this section to set the following attributes:

■ ControlPanelBehavior: Specify the behavior of the Control Panel. For more
information, see Section 31.8.3, "How to Configure the Display of the Control
Panel."

■ Panning: Specify panning behavior. The default value is default for click and
drag panning. You can also specify a tilt value for click and drag panning with
automatic 3D tilt panning enabled.

31.4 Managing Nodes in a Hierarchy Viewer
A node is a shape that represents the individual elements in a hierarchy viewer
component at runtime. Examples of individual elements in a hierarchy viewer
component include an employee in an organization chart or a computer in a network
diagram. By default, each node in a hierarchy viewer component includes controls that
allows users to do the following:

■ Navigate to other nodes in a hierarchy viewer component

The top of each node contains a single Restore or Isolate button to either display
the parent node or single out the node as the anchor node in the hierarchy viewer.
One exception is the node at the very top of the hierarchy viewer component,
because this node has no parent nodes and may not be isolated.

■ Show or hide child nodes of the currently selected node in a hierarchy viewer
component

Note: You can also use the disclosedRowKeys attribute to specify the
number of child levels to display during initial render. If you specify
both disclosedRowKeys and displayLevelsChildren attributes, the
disclosedRowKeys attribute takes precedence over
displayLevelsChildren.

Managing Nodes in a Hierarchy Viewer

31-12 Web User Interface Developer's Guide for Oracle Application Development Framework

The single Show or Hide button appears on the bottom of every node that is a not
a leaf node. When a user clicks one of these icons, the component generates a
RowDisclosureEvent event. You can register a custom rowDisclosureListener
method to handle any processing in response to the event in the same way as an
af:tree component. For more information, see Section 10.5.4, "What You May
Need to Know About Programmatically Expanding and Collapsing Nodes."

If you use a panel card to display different sets of information for the node that the
hierarchy viewer component references, controls at the bottom of the node allow the
user to change the information set in the active node. For more information, see
Section 31.7, "Using Panel Cards."

Figure 31–7 shows an example of a node with controls that allow an end user to isolate
the node as the anchor node, show the child nodes, and change the node to show
different sets of information in the active node. For information about how to
configure the controls on a node, see Section 31.4.2, "How to Configure the Controls on
a Node."

Figure 31–7 Node Controls

There are four basic types of nodes:

■ Root nodes are the uppermost visible nodes in a hierarchy viewer component. A
root node is always the root of the hierarchy returned from the tree component.
Typically, only one root node is visible at a time. However, there could be more
than one root node depending on the use case that you implement (for example, in
a family tree).

■ An anchor node is the node that has focus whenever the hierarchy viewer
component is rendered. There is always just one anchor node visible.

The anchor node may be the same as the root node if child nodes are defined for
the tree node and if the value of the hierarchy viewer component’s
displayLevelsAncestor property is equal to 0. At runtime, if a user double-clicks
another node that has a value specified for its setAnchorListener property, that
node becomes the anchor node. An anchor node may also be an inner or leaf node,
depending on whether or not it has child nodes. For information about how to
specify an anchor node, see Section 31.4.4, "How to Associate a Node Definition
with a Particular Set of Data Rows."

You can specify one or more ancestor levels above the anchor node. For more
information, see Section 31.4.5, "How to Specify Ancestor Levels for an Anchor
Node."

■ Inner nodes are nodes that have child nodes.

■ Leaf nodes are nodes that do not have child nodes.

Managing Nodes in a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-13

Figure 31–8 illustrates how a node can be a different type depending on the layout of
the hierarchy viewer component.

Figure 31–8 Node Types and Positions

31.4.1 How to Specify Node Content
Although a node contains controls by default that allow you to navigate to a node and
show or hide nodes, nodes do not by default include content unless you used a quick
start layout when creating the hierarchy viewer component. You must define what
content a node renders at runtime. You can specify node content when you associate
data bindings with the hierarchy viewer component as described in the "Creating
Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

By default, a hierarchy viewer component that you create contains one node with one
facet element that has a zoom level of 100%:

<f:facet name="zoom100"/>

You can insert three more instances of the facet element into the hierarchy viewer
component with the following zoom levels:

■ 25%: zoom25

■ 50%: zoom50

■ 75%: zoom75

Use these zoom level definitions to improve readability of node content when the
hierarchy viewer is zoomed out to display more nodes and less display room is
available in each node. You can define a subset of the available data collection within
one or more of the facet elements. For example, if you have a data collection with node
attributes that references data about a company department such as its name, location,
and number, you can specify a facet element with a zoom level of 50% that references
the node attribute for the department’s name and number.

At runtime, when a user moves the mouse over a node at any zoom level, a hover
window displaying node content at zoom level 100% is automatically displayed,
allowing the user to see the full information regardless of zoom level. The controls on
the hover window are active when the node has been selected in the hierarchy viewer.

Each of the facet elements that you insert can be used to reference other components.
You can use one or more of the following components when you define content for a
node in a hierarchy viewer component. The node component facet’s support the
following components:

■ af:commandButton

■ af:commandImageLink

Managing Nodes in a Hierarchy Viewer

31-14 Web User Interface Developer's Guide for Oracle Application Development Framework

■ af:commandLink

■ af:commandMenuItem

■ af:goButton

■ af:goLink

■ af:image

For information about how to use the af:image component, see Section 31.8.2,
"How to Include Images in a Hierarchy Viewer."

■ af:menu

■ af:outputFormatted

■ af:outputText

■ af:panelFormLayout

■ af:panelGroupLayout

For information about how to use the panelGroupLayout component, see
Section 8.13.1, "How to Use the panelGroupLayout Component."

■ af:panelLabelAndMessage

■ af:separator

■ af:showDetailItem

■ af:showPopupBehavior

For information about how to use the af:showPopupBehavior component, see
Section 31.6.3, "How to Configure a Hierarchy Viewer to Invoke a Popup
Window."

■ af:spacer

■ dvt:panelCard

For more information about how to use the dvt:panelCard component, see
Section 31.7, "Using Panel Cards."

To add a node to a hierarchy viewer component:
1. In the Structure window, right-click the dvt:hierarchyViewer node and choose

Insert inside dvt:hierarchyViewer > Node.

The following entry appears in the JSF page:

<dvt:node>
<f:facet name="zoom100"/>
</dvt:node>

2. In the Structure window, right-click the dvt:node and choose Go to Properties.

3. Configure the appropriate properties in the Property Inspector.

For example, set a value for the type property to associate a node component with
an accessor:

<dvt:node type="model.rootEmp model.HvtestView"/>

Note: Unsupported components are flagged at design time.

Managing Nodes in a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-15

For more information, see Section 31.4.3, "How to Specify a Node Definition for an
Accessor."

31.4.2 How to Configure the Controls on a Node
The node component (dvt:node) exposes a number of properties that allow you to
determine if controls such as Restore, Isolate, Show or Hide appear at runtime. It also
exposes properties that determine the size and shape of the node at runtime.

To configure the controls on a node:
1. In the Structure window, right-click the dvt:node component and choose Go to

Properties.

2. Configure properties in the Appearance section of the Property Inspector for the
dvt:node component, as described in Table 31–2.

3. For information about configuring the properties in the Style section of the
Property Inspector for the node component, see Section 20.4, "Changing the Style
Properties of a Component."

The hover detail window is automatically displayed when the user moves the mouse
over the node, reflecting the shape attribute set for the node. A node with the shape
attribute roundedRect, for example, will have a detail window with the same attribute,
as shown in Figure 31–9.

You can disable the display of the detail window when hovering a node that is not at
the 76-100% zoom level. For more information, see Section 31.8.5, "How to Disable the
Hover Detail Window."

Table 31–2 Node Configuration Properties

To do this: Set the following value for this property:

Configure the Hide or Show controls to
appear or not on a node.

Set showExpandChildren to False to hide the
controls. By default the property is set to True.

Configure the Restore or Isolate controls to
appear or not on the node.

Set the showNavigateUp and showIsolate
properties to False to hide these controls on
the node. By default the property is set to
true.

If the showNavigateUp property is set to true,
you must also set a value for the hierarchy
viewer component’s navigateUpListener
property, as described in Section 31.5.1, "How
to Configure Upward Navigation in a
Hierarchy Viewer."

Configure the height and width of a node. Set values for the width and height
properties.

Select the shape of the node. Select a value from the Shape dropdown list.
Available values are:

■ ellipse

■ rect

■ roundedRect (default)

Managing Nodes in a Hierarchy Viewer

31-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 31–9 Hover Window in Hierarchy Viewer Node

31.4.3 How to Specify a Node Definition for an Accessor
By default, you associate a node component with an accessor when you use the Create
Hierarchy Viewer dialog to create a hierarchy viewer component, as described in the
"Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework. The Create
Hierarchy Viewer dialog sets the node component’s type property to a specific
accessor.

You can configure a node component’s type property to use one or more specified
accessors. Alternatively, you can configure a node component’s rendered property to
use a node definition across accessors, as described in Section 31.4.4, "How to
Associate a Node Definition with a Particular Set of Data Rows." When the hierarchy
viewer component determines which node definition to use for a particular data row,
it first checks for a match on the type property:

■ If the type property matches and the rendered property value is true (default),
the hierarchy viewer component uses the node definition.

■ If the type property does not match, the hierarchy viewer component checks for a
value of the rendered property that evaluates to true. The result of evaluating the
rendered property does not affect the type property.

31.4.4 How to Associate a Node Definition with a Particular Set of Data Rows
You can use a node component’s rendered property to associate the node with a
particular set of data rows or with a single data row. The rendered property accepts a
boolean value so you can write an EL expression that evaluates to true or false to
determine what data rows you associate with a node definition. For example, assume
that you want a node to display data based on job title. You write an EL expression for
the node component’s rendered property similar to the following pseudo EL

Navigating in a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-17

expression that evaluates to true when a job title matches the value you specify (in
this example, CEO):

rendered="#{node.title == 'CEO'}"

When you use the node component’s rendered property in this way, you do not define
a value for the node component’s type property.

31.4.5 How to Specify Ancestor Levels for an Anchor Node
The anchor node of a hierarchy viewer component is the root of the hierarchy returned
by the tree binding. Depending on the use case, there can be multiple root nodes, for
example, a hierarchy viewer component that renders an organization chart with one or
more managers. When a hierarchy viewer component renders at runtime, the node
that has focus is the anchor node. If a user double-clicks another node at runtime that
has a value specified for its setAnchorListener property, that node becomes the
anchor node.

You can configure the hierarchy viewer to display one or more levels above the anchor
node, the ancestor levels. For example, if you search for an employee in a company,
you may wish to display the chain of management above the employee. Specify
ancestor levels using the displayLevelsAncestor property.

To specify the number of ancestor levels for an anchor node:
1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go

to Properties.

2. Expand the Common section of the Property Inspector.

3. Specify the number of levels of ancestor nodes that you want to appear at runtime
above the anchor node in the displayLevelsAncestor property.

For example, the following entry appears in the JSF page if you entered 2 as the
number of ancestor levels for the anchor node.

displayLevelsAncestor="2"

4. Save changes to the JSF page.

31.5 Navigating in a Hierarchy Viewer
By default, a hierarchy viewer component has downward navigation configured for
root and inner nodes. You can configure the hierarchy viewer component to enable
upward navigation and to determine the number of nodes to appear when a user
navigates between nodes on the same level.

For more information about node types, see Section 31.4, "Managing Nodes in a
Hierarchy Viewer."

31.5.1 How to Configure Upward Navigation in a Hierarchy Viewer
If you want to configure upward navigation for a hierarchy view component, you
configure a value for the hierarchy viewer component’s navigateUpListener property.

To configure upward navigation for a hierarchy viewer component:
1. In the Structure window, select dvt:hierarchyViewer and choose Go to Properties.

2. In the Property Inspector, expand the Behavior section of the Property Inspector
and write a value in the NavigateUp field for the hierarchy viewer component’s

Navigating in a Hierarchy Viewer

31-18 Web User Interface Developer's Guide for Oracle Application Development Framework

navigateUpListener property that specifies a method to update the data model so
that it references the new anchor node when the user navigates up to a new anchor
node.

If you need help specifying a value, choose Method Expression Builder from the
Navigate Up dropdown menu to enter the Method Expression Builder dialog. For
help with the Method Expression Builder dialog, click Help or press F1.

3. Save the page.

31.5.2 How to Configure Same-Level Navigation in a Hierarchy Viewer
Same-level navigation between the nodes in a hierarchy viewer component is enabled
by default. You can configure the hierarchy viewer component to determine how
many nodes to display at a time. When you do this, controls appear that enable users
to navigate to the following:

■ Left or right to view the next set of nodes

■ First or last set of nodes in the collection of available nodes

To configure same-level navigation in a hierarchy viewer component:
1. In the Structure window, right-click the dvt:hierarchyViewer node and select Go

to Properties.

2. Expand the Common section of the Property Inspector and specify the number of
nodes that you want to appear at runtime in the Nodes Per Level field
(levelFetchSize).

For example, the following entry appears in the JSF page if you entered 3 as the
number of nodes:

levelFetchSize="3"

3. Click OK.

31.5.3 What Happens When You Configure Same-Level Navigation in a Hierarchy
Viewer

At runtime, the hierarchy viewer component renders the number of nodes that you
specified as a value for the hierarchy viewer component’s levelFetchSize property. It
also renders controls that allow users to do the following:

■ Navigate to the left or right to view the next set of nodes

■ Navigate to the first or last set of nodes in the collection of available nodes

Figure 31–10 shows a runtime example where levelFetchSize="3". When a user
moves the mouse over the control, the control that allows users to navigate to the last
set of nodes appears.

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-19

Figure 31–10 Hierarchy Viewer Component with Same-Level Navigation

31.6 Adding Interactivity to a Hierarchy Viewer Component
You can configure a hierarchy viewer component to invoke popup windows and
display menus with functionality and data from other pages in your Oracle Fusion
web application.

31.6.1 How to Configure 3D Tilt Panning
By default, panning in a hierarchy viewer is accomplished by clicking and dragging
the component to reposition the view, or by using the panning control in the Control
Panel. In a hierarchy viewer with a large quantity of nodes, instead of browsing
through a hierarchy viewer one page at a time, users can initiate a 3D tilt panning
effect that animates the hierarchy viewer visually to fly through the hierarchy viewer
nodes. Once set in motion toward the edge of a view, the effect continues
automatically until it reaches the end of the nodes on an edge. Figure 31–11 shows the
tilt panning effect as it reaches the edge of the view.

Adding Interactivity to a Hierarchy Viewer Component

31-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 31–11 Hierarchy Viewer 3D Tilt Panning Effect

To use the tilt panning effect you should first adjust the zoom level on the hierarchy
view for an acceptable view of the content of the nodes. You can initiate the effect in
any of these ways:

■ Click and drag using the pan control in the control panel to initiate tilt panning
after a short period of regular panning.

■ Click and drag the view one-third of the way across the viewport.

■ Click and hold the cursor near the edge of the view to initiate tilt panning in that
direction.

Once the tilt panning effect is initiated, you can move the cursor within the view to
change the direction of the pan through the view. Exit tilt panning by selecting any
node in the view.

You configure 3D tilt panning effect for the hierarchy viewer by setting the panning
property to tilt.

31.6.2 How to Configure Node Selection Action
By default, clicking a hierarchy viewer node at runtime selects the node. You can
customize this interaction by setting the clickBehavior attribute on the dvt:node
component. Valid values for this property include:

■ focus - The node receives focus and is selected when clicked (default).

■ expandCollapse - Child node elements are either expanded or collapsed,
depending on their current expansion state.

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-21

■ isolateRestore - The node is either isolated or restored, depending on its current
state.

■ none - Clicking the node does nothing.

31.6.3 How to Configure a Hierarchy Viewer to Invoke a Popup Window
You can invoke a popup window from a hierarchy viewer node by specifying values
for the af:showPopupBehavior tag and invoking it from a command component, for
example, af:commandButton. You must nest the command component that invokes the
popup inside an f:facet element in a node of the hierarchy viewer component. The
triggerType property of an af:showPopupBehavior tag used in this scenario supports
only the following values:

■ action

■ mouseHover

For example, Figure 31–12 shows a modal popup invoked from an HR Detail link in
the node.

Figure 31–12 Modal Popup in Hierarchy Viewer Node

Example 31–2 shows sample code for creating the popup. In this example, the data for
the hierarchy viewer is stored in the XMLParser managed bean.

Example 31–2 Sample Code to Create the Popup

<af:popup id="modalPopup" contentDelivery="lazyUncached"
 eventContext="launcher" launcherVar="source">
 <af:setPropertyListener from="#{XMLParser.employees.rowData}"
 to="#{XMLParser.source}" type="popupFetch"/>
 <af:dialog title="Employee HR Detail" id="d2">
 <af:panelFormLayout id="pfl1">
 <af:panelLabelAndMessage label="Name" id="plam1">
 <af:outputText value="#{XMLParser.source.firstName}
#{XMLParser.source.lastName}"
 id="ot1"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="Title" id="plam2">
 <af:outputText value="#{XMLParser.source.title}" id="ot2"/>
 </af:panelLabelAndMessage>
 <af:panelLabelAndMessage label="Phone" id="plam3">
 <af:outputText value="#{XMLParser.source.workPhone}" id="ot3"/>
 </af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:dialog>

Adding Interactivity to a Hierarchy Viewer Component

31-22 Web User Interface Developer's Guide for Oracle Application Development Framework

</af:popup>
Example 31–3 shows sample code for the invoking the popup from a command
component. For brevity, elements such as <af:panelGroupLayout>, <af:spacer>, and
<af:separator> are not included in the sample code.

Example 31–3 Sample Code to Invoke Popup from Command Component

<f:facet name="zoom100">
 ...
 <dvt:panelCard effect="slide_horz"
 ...
 <af:showDetailItem text="Popup Demo"
 ...
 <af:commandButton text="Click for modal popup" id="cb1">
 <af:showPopupBehavior popupId="::modalPopup"
 triggerType="action"
 align="endAfter"
 alignId="cb1"/>
 </af:commandButton>
 ...
 </showDetailItem>
 </dvt:panelCard>
</f:facet>

For more information about using the af:showPopupBehavior tag, see Section 13.4,
"Invoking Popup Elements."

31.6.4 How to Configure a Hierarchy View Node to Invoke a Context Menu
You can configure a node component (dvt:node) within a hierarchy viewer to invoke a
menu by using the af:menu component. You can configure one or more
af:commandMenuItem elements for the af:menu component. Nodes within a hierarchy
viewer component do not support the nesting of af:menu components. Figure 31–13
shows a context menu that appears when the user hovers the mouse over a node.

Figure 31–13 Hierarchy Viewer Node Context Menu

Example 31–4 shows sample code for creating the context menu

Example 31–4 Context Menu Sample Code

<af:popup id="popupDialog" contentDelivery="lazyUncached" >
 <af:menu id="m1">
 <af:commandMenuItem text="Send an IM" id="cmi1"/>

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-23

 <af:commandMenuItem text="Look at details" id="cmi2"/>
 </af:menu>
</af:popup>

For more information about using the af:menu component, see Chapter 13, "Using
Popup Dialogs, Menus, and Windows."

31.6.5 Configuring Hierarchy Viewer Drag and Drop
Hierarchy viewers support the following drag and drop scenarios:

■ Drag and drop one or more nodes within a hierarchy viewer

■ Drag one or more nodes from a hierarchy viewer to another component

■ Drag one or more items from another component to a hierarchy viewer

Figure 31–14 shows a hierarchy viewer configured to allow drags and drops within
itself. In this example, if you click and hold a node for more than one-half second, you
can drag it to the background to make it another root in the hierarchy or drag it to
another node to add it as a child of that node.

Figure 31–14 Hierarchy Viewer Showing a Node Drag

Figure 31–15 shows the result of a drag to the hierarchy viewer background. Nancy
Green and her subordinates are now shown as a new tree in the hierarchy.

Adding Interactivity to a Hierarchy Viewer Component

31-24 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 31–15 Hierarchy Viewer After Node Drag to Background

If you drag the node to another node, the dragged node and its children become the
child of the targeted node. Figure 31–16 shows the result of the drag to the node
containing the data for Nina Evans. Nancy Green and her subordinates are now
shown as subordinates to Nina Evans.

Figure 31–16 Hierarchy Viewer After Node Drag to Another Node

Figure 31–17 shows an example of the same hierarchy viewer configured to allow
drops to or drags from an af:outputFormatted component. In this example, the user
can drag one or more nodes to the drop text, and the text will change to indicate which
node(s) the user dragged and which operation was performed. If the user drags from
the drag text to a hierarchy viewer node or background, the text will change to
indicate where the text was dragged and which operation was performed.

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-25

Figure 31–17 Hierarchy Viewer Configured for Drag and Drop to Another Component

Figure 31–18 shows the same hierarchy viewer after the user dragged the nodes
containing the data for James Marlow and Nina Evans to the drop text.

Adding Interactivity to a Hierarchy Viewer Component

31-26 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 31–18 Hierarchy Viewer After Multiple Node Drag

If the user drags from the drag text to a hierarchy viewer node or background, the text
will change to indicate where the text was dragged and which operation was
performed. Figure 31–19 shows the same hierarchy viewer after a user drags the text to
the hierarchy viewer background.

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-27

Figure 31–19 Hierarchy Viewer After Text Drag to Hierarchy Viewer Background

31.6.5.1 How to Configure Hierarchy Viewer Drag and Drop
To add drag support to a hierarchy viewer, which will allow components or other
hierarchy viewers to drag nodes from it, add the af:dragSource tag to the hierarchy
viewer and add the af:dropTarget tag to the component receiving the drag. The
component receiving the drag must include the
org.apache.myfaces.trinidad.model.RowKeySet data flavor as a child of the
af:dropTarget and also define a dropListener method to respond to the drop event.

To add drop support to a hierarchy viewer, which will allow components or other
hierarchy viewers to drag items to it, add the af:dropTarget tag to the hierarchy
viewer and include the data flavors that the hierarchy viewer will support. Add a
dropListener method to a managed bean that will respond to the drop event.

The following procedure shows how to set up a hierarchy as a simple drag source or
drop target for the af:outputFormatted component shown in Figure 31–17. For more
detailed information about configuring drag and drop on ADF Faces or ADF Data
Visualization components, see Chapter 34, "Adding Drag and Drop Functionality."

Before you begin:
It may be helpful to have an understanding of how hierarchy viewer attributes and
hierarchy viewer child tags can affect functionality. For more information, see
Section 31.1.1, "Understanding the Hierarchy Viewer Component."

You will need to complete these tasks:

■ Add a hierarchy viewer to your page. For more information, see

■ Create any additional components needed to support the drag and drop.

Adding Interactivity to a Hierarchy Viewer Component

31-28 Web User Interface Developer's Guide for Oracle Application Development Framework

For example, the page in Figure 31–17 uses an af:panelGroupLayout component
containing af:outputFormatted and af:panelList components to provide
instructions to the user. The page also uses an af:panelSplitter component to
separate the drag and drop af:outputFormatted component text from the
hierarchy viewer.

Example 31–5 shows the completed page section for the additional components.
The hierarchy viewer node details are omitted.

Example 31–5 Sample Code for Hierarchy Viewer Drag and Drop Example

<af:panelStretchLayout id="psl1" topHeight="auto" endWidth="auto">
 <f:facet name="top">
 <af:panelGroupLayout id="pgl1" layout="horizontal">
 <af:spacer width="10" height="10" id="s1"/>
 <af:panelGroupLayout id="pgl2">
 <af:outputFormatted value="Hierarchy Viewer Drag and Drop Example"
 id="of1"
 inlineStyle="font-size:small; font-weight:bold"/>
 <af:panelList id="pl1">
 <af:outputFormatted value="Click and hold on a node for more than
one-half second to initiate the drag. Use Ctrl+Click to select multiple nodes."
 id="of2" inlineStyle="font-size:x-small"/>
 <af:outputFormatted value="Drag one or more nodes from the hierarchy
viewer to the drop text. The text will change to show which node(s) you dragged
and the operation performed."
 id="of3"
 inlineStyle="font-size:x-small;"/>
 <af:outputFormatted value="Drag the drag text to one of the hierarchy
viewer nodes or background. The text will change to show where you dropped it and
the operation performed."
 id="of4"
 inlineStyle="font-size:x-small;"/>
 </af:panelList>
 </af:panelGroupLayout>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="center">
 <af:panelSplitter id="ps1" orientation="horizontal"
 splitterPosition="125" positionedFromEnd="false"
 styleClass="AFStretchWidth">
 <f:facet name="first">
 <af:panelSplitter id="ps2" orientation="vertical">
 <f:facet name="first">
 <af:panelGroupLayout id="pgl3" layout="vertical">
 <af:separator id="s2"/>
 <af:outputFormatted value="#{hvBean.dropText}" id="of5"
 inlineStyle="font-size:small; font-weight:bold"
 clientComponent="true">
 <af:dropTarget dropListener="#{hvBean.fromDropListener}">
 <af:dataFlavor
flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"/>
 </af:dropTarget>
 </af:outputFormatted>
 <af:separator id="s3"/>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="second">
 <af:panelGroupLayout id="pgl4">
 <af:separator id="s4"/>

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-29

 <af:outputFormatted value="#{hvBean.dragText}" id="of6"
 inlineStyle="font-size:small; font-weight:bold;"
 clientComponent="true">
 <af:componentDragSource/>
 </af:outputFormatted>
 </af:panelGroupLayout>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
 <f:facet name="second">
 <dvt:hierarchyViewer id="hierarchyViewer1"
 layout="hier_vert_top"
 styleClass="AFStretchWidth" var="node"
 value="#{XMLParser.employees}"
 contentDelivery="immediate"
 detailWindow="none"
 summary="Hierarchy Viewer Drag and Drop Example"
 controlPanelBehavior="initExpanded"
 navigateUpListener="#{XMLParser.doNavigateUp}">
 <dvt:link linkType="orthogonalRounded" id="l1"/>
 <dvt:node width="233" height="330" id="n1"
 setAnchorListener="#{XMLParser.doSetAnchor}"
 showNavigateUp="#{node.topNode == false}"
 showExpandChildren="#{node.hasChildren}">
 <f:facet name="zoom100">
 remaining node details omitted
 <af:dragSource actions="COPY LINK MOVE" defaultAction="COPY"/>
 <af:dropTarget dropListener="#{hvBean.toDropListener}"
 actions="COPY MOVE LINK">
 <af:dataFlavor flavorClass="java.lang.Object"/>
 </af:dropTarget>
 </dvt:hierarchyViewer>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
</af:panelStretchLayout>

For additional information about af:outputFormatted components, see
Chapter 16, "Using Output Components." For help with the af:panelGroupLayout
component or other page layout components, see Chapter 8, "Organizing Content
on Web Pages."

To configure hierarchy viewer drag and drop:
1. To configure a hierarchy viewer as a drop target, in the Component Palette, from

the Operations panel, drag a Drop Target tag and drop it as a child to the
hierarchy viewer.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the hierarchy
viewer’s managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named toDropListener() on a managed bean
named hvBean, choose Edit, select hvBean from the dropdown menu, and click
New on the right of the Method field to create the toDropListener() method.

Example 31–6 shows the sample drop listener and supporting methods for the
hierarchy viewer displayed in Figure 31–17.

Adding Interactivity to a Hierarchy Viewer Component

31-30 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 31–6 Sample Drop Listener for a Hierarchy Viewer

// imports needed by methods
import java.util.Map;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.render.ClientRowKeyManager;
import javax.faces.context.FacesContext;
import oracle.adf.view.faces.bi.component.hierarchyViewer.UIHierarchyViewer;
import javax.faces.component.UIComponent;
// variables need by methods
private String dragText = "Drag this text onto a node or the hierarchy viewer
background";
// drop listener
public DnDAction toDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<Object> dataFlavor = DataFlavor.getDataFlavor(Object.class);
 Object transferableObj = transferable.getData(dataFlavor);
 if(transferableObj == null)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 UIComponent dropComponent = event.getDropComponent();
 Object dropSite = event.getDropSite();
 if(dropSite instanceof Map) {
 String clientRowKey = (String) ((Map) dropSite).get("clientRowKey");
 Object rowKey = getRowKey(dropComponent, clientRowKey);
 sb.append("Drop Site: ");
 if(rowKey != null) {
 sb.append("Node: ");
 sb.append(getLabel(dropComponent, rowKey));
 }
 else {
 sb.append("Background");
 }
 }
 // Update the output text
 this._dragText = sb.toString();
 RequestContext.getCurrentInstance().addPartialTarget(event.getDragComponent());
 return event.getProposedAction();
}
private String getLabel(UIComponent component, Object rowKey) {
// save the current rowkey because we will lose this state in the for-loop
// when we setRowKey and then get the rowData
 UIXHierarchy hierarchy = (UIXHierarchy)component;

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-31

 Object savedKey = hierarchy.getRowKey();

 try
 {
 if(component instanceof UIHierarchyViewer) {
 UIHierarchyViewer hv = (UIHierarchyViewer) component;
 hv.setRowKey(rowKey);
 Employee rowData = (Employee) hv.getRowData();
 return rowData.getFirstName() + " " + rowData.getLastName();
 }
 }
 finally {
 hierarchy.setRowKey(savedKey);
 }
 return null;
}
private Object getRowKey(UIComponent component, String clientRowKey) {
 if(component instanceof UIHierarchyViewer) {
 UIHierarchyViewer hv = (UIHierarchyViewer) component;
 ClientRowKeyManager crkm = hv.getClientRowKeyManager();
 return crkm.getRowKey(FacesContext.getCurrentInstance(), component,
clientRowKey);
 }
 return null;
}
public String getDragText() {
 return _dragText;
}

3. Click OK to enter the Insert Data Flavor dialog.

4. In the Insert Data Flavor dialog, enter the object that the drop target will accept.
Alternatively, use the dropdown menu to navigate through the object hierarchies
and choose the desired object.

For example, to allow the af:outputFormatted component to drag text to the
hierarchy viewer, enter java.lang.Object in the Insert Data Flavor dialog.

5. In the Structure window, right-click the af:dropTarget component and choose Go
to Properties.

6. In the Property Inspector, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

Note: This method references an Employee class that defines the
attributes for the hierarchy viewer. If your hierarchy viewer uses a
different class, substitute the name of that class instead.

If you want to look at the source code for the Employee class used in
this example, you can find the source code for it and other supporting
classes in the ADF Faces demo application. For more information
about the demo application, see Section 1.4, "ADF Faces
Demonstration Application."

Adding Interactivity to a Hierarchy Viewer Component

31-32 Web User Interface Developer's Guide for Oracle Application Development Framework

7. To use the hierarchy viewer as the drop target, do the following:

1. In the Component Palette, from the Operations panel, drag and drop a Drag
Source tag as a child to the component that will be the source of the drag.

For example, drag and drop a Drag Source tag as a child to an
af:outputFormatted component.

2. In the component’s value field, reference the public variable that you created
in the drop listener for the hierarchy viewer in Step 2.

For example, for a drop listener named toDropListener() and a variable
named dropText, enter the following in the component’s Value field:

#{hvBean.dropText}

8. To configure the hierarchy viewer as a drag source, in the Component Palette,
from the Operations panel, drag and drop a Drag Source tag as a child to the
hierarchy viewer.

9. In the Property Inspector, in the Actions field, enter a list of the operations that the
drop target will accept, separated by spaces. Allowable values are: COPY, MOVE, or
LINK.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

10. To specify the default action that the drag source will support, use the
DefaultAction attribute’s dropdown menu to choose COPY, MOVE, or LINK.

The hierarchy viewer in the drag and drop example in Figure 31–17 uses MOVE as
the default action.

11. To make another component the drop target for drags from the hierarchy viewer,
do the following:

1. In the Component Palette, from the Operations panel, drag and drop a Drop
Target onto the component that will receive the drop.

For example, the page in the drag and drop example in Figure 31–17 contains
an af:outputFormatted component that displays the results of the drop.

2. In the Insert Drop Target dialog, enter the name of the drop listener or use the
dropdown menu to choose Edit to add a drop listener method to the
appropriate managed bean. Alternatively, use the dropdown menu to choose
Expression Builder and enter an EL Expression for the drop listener.

For example, to add a method named fromDropListener() on a managed
bean named hvBean, choose Edit, select hvBean from the dropdown menu,
and click New on the right of the Method field to create the
fromDropListener() method.

Example 31–7 shows the sample drop listener for the hierarchy viewer
displayed in Figure 31–17. This example uses the same imports and helper
methods used in, and they are not included here.

Example 31–7 Sample Drop Listener for a Component Using a Hierarchy Viewer as a
Drag Source

// Additional import needed for listener
import org.apache.myfaces.trinidad.model.RowKeySet;
// Variables needed by method
private String dropText = "Drop a node here";

Adding Interactivity to a Hierarchy Viewer Component

Using ADF Hierarchy Viewer Components 31-33

// Drop listener
public DnDAction fromDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<RowKeySet> dataFlavor = DataFlavor.getDataFlavor(RowKeySet.class);
 RowKeySet rowKeySet = transferable.getData(dataFlavor);
 if(rowKeySet == null || rowKeySet.getSize() <= 0)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 sb.append("Nodes: ");
 UIComponent dragComponent = event.getDragComponent();
 for(Object rowKey : rowKeySet) {
 sb.append(getLabel(dragComponent, rowKey));
 sb.append(", ");
 }
 // Remove the trailing ,
 sb.setLength(sb.length()-2);
 // Update the output text
 this.dropText = sb.toString();
 RequestContext.getCurrentInstance().addPartialTarget(event.getDropComponent());
 return event.getProposedAction();
}

3. Click OK to enter the Insert Data Flavor dialog.

4. In the Insert Data Flavor dialog, enter
org.apache.myfaces.trinidad.model.RowKeySet.

For example, to allow the af:outputFormatted component to drag text to the
hierarchy viewer, enter org.apache.myfaces.trinidad.model.RowKeySet in
the Insert Data Flavor dialog.

5. In the Structure window, right-click the af:dropTarget component and choose
Go to Properties.

6. In the Property Inspector, in the Actions field, enter a list of the operations that
the drop target will accept, separated by spaces. Allowable values are: COPY,
MOVE, or LINK. If you do not specify a value, the drop target will use COPY.

For example, enter the following in the Actions field to allow all operations:

COPY MOVE LINK

7. In the component’s value field, reference the public variable that you created
in the drop listener for the treemap or sunburst in Step 2.

For example, for a drop listener named fromDropListener() and a variable
named dragText, enter the following in the component’s Value field:

Using Panel Cards

31-34 Web User Interface Developer's Guide for Oracle Application Development Framework

#{hvBean.dragText}

31.6.5.2 What You May Need to Know About Configuring Hierarchy Viewer Drag
and Drop
You can disable the ability to drag a node by setting its draggable attribute to no.

31.7 Using Panel Cards
You can use the panel card component in conjunction with the hierarchy viewer
component to hold different sets of information for the nodes that the hierarchy viewer
component references. The panel card component is an area inside the node element
that can include one or more af:showDetailItem elements.

Each of the af:showDetailItem elements references a set of content. For example, a
hierarchy viewer component that renders an organization chart would include a node
for employees in the organization. This node could include a panel card component
that references contact information using an af:showDetailItem element and another
af:showDetailItem element that references salary information.

A panel card component displays the content referenced by one af:showDetailItem
element at runtime. The panel card component renders navigation buttons and other
controls that allow the user to switch between the sets of data referenced by
af:showDetailItem elements. The controls that allow users to switch between
different sets of data can be configured with optional transitional effects. For example,
you can configure a panel card to horizontally slide between one set of data referenced
by an af:showDetailItem element to another set of data referenced by another
af:showDetailItem element.

31.7.1 How to Create a Panel Card
You can insert a panel card component into the JSF page that renders the hierarchy
viewer component by using the context menu that appears when you select the Facet
zoom element in the Structure window for the JSF page.

To create a panel card:
1. In the Structure window, right-click the zoom level within the node where you

want to create a panel card.

For example, select f:facet - zoom100.

2. If the selected facet does not already contain a panelGroupLayout component,
select Insert inside f:facet - zoomlevel > Panel Group Layout to create a container
for the panel card.

3. Use the Property Inspector to configure the properties of the panelGroupLayout
component.

For help with configuring the panelGroupLayout component, see Section 8.13.1,
"How to Use the panelGroupLayout Component."

4. In the Structure window, right-click the af:panelGroupLayout node and select
Insert inside Panel Group Layout > Panel Card to create the panel card.

5. Use the Property Inspector to configure the panel card’s properties.

For example, set a value for the Effect property for the panel card component.
Valid values are:

Customizing the Appearance of a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-35

■ slide_horz (default)

Old content slides out on one side while new content slides in from the other
side.

■ immediate

Content displays immediately with no transition effect.

■ node_flip_horz

The entire node flips over to reveal new contents.

■ flip_horz

The showDetailItem flips over to reveal new contents.

6. In the Structure window, right-click the dvt:panelCard node and choose Insert
inside dvt:panelCard > Show Detail Item.

7. Use the Property Inspector to configure the properties of the af:showDetailItem
elements that you insert.

8. Repeat Step 6 and Step 7 for each set of content that you want the panel card to
display

31.7.2 What Happens at Runtime When a Panel Card Component Is Rendered
At runtime, a node appears and displays one panel card component. Users can click
the navigation buttons at the bottom of the panel card to navigate to the next set of
content referenced by one of the panel card’s af:showDetailItem child elements.

Figure 31–20 shows a node with a panel card component where two different
af:showDetailItem child elements reference different sets of information (Contact and
Address). The controls in the example include arrows to slide through the panel cards
as well as buttons to directly select the panel card to display. Tooltips display for both
control options.

Figure 31–20 Runtime View of a Node with a Panel Card

31.8 Customizing the Appearance of a Hierarchy Viewer
You can customize the hierarchy viewer component size and appearance including
adding images, configuring the display of the control panel, and customizing links
and labels.

Customizing the Appearance of a Hierarchy Viewer

31-36 Web User Interface Developer's Guide for Oracle Application Development Framework

You can change the appearance of your hierarchy viewer component by changing
skins and component style attributes, as described in Chapter 20, "Customizing the
Appearance Using Styles and Skins."

31.8.1 How to Adjust the Size of a Hierarchy Viewer
You can adjust the size of the hierarchy viewer component by setting values for a
number of the hierarchy viewer component’s attributes using the Property Inspector.

By default, the size of a hierarchy viewer is configured to fit the width of the available
space using the AFStretchWidth style setting for its styleClass attribute. You can add
or modify this setting by configuring values in the Style section of the Property
Inspector.

To adjust the size of a hierarchy viewer:
1. In the Structure window for the JSF page that contains the hierarchy viewer

component, select the dvt:hierarchyViewer node and choose Go to Properties.

2. In the Property Inspector, to use a predefined style class to specify width or height,
enter the style name in the StyleClass attribute or choose Edit from the attribute’s
dropdown menu to select one or more of the predefined styles.

3. To enter specific values for width or height, enter values for the InlineStyle
attribute:

■ width

Enter a value in percent (%) or pixels (px). You do not need to enter a value to
set the hierarchy viewer’s width to 100% as its style attribute is automatically
set to AFStretchWidth.

■ height

Write a value in percent (%) or pixels (px). The default value for height is
600px.

The final value that you enter for the InlineStyle property must use this syntax:

width:75%;height:600px;

4. Save changes to the JSF page.

For more information about applying styles and skins, see Chapter 20, "Customizing
the Appearance Using Styles and Skins."

31.8.2 How to Include Images in a Hierarchy Viewer
You can configure a hierarchy viewer component to display images in the nodes of a
hierarchy viewer component at runtime. This can be useful where, for example, you
want pictures to appear in an organization chart. Insert an af:image component with
the source attribute bound to the URL of the desired image. The following code
example renders an image from a file that is stored in the images directory.

<af:panelGroupLayout>
 <af:image source="images/person_id=#{node.PersonId}"
 inlineStyle="width:64px;height:90px;"/>
</af:panelGroupLayout>

For more information about the af:panelGroupLayout component, see Section 8.13.1,
"How to Use the panelGroupLayout Component."

Customizing the Appearance of a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-37

31.8.3 How to Configure the Display of the Control Panel
You can configure the hierarchy viewer component so that the Control Panel described
in Section 31.1.2, "Hierarchy Viewer Elements and Terminology," acts as follows when
the hierarchy viewer component renders at runtime:

■ Appears in an expanded or show state

■ Appears in a collapsed or hidden state

■ Does not appear to users

To configure the display of the Control Panel:
1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go

to Properties.

2. Expand the Appearance section and select one of the following values from the
ControlPanelBehavior dropdown list:

■ hidden

Select this value if you do not want the Control Panel to appear at runtime.

■ initCollapsed

This is the default value. The Control Panel appears in a collapsed or hidden
state at runtime.

■ initExpanded

Select this value if you want the Control Panel to appear in an expanded or
show state at runtime.

3. Save changes to the JSF page.

31.8.4 How to Configure the Display of Links and Labels
In a hierarchy viewer the relationships between nodes are represented by lines that
link the nodes. The links can be configured to include labels. Figure 31–21 illustrates
links and labels in a hierarchy viewer.

Figure 31–21 Hierarchy Viewer Links and Labels

You can customize the appearance of links and labels by setting properties of the
dvt:link element in a hierarchy viewer. Figure 31–22 illustrates links with a dashDot
value set for the linkStype attribute.

Customizing the Appearance of a Hierarchy Viewer

31-38 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 31–22 Links with dashDot Link Style

To customize the display of links and labels:
1. In the Structure window, right-click the dvt:link node and choose Go to

Properties.

2. In the Property Inspector, set the following attributes to customize the appearance
of links between nodes in a hierarchy viewer as desired:

■ linkStyle - Sets the style of the link, for example, dotted or dashed line.

■ linkColor - Sets the color of the link.

■ linkWidth - Sets the width of the link, in pixels.

■ linkType - Sets the type of link, for example, direct line or smooth curved line
fitted to what would have been a single right angle.

■ endConnectorType - Sets the style of the link connection end to none (default)
or arrowOpen.

3. Also in the Property Inspector, enter text for the label associated with the link in
the label property.

Alternatively, specify an EL expression to stamp out the link label based on the
child node. For example, write an EL expression similar to the following where the
node var attribute refers to the child node associated with the link.

label="{node.relationship}"

4. Optionally, also in the Property Inspector, use the rendered property to stamp the
link for a particular relationship between nodes. The property accepts a boolean
value so you can write an EL expression that evaluates to true or false to
determine if the link represents the relationship. For example, assume that you
want a link to display based on reporting relationship. You write an EL expression
for the link component’s rendered property similar to the following EL expression
that evaluates to true when the relationship matches the value you specify (in this
example, CONSULTANT):

rendered="#{node.relationship == "CEO"}

31.8.5 How to Disable the Hover Detail Window
By default, the hover window automatically displays when the zoom level is at
76-100%. If your hierarchy viewer uses popups, the hover window can interfere with
the popup display. You can use the hierarchy viewer detailWindow attribute to turn off
the display of the hover window when the zoom level is at 76-100%.

To disable the hierarchy viewer hover window:
1. In the Structure window, right-click the dvt:hierarchyViewer node and choose Go

to Properties.

2. In the Property Inspector, expand the Behavior section and select one of the
following values from the DetailWindow dropdown list:

Adding Search to a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-39

■ default

This is the default value. The hover window is always displayed.

■ none

Select this value if you do not want the hover window to display when the
zoom level is at 76-100%.

31.9 Adding Search to a Hierarchy Viewer
The hierarchy viewer search functionality looks through the data structure of the
hierarchy viewer and presents matches in a scrollable list. Users can double-click a
search result to display the matching node as the anchor node in the hierarchy viewer.
When enabled, a search panel is displayed in the upper right-hand corner of the
hierarchy viewer, and results are displayed below the search panel. Figure 31–23
shows a sample search panel.

Figure 31–23 Hierarchy Viewer Search Panel

Figure 31–24 shows sample search results.

Figure 31–24 Hierarchy Viewer Sample Search Results

31.9.1 How to Configure Searching in a Hierarchy Viewer
Add the dvt:search tag as a child of the dvt:hierarchyViewer tag to enable
searching, and dvt:searchResults as a child of dvt:search to specify how to handle
the results.

To configure search in a hierarchy viewer:
1. In the Structure window, right-click the dvt:hierarchyViewer node and choose

insert inside dvt:hierarchyViewer > dvt:search.

Adding Search to a Hierarchy Viewer

31-40 Web User Interface Developer's Guide for Oracle Application Development Framework

2. In the Property Inspector, set the following attributes to configure the search
functionality:

■ value: Specify the variable to hold the search text.

■ actionListener: Enter the listener called to perform the search.

■ initialBehavior: Specify how the search panel is initially displayed. Valid
values are initCollapsed for initially collapsed, initExpanded for initially
expanded, or hidden for completely hidden from view.

3. Optionally, add a f:facet with a value of name="end" to specify a component that
will launch an advanced search outside of the hierarchy viewer component. This
facet should contain only a single component, for example af:commandLink, to
launch a comprehensive search of a data set. For more information, see
Section 12.4, "Using the query Component."

4. In the Structure window, right-click the dvt:search node and choose insert inside
dvt:search > dvt:searchResults.

5. In the Property Inspector, set the following attributes to configure the display of
the search results:

■ value: Specify the search results data model. This must be an instance of
oracle.adf.view.faces.bi.model.DataModel.

■ var: Enter the name of the EL variable used to reference each element of the
hierarchy viewer collection. Once this component has completed rendering,
this variable is removed, or reverted back, to its previous value.

■ varStatus: Enter the name of the EL variable used to reference the varStatus
information. Once this component has completed rendering, this variable is
removed, or reverted back, to its previous value.

■ resultListener: Specify a reference to an action listener that will be called
after a row in the search results is selected.

■ emptyText: Specify the text to display when no results are returned.

■ fetchSize: Specify the number of result rows to fetch at a time.

6. In the Structure window, right-click the dvt:searchResults node and select insert
inside dvt:searchResults, then select ADF Faces, then select
af:setPropertyListener.

7. In the Property Inspector, set the following attributes to map the search results
node from the results model to the corresponding hierarchy viewer model:

■ from: Specify the source of the value, a constant or an EL expression.

■ to: Specify the target of the value.

■ type: Choose action as the value.

8. In the Structure window, right-click the dvt:searchResults node and choose insert
inside dvt:searchResults > f:facet with a value of name="content".

9. In the Structure window, right-click the f:facet content node and do the following
to specify the components to stamp out the search results:

■ Insert an ADF Faces af:panelGroupLayout element to wrap the output of the
search results.

■ Insert the ADF Faces output components to display the search results. For
example:

Adding Search to a Hierarchy Viewer

Using ADF Hierarchy Viewer Components 31-41

<af:outputText value="#{resultRow.Lastname} " id="ot1"
 inlineStyle="color:blue;"/>
<af:outputText value="#{resultRow.Firstname}" id="ot2"/>

Each stamped row references the current row using the var attribute of the
dvt:searchResults tag.

Example 31–8 shows sample code for configuring search in a hierarchy viewer.

Example 31–8 Sample Hierarchy Viewer Search Code

<dvt:hierarchyViewer>
 <dvt:search id="searchId" value="#{bindings.lastNameParam.inputValue}"
 actionListener="#{bindings.ExecuteWithParams1.execute}">
 <f:facet name="end">
 <af:commandLink text="Options">
 <af:showPopupBehavior popupId="::mypop" triggerType="action"/>
 </af:commandLink>
 </f:facet>
 <dvt:searchResults id="searchResultId"
 emptyText="#{bindings.searchResult1.viewable ? 'No match.' : 'Access
 Denied.'}"
 fetchSize="25"
 value="#{bindings.searchResult1.collectionModel}"
 resultListener="#{bindings.ExecuteWithParams.execute}"
 var="resultRow">
 <af:setPropertyListener from="#{resultRow.Id}"
 to="#{bindings.employeeId.inputValue}"
 type="action"/>
 <f:facet name="content">
 <af:panelGroupLayout inlineStyle="width:110px;height:20px;">
 <af:outputText value="#{resultRow.Lastname} " id="ot1"
 inlineStyle="color:blue;"/>
 <af:outputText value="#{resultRow.Firstname}" id="ot2"/>
 </af:panelGroupLayout>
 </f:facet>
 </dvt:searchResults>
 </dvt:search>
</dvt:hierarchyViewer>

31.9.2 What You May Need to Know About Configuring Search in a Hierarchy Viewer
Search in a hierarchy viewer is based on the searchable attributes or columns of the
data collection that is the basis of the hierarchy viewer data model. Using a query
results collection defined in data controls in Oracle ADF, JDeveloper makes this a
declarative task. For more information, see the "How to Create a Databound Search in
a Hierarchy Viewer" section in the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

Adding Search to a Hierarchy Viewer

31-42 Web User Interface Developer's Guide for Oracle Application Development Framework

Part V
Part V Advanced Topics

Part V contains the following chapters:

■ Chapter 32, "Creating Custom ADF Faces Components"

■ Chapter 33, "Allowing User Customization on JSF Pages"

■ Chapter 34, "Adding Drag and Drop Functionality"

■ Chapter 35, "Using Different Output Modes"

■ Chapter 36, "Using the Active Data Service with an Asynchronous Backend"

32

Creating Custom ADF Faces Components 32-1

32 Creating Custom ADF Faces Components

This chapter describes how to create custom ADF Faces rich client components.

This chapter includes the following sections:

■ Section 32.1, "Introduction to Custom ADF Faces Components"

■ Section 32.2, "Setting Up the Workspace and Starter Files"

■ Section 32.3, "Client-Side Development"

■ Section 32.4, "Server-Side Development"

■ Section 32.5, "Deploying a Component Library"

■ Section 32.6, "Adding the Custom Component to an Application"

32.1 Introduction to Custom ADF Faces Components
The ADF Faces component library provides a comprehensive set of UI components
that covers most of your requirements. However, there are situations when you will
want to create a custom rich component that is specific to your application. A custom
rich component will allow you to have custom behavior and perform actions that best
suit the needs of your application.

JSF technology is built to allow self-registering components and other framework
parts. The core JSF runtime at web application startup accomplishes this by inspecting
all JAR files in the class path. Any JAR files whose /META-INF/faces-config.xml file
contains JSF artifacts will be loaded. Therefore, you can package custom ADF Faces
components in a JAR file and simply add it into the web project.

For each ADF Faces component, there is a server-side component and there can also be
a client-side component. On the server, for JSPs, a render kit provides a base to balance
the complex mixture of markup language and JavaScript. The server-side framework
also adds a custom lifecycle to take advantage of the API hooks for partial page
component rendering. On the client, ADF Faces provides a structured JavaScript
framework for handling various nontrivial tasks. These tasks include state
synchronization using partial page rendering. For more information about the ADF
Faces architecture, see Chapter 3, "Using ADF Faces Architecture."

Note: Creating custom standard JSF components is covered in many
books, articles, web sites, and the JavaServer Faces specification,
therefore, it is not covered in this guide. This chapter is intended to
describe how to create ADF Faces components.

Introduction to Custom ADF Faces Components

32-2 Web User Interface Developer's Guide for Oracle Application Development Framework

ADF Faces components are derived from the Apache MyFaces Trinidad component
library. Because of this, many of the classes you extend when creating a custom ADF
Faces component are actually MyFaces Trinidad classes. For more information about
the history of ADF Faces, including its evolution, see Chapter 1, "Introduction to ADF
Faces Rich Client."

Between the JSP and the JSF components is the Application class. The tag library uses
a factory method on the application object to instantiate a concrete component
instance using the mnemonic referred to as the componentType.

A component can render its own markup but this is not considered to be a best
practice. The preferred approach is to define a render kit that focuses on a strategy for
rendering the presentation. The component uses a factory method on the render kit to
get the renderer associated with the particular component. If the component is
consumed in an application that uses Facelets, then a component handler creates the
component.

In addition to functionality, any custom component you create must use an ADF Faces
skin to be able to be displayed properly with other ADF Faces components. To use a
skin, you must create and register the skinning keys and properties for your
component. This chapter describes only how to create and register skins for custom
components. For more information about how skins are used and created in general,
see Chapter 20, "Customizing the Appearance Using Styles and Skins."

32.1.1 Developing a Custom Component with JDeveloper
An ADF Faces component consists of both client-side and server-side resources. On
the client side, there is the client component, the component peer (the component
presenter), and any events associated with the client component.

On the server side, there is the server component, server component events, and event
listeners. Also, there is a component renderer, a component JSP tag, a composite
resource loader, a JavaScript resource loader, and a resource bundle.

The component also has several configuration and support files. Together, these
classes, JavaScripts, and configuration files are packaged into a JAR file, which can be
imported as a library into an application and used like other components.

You can use JDeveloper to set up the application workspace and project in which you
develop the custom component. After you have created the workspace and project,
you add starter working files for the required classes, JavaScript files, and
configuration files that make up the custom component. During development, you
edit and add code to each of these files, specific for the custom component.

The development process is as follows:

1. Create an application, workspace, and project as an environment for development.
This includes adding library dependencies and registering XML schemas. You
should not create the component in the same application in which you plan to use
the component.

2. Create a deployment profile for packaging the component into a JAR file.

3. Create the following starter configuration and support files:

Tip: To work with ADF Faces components, your custom component
must use at least the ADF Faces simple skin, because the Skyros, and
FusionFX skins inherit from the simple skin. Additionally, if there is
any chance your component will be used in an Oracle WebCenter
Portal application, then your skin must also be registered with the
simple.portlet skin.

Introduction to Custom ADF Faces Components

Creating Custom ADF Faces Components 32-3

– faces-config.xml: Used to register many of the artifacts used by the
component.

– trinidad-skins.xml: Used to register the skins that the component uses.

– Cascading style sheet: Used to define the style properties for the skins.

– Render kit resource loader: Allows the application to load all the resources
required by the component.

– adf-js-features.xml: Allows the component to become part of a JavaScript
partition. For more information about partitions, see Section 1.2.1.2,
"JavaScript Library Partitioning."

– JSP tag library descriptor (TLD) (for JSP): Defines the tag used on the JSF page.

– Component handler (for Facelets): Defines the handler used to render the
component.

4. Create the following client-side JavaScript files:

– Client Component: Represents the component and its attributes on the client.

– Client Peer: Manages the document object model (DOM) for the component.

– Client Event: Invokes processing on the client and optionally propagates
processing to the server.

5. Create the following server-side Java files:

– Server Component class: Represents the component on the server.

– Server Event Listener class: Listens for and responds to events.

– Server Events class: Invokes events on the server.

– Server Renderer class: Determines the display of the component.

– Resource Bundle class: Defines text strings used by the component.

6. Further develop the component by testing and debugging the JavaScript and Java
code. You can use the JDeveloper debugger to set breakpoints and to step through
the code. You can also use Java logging features to trace the execution of the
component.

7. Deploy the component into a JAR file.

8. Test the component by adding it into an application.

Table 32–1 lists the client-side and server-side component artifacts for a custom
component. The configuration and support files are not included in the table.

Introduction to Custom ADF Faces Components

32-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Table 32–1 Client-Side and Server-Side Artifacts for a Custom Component

Client Server

Component class:

oracle.component_
package.js.component.prefixComponent_name.js

Extends:

oracle.adf.view.js.component.

AdfUIObject.js

Component:

oracle.<component_
package>.faces.component.<Component_name>.java

Extends:

org.apache.myfaces.trinidad.component.

UIXObject.java

Event:

oracle.<component_
package>.js.event.<prefix><Event_name>.js

Extends:

oracle.adf.view.js.component.

AdfComponentEvent.js

Event:

oracle.<component_package>.faces.event.<Event_name>
.java

Extends:

javax.faces.event.FacesEvent.java

Event Listener:

oracle.<component_package>.faces.event<Listener_
name>

Extends:

com.faces.event.FacesListener

Component Peer:

com.<component_
package>.js.component.<prefix><Peer_
name>Peer.js

Extends:

oracle.adf.view.js.laf.rich.

AdfRichUIPeer.js.js

Component Renderer:

com.<component_package>.faces.render.<Renderer_
name>.java

Extends:

oracle.adf.view.rich.render.RichRenderer.

java

Component JSP Tag (JSP only):

com.<component_package>.faces.taglib.<Tagname_
name>Tag.java

Extends:

javax.faces.webapp.UIComponentELTag.java

Introduction to Custom ADF Faces Components

Creating Custom ADF Faces Components 32-5

32.1.2 An Example Custom Component
To help illustrate creating a custom component, a custom component named tagPane
will be used as an example throughout the procedures. The tagPane custom
component is created for reuse purposes. Although the tagPane presentation might
have been implemented using a variety of existing components, having a single
custom component simplifies the work of the page developer. In this case, there may
be a trade-off of productivity between the component developer and the page
developers. If this particular view composition were needed more than once, the
development team would reduce costs by reducing the lines of code and simplifying
the task of automating a business process.

The tagPane component displays a series of tags and their weighted occurrences for a
set of files. Tags that are most frequently used are displayed in the largest font size,
while the least used tags are displayed in the smallest font size. Each tag is also a link
that triggers an event, which is then propagated to the server. The server causes all the
files that contain an occurrence of that tag to then be displayed in a table. Figure 32–1
shows the tagPane component.

Figure 32–1 Custom tagPane Component

The tagPane component receives a collection of tags in a Java Map collection. The key
of the map is the tag name. The value is a weight assigned to the tag. The weight is the
number of times the tag occurs and in most cases, the number of files associated with
the tag. The tag name is displayed in the body text of a link and the font size used to

Composite Resource Loader:

com.<component_package>.faces.resource.<Loader_
name>ResourceLoader.java

Extends:

org.myfaces.trinidad.resource.

RegxResourceLoader.java

JavaScript Resource Loader:

com.<component_package>.faces.resource.<Script_
Loader_name>ResourceLoader.java

Extends:

org.myfaces.trinidad.resource.

AggregateingResourceLoader.java

Resource Bundle:

com.<component_package>.faces.resource.<Bundle_
name>Bundle.java

Extends:

java.util.ListResouceBundle.java

Table 32–1 (Cont.) Client-Side and Server-Side Artifacts for a Custom Component

Client Server

Introduction to Custom ADF Faces Components

32-6 Web User Interface Developer's Guide for Oracle Application Development Framework

display the name represents the weight. Each tag’s font size will be proportionally
calculated within the minimum and maximum font sizes based upon the upper and
lower weights assigned to all tags in the set of files. To perform these functions, the
tagPane custom component must have both client-side and server-side behaviors.

On the server side, the component displays the map of tags by rendering HTML
hyperlinks. The basic markup rendering is performed on the server. A custom event
on the component is defined to handle the user clicking a link, and then to display the
associated files. These server-side behaviors are defined using a value expression and
a method expression.

For example, the tagPane component includes:

■ A tag property for setting a Map<String, Number> collection of tags.

■ A tagSelectionListener method-binding event that is invoked on the server
when the user clicks the link for the tag.

■ An orderBy property for displaying the sequence of tags from left to right in the
order of descending by weight or alternatively displaying the tag links ascending
alphabetically.

To allow each tag to be displayed in a font size that is proportional to its weight
(occurrences), the font size is controlled using an inline style. However, each tag and
the component’s root markup node also uses a style class.

Example 32–1 shows how the tagPane component might be used in a JSF page.

Example 32–1 tagPane Custom Component Tag in a JSF Page

<acme:tagPane id="tagPane" tags="#{explorer.navigatorManager.tagNavigator.tags}"
 tagSelectListener="#{explorer.navigatorManager.tagNavigator.onTagSelect}"
 orderBy="alpha"
 partialTriggers="tagCountLabel"/>

Because the tagPane component must be used with other ADF Faces components, it
must use the same skins. Therefore, any styling is achieved through the use of
cascading style sheets (CSS) and corresponding skin selectors. For example, the
tagPane component needs skin selectors to specify the root element, and to define the
style for the container of the links and the way the hyperlinks are displayed.
Example 32–2 shows a sample set of style selectors in the CSS file for the tagPane
component.

Example 32–2 CSS Style Selectors for the Sample Custom Component

acme|tagPane - root element
acme|tagPane::content - container for the links
acme|tagPane::tag - tag hyperlink

You may need to specify the HTML code required for the custom component on the
server side.

Example 32–3 shows HTML server-side code used for the tagPane component.

Example 32–3 HTML Code for the Server Side

<div class=" acme|tagPane">

 Tag1
 Tag2

Introduction to Custom ADF Faces Components

Creating Custom ADF Faces Components 32-7

</div>

On the client side, the component requires a JavaScript component counterpart and a
component peer that defines client-side behavior. All DOM interaction goes through
the peer (for more information, see Chapter 3, "Using ADF Faces Architecture"). The
component peer listens for the user clicking over the hyperlinks that surround the tag
names. When the links are clicked, the peer raises a custom event on the client side,
which propagates the event to the server side for further processing.

Table 32–2 lists the client-side and server-side artifacts for the tagPane component.
Referencing the naming conventions in Table 32–1, the component_package is
com.adfdemo.acme and the prefix is Acme.

Table 32–2 Client-Side and Server-Side Artifacts for the tagPane Custom Component

Client Server

Component:

com.adfdemo.acme.js.component.

AcmeTagPane.js

Extends:

oracle.adf.view.js.component.

AdfUIObject.js

Component

com.adfdemo.acme.faces.component.TagPane.java

Extends:

org.apache.myfaces.trinidad.component.

UIXObject.java

Event:

com.adfdemo.acme.js.event.

AcmeTagSelectEvent.js

Extends:

oracle.adf.view.js.component.

AdfComponentEvent.js

Event:

com.adfdemo.acme.faces.event.

TagSelectEvent.java

Extends:

javax.faces.event.FacesEvent.java

Event Listener:

com.adfdemo.acme.faces.event.

SelectListener

Extends:

com.faces.event.FacesListener

Component Peer:

com.adfdemo.acme.js.component.

AcmeTagPanePeer.js

Extends:

oracle.adf.view.js.laf.rich.

AdfRichUIPeer.js

Component Renderer:

com.adfdemo.acme.faces.render.

TagPaneRenderer.java

Extends:

oracle.adf.view.rich.render.RichRenderer.java

Setting Up the Workspace and Starter Files

32-8 Web User Interface Developer's Guide for Oracle Application Development Framework

32.2 Setting Up the Workspace and Starter Files
Use JDeveloper to set up an application and a project to develop the custom
component. After your skeleton project is created, you can add a deployment profile
for packaging the component into a JAR file.

During the early stages of development, you create starter configuration and support
files to enable development. You may add to and edit these files during the process.
You create the following configuration files:

■ META-INF/faces-config.xml: The configuration file required for any JSF-based
application. While the component will use the faces-config.xml file in the
application into which it is eventually imported, you will need this configuration
file for development purposes.

■ META-INF/trinidad-skins.xml: The configuration information for the skins that
the component can use. Extend the simple skin provided by ADF Faces to include
the new component.

■ META-INF/package_directory/styles/skinName.css: The style metadata needed
to skin the component.

■ META-INF/servlets/resources/name.resources: The render kit resource loader
that loads style sheets and images from the component JAR file. The resource
loader is aggregated by a resource servlet in the web application, and is used to

Component JSP Tag:

oracle.adfdemo.acme.faces.taglib.

TagPaneTag.java

Extends:

javax.faces.webapp.UIComponentELTag.java

Composite Resource Loader:

oracle.adfdemo.acme.faces.resource.

AcmeResourceLoader.java

Extends:

org.myfaces.trinidad.resource.

RegxResourceLoader.java

JavaScript Resource Loader:

oracle.adfdemo.acme.faces.resource.

ScriptsResourceLoader.java

Extends:

org.myfaces.trinidad.resource.

AggregateingResourceLoader.java

Resource Bundle:

oracle.adfdemo.acme.faces.resource.

AcmeSimpleDesktopBundle.java

Extends:

java.util.ListResouceBundle.java

Table 32–2 (Cont.) Client-Side and Server-Side Artifacts for the tagPane Custom Component

Client Server

Setting Up the Workspace and Starter Files

Creating Custom ADF Faces Components 32-9

configure the resource servlet. In order for the servlet to locate the resource loader
file, it must be placed in the META-INF/servlets/resources directory.

■ META-INF/adf-js-features.xml: The configuration file used to define a feature.
The definition usually includes a component name or description of functionality
that a component provides, and the files used to implement the client-side
component.

■ META-INF/prefix_name.tld (for JSP): The tag definition library for the component.
If the consuming web application is using JSP, the custom component requires a
defined TLD. The TLD file will be located in the META-INF folder along with the
faces-config.xml and trinidad-skins.xml files.

■ META-INF/prefix_name.taglib.xml (for Facelets): The tag library definition for
the component when the consuming application uses Facelets. This file defines the
handler for the component.

For example, for the tagPane component, the following configuration files are needed:

■ META-INF/faces-config.xml

■ META-INF/trinidad-skins.xml

■ META-INF/acme/styles/acme-simple-desktop.css

■ META-INF/servlets/resources/acme.resources

■ META-INF/acme.tld

■ META-INF/acme.taglib.xml

■ META-INF/adf-js-features.xml

After the files are set up in JDeveloper, you add content to them. Then, you create the
client-side files nd server-side files. For more information, see Section 32.3, "Client-Side
Development," and Section 32.4, "Server-Side Development."

32.2.1 How to Set Up the JDeveloper Custom Component Environment
This chapter assumes you have experience using JDeveloper and are familiar with the
steps involved in creating and deploying an application. For more information about
using JDeveloper to create applications, see Chapter 2, "Getting Started with ADF
Faces." For more information about deployment, see the "Deploying Fusion Web
Applications" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

To set up the custom component development environment in JDeveloper:
1. Create an application to serve as a development container for the component. Use

JDeveloper to create a workspace and project. For procedures on creating an
application, see Section 2.2, "Creating an Application Workspace." When selecting
an application template, select the Generic Application template.

Note: Do not select any other application template, or add any
technologies to your application. Because the custom component will
be packaged into a JAR file, you do not need to create unnecessary
folders such as public_html that JDeveloper creates by default when
you use a template specifically for web applications, or add web
technologies. Instead, create the starter configuration file from the
XML schemas.

Setting Up the Workspace and Starter Files

32-10 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Prepare the project to be deployed as a JAR file by creating a new deployment
profile.

a. In the Application Navigator, right-click the project and choose New.

b. In the New Gallery, select Deployment Profile and then ADF Library JAR
File, and click OK.

c. In the Create Deployment Profile dialog, enter a name for the Deployment
Profile name. For example, the tagPane component might use
adf-richclient-demo-acme.

d. In the Edit JAR Deployment Profile Properties dialog, click OK.

3. In the Project Properties dialog, add library dependencies.

a. Select Libraries and Classpath in the left pane.

b. Click Add Library.

c. In the Add Library dialog, select ADF Faces Runtime 11, Facelets Runtime (if
using Facelets), JSF 1.2, and JSP Runtime, and click OK.

d. Click OK to close the Project Properties dialog.

4. Register XML schemas.

The custom component requires several XML configuration files. You can use
JDeveloper to register the XML schemas associated with these configuration files.
You must add schemas for three configuration files: faces-config.xml,
trinidad-skins.xml, and trinidad-config.xml. By preregistering these schemas,
you can create a template XML configuration file without having to know the
specifics about the markup structure. The names and locations of the schemas are
assumed by the base installation of JDeveloper.

a. Select Tools > Preferences. In the Preferences dialog, select XML Schemas in
the left pane, and click Add.

b. In the Add Schema dialog, click Browse to navigate to the XML schemas
included in your JDeveloper build, as shown in Table 32–3.

Note: In the Add Schema dialog, make sure Extension is set to .xml.
If you change it to XSD, when you later create XML files, you will not
be able to use the XML schema you have created.

Table 32–3 XML Schema Locations

XML Configuration File Schema Location

/META-INF/faces-config.xml JDeveloper_Home/jdeveloper/modules/

oracle.jsf_1.2.9/glassfish.jsf_1.2.9jar!

/com/sun/faces/web-facesconfig_1_2.xsd

/META-INF/trinidad-skins.xml JDeveloper_
Home/jdeveloper/modules/oralce.adf.view_
11.1.1/trinidad-impl.jar!/org/apache/

myfaces/trinidadinternal/ui/laf/xml/schemas/skin/t
rinidad-skins.xsd

/META-INF/trinidad-config.xml JDeveloper_Home/jdeveloper/modules/

oracle.adf.view_11.1.1/

trinidad-api.jar!/trinidad-config.xsd

Setting Up the Workspace and Starter Files

Creating Custom ADF Faces Components 32-11

32.2.2 How to Add a Faces Configuration File
Although the custom component will be registered in the consuming application’s
faces-config.xml file, during development, the workspace requires a
faces-config.xml file.

To create a faces-config.xml file for the custom component:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General, select XML, and then Select XML Document
from XML Schema, and click OK.

3. In the Create XML from XML Schema dialog:

■ XML File: Enter faces-config.xml.

■ Directory: Append \src\META-INF to the end of the directory entry.

■ Select Use Registered Schemas and click Next.

4. Enter the following:

■ Target Namespace: Select http://java.sun.com/xml/ns/javaee.

■ Root Element: Select faces-config.

Leave the defaults for the other fields, and click Finish.

The new file will automatically open in the XML editor.

5. Add the following schema information after the first line in the file:

<?xml version="1.0" encoding="US-ASCII"?>
 <faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">

Adding a schema provides better WYSIWYG tool support.

32.2.3 How to Add a MyFaces Trinidad Skins Configuration File
Add a MyFaces Trinidad skins file to register the component’s CSS file, which is used
to define the component’s styles.

To create a trinidad-skins.xml file for the custom component:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select XML.

/META-INF/adf-js-features.xml JDeveloper_Home/jdeveloper/modules/

oracle.adf.view_11.1.1/

adf-richclient-api-ll.jar!

/adf-js-features.xsd

Note: Do not use any of JDeveloper’s declarative wizards or dialogs
to create the faces-config.xml file. These declarative methods
assume you are creating a web application, and will add uneccessary
artifacts to your custom component application.

Table 32–3 (Cont.) XML Schema Locations

XML Configuration File Schema Location

Setting Up the Workspace and Starter Files

32-12 Web User Interface Developer's Guide for Oracle Application Development Framework

3. Select XML Document from XML Schema and click OK.

4. In the Create XML from XML Schema dialog:

■ XML File: Enter trinidad-skins.xml.

■ Directory: Append \src\META-INF to the end of the Directory entry.

■ Select Use Registered Schemas, and click Next.

5. Enter the following:

■ Target Namespace: Select http://myfaces.apache.org/trinidad/skin.

■ Root Element: Select skins.

■ Click Finish. The new file will automatically open in the XML editor.

32.2.4 How to Add a Cascading Style Sheet
Add a cascading style sheet to define component’s style.

To create a cascading style sheet for the custom component:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General, select File and click OK.

3. In the Create File dialog:

■ Enter a file name, for example, acme-simple-desktop.css.

■ Append \src\META-INF\component_prefix\styles to the end of the
Directory entry, where component_prefix is the prefix that will be used in the
component library. For example, for the tagPane component, acme is the
prefix, therefore, the string to append would be \META-INF\acme\styles.

32.2.5 How to Add a Resource Kit Loader
Create an empty file and add the fully qualified classpath to the custom resource
loader.

To create a resource loader for the custom component:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and then File, and click OK.

3. In the Create File dialog:

■ Enter component_prefix.resources for File Name, where component_prefix
will be the prefix used in the component library. For example, for the tagPane
component, acme is the prefix, therefore, the string to enter is acme.resources.

■ Append \src\META-INF\sevlets\resources\ to the end of the Directory
entry.

32.2.6 How to Add a JavaServer Pages Tag Library Descriptor File
You need a JSP TLD file to work with JSF pages.

To create a JavaServer Pages TLD file for the custom component:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand Web Tier and select JSP.

Setting Up the Workspace and Starter Files

Creating Custom ADF Faces Components 32-13

3. Select JSP Tag Library and click OK.

4. In the Create JavaServer Page Tag Library dialog, select Deployable and click
Next.

5. Enter the following:

■ Tag Library Descriptor Version: Select 2.1.

■ Short Name: A name. For example, for the tagPane component, you would
enter acme.

■ Tag Library URI: A URI for the tag library. For example, for the tagPane
component, you would enter http://oracle.adfdemo.acme.

6. Click Next and optionally enter additional tag library information, then click
Finish.

32.2.7 How to Add a JavaScript Library Feature Configuration File
Add a features file to define the JavaScript files associated with the custom
component, including the files for the client component, the client peer, and the client
events.

To create an adf-js-features.xml file for the custom component:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select XML.

3. In the right pane, select XML Document from XML Schema and click OK.

4. In the Create XML from XML Schema dialog:

■ XML File: Enter adf-js-features.xml.

■ Directory: Append \src\META-INF to the end of the Directory entry.

■ Select Use Registered Schemas, and click Next.

5. Do the following:

■ Target Namespace: Select http://xmlns.oracle.com/adf/faces/feature.

■ Root Element: Select features.

■ Click Finish. The new file will automatically open in the XML editor.

32.2.8 How to Add a Facelets Tag Library Configuration File
If a consuming application uses Facelets, then you must define the handler for the
component.

To create a Facelets tag library file:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select XML.

3. In the right pane, select XML Document and click OK.

4. In the Create XML file dialog, enter the following:

■ File Name: Enter prefix_name.taglib.xml

■ Directory: Append \src\META-INF to the end of the Directory entry.

5. Copy and paste the code shown in Example 32–4:

Client-Side Development

32-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 32–4 Code for Facelets Tag Library Configuration File

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE facelet-taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib_1_0.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">

 <namespace>http://xmlns.oracle.adfdemo/acme</namespace>

 <tag>
 <tag-name>tagPane</tag-name>
 <handler-class>
 oracle.adfinternal.view.faces.facelets.rich.RichComponentHandler
 </handler-class>
 </tag>
</facelet-taglib>

6. Replace the namespace and tag-name code shown in bold with code appropriate
for your application.

32.3 Client-Side Development
After the JDeveloper workspace and configuration files have been created, you can
create and code the client-side JavaScript files. When you have finished with the
client-side development, create the server-side files, as described in Section 32.4,
"Server-Side Development."

Client components hold state for properties that are not defined within the
corresponding DOM element. These properties are bound to an associated DOM
element using the clientId. The clientId uniquely defines a server-side component
within the component tree representing a page. The DOM element holds the clientId
within the Id attribute.

Developing the client-side component requires creating a JavaScript file for the
component, the peer, and the component event.

In addition to the client component, client-side events must be defined. The tagPane
component’s client-side event is fired and propagated to the server when the user
clicks one of the three file types. The client event passed to the server is queued so that
the target server-side component can take the appropriate action.

Finally, the custom component requires a client peer. The peer is the component
presenter. Peers act as the links between a client component and an associated DOM
element. Client peers add client behaviors. A peer must be bound to a component
through a registration method.

Best Practice: Because JavaScript libraries do not have namespaces,
you should create all JavaScript object names for the custom
component using the same prefix. You do not need to do this on the
server because the server-side Java package names will prevent name
collisions. For example, for the tagPane component, the client-side
JavaScript object names all have the acme prefix.

Note: Place each JavaScript object in its own separate source file for
best practice and consistency.

Client-Side Development

Creating Custom ADF Faces Components 32-15

As with the client component, the associated peer is bound to a DOM element using
the component's clientId. There are two types of peers, statefull and stateless.

■ Some complex client components require the peer to hold state and thereby need
to use a statefull peer. This type of peer is always bound to a DOM element.
Statefull peers are less common than stateless peers.

■ Stateless peers do not hold state and one peer can be bound to multiple
components. Stateless peers are the best performance option because they reduce
the client footprint. This type of peer performs lazy content delivery to the
component.

Peers add behavior to the component by dynamically registering and listening for
DOM events. Conceptually, a peer’s function is similar to the role of a managed bean.
However, the client component is not bound to the peer using EL like the server-side
component is bound to a view model (#{backingbean.callback}). The peer registers
client component events in the InitSubclass
(AdfRichUIPeer.addComponentEventHandlers("click")) callback method. The
callback is assumed by using a naming convention of
(<Peer>.prototype.HandleComponent<Event>). The peer manages DOM event
callbacks where the server-side component handles the linking using EL bindings to
managed beans. For more information about client-side architecture, including peers,
see Section 3.1, "Introduction to Using ADF Faces Architecture."

The following section assumes you have already set up a custom component
development template environment. This development environment includes the
setting up of application workspace, projects, deployment profiles, and registering
schemas. If you have not done so, see Section 32.2, "Setting Up the Workspace and
Starter Files."

32.3.1 How to Create a JavaScript File for a Component
Use JDeveloper to create a JavaScript file for the component. In it, you will define the
component type for the component.

To create the component JavaScript file:
1. In the Application Navigator, right-click the project and click New.

2. In the New Gallery, expand Web Tier and select HTML.

3. Select JavaScript File and click OK.

4. In the Create JavaScript File dialog, do the following:

■ File Name: Enter the name of the client-side component. For example, for the
tagPane component, you might enter AcmeTagPane.js.

■ Directory: Enter the directory path of the component in a subdirectory under
the src directory. For example, for the tagPane component, you might enter
adfrichclient-demo-acme\src\oracle\adfdemo\acme\js\component.

5. Open the JavaScript File in the editor and add the component code to define the
component type. Example 32–5 shows the code that might be used for the tagPane
component.

Tip: To prevent naming collisions, start the name with the
component prefix.

Client-Side Development

32-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 32–5 tagPane Component JavaScript

AdfUIComponents.createComponentClass(
 "AcmeTagPane",
 {
 componentType:"oracle.adfdemo.acme.TagPane",superclass:AdfUIObject
 }
);

32.3.2 How to Create a Javascript File for an Event
Use JDeveloper to create a JavaScript file for the event. Add code to the JavaScript to
perform the functions required when a event is fired, such as a mouse click.

To create the JavaScript for the event:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand Web Tier and select HTML.

3. Select JavaScript File and click OK.

4. In the Create JavaScript File dialog, do the following:

■ File Name: Enter the name of the client-side event. For example, for the
tagPane component, you might enter AcmeTagSelectEvent.js.

■ Directory: Enter the directory path of the event in a subdirectory under the
src directory. For example, for the tagPane component, you might enter
adf-richclient-demo-acme\src\oracle\adfdemo\acme\js\event.

5. Open the JavaScript File in the editor and add the event code. Example 32–6 shows
the event code that might be added for the tagPane component.

Example 32–6 tagPane Event JavaScript

/**
 * Fires a select type event to the server for the source component
* when a tag is clicked.
*/
function AcmeTagSelectEvent(source, tag)
{
 AdfAssert.assertPrototype(source, AdfUIComponent);
 AdfAssert.assertString(tag); this.Init(source, tag);
}
// make AcmeTagSelectEvent a subclass of AdfComponentEvent

AdfObject.createSubclass(AcmeTagSelectEvent, AdfComponentEvent);
/**
 * The event type
*/
AcmeTagSelectEvent.SELECT_EVENT_TYPE = "tagSelect";
/**
 * Event Object constructor
*/
AcmeTagSelectEvent.prototype.Init = function(source, tag)
{

Tip: To prevent naming collisions, start the name with the
component prefix.

Client-Side Development

Creating Custom ADF Faces Components 32-17

 AdfAssert.assertPrototype(source, AdfUIComponent);
 AdfAssert.assertString(tag);
 this._tag = tag;
 AcmeTagSelectEvent.superclass.Init.call(this, source, AcmeTagSelectEvent.SELECT_
EVENT_TYPE);}
/**
 * Indicates this event should be sent to the server
*/
AcmeTagSelectEvent.prototype.propagatesToServer = function()
{
 return true;
}
/**
 * Override of AddMarshalledProperties to add parameters * sent server side.
*/
AcmeTagSelectEvent.prototype.AddMarshalledProperties = function(properties)
{
 properties.tag = this._tag;

 }
/**
 * Convenient method for queue a AcmeTagSelectEvent.
 */
AcmeTagSelectEvent.queue = function(component, tag)
{
AdfAssert.assertPrototype(component, AdfUIComponent);
 AdfAssert.assertString(tag);
 AdfLogger.LOGGER.logMessage(AdfLogger.FINEST,
"AcmeTagSelectEvent.queue(component, tag)");
 new AcmeTagSelectEvent(component, tag).queue(true);
}
/**
 * returns the selected file type
*/
AcmeTagSelectEvent.prototype.getTag = function()
{
 return this._tag;}
/**
 * returns a debug string
*/
AcmeTagSelectEvent.prototype.toDebugString = function()
{
 var superString = AcmeTagSelectEvent.superclass.toDebugString.call(this);
 return superString.substring(0, superString.length - 1)
 + ", tag="
 + this._tag + "]";
}
/*
*
* Make sure that this event only invokes immediate validators
* on the client.
*/
AcmeTagSelectEvent.prototype.isImmediate = function()
{
 return true;
}

Client-Side Development

32-18 Web User Interface Developer's Guide for Oracle Application Development Framework

32.3.3 How to Create a JavaScript File for a Peer
Use JDeveloper to create a JavaScript file for the peer. Add code to register the peer
and bind it to the component.

To create the peer JavaScript file:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand Web Tier and select HTML.

3. Select JavaScript File and click OK.

4. In the Create JavaScript File dialog, do the following:

■ File Name: Enter the name of the client-side peer. For example, for the
tagPane component, you might enter AcmeTagPanePeer.js.

■ Directory: Enter the directory path of the event in a subdirectory under the
src directory. For example, for the tagPane component, you might enter
adf-richclient-demo-acme\src\oracle\adfdemo\acme\js\component.

5. Open the JavaScript file in the editor and add code for the peer. In this code, you
must create the peer, add event handling with respect to the DOM, and register the
peer with the component. Example 32–7 shows the code that might be added for
the tagPane component.

Example 32–7 tagPane JavaScript Peer

AdfRichUIPeer.createPeerClass(AdfRichUIPeer, "AcmeTagPanePeer", true);
AcmeTagPanePeer.InitSubclass = function()
{
AdfLogger.LOGGER.logMessage(AdfLogger.FINEST,
 "AcmeTagPanePeer.InitSubclass()");
 AdfRichUIPeer.addComponentEventHandlers(this,
 AdfUIInputEvent.CLICK_EVENT_TYPE);
}

AcmeTagPanePeer.prototype.HandleComponentClick = function(componentEvent)
{
AdfLogger.LOGGER.logMessage(AdfLogger.FINEST,
"AcmeTagPanePeer.HandleComponentClick(componentEvent)");
 // if the left mouse button was pressed
if (componentEvent.isLeftButtonPressed())
 {
 // find component for the peer
 var component = this.getComponent();
 AdfAssert.assertPrototype(component, AcmeTagPane);
 // find the native dom element for the click event
var target = componentEvent.getNativeEventTarget();
 if (target && target.tagName == "A")
 {
 AdfLogger.LOGGER.logMessage(AdfLogger.FINEST, "File type element (A)
 found: " + componentEvent.toString());
 var tag = target.firstChild.nodeValue;
 AdfAssert.assertString(tag);

 AdfLogger.LOGGER.logMessage(AdfLogger.FINEST, "tag :" + tag);

Tip: To prevent naming collisions, start the name with the
component prefix.

Server-Side Development

Creating Custom ADF Faces Components 32-19

 // fire a select event
AcmeTagSelectEvent.queue(component, tag);
 //cancel the native dom onclick to prevent browser actions based on the
 //'#' hyperlink. The event is of type AdfIEUIInputEvent. This event
 //will cancle the native dom event by calling
 //AdfAgent.AGENT.preventDefault(Event)
 componentEvent.cancel();
 }
// event has dom node
 }
}
// Register the peer with the component. This bit of script must
// be invoked after the AcmeTagPane and AcmeTagSelectEvent objects
// are created. This is enforced by the ordering of the script files
// in the
 oracle.asfdemo.acme.faces.resource.AcmeResourceLoader.
 AcmeScriptsResourceLoader.AdfPage.PAGE.getLookAndFeel()
.registerPeerConstructor("oracle.adfdemo.acme.TagPane",
 "AcmeTagPanePeer");

32.3.4 How to Add a Custom Component to a JavaScript Library Feature Configuration
File

Now that you have created all the JavaScript files for the component, you can add the
component to the adf-js-features.xml file you created. Follow the procedures
documented in Section A.9.1, "How to Create a JavaScript Feature," omitting the steps
for creating the XML files, as you have already done so. Example 32–8 shows the
adf-js-features.xml file used for the tagPane component.

Example 32–8 adf-js-features.xml File for the tagPane Component

<?xml version="1.0" encoding="UTF-8" ?>
<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>AcmeTagPane</feature-name>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeTagPane.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/event/AcmeTagSelectEvent.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeTagPanePeer.js
 </feature-class>
 </feature>
</features>

32.4 Server-Side Development
Server-side development involves creating Java classes for:

■ Event listener: This class listens for events and then invokes processing logic to
handle the event.

■ Events: You create an event in order to invoke the logic in the associated listener.

Server-Side Development

32-20 Web User Interface Developer's Guide for Oracle Application Development Framework

■ Component: This class holds the properties that define behavior for the
component.

■ Resource bundle: This class holds text strings for the component.

■ Renderer: This class determines how the component will be displayed in the
client.

■ Resource loader: This class is required only if your component contains images
needed for skinning.

After you have created the classes, add the component class and the renderer class to
the faces-config.xml file. Then, complete the configuration files started in
Section 32.2, "Setting Up the Workspace and Starter Files."

32.4.1 How to Create a Class for an Event Listener
The ADF Faces event API requires an event listener interface to process the event. The
custom component has a dependency with the event and the event has a dependency
with an event listener interface. The Java import statements must reflect these
dependencies. You also must define the componentType for the component.

To create the EventListener class:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select Java.

3. Select Java Interface and click OK.

4. In the Create Java Interface File dialog, do the following:

■ Name: Enter a listener name. For example, for the tagPane component, you
might enter TagSelectListener.

■ Package: Enter a name for the package. For example, for the tagPane
component, you might enter oracle.adfdemo.acme.faces.event.

5. Open the Java file in the editor and add the following:

■ Have the listener extend the javax.faces.event.FacesListener interface.

■ Add an import statement, and import the FacesListener class and any other
classes on which your event is dependent.

■ Add a method signature that will process the new event. Even though you
have not created the actual event, you can enter it now so that you will not
have to enter it later.

Example 32–9 shows the code for the tagPane event listener.

Example 32–9 tagPane Event Listener Java Code

package oracle.adfdemo.acme.faces.event;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.FacesListener;

public interface TagSelectListener
 extends FacesListener
{
 /**
 * <p>Process the {@link TagSelectEvent}.</p>
 * @param event fired on click of a tag link

Server-Side Development

Creating Custom ADF Faces Components 32-21

 * @throws AbortProcessingException error processing {@link TagSelectEvent}
 */
 public void processTagSelect(TagSelectEvent event)
 throws AbortProcessingException;
}

32.4.2 How to Create a Class for an Event
You must create a server-side event that will be the counter representation of the
JavaScript event created in Section 32.3.2, "How to Create a Javascript File for an
Event." Server-side JSF events are queued by the component during the Apply Request
Values lifecycle phase. Events propagate up to the UIViewRoot class after all the phases
but the Render Response phase. Queued events are broadcast to the associated
component.

 The server-side Java component must raise the server-side event, so you must create
the event source file first to resolve the compilation dependency.

To create the server-side event class:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select Java.

3. Select Java Class and click OK.

4. In the Create Java Class File dialog, do the following:

■ Name: Enter an event name. For example, for the tagPane component, you
might enter TagSelectEvent.

■ Package: Enter the package name. For example, for the tagPane component,
you might enter oracle.adfdemo.acme.faces.event.

■ Extends: Enter a name for the class that the event class extends. This is usually
javax.faces.event.FacesEvent.

■ In the Optional Attributes section, select the following:.

– In the Access Modifiers section, select public.

– At the bottom, select Constructors from Superclass and Implement
Abstract Methods.

Example 32–10 shows the code for the event class.

Example 32–10 tagPane Event Java Code

package oracle.adfdemo.acme.faces.event;
import javax.faces.component.UIComponent;
import javax.faces.event.FacesEvent;
import javax.faces.event.FacesListener;

public class TagSelectEvent
 extends FacesEvent
{
 /**
 * <p>Tag selected on the client.</p>
 */
 private String tag = null;
 /**
 * <p>Overloade constructor passing the <code>source</code>

Server-Side Development

32-22 Web User Interface Developer's Guide for Oracle Application Development Framework

 * {@link oracle.adfdemo.acme.faces.component.TagPane} component and the
 * selected <code>tag</code>.
 * </p>
 * @param source component firing the event
 * @param tag selected tag link type
 */
 public TagSelectEvent(UIComponent source,
 String tag)
 {
 super(source);
 this.tag = tag;
 }

 /**
 * <p>Returns <code>true</code> if the <code>facesListener</code> is a
 * {@link TagSelectListener}.</p>
 *
 * @param facesListener listener to be evaluated
 * @return <code>true</code>
 * if <code>facesListener</code> instancof {@link TagSelectListener}
 */
 public boolean isAppropriateListener(FacesListener facesListener)
 {
 return (facesListener instanceof TagSelectListener);
 }
 /**
 * <p>Delegates to the <code>processTagSelect</code>
 * method of a <code>FacesListener</code>
 * implementing the {@link TagSelectListener} interface.
 *
 * @param facesListener target listener realizing {@link TagSelectListener}
 */
 public void processListener(FacesListener facesListener)
 {
 ((TagSelectListener) facesListener).processTagSelect(this);
 }
 /**
 * @return the tag that was selected triggering this event
 */
 public String getTag()
 {
 return tag;
 }
}

32.4.3 Creating the Component
A JSF component can be described as a state holder of properties. These properties
define behavior for rendering and how a component responds to user interface
actions. When you are developing the component class, you identify the types of the
needed properties. You also define the base component that it will extend from the
MyFaces Trinidad Framework. For example, the tagPane component extends the
UIXObject in MyFaces Trinidad.

Most components will have several properties that should be implemented. Some of
the properties are inherited from the base class, and some are required for the rich
client framework. Other properties are required because they are best practice. And
finally, some properties are specific to the functionality of the custom component.

For example, the tagPane component has the properties shown in Table 32–4.

Server-Side Development

Creating Custom ADF Faces Components 32-23

ADF Faces and MyFaces Trinidad component libraries are defined differently from
other libraries. A JSF component has a collection called attributes that provides
access to component properties (using the Java simple beans specification) through a
MAP interface. The collection also holds value pairs that do not correspond to a
component's properties. This concept is called attribute transparency. The JSF runtimes
(both MyFaces Trinidad and the JSF reference implementation) implement this concept
using the Java reflection API.

My Faces Trinidad defines its own internal collection, which does not use the Java
reflection API. This difference means that it is more efficient than the base
implementation. The solution in MyFaces Trinidad collects more metadata about the
component properties. This metadata declares state properties, which allows the base
class to fully implement the StateHolder interface in a base class.

My Faces Trinidad extends the javax.faces.component.UIComponent class with the
org.apache.trinidad.component.UIXComponent class, followed by a complete
component hierarchy. To ease code maintenance, the framework has a strategy for
generating code based on configuration files and templates.

Table 32–4 Component Properties for the tagPane Custom Component

Origin Property Data Type Description

Inherited id String.class The identifier for a component.

rendererType String.class The logical identifier registered as a component
renderer.

rendered Boolean.class True or false flag that determines if the component is
rendered.

binding ValueExpression.class A binding value expression to store a component
instance in a managed bean.

Rich Client
Framework

clientComponent Boolean.class True or false flag that determines whether a client-side
component will be generated.

clientListeners ClientListenerSet.cla
ss

A binding expression that registers a client listener on
a component.

clientAttribute
s

Set.class A client attribute on a component. The attribute is
added both to the server-side JSF component as well as
the client-side equivalent.

Best
Practice

inlineStyle String.class A CSS style applied to the root component’s class
attribute.

styleClass String.class A CSS style added to the component’s class attribute.

visible Boolean.class True or false flag that returns the visibility of the
component. The visible property is not the same as the
rendered property. The visible attribute affects the CSS
style on the CSS root of the component.

partialTriggers String[].class The IDs of the components that should trigger a partial
page update.

Specific to
tagPane

tags Map.class The map of weighted tags. The key represents the tag
name and the value as a number. Map<String.Number>.

orderBy String.class The order that the tags are rendered. The valid
enumerations are alpha and weight.

tagSelectListen
er

MethodExpression.clas
s

The newselectListener method binding expression
that expects a single parameter of type
oracle.adfdemo.acme.faces.event.TagSelectEvent.
This binding will be when the client-side
oracle.adfdemo.acme.js.event.AcmeTagSelectEvent
.js event is queued from clicking one of the tags.

Server-Side Development

32-24 Web User Interface Developer's Guide for Oracle Application Development Framework

This component strategy is a trade-off in terms of development. It requires more
coding for defining properties, but you will not have to code the two methods
(saveState, restoreState) for the StateHolder interface for each component.

32.4.4 How to Create a Class for a Component
Use JDeveloper to create a Java file for the component. Create a Type bean to hold
property information and define a PropertyKey for each property. Then, generate
accessors for the private attributes.

To create the component class:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select Java.

3. Select Java Class. Click OK.

4. In the Create Java Class File dialog, do the following:

■ Name: Enter a component name. For example, for the tagPane component,
you might enter TagPane.

■ Package: Enter a name for the package. For example, for the tagPane
component, you might enter oracle.adfdemo.acme.faces.component.

■ Extends: Enter a name for the class the component class extends. For example,
for the tagPane component, you would enter
org.apache.myfaces.trinidad.component.UIXObject.

■ In the Optional Attributes section, select the following:.

– In the Access Modifiers section, select public.

– At the bottom, select Constructors from Superclass, and Implement
Abstract Methods.

5. In the source editor, create a Type bean that contains component property
information. This static class attribute shadows an attribute with the same name in
the superclass. The type attribute is defined once per component class. Through
the Type constructor, you pass a reference to the superclass’s Type bean, which
copies property information. For example, the tagPane class would contain the
following constructor:

static public final FacesBean.Type TYPE = new FacesBean.Type(UIXObject.TYPE);

6. For each property, define a static PropertyKey that is used to access the properties
state. Use the TYPE reference to register a new attribute. Specify the property type
using the class reference. The component data type should correspond to the
component property. There is another overload of the registerKey method that
allows you to specify state information. The default assumes the property is
persistent. Example 32–11 shows the PropertyKey methods for the tagPane
component.

Example 32–11 PropertyKey Definition

 /**

Note: Do not have your custom component extend from any ADF
Faces implementation packages. These implementations are private
and might change.

Server-Side Development

Creating Custom ADF Faces Components 32-25

 * <p>Custom CSS applied to the style attribute of the root markup node.</p>
 */
 static public final PropertyKey INLINE_STYLE_KEY =
 TYPE.registerKey("inlineStyle", String.class);
 /**
 * <p>Custom CSS class to the class attribute of the root markup node.</p>
 */
 static public final PropertyKey STYLE_CLASS_KEY =
 TYPE.registerKey("styleClass", String.class);

7. Right-click in the editor and choose Generate Accessors. In the Generate
Accessors dialog, click Select All, ensure the Scope is set to Public, and click OK.
This allows JDeveloper to generate get and set methods for the private attributes.

Then, remove the private attribute and replace with calls to
getProperty(PropertyKey) and getProperty(PropertyKey).

Example 32–12 shows the code after replacing the private attribute.

Example 32–12 Component Properties

 public void setInlineStyle(String newinlineStyle)
 {
 // inlineStyle = newinlineStyle;
 setProperty(INLINE_STYLE_KEY, newinlineStyle);
 }
 /**
 * <p>CSS value applied to the root component's style attribute.</p>
 *
 * @return newinlineStyle CSS custom style text
 */
 public String getInlineStyle()
 {
 // return inlineStyle;
 return (String) getProperty(INLINE_STYLE_KEY);
 }

8. You may need to override any methods to perform specific functions in the
component. For example, to allow your component to participate in partial page
rendering (PPR), you must override the getBeanType method, as shown in
Example 32–13.

Example 32–13

/**
 * <p>Exposes the <code>FacesBean.Type</code> for this class through a protected
 * method. This method is called but the <code>UIComponentBase</code> superclass
 * to setup the components <code>ValueMap</code> which is the container for the
 * <code>attributes</code> collection.</p>
 *
 * @return <code>TagPane.TYPE</code> static property
 */
@Override
protected FacesBean.Type getBeanType()
 {
 return TYPE;
 }

Refer to the ADF Faces JavaDoc for more information about the class your
component extends, and the methods you may need to override.

Server-Side Development

32-26 Web User Interface Developer's Guide for Oracle Application Development Framework

For the tagPane component, the component must act on the event fired from the
client component. A reference to the source component is passed as a parameter to
the event’s constructor.

For the tagPane component, the broadcast method checks if the event passed in
using the formal parameter is a TagSelectEvent. If it is, the broadcast method
invokes the method expression held by the tagSelectListener attribute.

Most events have an immediate boolean property that specifies the lifecycle phase
in which the event should be invoked. If the immediate attribute is true, the event
is processed in the Apply Values phase; otherwise, the event is processed in the
Invoke Application phase. For more information, see Chapter 4, "Using the JSF
Lifecycle with ADF Faces."

Example 32–14 shows the overwritten broadcast method for the tagPane
component.

Example 32–14 The broadcast Method in the tagPane Component

 /**
 * @param facesEvent faces event
 * @throws AbortProcessingException exception during processing
 */
 @Override
 public void broadcast(FacesEvent facesEvent)
 throws AbortProcessingException
 {
 // notify the bound TagSelectListener
 if (facesEvent instanceof TagSelectEvent)
 {
 TagSelectEvent event = (TagSelectEvent) facesEvent;
 // utility method found in UIXComponentBase for invoking method event
 // expressions
 broadcastToMethodExpression(event, getTagSelectListener());
 }
 super.broadcast(facesEvent);
 }

32.4.5 How to Add the Component to the faces-config.xml File
After creating the component class, register the component by adding it to the
/META-INF/faces-config.xml file. By defining the component in the faces
configuration file packaged with the JAR project, you ensure that component is
automatically recognized by the JSF runtime during web application startup.

To register the component, enter the component type, which is a logical name used by
the applications factory to instantiate an instance of the component. For example, the
tagPane component’s type is oracle.adfdemo.acme.TagPane. You also need to add the
fully qualified class path for the component, for example
oracle.adfdemo.acme.faces.component.TagPane.

To register a custom component:
1. In the Application Navigator, double-click the faces-config.xml file.

2. Click the Overview tab and click the Components navigation tab.

3. Click the Add icon and enter the type and class for the component.

4. Optionally, add any attributes, properties, or facets.

Server-Side Development

Creating Custom ADF Faces Components 32-27

Example 32–15 shows the tagPane component defined within a faces-config.xml file.

Example 32–15 tagPane Component Added to the faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 </application>

 <component>
 <component-type>oracle.adfdemo.acme.TagPane</component-type>
 <component-class>oracle.adfdemo.acme.faces.component.TagPane
 </component-class>
 </component>

32.4.6 How to Create a Class for a Resource Bundle
Resource bundles are used to store information for the component, such as text for
labels and messages, as well as translated text used if the application allows locale
switching. Skins also use resource bundles to hold text for components. Because your
custom component must use at least the simple skin, you must create at least a
resource bundle for that skin. For a custom component, create a Java file for the
resource bundle. For more information about resource bundle classes, see Section 20.3,
"Defining Skin Style Properties."

To create the resource bundle class:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select Java.

3. Select Java Class and click OK.

4. In the Create Java Class File dialog, do the following:

■ Name: Enter a resource bundle name. The name should reflect the skin with
which it will be used. For example, for the sample component, you might
enter AcmeSimpleDesktopBundle.

■ Package: Enter a name for the package. For example, for the sample
component, you might enter oracle.adfdemo.acme.faces.resource.

■ Extends: For resource bundles, you must enter
java.util.ListResourceBundle.

■ In the Optional Attributes section, select the following:.

– In the Access Modifiers section, select public.

– At the bottom, select Constructors from Superclass and Implement
Abstract Methods.

5. Add any keys and define the text as needed. For more information about creating
resource bundles for skins, see Section 20.3.1, "How to Apply Skins to Text."

Example 32–16 shows the resource bundle code for the tagPane component.

Example 32–16 tagPane Resource Bundle Java Code

package oracle.adfdemo.acme.faces.resource;

Tip: You can also use a properties file for your resources.

Server-Side Development

32-28 Web User Interface Developer's Guide for Oracle Application Development Framework

import java.util.ListResourceBundle;
/**
 * <p>Holds properties used by the components bundled in the jar project.
 * This bundle is part of the trinidad component skin that is configured
 * in the "/META-INF/trinidad-skins.xml" file. Component Renderers
 * will use the <code>RenderingContext</code> to lookup a key by calling
 * the <code>getTranslatedString(key)</code> method.</p>
 */
public class AcmeSimpleDesktopBundle
 extends ListResourceBundle
{
 /**
 * <p>Returns a two dimensional object array that represents a resource bundle
. * The first
 * element of each pair is the key and the second the value.</p>
 *
 * @return an array of value pairs
 */
 protected Object[][] getContents()
 {
 return new Object[][]
 {
 {"AcmeTagPane_tag_title","Tag Weight: {0}"}
 };
 }
}

6. To register the resource bundle for the simple desktop skin and any other desired
skins, double-click the /META-INF/trinidad-skins.xml file to open it and do the
following:

a. In the Structure window, select skin-addition.

b. In the Property Inspector, enter a skin ID. For the simple skin ID, enter
simple.desktop.

c. In the Structure window, right-click skin-addition and choose Insert inside
skin-addition > bundle-name.

d. In the Property Inspector, enter the fully qualified name of the resource bundle
just created.

Example 32–17 shows the code for registering the tagPane resource bundle with
the simple skin (you will add the style-sheet-name element value in a later step).

Example 32–17 Registering a Resource Bundle with a Skin

<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin-addition>
 <skin-id>simple.desktop</skin-id>
 <style-sheet-name></style-sheet-name>
 <bundle-name>
 oracle.adfdemo.acme.faces.resource.AcmeSimpleDesktopBundle
 </bundle-name>

Note: JDeveloper adds translation-source and bundle-name
elements as comments. Instead of declaratively creating another
bundle-name element, you can manually enter the bundle-name value
in the generated element, and then remove the comment tag.

Server-Side Development

Creating Custom ADF Faces Components 32-29

 </skin-addition>
</skins>

32.4.7 How to Create a Class for a Renderer
ADF Faces components delegate the functionality of the component to a component
class, and when the consuming application uses JSPs, the display of the component to
a renderer. By default, all tags for ADF Faces combine the associated component class
with an HTML renderer, and are part of the HTML render kit. HTML render kits are
included with ADF Faces for display on both desktop and PDA devices.

Renderers are qualified in a render kit by family and renderer type. The family is a
general categorization for a component, and should be the same as the family defined
in the superclass. You do not have to override the getFamily() method in the
component because the component will have the method through inheritance.

To create the renderer class:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General then select Java.

3. Select Java Class and click OK.

4. In the Create Java Class File dialog, do the following:

■ Name: Enter a renderer name. For example, for the tagPane component, you
might enter TagPaneRenderer.

■ Package: Enter a name for the package. For example, for the tagPane
component, you might enter oracle.adfdemo.acme.faces.render.

■ Extends: Enter oracle.adf.view.rich.render.RichRenderer.

■ In the Optional Attributes section, select the following:.

– In the Access Modifiers section, select public.

– At the bottom, select Constructors from Superclass and Implement
Abstract Methods.

5. Add any needed functionality. For example, the skinning functionality provides an
API you can use to get the CSS style properties for a given CSS selector during
rendering of the component. This API is useful if you need to do conditional
rendering based on what styling is set. For more information, see
RenderingContext#getStyles and Styles#getSelectorStyleMap in the MyFaces
Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_
2/trinidad-api/apidocs/index.html.

32.4.8 How to Add the Renderer to the faces-config.xml File
After you create the renderer, register it using the faces-config.xml configuration file.
If you want the custom component to work with the other ADF Faces components,
you must use the same render kit ID that ADF Faces components use.

To register the render kit and renderer:
1. In the Application Navigator, double-click the faces-config.xml file to open it in

the editor.

Tip: The most granular level that JSF allows for defining a render kit
is at the view root.

http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html

Server-Side Development

32-30 Web User Interface Developer's Guide for Oracle Application Development Framework

2. Select the Overview tab and then select the Render Kits navigation tab.

3. Click the Add icon for the Render Kits and enter oracle.adf.rich for the render
kit ID.

4. Register your renderer by clicking the Add icon for Renderers and doing the
following:

■ Family: Enter the class that the component extends. For example, for the
tagPane component, you would enter
org.apache.myfaces.trinidad.Object.

■ Type: Enter the type for the component. For example, for the tagPane
component, you would enter oracle.adfdemo.acme.TagPane. This must match
the renderer type.

■ Class: Enter the fully qualified class path to the renderer created in
Section 32.4.7, "How to Create a Class for a Renderer." For example, for the
tagPane component, you would enter
oracle.adfdemo.acme.faces.render.TagPaneRenderer.

Example 32–18 shows the registration of the tagPane component render kit and
renderer.

Example 32–18 tagPane Renderer Added to the faces-config.xml File

<render-kit>
 <render-kit-id>oracle.adf.rich</render-kit-id>
 <renderer>
 <component-family>org.apache.myfaces.trinidad.Object</component-family>
 <renderer-type>oracle.adfdemo.acme.TagPane</renderer-type>
 <renderer-class>oracle.adfdemo.acme.faces.render.TagPaneRenderer
 </renderer-class>
 </renderer>
</render-kit>

32.4.9 How to Create JSP Tag Properties
To use the component on a JSP page, you create a custom tag that will instantiate the
custom component. The JSP tag has nothing to do with rendering because the
component’s renderer will actually perform that task. In JSF 1.1, the JSP tag would
invoke rendering on the component after creating and adding it to the component tree.
This caused problems because the non-JSF/JSP tags were writing to the same response
writer. The timing of the interleaving did not work out for components that rendered
their own child components.

In JSF 1.2, the target for Java EE 5 (Servlet 2.5, JSP 2.1), most of the JSP problems were
fixed. The JSF/JSP component acts as a component factory that is responsible only for
creating components. This means that the rendering response phase is divided into
two steps. First the component tree is created, and then the tree is rendered, instead of
rendering the components as the component tree was being built. This functionality
was made possible by insisting that the entire view be represented by JSF components.
The non-JSF/JSP generates markup that implicitly becomes a JSF verbatim component.

Note: (An application that uses Facelets uses a handler to instantiate
the component. For more information, see Section 32.2.8, "How to Add
a Facelets Tag Library Configuration File")

Server-Side Development

Creating Custom ADF Faces Components 32-31

As a result of changing these mechanics, in JSF 1.2, custom JSP tags extend the
javax.faces.webapp.UIComponentELTag class. The encodeBegin, encodeChildren,
and encodeEnd methods in the JSP tag have been deprecated. These methods once
made corresponding calls to the component. Because the view root in JSF 1.2 does the
rendering, all the work can be done in the doStartTag and doEndTag methods.
MyFaces Trinidad has its own version of this base class that you will use. The
org.apache.myfaces.Trinidad.webapp.UIComponentELTag hooks into the
components property bag and makes coding JSPs simpler.

The tag class includes the creation of the component’s properties. You must choose tag
properties carefully. There are some properties that you can ignore for tag
implementation, but they may be required as TLD attributes.

The following three attributes are implemented by superclasses and shared by many
components through Java inheritance:

■ id

■ binding

■ rendered

Do not implement the id attribute because the id attribute is implemented by the
superclass javax.faces.webapp.UIComponentTagBase. The superclass
javax.faces.webapp.UIComponentELTag implements the other two attributes, binding
and rendered. Therefore, you do not need to add these to your tag class.

To add a JSP tag:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General then select Java.

3. Select Java Class and click OK.

4. In the Create Java Class File dialog, do the following:

■ Name: Enter a tag name. For example, for the tagPane component, you might
enter TagPaneTag.

■ Package: Enter a name for the package. For example, for the tagPane
component, you might enter oracle.adfdemo.acme.faces.taglib.

■ Class: Enter org.apache.myfaces.trinidad.webapp.UIXComponentELTag.

■ In the Optional Attributes section, select the following:.

– In the Access Modifiers section, select public.

– At the bottom, select Constructors from Superclass and Implement
Abstract Methods.

5. In the source editor, add all the attributes to the file.

Example 32–19 shows the code for the attributes for the TagPaneTag class.

Example 32–19 Attributes in the TagPaneTag Class

public class TagPaneTag
 extends UIXComponentELTag
{
 private ValueExpression _partialTriggers = null;
 private ValueExpression _visible = null;
 private ValueExpression _inlineStyle = null;
 private ValueExpression _styleClass = null;

Server-Side Development

32-32 Web User Interface Developer's Guide for Oracle Application Development Framework

 private ValueExpression _tags = null;
 private ValueExpression _orderBy = null;
 private MethodExpression _tagSelectListener = null;

6. To declaratively generate the accessor methods for the attributes, right-click the
file in the source editor and choose Generate Accessors.

7. In the Generate Accessors dialog, click Select All, set the Scope to public and
click OK.

8. Add the render type and component type to the class. The component type will be
used by the superclass to instantiate the component using the application's factory
method, createComponent(componentType).

Example 32–20 shows the code for the TagPaneTag class, where both the
component type and render type are oracle.adfdemo.acme.TagPane.

Example 32–20 Component Type and Render Type for the TagPaneTag Class

 public String getComponentType()
 {
 return COMPONENT_TYPE;
 }
 public String getRendererType()
 {
 return RENDERER_TYPE;
 }

 /**
 * <p>This component's type, <code>oracle.adfdemo.acme.TagPane</code></p>
 */
 static public final String COMPONENT_TYPE =
 "oracle.adfdemo.acme.TagPane";
 /**
 * <p>Logical name given to the registered renderer for this component.</p>
 */
 static public final String RENDERER_TYPE = "oracle.adfdemo.acme.TagPane";

9. Override the setProperties method from the superclass that has a single formal
parameter of type FacesBean. This is a MyFaces Trinidad version on the base
UIComponentELTag, but it is passed the components state holder instead of the
component reference. The job of the setProperties method is to push the JSP tag
attribute values to the component.

Example 32–21 shows the overridden method for the tagPaneTag class.

Example 32–21 Overridden setProperties Method in the TagPaneTag Class

 @Override
 protected void setProperties(FacesBean facesBean) {
 super.setProperties(facesBean);

 setStringArrayProperty(facesBean, TagPane.PARTIAL_TRIGGERS_KEY,
 _partialTriggers);
 setProperty(facesBean, TagPane.VISIBLE_KEY, _visible);
 setProperty(facesBean, TagPane.INLINE_STYLE_KEY, _inlineStyle);
 setProperty(facesBean, TagPane.STYLE_CLASS_KEY, _styleClass);
 setProperty(facesBean, TagPane.TAGS_KEY, _tags);
 setProperty(facesBean, TagPane.ORDER_BY_KEY, _orderBy);
 facesBean.setProperty(TagPane.TAG_SELECT_LISTENER_KEY,
 _tagSelectListener);

Server-Side Development

Creating Custom ADF Faces Components 32-33

 }

32.4.10 How to Configure the Tag Library Descriptor
A tag library descriptor (TLD) provides more information on the Java Class to the JSP
compilation engine and IDE tools (TLDs are not used in applications that use Facelets).

Before you begin:
Associate the tag library with a URI, assign a version, and give it a name. You should
have already performed this step when you created the tag library stub file in
Section 32.2.6, "How to Add a JavaServer Pages Tag Library Descriptor File."

To configure the TLD:
1. Open the skeleton TLD file.

2. In the Component Palette, drag and drop a tag element.

3. In the Insert tag dialog, do the following:

■ name: Enter the name of the component. For example, for the tagPane
component, you might enter tagPane.

■ body-content: Enter JSP.

■ tag-class: Click the ellipses button and navigate to the components tag class
file.

4. Define each of the attributes as follows. For each attribute:

a. In the Structure window, right-click the tag element and choose Insert inside
tag > attribute.

b. In the Insert Attribute dialog, enter a value for the name. This should be the
same as the name given in the tag class.

c. In the Structure window, select the attribute and in the Property Inspector, set
any attribute values.

There are three types of elements to define for each attribute. The <id> element
is a simple string. Additionally attributes can be either deferred-value or
deferred-method attributes. These allow late (deferred) evaluation of the
expression. Now that JSP and JSF share the same EL engine, the compiled EL
can be passed directly to the component.

Example 32–22 shows the TLD for the tagPane component.

Example 32–22 tagPane acme.tld Tag Library Descriptor Code

<?xml version = '1.0' encoding = 'UTF-8'?>
<taglib xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
 version="2.1" xmlns="http://java.sun.com/xml/ns/javaee">
 <description>Acme Corporation JSF components</description>
 <display-name>acme</display-name>
 <tlib-version>1.0</tlib-version>
 <short-name>acme</short-name>
 <uri>http://oracle.adfdemo.acme</uri>
 <tag>
 <description>

Server-Side Development

32-34 Web User Interface Developer's Guide for Oracle Application Development Framework

 </description>
 <name>tagPane</name>
 <tag-class>oracle.adfdemo.acme.faces.taglib.TagPaneTag</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>id</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>rendered</name>
 <deferred-value>
 <type>boolean</type>
 </deferred-value>
 </attribute>
 <attribute>
 <name>tagSelectListener</name>
 <deferred-method>
 <method-signature>void
 </method-signature>
 myMethod(oracle.adfdemo.acme.faces.event.TagSelectEvent)
 </deferred-method>
 </attribute>
 <attribute>
 <name>visible</name>
 <deferred-value>
 <type>boolean</type>
 </deferred-value>
 </attribute>
 <attribute>
 <name>partialTriggers</name>
 <deferred-value>
 </deferred-value>
 </attribute>
 <attribute>
 <name>inlineStyle</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>inlineClass</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>tags</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>binding</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>orderBy</name>
 <deferred-value/>
 </attribute>
 </tag>
</taglib>

Server-Side Development

Creating Custom ADF Faces Components 32-35

32.4.11 How to Create a Resource Loader
A resource loader is required only if the custom component has image files needed for
the component's skinning. The images files are packaged into the JAR project so that
the consumer of the component library will need to include the JAR into the class path
of their web project and add a few entries into their web deployment descriptor file
(web.xml). The rich client framework uses a resource servlet to deliver images. You
need to register this servlet in the web.xml file and then create the resource loader
class. A component library requires a resource loader that is auto-loaded by the
resource servlet. You create a URL pattern folder mapping for the servlet, which will
be used to locate and identify resources within your custom component library.

To create a resource loader class:
1. In the Application Navigator, right-click the project and select New.

2. In the New Gallery, expand General and select Java.

3. Select Java Class and click OK.

4. In the Create Java Class File dialog, do the following:

■ Name: Enter a resource loader name. For example, for the tagPane
component, you might enter AcmeResourceLoader.

■ Package: Enter a name for the package. For example, for the tagPane
component, you might enter oracle.adfdemo.acme.faces.resources.

■ Extends: Enter a name for the class that the tag extends. For example, for the
tagPane component, you would enter
org.apache.myfaces.trinidad.resource.RegexResourceLoader.

■ In the Optional Attributes section, select the following:.

– In the Access Modifiers section, select public.

– At the bottom, select Constructors from Superclass and Implement
Abstract Methods.

5. In the source editor, register regular expressions that map to more specific resource
loaders. For example, you might create an expression that maps image resources
located under an images directory.

Example 32–23 shows the expression for the tagPane component that maps the
/acme/images/ directory located relative to the /META-INF folder of the custom
component JAR. As a result of the registration, the custom component images
should be located under /META-INF/acme/images.

Example 32–23 Resource Loader for the tagPane Component

public class AcmeResourceLoader
 extends RegexResourceLoader
{
 public AcmeResourceLoader()
 {
 // any resource in "/acme/" with the following suffixes will be
 // loaded from the base folder of "META-INF".
 // The servlet pattern match "/acme/*" should exist under "META-INF".
 // For example URL : context-root/acme/images/type1.gif
 // map to: META-INF/acme/images/type1.gif
 register("(/.*\\.(jpg|gif|png|jpeg))",
 new ClassLoaderResourceLoader("META-INF"));

Server-Side Development

32-36 Web User Interface Developer's Guide for Oracle Application Development Framework

6. Register the Libraries Resource Loader by opening the
/META-INF/servlet/resources/name.resources file and adding the fully
qualified name of the resource loader class bound to the URI pattern.

The MyFaces Trinidad ResourceServlet uses the servlet context to scan across all
JAR files within the class path of the web application. The servlet looks at its own
URI mappings in the web deployment descriptor to formulate the location of this
resource file. This file must contain the fully qualified name of the Java class
bound to the URI pattern. During startup, the ResourceServlet will locate and
use this file in a manner similar to how FacesServlet locates and uses the
faces-config.xml files.

For the tagPane component, the acme.resources file would contain this entry for
the composite resource loader:

oracle.adfdemo.acme.faces.resource.AcmeResourceLoader

32.4.12 How to Create a MyFaces Trinidad Cascading Style Sheet
instead of inserting a style sheet on each page, you use one or more skins for the entire
application. Every component automatically uses the styles as described by the skin.
No design time code changes are required.

All ADF Faces components use skins. The default skin is the skyros skin. Because your
custom components will be used in conjunction with other ADF Faces components,
you add style selectors to an existing ADF Faces skin. Because the skyros skin inherits
styles from the simple skin, you can simply add your selectors to the simple skin, and
it will be available in all skins. However, you may want to style the selector differently
for each skin. You set these styles in the CSS file you created. This file will be merged
with other CSS styles in the application in which the component is used.

The text used in a skin is defined in a resource bundle. Create the text by creating a
custom resource bundle and declaring the text you want to display. After you create
your custom resource bundle, you register it with the skin. Coupling resource bundles
with your CSS provides a method to make your components support multiple locales.

For more information about skins, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

The /META-INF/trinidad-skins.xml file you created is used to register your CSS file
and your resource bundle with an ADF Faces skin.

To create styles for your component:
1. Open the CSS file you created in Section 32.2.4, "How to Add a Cascading Style

Sheet."

2. Define a root style selector for the component. This style will be associated with
the <DIV> element that establishes the component.

3. Add other style selectors as needed. Example 32–24 shows the CSS file for the
tagPane component.

Example 32–24 CSS File for the tagPane component

acme|tagPane - root element
acme|tagPane::content - container for the links
acme|tagPane::tag - tag hyperlink

For more information about creating CSS for components to be used by skins, see
Section 20.3, "Defining Skin Style Properties."

Deploying a Component Library

Creating Custom ADF Faces Components 32-37

4. Create any needed resource bundle for your component.

5. To register your CSS with an ADF Faces skin, open the
/META-INF/trinidad-skins.xml file.

6. In the Structure window, select the skin-addition element, and in the Property
Inspector, do the following:

■ skin-id: Enter the ADF Faces skin to which you want to add the custom
component selectors. You must register the selectors at least to the
simple.desktop skin in order for them to be compatible with ADF Faces
components.

■ style-sheet-name: Use the dropdown menu to choose Edit, and navigate to
the CSS file you created.

7. If you created a resource bundle, add the fully qualified path to the bundle as the
value for the <bundle-name> element.

Example 32–25 show the code for the tagPane component.

Example 32–25 tagPane trinidad-skins.xml Code

<?xml version="1.0" encoding="UTF-8" ?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin-addition>
 <skin-id>simple.desktop</skin-id>
 <style-sheet-name>acme/styles/acme-simple-desktop.css</style-sheet-name>
 <bundle-name>oracle.adfdemo.acme.faces.resource.AcmeSimpleDesktopBundle
 </bundle-name>
 </skin-addition>
</skins>

8. Add an image folder for the images used for the custom component. This folder
should be under the META-INF directory. Place any images used by the custom
component into this folder.

For tagPane, the image folder is /META-INF/acme/images.

32.5 Deploying a Component Library
After creating the custom component library, you must create a deployable artifact that
can be used by a web application. Before you can build a Java archive (JAR) file,
update the project's deployment profile by adding the many resources you created.

To create the JAR file for deployment:
1. In the Application Navigator, double-click the project to open the Project

Properties dialog.

2. In the left pane, select Compiler.

3. On the right, ensure that all file types to be deployed are listed in the Copy File
Types to Output Directory text field.

Note: If there is a possibility that the component will be used in an
Oracle WebCenter Portal application, then you must also register the
selectors with the simple.portlet skin. Skins are also available for
PDAs (for example, simple.pda). For more information, see
Chapter 20, "Customizing the Appearance Using Styles and Skins."

Adding the Custom Component to an Application

32-38 Web User Interface Developer's Guide for Oracle Application Development Framework

4. In the left pane, select Deployment.

5. On the right, under Deployment Profiles, select the ADF Library JAR file, and
click Edit.

6. In the left pane, select JAR Options.

7. Verify the default directory path or enter a new path to store your ADF Library
JAR file. Ensure that Include Manifest File is selected, and click OK.

8. To deploy, right-click the project and select Deploy >Project_name from the
context menu. By default, the JAR file will be deployed to a deployment directory
within the project directory.

32.6 Adding the Custom Component to an Application
After the component has been created and you have created an ADF Library, you can
proceed to import it and use it in another application. However, before using it in an
application under development, you should use it in a test application to ensure it
works as expected. To do so, import the custom library into your test application. For
procedures, see the "Adding ADF Library Components into Projects" section of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

After you add the library, you configure the web deployment descriptor to add a
resource servlet mapping. When you use the component and run your test application,
you may find you need to debug the component. Therefore, it helps to have logging
and assertions enabled for the project.

32.6.1 How to Configure the Web Deployment Descriptor
You configured the component resource loader to assume a servlet resource mapping
(for example, for the tagPane component, the mapping was acme). Therefore, you
must add the expected resource servlet mappings to the consuming application’s
web.xml file.

By default, MyFaces Trinidad skinning compresses the CSS classes when it normalizes
CSS 3 into CSS 2. Turn off this compression while you are debugging the component.
For a production deployment, toggle off this setting.

To configure the web.xml file:
1. In the Application Navigator, double-click the web.xml file to open it.

2. In the overview editor, select the Servlets navigation tab, and click the Add icon to
add a new servlet.

3. In the Servlets table, do the following:

■ Name: Enter resources.

■ Servlet Class: Enter
org.apache.myfaces.trinidad.webapp.ResourceServlet.

Note: Some file types, such as .css and .js are not included by
default. You will need to add these.

Tip: Importing a library into an application allows the custom
component to appear in JDeveloper’s Component Palette.

Adding the Custom Component to an Application

Creating Custom ADF Faces Components 32-39

4. Below the table, click the Servlet Mappings tab, then click the Add icon.

5. Enter a URI prefix. Resources beginning with this prefix will be handled by the
servlet. For example, for the tagPane component, you might enter the prefix
/acme/*.

6. To disable compression of the style sheet:

a. Select Application.

b. Click the Add icon for Context Initialization Parameters.

c. For Name, enter org.apache.myfaces.trinidad.DISABLE_CONTENT_
COMPRESSION and for Value enter true.

32.6.2 How to Enable JavaScript Logging and Assertions
JavaScript debugging can be a difficult task. To help debug this dynamic language
with no type checking, the rich client JavaScript libraries provide a logging mechanism
similar to Java logging. There is also an assertion strategy to make the client scripts
more type safe. Both of these features are turned on using configuration parameters in
the web.xml file. The logging and assertion routines are browser specific. The client
JavaScript libraries will support Gecko, Internet Explorer, Opera, and Safari versions of
browser agents. For more information, see Section A.2.3.4, "Resource Debug Mode."

To turn on logging and assertion:
1. In the Application Navigator, double-click the web.xml file.

2. In the overview editor, click the Application navigation tab.

3. On the Application page, click the Add icon for the Context Initialization
Parameters.

4. Add the following parameter to turn on debugging:

■ Name: org.apache.myfaces.trinidad.resource.DEBUG

■ Value: true

This setting prevents MyFaces Trinidad from setting the cache headers for
resources like JavaScript. It prevents the browser from caching resources.

5. Add the following parameter to set the debug level for client side JavaScript.

■ Name: oracle.adf.view.rich.LOGGER_LEVEL

■ Value: ALL

The valid values are OFF, SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST and
ALL. The default is OFF.

6. Add the following parameter to turn on client-side script assertions:

■ Name: oracle.adf.view.rich.ASSERT_ENABLED

■ Value: true

This setting works together with logging. Toggling this switch to on will make
debug information available to the browser. The assertions and logging are
displayed differently, depending on the browser. For Internet Explorer, a child
browser window will appear beside the active window. For FireFox with the Fire
Bug plugin, the debug information will be available through the Fire Bug console.

Adding the Custom Component to an Application

32-40 Web User Interface Developer's Guide for Oracle Application Development Framework

32.6.3 How to Add a Custom Component to JSF Pages

To add the custom component to a JSF page:
1. Open the jspx page in the source editor.

2. Add the TLD namespace to the root tag.

For example, for the tagPane component, because the tag library's URI is:
http://adf-richclient-demo-acme, you would add:

xmlns:acme="http://oracle.adfdemo.acme"

3. Use the Component Palette to add the component to the page. Use the Property
Inspector to set any attributes.

32.6.4 What You May Need to Know About Using the tagPane Custom Component
If you wish to create the tagPane component as described in this chapter, and use it in
an application, you will need to use backing beans to bind the custom component to
the application components.

Example 32–26 shows the backing bean code that is used to bind the tagPane
component to the File Explorer application.

Example 32–26 Backing Bean Logic for the tagPane Custom Component

public Map<String, Number> getTags()
 {
 if (_tags == null)
 {
 _tags = new TreeMap<String, Number>();
 List<FileItem> nameToFileItems = feBean.getDataFactory().getFileItemList();
 _doDeepTagCollection(_tags, nameToFileItems);
 }
 return _tags;
 }
 public void onTagSelect(TagSelectEvent event)
 {
 _selectedTag = event.getTag();
 CriteriaFileItemFilter criteria = new CriteriaFileItemFilter(_selectedTag);
 List<FileItem> nameToFileItems = _feBean.getDataFactory().getFileItemList();
 if (_selectedTagFileItemList == null) {
 _selectedTagFileItemList = new ArrayList<FileItem>();
 else {
 _selectedTagFileItemList.clear();
 }
 _doDeepTagSearch(criteria, _selectedTagFileItemList, nameToFileItems);
 _selectedTagResultsTableModel = new SortableModel(_selectedTagFileItemList);
 }

Tip: If you are developing the application outside of JDeveloper, use
TLD short name and the component name. Also, add any values for
attributes. For example, for the tagPane, you might add:

<acme:tagPane>
 <visible="true">
 <orderBy="alpha">
 <tagSelectionListener=#(tagBean.onTagSelect)
</tagPane>

33

Allowing User Customization on JSF Pages 33-1

33 Allowing User Customization on JSF Pages

This chapter describes how changes to certain UI components that the user makes at
runtime can persist for the duration of the session.

Alternatively, you can configure your application so that changes persist in a
permanent data repository. Doing so means that the changes remain whenever the
user reenters the application. To allow this permanent persistence, you need to use the
Oracle Metadata Service (MDS), which is part of the full Fusion technology stack.
Using MDS and the full Fusion stack also provides the following additional
persistence functionality:

■ Persisting additional attribute values

■ Persisting search criteria

■ Persisting the results of drag and drop gestures in the UI

■ Reordering components on a page at runtime

■ Adding and removing components and facets from the page at runtime

For information and procedures for using Oracle MDS, see the "Allowing User
Customizations at Runtime" chapter of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

This chapter includes the following sections:

■ Section 33.1, "Introduction to User Customization"

■ Section 33.2, "Implementing Session Change Persistence"

33.1 Introduction to User Customization
Many ADF Faces components allow users to change the display of the component at
runtime. For example, a user can change the location of the splitter in the
panelSplitter component or change whether or not a panel displays detail contents.
By default, these changes live only as long as the page request. If the user leaves the
page and then returns, the component displays in the manner it is configured by
default. However, you can configure your application so that the changes persist
through the length of the user’s session. This way the changes will stay in place until
the user leaves the application.

 Table 33–1 shows the changes by component that provide default personalization
capabilities:

Introduction to User Customization

33-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Table 33–1 Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

panelBox

showDetail

showDetailHeader

showDetailItem

disclosed Users can display or hide content
using an icon in the header. Detail
content will either display or be
hidden, based on the last action of
the user.

showDetailItem (used in a
panelAccordion component)

flex The heights of multiple
showDetailItem components are
determined by their relative value
of the flex attribute. The
showDetailItem components with
larger flex values will be taller than
those with smaller values. Users
can change these proportions, and
the new values will be persisted.

showDetailItem (used in a
panelAccordion component)

inflexibleHeight Users can change the size of a
panel, and that size will remain.

panelSplitter collapsed Users can collapse either side of the
splitter. The collapsed state will
remain as last configured by the
user.

panelSplitter splitterPosition The position of the splitter in the
panel will remain where last
moved by user.

richTextEditor editMode The editor will display using the
mode (either WYSIWYG or source)
last selected by the user.

calendar activeDay The day considered active in the
current display will remain the
active day.

calendar view The view (day, week, month, or list)
that currently displays activities
will be retained.

panelWindow

dialog

contentHeight Users can change the height of a
panelWindow or dialog popup
component, and that height will
remain.

panelWindow

dialog

contentWidth Users can change the width of a
panelWindow or dialog popup
component, and that width will
remain.

activeCommandToolbar

Button

commandButton

commandImageLink

commandLink

commandMenuItem

commandNavigationItem

commandToolbarButton

windowHeight When users change the
contentHeight attribute value of a
panelWindow or dialog component,
any associated windowHeight value
on a command component is also
changed and will remain.

Introduction to User Customization

Allowing User Customization on JSF Pages 33-3

activeCommandToolbar

Button

commandButton

commandImageLink

commandLink

commandMenuItem

commandNavigationItem

commandToolbarButton

windowWidth When users change the
contentWidth attribute value of a
panelWindow or dialog component,
any associated windowWidth value
on a command component is also
changed and will remain.

column displayIndex ADF Faces columns can be
reordered by the user at runtime.
The displayIndex attribute
determines the order of the
columns. (By default, the value is
set to -1 for each column, which
means the columns will display in
the same order as the data source).
When a user moves a column, the
value on each column is changed to
reflect the new order. These new
values will be persisted.

column frozen ADF Faces columns can be frozen
so that they will not scroll. When a
column’s frozen attribute is set to
true, all columns before that
column (based on the
displayIndex value) will not scroll.
When you use the table with a
panelCollection component, you
can configure the table so that a
button appears that allows the user
to freeze a column. For more
information, see Section 10.2.4,
"How to Display a Table on a
Page."

column noWrap The content of the column will
either wrap or not. You need to
create code that allows the user to
change this attribute value. For
example, you might create a
context menu that allows a user to
toggle the value from true to
false.

column selected The selected column is based on the
column last selected by the user.

column visible The column will either be visible or
not, based on the last action of the
user. You will need to write code
that allows the user to change this
attribute value. For example, you
might create a context menu that
allows a user to toggle the value
from true to false.

column width The width of the column will
remain the same size as the user
last set it.

Table 33–1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

Implementing Session Change Persistence

33-4 Web User Interface Developer's Guide for Oracle Application Development Framework

33.2 Implementing Session Change Persistence
In order for the application to persist user changes to the session, you must configure
your project to enable customizations.

33.2.1 How to Implement Session Change Persistence
You configure your application to enable customizations in the web.xml file.

To implement session change persistence:
1. In the Application Navigator, double-click the web project.

2. In the Project Properties dialog, select the ADF View node.

3. On the ADF View page, activate the Enable User Customizations checkbox, select
the For Duration of Session radio button, and click OK.

33.2.2 What Happens When You Configure Your Application to Use Change Persistence
When you elect to save changes to the session, JDeveloper adds the CHANGE_
PERSISTENCE context parameter to the web.xml file, and sets the value to session. This
context parameter registers the ChangeManager class that will be used to handle
persistence. Example 33–1 shows the context parameter in the web.xml file.

Example 33–1 Context Parameter in web.xml Used for Change Persistence

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>session</param-value>
</context-param>

table filterVisible ADF Faces tables can contain a
component that allows users to
filter the table rows by an attribute
value. For a table that is configured
to use a filter, the filter will either
be visible or not, based on the last
action of the user. You will need to
write code that allows the user to
change this attribute value. For
example, you might create a button
that allows a user to toggle the
value from true to false.

table first This attribute represents the index
of the first row in the current range
of rows, and is used to control
which range of rows to display to
the user.

The value of this attribute is
persisted only in response to a
RangeChangeEvent and only when
in screen reader mode.

Table 33–1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

Implementing Session Change Persistence

Allowing User Customization on JSF Pages 33-5

33.2.3 What Happens at Runtime
When an application is configured to persist changes to the session, any changes are
recorded in a session variable in a data structure that is indexed according to the view
ID. Every time the page is requested, in the subsequent view or restore view phase, the
tag action classes look up all changes for a given component and apply the changes in
the same order as they were added. This means that the changes registered through
the session will be applied only during subsequent requests in the same session.

33.2.4 What You May Need to Know About Using Change Persistence on Templates
and Regions

When you use session persistence, changes are recorded and restored on components
against the viewId for the given session. As a result, when the change is applied on a
component that belongs to a fragment or page template, it is applicable only in scope
of the page that uses the fragment or template. It does not span all pages that consume
the fragment or template.

For example, say your project has the pageOne.jspx and pageTwo.jspx JSF pages, and
they both contain the fragment defined in the region.jsff page fragment, which in
turn contains a showDetail component. When the pageOne.jspx JSF page is rendered
and the disclosed attribute on the showDetail component changes, the implicit
attribute change is recorded and will be applied only for the pageOne.jspx page. If the
user navigates to the pageTwo.jspx page, no attribute change is applied.

Implementing Session Change Persistence

33-6 Web User Interface Developer's Guide for Oracle Application Development Framework

34

Adding Drag and Drop Functionality 34-1

34Adding Drag and Drop Functionality

This chapter describes how to add drag and drop functionality to your pages, which
allows users to drag the values of attributes or objects from one component to another,
or allows users to drag and drop components.

This chapter includes the following sections:

■ Section 34.1, "Introduction to Drag and Drop Functionality"

■ Section 34.2, "Adding Drag and Drop Functionality for Attributes"

■ Section 34.3, "Adding Drag and Drop Functionality for Objects"

■ Section 34.4, "Adding Drag and Drop Functionality for Collections"

■ Section 34.5, "Adding Drag and Drop Functionality for Components"

■ Section 34.6, "Adding Drag and Drop Functionality Into and Out of a
panelDashboard Component"

■ Section 34.7, "Adding Drag and Drop Functionality to a Calendar"

■ Section 34.8, "Adding Drag and Drop Functionality for DVT Graphs"

■ Section 34.9, "Adding Drag and Drop Functionality for DVT Gantt Charts"

■ Section 34.10, "Adding Drag and Drop Functionality for DVT Hierarchy Viewers,
Sunbursts, and Treemaps"

34.1 Introduction to Drag and Drop Functionality
The ADF Faces framework provides the ability to drag and drop items from one place
to another on a page. For example, in the File Explorer application, you can drag a file
from the Table tab and drop it into another directory folder, as shown in Figure 34–1.

Introduction to Drag and Drop Functionality

34-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 34–1 Drag and Drop in the File Explorer Application

In this scenario, you are actually dragging an object from one collection (Folder0) and
dropping it into another collection (Folder3). This is one of the many supported drag
and drop scenarios. ADF Faces supports the following scenarios:

■ Dragging an attribute value from one component instance and copying it to
another. For example, a user might be able to drag an outputText component onto
an inputText component, which would result in the value of the text attribute of
the outputText component becoming the value of the text attribute on the
inputText component.

■ Dragging the value of one object and dropping it so that it becomes the value of
another object. For example, a user might be able to drag an outputText
component onto another outputText component, which would result in an array
of String objects populating the text attribute of the second outputText
component.

■ Dragging an object from one collection and dropping it into another, as shown in
Figure 34–1.

■ Dragging a component from one place on a page to another. For example, a user
might be able to drag an existing panelBox component to a new place within a
panelGrid component.

■ Dragging an activity in a calendar from one start time or date to another.

■ Dragging a component into or out of a panelDashboard component.

■ Dragging a marker in a DVT scatter or bubble graph to change its value.

■ Dragging an object from a DVT Gantt chart to another component.

■ Dragging one or more nodes from or dropping an object to DVT treemap and
sunburst components.

■ Dragging and dropping one or more nodes within DVT hierarchy viewers,
dragging one or more nodes from a hierarchy viewer to another component, or
dragging from one or more components to a hierarchy viewer.

Introduction to Drag and Drop Functionality

Adding Drag and Drop Functionality 34-3

When users click on a source and begin to drag, the browser displays the element
being dragged as a ghost element attached to the mouse pointer. Once the ghost
element hovers over a valid target, the target component shows some feedback (for
example, it becomes highlighted). If the user drags the ghost element over an invalid
target, the cursor changes to indicate that the target is not valid.

When dragging attribute values, the user can only copy the value to the target. For all
other drag and drop scenarios, on the drop, the element can be copied (copy and
paste), moved (cut and paste), or linked (copy and paste as a link, for example,
copying text and pasting the text as an actual URL).

The component that will be dragged and that contains the value is called the source.
The component that will accept the drop is called the target. You use a specific tag as a
child to the source and target components that tells the framework to allow the drop.
Table 34–1 shows the different drag and drop scenarios, the valid source(s) and
target(s), and the associated tags to be used for that scenario.

Table 34–1 Drag and Drop Scenarios

Scenario Source Target

Dragging an attribute value An attribute value on a
component

An attribute value on
another component, as
long as it is the same object
type

Tag:
attributeDragSource

Tag:
attributeDropTarget

Dragging an object from one
component to another

Any component Any component

Tag:
attributeDragSource

Tag:
dropTarget

Dragging an item from one collection
and dropping it into another

table, tree, and
treeTable components

table, tree, and
treeTable components

Tag:
dragSource

Tag:
collectionDropTarget

Dragging a component from one
container to another

Any component Any component

Tag:
componentDragSource

Tag:
dropTarget

Dragging a calendar activity from
one start time or date to another

calendarActivity object calendar component

Tag:
None needed

Tag:
calendarDropTarget

Dragging a panelBox component into
a panelDashboard component.

panelBox component panelDashboard
component

Tag:
componentDragSource

Tag:
dataFlavor

Dragging a panelBox component out
of a panelDashboard component.

panelBox component in a
panelDashboard
component

Any component

Tag:
componentDragSource

Tag:
dropTarget

Dragging a marker in a DVT graph graph component graph component

Tag:
dragSource

Tag:
dropTarget

Adding Drag and Drop Functionality for Attributes

34-4 Web User Interface Developer's Guide for Oracle Application Development Framework

You can restrict the type of the object that can be dropped on a target by adding a
dataFlavor tag. This helps when the target can accept only one object type, but the
source may be one of a number of different types. The dataFlavor tag also allows you
to set multiple types so that the target can accept objects from more than one source or
from a source that may contain more than one type. Both the target and the source
must contain the dataFlavor tag, and the values must be the same in order for the
drop to be successful.

34.2 Adding Drag and Drop Functionality for Attributes
You add drag and drop functionality for attributes by defining one component’s
attribute to be a target and another component’s attribute to be a source.

The following procedure assumes you have your target and source components
already on the JSF page.

To add drag and drop functionality for attributes:
1. In the Component Palette, from the Operations panel, drag and drop an Attribute

Drop Target as a child to the target component.

2. In the Insert Attribute Drop Target dialog, use the Attribute dropdown to select
the attribute that will be populated by the drag and drop action. This dropdown
list shows all valid attributes on the target component.

Dragging an object from a DVT Gantt
chart and dropping it on another
component

Gantt chart Any component

Tag:
dragSource

Tag:
dropTarget

Dragging a node from a DVT
hierarchy viewer, sunburst, or
treemap and dropping it on another
component

hierarchyViewer,
sunburst, or treemap
component

Any component

Tag:
dragSource

Tag:
dropTarget

Note: Drag and drop functionality is not supported between
windows. Any drag that extends past the window boundaries will be
canceled. Drag and drop functionality is supported between popup
windows and the base page for the popup.

Also note that drag and drop functionality is not accessible; that is,
there are no keyboard strokes that can be used to execute a drag and
drop. Therefore, if your application requires all functionality to be
accessible, you must provide this logic. For example, your page might
also present users with a method for selecting objects and a Move
button or menu item that allows them to move those selected objects.

Note: The target and source attribute values must both be the same
data type.

Table 34–1 (Cont.) Drag and Drop Scenarios

Scenario Source Target

Adding Drag and Drop Functionality for Objects

Adding Drag and Drop Functionality 34-5

3. From the Component Palette, drag and drop an Attribute Drag Source as a child
to the component that can provide a value for the target.

4. In the Insert Attribute Drag Source dialog, use the Attribute dropdown to select
the attribute whose value will be used to populate the target attribute. This
dropdown list shows all valid attributes on the source component.

34.3 Adding Drag and Drop Functionality for Objects
When you want users to be able to drag things other than attribute values, or you
want users to be able to do something other than copy attributes from one component
to another, you use the dropTarget tag. Additionally, use the DataFlavor object to
determine the valid Java types of sources for the drop target. Because there may be
several drop targets and drag sources, you can further restrict valid combinations by
using discriminant values. You also must implement any required functionality in
response to the drag and drop action.

For example, suppose you have an outputText component and you want the user to
be able to drag the outputText component to a panelBox component and have that
component display an array, as shown in Figure 34–6.

Figure 34–2 Dragging and Dropping an Array Object

The outputText component contains an attributeDragSource tag. However, because
you want to drag an array (and not just the String value of the attribute), you must
use the dropTarget tag instead of the attributeDropTarget tag. Also use a
dataFlavor tag to ensure that only an array object will be accepted on the target.

You can also define a discriminant value for the dataFlavor tag. This is helpful if you
have two targets and two sources, all with the same object type. By creating a
discriminant value, you can be sure that each target will accept only valid sources. For
example, suppose you have two targets that both accept an EMPLOYEE object,
TargetA and TargetB. Suppose you also have two sources, both of which are
EMPLOYEE objects. By setting a discriminant value on TargetA with a value of alpha,
only the EMPLOYEE source that provides the discriminant value of alpha will be
accepted.

You also must implement a listener for the drop event. The object of the drop event is
called the transferable, which contains the payload of the drop. Your listener must
access the transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object. More details about this
listener are covered in the procedure in Section 34.9.1, "How to Add Drag and Drop
Functionality for a DVT Gantt Component".

Adding Drag and Drop Functionality for Objects

34-6 Web User Interface Developer's Guide for Oracle Application Development Framework

34.3.1 How to Add Drag and Drop Functionality for a Single Object
To add drag and drop functionality, first add tags to a component that define it as a
target for a drag and drop action. Then implement the event handler method that will
handle the logic for the drag and drop action. Last, you define the sources for the drag
and drop.

This procedure assumes the source and target components already exist on the page.

To add drag and drop functionality:
1. In the JSF page that contains the target, add a dropTarget tag as a child to the

target component by dragging and dropping a Drop Target tag (located in the
Operations panel) from the Component Palette.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method on
a managed bean that will handle the event (you will create this code in Step 5).

3. In the Insert Data Flavor dialog, enter the class for the object that can be dropped
onto the target, for example java.lang.Object. This selection will be used to
create a dataFlavor tag, which determines the type of object that can be dropped
onto the target, for example a String or a Date. Multiple dataFlavor tags are
allowed under a single drop target to allow the drop target to accept any of those
types.

4. In the Structure window, select the dropTarget tag. In the Property inspector,
select a value for the actions attribute. This defines what actions are supported by
the drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste),
and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

Example 34–1 shows the code for a dropTarget component inserted into an
panelBox component that takes an array object as a drop source. Note that because
an action was not defined, the only allowed action will be COPY.

Example 34–1 JSP Code for a dropTarget tag

<af:panelBox text="PanelBox2">
 <f:facet name="toolbar"/>
 <af:dropTarget dropListener="#{myBean.handleDrop}">
 <af:dataFlavor flavorClass="java.lang.Object[]"/>
 </af:dropTarget>
</af:panelBox>

5. In the managed bean referenced in the EL expression created in Step 2, create the
event handler method (using the same name as in the EL expression) that will
handle the drag and drop functionality.

Tip: You can also intercept the drop on the client by populating the
clientDropListener attribute. For more information, see
Section 34.3.3, "What You May Need to Know About Using the
ClientDropListener".

Tip: To specify a typed array in a DataFlavor tag, add brackets ([]) to
the class name, for example, java.lang.Object[].

Adding Drag and Drop Functionality for Objects

Adding Drag and Drop Functionality 34-7

This method must take a DropEvent event as a parameter and returns a DnDAction
object, which is the action that will be performed when the source is dropped.
Valid return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK,
and were set when you defined the target attribute in Step 5. This method should
check the DropEvent event to determine whether or not it will accept the drop. If
the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE to indicate that
the drop was rejected.

The method must also check for the presence for each dataFlavor object in
preference order.

 The DataFlavor object defines the type of data being dropped, for example
java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as
created in Step 3.

Example 34–2 shows a private method that the event handler method calls (the
event handler itself does nothing but call this method; it is needed because this
method also needs a String parameter that will become the value of the
outputText component in the panelBox component). This method copies an array
object from the event payload and assigns it to the component that initiated the
event.

Example 34–2 Event Handler Code for a dropListener

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();

 Object[] drinks = dropTransferable.getData(DataFlavor.OBJECT_ARRAY_FLAVOR);

 if (drinks != null)
 {
 UIComponent dropComponent = dropEvent.getDropComponent();

// Update the specified property of the drop component with the Object[] dropped
 dropComponent.getAttributes().put("value", Arrays.toString(drinks));

 return DnDAction.COPY;
 }

Tip: If your target has more than one defined dataFlavor object,
then you can use the Transferable.getSuitableTransferData()
method, which returns a List of TransferData objects available in the
Transferable object in order, from highest suitability to lowest.

Tip: To specify a typed array in a DataFlavor object, add brackets ([])
to the class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target
accepts java.util.List, and the transferable object contains a
java.util.ArrayList, the drop will succeed. Likewise, this
functionality supports automatic conversion between Arrays and
Lists.

If the drag and drop framework doesn't know how to represent a
server DataFlavor object on the client component, the drop target will
be configured to allow all drops to succeed on the client.

Adding Drag and Drop Functionality for Objects

34-8 Web User Interface Developer's Guide for Oracle Application Development Framework

 else
 {
 return DnDAction.NONE;
 }
 }

6. Add a clientAttribute tag as a child to the source component by dragging a
Client Attribute (located in the Operations panel), from the Component Palette.
This tag is used to define the payload of the source for the event. Define the
following for the clientAttribute tag in the Property Inspector:

■ Name: Enter any name for the payload.

■ Value: Enter an EL expression that evaluates to the value of the payload. In the
drinks example, this would resolve to the Array that holds the different drink
values.

7. Drag and drop an Attribute Drag Source (located in the Operations panel), from
the palette as another child to the source component. In the Insert Attribute Drag
Source dialog, use the dropdown list to select the name defined for the
clientAttribute tag created in the previous step. Doing so makes the value of the
clientAttribute tag the source’s payload. Example 34–3 shows the code for an
outputText component that is the source of the drag and drop operation.

Example 34–3 JSP Code for a Drag Source

<af:outputText value="Drag to see drinks">
 <af:clientAttribute name="drinks" value="#{myBean.drinks}"/>
 <af:attributeDragSource attribute="drinks"/>
</af:outputText>

34.3.2 What Happens at Runtime
When performing a drag and drop operation, users can press keys on the keyboard
(called keyboard modifiers) to select the action they wish to take on a drag and drop.
The drag and drop framework supports the following keyboard modifiers:

■ SHIFT: MOVE

■ CTRL: COPY

■ CTRL+SHIFT: LINK

When a user executes the drag and drop operation, the drop target first determines
that it can accept the drag source’s data flavor value. Next, if the source and target are
collections, the framework intersects the actions allowed between the drag source and
drop target and executes the action (one of COPY, MOVE, or LINK) in that order from
the intersection. When there is only one valid action, that action is executed. When
there is more than one possible action and the user's keyboard modifier matches that
choice, then that is the one that is executed. If either no keyboard modifier is used, or
the keyboard modifier used does not match an allowed action, then the framework
chooses COPY, MOVE, LINK in that order, from the set of allowed actions.

For example, suppose you have a drop target that supports COPY and MOVE. First
the drop target determines that drag source is a valid data flavor. Next, it determines
which action to perform when the user performs the drop. In this example, the set is
COPY and MOVE. If the user holds down the SHIFT key while dragging (the keyboard
modifier for MOVE), the framework would choose the MOVE action. If the user is
doing anything other than holding down the SHIFT key when dragging, the action will
be COPY because COPY is the default when no modifier key is chosen (it is first in the

Adding Drag and Drop Functionality for Collections

Adding Drag and Drop Functionality 34-9

order). If the user is pressing the CTRL key, that modifier matches COPY, so COPY
would be performed. If the user was pressing the CTRL+SHIFT keys, the action would
still be COPY because that modifier matches the LINK action which is not in the
intersected set of allowed actions.

34.3.3 What You May Need to Know About Using the ClientDropListener
The dropTarget tag contains the clientDropListner attribute where you can reference
JavaScript that will handle the drop event on the client. The client handler should not
take any parameters and returns an AdfDnDContext action. For example, if the method
returns AdfDnDContext.ACTION_NONE the drop operation will be canceled and no
server call will be made; if the method returns AdfDnDContext.ACTION_COPY, a copy
operation will be allowed and a server call will be made which will execute the
dropListener method if it exists.

For example, suppose you want to log a message when the drop event is invoked. You
might create a client handler to handle logging that message and then returning the
correct action so that the server listener is invoked. Example 34–4 shows a client
handler that uses the logger to print a message.

Example 34–4 clientDropListener Handler

<script>
/**
 * Shows a message.
 */
function showMessage()
{
 AdfLogger.LOGGER.logMessage(AdfLogger.ALL, "clientDropListener handler,
 copying...");
 return AdfDnDContext.ACTION_COPY;
}
</script>

34.4 Adding Drag and Drop Functionality for Collections
You.use the collectionDropTarget and dragSource tags to add drag and drop
functionality that allows users to drag an item from one collection (for example, a row
from a table), and drop it into another collection component such, as a tree. For
example, in the File Explorer application, users can drag a file from the table that
displays directory contents to any folder in the directory tree. Figure 34–3 shows the
File0.doc object being dragged from the table displaying the contents of the Folder0
directory to the Folder3 directory. Once the drop is complete, the object will become
part of the collection that makes up Folder3.

Note: Because information is lost during the roundtrip between Java
and JavaScript, the data in the drop may not be the type that you
expect. For example, all numeric types appear as double objects, char
objects appear as String objects, List and Array objects appear as
List objects, and most other objects appear as Map objects. For more
information, see Section 5.4.3, "What You May Need to Know About
Marshalling and Unmarshalling Data.".

Adding Drag and Drop Functionality for Collections

34-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 34–3 Drag and Drop Functionality in the File Explorer Application

As with dragging and dropping single objects, you can have a drop on a collection
cause a copy, move, or copy and paste as a link (or a combination of the three), and use
dataFlavor tags to limit what a target will accept.

When the target source is a collection and it supports the move operation, you may
also want to also implement a method for the dragDropEndListener attribute, which is
referenced from the source component and is used to clean up the collection after the
drag and drop operation. For more information, see Section 34.4.2, "What You May
Need to Know About the dragDropEndListener".

34.4.1 How to Add Drag and Drop Functionality for Collections
To add drag and drop functionality for collections, instead of using the dropTarget
tag, you use the collectionDropTarget tag. You then must implement the event
handler method that will handle the logic for the drag and drop action. Next, you
define the source for the drag and drop operation using the dragSource tag.

This procedure assumes you already have the source and target components on the
page.

To add drag and drop functionality:
1. Add a collectionDropTarget tag as a child to the target collection component by

dragging a Collection Drop Target from the Component Palette.

2. In the Insert Collection Drop Target dialog, enter an expression for the
dropListener attribute that evaluates to a method on a managed bean that will
handle the event (you will create this code in Step 4).

3. In the Property Inspector, set the following:

■ actions: Select the actions that can be performed on the source during the
drag and drop operation.

If no actions are specified, the default is COPY.

Adding Drag and Drop Functionality for Collections

Adding Drag and Drop Functionality 34-11

■ modelName: Define the model for the collection.

The value of the modelName attribute is a String object used to identify the
drag source for compatibility purposes. The value of this attribute must match
the value of the discriminant attribute of the dragSource tag you will use in a
Step 6. In other words, this is an arbitrary name and works when the target
and the source share the same modelName value or discriminant value.

4. In the managed bean inserted into the EL expression in Step 2, implement the
handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction.
This method should use the DropEvent to get the Transferable object and from
there get the RowKeySet (the rows that were selected for the drag). Using the
CollectionModel obtained through the Transferable object, the actual rowData
can be obtained to complete the drop. The method should then check the
DropEvent to determine whether it will accept the drop or not. If the method
accepts the drop, it should perform the drop and return the DnDAction it
performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK,
otherwise it should return DnDAction.NONE to indicate that the drop was
rejected.

Example 34–5 shows the event handler method on the CollectionDnd.java
managed bean used in the collectionDropTarget demo that handles the copy of
the row between two tables.

Example 34–5 Event Handler Code for a dropListener for a Collection

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();

 // The data in the transferable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 // Get the model for the dragged component.
 CollectionModel dragModel = transferable.getData(CollectionModel.class);
 if (dragModel != null)
 {
 // Set the row key for this model using the row key from the transferable.
 Object currKey = rowKeySet.iterator().next();
 dragModel.setRowKey(currKey);

 // And now get the actual data from the dragged model.
 // Note this won't work in a region.
 DnDDemoData dnDDemoData = (DnDDemoData)dragModel.getRowData();

 // Put the dragged data into the target model directly.
 // Note that if you wanted validation/business rules on the drop,
 // this would be different.
 getTargetValues().add(dnDDemoData);
 }
 return dropEvent.getProposedAction();
 }
 else
 {
 return DnDAction.NONE;

Adding Drag and Drop Functionality for Components

34-12 Web User Interface Developer's Guide for Oracle Application Development Framework

 }
}

5. In the Component Palette, from the Operations panel, drag and drop a Drag

Source as a child to the source component.

6. With the dragSource tag selected, in the Property Inspector set the allowed
Actions and any needed discriminant, as configured for the target.

34.4.2 What You May Need to Know About the dragDropEndListener
There may be cases when after a drop event, you have to clean up the source
collection. For example, if the drag caused a move, you may have to clean up the
source component so that the moved item is no longer part of the collection.

The dragSource tag contains the dragDropEndListener attribute that allows you to
register a handler that contains logic for after the drag drop operation ends.

For example, if you allow a drag and drop to move an object, you may have to
physically remove the object from the source component once you know the drop
succeeded. Example 34–6 shows a handler for a dragDropEndListener. attribute

Example 34–6 Handler for dragDropEndListener

public void endListener(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();

 // The data in the transferrable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 Integer currKey = (Integer)rowKeySet.iterator().next();

 // Remove the dragged dta from the source model directly.
 Object removed = getSource2Values().remove(currKey.intValue());
 }
 // Need to add the drag source table so it gets redrawn.

AdfFacesContext.getCurrentInstance().addPartialTarget(dropEvent.getDragComponent()
);

34.5 Adding Drag and Drop Functionality for Components
You can allow components to be moved from one parent to another, or you can allow
child components of a parent component to be reordered. For example, Figure 34–4
shows the darker panelBox component being moved from being the first child
component of the panelGrid component to the last.

Adding Drag and Drop Functionality for Components

Adding Drag and Drop Functionality 34-13

Figure 34–4 Drag and Drop Functionality Between Components

34.5.1 How to Add Drag and Drop Functionality for Components
Adding drag and drop functionality for components is similar for objects. However,
instead of using the attributeDragSource tag, use the componentDragSource tag. As
with dragging and dropping objects or collections, you also must implement a
dropListener handler.

To add drag and drop functionality:
1. From the Operations panel of the Component Palette, drag and drop a Drop

Target as a child to the target component.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method on
a managed bean that will handle the event (you will create this code in Step 4).

3. With the dropTarget tag still selected, in the Property Inspector, select a valid
action set for the action attribute.

4. In the managed bean referenced in the EL expression created in Step 2 for the
dropListener attribute, create the event handler method (using the same name as
in the EL expression) that will handle the drag and drop functionality.

Note: If you want to move components into or out of a
panelDashboard component, then you need to use procedures specific
to that component. For more information, see Section 34.6, "Adding
Drag and Drop Functionality Into and Out of a panelDashboard
Component."

Adding Drag and Drop Functionality for Components

34-14 Web User Interface Developer's Guide for Oracle Application Development Framework

This method must take a DropEvent event as a parameter and return a DnDAction,
which is the action that will be performed when the source is dropped. Valid
return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and
were set when you defined the target attribute in Step 2.

This handler method should use the DropEvent event to get the transferable
object and its data and then complete the move or copy, and reorder the
components as needed. Once the method completes the drop, it should return the
DnDAction it performed. Otherwise, it should return DnDAction.NONE to indicate
that the drop was rejected.

Example 34–7 shows the handleComponentMove event handler on the
DemoDropHandler.java managed bean used by the componentDragSource JSF page
in the demo application.

Example 34–7 Event Handler Code for a dropListener That Handles a Component Move

public DnDAction handleComponentMove(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 UIComponent movedComponent = dropTransferable.getData
 (DataFlavor.UICOMPONENT_FLAVOR);
 if ((movedComponent != null) &&
 DnDAction.MOVE.equals(dropEvent.getProposedAction()))
 {
 UIComponent dropComponent = dropEvent.getDropComponent();
 UIComponent dropParent = dropComponent.getParent();
 UIComponent movedParent = movedComponent.getParent();
 UIComponent rootParent;
 ComponentChange change;

 // Build the new list of IDs, placing the moved component after the dropped
 //component.
 String movedLayoutId = movedParent.getId();
 String dropLayoutId = dropComponent.getId();

 List<String> reorderedIdList = new
 ArrayList<String>(dropParent.getChildCount());

 for (UIComponent currChild : dropParent.getChildren())
 {
 String currId = currChild.getId();

 if (!currId.equals(movedLayoutId))
 {
 reorderedIdList.add(currId);
 if (currId.equals(dropLayoutId))
 {
 reorderedIdList.add(movedLayoutId);
 }
 }
 }

 change = new ReorderChildrenComponentChange(reorderedIdList);
 rootParent = dropParent;
 // apply the change to the component tree immediately
 // change.changeComponent(rootParent);

 // redraw the shared parent
 AdfFacesContext.getCurrentInstance().addPartialTarget(rootParent);

Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

Adding Drag and Drop Functionality 34-15

 return DnDAction.MOVE;
 }
 else
 {
 return DnDAction.NONE;
 }
}

5. Add a componentDragSource tag to the source component by dragging and
dropping a Component Drag Source from the Component Palette as a child of the
source component.

34.6 Adding Drag and Drop Functionality Into and Out of a
panelDashboard Component

By default the panelDashboard component supports dragging and dropping
components within itself. That is, you can reorder components in a panelDashboard
component without needing to implement a listener or use additional tags. However,
if you want to be able to drag a component into a panelDashboard component, or to
drag a component out of a panelDashboard component, you do need to use tags and
implement a listener. Because you would be dragging and dropping a component, you
use the componentDragSource tag when dragging into the panelDashboard. However,
because the panelDashboard already supports being a drop target, you do not need to
use the dropTarget tag. Instead, you need to use a dataFlavor tag with a discriminant.
The tag and discriminant notify the framework that the drop is from an external
component.

Dragging a component out of a panelDashboard is mostly the same as dragging and
dropping any other component. You use a dropTarget tag for the target and the
componentDragSource tag for the source. However, you must also use the dataFlavor
tag and a discriminant.

34.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component
Because the panelDashboard component has built-in drag and drop functionality used
to reorder panelBox components within the dashboard, you cannot use a dropTarget
tag, but you do need to use a dataFlavor tag with a discriminant and implement the
dropListener. In that implementation, you need to handle the reorder of the
components.

Before you begin:
1. Create a panelDashboard component. For more information, see Section 8.8,

"Arranging Contents in a Dashboard."

2. Create another component outside of the panelDashboard that contains panelBox
components. For more information about panelBox components, see Section 8.9.3,
"How to Use the panelBox Component."

To add drag and drop functionality into a panelDashboard component:
1. In the Structure window, select the panelDashboard component that is to be the

target component.

2. In the Property Inspector, for DropListener, enter an expression that evaluates to a
method on a managed bean that will handle the drop event (you will create this
code in Step 6).

Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

34-16 Web User Interface Developer's Guide for Oracle Application Development Framework

3. In the Component Palette, from the Operations panel, drag a Data Flavor and
drop it as a child to the panelDashboard component.

4. In the Insert Data Flavor dialog, enter javax.faces.component.UIComponent.

5. In the Property Inspector, set Discriminant to a unique name that will identify the
components allowed to be dragged into the panelDashboard component, for
example, dragIntoDashboard.

6. In the managed bean referenced in the EL expression created in Step 2 for the
dropListener attribute, create the event handler method (using the same name as
in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction
of NONE, because the panelDashboard handles the positioning of its child
components.

This handler method should use the
dropEvent.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR) to
get the transferable object and its data. Once the method completes the drop,
you can use the
org.apache.myfaces.trinidad.change.ReorderChildrenComponent
Change method to preserve the new ordering of the children and the
dropEvent.getDropSiteIndex() method to get the location at which the user
wants the dragged component. You can also use the
dashboardComponent.prepareOptimizedEncodingOfInsertedChild() method to
animate the drop of the component.

Example 34–8 shows the move event handler and helper methods on the
DemoDashboardBean.java managed bean used by the dashboard JSF page in the
ADF Faces demo application.

Example 34–8 Handler for DropListener on a panelDashboard Component

public DnDAction move(DropEvent e)
{
 UIComponent dropComponent = e.getDropComponent();
 UIComponent movedComponent = e.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR);
 UIComponent movedParent = movedComponent.getParent();
 // Ensure that we are handling the re-order of a direct child of the panelDashboard:
 if (movedParent.equals(dropComponent) && dropComponent.equals(_dashboard))
 {
 // Move the already rendered child and redraw the side bar since the insert indexes have
 // changed:
 _moveDashboardChild(e.getDropSiteIndex(), movedComponent.getId());
 }
 else
 {
 // This isn't a re-order but rather the user dropped a minimized side bar item into the
 // dashboard, in which case that item should be restored at the specified drop location.
 String panelKey = _getAssociatedPanelKey(movedComponent);
 if (panelKey != null)
 {
 UIComponent panelBoxToShow = _dashboard.findComponent(panelKey);
 // Make this panelBox rendered:
 panelBoxToShow.setRendered(true);

 int insertIndex = e.getDropSiteIndex();

 // Move the already rendered child and redraw the side bar since the insert indexes have
 // changed and because the side bar minimized states are out of date:

Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

Adding Drag and Drop Functionality 34-17

 _moveDashboardChild(insertIndex, panelKey);

 // Let the dashboard know that only the one child should be encoded during the render phase:
 _dashboard.prepareOptimizedEncodingOfInsertedChild(
 FacesContext.getCurrentInstance(),
 insertIndex);
 }
 }

 return DnDAction.NONE; // the client is already updated, so no need to redraw it again
}

 private void _moveDashboardChild(int dropIndex, String movedId)
 {
 // Build the new list of IDs, placing the moved component at the drop index.
 List<String> reorderedIdList = new ArrayList<String>(_dashboard.getChildCount());
 int index = 0;
 boolean added = false;

 for (UIComponent currChild : _dashboard.getChildren())
 {
 if (currChild.isRendered())
 {
 if (index == dropIndex)
 {
 reorderedIdList.add(movedId);
 added = true;
 }

 String currId = currChild.getId();
 if (currId.equals(movedId) && index < dropIndex)
 {
 // component is moved later, need to shift the index by 1
 dropIndex++;
 }

 if (!currId.equals(movedId))
 {
 reorderedIdList.add(currId);
 }
 index++;
 }
 }

 if (!added)
 {
 // Added to the very end:
 reorderedIdList.add(movedId);
 }

 // Apply the change to the component tree immediately:
 ComponentChange change = new ReorderChildrenComponentChange(reorderedIdList);
 change.changeComponent(_dashboard);

 // Add the side bar as a partial target since we need to redraw the state of the side bar items
 // since their insert indexes are changed and possibly because the side bar minimized states
 // are out of date:
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_sideBarContainer);
 }

Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

34-18 Web User Interface Developer's Guide for Oracle Application Development Framework

7. In the Component Palette, from the Operations panel, drag a Component Drag
Source and drop it as a child to the panelBox component that will be the source
component.

8. In the Property Inspector, set Discriminant to be the same value as entered for the
Discriminant on the panelDashboard in Step 5.

34.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component
Implementing drag and drop functionality out of a panelDashboard component is
similar to standard drag and drop functionality for other components, except that you
must use a dataFlavor tag with a discriminant.

How to add drag and drop functionality out of a panelDashboard component:
1. In the Component Palette, from the Operations panel, drag and drop a Drop

Target as a child to the target component.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method on
a managed bean that will handle the event (you will create this code in Step 5) and
enter javax.faces.component.UIComponent as the FlavorClass.

3. With the dropTarget tag still selected, in the Property Inspector, select MOVE as
the value action attribute.

4. In the Structure window, select the dataFlavor tag and in the Property Inspector,
set Discriminant to a unique name that will identify the panelBox components
allowed to be dragged into this component, for example, dragOutOfDashboard.

5. In the managed bean referenced in the EL expression created in Step 2 for the
dropListener attribute, create the event handler method (using the same name as
in the EL expression) that will handle the drag and drop functionality.

This handler method should use the DropEvent event to get the transferable
object and its data and then complete the move and reorder the components as
needed. Once the method completes the drop, it should return a DnDAction of
NONE.

You can use the
dashboardComponent.prepareOptimizedEncodingOfDeletedChild() method to
animate the removal of the panelBox component.

Example 34–9 shows the handleSideBarDrop event handler and helper methods
on the DemoDashboardBean.java managed bean used by the dashboard JSF page in
the demo application.

Example 34–9 Event Handler Code for a dropListener That Handles a panelBox Move Out of a panelDash-
board Component

public DnDAction handleSideBarDrop(DropEvent e)
{
 UIComponent movedComponent = e.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR);
 UIComponent movedParent = movedComponent.getParent();

 // Ensure that the drag source is one of the items from the dashboard:
 if (movedParent.equals(_dashboard))
 {
 _minimize(movedComponent);
 }

 return DnDAction.NONE; // the client is already updated, so no need to redraw it again

Adding Drag and Drop Functionality to a Calendar

Adding Drag and Drop Functionality 34-19

}

 private void _minimize(UIComponent panelBoxToMinimize)
 {
 // Make this panelBox non-rendered:
 panelBoxToMinimize.setRendered(false);

 // If the dashboard is showing, let's perform an optimized render so the whole dashboard
doesn't
 // have to be re-encoded.
 // If the dashboard is hidden (because the panelBox is maximized), we will not do an optimized
 // encode since we need to draw the whole thing.
 if (_maximizedPanelKey == null)
 {
 int deleteIndex = 0;
 List<UIComponent> children = _dashboard.getChildren();
 for (UIComponent child : children)
 {
 if (child.equals(panelBoxToMinimize))
 {
 _dashboard.prepareOptimizedEncodingOfDeletedChild(
 FacesContext.getCurrentInstance(),
 deleteIndex);
 break;
 }

 if (child.isRendered())
 {
 // Only count rendered children since that's all that the panelDashboard can see:
 deleteIndex++;
 }
 }
 }

 RequestContext rc = RequestContext.getCurrentInstance();
 if (_maximizedPanelKey != null)
 {
 // Exit maximized mode:
 _maximizedPanelKey = null;

 _switcher.setFacetName("restored");
 rc.addPartialTarget(_switcher);
 }

 // Redraw the side bar so that we can update the colors of the opened items:
 rc.addPartialTarget(_sideBarContainer);
 }

6. In the Component Palette, from the Operations panel, drag and drop a
Component Drag Source as a child of the source panelBox component within the
panelDashboard component.

7. In the Property Inspector, set Discriminant to be the same value as entered for the
Discriminant on the dataFlavor tag for the target component in Step 4.

34.7 Adding Drag and Drop Functionality to a Calendar
The calendar includes functionality that allows users to drag the handle of an activity
to change the end time. However, if you want users to be able to drag and drop an

Adding Drag and Drop Functionality to a Calendar

34-20 Web User Interface Developer's Guide for Oracle Application Development Framework

activity to a different start time, or even a different day, then you implement drag and
drop functionality. Drag and drop allows you to not only move an activity, but also to
copy one.

34.7.1 How to Add Drag and Drop Functionality to a Calendar
You add drag and drop functionality by using the calendarDropTarget tag. Unlike
dragging and dropping a collection, there is no need for a source tag; the target (that is
the object to which the activity is being moved, in this case, the calendar) is responsible
for moving the activities. If the source (that is, the item to be moved or copied), is an
activity within the calendar, then you use only the calendarDropTarget tag. The tag
expects the transferable to be a calendarActivity object.

However, you can also drag and drop objects from outside the calendar. When you
want to enable this, use dataFlavor tags configured to allow the source object (which
will be something other than a calendarActivity object) to be dropped.

To add drag and drop functionality to a calendar:
1. In the Component Palette, from the Operations panel, drag and drop a Calendar

Drop Target as a child to the calendar component.

2. In the Insert Calendar Drop Target dialog, enter an expression for the
dropListener attribute that evaluates to a method on a managed bean that will
handle the event (you will create this code in Step 4).

3. In the Property Inspector, set Actions. This value determines whether the activity
(or other source) can be moved, copied, or copied as a link, or any combination of
the three. If no action is specified, the default is COPY.

4. In the managed bean inserted into the EL expression in Step 2, implement the
handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction.
The DnDAction is the action that will be performed when the source is dropped.
Valid return values are COPY, MOVE, and LINK, and are set when you define the
actions attribute in Step 3. This method should use the DropEvent to get the
transferable object, and from there, access the CalendarModel object in the
dragged data and from there, access the actual data. The listener can then add that
data to the model for the source and then return the DnDAction it performed:
DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK; otherwise, the listener
should return DnDAction.NONE to indicate that the drop was rejected.

The drop site for the drop event is an instance of the
oracle.adf.view.rich.dnd.CalendarDropSite class. For an example of a drag
and drop handler for a calendar, see the handleDrop method on the
oracle.adfdemo.view.calendar.rich.DemoCalendarBean managed bean in the
ADF Faces demo application.

5. If the source for the activity is external to the calendar, drag a Data Flavor and
drop it as a child to the calendarDropTarget tag. This tag determines the type of
object that can be dropped onto the target, for example a String or a Date object.
Multiple dataFlavor tags are allowed under a single drop target to allow the drop
target to accept any of those types.

6. In the Insert Data Flavor dialog, enter the class for the object that can be dropped
onto the target, for example java.lang.Object.

Tip: To specify a typed array in a dataFlavor tag, add brackets ([]) to
the class name, for example, java.lang.Object[].

Adding Drag and Drop Functionality for DVT Graphs

Adding Drag and Drop Functionality 34-21

34.7.2 What You May Need to Know About Dragging and Dropping in a Calendar
For dragging and dropping activities within a calendar, users can drag and drop only
within a view. That is, users can drag an activity from one time slot to another in the
day view, but cannot cut an activity from a day view and paste it into a month view.

When the user is dragging and dropping activities in the day or week view, the
calendar marks the drop site by half-hour increments. The user cannot move any
all-day or multi-day activities in the day view.

In the week view, users can move all-day and multi-day activities, however, they can
be dropped only within other all-day slots. That is, the user cannot change an all-day
activity to an activity with start and end times. In the month view, users can move
all-day and multi-day activities to any other day.

34.8 Adding Drag and Drop Functionality for DVT Graphs
You can configure drag and drop for the DVT bubble and scatter graphs, which allows
the user to change the value of a marker by repositioning it. When you want users to
be able to drag and drop in a graph, you use the dragSource and dropTarget tags.
Additionally, you use the DataFlavor object to determine the valid Java type of the
sources for the drop target, in this case a GraphSelection object. You also must
implement any required functionality in response to the drag and drop action.

For example, you might have a scatterGraph component and you want the user to be
able to drag a human scatter marker to adjust the performance rating of an employee,
as shown in Figure 34–6.

Figure 34–5 Dragging and Dropping an Object

The scatterGraph component contains both a dragSource tag and a dropTarget tag.
You also use a dataFlavor tag to determine the type of object being dropped.

You also must implement a listener for the drop event. The object of the drop event is
called the transferable, which contains the payload of the drop. Your listener must
access the transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object.

34.8.1 How to Add Drag and Drop Functionality for a DVT Graph
To add drag and drop functionality, first add source and target tags to the graph. Then
implement the event handler method that will handle the logic for the drag and drop
action. For information about what happens at runtime, see Section 34.3.2, "What

Adding Drag and Drop Functionality for DVT Gantt Charts

34-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Happens at Runtime."

To add drag and drop functionality:
1. In the Component Palette, from the Operations panel, drag a Drop Target tag and

drop it as a child to the graph component.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method on
a managed bean that will handle the event (you will create this code in Step 6).

3. In the Insert Data Flavor dialog, enter
oracle.adf.view.faces.bi.component.graph.GraphSelection, which is the class
for the object that can be dropped onto the target. This entry will be used to create
a dataFlavor tag, which determines the type of object that can be dropped onto
the target.

4. In the Property Inspector, set a value for Discriminant, if needed. A discriminant
is an arbitrary string used to determine which source can drop on the target. For
example, suppose you have two graphs that both accept an GraphSelection
object, GraphA and GraphB. You also have two sources, both of which are
GraphSelection objects. By setting a discriminant value on GraphA with a value
of alpha, only the GraphSelection source that provides the discriminant value of
alpha will be accepted.

5. In the Structure window, select the dropTarget tag. In the Property inspector,
select MOVE as the value for Actions.

6. In the Component Palette, from the Operations panel, drag and drop a Drag
Source as a child to the graph component.

7. With the dragSource tag selected, in the Property Inspector set MOVE as the allowed
Action and add any needed discriminant, as configured for the dataFlavor tag.

8. In the managed bean referenced in the EL expression created in Step 2, create the
event handler method (using the same name as in the EL expression) that will
handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction
object, which is the action that will be performed when the source is dropped, in
this case DnDAction.MOVE. This method should check the DropEvent event to
determine whether or not it will accept the drop. If the method accepts the drop, it
should perform the drop and return the DnDAction object it performed. Otherwise,
it should return DnDAction.NONE to indicate that the drop was rejected. The
method must also check for the presence of the dataFlavor object, in this case
oracle.adf.view.faces.bi.component.graph.GraphSelection.

34.9 Adding Drag and Drop Functionality for DVT Gantt Charts
When you want users to be able to drag and drop between Gantt charts and other
components, you use the dragSource and dropTarget tags. Additionally, you use the
DataFlavor object to determine the valid Java types of sources for the drop target. You
also must implement any required functionality in response to the drag and drop
action. Both the projectGantt and schedulingGantt components support drag and
drop functionality.

For example, suppose you have an projectGantt component and you want the user to
be able to drag one timeline to a treeTable component and have that component
display information about the timeline, as shown in Figure 34–6.

Adding Drag and Drop Functionality for DVT Gantt Charts

Adding Drag and Drop Functionality 34-23

Figure 34–6 Dragging and Dropping an Object

The projectGantt component contains a dragSource tag. And because the user will
drag the whole object and not just the String value of the output text that is displayed,
you use the dropTarget tag instead of the attributeDropTarget tag.

You also use a dataFlavor tag to determine the type of object being dropped. On this
tag, you can define a discriminant value. This is helpful if you have two targets and
two sources, all with the same object type. By creating a discriminant value, you can be
sure that each target will accept only valid sources. For example, suppose you have
two targets that both accept an TaskDragInfo object, TargetA and TargetB. Suppose
you also have two sources, both of which are TaskDragInfo objects. By setting a
discriminant value on TargetA with a value of alpha, only the TaskDragInfo source
that provides the discriminant value of alpha will be accepted.

You also must implement a listener for the drop event. The object of the drop event is
called the transferable, which contains the payload of the drop. Your listener must
access the transferable object, and from there, use the DataFlavor object to verify
that the object can be dropped. You then use the drop event to get the target
component and update the property with the dropped object.

34.9.1 How to Add Drag and Drop Functionality for a DVT Gantt Component
To add drag and drop functionality, first add tags to a component that define it as a
target for a drag and drop action. Then implement the event handler method that will
handle the logic for the drag and drop action. Last, you define the sources for the drag
and drop. For information about what happens at runtime, see Section 34.3.2, "What
Happens at Runtime." For information about using the clientDropListener attribute,
see Section 34.3.3, "What You May Need to Know About Using the

Adding Drag and Drop Functionality for DVT Gantt Charts

34-24 Web User Interface Developer's Guide for Oracle Application Development Framework

ClientDropListener."

To add drag and drop functionality:
1. In the Component Palette, from the Operations panel, drag a Drop Target tag and

drop it as a child to the target component.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a method on
a managed bean that will handle the event (you will create this code in Step 6).

3. In the Insert Data Flavor dialog, enter the class for the object that can be dropped
onto the target, for example java.lang.Object. This selection will be used to
create a dataFlavor tag, which determines the type of object that can be dropped
onto the target. Multiple dataFlavor tags are allowed under a single drop target to
allow the drop target to accept any of those types.

4. In the Property Inspector, set a value for Discriminant, if needed. A discriminant
is an arbitrary string used to determine what sources of the type specified by the
dataFlavor will be allowed as a source.

5. In the Structure window, select the dropTarget tag. In the Property inspector,
select a value for Actions. This defines what actions are supported by the drop
target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and LINK
(copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

Example 34–10 shows the code for a dropTarget component that takes a
TaskDragInfo object as a drop source. Note that because COPY was set as the
value for the actions attribute, that will be the only allowed action.

Example 34–10 JSP Code for a dropTarget tag

<af:treeTable id="treeTableDropTarget"
 var="task" value="#{projectGanttDragSource.treeTableModel}">
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>
 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
 <af:dropTarget actions="COPY"

Tip: You can also intercept the drop on the client by populating the
clientDropListener attribute. For more information, see
Section 34.3.3, "What You May Need to Know About Using the
ClientDropListener".

Tip: To specify a typed array in a DataFlavor tag, add brackets ([]) to
the class name, for example, java.lang.Object[].

Adding Drag and Drop Functionality for DVT Gantt Charts

Adding Drag and Drop Functionality 34-25

 dropListener="#{projectGanttDragSource.onTableDrop}">
 <af:dataFlavor flavorClass=
 "oracle.adf.view.faces.bi.component.gantt.TaskDragInfo"/>
 </af:dropTarget>
</af:treeTable>

6. In the managed bean referenced in the EL expression created in Step 2, create the
event handler method (using the same name as in the EL expression) that will
handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction
object, which is the action that will be performed when the source is dropped.
Valid return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK,
and were set when you defined the target attribute in Step 5. This method should
check the DropEvent event to determine whether or not it will accept the drop. If
the method accepts the drop, it should perform the drop and return the DnDAction
object it performed. Otherwise, it should return DnDAction.NONE to indicate that
the drop was rejected.

The method must also check for the presence for each dataFlavor object in
preference order.

 The DataFlavor object defines the type of data being dropped, for example
java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as
created in Step 3.

Example 34–11 shows a handler method that copies a TaskDragInfo object from
the event payload and assigns it to the component that initiated the event.

Example 34–11 Event Handler Code for a dropListener

public DnDAction onTableDrop(DropEvent evt)
{
 // retrieve the information about the task dragged
 DataFlavor<TaskDragInfo> _flv = DataFlavor.getDataFlavor(TaskDragInfo.class, null);
 Transferable _transferable = evt.getTransferable();

 // if there is no data in the transferable, then the drop is unsuccessful
 TaskDragInfo _info = _transferable.getData(_flv);
 if (_info == null)
 return DnDAction.NONE;

Tip: If your target has more than one defined dataFlavor object,
then you can use the Transferable.getSuitableTransferData()
method, which returns a List of TransferData objects available in the
Transferable object in order, from highest suitability to lowest.

Tip: To specify a typed array in a DataFlavor object, add brackets ([])
to the class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target
accepts java.util.List, and the transferable object contains a
java.util.ArrayList, the drop will succeed. Likewise, this
functionality supports automatic conversion between Arrays and
Lists.

If the drag and drop framework doesn't know how to represent a
server DataFlavor object on the client component, the drop target will
be configured to allow all drops to succeed on the client.

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

34-26 Web User Interface Developer's Guide for Oracle Application Development Framework

 // find the task
 Task _draggedTask = findTask(_info.getTaskId());
 if (_draggedTask != null) {
 // process the dragged task here and indicate the drop is successful by returning DnDAction.COPY
 return DnDAction.COPY;
 }
 else
return DnDAction.NONE;
}

7. In the Component Palette, from the Operations panel, drag and drop a Drag
Source as a child to the source component.

8. With the dragSource tag selected, in the Property Inspector set the allowed
Actions and any needed discriminant, as configured for the target.

34.10 Adding Drag and Drop Functionality for DVT Hierarchy Viewers,
Sunbursts, and Treemaps

You can configure hierarchy viewers, sunbursts, and treemaps as drag sources and
drop targets for drag and drop operations between supported components on a page.

34.10.1 Drag and Drop Example for DVT Hierarchy Viewers
Hierarchy viewers support the following drag and drop operations:

■ Drag and drop one or more nodes within a hierarchy viewer

■ Drag one or more nodes from a hierarchy viewer to another component

■ Drag one or more items from another component to a hierarchy viewer

Figure 34–7 shows a hierarchy viewer configured to allow drags and drops within
itself. If you click and hold a node for more than one-half second, you can drag it to
the background to make it another root in the hierarchy or drag it to another node to
add it as a child of that node.

Figure 34–7 Hierarchy Viewer Showing a Node Drag

If you drag the node to another node, the dragged node and its children become the
child of the targeted node. Figure 34–8 shows the result of the drag to the node

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

Adding Drag and Drop Functionality 34-27

containing the data for Nina Evans. Nancy Green and her subordinates are now
shown as subordinates to Nina Evans.

Figure 34–8 Hierarchy Viewer After Node Drag to Another Node

34.10.2 Drag and Drop Example for DVT Sunbursts
Sunbursts support the drag of one or more nodes to another component. The payload
of the drag is a org.apache.myfaces.trinidad.model.RowKeySet. You can also
configure sunbursts to accept drops from another object.

Figure 34–9 shows a sunburst configured to allow drags from it to an
af:outputFormatted component. If the sunburst is configured for multiple selection,
the user can drag multiple nodes using the Ctrl+click operation.

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

34-28 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure 34–9 Sunburst Configured as a Drag Source

34.10.3 Drag and Drop Example for DVT Treemaps
Treemaps support the drag of one or more nodes to another component. The payload
of the drag is a org.apache.myfaces.trinidad.model.RowKeySet. You can also
configure treemaps to accept drops from another object.

Figure 34–10 shows a treemap configured as a drop target. In this example, the drag
source is an af:outputFormatted component.

Figure 34–10 Treemap Configured as a Drop Target

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

Adding Drag and Drop Functionality 34-29

34.10.4 How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer, Sunburst,
or Treemap Component

To add drag and drop functionality, first add tags to a supported DVT component that
define it as a target for a drag and drop action. Then implement the event handler
method that will handle the logic for the drag and drop action. Last, you define the
sources for the drag and drop. For information about what happens at runtime, see
Section 34.3.2, "What Happens at Runtime." For information about using the
clientDropListener attribute, see Section 34.3.3, "What You May Need to Know
About Using the ClientDropListener."

Before you begin:
It may be helpful to have an understanding of drag and drop functionality. For more
information, see Section 34.1, "Introduction to Drag and Drop Functionality."

You must complete the following tasks:

■ Add the DVT component to your page.

For help with creating the DVT components, see Chapter 23, "Introduction to ADF
Data Visualization Components."

■ If you plan to allow drops to the DVT component, add the component that will
serve as the drag source to the page.

For help with adding other ADF Faces components, see Section 1.3, "ADF Faces
Components."

■ If you plan on allowing drags from the DVT component to another component,
add the component that will serve as the drop target to the page.

To add drag and drop functionality to a DVT hierarchy viewer, sunburst, or
treemap component:
1. To configure the DVT component as a drop target, do the following:

1. In the Component Palette, from the Operations panel, drag a Drop Target tag
and drop it as a child to a DVT component that supports drag and drop.

2. In the Insert Drop Target dialog, enter an expression that evaluates to a drop
listener method on a managed bean that will handle the event (you will create
this code in Step 6).

3. In the Insert Data Flavor dialog, enter the class for the object that can be
dropped onto the target, for example java.lang.Object. This selection will be
used to create a dataFlavor tag, which determines the type of object that can
be dropped onto the target. Multiple dataFlavor tags are allowed under a
single drop target to allow the drop target to accept any of those types.

4. In the Property Inspector, set a value for Discriminant, if needed. A
discriminant is an arbitrary string used to determine which source can drop on
the target. For example, suppose you have two treemaps that both accept a

Tip: You can also intercept the drop on the client by populating the
clientDropListener attribute. For more information, see
Section 34.3.3, "What You May Need to Know About Using the
ClientDropListener.".

Tip: To specify a typed array in a DataFlavor tag, add brackets ([]) to
the class name, for example, java.lang.Object[].

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

34-30 Web User Interface Developer's Guide for Oracle Application Development Framework

java.lang.Object, Treemap A and Treemap B. You also have two sources,
both of which are java.lang.Object objects. By setting a discriminant value
on GraphA with a value of alpha, only the java.lang.Object source that
provides the discriminant value of alpha will be accepted.

5. In the Structure window, select the dropTarget tag. In the Property Inspector,
select a value for Actions. This defines what actions are supported by the drop
target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and
LINK (copy and paste as a link), for example:.

MOVE COPY
If no actions are specified, the default is COPY.

Example 34–12 shows the code for a treemap component that accepts a
java.lang.Object as a drag source. Note that because COPY was set as the
value for the actions attribute, that will be the only allowed action.

Example 34–12 JSP Code for a dropTarget tag on a DVT Component

<dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3" colorLabel="Median Household Income
 sizeLabel="Population" summary="Treemap Configured as Drag Source"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dropTarget dropListener="#{treemap.toDropListener}"
 actions="COPY">
 <af:dataFlavor flavorClass="java.lang.Object"/>
 </af:dropTarget>
</dvt:treemap>

6. In the managed bean referenced in the EL expression created in Step 2, create
the event handler method (using the same name as in the EL expression) that
will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a
DnDAction object, which is the action that will be performed when the source
is dropped. Valid return values are DnDAction.COPY, DnDAction.MOVE, and
DnDAction.LINK, and were set when you defined the target attribute in Step 5.
This method should check the DropEvent event to determine whether or not it
will accept the drop. If the method accepts the drop, it should perform the
drop and return the DnDAction object it performed. Otherwise, it should
return DnDAction.NONE to indicate that the drop was rejected.

The method must also check for the presence for each dataFlavor object in
preference order.

The DataFlavor object defines the type of data being dropped, for example
java.lang.Object, and must be as defined in the DataFlavor tag on the JSP,
as created in Step 3.

Tip: If your target has more than one defined dataFlavor object,
then you can use the Transferable.getSuitableTransferData()
method, which returns a List of TransferData objects available in the
Transferable object in order, from highest suitability to lowest.

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

Adding Drag and Drop Functionality 34-31

Example 34–13 shows a handler method that copies a java.lang.Object from
the event payload and assigns it to the component that initiated the event.

Example 34–13 Sample Drop Listener for a DVT Component

// imports needed by methods
import java.util.Map;
import oracle.adf.view.rich.dnd.DnDAction;
import oracle.adf.view.rich.event.DropEvent;
import oracle.adf.view.rich.datatransfer.DataFlavor;
import oracle.adf.view.rich.datatransfer.Transferable;
import org.apache.myfaces.trinidad.context.RequestContext;
import org.apache.myfaces.trinidad.render.ClientRowKeyManager;
import javax.faces.context.FacesContext;
import oracle.adf.view.faces.bi.component.treemap.UITreemap;
import javax.faces.component.UIComponent;
// variables need by methods
private String dragText = "Drag this text onto a node";
// drop listener
public DnDAction toDropListener(DropEvent event) {
 Transferable transferable = event.getTransferable();
 DataFlavor<Object> dataFlavor = DataFlavor.getDataFlavor(Object.class);
 Object transferableObj = transferable.getData(dataFlavor);
 if(transferableObj == null)
 return DnDAction.NONE;
 // Build up the string that reports the drop information
 StringBuilder sb = new StringBuilder();
 // Start with the proposed action
 sb.append("Drag Operation: ");
 DnDAction proposedAction = event.getProposedAction();
 if(proposedAction == DnDAction.COPY) {
 sb.append("Copy
");
 }
 else if(proposedAction == DnDAction.LINK) {
 sb.append("Link
");
 }
 else if(proposedAction == DnDAction.MOVE) {
 sb.append("Move
");
 }
 // Then add the rowKeys of the nodes that were dragged
 UIComponent dropComponent = event.getDropComponent();
 Object dropSite = event.getDropSite();
 if(dropSite instanceof Map) {
 String clientRowKey = (String) ((Map) dropSite).get("clientRowKey");
 Object rowKey = getRowKey(dropComponent, clientRowKey);
 if(rowKey != null) {
 sb.append("Drop Site: ");

Tip: To specify a typed array in a DataFlavor object, add brackets ([])
to the class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target
accepts java.util.List, and the transferable object contains a
java.util.ArrayList, the drop will succeed. Likewise, this
functionality supports automatic conversion between Arrays and
Lists.

If the drag and drop framework doesn't know how to represent a
server DataFlavor object on the client component, the drop target will
be configured to allow all drops to succeed on the client.

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

34-32 Web User Interface Developer's Guide for Oracle Application Development Framework

 sb.append(getLabel(dropComponent, rowKey));
 }
 }
 // Update the output text
 this.dragText = sb.toString();
 RequestContext.getCurrentInstance().addPartialTarget(event.getDragComponent());
 return event.getProposedAction();
}

public String getDragText() {
 return dragText;
}

private String getLabel(UIComponent component, Object rowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 TreeNode rowData = (TreeNode) treemap.getRowData(rowKey);
 return rowData.getText();
 }
 return null;
}

private Object getRowKey(UIComponent component, String clientRowKey) {
 if(component instanceof UITreemap) {
 UITreemap treemap = (UITreemap) component;
 ClientRowKeyManager crkm = treemap.getClientRowKeyManager();
 return crkm.getRowKey(FacesContext.getCurrentInstance(), component,
clientRowKey);
 }
 return null;
}

2. To configure the DVT component as a drag source, do the following:

1. In the Component Palette, from the Operations panel, drag and drop a Drag
Source as a child to the DVT component.

2. With the dragSource tag selected, in the Property Inspector, set the allowed
Actions and any needed discriminant, as configured for the target.

Example 34–14 shows the JSP code for a treemap configured as a drag source.
Note that all actions (COPY, MOVE, and LINK) are permitted.

Example 34–14 JSP Sample Code for a dragSource Tag on a DVT Component

<dvt:treemap id="t1" value="#{treemap.censusData}" var="row"
 displayLevelsChildren="3" colorLabel="Median Household Income
 sizeLabel="Population" summary="Treemap Configured as Drag Source"
 legendSource="ag1">
 <dvt:treemapNode id="tn1" value="#{row.size}" label="#{row.text}">
 <dvt:attributeGroups id="ag1" value="#{row.income > 50000}"
 label="#{row.income > 50000 ? 'High Income' : 'Low Income'}"
 type="color"/>
 </dvt:treemapNode>
 <af:dragSource defaultAction="MOVE" actions="COPY MOVE LINK"/>
</dvt:treemap>
3. To use the DVT component as the drop target which will allow drags to it from

another component, in the Component Palette, from the Operations panel, drag
and drop a Drag Source as a child to the component that will be the source of the
drag.

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

Adding Drag and Drop Functionality 34-33

For example, drag and drop a Drag Source as a child to an af:outputFormatted
component to display node information about a treemap. With the dragSource tag
selected, in the Property Inspector, set the allowed Actions and any needed
discriminant for the target.

4. To add the DVT component as a drag source for another supported DVT or ADF
Faces component, do the following:

1. In the Component Palette, from the Operations panel, drag and drop a Drop
Target onto the component that will receive the drop.

For example, drag and drop a Drop Target onto a treeTable component.

2. In the Insert Drop Target dialog, enter the name of a drop listener that the
component will use to respond to the DVT component drop.

See the examples in this chapter for sample listeners.

3. In the Insert Data Flavor dialog, enter the object that the drop target will
accept. Alternatively, use the dropdown menu to navigate through the object
hierarchies and choose the desired object.

For example, if you want the user to be able to drag a treemap node to a
treeTable component and have that component display information about
the treemap, enter the following for the data flavor:
org.apache.myfaces.trinidad.model.RowKeySet.

4. In the Structure window, right-click the af:dropTarget component and choose
Go to Properties.

5. In the Property Inspector, in the Actions field, enter a list of the operations that
the drop target will accept, separated by spaces. Allowable values are: COPY,
MOVE, or LINK. If you do not specify a value, the drop target will use COPY.

Example 34–15 shows the sample code for an af:outputFormatted component
configured to allow dragging from a treemap.

Example 34–15 JSP Sample Code for Dragging Data from a Treemap to an
af:outputFormatted Component

<af:outputFormatted value="#{treemap.dropText}" id="of1">
 <af:dropTarget dropListener="#{treemap.fromDropListener}">
 <af:dataFlavor flavorClass="org.apache.myfaces.trinidad.model.RowKeySet"/>
 </af:dropTarget>
</af:outputFormatted>

Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps

34-34 Web User Interface Developer's Guide for Oracle Application Development Framework

35

Using Different Output Modes 35-1

35Using Different Output Modes

This chapter describes how you can have your pages display in modes suitable for
printing and emailing. Topics include how to print page contents using the
showPrintablePageBehavior tag and how to create emailable pages with the request
parameter org.apache.myfaces.trinidad.agent.email=true.

This chapter includes the following sections:

■ Section 35.1, "Introduction to Using Different Output Modes"

■ Section 35.2, "Displaying a Page for Print"

■ Section 35.3, "Creating Emailable Pages"

35.1 Introduction to Using Different Output Modes
ADF Faces allows you to output your page in a simplified mode either for printing or
for emailing. For example, you may want users to be able to print a page (or a portion
of a page), but instead of printing the page exactly as it is rendered in a web browser,
you want to remove items that are not needed on a printed page, such as scroll bars
and buttons. If a page is to be emailed, the page must be simplified so that email
clients can correctly display it.

For displaying printable pages, ADF Faces offers the showPrintablePageBehavior tag
that, when used in conjunction with a command component, allows users to view a
simplified version of the page in their browser, which they can then print.

For email support, ADF Faces provides an API that can be used to convert a page to
one that is suitable for display in the Microsoft Outlook 2007, Mozilla Thunderbird
10.0.5, or Gmail email clients.

Note: By default, when the ADF Faces framework detects that an
application is being crawled by a search engine, it outputs pages in a
simplified format for the crawler, similar to that for an emailable page.
If you want to generate special content for web crawlers, you can use
the EL-reachable Agent interface to detect when an agent is crawling
the site, and then direct the agent to a specified link, for example:

<c:if test="#{requestContext.agent.type == 'webcrawler'}">
 <af:goLink text="This Link is rendered only for web crawlers"
 destination="http://www.newPage.com"/>
</c:if>

For more information, see the Trinidad Javadoc.

http://myfaces.apache.org/trinidad/trinidad-api/apidocs/index.html

Displaying a Page for Print

35-2 Web User Interface Developer's Guide for Oracle Application Development Framework

35.2 Displaying a Page for Print
You place the showPrintablePageBehavior tag as a child to a command component.
When clicked, the framework walks up the component tree, starting with the
component that is the parent to the printableBehavior tag, until it reaches a
panelSplitter or a panelAccordion or the root of the tree (whichever comes first).
The tree is rendered from there. Additionally, certain components that are not needed
in print version (such as buttons, tabs, and scrollbars) are omitted.

For example, in the File Explorer application, you could place a commandButton
component inside the toolbar of the panelCollection component that contains the
table, as shown in Figure 35–1.

Figure 35–1 Button to Print Part of a Page

When the user clicks the button, the page is displayed in a new browser window (or
tab, depending on the browser) in a simplified form, as shown in Figure 35–2.

Figure 35–2 Printable Version of the Page

Only the contents of the table are displayed for printing. All extraneous components,
such as the tabs, the toolbar, and the scroll bars, are not rendered.

When the button is clicked, the action event is canceled. Instead, a request is made to
the server for the printable version of the page.

35.2.1 How to Use the showPrintablePageBehavior Tag
You use the showPrintablePageBehavior tag as a child to a command component.

Tip: The current output mode (email or printable) can be reached
from AdfFacesContext. Because this context is EL reachable, you can
use EL to bind to the output mode from the JSP page. For example,
you might allow a graphic to be rendered only if the current mode is
not email using the following expression:

<af:activeImage source="/images/stockChart.gif"
 rendered="#{adfFacesContext.outputMode != "email"}"/>

You can determine the current mode using
AdfFacesContext.getOutputMode().

Creating Emailable Pages

Using Different Output Modes 35-3

To use the showPrintablePageBehavior tag:
1. In one of the layout components, add a command component in the facet that

contains the content you would like to print. For procedures, see Section 18.2.1,
"How to Use Command Buttons and Command Links."

2. In the Component Palette, from the Operations panel, drag a Show Printable Page
Behavior and drop it as a child to the command component.

35.3 Creating Emailable Pages
There may be occasions when you need a page in your application to be emailed. For
example, purchase orders created on the web are often emailed to the purchaser at the
end of the session. However, because email clients do not support external stylesheets
which are used to render to web browsers, you can’t email the same page, as it would
not be rendered correctly.

The ADF Faces framework provides you with automatic conversion of a JSF page so
that it will render correctly in the Microsoft Outlook 2007, Mozilla Thunderbird 10.0.5,
or Gmail email clients.

Not all components can be rendered in an email client. The following components can
be converted so that they can render properly in an email client:

■ document

■ panelHeader

■ panelFormLayout

■ panelGroupLayout

■ panelList

■ spacer

■ showDetailHeader

■ inputText (renders as readOnly)

■ inputComboBoxListOfValues (renders as readOnly)

■ inputNumberSlider (renders as readOnly)

■ inputNumberSpinbox (renders as readOnly)

■ inputRangeSlider (renders as readOnly)

■ outputText

Note: While you can insert a showPrintablePageBehavior
component outside of a layout component to allow the user to print
the entire page, the printed result will be roughly in line with the
layout, which may mean that not all content will be visible. Therefore,
if you want the user to be able to print the entire content of a facet, it is
important to place the command component and the
showPrintablePageBehavior component within the facet whose
contents users would typically want to print. If more than one facet
requires printing support, then insert one command component and
showPrintablePageBehavior tag into each facet. To print all contents,
the user then has to execute the print command one facet at a time.

Creating Emailable Pages

35-4 Web User Interface Developer's Guide for Oracle Application Development Framework

■ selectOneChoice (renders as readOnly)

■ panelLabelAndMessage

■ image

■ table

■ column

■ goLink (renders as text)

35.3.1 How to Create an Emailable Page
You notify the ADF Faces framework to convert your page to be rendered in an email
client by appending the following the request parameter to the URL of the page to be
emailed:

org.apache.myfaces.trinidad.agent.email=true

For example, say you have a page that displays a purchase order, as shown in
Figure 35–3.

Figure 35–3 Purchase Order Web Page

When the user clicks the Emailable Page link at the top, an actionListener method or
another service appends org.apache.myfaces.trinidad.agent.email=true to the
current URL and emails the page. Figure 35–4 shows the page as it appears in an email
client.

Creating Emailable Pages

Using Different Output Modes 35-5

Figure 35–4 Page in an Email Client

35.3.2 How to Test the Rendering of a Page in an Email Client
Before you complete the development of a page, you may want to test how the page
will render in an email client. You can easily do this using a goButton component.

To test an emailable page:
1. In the Component Palette, from the Common Components panel, drag and drop a

Go Button anywhere onto the page.

2. In the Property Inspector, expand the Common section and set the Destination to
be the page’s name plus org.apache.myfaces.trinidad.agent.email=true.

For example, if your page’s name is myPage, the value of the destination attribute
should be:

myPage.jspx?org.apache.myfaces.trinidad.agent.email=true

3. Right-click the page and choose Run to run the page in the default browser.

The Configure Default Domain dialog displays the first time your run your
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

Tip: If you want to be able to view the email offline, append the
following request parameter to the URL of the page to be emailed:

org.apache.myfaces.trinidad.agent.email=true&oracle.adf.view.rich.r
ender.emailContentType=multipart/related

The framework will convert the HTML to MIME (multipart/related)
and inline the images so the email can be viewed offline.

Creating Emailable Pages

35-6 Web User Interface Developer's Guide for Oracle Application Development Framework

4. Once the page displays in the browser, click the goButton you added to the page.
This will again display the page in the browser, but converted to a page that can be
handled by an email client.

5. In your browser, view the source of the page. For example, in Mozilla Firefox, you
would select View > Page Source. Select the entire source and copy it.

6. Create a new message in your email client. Paste the page source into the message
and send it to yourself.

7. If needed, create a skin specifically for the email version of the page using an
agent. The following example shows how you might specify the border on a table
rendered in email.

af|table {
 border: 1px solid #636661;
}

@agent email {
 af|table
 {border:none}
}

af|table::column-resize-indicator {
 border-right: 2px dashed #979991;
}

For more information about creating skins, see Chapter 20, "Customizing the
Appearance Using Styles and Skins."

35.3.3 What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable
Pages

When the ADF Faces framework receives the request parameter
org.apache.myfaces.trinidad.agent.email=true in the Render Response phase, the
associated phase listener sets an internal flag that notifies the framework to do the
following:

■ Remove any JavaScript from the HTML.

■ Add all CSS to the page, but only for components included on the page.

■ Remove the CSS link from the HTML.

■ Convert all relative links to absolute links.

■ Render images with absolute URLs.

Additionally, if you add the parameter
oracle.adf.view.rich.render.emailContentType=multipart/related the
framework will convert the HTML to MIME (multipart/related) and inline the images
so the email can be viewed offline. The full request parameter would be:

org.apache.myfaces.trinidad.agent.email=true&oracle.adf.view.rich.render.emailCont
entType=multipart/related

Tip: Because you are pasting HTML code, you will probably need to
use an insert command to insert the HTML into the email body. For
example, in Thunderbird, you would choose Insert > HTML.

36

Using the Active Data Service with an Asynchronous Backend 36-1

36Using the Active Data Service with an
Asynchronous Backend

This chapter provides information on registering an asynchronous backend to provide
real-time data updates to ADF Faces components.

This chapter includes the following sections:

■ Section 36.1, "Introduction to Using the Active Data Service"

■ Section 36.2, "Process Overview for Using Active Data Service"

■ Section 36.3, "Implement the ActiveModel Interface in a Managed Bean"

■ Section 36.4, "Pass the Event Into the Active Data Service"

■ Section 36.5, "Register the Data Update Event Listener"

■ Section 36.6, "Configure the ADF Component to Display Active Data"

36.1 Introduction to Using the Active Data Service
The Fusion technology stack includes the Active Data Service (ADS), which is a
server-side push framework that allows you to provide real-time data updates for
ADF Faces components. You bind ADF Faces components to a data source and ADS
pushes the data updates to the browser client without requiring the browser client to
explicitly request it. For example, you may have a table bound to attributes of an ADF
data control whose values change on the server periodically, and you want the
updated values to display in the table. You can create a Java bean to implement the
ActiveModel interface and register it as an event listener to notify the component of a
data event from the backend, and the component rerenders the changed data with the
new value highlighted, as shown in Figure 36–1.

Figure 36–1 Table Displays Updated Data as Highlighted

Process Overview for Using Active Data Service

36-2 Web User Interface Developer's Guide for Oracle Application Development Framework

36.1.1 Active Data Service Use Cases and Examples
Using ADS is an alternative to using automatic partial page rendering (PPR) to
rerender data that changes on the backend as a result of business logic associated with
the ADF data control bound to the ADF Faces component. Whereas automatic PPR
requires sending a request to the server (typically initiated by the user), ADS enables
changed data to be pushed from the data store as the data arrives on the server. Also,
in contrast to PPR, ADS makes it possible for the component to rerender only the
changed data instead of the entire component. This makes ADS ideal for situations
where the application needs to react to data that changes periodically.

To use this functionality, you must configure the application to use ADS. If your
application services do not support ADS, then you also need to create a proxy of the
service so that the components can display the data as it updates in the source.

Any ADF Faces page can use ADS. However, you can configure only the following
ADF Faces components to work with active data:

■ activeCommandToolbarButton

■ activeImage

■ activeOutputText

■ table

■ tree

■ treeTable

■ DVT graph, gauge, and geographical map components

For details about the active data service framework and important configuration
information, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

36.2 Process Overview for Using Active Data Service
To use ADS, you can optionally configure your application to determine the method of
data transport, as well as other performance options.

Before you begin:
Complete the following tasks:

■ Implement the logic to fire the active data events asynchronously from the data
source. For example, this logic might be a business process that updates the
database, or a JMS client that gets notified from JMS.

■ The Active Data framework does not support complicated business logic or
transformations that require the ADF runtime context, such as a user profile or
security. For example, the framework cannot convert an ADF context
locale-dependent value and return a locale-specific value. Instead, you need to
have your data source handle this before publishing the data change event.

Note: Do not use filtering on a table that will be using active data.
Once a table is filtered at runtime, active data cannot be displayed.
Currently, ADS supports table components with the outputText
component contained within a column; other components are not
supported inside the table column.

Implement the ActiveModel Interface in a Managed Bean

Using the Active Data Service with an Asynchronous Backend 36-3

■ Before users can run the ADF Faces page with ADS configured for the application,
they must disable the popup blocker for their web browser. Active data is not
supported in web browsers that have popup blockers enabled.

To use the Active Data Service:

1. Optionally, configure ADS to determine the data transport mode, as well as to set
other configurations, such as a latency threshold and reconnect information.
Configuration for ADS is done in the adf-config.xml file.

For details about configuring ADS, see Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

2. Optionally, configure a servlet parameter to specify the duration of the active
session before it times out due to user inactivity. Configuration for the client-side
servlet timeout parameter is done in the web.xml file.

For details about configuring the servlet timeout parameter, see Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

3. Create a backing bean that implements the ActiveModel interface and register it as
the listener for active data events from your backend.

4. Create a class that extends the BaseActiveDataModel API to pass the Event object
to the ADS framework.

5. Register a data change listener for data change events from the backend.

6. In the web page, configure the ADF Faces component to capture and display the
pushed data by adding an expression to name the managed bean that implements
the the ADF component that you use to capture and display the pushed data.

36.3 Implement the ActiveModel Interface in a Managed Bean
Create a backing bean that contains the active model implementation as its property.
This class uses an ADS decorator class to wrap the JSF model. This class should also
implement a callback from the backend that will push data into the ADS framework.

You need to create a Java class that subclasses one of the following ADS decorator
classes:

■ ActiveCollectionModelDecorator class

■ ActiveDataModelDecorator class (for use with graphs)

■ ActiveGeoMapDataModelDecorator class

■ ActiveGaugeDataModelDecorator class

These classes are wrapper classes that delegate the active data functionality to a
default implementation of ActiveDataModel. The ActiveDataModel class listens for
data change events and interacts with the Event Manager.

Specifically, when you implement the ActiveModel interface, you accomplish the
following:

■ Wraps the JSF model interface. For example, the
ActiveCollectionModelDecorator class wraps the CollectionModel class.

■ Generates active data events based on data change events from the data source.

To implement the ActiveModel interface, you need to implement methods on your
Java class that gets the model to which the data is being sent and registers itself as the
listener of the active data source (as illustrated in Example 36–1):

Implement the ActiveModel Interface in a Managed Bean

36-4 Web User Interface Developer's Guide for Oracle Application Development Framework

1. Create a Java class that extends the decorator class appropriate for your
component.

Example 36–1 shows a StockManager class that extends
ActiveCollectionModelDecorator. In this case, the data is displayed for an ADF
Faces table component.

2. Implement the methods of the decorator class that will return the
ActiveDataModel class and implement the method that returns the scalar model.

Example 36–1 shows an implementation of the getCollectionModel() method
that registers with an existing asynchronous backend. The method returns the list
of stocks collection from the backend.

3. Implement a method that creates application-specific events that can be used to
insert or update data on the active model.

Example 36–1 shows the onStockUpdate() callback method from the backend,
which uses the active model (an instance of ActiveStockModel) to create
ActiveDataUpdateEvent objects to push data to the ADF Faces component.

Example 36–1 Extend the Decorator Class

package sample.oracle.ads;

import java.util.List;
import sample.backend.IBackendListener;
import sample.bean.StockBean;
import sample.oracle.model.ActiveStockModel;

import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;
import oracle.adf.view.rich.model.ActiveCollectionModelDecorator;
import oracle.adf.view.rich.model.ActiveDataModel;

import oracle.adfinternal.view.faces.activedata.ActiveDataEventUtil;

import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.SortableModel;

// 1. This example wraps the existing collection model in the page and implements
// the ActiveDataModel interface to enable ADS for the page.

public StockManager extends ActiveCollectionModelDecorator implements
 IBackendListener
{
 // 2. Implement methods from ADF ActiveCollectionModelDecorator class to
 // return the model.
 @Override
 public ActiveDataModel getActiveDataModel()
 {
 return stockModel;
 }

 @Override
 protected CollectionModel getCollectionModel()
 {
 if(collectionModel == null)
 {
 // connect to a backend system to get a Collection
 List<StockBean> stocks = FacesUtil.loadBackEnd().getStocks();

Implement the ActiveModel Interface in a Managed Bean

Using the Active Data Service with an Asynchronous Backend 36-5

 // make the collection become a (Trinidad) CollectionModel
 collectionModel = new SortableModel(stocks);
 }

 return collectionModel;
 }

 // 3. Implement a callback method to create active data events and deliver to
 // the ADS framework.

 /**
 * Callback from the backend to push new data to our decorator.
 * The decorator itself notifies the ADS system that there was a data change.
 *
 * @param key the rowKey of the updated Stock
 * @param updatedStock the updated stock object
 */
 @Override
 public void onStockUpdate(Integer rowKey, StockBean stock)
 {
 ActiveStockModel asm = getActiveStockModel();

 // start the preparation for the ADS update
 asm.prepareDataChange();

 // Create an ADS event, using an _internal_ util.
 // This class is not part of the API
 ActiveDataUpdateEvent event = ActiveDataEventUtil.buildActiveDataUpdateEvent(
 ActiveDataEntry.ChangeType.UPDATE, // type
 asm.getCurrentChangeCount(), // changeCount
 new Object[] {rowKey}, // rowKey
 null, //insertKey, null as we don't insert stuff
 new String[] {"value"}, // attribute/property name that changes
 new Object[] { stock.getValue()} // the payload for the above attribute
);

 // Deliver the new Event object to the ADS framework
 asm.notifyDataChange(event);

 }

 /**
 * Typesafe caller for getActiveDataModel()
 * @return
 */
 protected ActiveStockModel getActiveStockModel()
 {
 return (ActiveStockModel) getActiveDataModel();
 }

 // properties
 private CollectionModel collectionModel; // see getCollectionModel()...
 private ActiveStockModel stockModel = new ActiveStockModel();
}

Register the class as a managed bean in the faces-config.xml file. Example 36–2
shows the bean StockManager is registered. Defining the managed bean allows you to
specify the managed bean in an expression for the ADF Faces component’s value
property.

Pass the Event Into the Active Data Service

36-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Example 36–2 Register as a Managed Bean

...
<managed-bean>
 <managed-bean-name>stockManager</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.view.feature.rich.StockManager
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

36.3.1 What You May Need to Know About Read Consistency
Using active data means that your component has two sources of data: the active data
feed and the standard data fetch. Because of this, you must make sure your application
maintains read consistency.

For example, say your page contains a table and that table has active data enabled. The
table has two methods of delivery from which it updates its data: normal table data
fetch and active data push. Say the back end data changes from foo to bar to fred. For
each of these changes, an active data event is fired. If the table is refreshed before those
events hit the browser, the table will display fred because standard data fetch will
always get the latest data. But then, because the active data event might take longer,
some time after the refresh the data change event would cause foo to arrive at the
browser, and so the table would update to display foo instead of fred for a period of
time. Therefore, you must implement a way to maintain the read consistency.

To achieve read consistency, the ActiveDataModel has the concept of a change count,
which effectively timestamps the data. Both data fetch and active data push need to
maintain this changeCount object by monotonically increasing the count, so that if any
data returned has a lower changeCount, the active data event can throw it away.
Example 36–3 shows how you can use your implementation of the ActiveDataModel
class to maintain read consistency.

36.4 Pass the Event Into the Active Data Service
You need to create a class that extends BaseActiveDataModel class to pass the event
created by your managed bean. The ActiveDataModel class listens for data change
events and interacts with the Event Manager. Specifically, the methods you implement
do the following:

■ Optionally, starts and stops the active data and the ActiveDataModel object, and
registers and unregisters listeners to the data source.

■ Manages listeners from the Event Manager and pushes active data events to the
Event Manager.

Example 36–3 shows the notifyDataChange() method of the model passes the Event
object to the ADS framework, by placing the object into the fireActiveDataUpdate()
method.

Example 36–3 Pass the Event Object into ADS

import java.util.Collection;

import java.util.concurrent.atomic.AtomicInteger;

import oracle.adf.view.rich.activedata.BaseActiveDataModel;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

Register the Data Update Event Listener

Using the Active Data Service with an Asynchronous Backend 36-7

public class ActiveStockModel extends BaseActiveDataModel
{

 // -------------- API from BaseActiveDataModel ----------

 @Override
 protected void startActiveData(Collection<Object> rowKeys,
 int startChangeCount)
 {
 /* We don't do anything here as there is no need for it in this example.
 * You could use a listenerCount to see if the maximum allowed listerners
 * are already attached. You could register listeners here.
 */

 }

 @Override
 protected void stopActiveData(Collection<Object> rowKeys)
 {
 // same as above... no need to disconnect here
 }

 @Override
 public int getCurrentChangeCount()
 {
 return changeCounter.get();
 }

 // -------------- Custom API -----------

 /**
 * Increment the change counter.
 */
 public void prepareDataChange()
 {
 changeCounter.incrementAndGet();
 }

 /**
 * Deliver an ActiveDataUpdateEvent object to the ADS framework.
 *
 * @param event the ActiveDataUpdateEvent object
 */
 public void notifyDataChange(ActiveDataUpdateEvent event)
 {
 // Delegate to internal fireActiveDataUpdate() method.
 fireActiveDataUpdate(event);
 }

 // properties
 private final AtomicInteger changeCounter = new AtomicInteger();
}

36.5 Register the Data Update Event Listener
You need to register a data change listener for data change events from the backend.
Example 36–4 shows the listener bean StockBackEndSystem is registered in the

Configure the ADF Component to Display Active Data

36-8 Web User Interface Developer's Guide for Oracle Application Development Framework

faces-config.xml file. Note that for this example, expression language is used to
inject a listener to the backend.

Example 36–4 Register the Data Update Event Listener

...
<managed-bean>
 <managed-bean-name>backend</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.backend.StockBackEndSystem
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>listener</property-name>
 <value>#{stockManager}</value>
 </managed-property>
</managed-bean>

36.6 Configure the ADF Component to Display Active Data
ADF components that display collection-based data can be configured to work with
ADS and require no extra setup in the view layer. Once the listener is registered, you
can use ADS to stream the data to the view layer. For example, imagine that your JSPX
page uses a table component to display stock updates from a backend source on
which you register a listener.

Example 36–5 shows the expression language used on the table component value
attribute to receive the pushed data.

Example 36–5 Display the Active Data

...
<f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout topHeight="50px" id="psl1">
 <f:facet name="top">
 <af:outputText value="Oracle ADF Faces goes Push!" id="ot1"/>
 </f:facet>
 <f:facet name="center">
 <!-- id="af_twocol_left_full_header_splitandstretched" -->
 <af:decorativeBox theme="dark" id="db2">
 <f:facet name="center">
 <af:panelSplitter orientation="horizontal"
 splitterPosition="100" id="ps1">
 <f:facet name="first">
 <af:outputText value="Some content here." id="menu"/>
 </f:facet>
 <f:facet name="second">
 <af:decorativeBox theme="medium" id="db1">
 <f:facet name="center">
 <af:table value="#{stockManager}" var="row"
 rowBandingInterval="0"
 id="table1" emptyText="No data...">
 <af:column sortable="false" headerText="Name"
 id="column1">
 <af:outputText value="#{row.name}" id="outputText1"/>
 </af:column>
 <af:column sortable="false"
 headerText="Value...." id="column2">

Configure the ADF Component to Display Active Data

Using the Active Data Service with an Asynchronous Backend 36-9

 <af:outputText value="#{row.value}"
 id="outputText2" />
 </af:column>
 </af:table>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
</f:view>

Configure the ADF Component to Display Active Data

36-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Part VI
Part VI Appendixes

Part VI contains the following appendixes:

■ Appendix A, "ADF Faces Configuration"

■ Appendix B, "Message Keys for Converter and Validator Messages"

■ Appendix C, "Keyboard Shortcuts"

■ Appendix D, "Creating Web Applications for Touch Devices Using ADF Faces"

■ Appendix E, "Quick Start Layout Themes"

■ Appendix F, "Troubleshooting ADF Faces"

A

ADF Faces Configuration A-1

AADF Faces Configuration

This appendix describes how to configure JSF and ADF Faces features in various XML
configuration files, as well as how to retrieve ADF Faces configuration values using
the RequestContext API and how to use JavaScript partitioning.

This chapter includes the following sections:

■ Section A.1, "Introduction to Configuring ADF Faces"

■ Section A.2, "Configuration in web.xml"

■ Section A.3, "Configuration in faces-config.xml"

■ Section A.4, "Configuration in adf-config.xml"

■ Section A.5, "Configuration in adf-settings.xml"

■ Section A.6, "Configuration in trinidad-config.xml"

■ Section A.7, "Configuration in trinidad-skins.xml"

■ Section A.8, "Using the RequestContext EL Implicit Object"

■ Section A.9, "Using JavaScript Library Partitioning"

A.1 Introduction to Configuring ADF Faces
A JSF web application requires a specific set of configuration files, namely, web.xml
and faces-config.xml. ADF applications also store configuration information in the
adf-config.xml and adf-settings.xml files. Because ADF Faces shares the same code
base with MyFaces Trinidad, a JSF application that uses ADF Faces components for the
UI also must include a trinidad-config.xml file, and optionally a
trinidad-skins.xml file. For more information about the relationship between
Trinidad and ADF Faces, see Chapter 1, "Introduction to ADF Faces Rich Client."

A.2 Configuration in web.xml
Part of a JSF application's configuration is determined by the contents of its Java EE
application deployment descriptor, web.xml. The web.xml file, which is located in the
/WEB-INF directory, defines everything about your application that a server needs to
know (except the root context path, which is automatically assigned for you in
JDeveloper, or assigned by the system administrator when the application is
deployed). Typical runtime settings in the web.xmlfile include initialization
parameters, custom tag library location, and security settings.

The following is configured in the web.xmlfile for all applications that use ADF Faces:

■ Context parameter javax.faces.STATE_SAVING_METHOD set to client

Configuration in web.xml

A-2 Web User Interface Developer's Guide for Oracle Application Development Framework

■ MyFaces Trinidad filter and mapping

■ MyFacesTrinidad resource servlet and mapping

■ JSF servlet and mapping

For more information about the required elements, see Section A.2.2, "What You May
Need to Know About Required Elements in web.xml."

For information about optional configuration elements in web.xml related to
ADF Faces, see Section A.2.3, "What You May Need to Know About ADF Faces
Context Parameters in web.xml."

For information about configuring web.xml outside of ADF Faces, see Developing Web
Applications, Servlets, and JSPs for Oracle.

A.2.1 How to Configure for JSF and ADF Faces in web.xml
In JDeveloper, when you create a project that uses JSF technology, a starter web.xml file
with default servlet and mapping elements is created for you in the /WEB-INF
directory.

When you use ADF Faces components in a project (that is, a component tag is used on
a page rather than just importing the library), in addition to default JSF configuration
elements, JDeveloper also automatically adds the following to the web.xml file for you:

■ Configuration elements that are related to MyFaces Trinidad filter and MyFaces
Trinidad resource servlet

■ Context parameter javax.faces.STATE_SAVING_METHOD with the value of client

When you elect to use JSP fragments in the application, JDeveloper automatically adds
a JSP configuration element for recognizing and interpreting .jsff files in the
application.

Example A–1 shows the web.xml file with the default elements that JDeveloper adds
for you when you use JSF and ADF Faces and .jsff files.

For information about the web.xml configuration elements needed for working with
JSF and ADF Faces, see Section A.2.2, "What You May Need to Know About Required
Elements in web.xml."

Example A–1 Generated web.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <description>Empty web.xml file for Web Application</description>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>

Note: JDeveloper automatically adds the necessary ADF Faces
configurations to the web.xml file for you the first time you use an
ADF Faces component in an application.

Configuration in web.xml

ADF Faces Configuration A-3

 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

Configuration options for ADF Faces are set in the web.xml file using <context-param>
elements.

To add ADF Faces configuration elements in web.xml:
1. In the Application Navigator, double-click web.xml to open the file.

By default, JDeveloper opens the web.xml file in the overview editor, as indicated
by the active Overview tab at the bottom of the editor window.

When you use the overview editor to add or edit entries declaratively, JDeveloper
automatically updates the web.xml file for you.

2. To edit the XML code directly in the web.xml file, click Source at the bottom of the
editor window.

When you edit elements in the XML editor, JDeveloper automatically reflects the
changes in the overview editor.

For a list of context parameters you can add, see Section A.2.3, "What You May Need
to Know About ADF Faces Context Parameters in web.xml."

A.2.2 What You May Need to Know About Required Elements in web.xml
The required, application-wide configuration elements for JSF and ADF Faces in the
web.xml file are:

■ Context parameter javax.faces.STATE_SAVING_METHOD: Specifies where to store
the application’s view state. By default this value is client, which stores the
application's view state on the browser client. When set to client, ADF Faces then
automatically uses token-based, client-side state saving. You can specify the
number of tokens to use instead of using the default number of 15. For more
information about state-saving context parameters, see Section A.2.3, "What You
May Need to Know About ADF Faces Context Parameters in web.xml."

■ MyFaces Trinidad filter and mapping: Installs the MyFaces Trinidad filter
org.apache.myfaces.trinidad.webapp.TrinidadFilter, which is a servlet filter
that ensures ADF Faces is properly initialized, in part by establishing a
RequestContext object. TrinidadFilter also processes file uploads. The filter

Note: When you use ADF data controls to build databound web
pages, the ADF binding filter and a servlet context parameter for the
application binding container are added to the web.xml file.

Configuration in web.xml

A-4 Web User Interface Developer's Guide for Oracle Application Development Framework

mapping maps the JSF servlet’s symbolic name to the MyFaces Trinidad filter. The
forward and request dispatchers are needed for any other filter that is forwarding
to the MyFaces Trinidad filter.

■ MyFaces Trinidad resource servlet and mapping: Installs the MyFaces Trinidad
resource servlet org.apache.myfaces.trinidad.webapp.ResourceServlet, which
serves up web application resources (images, style sheets, JavaScript libraries) by
delegating to a resource loader. The servlet mapping maps the MyFaces Trinidad
resource servlet’s symbolic name to the URL pattern. By default, JDeveloper uses
/adf/* for MyFaces Trinidad Core, and /afr/* for ADF Faces.

■ JSF servlet and mapping (added when creating a JSF page or using a template
with ADF Faces components): The JSF servlet javax.faces.webapp.FacesServlet
manages the request processing lifecycle for web applications that utilize JSF to
construct the user interface. The mapping maps the JSF servlet’s symbolic name to
the URL pattern, which can use either a path prefix or an extension suffix pattern.

By default JDeveloper uses the path prefix /faces/*, as shown in the following
code:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

For example, if your web page is index.jspx, this means that when the URL
http://localhost:8080/MyDemo/faces/index.jspx is issued, the URL activates
the JSF servlet, which strips off the faces prefix and loads the file
/MyDemo/index.jspx.

A.2.3 What You May Need to Know About ADF Faces Context Parameters in web.xml
ADF Faces configuration options are defined in the web.xml file using
<context-param> elements. For example:

<context-param>
 <param-name>oracle.adf.view.rich.LOGGER_LEVEL</param-name>
 <param-value>ALL</param-value>
</context-param>

The following context parameters are supported for ADF Faces.

A.2.3.1 State Saving
You can specify the following state-saving context parameters:

■ org.apache.myfaces.trinidad.CLIENT_STATE_METHOD: Specifies the type of
client-side state saving to use when client-side state saving is enabled by using
javax.faces.STATE_SAVING_METHOD. The values for CLIENT_STATE_METHOD are:

– token: (Default) Stores the page state in the session, but persists a token to the
client. The simple token, which identifies a block of state stored back on the
HttpSession object, is stored on the client. This enables ADF Faces to
disambiguate the same page appearing multiple times. Failover is supported.

Tip: If you use multiple filters in your application, ensure that they
are listed in the web.xml file in the order in which you want to run
them. At runtime, the filters are called in the sequence listed in that
file.

Configuration in web.xml

ADF Faces Configuration A-5

– all: Stores all state information on the client in a (potentially large) hidden
form field. It is useful for developers who do not want to use HttpSession.

■ org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS: Specifies how many
tokens should be stored at any one time per user, when token-based client-side
state saving is enabled. The default is 15. When the number of tokens is exceeded,
the state is lost for the least recently viewed pages, which affects users who
actively use the Back button or who have multiple windows opened at the same
time. If you are building HTML applications that rely heavily on frames, you
would want to increase this value.

■ org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE: Specifies whether or not to
globally compress state saving on the session. Each user session can have multiple
pageState objects that heavily consume live memory and thereby impact
performance. This overhead can become a much bigger issue in clustering when
session replication occurs. The default is off.

■ org.apache.myfaces.trinidad.USE_APPLICATION_VIEW_CACHE: Enables the
Application View Cache (AVC), which can improve scalability by caching the state
for the initial renders of the page’s UI at an application scope. However, every
page in the application must by analyzed for support in the AVC to avoid
potential problems with debugging in an unexpected state and information
leakage between users. Additionally, development is more difficult since page
updates are not noticed until the server is restarted, and although initial render
performance is enhanced, session size is not.

A.2.3.2 Debugging
You can specify the following debugging context parameters:

■ org.apache.myfaces.trinidad.DEBUG_JAVASCRIPT: ADF Faces, by default,
obfuscates the JavaScript it delivers to the client, stripping comments and
whitespace at the same time. This dramatically reduces the size of the ADF Faces
JavaScript download, but it also makes it tricky to debug the JavaScript. Set to
true to turn off the obfuscation during application development. Set to false for
application deployment.

■ org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION: By default this
parameter is false. If it is set to true, ADF Faces will automatically check the
modification date of your JSPs and CSS files, and discard the saved state when the
files change.

Performance Tip: Because of the potential size of storing all state
information, it is recommended that you set client-state saving to
token.

CAUTION: The Application View Cache is not supported for this
release. The feature does not work for any page where the rendering
of the component tree causes the structure of the component tree to
change temporarily. Since this is often the case, USE_APPLICATION_
VIEW_CACHE should not be used.

Performance Tip: When set to true, this CHECK_FILE_MODIFICATION
parameter adds overhead that should be avoided when your
application is deployed. Set to false when deploying your application
to a runtime environment.

Configuration in web.xml

A-6 Web User Interface Developer's Guide for Oracle Application Development Framework

■ oracle.adf.view.rich.LOGGER_LEVEL: This parameter enables JavaScript logging
when the default render kit is oracle.adf.rich. The default is OFF. If you wish to
turn on JavaScript logging, use one of the following levels: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, and ALL.

A.2.3.3 File Uploading
You can specify the following file upload context parameters:

■ org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY: Specifies the maximum
amount of memory that can be used in a single request to store uploaded files. The
default is 100K.

■ org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE: Specifies the maximum
amount of disk space that can be used in a single request to store uploaded files.
The default is 2000K.

■ org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR: Specifies the directory where
temporary files are to be stored during file uploading. The default is the user's
temporary directory.

A.2.3.4 Resource Debug Mode
You can specify the following:

■ org.apache.myfaces.trinidad.resource.DEBUG: Specifies whether or not
resource debug mode is enabled. The default is false. Set to true if you want to
enable resource debug mode. When enabled, ADF Faces sets HTTP response
headers to let the browser know that resources (such as JavaScript libraries,
images, and CSS) cannot be cached.

A.2.3.5 Assertions
You can specify whether or not assertions are used within ADF Faces using the
oracle.adf.view.rich.ASSERT_ENABLED parameter. The default is false. Set to true
to turn on assertions.

A.2.3.6 Enabling the Application for Real User Experience Insight
Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic
requested by, and generated from, your network. It measures the response times of

Performance Tip: JavaScript logging will affect performance. Set this
value to OFF in a runtime environment.

Note: The file upload initialization parameters are processed by the
default UploadedFileProcessor only. If you replace the default
processor with a custom UploadedFileProcessor implementation, the
parameters are not processed.

Tip: After turning on resource debug mode, clear your browser
cache to force the browser to load the latest versions of the resources.

Performance Tip: In a production environment, this parameter
should be removed or set to false.

Performance Tip: Assertions will affect performance. Set this value
to false in a runtime environment.

Configuration in web.xml

ADF Faces Configuration A-7

pages and transactions at the most critical points in the network infrastructure. Session
diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user experience,
to monitor your Key Performance Indicators (KPIs) and Service Level Agreements
(SLAs), and to trigger alert notifications on incidents that violate their defined targets.
You can implement checks on page content, site errors, and the functional
requirements of transactions. Using this information, you can verify your business and
technical operations. You can also set custom alerts on the availability, throughput, and
traffic of all items identified in RUEI.

Specify whether or not RUEI is enabled for oracle.adf.view.faces.context.ENABLE_
ADF_EXECUTION_CONTEXT_PROVIDER by adding the parameter to the web.xml file and
setting the value to true. By default this parameter is not set or is set to false.

For more information about RUEI, see "Enabling the Application for Real User
Experience Insight" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

A.2.3.7 Facelets Support
Specify the following if you intend to use Facelets with ADF Faces:

■ org.apache.myfaces.trinidad.ALTERNATE_VIEW_HANDLER: Install
FaceletsViewHandler by setting the parameter value to
com.sun.facelets.FaceletViewHandler

■ javax.faces.DEFAULT_SUFFIX: Use .xhtml as the file extension for documents that
use Facelets by setting the parameter value to .xhtml.

A.2.3.8 Dialog Prefix
To change the prefix for launching dialogs, set the
org.apache.myfaces.trinidad.DIALOG_NAVIGATION_PREFIX parameter.

The default is dialog:, which is used in the beginning of the outcome of a JSF
navigation rule that launches a dialog (for example, dialog:error).

A.2.3.9 Compression for CSS Class Names
You can set the org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
parameter to determine compression of the CSS class names for skinning keys.

The default is false. Set to true if you want to disable the compression.

A.2.3.10 Test Automation
When you set the oracle.adf.view.rich.automation.ENABLED parameter to true and
when the component ID attribute is null, the component testId attribute is used
during automated testing to ensure that the ID is not null. The testId is an attribute
only on the tag. It is not part of the Java component API. Note this context parameter
only enables the infrastructure for test automation; it does not initiate testing itself,
which requires a tool such as the open source Selenium IDE.

Performance Tip: Compression will affect performance. In a
production environment, set this parameter to false.

Configuration in web.xml

A-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Enabling test automation also enables assertions in the running application. If your
application exhibits unexpected component behavior and you begin to see new
assertion failed errors, you will need to examine the implementation details of your
application components. For example, it is not uncommon to discover issues related to
popup dialogs, such as user actions that are no longer responded to.

Here are known coding errors that will produce assertion failed errors only after test
automation is enabled:

■ Your component references an ADF iterator binding that no longer exists in the
page definition file. When assertions are not enabled, this error is silent and the
component referencing the missing iterator simply does not render.

■ Your component is a partial trigger component that is defined not to render (has
the attribute setting rendered="false"). For example, this use of the rendered
attribute causes an assertion failed error:

<af:commandButton id="hiddenBtn" rendered="false" text="Test"/>
<af:table var="row" id="t1" partialTriggers="::hiddenBtn">

The workaround for this error is to use the attribute setting visible="false" and
not rendered="false".

■ Your components were formed with a nesting hierarchy that prevents events from
reaching the proper component handlers. For example, this nesting is incorrect:

<af:commandLink
 <af:showPopupBehavior
 <af:image
 <af:clientListener

and should be rewritten as:

<af:commandLink
 <af:image
 <af:showPopupBehavior
 <af:clientListener

Note that system administrators can enable test automation at the level of standalone
Oracle WebLogic Server by starting the server with the command line flag
-Doracle.adf.view.rich.automation.ENABLED=true. Running your application in an
application server instance with test automation enabled overrides the web.xml file
context parameter setting of the deployed application.

A.2.3.11 UIViewRoot Caching
Use the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT parameter to enable or
disable UIViewRoot caching. When token client-side state saving is enabled, MyFaces
Trinidad can apply an additional optimization by caching an entire UIViewRoot tree

Caution: When the test automation context parameter is set to true,
the oracle.adf.view.rich.security.FRAME_BUSTING context
parameter behaves as though it were set to never. The security
consequence of disabling framebusting is that pages of your
application will become vulnerable to clickjacking from malicious web
sites. For this reason, restrict the use of the test automation to
development or staging environments and never enable test
automation in a production environment. For more information, see
Section A.2.3.15, "Framebusting."

Configuration in web.xml

ADF Faces Configuration A-9

with each token. (Note that this does not affect thread safety or session failover.) This
is a major optimization for AJAX-intensive systems, as postbacks can be processed far
more rapidly without the need to reinstantiate the UIViewRoot tree.

You set the org.apache.myfaces.trinidad.CACHE_VIEW_ROOT parameter to true to
enable caching. This is the default. Set the parameter to false to disable caching.

A.2.3.12 Themes and Tonal Styles
Use the oracle.adf.view.rich.tonalstyles.ENABLED parameter to turn the use of
tonal styles off or on. While the tonal style classes .AFDarkTone, .AFMediumTone,
.AFLightTone and .AFDefaultTone are still available for the purpose of backward
compatibility, themes are provided as a replacement style. Themes are easier to author
than tonal styles; they rely on fewer selectors, and they avoid CSS containment
selectors. For this reason they are less prone to bugs. Due to the limitation on the
number of selectors in one CSS file, both tonal styles and themes cannot be supported
in the same application. Set to false to disable tonal styles.

A.2.3.13 Partial Page Navigation
Use the oracle.adf.view.rich.pprNavigation.OPTIONS parameter to turn partial
page navigation on and off. By default, the value is off. Partial page navigation uses
the same base page throughout the application, and simply replaces the body content
of the page with each navigation. This processing results in better performance
because JavaScript libraries and style sheets do not need to be reloaded with each new
page. For more information, see Section 7.4, "Using Partial Page Navigation."

Valid values are:

■ on: PPR navigation is turned on for the application.

■ off: PPR navigation is turned off for the application.

■ onWithForcePPR: When an action on a command component results in navigation,
the action will always be delivered using PPR, as if the component had
partialSubmit set to true. For more information about partialSubmit, see
Section 5.1.1, "Events and Partial Page Rendering." If the component already has
partialSubmit set to true, the framework does nothing. If partialSubmit is not
set to true, the entire document is refreshed to ensure that old page refresh
behavior is preserved. The entire document is also refreshed if the action
component does not contain navigation.

A.2.3.14 JavaScript Partitioning
Use the oracle.adf.view.rich.libraryPartitioning.ENABLED parameter to turn
JavaScript partitioning on and off. By default, the value is true (enabled). JavaScript

Note: This type of caching is known to interfere with some other JSF
technologies. In particular, the Apache MyFaces Tomahawk
saveState component does not work, and template text in Facelets
may appear in duplicate.

Note: If you set the parameter to on, then you need to set the
partialSubmit attribute to true for any command components
involved in navigation. For more information about partialSubmit,
see Section 5.1.1, "Events and Partial Page Rendering."

Configuration in web.xml

A-10 Web User Interface Developer's Guide for Oracle Application Development Framework

partitioning allows a page to download only the JavaScript needed by client
components for that page.

Valid values are:

■ true: JavaScript partitioning is enabled (the default).

■ false: JavaScript partitioning is disabled.

For more information about using and configuring JavaScript partitioning, see
Section A.9, "Using JavaScript Library Partitioning."

A.2.3.15 Framebusting
Use the org.apache.myfaces.trinidad.security.FRAME_BUSTING context parameter
to use framebusting in your application. Framebusting is a way to prevent clickjacking,
which occurs when a malicious web site pulls a page originating from another domain
into a frame and overlays it with a counterfeit page, allowing only portions of the
original, or clickjacked, page (for example, a button) to display. When users click the
button, they in fact are clicking a button on the clickjacked page, causing unexpected
results.

For example, say your application is a web-based email application that resides in
DomainA, and a web site in DomainB clickjacks your page by creating a page with an
IFrame that points to a page in your email application at DomainA. When the two pages
are combined, the page from DomainB covers most of your page in the IFrame, and
exposes only a button on your page that deletes all email for the account. Users, not
realizing they are actually in the email application, may click the button and
inadvertently delete all their email.

Framebusting prevents clickjacking by using the following JavaScript to block the
application’s pages from running in frames:

top.location.href = location.href;

If you configure your application to use framebusting by setting the parameter to
always, then whenever a page tries to run in a frame, an alert is shown to the user that
the page is being redirected, the JavaScript code is run to define the page as topmost,
and the page is disallowed to run in the frame.

If your application needs to use frames, you can set the parameter value to
differentOrigin. This setting causes framebusting to occur only if the frame has the
same origin as the parent page. This is the default setting.

For example, say you have a page named DomainApage1 in your application that uses a
frame to include the page DomainApage2. Say the external DomainBpage1 tries to
clickjack the page DomainApage1. The result would be the following window hierarchy:

■ DomainBpage1

– DomainApage1

* DomainApage2

Note: The origin of a page is defined using the domain name,
application layer protocol, and in most browsers, TCP port of the
HTML document running the script. Pages are considered to originate
from the same domain if and only if all these values are exactly the
same.

Configuration in web.xml

ADF Faces Configuration A-11

If the application has framebusting set to be differentOrigin, then the framework
walks the parent window hierarchy to determine whether any ancestor windows
originate from a different domain. Because DoaminBpage1 originates from a different
domain, the framebusting JavaScript code will run for the DomainApage1 page,
causing it to become the top-level window. And because DomainApage2 originates from
the same domain as DomainApage1, it will be allowed to run in the frame.

Valid values are:

■ always: The page will show an error and redirect whenever it attempts to run in a
frame.

■ differentOrigin: The page will show an error and redirect only when it attempts
to run in a frame on a page that originates in a different domain (the default).

■ never: The page can run in any frame on any originating domain.

A.2.3.16 Version Number Information
Use the oracle.adf.view.rich.versionString.HIDDEN parameter to determine
whether or not to display version information an a page’s HTML. When the parameter
is set to false, the HTML of an ADF Faces page contains information about the
version of ADF Faces and other components used to create the page as shown in
Example A–2.

Example A–2 Version Information in the HTML

</body><!--Created by Oracle ADF (ADF Faces API -
11.1.1.4.0/ADF Faces Implementation - 11.1.1.4.0, RCF-revision: 39851 (branch:
faces-1003-11.1.1.4.0, plugins: 1.2.3), Trinidad-revision: 1051544 (branch:
1.2.12.3-branch, plugins: 1.2.10), build: adf-faces-rt_101221_0830, libNum:
0355 powered by JavaServer Faces API 1.2 Sun Sep 26 03:21:43 EDT 2010
(1.2)), accessibility (mode:null, contrast:standard, size:medium),
skin:customSkin.desktop (CustomSkin)--></html>

When you create a new application, the parameter is set to true. It should also be set
to true in a production environment. Set the parameter to false to display this
version information for debugging information.

A.2.3.17 Suppressing Auto-Generated Component IDs
Use the oracle.adf.view.rich.SUPPRESS_IDS context parameter set to auto when
programmatically adding an af:outputText or af:outputFormatted component as a
partial target, that is, through a call to addPartialTarget().

Note: This context parameter is ignored and will behave as if it were
set to never when either of the following context parameters is set to
true:

■ org.apache.myfaces.trinidad.util.
ExternalContextUtils.isPortlet

■ oracle.adf.view.rich.automation.ENABLED

Note: In a production environment, set this parameter to true to
avoid security issues. It should be set to false only in a development
environment for debugging purposes.

Configuration in web.xml

A-12 Web User Interface Developer's Guide for Oracle Application Development Framework

By default, this parameter is set to explicit, thereby reducing content size by
suppressing both auto-generated and explicitly set component IDs except when either
of the following is true:

■ The component partialTriggers attribute is set

■ The clientComponent attribute is set to true

In the case of a call to addPartialTarget(), the partialTriggers attribute is not set
and the partial page render will not succeed. You can set the parameter to auto to
suppress only auto-generated component IDs for these components.

A.2.3.18 ADF Faces Caching Filter
The ADF Faces Caching Filter (ACF) is a Java EE Servlet filter that can be used to
accelerate web application performance by enabling the caching (and/or compression)
of static application objects such as images, style sheets, and documents like .pdf and
.zip files. These objects are cached in an external web cache such as Oracle Web
Cache, Oracle Traffic Director, or in the browser cache. The cacheability of content is
largely determined through URL-based rules defined by the web cache administrator.
Using ACF, the ADF application administrator or author can define caching rules
directly in the adf-config.xml file. For more information about defining caching rules,
see Section A.4.2, "Defining Caching Rules for ADF Faces Caching Filter."

ADF Faces tag library JARs include default caching rules for common resource types,
such as .js, .css, and image file types. These fixed rules are defined in the
adf-settings.xml file, and cannot be changed during or after application
deployment. In the case of conflicting rules, caching rules defined by the application
developer in adf-config.xml will take precedence. For more information about
settings in adf-settings.xml, see Section A.5.2, "What You May Need to Know About
Elements in adf-settings.xml."

Oracle Web Cache and Oracle Traffic Director must be configured by the web cache
administrator to route all traffic to the web application through the web cache. In the
absence of the installation of Oracle Web Cache or Oracle Traffic Director, the caching
rules defined in adf-config.xml will be applied for caching in the browser if the
<agent-caching> child element is set to true. To configure the ACF to be in the URL
request path, add the following servlet filter definitions in the web.xml file:

■ ACF filter class: Specify the class to perform URL matching to rules defined in
adf-config.xml

■ ACF filter mapping: Define the URL patterns to match with the caching rules
defined in adf-config.xml

Example A–3 shows a sample ACF servlet definition.

Example A–3 ACF Servlet Definition

<!- Servlet Filter definition ->x
<filter>
 <filter-name>ACF</filter-name>
 <filter-class>oracle.adf.view.rich.webapp.AdfFacesCachingFilter</filter-class>
</filter>
<!- servlet filter mapping definition ->
<filter-mapping>
 <filter-name>ACF</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

Configuration in web.xml

ADF Faces Configuration A-13

A.2.3.19 Configuring Native Browser Context Menus for Command Links
Use the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION
parameter to enable or disable the end user´s browser to supply a context menu for
ADF Faces command components that render a link. The context menu may present
menu options that invoke a different action (for example, open a link in a new
window) to that specified by the command component.

By default, this parameter is set to yes, thereby suppressing the rendering of a context
menu for ADF Faces command components. By setting the parameter to no, you can
disable this suppression and allow the native browser context menu to appear. For
information about the ADF Faces command components for which you can configure
this functionality, see Chapter 18.3, "Configuring a Browser’s Context Menu for
Command Links."

A.2.3.20 Internet Explorer Compatibility View Mode
Running ADF Faces applications in the compatibility mode of Microsoft Internet
Explorer can cause unpredictable behavior. By default, when a user accesses an ADF
Faces application and has their Internet Explorer browser set to compatibility mode,
ADF Faces displays an alert asking the user to disable that mode.

Set the oracle.adf.view.rich.HIDE_UNSUPPORTED_BROWSER_ALERTS context parameter
to IECompatibilityModes to hide these messages from the user.

A.2.3.21 Session Timeout Warning
When a request is sent to the server, a session timeout value is written to the page and
the session timeout warning interval is defined by the context parameter
oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT. The user is
given the opportunity to extend the session in a warning dialog, and a notification is
sent when the session has expired and the page is refreshed. Depending on the
application security configuration, the user may be redirected to the log in page when
the session expires.

Use the oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_TIMEOUT context
parameter to set the number of seconds prior to the session time out when a warning
dialog is displayed. If the value of WARNING_BEFORE_TIMEOUT is less than 120 seconds, if
client state saving is used for the page, or if the session has been invalidated, the
feature is disabled. The session time-out value it taken directly from the session.

Example A–4 shows configuration of the warning dialog to display at 120 seconds
before the time-out of the session.

Example A–4 Configuration of Session Time-out Warning

<context-param>
 <param-name>oracle.adf.view.rich.sessionHandling.WARNING_BEFORE_
 TIMEOUT</param-name>

Note: The ACF servlet filter must be the first filter in the chain of
filters defined for the application.

Note: Even when these messages are hidden, a warning-level log
message is still reported to the JavaScript log, when the
oracle.adf.view.rich.LOGGER_LEVEL parameter is set to WARNING or
more verbose. For more information, see Section A.2.3.2, "Debugging."

Configuration in web.xml

A-14 Web User Interface Developer's Guide for Oracle Application Development Framework

 <param-value>120</param-value>
</context-param>

The default value of this parameter is 120 seconds. To prevent notification of the user
too frequently when the session time-out is set too short, the actual value of WARNING_
BEFORE_TIMEOUT is determined dynamically, where the session time-out must be more
than 2 minutes or the feature is disabled.

A.2.3.22 JSP Tag Execution in HTTP Streaming
Use the oracle.adf.view.rich.tag.SKIP_EXECUTION parameter to enable or disable
JSP tag execution in HTTP streaming requests during the processing of JSP pages.
Processing of facelets is not included.

By default, this parameter is set to streaming, where JSP tag execution is skipped
during streaming requests. You can set the parameter to off to execute JSP tags per
each request in cases where tag execution is needed by streaming requests.

A.2.3.23 Splash Screen
Use the oracle.adf.view.rich.SPLASH_SCREEN parameter to enable or disable the
splash screen that by default, displays as the page is loading, as shown in Figure A–1.

Figure A–1

By default, this parameter is set to on. You can set it to off, so that the splash screen
will not display.

A.2.3.24 Graph and Gauge Image Format
Add the oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT parameter to change the
default output format to HTML5 for graph and gauge components.

<context-param>
 <param-name>oracle.adf.view.rich.dvt.DEFAULT_IMAGE_FORMAT</param-name>
 <param-value>HTML5</param-value>
</context-param>

By default, this parameter is absent. Valid values are HTML5 and FLASH.

A.2.3.25 Geometry Management for Layout and Table Components
Add the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter when you
want to globally control how certain layout components and tables handle being
stretched.

Whether or not certain layout components (af:decorativeBox, af:panelAccordion,
af:panelDashboard, af:panelStretchLayout, af:panelSplitter, af:panelTabbed)
can be stretched is based on the value of the dimensionsFrom attribute. The default
setting for these components is parent, which means the size of the component is
determined in the following order:

■ From the inlineStyle attribute.

Configuration in web.xml

ADF Faces Configuration A-15

■ If no value exists for inlineStyle, then the size is determined by the parent
container (that is, the component will stretch).

■ If the parent container is not configured or not able to stretch its children, the size
will be determined by the skin.

However, if you always want these components to use auto as the value for the
dimensionsFrom attribute (that is, the component stretches if the parent component
allows stretching of its child, otherwise the size of the component is based on its child
components), you can set the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS
parameter to auto. You can then use the dimensionsFrom attribute on an individual
component to override this setting.

Similarly for tables, the autoHeightRows attribute determines whether or not the table
will stretch. By default it is set to -1, which means the table size is based on the
number of rows fetched. However, if the oracle.adf.view.rich.geometry.DEFAULT_
DIMENSIONS parameter is set to auto, the table will stretch when the parent component
allows stretching, and otherwise will be the number of rows determined by the table’s
fetchSize attribute.

By default, the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter is
set to legacy, which means the components will use their standard default values.

Set oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS parameter to auto when
you want both layout components and tables to always stretch when the parent
component allows stretching.

A.2.4 What You May Need to Know About Other Context Parameters in web.xml
Other optional, application-wide context parameters are:

■ javax.faces.CONFIG_FILE: Specifies paths to JSF application configuration
resource files. Use a comma-separated list of application-context relative paths for
the value, as shown in the following code. Set this parameter if you use more than
one JSF configuration file in your application.

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>
 /WEB-INF/faces-config1.xml,/WEB-INF/faces-config2.xml
 </param-value>
</context-param>

■ javax.faces.DEFAULT_SUFFIX: Specifies a file extension (suffix) for JSP pages that
contain JSF components. The default value is .jsp.

■ javax.faces.LIFECYCLE_ID: Specifies a lifecycle identifier other than the default
set by the javax.faces.lifecycle.LifecycleFactory.DEFAULT_LIFECYCLE
constant.

Note: This parameter value is ignored when you use prefix mapping
for the JSF servlet (for example, /faces), which is done by default for
you.

Caution: Setting LIFECYCLE_ID to any other value will break ADF
Faces.

Configuration in faces-config.xml

A-16 Web User Interface Developer's Guide for Oracle Application Development Framework

■ org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION: Specifies whether JSP
and CSS files require a restart in order to see changes at runtime. By default, set to
false. Set to true if you want to be able to view changes without restarting the
server.

A.3 Configuration in faces-config.xml
The JSF configuration file is where you register a JSF application's resources such as
custom validators and managed beans, and define all the page-to-page navigation
rules. While an application can have any JSF configuration file name, typically the file
name is the faces-config.xml file. Small applications usually have one
faces-config.xml file.

When you use ADF Faces components in your application, JDeveloper automatically
adds the necessary configuration elements for you into faces-config.xml. For more
information about the faces-config.xml file, see the Java EE 5 tutorial on Sun’s web
site (http://java.sun.com).

A.3.1 How to Configure for ADF Faces in faces-config.xml
In JDeveloper, when you create a project that uses JSF technology, an empty
faces-config.xml file is created for you in the /WEB-INF directory. An empty
faces-config.xml file is also automatically added for you when you create a new
application workspace based on an application template that uses JSF technology (for
example, the Java EE Web Application template. For more information, see Section 2.2,
"Creating an Application Workspace."

When you use ADF Faces components in your application, the ADF default render kit
ID must be set to oracle.adf.rich. When you insert an ADF Faces component into a
JSF page for the first time, or when you add the first JSF page to an application
workspace that was created using the Fusion template, JDeveloper automatically
inserts the default render kit for ADF components into the faces-config.xml file, as
shown in Example A–5.

Example A–5 ADF Default Render Kit Configuration in faces-config.xml

<?xml version="1.0" encoding="windows-1252"?>
<faces-config version="1.2" xmlns="http://java.sun.com/xml/ns/javaee">
 <application>
 <default-render-kit-id>oracle.adf.rich</default-render-kit-id>
 </application>
</faces-config>

Typically, you would configure the following in the faces-config.xml file:

■ Application resources such as message bundles and supported locales

■ Page-to-page navigation rules

■ Custom validators and converters

■ Managed beans for holding and processing data, handling UI events, and
performing business logic

http://java.sun.com

Configuration in adf-config.xml

ADF Faces Configuration A-17

In JDeveloper, you can use the declarative overview editor to modify the
faces-config.xml file. If you are familiar with the JSF configuration elements, you can
use the XML editor to edit the code directly.

To edit faces-config.xml:
1. In the Application Navigator, double-click faces-config.xml to open the file.

By default, JDeveloper opens the faces-config.xml file in the overview editor, as
indicated by the active Overview tab at the bottom of the editor window.

When you use the overview editor to add for example, managed beans and
validators declaratively, JDeveloper automatically updates the faces-config.xml
file for you.

2. To edit the XML code directly in the faces-config.xml file, click Source at the
bottom of the editor window.

When you edit elements in the XML editor, JDeveloper automatically reflects the
changes in the overview editor.

A.4 Configuration in adf-config.xml
The adf-config.xml file is used to configure application-wide features, like security,
caching, and change persistence. Other Oracle components also configure properties in
this file.

A.4.1 How to Configure ADF Faces in adf-config.xml
Before you can provide configuration for your application, you must first create the
adf-config.xml file. Then you can add configuration for any application-wide ADF
features that your application will use.

To create and edit adf-config.xml:
1. If not already created, create a META-INF directory for your project.

2. Right-click the META-INF directory, and choose New.

3. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

4. Enter adf-config.xml as the file name and save it in the META-INF directory.

Note: If your application uses ADF Controller, these items are
configured in the adfc-config.xml file. For more information, see the
"Getting Started With ADF Task Flows" chapter of the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Tip: JSF allows more than one <application> element in a single
faces-config.xml file. The Overview mode of the JSF Configuration
Editor allows you to edit only the first <application> instance in the
file. For any other <application> elements, you will need to edit the
file directly using the XML editor.

Tip: If you don’t see the General node, click the All Technologies
tab at the top of the Gallery.

Configuration in adf-config.xml

A-18 Web User Interface Developer's Guide for Oracle Application Development Framework

5. In the source editor, replace the generated code with the code shown in
Example A–6.

Example A–6 XML for adf-config.xml File

<?xml version="1.0" encoding="utf-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:ads="http://xmlns.oracle.com/adf/activedata/config">

</adf-config>

6. You can now add the elements needed for the configuration of features you wish
to use.

A.4.2 Defining Caching Rules for ADF Faces Caching Filter
Caching rules for the ADF Faces Caching Filter (ACF) are defined in the
adf-config.xml file, located in the web-application’s .adf/META-INF directory. You
must configure ACF to be in the request path for these URL matching rules. For
information about adding the ACF servlet filter definition, see Section A.2.3.18, "ADF
Faces Caching Filter."

The single root element for one or more caching rules is <caching-rules>, configured
as a child of the <adf-faces-config> element in the namespace
http://xmlns.oracle.com/adf/faces/config.

A <caching-rule> element defines each caching rule, evaluated in the order listed in
the configuration file. Example A–7 shows the syntax for defining caching rules in
adf-config.xml.

Example A–7 ACF Caching Rule Syntax

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <caching-rules xmlns="http://xmlns.oracle.com/adf/faces/rich/acf">
 <caching-rule id="cache-rule1">
 <cache>true|false</cache>
 <duration>3600</duration>
 <agent-caching>true|false</agent-caching>
 <agent-duration>4800</agent-duration>
 <compress>true|false</compress>
 <cache-key-pattern>....</cache-key-pattern>
 <search-key>
 <key>key1</key>
 <key>key2</key>
 </search-key>
 <varyBy>
 <vary-element>
 <vary-name><cookieName>|<headerName></vary-name>
 <vary-type>cookie|header</vary-type>
 </vary-element>
 </varyBy>
 </caching-rule>
 </caching-rules>
 </adf-faces-config>
</adf-config>

Each caching rule is defined in a <caching-rule> element. An optional id attribute can
be defined to support rule location. Table A–1 describes the <caching-rule> child

Configuration in adf-config.xml

ADF Faces Configuration A-19

elements used to define the parameters for caching or compressing the objects in the
application.

A.4.3 Configuring Flash as Component Output Format
By default, the application uses the output format specified for each component. For
example, applications using ADF Data Visualization components can specify a Flash
output format to display animation and interactivity effects in a web browser. If the
component output format is Flash, and the user’s platform doesn't support the Flash
Player, as in Apple’s iOS operating system, the output format is automatically
downgraded to the best available fallback.

You can configure the use of Flash content across the entire application by setting a
flash-player-usage context parameter in adf-config.xml. The valid settings include:

Table A–1 AFC Caching Rule Elements and Attributes

Rule Element Children Attribute Description and Value

<cache> Specifies whether or not the object must be cached in the web
cache. A value of false will ensure the object is never cached.
The default is true.

<duration> Defines the duration in seconds for which the object will be
cached in the web cache. The default is 300 seconds.

<agent-caching> Specify a value of true to use a browser cache in the absence of a
web cache.

<agent-duration> Defines the duration in seconds for which the object is cached in
a browser cache. The default is -1. If <agent-caching> is true
and <agent-duration> is not defined, then the value for
<duration> is used instead.

<compress> Specifies whether or not the object cached in the web cache must
be compressed. The default value is true.

<cache-key-pattern> Determines the URLs to match for the rule. One and only one
<cache-key-pattern> element must be defined for the file
extensions or the path prefix of a request URL. A
<cache-key-pattern> value starting with a "*." value will be
used as a file extension mapping, and others will be used as path
prefix mapping.

<search-key>
 <key>

Defines the search keys tagged to the cached object. Each
<caching-rule> can define one <search-key> element with one
or more child <key> elements. The value of a search key is used
in invalidating cached content. A default <search-key> is added
at runtime for the context root of the application in order to
identify all resources related to an application.

<varyBy>
 <vary-element>
 <vary-name>
 <vary-type>

Used for versioning objects cached in the web cache. A <varyBy>
element can have one or more <vary-element> elements that
define the parameters for versioning a cached object. Most static
resources will not require this definition.

Each <vary-element> is defined by:

■ <vary-name>: Valid values are cookieName for the name of
the cookie whose value the response varies on, or
headerName for the name of the HTTP header whose value
determines the version of the object that is cached in the
web cache.

■ <vary-type>: Valid values are cookie or header.

The web cache automatically versions request parameters.
Multiple version of an object will be stored in web cache based
on the request parameter.

Configuration in adf-config.xml

A-20 Web User Interface Developer's Guide for Oracle Application Development Framework

■ downgrade: Specify that if the output format is Flash, but the Flash Player isn't
available, then downgrade to the best available fallback. The user will not be
prompted to download the Flash Player.

■ disable: Specify to disable the use of Flash across the application. All components
will be rendered in their non-Flash versions, regardless of whether or not the Flash
Player is available on the client.

Example A–8 shows the syntax for application-wide disabling of Flash in
adf-config.xml.

Example A–8 Flash Disabled in adf-config.xml

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <flash-player-usage>disabled</flash-player-usage>
 </adf-faces-config>
</adf-config>

The context parameter also supports an EL Expression value. This allows applications
to selectively enable or disable Flash for different parts of the application, or for
different users, based on their preferences.

A.4.4 Using Content Delivery Networks
Content Delivery Networks (CDNs) improve web application performance by
providing more efficient network access to content. Applications can use a variety of
CDN configurations to optimize the user experience. An increasingly common
configuration is to route all requests through a CDN. The CDN acts as a proxy
between the client and the application. CDN-specific configuration tools can be used
to specify caching and compression rules.

An alternate approach is to limit which requests are routed through the CDN. For
example, only requests for auxiliary resources (images, JavaScript libraries, style
sheets) might be directed to the CDN, while requests for application-generated HTML
content can be served up directly. In this case, it is necessary to convert relative
resource URIs to absolute URIs that point to the host that is serviced by the CDN.

For example, say your application-defined images are held in a local directory named
images. Your code to reference images might look something like Example A–9:

Example A–9 Default Image Reference

<af:image source="/images/logo.png"
 shortDesc="My Company Logo"
 id="i1"/>

One way to indicate that the image should be retrieved from a CDN is to explicitly
specify an absolute URI for the image source, as shown in Example A–10:

Note: Previously Data Visualization dvt:graph and dvt:gauge
components used an imageFormat=AUTO" value. The AUTO value has
been deprecated and you should set use imageFormat="FLASH" and set
flash-player-usage context parameter to downgrade to achieve the
same effect application-wide.

Configuration in adf-config.xml

ADF Faces Configuration A-21

Example A–10 Image Reference from a CDN Using an Absolute URI

<af:image source="http://mycdn.com/images/logo.png"
 shortDesc="My Company Logo"
 id="i1"/>

A downside of this approach is that it requires updating many locations (possibly
every image reference) in the application, duplicating the CDN base URI across pages.
This can make enabling and disabling CDN usage or switching from one CDN to
another prohibitively difficult.

An alternative approach might be to EL bind resource-related attributes, as shown in
Example A–11:

Example A–11 EL Binding to a CDN Base URI

 <af:image source="#{preferences.baseUri}/logo.png"
 shortDesc="My Company Logo"
 id="i1"/>

This approach allows the CDN base URI to be specified in a single location (for
example, in a managed bean). However, it places a burden on application developers
to use the correct EL expressions throughout their content.

Rather than repeating references to the CDN location (either directly or through EL
expressions) throughout the application, ADF Faces provides a centralized mechanism
for modifying resource URIs. This mechanism allows one or more prefixes, or "base
resource URIs", to be specified for resources. These base resource URIs are defined in
the application's adf-config.xml file, under the
http://xmlns.oracle.com/adf/rewrite/config namespace.

For example, Example A–12 specifies that all png images in the images directory
should be rewritten to include the http://mycdn.com prefix.

Example A–12 Specifying a CDN Prefix in adf-config.xml

 <adf-uri-rewrite-config xmlns="http://xmlns.oracle.com/adf/rewrite/config">
 <resource-uris>
 <base-resource-uri uri="http://mycdn.com/">
 <match-pattern>^/.*/images/.*\.png$</match-pattern>
 </base-resource-uri>
 </resource-uris>
 </adf-uri-rewrite-config>

The regular expression specified by the <match-pattern> element
(^/.*/images/.*\.png$) is tested against all resource URIs rendered by the
application. Any matching URIs are transformed to include the prefix specified by the
<base-resource-uri> element's URI attribute.

One advantage of this solution is that it can be used to modify not just
application-defined resource URIs, but URIs for resources that are used by ADF Faces
itself. To simplify this task, ADF Faces exposes a small set of aliases that can be used
with the <match-alias> element in place of regular expressions.

For example, the configuration in Example A–13 applies the http://mycdn.com/ prefix
to all images defined by ADF Faces components:

Example A–13 Apply Prefix to a Resource

 <adf-uri-rewrite-config xmlns="http://xmlns.oracle.com/adf/rewrite/config">
 <resource-uris>

Configuration in adf-config.xml

A-22 Web User Interface Developer's Guide for Oracle Application Development Framework

 <base-resource-uri uri="http://mycdn.com/">
 <match-alias>af:images</match-alias>
 </base-resource-uri>
 </resource-uris>
 </adf-uri-rewrite-config>

Unlike the regular expressions specified via <match-pattern> elements, the aliases
used with <match-alias> do not match application-defined resources. So, for example,
the af:images alias in the above configuration will cause images defined by ADF
Faces components, such as the default background images and icons that come with
ADF Faces, to be prefixed without also prefixing images that are explicitly bundled
with the application.

In addition to the af:images alias, aliases are also provided for targeting the ADF
Faces skins (style sheets), JavaScript libraries and resource documents.

To set up URIs for a CDN:
1. Create or open the adf-config.xml file (for more information, see Section A.4.1,

"How to Configure ADF Faces in adf-config.xml").

2. Create rewrite rules to define the replacement URIs for the CDN, using the
elements shown in Table A–2.

Note: All attribute values may be EL-bound. However, EL-bound
attributes are only evaluated once (at parse time).

Table A–2 CDN URI Rewrite Elements

Element Definition

<adf-uri-rewrite-config> This xmlns value must be set to
http://xmlns.oracle.com/adf/rewrite/config

<resource-uris> Defines the rules to rewrite the paths to given resources

<base-resource-uri> Defines the base URI for the rewritten path. Multiple
<base-resource-uri> elements may be defined. This element
has three attributes:

■ uri: sets URI for the CDN. This will be used to create the
full URI for the given resource."

■ secure-uri: sets the prefix when the URI is secure, for
example, "https://"

■ output-context-path: determines whether or not to
remove the application-specific context path in the rewritten
URI. Valid values are either remove (the default) or
preserve.

<match-pattern> A regular expression that is tested against rendered resource
URIs. If a match is found, the resource URI is prefixed with the
URI specified by the <base-resource-uri> element.

.Multiple <match-pattern> elements may be defined for each
<base-resource-uri> element.

Note that in order to minimize runtime overhead, the results of
resource uri rewriting are cached. To prevent excessive caching,
<match-pattern> regular expressions should only target static
resources. Dynamically generated, data-centric resources (for
example, resources generated from unbounded query parameter
values) must not be rewritten using the base resource uri
mechanism.

Configuration in adf-config.xml

ADF Faces Configuration A-23

The values specified in the match elements are compared against all URIs that
pass through ExteralContext.encodeResourceURL(). If a URI matches, the prefix
specified in the enclosing <base-resource-uri> element is applied.

Example A–14 shows how an application might be configured to use a CDN.

Example A–14 CDN URI Elements

<adf-uri-rewrite-config xmlns="http://xmlns.oracle.com/adf/rewrite/config">
 <resource-uris>
 <base-resource-uri uri="http://mycdn.com/"
 secure-uri="https"
 output-context-path="remove">
 <match-pattern>^/.*/images/.*\.png$</match-pattern>
 <match-alias>af:documents</match-alias>
 <match-alias>af:coreScripts</match-alias>
 </base-resource-uri>
 </resource-uris>
</adf-uri-rewrite-config>

A.4.4.1 What You May Need to Know About Skin Style Sheets and CDN
While you can use the af:skins alias to rewrite skin style sheets to point to the CDN,
in cases where the CDN is configured to proxy requests back to the application server,
problems can arise if a the application is running in a clustered and/or load-balanced
environment.

Skin style sheets are generated and stored on the server that rendered the containing
page content. By routing the style sheet request through the CDN, server affinity may
be lost (for example, if the CDN lives in a different domain, resulting in a loss of the
session cookie). As a result, the style sheet request may be routed to a server that has
not yet generated the requested style sheet. In such cases, the style sheet request will
not complete successfully.

To avoid potential failures in load-balanced and/or clustered environments you
should not rewrite skin style sheet URIs in cases where cookies or session affinity may
be lost.

A.4.4.2 What You May Need to Know About JavaScript and CDN
The af:coreScripts alias can be used to rewrite ADF's "core" JavaScript libraries (that
is, the JavaScript libraries that are present on every ADF page) to a CDN. In addition,
<match-pattern> regular expressions can be used to rewrite arbitrary (for example,

<match-alias> Defines an alias that matches one of the ADF Faces-provided
resources. The resource may be one of the following:

■ af:documents: matches ADF Faces’ HTML resources (for
example, blank.html)

■ af:images: matches ADF Faces’ and Trinidad’s image
resources

■ af:coreScripts: matches ADF Faces’ boot and core
JavaScript libraries

■ af:skins: matches skin-generated style sheets

Multiple <match-alias> elements may be defined for each
<base-resource-uri> element.

Table A–2 (Cont.) CDN URI Rewrite Elements

Element Definition

Configuration in adf-settings.xml

A-24 Web User Interface Developer's Guide for Oracle Application Development Framework

application-defined) JavaScript library URIs. However, in cases where JavaScript
libraries are introduced into the page dynamically (for example, as a result of partial
page rendering), some origin policy restrictions apply. As a result, JavaScript library
URIs that have been rewritten to a cross-origin host may fail to load.

You should limit JavaScript library URI rewriting to those libraries covered by
af:coreScripts and also in cases where the application-provided libraries are known
to be included as part of initial page renders (that is, the libraries are never introduced
as part of a PPR request).

A.5 Configuration in adf-settings.xml
The adf-settings.xml file holds project- and library-level settings such as ADF Faces
help providers and caching and compression rules. The configuration settings for the
adf-settings.xml files are fixed and cannot be changed during and after application
deployment. There can be multiple adf-settings.xml files in an application, however
the adf-settings.xml file users are responsible for merging the contents of their
configurations.

A.5.1 How to Configure for ADF Faces in adf-settings.xml
Before you can provide configuration for your application, you must first create the
adf-settings.xml file. Then you can add the configuration for any project features
that your application will use. For more information about configurations in this file,
see Section A.5.2, "What You May Need to Know About Elements in adf-settings.xml."

To create and edit adf-settings.xml:
1. The adf-settings.xml file must reside in a META-INF directory. Where you create

this directory depends on how you plan on deploying the project that uses the
adf-settings.xml file.

■ If you will be deploying the project with the application EAR file, create the
META-INF directory in the /application_name/.adf directory.

■ If the project has a dependency on the adf-settings.xml file, and the project
may be deployed separately from the application (for example a bounded task
flow deployed in an ADF library), then create the META-INF directory in the
/src directory of your view project.

2. In JDeveloper choose File > New.

3. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

4. In the source editor, replace the generated code with the code shown in
Example A–15, using the correct settings for your web application root.

Example A–15 XML for adf-settings.xml File

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings"
 xmlns:wap="http://xmlns.oracle.com/adf/share/http/config" >

Tip: If your application uses Oracle ADF Model, then you can create
the META-INF directory in the /adfmsrc directory.

Tip: If you don’t see the General node, click the All Technologies
tab at the top of the Gallery.

Configuration in adf-settings.xml

ADF Faces Configuration A-25

 <wap:adf-web-config xmlns="http://xmlns.oracle.com/adf/share/http/config">
 <web-app-root rootName="myroot" />
 </wap:adf-web-config>
</adf-settings>

5. You can now add the elements needed for the configuration of features you wish
to use. For more information, see Section A.5.2, "What You May Need to Know
About Elements in adf-settings.xml."

6. Save the file as adf-settings.xml to the META-INF directory created in Step 1.

A.5.2 What You May Need to Know About Elements in adf-settings.xml
The following configuration elements are supported in the adf-settings.xml file.

A.5.2.1 Help System
You register the help provider used by your help system using the following elements:

■ <adf-faces-config>: A parent element that groups configurations specific to ADF
Faces.

■ <prefix-characters>: The provided prefix if the help provider is to supply help
topics only for help topic IDs beginning with a certain prefix. This can be omitted
if prefixes are not used.

■ <help-provider-class>: The help provider class.

■ <custom-property> and <property-value>: A property element that defines the
parameters the help provider class accepts.

Example A–16 shows an example of a registered help provider. In this case, there is
only one help provider for the application, so there is no need to include a prefix.

Example A–16 Help Provider Registration

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

A.5.2.2 Caching Rules
Application-specific libraries and JARs contain a variety of resources that may require
caching and/or compression of files. In the event of multiple libraries or JARs, an
application may include one or more adf-setting.xml files that contain various
caching rules based on matching URLs. The caching rules are merged into an ordered
list at runtime. If a request for a resource matches more than one caching rule, the rule
encountered first in the list will be honored.

The ADF Faces JAR includes default caching rules for common resource types, such as
.js, .css, and image file types. These fixed rules are defined in the adf-settings.xml

Configuration in trinidad-config.xml

A-26 Web User Interface Developer's Guide for Oracle Application Development Framework

file, and cannot be changed during or after application deployment. Application
developers can define application caching rules in the adf-config.xml file that take
precedence over the rules defined in adf-settings.xml. Example A–17 shows the
adf-settings.xml file for the ADF Faces JAR.

Example A–17 ADF Faces adf-settings.xml File

<adf-settings>
 <adf-faces-settings>
 <caching-rules>
 <caching-rule id="cache css">
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.css</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache js">
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.js</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache png">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.png</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache jpg">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.jpg</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache jpeg">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.jpeg</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache gif">
 <compress>false</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.gif</cache-key-pattern>
 </caching-rule>
 <caching-rule id="cache html">
 <compress>true</compress>
 <duration>99999</duration>
 <agent-caching>true</agent-caching>
 <cache-key-pattern>*.html</cache-key-pattern>
 </caching-rule>
 </caching-rules>
 </adf-faces-settings>
</adf-settings>

A.6 Configuration in trinidad-config.xml
When you create a JSF application using ADF Faces components, you configure ADF
Faces features (such as skin family and level of page accessibility support) in the
trinidad-config.xml file. Like faces-config.xml, the trinidad-config.xml file has

Configuration in trinidad-config.xml

ADF Faces Configuration A-27

a simple XML structure that enables you to define element properties using the JSF
Expression Language (EL) or static values.

A.6.1 How to Configure ADF Faces Features in trinidad-config.xml
In JDeveloper, when you insert an ADF Faces component into a JSF page for the first
time, a starter trinidad-config.xml file is automatically created for you in the
/WEB-INF directory. Example A–18 shows a starter trinidad-config.xml file.

Example A–18 Starter trinidad-config.xml File Created by JDeveloper

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://xmlns.oracle.com/trinidad/config">

 <skin-family>skyros</skin-family>
 <skin-version>v1</skin-version>

</trinidad-config>

By default, JDeveloper configures the skyros skin family for a JSF application that uses
ADF Faces. You can change this to fusion-fx, simple, or use a custom skin. If you
wish to use a custom skin, create the trinidad-skins.xml configuration file, and
modify trinidad-config.xml file to use the custom skin. For more information about
creating custom skins, see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

Typically, you would configure the following in the trinidad-config.xml file:

■ Page animation

■ Level of page accessibility support

■ Time zone

■ Enhanced debugging output

■ Oracle Help for the Web (OHW) URL

You can also register a custom file upload processor for uploading files.

In JDeveloper, you can use the XML editor to modify the trinidad-config.xml file.

To edit trinidad-config.xml:
1. In the Application Navigator, double-click trinidad-config.xml to open the file in

the XML editor.

2. If you are familiar with the element names, enter them in the editor. Otherwise use
the Structure window to help you insert them.

3. In the Structure window:

a. Right-click an element to choose from the Insert before or Insert after menu,
and click the element you wish to insert.

b. Double-click the newly inserted element in the Structure window to open it in
the Property Inspector. Enter a value or select one from a dropdown list (if
available).

In most cases you can enter either a JSF EL expression (such as
#{view.locale.language=='en' ? 'minimal' : 'skyros'}) or a static value
(for example., <debug-output>true</debug-output>). EL expressions are
dynamically reevaluated on each request, and must return an appropriate
object (for example, a boolean object).

Configuration in trinidad-config.xml

A-28 Web User Interface Developer's Guide for Oracle Application Development Framework

For a list of the configuration elements you can use, see Section A.6.2, "What You May
Need to Know About Elements in trinidad-config.xml."

Once you have configured the trinidad-config.xml file, you can retrieve the property
values programmatically or by using JSF EL expressions. For more information, see
Section A.8, "Using the RequestContext EL Implicit Object."

A.6.2 What You May Need to Know About Elements in trinidad-config.xml
All trinidad-config.xml files must begin with a <trinidad-config> element in the
http://myfaces.apache.org/trinidad/config XML namespace. The order of
elements inside of <trinidad-config> does not matter. You can include multiple
instances of any element.

A.6.2.1 Animation Enabled
Certain ADF Faces components use animation when rendering. For example, trees and
tree tables use animation when expanding and collapsing nodes. The following
components use animation when rendering:

■ Table detail facet for disclosing and undisclosing the facet

■ Trees and tree table when expanding and collapsing nodes

■ Menus

■ Popup selectors

■ Dialogs

■ Note windows and message displays

The type and time of animation used is configured as part of the skin for the
application. For more information, see Chapter 20, "Customizing the Appearance
Using Styles and Skins."

You can set the animation-enabled element to either true or false, or you can use an
EL expression that resolves to either true or false.

A.6.2.2 Skin Family
As described in Section A.6.1, "How to Configure ADF Faces Features in
trinidad-config.xml," JDeveloper by default uses the skyros skin family for a JSF
application that uses ADF Faces. You can change the <skin-family> value to
fusion-fx, simple, or to a custom skin definition. For information about creating and
using custom skins, see Chapter 20, "Customizing the Appearance Using Styles and
Skins."

You can use an EL expression for the skin family value, as shown in the following
code:

<skin-family>#{prefs.proxy.skinFamily}</skin-family>

Note: Enabling animation will have an impact on performance. For
more information, see the "Oracle Application Development
Framework Performance Tuning" section in the Oracle Fusion
Middleware Performance and Tuning Guide.

Configuration in trinidad-config.xml

ADF Faces Configuration A-29

A.6.2.3 Time Zone and Year
To set the time zone used for processing and displaying dates, and the year offset that
should be used for parsing years with only two digits, use the following elements:

■ <time-zone>: By default, ADF Faces uses the time zone used by the application
server if no value is set. If needed, you can use an EL expression that evaluates to a
TimeZone object. This value is used by
org.apache.myfaces.trinidad.converter.DateTimeConverter while converting
strings to Date.

■ <two-digit-year-start>: This value is specified as a Gregorian calendar year and
is used by org.apache.myfaces.trinidad.converter.DateTimeConverter to
convert strings to Date. This element defaults to the year 1950 if no value is set. If
needed, you can use a static, integer value or an EL expression that evaluates to an
Integer object.

A.6.2.4 Enhanced Debugging Output
By default, the <debug-output> element is false. ADF Faces enhances debugging
output when you set <debug-output> to true. The following features are then added
to debug output:

■ Automatic indenting

■ Comments identifying which component was responsible for a block of HTML

■ Detection of unbalanced elements, repeated use of the same attribute in a single
element, or other malformed markup problems

■ Detection of common HTML errors (for example, <form> tags inside other <form>
tags or <tr> or <td> tags used in invalid locations).

A.6.2.5 Page Accessibility Level
Use <accessibility-mode> to define the level of accessibility support in an
application. The supported values are:

■ default: Output supports accessibility features.

■ inaccessible: Accessibility-specific constructs are removed to optimize output
size.

■ screenReader: Accessibility-specific constructs are added to improve behavior
under a screen reader.

Use <accessibility-profile> to configure the color contrast and font size used in the
application. The supported values are:

■ high-contrast: Application displays using high-contrast instead of the default
contrast.

■ large-fonts: Application displays using large fonts instead of the default size
fonts.

Performance Tip: Debugging impacts performance. Set this
parameter to false in a production environment.

Note: Screen reader mode may have a negative effect on other users.
For example, access keys are not displayed if the accessibility mode is
set to screen reader mode.

Configuration in trinidad-config.xml

A-30 Web User Interface Developer's Guide for Oracle Application Development Framework

To use more than one setting, separate the values with a space.

A.6.2.6 Language Reading Direction
By default, ADF Faces page rendering direction is based on the language being used
by the browser. You can, however, explicitly set the default page rendering direction in
the <right-to-left> element by using an EL expression that evaluates to a Boolean
object, or by using true or false, as shown in the following code:

<!-- Render the page right-to-left for Arabic -->
<!-- and left-to-right for all other languages -->
<right-to-left>
 #{view.locale.language=='ar' ? 'true' : 'false'}
</right-to-left>

A.6.2.7 Currency Code and Separators for Number Groups and Decimal Points
To set the currency code to use for formatting currency fields, and define the separator
to use for groups of numbers and the decimal point, use the following elements:

■ <currency-code>: Defines the default ISO 4217 currency code used by the
org.apache.myfaces.trinidad.converter.NumberConverter class to format
currency fields that do not specify an explicit currency code in their own converter.
Use a static value or an EL expression that evaluates to a String object. For
example:

<!-- Set the currency code to US dollars. -->
<currency-code>USD</currency-code>

■ <number-grouping-separator>: Defines the separator used for groups of numbers
(for example, a comma). ADF Faces automatically derives the separator from the
current locale, but you can override this default by specifying a value in this
element. You can use a static value or an EL expression that evaluates to a
Character object. If set, this value is used by the
org.apache.myfaces.trinidad.converter.NumberConverter class while parsing
and formatting.

For example, to set the number grouping separator to a period when the German
language is used in the application, use this code:

<!-- Set the number grouping separator to period for German -->
<!-- and comma for all other languages -->
<number-grouping-separator>
 #{view.locale.language=='de' ? '.' : ','}
</number-grouping-separator>

■ <decimal-separator>: Defines the separator (for example, a period or a comma)
used for the decimal point. ADF Faces automatically derives the separator from
the current locale, but you can override this default by specifying a value in this
element. You can use a static value or an EL expression that evaluates to a
Character object. If set, this value is used by the
org.apache.mtfaces.trinidad.converter.NumberConverter class while parsing
and formatting.

For example, to set the decimal separator to a comma when the German language
is used in the application, use this code:

<!-- Set the decimal separator to comma for German -->
<!-- and period for all other languages -->
<decimal-separator>
 #{view.locale.language=='de' ? ',' : '.'}

Configuration in trinidad-config.xml

ADF Faces Configuration A-31

</decimal-separator>

A.6.2.8 Formatting Dates and Numbers Locale
By default, ADF Faces and MyFaces Trinidad will format dates (including the first day
of the week) and numbers in the same locale used for localized text (which by default
is the locale of the browser). If, however, you want dates and numbers formatted in a
different locale, you can use the <formatting-locale> element, which takes an
IANA-formatted locale (for example, ja, fr-CA) as its value. The contents of this
element can also be an EL expression pointing at an IANA string or a
java.util.Locale object.

A.6.2.9 Output Mode
To change the output mode ADF Faces uses, set the <output-mode> element, using one
of these values:

■ default: The default page output mode (usually display).

■ printable: An output mode suitable for printable pages.

■ email: An output mode suitable for emailing a page's content.

A.6.2.10 Number of Active PageFlowScope Instances
By default ADF Faces sets the maximum number of active PageFlowScope instances at
any one time to 15. Use the <page-flow-scope-lifetime> element to change the
number. Unlike other elements, you must use a static value: EL expressions are not
supported.

A.6.2.11 Custom File Uploaded Processor
Most applications do not need to replace the default UploadedFileProcessor instance
provided in ADF Faces, but if your application must support uploading of very large
files, or if it relies heavily on file uploads, you may wish to replace the default
processor with a custom UploadedFileProcessor implementation.

For example, you could improve performance by using an implementation that
immediately stores files in their final destination, instead of requiring ADF Faces to
handle temporary storage during the request. To replace the default processor, specify
your custom implementation using the <uploaded-file-processor> element, as
shown in the following code:

<uploaded-file-processor>
 com.mycompany.faces.myUploadedFileProcessor
</uploaded-file-processor>

A.6.2.12 Client-Side Validation and Conversion
ADF Faces validators and converters support client-side validation and conversion, as
well as server-side validation and conversion. ADF Faces client-side validators and
converters work the same way as the server-side validators and converters, except that
JavaScript is used on the client.

The JavaScript-enabled validators and converters run on the client when the form is
submitted; thus errors can be caught without a server roundtrip.

The <client-validation-disabled> configuration element is not supported in the
rich client version of ADF Faces. This means you cannot turn off client-side validation
and conversion in ADF Faces applications.

Configuration in trinidad-skins.xml

A-32 Web User Interface Developer's Guide for Oracle Application Development Framework

A.7 Configuration in trinidad-skins.xml
By default, JDeveloper uses the skyros skin family when you create JSF pages with
ADF Faces components. The skin family is configured in the trinidad-config.xml
file, as described in Section A.6.1, "How to Configure ADF Faces Features in
trinidad-config.xml." If you wish to use a custom skin for your application, create a
trinidad-skins.xml file, which is used to register custom skins in an application.

For detailed information about creating custom skins, see Chapter 20, "Customizing
the Appearance Using Styles and Skins."

A.8 Using the RequestContext EL Implicit Object
In ADF Faces, you can use the EL implicit object requestContext to retrieve values
from configuration properties defined in the trinidad-config.xml file. The
requestContext implicit object, which is an instance of the
org.apache.myfaces.trinidad.context.RequestContext class, exposes several
properties of type java.util.Map, enabling you to use JSF EL expressions to retrieve
context object property values.

For example, the EL expression #{requestContext} returns the RequestContext object
itself, and the EL expression #{requestContext.skinFamily} returns the value of the
<skin-family> element from the trinidad-config.xml file.

You can also use EL expressions to bind a component attribute value to a property of
the requestContext implicit object. For example, in the EL expression that follows, the
<currency-code> property is bound to the currencyCode attribute value of the JSF
ConvertNumber component:

<af:outputText>
 <f:convertNumber currencyCode="#{requestContext.currencyCode}"/>
</af:outputText>

You can use the following requestContext implicit object properties:

■ requestContext.accessibilityMode: Returns the value of the
<accessibility-mode> element from the trinidad-config.xml file.

■ requestContext.agent: Returns an object that describes the client agent that is
making the request and that is to display the rendered output. The properties in
the agent object are:

– agentName: Canonical name of the agent browser, (for example, gecko and ie).

– agentVersion: Version number of the agent browser.

– capabilities: Map of capability names (for example, height, width) and their
values for the current client request.

– hardwareMakeModel: Canonical name of the hardware make and model (for
example, nokia6600 and sonyericssonP900).

– platformName: Canonical name of the platform (for example, ppc, windows,
and mac).

– platformVersion: Version number of the platform.

– type: Agent type (for example, desktop, pda, and phone).

■ requestContext.clientValidationDisabled: Returns the value of the
<client-validation-disabled> element from the trinidad-config.xml file.

Using the RequestContext EL Implicit Object

ADF Faces Configuration A-33

■ requestContext.colorPalette: Returns a Map that takes color palette names as
keys, and returns the color palette as a result. Each color palette is an array of
java.awt.Color objects. Provides access to four standard color palettes:

– web216: The 216 web-safe colors

– default49: A 49-color palette, with one fully transparent entry

– opaque40: A 49-color palette, without a fully transparent entry

– default80: An 80-color palette, with one fully transparent entry

■ requestContext.currencyCode: Returns the value of the <currency-code>
element from the trinidad-config.xml file.

■ requestContext.debugOutput: Returns the value of the <debug-output> element
from the trinidad-config.xml file.

■ requestContext.decimalSeparator: Returns the value of the
<decimal-separator> element from the trinidad-config.xml file.

■ requestContext.formatter: Returns a Map object that performs message
formatting with a recursive Map structure. The first key must be the message
formatting mask, and the second key is the first parameter into the message.

■ requestContext.helpSystem: Returns a Map object that accepts help system
properties as keys, and returns a URL as a result. For example, the EL expression
#{requestContext.helpSystem['frontPage']} returns a URL to the front page of
the help system. This assumes you have configured the
<oracle-help-servlet-url> element in the trinidad-config.xml file.

■ requestContext.helpTopic: Returns a Map object that accepts topic names as keys,
and returns a URL as a result. For example, the EL expression
#{requestContext.helpTopic['foo']} returns a URL to the help topic "foo". This
assumes you have configured the <oracle-help-servlet-url> element in the
trinidad-config.xml file.

■ requestContext.numberGroupingSeparator: Returns the value of the
<number-grouping-separator> element from the trinidad-config.xml file.

■ requestContext.oracleHelpServletUrl: Returns the value of the
<oracle-help-servlet-url> element from the trinidad-config.xml file.

■ requestContext.outputMode: Returns the value of the <output-mode> element
from the trinidad-config.xml file.

■ requestContext.pageFlowScope: Returns a map of objects in the pageFlowScope
object.

■ requestContext.rightToLeft: Returns the value of the <right-to-left> element
from the trinidad-config.xml file.

■ requestContext.skinFamily: Returns the value of the <skin-family> element
from the trinidad-config.xml file.

■ requestContext.timeZone: Returns the value of the <time-zone> element from
the trinidad-config.xml file.

■ requestContext.twoDigitYearStart: Returns the value of the
<two-digit-year-start> element from the trinidad-config.xml file.

For a complete list of properties, refer to the Javadoc for
org.apache.myfaces.trinidad.context.RequestContext.

Using JavaScript Library Partitioning

A-34 Web User Interface Developer's Guide for Oracle Application Development Framework

A.9 Using JavaScript Library Partitioning
ADF Faces groups its components’ JavaScript files into JavaScript features. A
JavaScript feature is a collection of JavaScript files associated with a logical identifier
that describes the feature. For example, the panelStretchLayout client component is
comprised of the following two JavaScript files

■ oracle/adf/view/js/component/rich/layout/
AdfRichPanelStretchLayout.js

■ oracle/adfinternal/view/js/laf/dhtml/rich/
AdfDhtmlPanelStretchLayoutPeer.js

These two files are grouped into the AdfRichPanelStretchLayout feature.

JavaScript features are further grouped into JavaScript partitions. JavaScript partitions
allow you to group JavaScript features into larger collections with the goal of
influencing the download size and number of round trips. For example, since the
panelStretchLayout component is often used with the panelSplitter component, the
features for these two components are grouped together in the stretch partition, along
with the other ADF Faces layout components that can stretch their children. At
runtime, when a page is loaded, the framework determines the components used on
the page, and then from that, determines which features are needed (feature names are
the same as the components’ constructor name). Only the partitions that contain those
features are downloaded. For more information about JavaScript partitioning, see
Section 1.2.1.2, "JavaScript Library Partitioning."

Features and partitions are defined using configuration files. ADF Faces ships with a
default features and partitions configuration file. You can overwrite the default
partitions file by creating your own implementation. When you create custom ADF
Faces components, you can create your own features and partition configuration files
for those components.

By default, JavaScript partitioning is turned on. Whether or not your application uses
JavaScript partitioning is determined by a context parameter in the web.xml file. For

Note: One instance of the
org.apache.myfaces.trinidad.context.RequestContext class exists
per request. The RequestContext class does not extend the JSF
FacesContext class.

To retrieve a configuration property programmatically, first call the
static getCurrentInstance() method to get an instance of the
RequestContext object, and then call the method that retrieves the
desired property, as shown in the following code:

RequestContext context = RequestContext.getCurrentInstance();

// Get the time-zone property
TimeZone zone = context.getTimeZone();

// Get the right-to-left property
if (context.isRightToLeft())
{
 .
 .
 .
}

Using JavaScript Library Partitioning

ADF Faces Configuration A-35

more information about enabling or disabling JavaScript partitioning, see
Section A.2.3.14, "JavaScript Partitioning."

A.9.1 How to Create a JavaScript Feature
You create a JavaScript feature by creating an adf-js-features.xml file, and then
adding entries for the features.

To create a JavaScript feature:
1. If not already created, create a META-INF directory for your component.

2. Right-click the META-INF directory, and choose New from the context menu.

3. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

4. Enter adf-js-features.xml as the file name and save it in the META-INF directory.

5. In the source editor, replace the generated code with the code shown in
Example A–6.

Example A–19 XML for adf-js-features.xml File

<?xml version="1.0" encoding="utf-8" ?>
<adf-js-features xmlns="http://xmlns.oracle.com/adf/faces/feature"

</adf-js-features>

6. Add the following elements to populate a feature with the relevant component
files and dependencies.

■ features: The root element of the configuration file.

■ feature: Create as a child to the features element. This element must contain
one feature-name child element and can also contain any number of
feature-class, as well as any number of feature-dependency elements.

■ feature-name: Create as a child to the feature element. Specifies the name of
the feature. You must use the client component’s constructor name for this
value.

■ feature-class: Create as a child to the feature element. Specifies the location
of the single JavaScript file or class to be included in this feature. There can be
multiple feature-class elements.

■ feature-dependency: Create as a child to the feature element. Specifies the
name of another feature that this feature depends on. For example, if one
component B extends component A, then the feature that represents
component A must be listed as a dependency for component B. By noting
dependencies, the framework can ensure that any dependent classes are
available, even if the two features are not in the same partition.

Note: You create JavaScript features when you create custom ADF
Faces components. All existing ADF Faces components already have
features created for them, and these cannot be changed.

Tip: If you don’t see the General node, click the All Technologies
tab at the top of the Gallery.

Using JavaScript Library Partitioning

A-36 Web User Interface Developer's Guide for Oracle Application Development Framework

Example A–20 shows the feature element for a fictitious custom component that
uses popup components (and therefore has a dependency to the popup feature).

Example A–20 JavaScript Features Configuration

<features xmlns="http://xmlns.oracle.com/adf/faces/feature">
 <feature>
 <feature-name>AcmeMyPane</feature-name>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeMyPane.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/event/AcmePaneSelectEvent.js
 </feature-class>
 <feature-class>
 oracle/adfdemo/acme/js/component/AcmeMyPanePeer.js
 </feature-class>

 <!-- Dependencies -->

 <!-- Popup hints -->
 <feature-dependency>AdfRichPopup</feature-dependency>

</feature>

A.9.2 How to Create JavaScript Partitions
You create a JavaScript partition by creating an adf-js-partitions.xml file, and
then adding entries for the features.

To create JavaScript partitions:
1. Right-click the WEB-INF directory, and choose New from the context menu.

2. In the New Gallery, expand General, select XML and then XML Document, and
click OK.

3. Enter adf-js-partitions.xml as the file name and save it in the WEB-INF
directory.

4. In the source editor, replace the generated code with the code shown in
Example A–6.

Example A–21 XML for adf-js-partitions.xml File

<?xml version="1.0" encoding="utf-8" ?>
<adf-js-partitions xmlns="http://xmlns.oracle.com/adf/faces/partition"

</adf-js-partitions>

Note: ADF Faces provides a default adf-js-partitions.xml file (see
Example A–23). If you want to change the partition configuration, you
need to create your own complete adf-js-partitions.xml file. At
runtime, the framework will search the WEB-INF directory for that file.
If one is not found, it will load the default partition file.

Tip: If you don’t see the General node, click the All Technologies
tab at the top of the Gallery.

Using JavaScript Library Partitioning

ADF Faces Configuration A-37

5. Add the following elements to populate a partition with the relevant features.

■ partitions: The root element of the configuration file.

■ partition: Create as a child to the partitions element. This element must
contain one partition-name child element and one or more feature elements.

■ partition-name: Create as a child to the partition element. Specifies the
name of the partition. This value will be used to produce a unique URL for
this partition’s JavaScript library.

■ feature: Create as a child to the partition element. Specifies the feature to be
included in this partition. There can be multiple feature elements.

Example A–22 shows the partition element for the tree partition that contains
the AdfRichTree and AdfRichTreeTable features.

Example A–22 JavaScript Partition Configuration

<partition>
 <partition-name>tree</partition-name>
 <feature>AdfUITree</feature>
 <feature>AdfUITreeTable</feature>
 <feature>AdfRichTree</feature>
 <feature>AdfRichTreeTable</feature>
</partition>

A.9.3 What You May Need to Know About the adf-js-partitions.xml File
The default ADF Faces adf-js-partitions.xml file has partitions that you can
override by creating your own partitions file. For more information, see Section A.9.2,
"How to Create JavaScript Partitions." Example A–23 shows the default ADF Faces
adf-js-partitions.xml file.

Example A–23 The Default adf-js-partitions.xml File

<?xml version="1.0" encoding="utf-8"?>

<partitions xmlns="http://xmlns.oracle.com/adf/faces/partition">

 <partition>
 <partition-name>boot</partition-name>
 <feature>AdfBootstrap</feature>
 </partition>

 <partition>
 <partition-name>core</partition-name>

 <feature>AdfCore</feature>

 <!-- Behavioral component super classes -->
 <feature>AdfUIChoose</feature>
 <feature>AdfUICollection</feature>
 <feature>AdfUICommand</feature>
 <feature>AdfUIDialog</feature>
 <feature>AdfUIDocument</feature>

Tip: Any feature configured in the adf-js-features.xml file that
does not appear in a partition is treated as if it were in its own
partition.

Using JavaScript Library Partitioning

A-38 Web User Interface Developer's Guide for Oracle Application Development Framework

 <feature>AdfUIEditableValue</feature>
 <feature>AdfUIForm</feature>
 <feature>AdfUIGo</feature>
 <feature>AdfUIInput</feature>
 <feature>AdfUIObject</feature>
 <feature>AdfUIOutput</feature>
 <feature>AdfUIPanel</feature>
 <feature>AdfUIPopup</feature>
 <feature>AdfUISelectBoolean</feature>
 <feature>AdfUISelectInput</feature>
 <feature>AdfUISelectOne</feature>
 <feature>AdfUISelectMany</feature>
 <feature>AdfUIShowDetail</feature>
 <feature>AdfUISubform</feature>
 <feature>AdfUIValue</feature>

 <!-- These are all so common that we group them with core -->
 <feature>AdfRichDocument</feature>
 <feature>AdfRichForm</feature>
 <feature>AdfRichPopup</feature>
 <feature>AdfRichSubform</feature>
 <feature>AdfRichCommandButton</feature>
 <feature>AdfRichCommandLink</feature>

 <!--
 Dialog is currently on every page for messaging. No use
 in putting these in a separate partition.
 -->
 <feature>AdfRichPanelWindow</feature>
 <feature>AdfRichDialog</feature>

 <!-- af:showPopupBehavior is so small/common, belongs in core -->
 <feature>AdfShowPopupBehavior</feature>
 </partition>

 <partition>
 <partition-name>accordion</partition-name>
 <feature>AdfRichPanelAccordion</feature>
 </partition>

 <partition>
 <partition-name>border</partition-name>
 <feature>AdfRichPanelBorderLayout</feature>
 </partition>

 <partition>
 <partition-name>box</partition-name>
 <feature>AdfRichPanelBox</feature>
 </partition>

 <partition>
 <partition-name>calendar</partition-name>
 <feature>AdfUICalendar</feature>
 <feature>AdfRichCalendar</feature>
 <feature>AdfCalendarDragSource</feature>
 <feature>AdfCalendarDropTarget</feature>
 </partition>

 <partition>
 <partition-name>collection</partition-name>

Using JavaScript Library Partitioning

ADF Faces Configuration A-39

 <feature>AdfUIDecorateCollection</feature>
 <feature>AdfRichPanelCollection</feature>
 </partition>

 <partition>
 <partition-name>color</partition-name>
 <feature>AdfRichChooseColor</feature>
 <feature>AdfRichInputColor</feature>
 </partition>

 <partition>
 <partition-name>date</partition-name>
 <feature>AdfRichChooseDate</feature>
 <feature>AdfRichInputDate</feature>
 </partition>

 <partition>
 <partition-name>declarativeComponent</partition-name>
 <feature>AdfUIInclude</feature>
 <feature>AdfUIDeclarativeComponent</feature>
 <feature>AdfRichDeclarativeComponent</feature>
 </partition>

 <partition>
 <partition-name>detail</partition-name>
 <feature>AdfRichShowDetail</feature>
 </partition>

 <partition>
 <partition-name>dnd</partition-name>
 <feature>AdfDragAndDrop</feature>
 <feature>AdfCollectionDragSource</feature>
 <feature>AdfStampedDropTarget</feature>
 <feature>AdfCollectionDropTarget</feature>
 <feature>AdfAttributeDragSource</feature>
 <feature>AdfAttributeDropTarget</feature>
 <feature>AdfComponentDragSource</feature>
 <feature>AdfDropTarget</feature>
 </partition>

 <partition>
 <partition-name>detailitem</partition-name>
 <feature>AdfRichShowDetailItem</feature>
 </partition>

 <partition>
 <partition-name>file</partition-name>
 <feature>AdfRichInputFile</feature>
 </partition>

 <partition>
 <partition-name>form</partition-name>
 <feature>AdfRichPanelFormLayout</feature>
 <feature>AdfRichPanelLabelAndMessage</feature>
 </partition>

 <partition>
 <partition-name>format</partition-name>
 <feature>AdfRichOutputFormatted</feature>
 </partition>

Using JavaScript Library Partitioning

A-40 Web User Interface Developer's Guide for Oracle Application Development Framework

 <partition>
 <partition-name>frame</partition-name>
 <feature>AdfRichInlineFrame</feature>
 </partition>

 <partition>
 <partition-name>header</partition-name>
 <feature>AdfRichPanelHeader</feature>
 <feature>AdfRichShowDetailHeader</feature>
 </partition>

 <partition>
 <partition-name>imagelink</partition-name>
 <feature>AdfRichCommandImageLink</feature>
 </partition>

 <partition>
 <partition-name>iedit</partition-name>
 <feature>AdfInlineEditing</feature>
 </partition>

 <partition>
 <partition-name>input</partition-name>
 <feature>AdfRichInputText</feature>
 <feature>AdfInsertTextBehavior</feature>
 </partition>

 <partition>
 <partition-name>label</partition-name>
 <feature>AdfRichOutputLabel</feature>
 </partition>

 <partition>
 <partition-name>list</partition-name>
 <feature>AdfRichPanelList</feature>
 </partition>

 <partition>
 <partition-name>lov</partition-name>
 <feature>AdfUIInputPopup</feature>
 <feature>AdfRichInputComboboxListOfValues</feature>
 <feature>AdfRichInputListOfValues</feature>
 </partition>

 <partition>
 <partition-name>media</partition-name>
 <feature>AdfRichMedia</feature>
 </partition>

 <partition>
 <partition-name>message</partition-name>
 <feature>AdfUIMessage</feature>
 <feature>AdfUIMessages</feature>
 <feature>AdfRichMessage</feature>
 <feature>AdfRichMessages</feature>
 </partition>

 <partition>
 <partition-name>menu</partition-name>

Using JavaScript Library Partitioning

ADF Faces Configuration A-41

 <feature>AdfRichCommandMenuItem</feature>
 <feature>AdfRichGoMenuItem</feature>
 <feature>AdfRichMenuBar</feature>
 <feature>AdfRichMenu</feature>
 </partition>

 <partition>
 <partition-name>nav</partition-name>
 <feature>AdfUINavigationPath</feature>
 <feature>AdfUINavigationLevel</feature>
 <feature>AdfRichBreadCrumbs</feature>
 <feature>AdfRichCommandNavigationItem</feature>
 <feature>AdfRichNavigationPane</feature>
 </partition>

 <partition>
 <partition-name>note</partition-name>
 <feature>AdfRichNoteWindow</feature>
 </partition>

 <partition>
 <partition-name>poll</partition-name>
 <feature>AdfUIPoll</feature>
 <feature>AdfRichPoll</feature>
 </partition>

 <partition>
 <partition-name>progress</partition-name>
 <feature>AdfUIProgress</feature>
 <feature>AdfRichProgressIndicator</feature>
 </partition>

 <partition>
 <partition-name>print</partition-name>
 <feature>AdfShowPrintablePageBehavior</feature>
 </partition>

 <partition>
 <partition-name>scrollComponentIntoView</partition-name>
 <feature>AdfScrollComponentIntoViewBehavior</feature>
 </partition>

 <partition>
 <partition-name>query</partition-name>
 <feature>AdfUIQuery</feature>
 <feature>AdfRichQuery</feature>
 <feature>AdfRichQuickQuery</feature>
 </partition>

 <partition>
 <partition-name>region</partition-name>
 <feature>AdfUIRegion</feature>
 <feature>AdfRichRegion</feature>
 </partition>

 <partition>
 <partition-name>reset</partition-name>
 <feature>AdfUIReset</feature>
 <feature>AdfRichResetButton</feature>
 </partition>

Using JavaScript Library Partitioning

A-42 Web User Interface Developer's Guide for Oracle Application Development Framework

 <partition>
 <partition-name>rte</partition-name>
 <feature>AdfRichTextEditor</feature>
 <feature>AdfRichTextEditorInsertBehavior</feature>
 </partition>

 <partition>
 <partition-name>select</partition-name>

 <feature>AdfRichSelectBooleanCheckbox</feature>
 <feature>AdfRichSelectBooleanRadio</feature>
 <feature>AdfRichSelectManyCheckbox</feature>
 <feature>AdfRichSelectOneRadio</feature>
 </partition>

 <partition>
 <partition-name>selectmanychoice</partition-name>
 <feature>AdfRichSelectManyChoice</feature>
 </partition>

 <partition>
 <partition-name>selectmanylistbox</partition-name>
 <feature>AdfRichSelectManyListbox</feature>
 </partition>

 <partition>
 <partition-name>selectonechoice</partition-name>
 <feature>AdfRichSelectOneChoice</feature>
 </partition>

 <partition>
 <partition-name>selectonelistbox</partition-name>
 <feature>AdfRichSelectOneListbox</feature>
 </partition>

 <partition>
 <partition-name>shuttle</partition-name>
 <feature>AdfUISelectOrder</feature>
 <feature>AdfRichSelectManyShuttle</feature>
 <feature>AdfRichSelectOrderShuttle</feature>
 </partition>

 <partition>
 <partition-name>slide</partition-name>
 <feature>AdfRichInputNumberSlider</feature>
 <feature>AdfRichInputRangeSlider</feature>
 </partition>

 <partition>
 <partition-name>spin</partition-name>
 <feature>AdfRichInputNumberSpinbox</feature>
 </partition>

 <partition>
 <partition-name>status</partition-name>
 <feature>AdfRichStatusIndicator</feature>
 </partition>

 <partition>

Using JavaScript Library Partitioning

ADF Faces Configuration A-43

 <partition-name>stretch</partition-name>
 <feature>AdfRichDecorativeBox</feature>
 <feature>AdfRichPanelSplitter</feature>
 <feature>AdfRichPanelStretchLayout</feature>
 <feature>AdfRichPanelDashboard</feature>
 <feature>AdfPanelDashboardBehavior</feature>
 <feature>AdfDashboardDropTarget</feature>
 </partition>

 <partition>
 <partition-name>tabbed</partition-name>
 <feature>AdfUIShowOne</feature>
 <feature>AdfRichPanelTabbed</feature>
 </partition>

 <partition>
 <partition-name>table</partition-name>
 <feature>AdfUIIterator</feature>
 <feature>AdfUITable</feature>
 <feature>AdfUITable2</feature>
 <feature>AdfUIColumn</feature>
 <feature>AdfRichColumn</feature>
 <feature>AdfRichTable</feature>
 </partition>

 <partition>
 <partition-name>toolbar</partition-name>
 <feature>AdfRichCommandToolbarButton</feature>
 <feature>AdfRichToolbar</feature>
 </partition>

 <partition>
 <partition-name>toolbox</partition-name>
 <feature>AdfRichToolbox</feature>
 </partition>

 <partition>
 <partition-name>train</partition-name>
 <feature>AdfUIProcess</feature>
 <feature>AdfRichCommandTrainStop</feature>
 <feature>AdfRichTrainButtonBar</feature>
 <feature>AdfRichTrain</feature>
 </partition>

 <partition>
 <partition-name>tree</partition-name>
 <feature>AdfUITree</feature>
 <feature>AdfUITreeTable</feature>
 <feature>AdfRichTree</feature>
 <feature>AdfRichTreeTable</feature>
 </partition>

 <!--
 Some components which typically do have client-side representation,
 but small enough that we might as well download in a single partition
 in the event that any of these are needed.
 -->
 <partition>
 <partition-name>uncommon</partition-name>
 <feature>AdfRichGoButton</feature>

Using JavaScript Library Partitioning

A-44 Web User Interface Developer's Guide for Oracle Application Development Framework

 <feature>AdfRichIcon</feature>
 <feature>AdfRichImage</feature>
 <feature>AdfRichOutputText</feature>
 <feature>AdfRichPanelGroupLayout</feature>
 <feature>AdfRichSeparator</feature>
 <feature>AdfRichSpacer</feature>
 <feature>AdfRichGoLink</feature>
 </partition>

 <partition>
 <partition-name>eum</partition-name>
 <feature>AdfEndUserMonitoring</feature>
 </partition>

 <partition>
 <partition-name>ads</partition-name>
 <feature>AdfActiveDataService</feature>
 </partition>

 <partition>
 <partition-name>automation</partition-name>
 <feature>AdfAutomationTest</feature>
 </partition>

</partitions>

A.9.4 What Happens at Runtime: JavaScript Partitioning
ADF Faces loads the library partitioning configuration files at application initialization
time. First, ADF Faces searches for all adf-js-features.xml files in the META-INF
directory and loads all that are found (including the ADF Faces default feature
configuration file).

For the partition configuration file, ADF Faces looks for a single file named
adf-js-partitions.xml in the WEB-INF directory. If no such file is found, the ADF
Faces default partition configuration is used.

During the render traversal, ADF Faces collects information about which JavaScript
features are required by the page. At the end of the traversal, the complete set of
JavaScript features required by the (rendered) page contents is known. Once the set of
required JavaScript features is known, ADF Faces uses the partition configuration file
to map this set of features to the set of required partitions. Given the set of required
partitions, the HTML <script> references to these partitions are rendered just before
the end of the HTML document.

B

Message Keys for Converter and Validator Messages B-1

B Message Keys for Converter and Validator
Messages

This appendix lists all the message keys and message setter methods for ADF Faces
converters and validators.

This chapter includes the following sections:

■ Section B.1, "Introduction to ADF Faces Default Messages"

■ Section B.2, "Message Keys and Setter Methods"

■ Section B.3, "Converter and Validator Message Keys and Setter Methods"

B.1 Introduction to ADF Faces Default Messages
The FacesMessage class supports both summary and detailed messages. The
convention is that:

■ The summary message is defined for the main key. The key value is of the form
classname.MSG_KEY.

■ The detailed message is of the form classname.MSG_KEY_detail.

In summary, to override a detailed message you can either use the setter method on
the appropriate class or enter a replacement message in a resource bundle using the
required message key.

Placeholders are used in detail messages to provide relevant details such as the value
the user entered and the label of the component for which this is a message. The
general order of placeholder identifiers is:

■ component label

■ input value (if present)

■ minimum value (if present)

■ maximum value (if present)

■ pattern (if present)

B.2 Message Keys and Setter Methods
The following information is given for each of the ADF Faces converter and validators:

■ The set method you can use to override the message.

■ The message key you can use to identify your own version of the message in a
resource bundle.

Converter and Validator Message Keys and Setter Methods

B-2 Web User Interface Developer's Guide for Oracle Application Development Framework

■ How placeholders can be used in the message to include details such as the input
values and patterns.

B.3 Converter and Validator Message Keys and Setter Methods
This section gives the reference details for all ADF Faces converter and validator detail
messages.

B.3.1 af:convertColor
Converts strings representing color values to and from java.awt.Color objects. The
set of patterns used for conversion can be overriden.

Convert color: Input value cannot be converted to a color based on the patterns set
Set method:

setMessageDetailConvertBoth(java.lang.String convertBothMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.ColorConverter.CONVERT_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} A date-time example, based on the dateStyle and timeStyle set in the converter

B.3.2 af:convertDateTime
Converts a string to and from java.util.Date and the converse based on the pattern
and style set.

Convert date and time: Date-time value that cannot be converted to Date object
when type is set to both
Set method:

setMessageDetailConvertBoth(java.lang.String convertBothMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_BOTH_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Example of the format the converter is expecting

Convert date: Input value cannot be converted to a Date when the pattern or
secondary pattern is set or when type is set to date
Set method:

setMessageDetailConvertDate(java.lang.String convertDateMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_DATE_detail

Converter and Validator Message Keys and Setter Methods

Message Keys for Converter and Validator Messages B-3

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Example of the format the converter is expecting

Convert date: Input value cannot be converted to a Date when the pattern or
secondary pattern is set or when type is set to date
Set method:

setMessageDetailConvertTime(java.lang.String convertTimeMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_TIME_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Example of the format the converter is expecting

B.3.3 af:convertNumber
Provides an extension of the standard JSF javax.faces.convert.NumberConverter
class. The converter provides all the standard functionality of the default
NumberConverter and is strict while converting to an object.

Convert number: Input value cannot be converted to a Number, based on the
pattern set
Set method:

setMessageDetailConvertPattern(java.lang.String convertPatternMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_PATTERN_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The specified conversion pattern

Convert number: Input value cannot be converted to a Number when type is set to
number and pattern is null or not set
Set method:

setMessageDetailConvertNumber(java.lang.String convertNumberMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_NUMBER_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user

Converter and Validator Message Keys and Setter Methods

B-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Convert number: Input value cannot be converted to a Number when type is set to
currency and pattern is null or not set
Set method:

setMessageDetailConvertCurrency(java.lang.String convertCurrencyMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_CURRENCY_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user

Convert number: Input value cannot be converted to a Number when type is set to
percent and pattern is null or not set
Set method:

setMessageDetailConvertPercent(java.lang.String convertPercentMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_PERCENT_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user

B.3.4 af:validateByteLength
Validates the byte length of strings when encoded.

Validate byte length: The input value exceeds the maximum byte length
Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.ByteLengthValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} Maximum length

B.3.5 af:validateDateRestriction
Validates that the date is valid with some given restrictions.

Validate date restriction - Invalid Date: The input value is invalid when invalidDate
is set
Set method:

setMessageDetailInvalidDays(java.lang.String invalidDays)

Message key:

Converter and Validator Message Keys and Setter Methods

Message Keys for Converter and Validator Messages B-5

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.WEEKDAY_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The invalid date

Validate date restriction - Invalid day of the week: The input value is invalid when
invalidDaysOfWeek is set
Set method:

setMessageDetailInvalidDaysOfWeek(java.lang.String invalidDaysOfWeek)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.DAY_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The invalid month

Validate date restriction - Invalid month: The input value is invalid when
invalidMonths is set
Set method:

setMessageDetailInvalidMonths(java.lang.String invalidMonths)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.MONTH_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The invalid weekday

B.3.6 af:validateDateTimeRange
Validates that the date entered is within a given range.

Validate date-time range: The input value exceeds the maximum value set
Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The maximum allowed date

Converter and Validator Message Keys and Setter Methods

B-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Validate date-time range: The input value is less than the minimum value set
Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed date

Validate date-time range: The input value is not within the range, when minimum and
maximum are set
Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed date
{3} The maximum allowed date

B.3.7 af:validateDoubleRange
Validates that the value entered is within a given range.

Validate double range: The input value exceeds the maximum value set
Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The maximum allowed value

Validate double range: The input value is less than the minimum value set
Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.MINIMUM_detail

Placeholders:

Converter and Validator Message Keys and Setter Methods

Message Keys for Converter and Validator Messages B-7

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed value

Validate double range: The input value is not within the range, when minimum and
maximum are set
Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed value
{3} The maximum allowed value

B.3.8 af:validateLength
Validates that the value entered is within a given range.

Validate length: The input value exceeds the maximum value set
Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The maximum allowed length

Validate length: The input value is less than the minimum value set
Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed length

Validate length: The input value is not within the range, when minimum and maximum
are set
Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Converter and Validator Message Keys and Setter Methods

B-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The minimum allowed length
{3} The maximum allowed length

B.3.9 af:validateRegExp
Validates an expression using Java regular expression syntax.

Validate regular expression: The input value does not match the specified pattern
Set method:

setMessageDetailNoMatch(java.lang.String noMatchMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.RegExpValidator.NO_MATCH_detail

Placeholders:

{0} The label that identifies the component
{1} Value entered by the user
{2} The expected pattern

C

Keyboard Shortcuts C-1

CKeyboard Shortcuts

This appendix describes the keyboard shortcuts that can be used instead of pointing
devices.

This appendix includes the following sections:

■ Section C.1, "Introduction to Keyboard Shortcuts"

■ Section C.2, "Tab Traversal"

■ Section C.3, "Accelerator Keys"

■ Section C.4, "Accelerator Keys for ADF Data Visualization Components"

■ Section C.5, "Access Keys"

■ Section C.6, "Default Cursor or Focus Placement"

■ Section C.7, "The Enter Key"

C.1 Introduction to Keyboard Shortcuts
Keyboard shortcuts provide an alternative to pointing devices for navigating the page.
There are five types of keyboard shortcuts that can be provided in BLAF Plus
applications:

■ Tab traversal, using Tab and Shift+Tab keys: Moves the focus through UI elements
on a screen.

■ Accelerator keys (hot keys): bypasses menu and page navigation, and performs an
action directly, for example, Ctrl+C for Copy.

■ Access keys: Moves the focus to a specific UI element, for example, Alt+F (in
Windows) for the File menu.

■ Default cursor/focus placement: Puts the initial focus on a component so that
keyboard users can start interacting with the page without excessive navigation.

■ Enter key: Triggers an action when the cursor is in certain fields or when the focus
is on a link or button.

Keyboard shortcuts are not required for accessibility. Users should be able to navigate
to all parts and functions of the application using the Tab and arrow keys, without
using any keyboard shortcuts. Keyboard shortcuts merely provide an additional way
to access a function quickly.

Tab Traversal

C-2 Web User Interface Developer's Guide for Oracle Application Development Framework

C.2 Tab Traversal
Tab traversal allows the user to move the focus through different UI elements on a
page.

All active elements of the page are accessible by Tab traversal, that is, by using the Tab
key to move to the next control and Shift+Tab to move to the previous control. In most
cases, when a control has focus, the action can then be initiated by pressing Enter.

Some complex components use arrow keys to navigate after the component receives
focus using the Tab key.

C.2.1 Tab Traversal Sequence on a Page
Default Tab traversal order for a page is from left to right and from top to bottom, as
shown in Figure C–1. Tab traversal in a two-column form layout does not follow this
pattern, but rather follows a columnar pattern. On reaching the bottom, the tab
sequence repeats again from the top.

Figure C–1 Tab Traversal Sequence on a Page

Avoid using custom code to control the tab traversal sequence within a page, as the
resulting pages would be too difficult to manage and would create an inconsistent user
experience across pages in an application and across applications.

To improve keyboard navigation efficiency for users, you should include a skip
navigation link at the top of the page, which should navigate directly to the first
content-related tab stop.

C.2.2 Tab Traversal Sequence in a Table
The Tab traversals in a table establish a unique row-wise navigation pattern when the
user presses the Tab key several times to navigate sequentially from one cell to
another. When the user presses Enter, the focus moves to the next row, to follow the
same pattern. The navigational sequence begins and ends in the same column as in the
previous row.

Figure C–2 shows an example of a tab traversal sequence in a table.

Tab Traversal

Keyboard Shortcuts C-3

Figure C–2 Tab Traversal Sequence in a Table

In Figure C–2, the user has navigated the rows in the following way:

1. The user clicks a cell in the inputText column, giving it focus and making it
editable.

Because the Tab key is used to navigate, the inputText column is recognized as the
starting column for the navigation pattern.

2. The user presses the Tab key and moves the focus in the same row to the cell of the
* Required field column.

3. The user presses the Tab key and moves the focus in the same row to the cell of the
inputComboListOf column.

4. The user presses the Enter key and the focus shifts to the inputText column in the
next row.

Pressing the Enter key sets a navigation pattern, based on the first set of Tab keys,
which is followed in subsequent rows.

Note: The navigational pattern is not recognized if you use arrow
keys to navigate from one cell to another.

Accelerator Keys

C-4 Web User Interface Developer's Guide for Oracle Application Development Framework

C.3 Accelerator Keys
Accelerator keys bypass menu and page navigation and perform actions directly.
Accelerator keys are sometimes called hot keys. Common accelerator keys in a
Windows application, such as Internet Explorer, are Ctrl+O for Open and Ctrl+P for
Print.

Accelerator keys are single key presses (for example, Enter and Esc) or key
combinations (for example, Ctrl+A) that initiate actions immediately when activated.
A key combination consists of a metakey and an execution key. The metakey may be
Ctrl (Command on a Macintosh keyboard), Alt (Option on a Macintosh keyboard), or
Shift. The execution key is the key that is pressed in conjunction with the metakey.

BLAF Plus components have some built-in accelerator keys. Custom accelerator keys
are supported only in menus, as shown in Figure C–3.

Figure C–3 Accelerator Keys in a Menu

When defining accelerator keys, you must follow these guidelines:

■ Accelerator keys must always have alternative interactions, such as direct
manipulation with the mouse (for example, clicking a button, or dragging and
dropping).

■ Because accelerator keys perform actions directly, if a user presses an accelerator
key unintentionally, data may be lost or incorrect data may be entered. To reduce
the likelihood of user error, accelerator keys should be used sparingly, and only for
frequently and repetitively used functions across applications. As a general rule,
less than 25% of available functions should have accelerator keys.

■ Custom accelerator keys must not override accelerator keys that are used in the
menus of BLAF Plus-supported browsers (see the browser and system
requirements for supported operating systems and browsers in BLAF Plus), and
must not override accelerator keys that are used in assistive technologies such as
screen readers.

■ Custom menu accelerator keys must always be key combinations. The metakey
may be Ctrl, Ctrl+Shift, or Ctrl+Alt. Ctrl+Alt is the recommended metakey
because Ctrl and Ctrl+Shift are commonly used by browsers. The execution key
must be a printable character (ASCII code range 33-126).

■ Custom menu accelerator keys must be global to the entire page. If a page were to
have different menus that used the same accelerator, it would be difficult for the
browser to predict which actions would be executed by the accelerator at any
given time.

Accelerator Keys

Keyboard Shortcuts C-5

Certain BLAF Plus components have built-in accelerator keys that apply when the
component has focus. Of these, some are reserved for page-level components, whereas
others may be assigned to menus when the component is not used on a page.
Table C–1 lists the accelerator keys that are already built into page-level BLAF Plus
components. You must not use these accelerator keys at all.

The menu commands take precedence if they are on the same page as page-level
components, and have the same accelerator keys. For this reason, you must not use the
accelerator keys listed in Table C–2 in menus when the related component also
appears on the same page.

Note: In Windows, users have the ability to assign a
Ctrl+Alt+character key sequence to an application desktop shortcut.
In this case, the key assignment overrides browser-level key
assignments. However, this feature is rarely used, so it can generally
be ignored.

Table C–1 Accelerator Keys Reserved for Page-Level Components

Accelerator Key Used In Function

Ctrl+Alt+R Active Data Check for updated data

Ctrl+Alt+W Menu

Messaging

Secondary Windows

Toggle focus between popup
and primary window

Ctrl+Alt+P Splitter Give focus to splitter bar

Table C–2 Accelerator Keys Assigned to Optional Components

Accelerator Key Component Function

Ctrl+Alt++ Rich Text Editor Superscript

Ctrl+Alt+- Rich Text Editor Subscript

Ctrl+/ Hierarchy Viewer Switch content panel

Ctrl+Alt+0. . .

Ctrl+Alt+5

Hierarchy Viewer Switch diagram layout

Ctrl+5 Rich Text Editor Strikethrough

Ctrl+A File Upload

Multi-Select Choice List

Multi-Select List Box

Pivot Table

Rich Text Editor

Spin Box

Text Box & Area

Table

Select all

Ctrl+B Rich Text Editor Boldface

Ctrl+Alt+C Rich Text Editor Toggle source code editing

Ctrl+E Rich Text Editor Center alignment

Accelerator Keys for ADF Data Visualization Components

C-6 Web User Interface Developer's Guide for Oracle Application Development Framework

C.4 Accelerator Keys for ADF Data Visualization Components
ADF Data Visualization components provide graphical and tabular capabilities for
displaying and analyzing data. Table C–3 lists the accelerator keys assigned to ADF
Data Visualization components: Gantt chart components, hierarchy viewer
components, pivot table components, and geographic map components. For more
information about ADF Data Visualization components, see Chapter 23, "Introduction
to ADF Data Visualization Components."

Ctrl+H Rich Text Editor Create hyperlink

Ctrl+Shift+H Rich Text Editor Remove hyperlink

Ctrl+I Rich Text Editor Italics

Ctrl+J Rich Text Editor Full-justified alignment

Ctrl+L Rich Text Editor Left alignment

Ctrl+Alt+L Rich Text Editor Numbered list

Ctrl+M Rich Text Editor Increase indentation

Ctrl+Shift+M Rich Text Editor Decrease indentation

Ctrl+Alt+M Gantt

Pivot Table

Table

Tree

Tree Table

Launch context menu

Ctrl+R Rich Text Editor Right alignment

Ctrl+Alt+R Rich Text Editor Toggle rich text editing

Ctrl+Shift+S Rich Text Editor Clear text styles

Ctrl+U Rich Text Editor Underline

Ctrl+Y Rich Text Editor Redo

Ctrl+Z Rich Text Editor Undo

Ctrl+Shift+^ Hierarchy Viewer

Tree

Tree Table

Go up one level

Esc Table Reverse all edits of the row
and disable edit mode

Enter

Shift+Enter

Table Navigate to the next or
previous cell of the column

Arrow Up

Arrow Down

Table

Tree Table

Move focus.

Note: If
selectionEventDelay is
enabled, row selection
during keyboard navigation
is delayed by 300ms to
allow table keyboard
navigation without causing
unwanted row selection.

Table C–2 (Cont.) Accelerator Keys Assigned to Optional Components

Accelerator Key Component Function

Accelerator Keys for ADF Data Visualization Components

Keyboard Shortcuts C-7

Table C–3 Accelerator Keys Assigned to ADF Data Visualization Components

Accelerator Key Components Function

Arrow Left

Arrow Right

List region of all Gantt
chart types

Chart region of project
Gantt

Chart region of scheduling
Gantt

Chart region of resource
utilization Gantt

ADF geographic map

ADF hierarchy viewer -
nodes

Pivot table

Pivot filter bar

Moves the focus.

If the focus is on the chart region of
the scheduling Gantt component,
the arrow key navigation selects
the previous or next taskbar of the
current row.

If the focus is on the time bucket of
the resource utilization Gantt
component, the arrow key
navigation selects the previous or
next time bucket in the current row.

If the focus is on the ADF
geographic map, the arrow key
navigation pans left or right by a
small increment. Press the Home or
End key to pan by a large
increment.

If the focus is on the node
component of the ADF hierarchy
viewer component, press
Ctrl+Arrow keys to move the focus
left or right without selecting the
component.

Arrow Up

Arrow Down

List region of all Gantt
chart types

Chart region of project
Gantt

Chart region of scheduling
Gantt

Chart region of resource
utilization Gantt

ADF geographic map

ADF hierarchy viewer -
nodes

Pivot table

Pivot filter bar

Moves the focus.

If the focus is on the chart region of
project Gantt, the arrow key
navigation selects previous or next
row.

If the focus is on the chart region
taskbar of the scheduling Gantt
component, the arrow key
navigation selects the first taskbar
of the previous row or the next row.

If the focus is on the time bucket of
the resource utilization Gantt
component, the arrow key
navigation selects the time bucket
of the previous row or next row.

If the focus is on the ADF
geographic map component, the
arrow key navigation pans up or
down by a small increment.

If the focus is on the node
component of the ADF hierarchy
viewer, press the Ctrl+Arrow keys
to move the focus up or down
without selecting the component.

Accelerator Keys for ADF Data Visualization Components

C-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Page Up

Page Down

ADF geographic map

ADF hierarchy viewer -
diagram

If the focus is on the ADF
geographic map component, the
page key navigation pans up or
down by a large increment.

If the focus is on the diagram of the
ADF hierarchy viewer component,
press and hold the Page Up or Page
Down keys to pan up or down
continuously. Press Ctrl+Page Up
or Ctrl+Page Down to pan left or
right continuously.

+ ADF geographic map

ADF hierarchy viewer -
diagram

Increases the zoom level.

If the focus is on the diagram of the
ADF hierarchy viewer component,
press number keys 1 through 5 to
zoom from 10% through 100%.
Press 0 to zoom the diagram to fit
within available space.

- ADF geographic map

ADF hierarchy viewer -
diagram

Decreases the zoom level.

If the focus is on the diagram of the
ADF hierarchy viewer component,
press number keys 1 through 5 to
zoom from 10% through 100%.
Press 0 to zoom the diagram to fit
within available space.

Ctrl+Alt+M All Gantt chart types

Pivot table

Launches the context menu.

Home ADF hierarchy viewer -
nodes

Moves the focus to first node in the
current level.

End ADF hierarchy viewer -
nodes

Moves the focus to last node in the
current level.

Ctrl + Home ADF hierarchy viewer -
nodes

Moves the focus and select the root
node.

< ADF hierarchy viewer -
nodes

Switches to the active node's
previous panel

> ADF hierarchy viewer -
nodes

Switches to the active node's next
panel.

Ctrl + / ADF hierarchy viewer -
nodes

Synchronize all nodes to display
the active node's panel.

Ctrl+Shift+^ ADF Hierarchy viewer -
nodes

Goes up one level.

Ctrl+/ ADF hierarchy viewer -
nodes

Switches the content panel.

Ctrl+Alt+0 ADF hierarchy viewer -
diagrams

Centers the active node and zooms
the diagram to 100%.

Tab ADF hierarchy viewer -
nodes

Pivot table

Pivot filter bar

Moves the focus through the
elements.

Table C–3 (Cont.) Accelerator Keys Assigned to ADF Data Visualization Components

Accelerator Key Components Function

Access Keys

Keyboard Shortcuts C-9

Some ADF Data Visualization components provide some common functions to the end
user through the menu bar, toolbar, context menu, or Task Properties dialog. You may
choose to show, hide, or replace these functionalities. If you hide or replace any
functionality, you must provide alternate keyboard accessibility to those functions.

C.5 Access Keys
Access keys move the focus to a specific UI element.

Access keys relocate cursor or selection focus to specific interface components. Every
component on the page with definable focus is accessible by tab traversal (using Tab
and Shift+Tab); however, access keys provide quick focus to frequently used
components. Access keys must be unique within a page.

Esc ADF hierarchy viewer -
nodes

Returns the focus to the containing
node.

If the focus is on the search panel,
close the panel.

Closes the Detail window, if it
appears while hovering over a
node.

Spacebar ADF hierarchy viewer -
nodes

Pivot table

Pivot filter bar

Selects the active node. Press
Ctrl+Spacebar to toggle selection of
the active node, and to select
multiple nodes.

Enter ADF hierarchy viewer -
nodes

Pivot table

Pivot filter bar

Isolates and selects the active node.
Press Shift+Enter to toggle the state
of the node.

/ ADF hierarchy viewer -
nodes

Toggles control panel state.

Ctrl+F ADF hierarchy viewer -
nodes

If the ADF hierarchy viewer
component is configured to
support search functionality, open
the search panel.

Ctrl+Alt+1 through
Ctrl+Alt+5

ADF hierarchy viewer -
nodes

Switches diagram layout.

Ctrl+Alt+Arrow keys Pivot table

Pivot filter bar

Changes the layout by pivoting a
row, column, or filter layer to a new
location. Use Ctrl+Alt+Arrow keys
to perform the following:

■ Provide visual feedback,
showing potential destination
of the pivot operation, if the
header layer is selected.

■ Select different destination
locations.

■ Move or swap the selected
header layer to the specified
destination.

Table C–3 (Cont.) Accelerator Keys Assigned to ADF Data Visualization Components

Accelerator Key Components Function

Access Keys

C-10 Web User Interface Developer's Guide for Oracle Application Development Framework

The result of pressing an access key depends on the associated element and the
browser:

■ Buttons: In both Firefox and Internet Explorer, access keys give focus to the
component and directly execute the action. Note that in Internet Explorer 7 access
key gives focus to the component, but does not execute the action.

■ Links: In Firefox, access keys give focus to the component and directly navigate
the link; in Internet Explorer, access keys give focus only to the link.

■ Other Elements: In both browsers, access keys give focus only to the element. For
checkbox components, the access key toggles the checkbox selection. For option
buttons, the access key performs selection of the option button.

Note that the access key could be different for different browsers on different
operating systems. You must refer to your browser's documentation for information
about access keys and their behavior. Table C–4 lists access key combinations for
button and anchor components in some common browsers.

Table C–4 Access Key For Various Browsers

Browser Operating System Key Combination Action

Google Chrome Linux Alt + mnemonic Click

Google Chrome Mac OS X Control + Option +
mnemonic

Click

Google Chrome Windows Alt +mnemonic Click

Mozilla Firefox Linux Alt + Shift + mnemonic Click

Mozilla Firefox Mac OS X Control + mnemonic Click

Mozilla Firefox Windows Alt + Shift + mnemonic Click

Microsoft Internet
Explorer 7

Windows Alt + mnemonic Set focus

Microsoft Internet
Explorer 8

Windows Alt + mnemonic Click or set focus

Apple Safari Windows Alt + mnemonic Click

Apple Safari Mac OS X Control + Option +
mnemonic

Click

Notes:

■ Different versions of a browser might behave differently for the
same access key. For example, using Alt + mnemonic for a button
component in Internet Explorer 7 sets focus on the component,
but it triggers the click action in Internet Explorer 8.

■ In Firefox, to change the default behavior of the component when
access key combination is used, change the configuration setting
for the accessibility.accesskeycausesactivation user
preference.

■ Some ADF Faces components that are named as Button do not use
HTML button elements. For example, af:commandToolbarButton
uses an anchor HTML element.

Access Keys

Keyboard Shortcuts C-11

If the mnemonic is present in the text of the component label or prompt (for example, a
menu name, button label, or text box prompt), it is visible in the interface as an
underlined character, as shown in Figure C–4. If the character is not part of the text of
the label or prompt, it is not displayed in the interface.

Figure C–4 Access Key

When defining access keys, you must follow these guidelines:

■ Access keys may be provided for buttons and other components with a high
frequency of use. You may provide standard cross-application key assignments for
common actions, such as Save and Cancel. Each of these buttons is assigned a
standard mnemonic letter in each language, such as S for Save or C for Cancel.

■ A single letter or symbol can be assigned only to a single instance of an action on a
page. If a page had more than one instance of a button with the same mnemonic,
users would have no way of knowing which button the access key would invoke.

■ Focus change initiated through access keys must have alternative interactions,
such as direct manipulation with the mouse (for example, clicking a button).

■ The mnemonic must be an alphanumeric character — not a punctuation mark or
symbol — and it must always be case-insensitive. Letters are preferred over
numbers for mnemonics.

■ In Internet Explorer, application access keys override any browser-specific menu
access keys (such as Alt+F for the File menu), and this can be a usability issue for
users who habitually use browser access keys. Thus, teams must not use access
keys that conflict with the top-level menu access keys in BLAF Plus-supported
browsers (for example, Alt+F, E, V, A, T, or H in the English version of Internet
Explorer for Windows XP).

■ You are responsible for assigning access keys to specific components. When
choosing a letter for the access key, there are a few important considerations:

– Ease of learning: Although the underlined letter in the label clearly indicates
to the user which letter is the access key, it is still recommended to pick a letter
that is easy for users to remember even without scanning the label. That is
often the first letter of the label, like Y in Yes, or a letter that has a strong sound
when the label is read aloud, such as x in Next.

– Consistency: It is good practice to use the same access key for the same
command on multiple pages. However, this may not always be possible if the
same command label appears multiple times on a page, or if another, more
frequently used command on the page uses the same access key.

– Translation: When a label is translated, the same letter that is used for the
access key in English might not be present in the translation. Developers
should work with their localization department to ensure that alternative
access keys are present in component labels after translation. For example, in
English, the button Next may be assigned the mnemonic letter x, but that letter
does not appear when the label is translated to Suivantes in French.
Depending on the pool of available letters, an alternative letter, such as S or v

Default Cursor or Focus Placement

C-12 Web User Interface Developer's Guide for Oracle Application Development Framework

(or any other unassigned letter in the term Suivantes), should be assigned to
the translated term.

C.6 Default Cursor or Focus Placement
The default cursor puts the initial focus on a component so that keyboard users can
start interacting with the page without excessive navigation.

Focus refers to a type of selection outline that moves through the page when users
press the tab key or access keys. When the focus moves to a field where data can be
entered, a cursor appears in the field. If the field already contains data, the data is
highlighted. In addition, after using certain controls (such as a list of values (LOV) or
date-time picker), the cursor or focus placement moves to specific locations predefined
by the component.

During the loading of a standard BLAF Plus page, focus appears on the first focusable
component on the page — either an editable widget or a navigation component. If
there is no focusable element on the page, focus appears on the browser address field.

When defining default cursor and focus placement, you should follow these
guidelines:

■ BLAF Plus applications should provide default cursor or focus placement on most
pages so that keyboard users have direct access to content areas, rather than
having to tab through UI elements at the top of the page.

■ You can set focus on a different component than the default when the page is
loaded. If your page has a common starting point for data entry, you may change
default focus or cursor location so that users can start entering data without
excessive keyboard or mouse navigation. Otherwise, do not do this because it
makes it more difficult for keyboard users (particularly screen reader users) to
orient themselves after the page is loaded.

C.7 The Enter Key
The Enter key triggers an action when the cursor is in certain fields or when focus is on
a link or button. You should use the Enter key to activate a common commit button,
such as in a Login form or in a dialog.

Many components have built-in actions for the Enter key. Some examples include:

■ When focus is on a link or button, the Enter key navigates the link or triggers the
action.

■ When the cursor is in a query search region, quick query search, or
Query-By-Example (QBE) field, the Enter key triggers the search.

Note: For translation reasons, you should specify access keys as part
of the label. For example, to render the label Cancel with the C access
key, it is recommended to use &Cancel in the textAndAccessKey
property (where the ampersand denotes the mnemonic) rather than C
in the accessKey property. Product suites must ensure that access keys
are not duplicated within each supported language and do not
override access keys within each supported browser unless explicitly
intended.

The Enter Key

Keyboard Shortcuts C-13

■ In a table, the Enter key moves focus to the cell below, and pressing Shift+Enter
moves focus to the cell above. When the focus moves, the current cell reverts to the
read-only mode.

The Enter Key

C-14 Web User Interface Developer's Guide for Oracle Application Development Framework

D

Creating Web Applications for Touch Devices Using ADF Faces D-1

DCreating Web Applications for Touch
Devices Using ADF Faces

This appendix describes how to implement web-based applications for touch devices.

This appendix includes the following sections:

■ Section D.1, "Introduction to Creating Web Applications for Touch Devices Using
ADF Faces"

■ Section D.2, "How ADF Faces Behaves in Mobile Browsers on Touch Devices"

■ Section D.3, "Best Practices When Using ADF Faces Components in a Mobile
Browser"

D.1 Introduction to Creating Web Applications for Touch Devices Using
ADF Faces

The ADF Faces framework is optimized to run in mobile browsers such as Safari. The
framework recognizes when a mobile browser on a touch device is requesting a page,
and then delivers only the JavaScript and peer code applicable to a mobile device.
However, while a standard ADF Faces web application will run in mobile browsers,
because the user interaction is different and because screen size is limited, when your
application needs to run in a mobile browser, you should create touch device-specific
versions of the pages.

This appendix provides information on how ADF Faces works in mobile browsers on
touch devices, along with best practices for implementing web pages specifically for
touch devices.

D.2 How ADF Faces Behaves in Mobile Browsers on Touch Devices
In touch devices, users touch the screen instead of clicking the mouse. The native
browser then converts these touch events into mouse events for processing. In ADF
Faces. component peers handle the conversion. To better handle the conversion
differences between touch devices and desktop devices, for each component that
needs one, ADF Faces provides both a touch device-specific peer and a
desktop-specific peer (for more information about peers, see Section 1.2.1.1,
"Client-Side Components").

These peers allow the component to handle events specific to the device. For example,
the desktop peer handles the mouse over and mouse out events, while the touch
device peer handles the touch start and touch end events. The base peer handles all
common interactions. This separation provides optimized processing on both devices

How ADF Faces Behaves in Mobile Browsers on Touch Devices

D-2 Web User Interface Developer's Guide for Oracle Application Development Framework

(for more information about the touch event, see Table 5–3, " ADF Faces Client
Events").

The touch device peers provide the logic to simulate the interaction on a desktop using
touch-specific gestures. Table D–1 shows how desktop gestures are mapped to touch
device gestures.

Table D–1 Supported Mobile Browser User Gestures

Mouse
Interaction Touch Gesture Visual State Example

Click Tap Mouse down Execute a button

Select Tap Selected Select a table row

Multi select Tap selects one, tap
selects another,
tapping a selected
object deselects it

Selected Select multiple graph bars

Drag and
drop in a
simple
interface

Finger down + drag Mouse down Drag a slider thumb or a
splitter

Drag and
drop for use
cases
requiring
both drag
and drop as
well as data
tips

Finger down + short
hold + drag

Mouse down Move a task bar in a Gantt
chart

Hover to
show data
tip

Finger down + hold Hover (mouseover) Show graph data tip

Hover to
show popup

Finger down + hold Hover (mouseover) Show a popup from a
calendar

Line data
cursor on
graph

Finger down + hold Hover Trace along the x-axis of a
graph and at the
intersection of the y-axis,
the data value is displayed
in a tip.

Right-click to
launch a
context
menu

Finger down + hold or
finger down + hold +
finger up (when
gesture conflict exists
with another finger
down + hold gesture)

Show graph or calendar
activity context menu

Context menu on finger
up examples:

Graph: finger down +
hold = data tip; finger up
= context menu

Graph (bubble): finger
down + hold + move =
drag and drop; finger up =
context menu

Gantt (task bar): finger
down + hold = data tip;
finger down + hold +
move = drag and drop;
finger up = context menu

How ADF Faces Behaves in Mobile Browsers on Touch Devices

Creating Web Applications for Touch Devices Using ADF Faces D-3

Pan One finger swipe
(when no conflict with
other gestures).
Otherwise, two finger
swipe

Enabled Pan map

Zoom in/out Double tap (browser
zoom). When in
maximized state,
pinch in/out can
perform zoom

Enabled Zoom browser screen

Zoom graph or map

Double-click
to set anchor
in the
Hierarchy
Viewer
component

Double tap. When the
setAnchorListener has a
value, causes the node to be
the root of the tree. When
the value is not set, double
tap causes a browser zoom.

Double tap a node within
a hierarchy causes it to
become the root node.

Click the
isolate icon
on the
Hierarchy
Viewer
component

Tap node, then tap
isolate icon

Panel card is isolated Tap the top of the card and
then the isolate icon to
view only that card and
any direct reports.

Click the
collapse icon
on the
Hierarchy
Viewer
component

Swipe up on card Collapsed panel card Collapse a panel card

Click the
expand icon
on the
Hierarchy
Viewer
component

Swipe down on card Expanded panel card Expand a collapsed panel
card.

Hover to
show fly out
buttons on
Hierarchy
Viewer

Tap card Fly out buttons display Tap a card to display the
fly out buttons

Click right or
left arrow
buttons on
Hierarchy
Viewer
component

Swipe left or right on
card

Switch panel cards Swipe left to view address,
or swipe right to view
content.

Click
navigation
buttons to
laterally
traverse the
hierarchy

Swipe left or right on
the lateral navigation
line, or tap the arrow,
or touch and short
hold + finger up to
display the navigation
buttons

Traverse the hierarchy View more descendants of
the root node.

Single tap the
Maximize icon

Maximizes the component

Table D–1 (Cont.) Supported Mobile Browser User Gestures

Mouse
Interaction Touch Gesture Visual State Example

How ADF Faces Behaves in Mobile Browsers on Touch Devices

D-4 Web User Interface Developer's Guide for Oracle Application Development Framework

For further optimization, ADF Faces partitions JavaScript, so that the touch device
JavaScript is separated from the desktop JavaScript. Only the needed JavaScript is
downloaded when a page is rendered. Also, when a touch device is detected, CSS
content specific to touch devices is sent to the page. For example, on a touch device,
checkboxes are displayed for items in the shuttle components, so that the user can
easily select them. On a desktop device, the checkboxes are not displayed.

Using device-specific peers, JavaScript, and CSS allows components to function
differently on desktop and touch devices. Table D–2 shows those differences.

Double-tap the
Maximize icon or
double-tab the
hierarchy viewer
background

Maximizes the component
and zooms to fit

Use circle,
square, or
polygon tool
on a map to
drag and
select a
region

Finger down, draw
shape

Selected Use finger to select an area
on a map

Use
measuremen
t tool on a
map to click
start point
and end
point

Tap measurement
tool, finger down,
draw line

Line drawn and calculated
distance displayed

Use finger to select
measurement tool, then
tap to select point A and
draw line to point B.

Use area tool
on a map to
click start
point and
end point

Tap area tool, finger
down, draw line

Line drawn and calculated
area displayed

Use finger to select area
tool, then tap to select
point A and draw line to
point B, and so on.

Table D–2 Component Differences in Mobile Browsers

Component Functionality Difference from desktop component

selectManyShuttle and
selectOrderShuttle

Selection Select boxes are displayed that allow users to
select the item(s) to shuttle.

table Selection Users select a row by tapping it and unselect a
row by tapping it again. Multi-select is achieved
simply by tapping the rows to be selected. That
is, selecting a second row does not automatically
deselect the first row.

Table D–1 (Cont.) Supported Mobile Browser User Gestures

Mouse
Interaction Touch Gesture Visual State Example

Best Practices When Using ADF Faces Components in a Mobile Browser

Creating Web Applications for Touch Devices Using ADF Faces D-5

Because some touch devices do not support Flash, ADF Faces components use HTML5
for animation transitions and the like. This standard ensures that the components will
display on all devices.

D.3 Best Practices When Using ADF Faces Components in a Mobile
Browser

When you know that your application will be run on touch devices, the best practice is
to create pages specific for that device. You can then use code similar to that of
Example D–1 to determine what device the application is being run on, and then
deliver the correct page for the device.

Example D–1 Determining Platform

public boolean isMobilePlatform()
{
 RequestContext context = RequestContext.getCurrentInstance();
 Agent agent = context.getAgent();

table Scroll Instead of scroll bars, the table component is
paginated, and displays a footer that allows the
user to jump to specific pages of rows, as shown
below.

The number of rows on a page is determined by
the fetchSize attribute.

ADF Faces dialog
framework

Windows When a command component used to launch the
dialog framework has its windowEmbedStyle
attribute set to window (to launch in a separate
window), ADF Faces overrides this value and
sets it to inlineDocument, so that the dialog is
instead launched inline within the parent
window.

menu Detachable
menus

Detachable menus are not supported. The
detachable attribute is ignored.

inlineFrame Geometry
management

On touch devices, iFrame components ignore
dimensions, and are always only as tall as their
contents. Therefore, if the inlineFrame is
stretched by its parent, the content may be
truncated, because scroll bars are not used on
touch devices.

When the inlineFrame is stretched by its parent,
40 pixels of padding and overflow are added to
the inline style.

Various components Icons, buttons,
and links

Icons and buttons are larger and spaces between
links are larger to accommodate fingers

Table D–2 (Cont.) Component Differences in Mobile Browsers

Component Functionality Difference from desktop component

Best Practices When Using ADF Faces Components in a Mobile Browser

D-6 Web User Interface Developer's Guide for Oracle Application Development Framework

 return
 Agent.TYPE_PDA.equals(agent.getType()) ||
 Agent.TYPE_PHONE.equals(agent.getType()) ||
 (
 Agent.AGENT_WEBKIT.equals(agent.getAgentName()) &&
 (
// iPad/iPhone/iPod touch will come in as a desktop type and an iphone platform:
 "iphone".equalsIgnoreCase(agent.getPlatformName())
)
);
}

While your touch device application can use most ADF Faces components, certain
functionality may be limited, or may be frustrating, on touch devices. Table D–3
provides best practices to follow when developing an application for touch devices.

Table D–3 Best Practices for ADF Faces Components in a Mobile Browser

Component/Functionality Best Practice

Geometry management Set the oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS
web.xml parameter to auto.

This setting ensures that the page will flow instead of stretch.
For more information, see Section A.2.3.25, "Geometry
Management for Layout and Table Components."

Partial page navigation Using partial page navigation means that the JavaScript and
other client code will not need to be downloaded from page to
page, improving performance. For more information, see
Section 7.4, "Using Partial Page Navigation."

Navigation Provide more direct access to individual pieces of content. A
good rule is to have only one task per page, instead of using
many regions on a page, separated by splitters. For example,
instead of using a panleSplitter with a tree in the left pane to
provide navigation, provide a list-based navigation model.

Tables By default, when rendered on tablet devices, tables display a
footer that allows the user to jump to specific pages of
rows. For all tables to display on a tablet device, you should:

■ Place the table components within a flowing container (that
is, a component that does not stretch its children).

■ Set the autoHeightRows attribute to 0. Better, is to set the
oracle.adf.view.rich.geometry.DEFAULT_DIMENSIONS
parameter to auto, as described for geometry management
in the first row of this table.

■ Set the scrollPolicy attribute to auto (if the page may also
run on a desktop device) or page (if the page will only run
on a tablet.

If the table is not in a flowing container, or if those attributes are
not set correctly, the table will display a scroll bar instead of
pages.

For more information about table attributes, see Section 10.2.2,
"Formatting Tables." For more information about flowing
layouts and tables, see Section 10.1.6, "Geometry Management
for Table, Tree, and Tree Table Components."

E

Quick Start Layout Themes E-1

EQuick Start Layout Themes

This appendix shows how each of the quick start layouts are affected when you choose
to apply themes to them. ADF Faces provides a number of components that you can
use to define the overall layout of a page. JDeveloper contains predefined quick start
layouts that use these components to provide you with a quick and easy way to
correctly build the layout. You can choose from one, two, or three column layouts.
When you choose to apply a theme to the chosen quick layout, color and styling are
added to some of the components used in the quick start layout.

Figure E–1 and Figure E–2 show each of the layouts with and without themes applied.
For more information about themes, see Section 20.3.4, "How to Apply Themes to
Components."

E-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Figure E–1 Quick Start Layouts With and Without Themes

Quick Start Layout Themes E-3

Figure E–2 Quick Start Layouts With and Without Them

E-4 Web User Interface Developer's Guide for Oracle Application Development Framework

F

Troubleshooting ADF Faces F-1

FTroubleshooting ADF Faces

This appendix describes common problems that you might encounter when designing
the application user interface with the ADF Faces framework and ADF Faces
components and explains how to solve them.

This appendix includes the following sections:

■ Section F.1, "Introduction to Troubleshooting ADF Faces"

■ Section F.2, "Getting Started with Troubleshooting the View Layer of an ADF
Application"

■ Section F.3, "Resolving Common Problems"

■ Section F.4, "Using My Oracle Support for Additional Troubleshooting
Information"

In addition to this chapter, review the Oracle Fusion Middleware Error Messages Reference
for information about the error messages you may encounter.

F.1 Introduction to Troubleshooting ADF Faces
This section provides guidelines and a process for using the information in this
chapter. Using the following guidelines and process will focus and minimize the time
you spend resolving problems.

Guidelines
When using the information in this chapter, please keep the following best practices in
mind:

■ After performing any of the solution procedures in this chapter, immediately retry
the failed task that led you to this troubleshooting information. If the task still fails
when you retry it, perform a different solution procedure in this chapter and then
try the failed task again. Repeat this process until you resolve the problem.

■ Make notes about the solution procedures you perform, symptoms you see, and
data you collect while troubleshooting. If you cannot resolve the problem using
the information in this chapter and you must log a service request, the notes you
take will expedite the process of solving the problem.

Process
Follow the process outlined in Table F–1 when using the information in this chapter. If
the information in a particular section does not resolve your problem, proceed to the
next step in this process.

Getting Started with Troubleshooting the View Layer of an ADF Application

F-2 Web User Interface Developer's Guide for Oracle Application Development Framework

F.2 Getting Started with Troubleshooting the View Layer of an ADF
Application

Oracle ADF has builtin error messages that enable you to determine which layer of
your application may be causing a problem. Error messages are the starting point for
troubleshooting and you may research a particular error message on the web. Error
messages that originate from your ADF Business Components model layer will have a
JBO prefix, where as all other ADF layer components, including the ADF Face view
layer, will appear as a Java error message with an Oracle package.

Once you are able to identify the layer, you may run diagnostic tools. You may also
view log files for recorded errors. You can look up error messages in the Oracle Fusion
Middleware Error Messages Reference. You can also search the technical forums on Oracle
Technology Network for discussions related to an error message. Each of the
component layers for Oracle ADF has is own dedicated forum. You can access the
forum home page for JDeveloper and Oracle ADF under the Development Tools list on
Oracle Technology Network at
https://forums.oracle.com/forums/main.jspa?categoryID=84.

Before you begin troubleshooting, you should configure the ADF application to make
finding and detecting errors easier. Table F–2 summarizes the settings that you can
follow to configure the view layer of an ADF application for troubleshooting.

Table F–1 Process for Using the Information in this Chapter

Step Section to Use Purpose

1 Section F.2 Get started troubleshooting the view layer of an ADF application. The
procedures in this section quickly address a wide variety of problems.

2 Section F.3 Perform problem-specific troubleshooting procedures for the view
layer of an ADF application. This section describes:

■ Possible causes of the problems

■ Solution procedures corresponding to each of the possible causes

3 Section F.4 Use My Oracle Support to get additional troubleshooting
information. The My Oracle Support web site provides access to
several useful troubleshooting resources, including links to
Knowledge Base articles and Community Forums and Discussion
pages.

4 Section F.4 Log a service request if the information in this chapter and My Oracle
Support does not resolve your problem. You can log a service request
using My Oracle Support at https://support.oracle.com.

Getting Started with Troubleshooting the View Layer of an ADF Application

Troubleshooting ADF Faces F-3

Table F–2 Configuration Options for Optimizing ADF Faces Troubleshooting

Configuration Recommendation Description

Enable debug output. Enable debug output by setting the following in the trinidad-config.xml
file:

<adf-faces-config xmlns=
 "http://xmlns.oracle.com/adf/view/faces/config">
 <debug-output>true</debug-output>
 <skin-family>oracle</skin-family>
</adf-faces-config>

Improves the readability of HTML markup in the web browser:

■ Line wraps and indents the output.

■ Detects and highlights unbalanced elements and other common HTML
errors, such as unbalanced elements.

■ Adds comments that help you to identify which ADF Faces component
generated each block of HTML in the browser page.

Disable content compression. Disable content compression by setting the following in the web.xml file:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
 </param-name>
 <param-value>true</param-value>
 </context-param>

Improves readability by forcing the use of original uncompressed styles.

Unless content compression is disabled, CSS style names and styles will
appear compressed and may be more difficult to read.

Disable JavaScript compression. Disable JavaScript compression by setting the following in the web.xml file:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.DEBUG_JAVA_SCRIPT
 </param-name>
 <param-value>true</param-value>
 </context-param>

Allows normally obfuscated JavaScript to appear uncompressed as the
source.

Enable client side asserts. Enable client side asserts by setting the following in the web.xml file:

<context-param>
 <param-name>
 oracle.adf.view.rich.ASSERT_ENABLED
 </param-name>
 <param-value>true</param-value>
 </context-param>

Allows warnings of unexpected conditions to be output to the browser
console.

Resolving Common Problems

F-4 Web User Interface Developer's Guide for Oracle Application Development Framework

F.3 Resolving Common Problems
This section describes common problems and solutions. It contains the following
topics:

■ Section F.3.1, "Application Displays an Unexpected White Background"

■ Section F.3.2, "Application is Missing Expected Images"

■ Section F.3.3, "Data Visualization Components Fail to Display as Expected"

■ Section F.3.4, "High Availability Application Displays a NotSerializableException"

Enable clientside logging. Enable clientside logging by setting the following in the web.xml file:

<context-param>
 <param-name>
 oracle.adf.view.rich.ASSERT_ENABLED
 </param-name>
 <param-value>true</param-value>
 </context-param>

Allows log messages to be output to the browser console.

Unless client side logging is enabled, log messages will not be reported in
the client.

Enable more detailed server side
logging.

Enable more detailed server side logging shut down the application server,
enter the following setting in the logging.xml file, and restart the server:

<logger name="oracle.adf.faces” level=”CONFIG"/>

or

Use the WLST command:

setLogLevel(logger="oracle.adf” level=”CONFIG”, addLogger=1)

or

In Oracle Enterprise Manager Fusion Middleware Control, use the
Configuration page to set oracle.adf, oracle.adfinternal, and
oracle.jbo to level CONFIG.

Allows more detailed log messages to be output to the browser console.

Unless server side logging is configured with a log level of CONFIG or
higher, useful diagnostic messages may go unreported.

Allowed log level settings are: SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, ALL. Oracle recommends CONFIG level or higher; the
default is SEVERE.

Disable HTTP cache headers. Disable HTTP cache headers by setting the following in the web.xml file:

<context-param>
 <param-name>
 org.apache.myfaces.trinidad.resource.DEBUG
 </param-name>
 <param-value>true</param-value>
 </context-param>

Forces reloading of patched resources.

Unless HTTP cache headers are disabled, the browser will cache resources
to ensure fast access to resources.

After changing the setting, clear the browser cache to force it to reload
resources.

Table F–2 (Cont.) Configuration Options for Optimizing ADF Faces Troubleshooting

Configuration Recommendation Description

Resolving Common Problems

Troubleshooting ADF Faces F-5

■ Section F.3.5, "Unable to Reproduce Problem in All Web Browsers"

■ Section F.3.6, "Application is Missing Content"

■ Section F.3.8, "Browser Displays an HTTP 404 or 500 Error"

■ Section F.3.9, "Browser Fails to Navigate Between Pages"

F.3.1 Application Displays an Unexpected White Background
The ADF application has a default skin that displays a simple or minimal look and
feel. The background of the default skin will appear white.

Cause
The skin JAR files did not get deployed correctly to all applications.

Solution
To resolve this problem:

1. Check that the skin JAR files have been deployed to all applications.

2. Check that the skin name is not misspelled in the profile options, as described in
Section 20.2, "Applying Custom Skins to Applications."

F.3.2 Application is Missing Expected Images
The skin application must be packaged as a JAR file that includes the image files.

Cause
The skin JAR files were not packaged correctly.

Solution
To resolve this problem:

1. Check that the correct target application version was specified when creating the
skin application.

2. Repackage the skin application and create a new JAR file, as described in
Section 20.7, "Deploying a Custom Skin File in a JAR File."

F.3.3 Data Visualization Components Fail to Display as Expected
Various ADF DVT components rely on Flash to display correctly and unless Flash is
supported by the platform and browser, your application may not display visual
aspects of the DVT components.

Cause
Not all platforms and browsers support Flash. This will force the application to
downgrade to the best available fallback. If the platform is not supported, the
application displays according to the flash-player-usage setting in the
adf-config.xml file.

Solution
To resolve this problem, reinstall the latest Flash version available for your browser.

Resolving Common Problems

F-6 Web User Interface Developer's Guide for Oracle Application Development Framework

F.3.4 High Availability Application Displays a NotSerializableException
When you design an application to run in a clustered environment, you must ensure
that all managed beans with a life span longer than one request are serializable.

Cause
When the Fusion web application runs in a clustered environment, a portion of the
application's state is serialized and copied to another server or a data store at the end
of each request so that the state is available to other servers in the cluster. Specifically,
beans stored in session scope, page flow scope, and view scope must be serializable
(that is, they implement the java.io.Serializable interface).

Solution
To resolve this problem:

1. Enable server checking to ensure no unserializable state content on session
attributes is detected. This check is disabled by default to reduce runtime
overhead. Serialization checking is supported by the Java server system property
org.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION. The following are
Java system properties and you must specify them when you start the application
server.

2. For high availability testing, start off by validating that the Session and JSF state is
serializable by launching the application server with the system property:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=session,tree

3. Add the beans option to check that any serializable object in the appropriate map
has been marked as dirty if the serialized content of the object has changed during
the request:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_
SERIALIZATION=session,tree,beans

4. If a JSF state serialization failure is detected, relaunch the application server with
the system property to enable component and property flags and rerun the test:

-Dorg.apache.myfaces.trinidad.CHECK_STATE_SERIALIZATION=all

F.3.5 Unable to Reproduce Problem in All Web Browsers
You run the application in Microsoft Windows Internet Explorer and verify a problem
but when you run the application in Mozilla Firefox, the problem does not reproduce.
These problems are often visual in nature, such as unintended extra space separating
areas within a web page.

Cause
Settings between browsers vary and can lead to differences in the visual appearance of
your application.

Solution
To resolve this problem:

1. Check browser security settings to ensure they are not misconfigured. For
example, confirm that you have the not disabled JavaScript, XML HTTP, or
popups.

Resolving Common Problems

Troubleshooting ADF Faces F-7

2. Confirm that Internet Explorer is not being run in compatibility mode. If you see a
dialog that states "the current compatibility setting is not supported," disable
compatibility mode in the browser Tool’s menu.

3. If you observe a JavaScript error, then it is most likely a bug in the browser.
However, it could be an ADF Faces-specific JavaScript error.

F.3.6 Application is Missing Content
The application pages may display areas that appear empty where content is expected.

Cause
The cause depends on the application design. For example, authorization that you
enforce in the application may be unintentionally preventing the application from
displaying content. Or, when portlets are used, the portlet server may be down.

Solution
To resolve this problem:

1. Check the log file for exceptions. Recommend changing the log level to a lower
level than SEVERE. For information about Oracle Fusion Middleware logging
functionality, see the "Managing Log Files and Diagnostic Data" chapter of the
Oracle Fusion Middleware Administrator's Guide.

2. Look for struck threads, as described in the "Monitor server performance" topic in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
If you find a stuck thread, examine the thread stack dump.

3. If you observe an HTTP 403 or 404 error on partial page rendering (PPR), then it is
most like a bug.

F.3.7 Browser Displays an ADF_Faces-60098 Error
The application returns a runtime exception in a place that was not expected and is not
handled.

Cause
ADF Faces has received unhandled exception in some phase of the lifecycle and will
abort the request handling.

Solution
To resolve this problem:

1. This is most likely a logic error in the application.

2. Verify that the server load or the application is not in distress.

F.3.8 Browser Displays an HTTP 404 or 500 Error
The application does not navigate to the expected page and displays an HTTP 404 file
not found error or an HTTP 500 internal server error.

Cause
The cause may be traced to the application server.

Using My Oracle Support for Additional Troubleshooting Information

F-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Solution
To resolve this problem:

1. Verify that the application server is running and that the application is not in
distress, as described in the "Monitor server performance" and "Servers:
Configuration: Overload" topics in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Online Help.

2. Check for hung threads.

F.3.9 Browser Fails to Navigate Between Pages
The application fails to navigate to and open an expected target web page.

Cause
The cause may depend on the application design or the cause may be traced to the
application server.

Solution
To resolve this problem:

1. Check for unhandled exceptions specific to an ADF Faces lifecycle thread, as
described in Section F.3.7, "Browser Displays an ADF_Faces-60098 Error."

2. Look for HTTP 404 or 505 errors, as described in Section F.3.8, "Browser Displays
an HTTP 404 or 500 Error."

F.4 Using My Oracle Support for Additional Troubleshooting Information
You can use My Oracle Support (formerly MetaLink) to help resolve Oracle Fusion
Middleware problems. My Oracle Support contains several useful troubleshooting
resources, such as:

■ Knowledge base articles

■ Community forums and discussions

■ Patches and upgrades

■ Certification information

You can access My Oracle Support at https://support.oracle.com.

Note: You can also use My Oracle Support to log a service request.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 11.1.1.7.0
	Part I Getting Started with ADF Faces
	1 Introduction to ADF Faces Rich Client
	1.1 Introduction to ADF Faces Rich Client
	1.1.1 History of ADF Faces
	1.1.2 ADF Faces as Rich Client Components

	1.2 Architecture of ADF Faces Components
	1.2.1 Client-Side Architecture
	1.2.1.1 Client-Side Components
	1.2.1.2 JavaScript Library Partitioning

	1.2.2 ADF Faces Architectural Features

	1.3 ADF Faces Components
	1.4 ADF Faces Demonstration Application
	1.4.1 How to Download and Install the ADF Faces Demo Application
	1.4.2 Using the ADF Faces Demo Application
	1.4.3 Overview of the File Explorer Application
	1.4.4 Viewing the Source Code In JDeveloper

	2 Getting Started with ADF Faces
	2.1 Developing Declaratively in JDeveloper
	2.2 Creating an Application Workspace
	2.2.1 How to Create an Application Workspace
	2.2.2 What Happens When You Create an Application Workspace

	2.3 Defining Page Flows
	2.3.1 How to Define a Page Flow
	2.3.2 What Happens When You Use the Diagrammer to Create a Page Flow

	2.4 Creating a View Page
	2.4.1 How to Create JSF JSP Pages
	2.4.2 What Happens When You Create a JSF JSP Page
	2.4.3 What You May Need to Know About Automatic Component Binding
	2.4.4 How to Create a Facelets XHTML Page
	2.4.5 What Happens When You Create a JSF XHTML Page
	2.4.6 How to Add ADF Faces Components to JSF Pages
	2.4.7 What Happens When You Add Components to a Page
	2.4.8 How to Set Component Attributes
	2.4.9 What Happens When You Use the Property Inspector

	2.5 Creating EL Expressions
	2.5.1 How to Create an EL Expression
	2.5.2 How to Use EL Expressions Within Managed Beans

	2.6 Creating and Using Managed Beans
	2.6.1 How to Create a Managed Bean in JDeveloper
	2.6.2 What Happens When You Use JDeveloper to Create a Managed Bean
	2.6.3 What You May Need to Know About Component Bindings and Managed Beans

	2.7 Viewing ADF Faces Source Code and Javadoc

	Part II Understanding ADF Faces Architecture
	3 Using ADF Faces Architecture
	3.1 Introduction to Using ADF Faces Architecture
	3.2 Listening for Client Events
	3.3 Adding JavaScript to a Page
	3.3.1 How to Use Inline JavaScript
	3.3.2 How to Import JavaScript Libraries
	3.3.3 What You May Need to Know About Accessing Client Event Sources

	3.4 Instantiating Client-Side Components
	3.5 Locating a Client Component on a Page
	3.5.1 What You May Need to Know About Finding Components in Naming Containers

	3.6 Determining the User’s Current Location
	3.6.1 How to Determine the User’s Current Location

	3.7 Accessing Component Properties on the Client
	3.7.1 How to Set Property Values on the Client
	3.7.2 How to Unsecure the disabled Property
	3.7.3 What Happens at Runtime: How Client Properties Are Set on the Client

	3.8 Using Bonus Attributes for Client-Side Components
	3.8.1 How to Create Bonus Attributes
	3.8.2 What You May Need to Know About Marshalling Bonus Attributes

	3.9 Understanding Rendering and Visibility
	3.9.1 How to Set Visibility Using JavaScript
	3.9.2 What You May Need to Know About Visible and the isShowing Function

	4 Using the JSF Lifecycle with ADF Faces
	4.1 Introduction to the JSF Lifecycle and ADF Faces
	4.2 Using the Immediate Attribute
	4.3 Using the Optimized Lifecycle
	4.3.1 What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle
	4.3.2 What You May Need to Know About Using an LOV Component and the Optimized Lifecycle

	4.4 Using the Client-Side Lifecycle
	4.5 Using Subforms to Create Regions on a Page
	4.6 Object Scope Lifecycles
	4.7 Passing Values Between Pages
	4.7.1 How to Use the pageFlowScope Scope Within Java Code
	4.7.2 How to Use the pageFlowScope Scope Without Writing Java Code
	4.7.3 What Happens at Runtime: Passing Values

	5 Handling Events
	5.1 Introduction to Events and Event Handling
	5.1.1 Events and Partial Page Rendering
	5.1.2 Client-Side Event Model

	5.2 Using ADF Faces Server Events
	5.3 Using JavaScript for ADF Faces Client Events
	5.3.1 How to Use Client-Side Events
	5.3.2 How to Return the Original Source of the Event
	5.3.3 How to Use Client-Side Attributes for an Event
	5.3.4 How to Block UI Input During Event Execution
	5.3.5 How to Prevent Events from Propagating to the Server
	5.3.6 What Happens at Runtime: How Client-Side Events Work
	5.3.7 What You May Need to Know About Using Naming Containers

	5.4 Sending Custom Events from the Client to the Server
	5.4.1 How to Send Custom Events from the Client to the Server
	5.4.2 What Happens at Runtime: How Client and Server Listeners Work Together
	5.4.3 What You May Need to Know About Marshalling and Unmarshalling Data

	5.5 Executing a Script Within an Event Response
	5.6 Using Client Behavior Tags
	5.6.1 How to Use the scrollComponentIntoViewBehavior Tag

	5.7 Using Polling Events to Update Pages
	5.7.1 How to Use the Poll Component

	6 Validating and Converting Input
	6.1 Introduction to ADF Faces Converters and Validators
	6.2 Conversion, Validation, and the JSF Lifecycle
	6.3 Adding Conversion
	6.3.1 How to Add a Standard ADF Faces Converter
	6.3.2 How to Set Attributes on a Standard ADF Faces Converter
	6.3.3 What Happens at Runtime: How Converters Work
	6.3.4 What You May Need to Know About Date Converters
	6.3.5 How to Add oracle.jbo.domain Converters

	6.4 Creating Custom JSF Converters
	6.4.1 How to Create a Custom JSF Converter
	6.4.2 What Happens When You Use a Custom Converter

	6.5 Adding Validation
	6.5.1 How to Add Validation
	6.5.1.1 Adding ADF Faces Validation
	6.5.1.2 Using Validation Attributes
	6.5.1.3 Using ADF Faces Validators

	6.5.2 What Happens at Runtime: How Validators Work
	6.5.3 What You May Need to Know About Multiple Validators

	6.6 Creating Custom JSF Validation
	6.6.1 How to Create a Backing Bean Validation Method
	6.6.2 What Happens When You Create a Backing Bean Validation Method
	6.6.3 How to Create a Custom JSF Validator
	6.6.4 What Happens When You Use a Custom JSF Validator

	7 Rerendering Partial Page Content
	7.1 Introduction to Partial Page Rendering
	7.2 Enabling Partial Page Rendering Declaratively
	7.2.1 How to Enable Partial Page Rendering
	7.2.2 What You May Need to Know About Using the Browser Back Button
	7.2.3 What You May Need to Know About PPR and Screen Readers

	7.3 Enabling Partial Page Rendering Programmatically
	7.4 Using Partial Page Navigation
	7.4.1 How to Use Partial Page Navigation
	7.4.2 What You May Need to Know About PPR Navigation

	Part III Using ADF Faces Components
	8 Organizing Content on Web Pages
	8.1 Introduction to Organizing Content on Web Pages
	8.2 Starting to Lay Out a Page
	8.2.1 Geometry Management and Component Stretching
	8.2.2 Nesting Components Inside Components That Allow Stretching
	8.2.3 Using Quick Start Layouts
	8.2.4 Tips for Using Geometry-Managed Components
	8.2.5 How to Configure the document Tag

	8.3 Arranging Contents to Stretch Across a Page
	8.3.1 How to Use the panelStretchLayout Component
	8.3.2 What You May Need to Know About Geometry Management and the panelStretchLayout Component

	8.4 Using Splitters to Create Resizable Panes
	8.4.1 How to Use the panelSplitter Component
	8.4.2 What You May Need to Know About Geometry Management and the panelSplitter Component

	8.5 Arranging Content in a Grid
	8.5.1 How to Use the panelGridLayout, gridRow, and gridCell Components to Create a Grid-Based Layout
	8.5.2 What You May Need to Know About Geometry Management and the panelGridLayout Component

	8.6 Arranging Page Contents in Predefined Fixed Areas
	8.6.1 How to Use the panelBorderLayout Component

	8.7 Arranging Content in Forms
	8.7.1 How to Use the panelFormLayout Component
	8.7.2 What You May Need to Know About Using the group Component with the panelFormLayout Component

	8.8 Arranging Contents in a Dashboard
	8.8.1 How to Use the panelDashboard Component
	8.8.2 What You May Need to Know About Geometry Management and the panelDashboard Component

	8.9 Displaying and Hiding Contents Dynamically
	8.9.1 How to Use the showDetail Component
	8.9.2 How to Use the showDetailHeader Component
	8.9.3 How to Use the panelBox Component
	8.9.4 What You May Need to Know About Disclosure Events

	8.10 Displaying or Hiding Contents in Accordion Panels and Tabbed Panels
	8.10.1 How to Use the panelAccordion Component
	8.10.2 How to Use the panelTabbed Component
	8.10.3 How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components
	8.10.4 What You May Need to Know About Geometry Management and the showDetailItem Component
	8.10.5 What You May Need to Know About showDetailItem Disclosure Events
	8.10.6 What You May Need to Know About Skinning and the panelTabbed Component

	8.11 Displaying Items in a Static Box
	8.11.1 How to Use the panelHeader Component
	8.11.2 How to Use the decorativeBox Component
	8.11.3 What You May Need to Know About Geometry Management and the decorativeBox Component

	8.12 Displaying a Bulleted List in One or More Columns
	8.12.1 How to Use the panelList Component
	8.12.2 What You May Need to Know About Creating a List Hierarchy

	8.13 Grouping Related Items
	8.13.1 How to Use the panelGroupLayout Component
	8.13.2 What You May Need to Know About Geometry Management and the panelGroupLayout Component

	8.14 Separating Content Using Blank Space or Lines
	8.14.1 How to Use the spacer Component
	8.14.2 How to Use the Separator Component

	9 Using Input Components and Defining Forms
	9.1 Introduction to Input Components and Forms
	9.2 Defining Forms
	9.2.1 How to Add a Form to a Page
	9.2.2 How to Add a Subform to a Page
	9.2.3 How to Add a Reset Button to a Form

	9.3 Using the inputText Component
	9.3.1 How to Add an inputText Component
	9.3.2 How to Add the Ability to Insert Text into an inputText Component

	9.4 Using the Input Number Components
	9.4.1 How to Add an inputNumberSlider or an inputRangeSlider Component
	9.4.2 How to Add an inputNumberSpinbox Component

	9.5 Using Color and Date Choosers
	9.5.1 How to Add an inputColor Component
	9.5.2 How to Add an InputDate Component
	9.5.3 What You May Need to Know About Selecting Time Zones Without the inputDate Component

	9.6 Using Selection Components
	9.6.1 How to Use Selection Components
	9.6.2 What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component

	9.7 Using Shuttle Components
	9.7.1 How to Add a selectManyShuttle or selectOrderShuttle Component
	9.7.2 What You May Need to Know About Using a Client Listener for Selection Events

	9.8 Using the richTextEditor Component
	9.8.1 How to Add a richTextEditor Component
	9.8.2 How to Add the Ability to Insert Text into a richTextEditor Component
	9.8.3 How to Customize the Toolbar

	9.9 Using File Upload
	9.9.1 How to Use the inputFile Component
	9.9.2 How to Configure the inputFile Component to Upload Multiple Files
	9.9.3 What You May Need to Know About Temporary File Storage
	9.9.4 What You May Need to Know About Uploading Multiple Files

	9.10 Using Code Editor
	9.10.1 How to Add a codeEditor Component

	10 Using Tables, Trees, and Other Collection-Based Components
	10.1 Introduction to Using Collection-Based Components
	10.1.1 Content Delivery
	10.1.2 Row Selection
	10.1.3 Editing Data in Tables, Trees, and Tree Tables
	10.1.4 Using Popup Dialogs in Tables, Trees, and Tree Tables
	10.1.5 Accessing Client Collection Components
	10.1.6 Geometry Management for Table, Tree, and Tree Table Components

	10.2 Displaying Data in Tables
	10.2.1 Columns and Column Data
	10.2.2 Formatting Tables
	10.2.3 Formatting Columns
	10.2.4 How to Display a Table on a Page
	10.2.5 What Happens When You Add a Table to a Page
	10.2.6 What Happens at Runtime: Data Delivery
	10.2.7 What You May Need to Know About Programmatically Enabling Sorting for Table Columns
	10.2.8 What You May Need to Know About Performing an Action on Selected Rows in Tables
	10.2.9 What You May Need to Know About Dynamically Determining Values for Selection Components in Tables
	10.2.10 What You May Need to Know About Using the Iterator Tag

	10.3 Adding Hidden Capabilities to a Table
	10.3.1 How to Use the detailStamp Facet
	10.3.2 What Happens at Runtime: Disclosing Row Data

	10.4 Enabling Filtering in Tables
	10.4.1 How to Add Filtering to a Table

	10.5 Displaying Data in Trees
	10.5.1 How to Display Data in Trees
	10.5.2 What Happens When You Add a Tree to a Page
	10.5.3 What Happens at Runtime: Tree Component Events
	10.5.4 What You May Need to Know About Programmatically Expanding and Collapsing Nodes
	10.5.5 What You May Need to Know About Programmatically Selecting Nodes

	10.6 Displaying Data in Tree Tables
	10.6.1 How to Display Data in a Tree Table

	10.7 Displaying Table Menus, Toolbars, and Status Bars
	10.7.1 How to Add a panelCollection with a Table, Tree, or Tree Table

	10.8 Displaying a Collection in a List
	10.8.1 How to Display a Collection in a List

	10.9 Displaying Images in a Carousel
	10.9.1 How to Create a Carousel
	10.9.2 What You May Need to Know About the Carousel Component and Different Browsers

	10.10 Passing a Row as a Value
	10.11 Exporting Data from Table, Tree, or Tree Table
	10.11.1 How to Export Table, Tree, or Tree Table Data to an External Format
	10.11.2 What Happens at Runtime: How Row Selection Affects the Exported Data

	10.12 Accessing Selected Values on the Client from Collection-Based Components
	10.12.1 How to Access Values from a Selection in Stamped Components.
	10.12.2 What You May Need to Know About Accessing Selected Values

	11 Using List-of-Values Components
	11.1 Introduction to List-of-Values Components
	11.2 Creating the ListOfValues Data Model
	11.2.1 How to Create the ListOfValues Data Model

	11.3 Using the inputListOfValues Component
	11.3.1 How to Add the InputListOfValues Component
	11.3.2 What You May Need to Know About Skinning the Search and Select Dialogs in the LOV Components

	11.4 Using the InputComboboxListOfValues Component
	11.4.1 How to Add the InputComboboxListOfValues Component

	12 Using Query Components
	12.1 Introduction to Query Components
	12.2 Implementing the Model for Your Query
	12.3 Using the quickQuery Component
	12.3.1 How to Add the quickQuery Component Using a Model
	12.3.2 How to Use a quickQuery Component Without a Model
	12.3.3 What Happens at Runtime: How the Framework Renders the quickQuery Component and Executes the Search

	12.4 Using the query Component
	12.4.1 How to Add the Query Component

	13 Using Popup Dialogs, Menus, and Windows
	13.1 Introduction to Using Popup Elements
	13.2 Declaratively Creating Popup Elements
	13.2.1 How to Create a Dialog
	13.2.2 How to Create a Panel Window
	13.2.3 How to Create a Context Menu
	13.2.4 How to Create a Note Window
	13.2.5 What Happens at Runtime: Popup Component Events

	13.3 Programmatically Invoking a Popup
	13.3.1 How to Programatically Invoke a Popup
	13.3.2 What Happens When You Programmatically Invoke a Popup

	13.4 Invoking Popup Elements
	13.4.1 How to Use the af:showPopupBehavior Tag

	13.5 Displaying Contextual Information
	13.5.1 How to Create Contextual Information

	13.6 Controlling the Automatic Cancellation of Inline Popups
	13.6.1 How to Disable the Automatic Cancellation of an Inline Popup
	13.6.2 What Happens When You Disable the Automatic Cancellation of an Inline Popup

	14 Using Menus, Toolbars, and Toolboxes
	14.1 Introduction to Menus, Toolbars, and Toolboxes
	14.2 Using Menus in a Menu Bar
	14.2.1 How to Create and Use Menus in a Menu Bar

	14.3 Using Toolbars
	14.3.1 How to Create and Use Toolbars
	14.3.2 What Happens at Runtime: Determining the Size of Menu Bars and Toolbars
	14.3.3 What You May Need to Know About Toolbars

	15 Creating a Calendar Application
	15.1 Introduction to Creating a Calendar Application
	15.2 Creating the Calendar
	15.2.1 Calendar Classes
	15.2.2 How to Create a Calendar

	15.3 Configuring the Calendar Component
	15.3.1 How to Configure the Calendar Component
	15.3.2 What Happens at Runtime: Calendar Events and PPR

	15.4 Adding Functionality Using Popup Components
	15.4.1 How to Add Functionality Using Popup Components

	15.5 Customizing the Toolbar
	15.5.1 How to Customize the Toolbar

	15.6 Styling the Calendar
	15.6.1 How to Style Activities
	15.6.2 What Happens at Runtime: Activity Styling
	15.6.3 How to Customize Dates

	16 Using Output Components
	16.1 Introduction to Output Text, Image, Icon, and Media Components
	16.2 Displaying Output Text and Formatted Output Text
	16.2.1 How to Display Output Text
	16.2.2 What You May Need to Know About Allowed Format and Character Codes in the outputFormatted Component

	16.3 Displaying Icons
	16.4 Displaying Images
	16.5 Using Images as Links
	16.6 Displaying Application Status Using Icons
	16.7 Playing Video and Audio Clips
	16.7.1 How to Allow Playing of Audio and Video Clips

	17 Displaying Tips, Messages, and Help
	17.1 Introduction to Displaying Tips and Messages
	17.2 Displaying Tips for Components
	17.3 Displaying Hints and Error Messages for Validation and Conversion
	17.3.1 How to Define Custom Validator and Converter Messages
	17.3.2 What You May Need to Know About Overriding Default Messages Globally
	17.3.3 How to Display Component Messages Inline
	17.3.4 How to Display Global Messages Inline

	17.4 Grouping Components with a Single Label and Message
	17.5 Displaying Help for Components
	17.5.1 How to Create Resource Bundle-Based Help
	17.5.2 How to Create XLIFF-Based Help
	17.5.3 How to Create Managed Bean Help
	17.5.4 How to Use JavaScript to Launch an External Help Window
	17.5.5 How to Create a Java Class Help Provider
	17.5.6 How to Access Help Content from a UI Component
	17.5.7 What You May Need to Know About Combining Different Message Types

	18 Working with Navigation Components
	18.1 Introduction to Navigation Components
	18.2 Using Buttons and Links for Navigation
	18.2.1 How to Use Command Buttons and Command Links
	18.2.2 How to Use Go Buttons and Go Links

	18.3 Configuring a Browser’s Context Menu for Command Links
	18.3.1 How to Configure a Browser’s Context Menu for Command Links
	18.3.2 What Happens When You Configure a Browser’s Context Menu for Command Links

	18.4 Using Buttons or Links to Invoke Functionality
	18.4.1 How to Use a Command Component to Download Files
	18.4.2 How to Use a Command Component to Reset Input Fields

	18.5 Using Navigation Items for a Page Hierarchy
	18.6 Using a Menu Model to Create a Page Hierarchy
	18.6.1 How to Create the Menu Model Metadata
	18.6.2 What Happens When You Use the Create ADF Menu Model Wizard
	18.6.3 How to Bind to the XMLMenuModel in the JSF Page
	18.6.4 How to Use the breadCrumbs Component
	18.6.5 What Happens at Runtime
	18.6.6 What You May Need to Know About Using Custom Attributes

	18.7 Creating a Simple Navigational Hierarchy
	18.7.1 How to Create a Simple Page Hierarchy
	18.7.2 How to Use the breadCrumbs Component
	18.7.3 What You May Need to Know About Removing Navigation Tabs
	18.7.4 What You May Need to Know About Navigation Tabs in a Compressed Layout

	18.8 Using Train Components to Create Navigation Items for a Multi-Step Process
	18.8.1 How to Create the Train Model
	18.8.2 How to Configure Managed Beans for the Train Model
	18.8.3 How to Bind to the Train Model in JSF Pages

	19 Creating and Reusing Fragments, Page Templates, and Components
	19.1 Introduction to Reusable Content
	19.2 Using Page Fragments
	19.2.1 How to Create a Page Fragment
	19.2.2 What Happens When You Create a Page Fragment
	19.2.3 How to Use a Page Fragment in a JSF Page
	19.2.3.1 Adding a Page Fragment Using the Component Palette
	19.2.3.2 Adding a Page Fragment Using the Application Navigator

	19.2.4 What Happens at Runtime: Resolving Page Fragments

	19.3 Using Page Templates
	19.3.1 How to Create a Page Template
	19.3.2 What Happens When You Create a Page Template
	19.3.3 How to Create JSF Pages Based on Page Templates
	19.3.4 What Happens When You Use a Template to Create a Page
	19.3.5 What Happens at Runtime: How Page Templates Are Resolved
	19.3.6 What You May Need to Know About Page Templates and Naming Containers

	19.4 Using Declarative Components
	19.4.1 How to Create a Declarative Component
	19.4.2 What Happens When You Create a Declarative Component
	19.4.3 How to Deploy Declarative Components
	19.4.4 How to Use Declarative Components in JSF Pages
	19.4.5 What Happens When You Use a Declarative Component on a JSF Page
	19.4.6 What Happens at Runtime

	19.5 Adding Resources to Pages
	19.5.1 How to Add Resources to Page Templates and Declarative Components
	19.5.2 What Happens at Runtime: Adding Resources to the Document Header

	20 Customizing the Appearance Using Styles and Skins
	20.1 Introduction to Skins, Style Selectors, and Style Properties
	20.1.1 ADF Faces Skins
	20.1.2 Skin Style Selectors
	20.1.3 Component Style Properties

	20.2 Applying Custom Skins to Applications
	20.2.1 How to Add a Custom Skin to an Application
	20.2.2 How to Register the XML Schema Definition File for a Custom Skin
	20.2.3 How to Register a Custom Skin
	20.2.4 How to Configure an Application to Use a Custom Skin

	20.3 Defining Skin Style Properties
	20.3.1 How to Apply Skins to Text
	20.3.2 How to Apply Skins to Icons
	20.3.3 How to Apply Skins to Messages
	20.3.4 How to Apply Themes to Components
	20.3.5 How to Create a Custom Alias
	20.3.6 How to Configure a Component for Changing Skins Dynamically

	20.4 Changing the Style Properties of a Component
	20.4.1 How to Set an Inline Style
	20.4.2 How to Set a Style Class

	20.5 Referring to URLs in a Skin’s CSS File
	20.6 Versioning Custom Skins
	20.6.1 How to Version a Custom Skin
	20.6.2 What Happens When You Version Custom Skins

	20.7 Deploying a Custom Skin File in a JAR File

	21 Internationalizing and Localizing Pages
	21.1 Introduction to Internationalization and Localization of ADF Faces Pages
	21.2 Using Automatic Resource Bundle Integration in JDeveloper
	21.2.1 How to Set Resource Bundle Options
	21.2.2 What Happens When You Set Resource Bundle Options
	21.2.3 How to Create an Entry in a JDeveloper-Generated Resource Bundle
	21.2.4 What Happens When You Create an Entry in a JDeveloper-Generated Resource Bundle

	21.3 Manually Defining Resource Bundles and Locales
	21.3.1 How to Define the Base Resource Bundle
	21.3.2 How to Edit a Resource Bundle File
	21.3.3 How to Register Locales and Resource Bundles in Your Application
	21.3.4 How to Use Resource Bundles in Your Application
	21.3.5 What You May Need to Know About Custom Skins and Control Hints
	21.3.6 What You May Need to Know About Overriding a Resource Bundle in a Customizable Application

	21.4 Configuring Pages for an End User to Specify Locale at Runtime
	21.4.1 How to Configure a Page for an End User to Specify Locale
	21.4.2 What Happens When You Configure a Page to Specify Locale
	21.4.3 What Happens at Runtime When an End User Specifies a Locale

	21.5 Configuring Optional ADF Faces Localization Properties
	21.5.1 How to Configure Optional Localization Properties

	22 Developing Accessible ADF Faces Pages
	22.1 Introduction to Accessible ADF Faces Pages
	22.2 Exposing Accessibility Preferences
	22.2.1 How to Configure Accessibility Support in trinidad-config.xml

	22.3 Specifying Component-Level Accessibility Properties
	22.3.1 ADF Faces Component Accessibility Guidelines
	22.3.2 Using ADF Faces Table components in Screen Reader mode
	22.3.3 ADF Data Visualization Components Accessibility Guidelines
	22.3.4 How to Define Access Keys for an ADF Faces Component
	22.3.5 How to Define Localized Labels and Access Keys

	22.4 Creating Accessible Pages
	22.4.1 How to Use Partial Page Rendering
	22.4.2 How to Use Scripting
	22.4.3 How to Use Styles
	22.4.4 How to Use Page Structures and Navigation
	22.4.5 How to Use WAI-ARIA Landmark Regions

	22.5 Running Accessibility Audit Rules

	Part IV Using ADF Data Visualization Components
	23 Introduction to ADF Data Visualization Components
	23.1 Introduction to ADF Data Visualization Components
	23.2 Defining the ADF Data Visualization Components
	23.2.1 Graph
	23.2.2 Gauge
	23.2.3 Pivot Table
	23.2.4 Geographic Map
	23.2.5 Gantt Chart
	23.2.6 Timeline
	23.2.7 Hierarchy Viewer
	23.2.8 Treemap and Sunburst

	23.3 Providing Data for ADF Data Visualization Components
	23.4 Downloading Custom Fonts for Flash Images

	24 Using ADF Graph Components
	24.1 Introduction to the Graph Component
	24.2 Understanding the Graph Tags
	24.2.1 Graph-Specific Tags
	24.2.2 Common Graph Child Tags
	24.2.3 Graph-Specific Child Tags
	24.2.4 Child Set Tags

	24.3 Understanding Data Requirements for Graphs
	24.3.1 Area Graph Data Requirements
	24.3.2 Bar Graph Data Requirements
	24.3.3 Bubble Graph Data Requirements
	24.3.4 Combination Graph Data Requirements
	24.3.5 Funnel Graph Data Requirements
	24.3.6 Line Graph Data Requirements
	24.3.7 Pareto Graph Data Requirements
	24.3.8 Pie Graph Data Requirements
	24.3.9 Polar Graph Data Requirements
	24.3.10 Radar Graph Data Requirements
	24.3.11 Scatter Graph Data Requirements
	24.3.12 Sparkchart Data Requirements
	24.3.13 Stock Graph Data Requirements
	24.3.13.1 Stock Graphs: High-Low-Close
	24.3.13.2 Stock Graphs: High-Low-Close with Volume
	24.3.13.3 Stock Graphs: Open-High-Low-Close
	24.3.13.4 Stock Graphs: Open-High-Low-Close with Volume
	24.3.13.5 Candle Stock Graphs: Open-Close
	24.3.13.6 Candle Stock Graphs: Open-Close with Volume
	24.3.13.7 Candle Stock Graphs: Open-High-Low-Close
	24.3.13.8 Candle Stock Graphs: Open-High-Low-Close with Volume

	24.4 Creating a Graph
	24.4.1 How to Add a Graph to a Page
	24.4.2 How to Create a Graph Using Tabular Data
	24.4.2.1 Storing Tabular Data for a Graph in a Managed Bean
	24.4.2.2 Creating a Graph Using Tabular Data

	24.4.3 What Happens When You Create a Graph Using Tabular Data
	24.4.4 What You May Need to Know About Graph Image Formats

	24.5 Changing the Graph Type
	24.6 Customizing the Appearance of Graphs
	24.6.1 Changing the Color, Style, and Display of Graph Data Values
	24.6.1.1 How to Specify the Color and Style for Individual Series Items
	24.6.1.2 How to Enable Hiding and Showing Series Items

	24.6.2 Formatting Data Values in Graphs
	24.6.2.1 How to Format Categorical Data Values
	24.6.2.2 How to Format Numerical Data Values
	24.6.2.3 What You May Need to Know About Automatic Scaling and Precision

	24.6.3 Formatting Text in Graphs
	24.6.3.1 How to Globally Set Graph Font Using a Skin

	24.6.4 Changing Graph Size and Style
	24.6.4.1 How to Specify the Size of a Graph at Initial Display
	24.6.4.2 How to Provide for Dynamic Resizing of a Graph
	24.6.4.3 How to Use a Specific Style Sheet for a Graph

	24.6.5 Changing Graph Background, Plot Area, and Title
	24.6.5.1 How to Customize the Background and Plot Area of a Graph
	24.6.5.2 How to Specify Titles and Footnotes in a Graph

	24.6.6 Customizing Graph Axes and Labels
	24.6.6.1 How to Specify the Title, Appearance, and Scaling of an Axis
	24.6.6.2 How to Specify Scrolling on an Axis
	24.6.6.3 How to Control the Appearance of Tick Marks and Labels on an Axis
	24.6.6.4 How to Format Numbers on an Axis
	24.6.6.5 How to Set Minimum and Maximum Values on a Data Axis

	24.6.7 Customizing Graph Legends
	24.6.8 Customizing Tooltips in Graphs

	24.7 Customizing the Appearance of Specific Graph Types
	24.7.1 Changing the Appearance of Pie Graphs
	24.7.1.1 How to Customize the Overall Appearance of Pie Graphs
	24.7.1.2 How to Customize an Exploding Pie Slice

	24.7.2 Changing the Appearance of Lines in Graphs
	24.7.2.1 How to Display Either Data Lines or Markers in Graphs
	24.7.2.2 How to Change the Appearance of Lines in a Graph Series

	24.7.3 Customizing Pareto Graphs
	24.7.4 Customizing Scatter Graph Series Markers

	24.8 Adding Specialized Features to Graphs
	24.8.1 Adding Reference Lines or Areas to Graphs
	24.8.1.1 How to Create Reference Lines or Areas During Design
	24.8.1.2 What Happens When You Create Reference Lines or Areas During Design
	24.8.1.3 How to Create Reference Lines or Areas Dynamically

	24.8.2 Using Gradient Special Effects in Graphs
	24.8.2.1 How to Add Gradient Special Effects to a Graph
	24.8.2.2 What Happens When You Add a Gradient Special Effect to a Graph

	24.8.3 Specifying Transparent Colors for Parts of a Graph
	24.8.4 Adding Data Marker Selection Support for Graphs
	24.8.4.1 How to Add Selection Support to Graphs
	24.8.4.2 What You May Need to Know About Graph Data Marker Selection

	24.8.5 Adding Context Menus to Graphs
	24.8.5.1 How to Configure Graph Context Menus
	24.8.5.2 What You May Need to Know About Flash Rendering Format

	24.8.6 How to React to Changes in the Zoom and Scroll Levels
	24.8.7 How to Provide Marker and Legend Dimming
	24.8.8 Providing an Interactive Time Axis for Graphs
	24.8.8.1 How to Define a Relative Range of Time Data for Display
	24.8.8.2 How to Define an Explicit Range of Time Data for Display
	24.8.8.3 How to Add a Time Selector to a Graph

	24.8.9 Adding Alerts and Annotations to Graphs

	24.9 Animating Graphs
	24.9.1 How to Configure Graph Components to Display Active Data
	24.9.2 How to Specify Animation Effects for Graphs

	25 Using ADF Gauge Components
	25.1 Introduction to the Gauge Component
	25.1.1 Types of Gauges
	25.1.2 Gauge Terminology

	25.2 Understanding Data Requirements for Gauges
	25.3 Creating a Gauge
	25.3.1 How to Add a Gauge to a Page
	25.3.2 Creating a Gauge Using Tabular Data
	25.3.2.1 Storing Tabular Data for a Gauge in a Managed Bean
	25.3.2.2 Structure of the List of Tabular Data

	25.3.3 How to Create a Gauge Using Tabular Data
	25.3.4 What Happens When You Create a Gauge Using Tabular Data
	25.3.5 What You May Need to Know About Gauge Image Formats

	25.4 Customizing Gauge Type, Layout, and Appearance
	25.4.1 How to Change the Type of the Gauge
	25.4.2 How to Determine the Layout of Gauges in a Gauge Set
	25.4.3 Changing Gauge Size and Style
	25.4.3.1 Specifying the Size of a Gauge at Initial Display
	25.4.3.2 Providing Dynamic Resizing of a Gauge
	25.4.3.3 Using a Custom Style Class for a Gauge

	25.4.4 How to Add Thresholds to Gauges
	25.4.4.1 Adding Static Thresholds to Gauges

	25.4.5 How to Format Numeric Values in Gauges
	25.4.5.1 Formatting the Numeric Value in a Gauge Metric or Tick Label

	25.4.6 What Happens When You Format the Numbers in a Gauge Metric Label
	25.4.7 What You May Need to Know About Automatic Scaling and Precision
	25.4.8 How to Format Text in Gauges
	25.4.9 How to Specify an N-Degree Dial
	25.4.10 How to Customize Gauge Labels
	25.4.10.1 Controlling the Position of Gauge Labels
	25.4.10.2 Customizing the Colors and Borders of Gauge Labels

	25.4.11 How to Customize Indicators and Tick Marks
	25.4.11.1 Controlling the Appearance of Gauge Indicators
	25.4.11.2 Specifying Tick Marks and Labels
	25.4.11.3 Creating Exterior Tick Labels

	25.4.12 Specifying Transparency for Parts of a Gauge

	25.5 Adding Gauge Special Effects and Animation
	25.5.1 How to Use Gradient Special Effects in a Gauge
	25.5.1.1 Adding Gradient Special Effects to a Gauge

	25.5.2 What Happens When You Add a Gradient Special Effect to a Gauge
	25.5.3 How to Add Interactivity to Gauges
	25.5.4 How to Animate Gauges
	25.5.5 How to Animate Gauges with Active Data
	25.5.5.1 Configuring Gauge Components to Display Active Data
	25.5.5.2 Adding Animation to Gauges

	25.6 Using Custom Shapes in Gauges
	25.6.1 How to Create a Custom Shapes Graphic File
	25.6.2 How to Use a Custom Shapes File
	25.6.3 What You May Need to Know About Supported SVG Features
	25.6.4 How to Set Custom Shapes Styles

	26 Using ADF Geographic Map Components
	26.1 Introduction to Geographic Maps
	26.1.1 Available Map Themes
	26.1.2 Geographic Map Terminology
	26.1.3 Geographic Map Component Tags
	26.1.3.1 Geographic Map Parent Tags
	26.1.3.2 Geographic Map Child Tags
	26.1.3.3 Tags for Modifying Map Themes

	26.2 Understanding Data Requirements for Geographic Maps
	26.3 Customizing Map Size, Zoom Control, and Selection Area Totals
	26.3.1 How to Adjust the Map Size
	26.3.2 How to Specify Strategy for Map Zoom Control
	26.3.3 How to Total Map Selection Values

	26.4 Customizing Map Themes
	26.4.1 How to Customize Zoom Levels for a Theme
	26.4.2 How to Customize the Labels of a Map Theme
	26.4.3 How to Customize Color Map Themes
	26.4.4 How to Customize Point Images in a Point Theme
	26.4.5 What Happens When You Customize the Point Images in a Map
	26.4.6 How to Customize the Bars in a Bar Graph Theme
	26.4.7 What Happens When You Customize the Bars in a Map Bar Graph Theme
	26.4.8 How to Customize the Slices in a Pie Graph Theme
	26.4.9 What Happens When You Customize the Slices in a Map Pie Graph Theme

	26.5 Adding a Toolbar to a Map
	26.5.1 How to Add a Toolbar to a Map
	26.5.2 What Happens When You Add a Toolbar to a Map

	27 Using ADF Pivot Table Components
	27.1 Introduction to the ADF Pivot Table Component
	27.1.1 Pivot Table Elements and Terminology

	27.2 Understanding Data Requirements for a Pivot Table
	27.3 Pivoting Layers
	27.4 Displaying Large Data Sets in Pivot Tables
	27.5 Using Selection in Pivot Tables
	27.6 Sorting in a Pivot Table
	27.7 Sizing in a Pivot Table
	27.7.1 How to Set the Overall Size of a Pivot Table
	27.7.2 How to Resize Rows, Columns, and Layers
	27.7.3 What You May Need to Know About Resizing Rows, Columns, and Layers

	27.8 Updating Pivot Tables with Partial Page Rendering
	27.9 Exporting from a Pivot Table
	27.10 Displaying Pivot Tables in Printable Mode
	27.11 Customizing the Cell Content of a Pivot Table
	27.11.1 How to Create a CellFormat Object for a Data Cell
	27.11.2 How to Construct a CellFormat Object
	27.11.3 How to Change Format and Text Styles
	27.11.4 How to Create Stoplight and Conditional Formatting in a Pivot Table

	27.12 Pivot Table Data Cell Stamping and Editing
	27.12.1 How to Specify Custom Images for Data Cells
	27.12.2 How to Specify Images, Icons, Links, and Read-Only Content in Header Cells

	27.13 Using a Pivot Filter Bar with a Pivot Table
	27.13.1 How to Associate a Pivot Filter Bar with a Pivot Table

	28 Using ADF Timeline Components
	28.1 Introduction to ADF Timeline Components
	28.1.1 Timeline Use Cases and Examples
	28.1.2 End User and Presentation Features
	28.1.2.1 Layout Options
	28.1.2.2 Timeline Item Selection
	28.1.2.3 Timeline Grouping and Sorting
	28.1.2.4 Drag and Drop Support
	28.1.2.5 Content Delivery
	28.1.2.6 Timeline Image Formats
	28.1.2.7 Timeline Display in Printable or Emailable Modes
	28.1.2.8 Active Data Support (ADS)

	28.1.3 Additional Functionality for Timeline Components

	28.2 Using Timeline Components
	28.2.1 Timeline Component Data Requirements
	28.2.2 Configuring Timelines
	28.2.3 How to Add a Timeline to a Page
	28.2.4 What Happens When You Add a Timeline to a Page

	28.3 Adding Data to Timeline Components
	28.3.1 How to Add Data to a Timeline
	28.3.2 What You May Need to Know About Configuring Data for a Dual Timeline
	28.3.3 What You May Need to Know About Adding Data to Timelines

	28.4 Customizing Timeline Display Elements
	28.4.1 Configuring Timeline Items
	28.4.2 How to Add a Custom Time Scale to a Timeline

	28.5 Adding Interactive Features to Timelines
	28.5.1 How to Add Popups to Timeline Items
	28.5.2 How to Configure Timeline Context Menus
	28.5.3 How to Add Drag and Drop to a Timeline

	29 Using ADF Gantt Chart Components
	29.1 Introduction to the ADF Gantt Chart Components
	29.1.1 Types of Gantt Charts
	29.1.2 Functional Areas of a Gantt Chart
	29.1.3 Description of Gantt Chart Tasks

	29.2 Understanding Gantt Chart Tags and Facets
	29.3 Understanding Gantt Chart User Interactivity
	29.3.1 Navigating in a Gantt Chart
	29.3.1.1 Scrolling and Panning the List Region or the Chart Region
	29.3.1.2 How to Navigate to a Specific Date in a Gantt Chart
	29.3.1.3 How to Control the Visibility of Columns in the Table Region

	29.3.2 How to Display Data in a Hierarchical List or a Flat List
	29.3.3 How to Change the Gantt Chart Time Scale

	29.4 Understanding Data Requirements for the Gantt Chart
	29.4.1 Data for a Project Gantt Chart
	29.4.2 Data for a Resource Utilization Gantt Chart
	29.4.3 Data for a Scheduling Gantt Chart

	29.5 Creating an ADF Gantt Chart
	29.6 Customizing Gantt Chart Legends, Toolbars, and Context Menus
	29.6.1 How to Customize a Gantt Chart Legend
	29.6.2 Customizing Gantt Chart Toolbars
	29.6.3 Customizing Gantt Chart Context Menus

	29.7 Working with Gantt Chart Tasks and Resources
	29.7.1 How to Create a New Task Type
	29.7.2 How to Specify Custom Data Filters
	29.7.3 How to Add a Double-Click Event to a Task Bar

	29.8 Specifying Nonworking Days, Read-Only Features, and Time Axes
	29.8.1 Identifying Nonworking Days in a Gantt Chart
	29.8.1.1 How to Specify Weekdays as Nonworking Days
	29.8.1.2 How to Identify Specific Dates as Nonworking Days

	29.8.2 How to Apply Read-Only Values to Gantt Chart Features
	29.8.3 Customizing the Time Axis of a Gantt Chart
	29.8.3.1 How to Create and Use a Custom Time Axis

	29.9 Using Page Controls in Gantt Charts
	29.10 Printing a Gantt Chart
	29.10.1 Print Options
	29.10.2 Action Listener to Handle the Print Event

	29.11 Using Gantt Charts as a Drop Target or Drag Source

	30 Using ADF Treemap and Sunburst Components
	30.1 Introduction to Treemaps and Sunbursts
	30.1.1 Treemap and Sunburst Use Cases and Examples
	30.1.2 End User and Presentation Features of Treemaps and Sunbursts
	30.1.2.1 Treemap and Sunburst Layouts
	30.1.2.2 Attribute Groups
	30.1.2.3 Legend Support
	30.1.2.4 Pattern Support
	30.1.2.5 Node Selection Support
	30.1.2.6 Tooltip Support
	30.1.2.7 Popup Support
	30.1.2.8 Context Menus
	30.1.2.9 Drilling Support
	30.1.2.10 Other Node Support
	30.1.2.11 Drag and Drop Support
	30.1.2.12 Sorting Support
	30.1.2.13 Treemap and Sunburst Image Formats
	30.1.2.14 Advanced Node Content
	30.1.2.15 Printing and Email Support
	30.1.2.16 Active Data Support (ADS)
	30.1.2.17 Isolation Support (Treemap Only)
	30.1.2.18 Treemap Group Node Header Customization (Treemap Only)

	30.1.3 Additional Functionality for Treemap and Sunburst Components

	30.2 Using the Treemap and Sunburst Components
	30.2.1 Treemap and Sunburst Data Requirements
	30.2.2 Using the Treemap Component
	30.2.2.1 Configuring Treemaps
	30.2.2.2 How to Add a Treemap to a Page
	30.2.2.3 What Happens When You Add a Treemap to a Page

	30.2.3 Using the Sunburst Component
	30.2.3.1 Configuring Sunbursts
	30.2.3.2 How to Add a Sunburst to a Page
	30.2.3.3 What Happens When You Add a Sunburst to a Page

	30.3 Adding Data to Treemap and Sunburst Components
	30.3.1 How to Add Data to Treemap or Sunburst Components
	30.3.2 What You May Need to Know about Adding Data to Treemaps and Sunbursts

	30.4 Customizing Treemap and Sunburst Display Elements
	30.4.1 Configuring Treemap and Sunburst Display Size and Style
	30.4.2 Configuring Pattern Display
	30.4.3 Configuring Treemap and Sunburst Attribute Groups
	30.4.3.1 How to Configure Treemap and Sunburst Discrete Attribute Groups
	30.4.3.2 How to Configure Treemap or Sunburst Continuous Attribute Groups
	30.4.3.3 What You May Need to Know About Configuring Attribute Groups

	30.4.4 How to Configure Treemap and Sunburst Legends
	30.4.5 Configuring the Treemap and Sunburst Other Node
	30.4.5.1 How to Configure the Treemap and Sunburst Other Node
	30.4.5.2 What You May Need to Know About Configuring the Treemap and Sunburst Other Node

	30.4.6 Configuring Treemap and Sunburst Sorting
	30.4.7 Configuring Treemap and Sunburst Advanced Node Content
	30.4.7.1 How to Add Advanced Node Content to a Treemap
	30.4.7.2 How to Add Advanced Root Node Content to a Sunburst:
	30.4.7.3 What You May Need to Know About Configuring Advanced Node Content on Treemaps

	30.4.8 How to Configure Animation in Treemaps and Sunbursts
	30.4.9 Configuring Labels in Treemaps and Sunbursts
	30.4.9.1 How to Configure Treemap Leaf Node Labels
	30.4.9.2 How to Configure Sunburst Node Labels

	30.4.10 Configuring Treemap Node Headers and Group Gap Display
	30.4.10.1 How to Configure Treemap Node Headers
	30.4.10.2 What You May Need to Know About Treemap Node Headers
	30.4.10.3 How to Customize Treemap Group Gaps

	30.5 Adding Interactive Features to Treemaps and Sunbursts
	30.5.1 Configuring Treemap and Sunburst Tooltips
	30.5.2 Configuring Treemap and Sunburst Popups
	30.5.2.1 How to Add Popups to Treemap and Sunburst Components
	30.5.2.2 What You May Need to Know About Adding Popups to Treemaps and Sunburst Components

	30.5.3 Configuring Treemap and Sunburst Selection Support
	30.5.3.1 How to Add Selection Support to Treemap and Sunburst Components
	30.5.3.2 What You May Need to Know About Adding Selection Support to Treemaps and Sunbursts

	30.5.4 Configuring Treemap and Sunburst Context Menus
	30.5.4.1 How to Configure Treemap and Sunburst Context Menus
	30.5.4.2 What You May Need to Know About Configuring Treemap and Sunburst Context Menus

	30.5.5 Configuring Treemap and Sunburst Drilling Support
	30.5.5.1 How to Configure Treemap and Sunburst Drilling Support
	30.5.5.2 What You May Need to Know About Treemaps and Drilling Support

	30.5.6 How to Add Drag and Drop to Treemaps and Sunbursts
	30.5.7 Configuring Isolation Support (Treemap Only)
	30.5.7.1 How to Disable Isolation Support
	30.5.7.2 What You May Need to Know About Treemaps and Isolation Support

	31 Using ADF Hierarchy Viewer Components
	31.1 Introduction to Hierarchy Viewers
	31.1.1 Understanding the Hierarchy Viewer Component
	31.1.2 Hierarchy Viewer Elements and Terminology
	31.1.3 Available Hierarchy Viewer Layout Options
	31.1.4 What You May Need to Know About Hierarchy Viewer Rendering and HTML

	31.2 Data Requirements for Hierarchy Viewers
	31.3 Creating a Hierarchy Viewer
	31.3.1 How to Add a Hierarchy Viewer to a Page

	31.4 Managing Nodes in a Hierarchy Viewer
	31.4.1 How to Specify Node Content
	31.4.2 How to Configure the Controls on a Node
	31.4.3 How to Specify a Node Definition for an Accessor
	31.4.4 How to Associate a Node Definition with a Particular Set of Data Rows
	31.4.5 How to Specify Ancestor Levels for an Anchor Node

	31.5 Navigating in a Hierarchy Viewer
	31.5.1 How to Configure Upward Navigation in a Hierarchy Viewer
	31.5.2 How to Configure Same-Level Navigation in a Hierarchy Viewer
	31.5.3 What Happens When You Configure Same-Level Navigation in a Hierarchy Viewer

	31.6 Adding Interactivity to a Hierarchy Viewer Component
	31.6.1 How to Configure 3D Tilt Panning
	31.6.2 How to Configure Node Selection Action
	31.6.3 How to Configure a Hierarchy Viewer to Invoke a Popup Window
	31.6.4 How to Configure a Hierarchy View Node to Invoke a Context Menu
	31.6.5 Configuring Hierarchy Viewer Drag and Drop
	31.6.5.1 How to Configure Hierarchy Viewer Drag and Drop
	31.6.5.2 What You May Need to Know About Configuring Hierarchy Viewer Drag and Drop

	31.7 Using Panel Cards
	31.7.1 How to Create a Panel Card
	31.7.2 What Happens at Runtime When a Panel Card Component Is Rendered

	31.8 Customizing the Appearance of a Hierarchy Viewer
	31.8.1 How to Adjust the Size of a Hierarchy Viewer
	31.8.2 How to Include Images in a Hierarchy Viewer
	31.8.3 How to Configure the Display of the Control Panel
	31.8.4 How to Configure the Display of Links and Labels
	31.8.5 How to Disable the Hover Detail Window

	31.9 Adding Search to a Hierarchy Viewer
	31.9.1 How to Configure Searching in a Hierarchy Viewer
	31.9.2 What You May Need to Know About Configuring Search in a Hierarchy Viewer

	Part V Advanced Topics
	32 Creating Custom ADF Faces Components
	32.1 Introduction to Custom ADF Faces Components
	32.1.1 Developing a Custom Component with JDeveloper
	32.1.2 An Example Custom Component

	32.2 Setting Up the Workspace and Starter Files
	32.2.1 How to Set Up the JDeveloper Custom Component Environment
	32.2.2 How to Add a Faces Configuration File
	32.2.3 How to Add a MyFaces Trinidad Skins Configuration File
	32.2.4 How to Add a Cascading Style Sheet
	32.2.5 How to Add a Resource Kit Loader
	32.2.6 How to Add a JavaServer Pages Tag Library Descriptor File
	32.2.7 How to Add a JavaScript Library Feature Configuration File
	32.2.8 How to Add a Facelets Tag Library Configuration File

	32.3 Client-Side Development
	32.3.1 How to Create a JavaScript File for a Component
	32.3.2 How to Create a Javascript File for an Event
	32.3.3 How to Create a JavaScript File for a Peer
	32.3.4 How to Add a Custom Component to a JavaScript Library Feature Configuration File

	32.4 Server-Side Development
	32.4.1 How to Create a Class for an Event Listener
	32.4.2 How to Create a Class for an Event
	32.4.3 Creating the Component
	32.4.4 How to Create a Class for a Component
	32.4.5 How to Add the Component to the faces-config.xml File
	32.4.6 How to Create a Class for a Resource Bundle
	32.4.7 How to Create a Class for a Renderer
	32.4.8 How to Add the Renderer to the faces-config.xml File
	32.4.9 How to Create JSP Tag Properties
	32.4.10 How to Configure the Tag Library Descriptor
	32.4.11 How to Create a Resource Loader
	32.4.12 How to Create a MyFaces Trinidad Cascading Style Sheet

	32.5 Deploying a Component Library
	32.6 Adding the Custom Component to an Application
	32.6.1 How to Configure the Web Deployment Descriptor
	32.6.2 How to Enable JavaScript Logging and Assertions
	32.6.3 How to Add a Custom Component to JSF Pages
	32.6.4 What You May Need to Know About Using the tagPane Custom Component

	33 Allowing User Customization on JSF Pages
	33.1 Introduction to User Customization
	33.2 Implementing Session Change Persistence
	33.2.1 How to Implement Session Change Persistence
	33.2.2 What Happens When You Configure Your Application to Use Change Persistence
	33.2.3 What Happens at Runtime
	33.2.4 What You May Need to Know About Using Change Persistence on Templates and Regions

	34 Adding Drag and Drop Functionality
	34.1 Introduction to Drag and Drop Functionality
	34.2 Adding Drag and Drop Functionality for Attributes
	34.3 Adding Drag and Drop Functionality for Objects
	34.3.1 How to Add Drag and Drop Functionality for a Single Object
	34.3.2 What Happens at Runtime
	34.3.3 What You May Need to Know About Using the ClientDropListener

	34.4 Adding Drag and Drop Functionality for Collections
	34.4.1 How to Add Drag and Drop Functionality for Collections
	34.4.2 What You May Need to Know About the dragDropEndListener

	34.5 Adding Drag and Drop Functionality for Components
	34.5.1 How to Add Drag and Drop Functionality for Components

	34.6 Adding Drag and Drop Functionality Into and Out of a panelDashboard Component
	34.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component
	34.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component

	34.7 Adding Drag and Drop Functionality to a Calendar
	34.7.1 How to Add Drag and Drop Functionality to a Calendar
	34.7.2 What You May Need to Know About Dragging and Dropping in a Calendar

	34.8 Adding Drag and Drop Functionality for DVT Graphs
	34.8.1 How to Add Drag and Drop Functionality for a DVT Graph

	34.9 Adding Drag and Drop Functionality for DVT Gantt Charts
	34.9.1 How to Add Drag and Drop Functionality for a DVT Gantt Component

	34.10 Adding Drag and Drop Functionality for DVT Hierarchy Viewers, Sunbursts, and Treemaps
	34.10.1 Drag and Drop Example for DVT Hierarchy Viewers
	34.10.2 Drag and Drop Example for DVT Sunbursts
	34.10.3 Drag and Drop Example for DVT Treemaps
	34.10.4 How to Add Drag and Drop Functionality for a DVT Hierarchy Viewer, Sunburst, or Treemap Component

	35 Using Different Output Modes
	35.1 Introduction to Using Different Output Modes
	35.2 Displaying a Page for Print
	35.2.1 How to Use the showPrintablePageBehavior Tag

	35.3 Creating Emailable Pages
	35.3.1 How to Create an Emailable Page
	35.3.2 How to Test the Rendering of a Page in an Email Client
	35.3.3 What Happens at Runtime: How ADF Faces Converts JSF Pages to Emailable Pages

	36 Using the Active Data Service with an Asynchronous Backend
	36.1 Introduction to Using the Active Data Service
	36.1.1 Active Data Service Use Cases and Examples

	36.2 Process Overview for Using Active Data Service
	36.3 Implement the ActiveModel Interface in a Managed Bean
	36.3.1 What You May Need to Know About Read Consistency

	36.4 Pass the Event Into the Active Data Service
	36.5 Register the Data Update Event Listener
	36.6 Configure the ADF Component to Display Active Data

	Part VI Appendixes
	A ADF Faces Configuration
	A.1 Introduction to Configuring ADF Faces
	A.2 Configuration in web.xml
	A.2.1 How to Configure for JSF and ADF Faces in web.xml
	A.2.2 What You May Need to Know About Required Elements in web.xml
	A.2.3 What You May Need to Know About ADF Faces Context Parameters in web.xml
	A.2.3.1 State Saving
	A.2.3.2 Debugging
	A.2.3.3 File Uploading
	A.2.3.4 Resource Debug Mode
	A.2.3.5 Assertions
	A.2.3.6 Enabling the Application for Real User Experience Insight
	A.2.3.7 Facelets Support
	A.2.3.8 Dialog Prefix
	A.2.3.9 Compression for CSS Class Names
	A.2.3.10 Test Automation
	A.2.3.11 UIViewRoot Caching
	A.2.3.12 Themes and Tonal Styles
	A.2.3.13 Partial Page Navigation
	A.2.3.14 JavaScript Partitioning
	A.2.3.15 Framebusting
	A.2.3.16 Version Number Information
	A.2.3.17 Suppressing Auto-Generated Component IDs
	A.2.3.18 ADF Faces Caching Filter
	A.2.3.19 Configuring Native Browser Context Menus for Command Links
	A.2.3.20 Internet Explorer Compatibility View Mode
	A.2.3.21 Session Timeout Warning
	A.2.3.22 JSP Tag Execution in HTTP Streaming
	A.2.3.23 Splash Screen
	A.2.3.24 Graph and Gauge Image Format
	A.2.3.25 Geometry Management for Layout and Table Components

	A.2.4 What You May Need to Know About Other Context Parameters in web.xml

	A.3 Configuration in faces-config.xml
	A.3.1 How to Configure for ADF Faces in faces-config.xml

	A.4 Configuration in adf-config.xml
	A.4.1 How to Configure ADF Faces in adf-config.xml
	A.4.2 Defining Caching Rules for ADF Faces Caching Filter
	A.4.3 Configuring Flash as Component Output Format
	A.4.4 Using Content Delivery Networks
	A.4.4.1 What You May Need to Know About Skin Style Sheets and CDN
	A.4.4.2 What You May Need to Know About JavaScript and CDN

	A.5 Configuration in adf-settings.xml
	A.5.1 How to Configure for ADF Faces in adf-settings.xml
	A.5.2 What You May Need to Know About Elements in adf-settings.xml
	A.5.2.1 Help System
	A.5.2.2 Caching Rules

	A.6 Configuration in trinidad-config.xml
	A.6.1 How to Configure ADF Faces Features in trinidad-config.xml
	A.6.2 What You May Need to Know About Elements in trinidad-config.xml
	A.6.2.1 Animation Enabled
	A.6.2.2 Skin Family
	A.6.2.3 Time Zone and Year
	A.6.2.4 Enhanced Debugging Output
	A.6.2.5 Page Accessibility Level
	A.6.2.6 Language Reading Direction
	A.6.2.7 Currency Code and Separators for Number Groups and Decimal Points
	A.6.2.8 Formatting Dates and Numbers Locale
	A.6.2.9 Output Mode
	A.6.2.10 Number of Active PageFlowScope Instances
	A.6.2.11 Custom File Uploaded Processor
	A.6.2.12 Client-Side Validation and Conversion

	A.7 Configuration in trinidad-skins.xml
	A.8 Using the RequestContext EL Implicit Object
	A.9 Using JavaScript Library Partitioning
	A.9.1 How to Create a JavaScript Feature
	A.9.2 How to Create JavaScript Partitions
	A.9.3 What You May Need to Know About the adf-js-partitions.xml File
	A.9.4 What Happens at Runtime: JavaScript Partitioning

	B Message Keys for Converter and Validator Messages
	B.1 Introduction to ADF Faces Default Messages
	B.2 Message Keys and Setter Methods
	B.3 Converter and Validator Message Keys and Setter Methods
	B.3.1 af:convertColor
	B.3.2 af:convertDateTime
	B.3.3 af:convertNumber
	B.3.4 af:validateByteLength
	B.3.5 af:validateDateRestriction
	B.3.6 af:validateDateTimeRange
	B.3.7 af:validateDoubleRange
	B.3.8 af:validateLength
	B.3.9 af:validateRegExp

	C Keyboard Shortcuts
	C.1 Introduction to Keyboard Shortcuts
	C.2 Tab Traversal
	C.2.1 Tab Traversal Sequence on a Page
	C.2.2 Tab Traversal Sequence in a Table

	C.3 Accelerator Keys
	C.4 Accelerator Keys for ADF Data Visualization Components
	C.5 Access Keys
	C.6 Default Cursor or Focus Placement
	C.7 The Enter Key

	D Creating Web Applications for Touch Devices Using ADF Faces
	D.1 Introduction to Creating Web Applications for Touch Devices Using ADF Faces
	D.2 How ADF Faces Behaves in Mobile Browsers on Touch Devices
	D.3 Best Practices When Using ADF Faces Components in a Mobile Browser

	E Quick Start Layout Themes
	F Troubleshooting ADF Faces
	F.1 Introduction to Troubleshooting ADF Faces
	F.2 Getting Started with Troubleshooting the View Layer of an ADF Application
	F.3 Resolving Common Problems
	F.3.1 Application Displays an Unexpected White Background
	F.3.2 Application is Missing Expected Images
	F.3.3 Data Visualization Components Fail to Display as Expected
	F.3.4 High Availability Application Displays a NotSerializableException
	F.3.5 Unable to Reproduce Problem in All Web Browsers
	F.3.6 Application is Missing Content
	F.3.7 Browser Displays an ADF_Faces-60098 Error
	F.3.8 Browser Displays an HTTP 404 or 500 Error
	F.3.9 Browser Fails to Navigate Between Pages

	F.4 Using My Oracle Support for Additional Troubleshooting Information

