ORACLE

Oracle® Fusion Middleware

Using Web Server Plug-Ins with Oracle WebLogic Server
11gRelease 1 (10.3.5)

E14395-05

April 2011

This document explains the use of plug-ins provided for
proxying requests to third party administration servers. This
document is intended mainly for system administrators who
manage the WebLogic Server application platform and its
various subsystems.

Oracle Fusion Middleware Using Web Server Plug-Ins with Oracle WebLogic Server, 11g Release 1 (10.3.5)
E14395-05

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...t s st vii
Documentation Accessibility ..o Vii
(@03 4 NT£=1 015 (o) 0 I RTRT SRR Vii

1 Introduction and Roadmap

Document Scope and AUdIence ... 1-1
Guide to this Document..............ccoiiiiiiiiiii e 1-1
Related Documentation ... 1-1
New and Changed Features in This Release.............ccccocooviiiiinnninniincc, 1-1

2 Using Web Server Plug-Ins with Oracle WebLogic Server

What Are PIUg-INS? ..o 2-1
Plug-Ins Included with Oracle WebLogic Server............cccccooiviniiiiiiniiininiecces 2-1
PIUG-IN VEISIONS ..ot s 2-1
Oracle HTTP Server Plug-In Support ... 2-2
Plug-In Two-Way SSL SUPPOIt.......ccccooiiiiiiiiiiiiiiic e 2-2
Set the WebLogic Plug-in Enabled Control in WebLogic Server.............ccoccocoioviiiinnicnicnnnes 2-2

3 Installing and Configuring the Apache HTTP Server Plug-In

Overview of the Apache HTTP Server Plug-In.............ccccocoiiiiiiinii 3-1
Keep-Alive Connections in Apache Version 2.0...........cccoeeueiriininininneiceeceeeceeennes 3-2
ProxXying ReqUESES........ccccciiiiiiiiiiiiiiii s 3-2
APACNE 2.2 1. 3-2
CertifiCAtIONS ...ttt ettt 3-2

Installing the Apache HTTP Server Plug-In...........ccccccocoviiiiiiiiiiiiiiees 3-2
Installing the Apache HTTP Server Plug-In as a Dynamic Shared Objectccccueenien. 3-2
Support for Large Files in Apache 2.0.......ccccccccciiiiiiiiiiiiniiiiicnesce e 3-5

Configuring the Apache HTTP Server Plug-In............cccococoiiiiiiiiiiice 3-5
Editing the httpd.conf Fileccooiiiii e 3-5

Placing WebLogic Properties Inside Location or VirtualHost Blocks...........c.ccccccceuiuniinns 3-7
Including a weblogic.conf File in the httpd.conf File..........ccccccccooninnn, 3-7
Creating weblogic.conf Files ..o 3-8

Sample weblogic.conf Configuration Files..........c.cccccovnnniiinnnnnnnnc, 3-9
Template for the Apache HTTP Server httpd.conf File.........cccccoevviiiiiiiiniiiiiinn, 3-10

Setting Up Perimeter Authentication ... 3-11

4

5

Using SSL with the Apache PIug-In...........ccccocooiiiiiiiiiiiii s 3-12

Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server............ 3-12
Issues with SSL-Apache Configurationcccceeueueuiieiriiiiicnniereeeeeeeeeeeeeeeee s 3-12
Connection Errors and Clustering Failover..............ccocooiiiiiiiiiccc 3-13
Possible Causes of Connection Failures.............ccooiiiiiiiiiiiiiies 3-13
Tuning to Reduce Connection_Refused Errorscccccccoeeeieiciinvnniinnncrrreeereececenes 3-14
Failover with a Single, Non-Clustered WebLogic Serverccoooiiiiiiiiininciccc, 3-15
The Dynamic Server List.........ooiii 3-15
Failover, Cookies, and HTTP SESSIONS........cccuiiiiiiiiiiiiiieieceeceeteetee et e eeveeereeeeaeeeneseaeseneeenns 3-15

Installing and Configuring the Microsoft IIS Plug-in

Overview of the Microsoft Internet Information Server Plug-Incccccocoovninin 4-1
Connection Pooling and Keep-ALIVe...........ccoceuoiiiiiiiiicic e 4-2
ProxXying ReqUESES........cccuiiriiiiiiii s 4-2

Certificationscoiii e 4-2

Using Wildcard Application Mappings to Proxy by Path.............cccocoooini 4-2
Installing Wildcard Application Mappings (IIS 6.0)coooreiiioiriiiiiiic e, 4-2
Adding a Wildcard Script Map for IIS 7.0c.ccooiiiiiiriirccrrrrc e 4-3

Installing and Configuring the Microsoft Internet Information Server Plug-In......................... 4-3

Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0 4-8

Proxying Requests from Multiple Virtual Web Sites to WebLogic Server................ccccoe.. 4-14
Sample 1iSProxXy.ini File......ccoiiiiiiiiiiii s 4-15

Creating ACLs Through IIS ... 4-16

Setting Up Perimeter Authentication...............cccovi 4-16

Using SSL with the Microsoft Internet Information Server Plug-In ..., 4-17

Proxying Servlets from IIS to WebLogic Server.............cccoooiiiiiiiiiiiiiiccccceccnas 4-18

Testing the Installation................ccccooiiiii s 4-18

Connection Errors and Clustering Failover.............cccooooiiiiiiiiccc 4-18
Possible Causes of Connection Failures.............ccooiiiiiiiiiiiiic 4-19
Failover with a Single, Non-Clustered WebLogic Server ..o 4-19
The Dynamic Server List ... 4-20
Failover, Cookies, and HTTD SESSIONS........c.ccvcveiuieieetietieeteeieste et eree e ereeve s eveereeseenreeveennas 4-20

Installing and Configuring the Sun Java System Web Server Plug-in

Overview of the Sun Java System Web Server Plug-In ... 5-1
Connection Pooling and Keep-ALIVe.........ccccoociiiiicceeeeeeeeeie e 5-2
ProxXying ReqUESES.......ccccoeuiiiiiiiiiiieiciii s 5-2

Installing and Configuring the Sun Java System Web Server Plug-In.............cccccccocnniinnnnnes 5-2
Guidelines for Modifying the obj.conf File...........cccccccooiiiiiiiiccrrecceeeeeeene 5-7
Sample obj.conf File (Not Using a WebLogic CIUSter)ccooreiiiiiiiieiiiiiiec 5-7
Sample obj.conf File (Using a WebLogic CIUSter)cooveeeuiiiiiiiieicccceece e, 5-8

Setting Up Perimeter Authentication...............ccocooiiiinii 5-10

Using SSL with the Sun Java System Web Server Plug-Inccccccoviiiiiiinni, 5-11

Connection Errors and Clustering Failover ... 5-11
Possible Causes of Connection Failures...........cccooviiiiiiiiiiiiiicee, 5-12
Failover with a Single, Non-Clustered WebLogic Server ..o, 5-12
The Dynamic Server LiSt........cccccciviiiiiiiiiiiiiiiiiiiiice s 5-13

Failover, Cookies, and HTTP Sessions

... 5-13
Failover Behavior When Using Firewalls and Load Directors...........cccccccevvvvinniinnnnnne 5-13
6 Proxying Requests to Another Web Server
Overview of Proxying Requests to Another Web Server ..., 6-1
Setting Up a Proxy to a Secondary Web Server ... 6-1
Sample Deployment Descriptor for the Proxy Servletccccccoociniiiiiiiiiniiiics 6-2
7 Parameters for Web Server Plug-ins
Entering Parameters in Web Server Plug-In Configuration Files...............c.cccccoiiiiininnn 7-1
General Parameters for Web Server Plug-Insccccccoiiiiiiiiii 7-1
Location of POST Data FIlescccccciiiiiiiiiiiiiicecccecieeeee e seeees 7-15
SSL Parameters for Web Server Plug-Ins.............cccooiiiiiiiiiiiiccnan 7-16

vi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using Web Server Plug-Ins with Oracle WebLogic Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vii

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction and Roadmap

This section describes the contents and organization of this guide—Using Web Server
Plug-Ins with Oracle WebLogic Server.

1.1 Document Scope and Audience

This document explains use of plug-ins provided for proxying requests to third party
administration servers. This document is intended mainly for system administrators
who manage the Oracle WebLogic Server application platform and its various
subsystems.

1.2 Guide to this Document

This chapter introduces the organization of this guide. The guide is organized as
follows:

Chapter 2, "Using Web Server Plug-Ins with Oracle WebLogic Server" describes the
plug-ins provided by Oracle for use with WebLogic Server.

Chapter 3, "Installing and Configuring the Apache HTTP Server Plug-In" describes
how to install and configure the Apache HTTP Server plug-in.

Chapter 4, "Installing and Configuring the Microsoft IIS Plug-In" describes how to
install and configure the Microsoft Internet Information Server plug-in.

Chapter 5, "Installing and Configuring the Sun Java System Web Server Plug-In"
describes how to install and configure the Sun Java System Web Server proxy
plug-in.

Chapter 6, "Proxying Requests to Another Web Server" describes how to proxy
HTTP requests to another Web server.

Chapter 7, "Parameters for Web Server Plug-Ins" describes the parameters that
you use to configure the Apache and Microsoft IIS Web server plug-ins.

1.3 Related Documentation

This document contains information on using Web server plug-ins. For information on
using a proxy plug-in, see Using Clusters for Oracle WebLogic Server .

1.4 New and Changed Features in This Release

For a comprehensive listing of the new Oracle WebLogic Server features introduced in
this release, see What’s New in Oracle WebLogic Server.

Introduction and Roadmap 1-1

New and Changed Features in This Release

1-2 Using Web Server Plug-Ins with Oracle WebLogic Server

2

Using Web Server Plug-Ins with Oracle

WebLogic Server

The following sections describe the plug-ins provided by Oracle for use with
WebLogic Server:

Section 2.1, "What Are Plug-Ins?"

Section 2.2, "Plug-Ins Included with Oracle WebLogic Server"

Section 2.3, "Plug-In Versions"

Section 2.4, "Oracle HTTP Server Plug-In Support"

Section 2.5, "Plug-In Two-Way SSL Support"

Section 2.6, "Set the WebLogic Plug-in Enabled Control in WebLogic Server"

2.1 What Are Plug-Ins?

Plug-ins are small software programs that developers use to extend a WebLogic Server
implementation. Plug-ins enable WebLogic Server to communicate with applications
deployed on Oracle HTTP Server, Apache HTTP Server, Sun Java System Web Server,
or Microsoft’s Internet Information Server. Typically, WebLogic Server handles the
application requests that require dynamic functionality, the requests that can best be
served with dynamic HTML pages or JSPs (Java Server Pages).

2.2 Plug-Ins Included with Oracle WebLogic Server

WebLogic Server includes plug-ins for the following Web servers:

Apache HTTP Server
Microsoft Internet Information Server

Sun Java System Web Server

2.3 Plug-In Versions

This release of Using Web Server Plug-Ins with Oracle WebLogic Server documents the
following plug-ins:

Apache HTTP Server, version 1.0.1211636
Microsoft Internet Information Server, version 1.0.1211636

Sun Java System Web Server, version 1.0.1211636

Using Web Server Plug-Ins with Oracle WebLogic Server 2-1

Oracle HTTP Server Plug-In Support

2.4 Oracle HTTP Server Plug-In Support

Plug-in support is also available for Oracle HTTP Server. These plug-ins are packaged
with the Oracle HTTP Server distribution. See Oracle Fusion Middleware Administrator’s
Guide for Oracle HTTP Server.

2.5 Plug-In Two-Way SSL Support

WebLogic Server Plug-Ins do not support two-way SSL. However, the Plug-Ins can be
set up to require the client certificate and pass it on to WebLogic Server. For example:

apache ssl

SSLVerifyClient require

SSLVerifyDepth 10

SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars +StrictRequire

2.6 Set the WebLogic Plug-in Enabled Control in WebLogic Server

Set the WebLogic Plug-in Enabled control in WebLogic Server.

The WebLogic Plug-in Enabled control specifies whether the WebLogic Server uses
the proprietary WL-Proxy-Client-IP header, which is recommended if the server
instance will receive requests from a proxy plug-in.

2-2 Using Web Server Plug-Ins with Oracle WebLogic Server

3

Installing and Configuring the Apache HTTP
Server Plug-In

The following sections describe how to install and configure the Apache HTTP Server
Plug-In:

= Section 3.1, "Overview of the Apache HTTP Server Plug-In"
= Section 3.2, "Installing the Apache HTTP Server Plug-In"

= Section 3.3, "Configuring the Apache HTTP Server Plug-In"
= Section 3.4, "Setting Up Perimeter Authentication”

= Section 3.5, "Using SSL with the Apache Plug-In"

= Section 3.6, "Connection Errors and Clustering Failover"

3.1 Overview of the Apache HTTP Server Plug-In

The Apache HTTP Server Plug-In allows requests to be proxied from an Apache HTTP
Server to WebLogic Server. The plug-in enhances an Apache installation by allowing
WebLogic Server to handle requests that require the dynamic functionality of
WebLogic Server.

The plug-in is intended for use in an environment where an Apache Server serves
static pages, and another part of the document tree (dynamic pages best generated by
HTTP Servlets or JavaServer Pages) is delegated to WebLogic Server, which may be
operating in a different process, possibly on a different host. To the end user—the
browser—the HTTP requests delegated to WebLogic Server still appear to be coming
from the same source.

HTTP-tunneling, a technique which allows HTTP requests and responses access
through a company’s firewall, can also operate through the plug-in, providing
non-browser clients access to WebLogic Server services.

The Apache HTTP Server Plug-In operates as an Apache module within an Apache
HTTP Server. An Apache module is loaded by Apache Server at startup, and then
certain HTTP requests are delegated to it. Apache modules are similar to HTTP
servlets, except that an Apache module is written in code native to the platform.

For information on configurations on which the Apache HTTP Server Plug-In is
supported, see
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

Installing and Configuring the Apache HTTP Server Plug-In 3-1

Installing the Apache HTTP Server Plug-In

Note: Apache 2.0 Plug-In was deprecated in the WebLogic Server
10.0 release.

3.1.1 Keep-Alive Connections in Apache Version 2.0

Version 2.0 of the Apache HTTP Server Plug-In improves performance by using a
reusable pool of connections from the plug-in to WebLogic Server. The plug-in
implements HTTP 1.1 keep-alive connections between the plug-in and WebLogic
Server by reusing the same connection in the pool for subsequent requests from the
same client. If the connection is inactive for more than 20 seconds, (or a user-defined
amount of time) the connection is closed and removed from the pool. You can disable
this feature if desired. For more information, see KeepAliveEnabled in Table 7-1.

3.1.2 Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on the URL of the request (or a portion of the
URL). This is called proxying by path. You can also proxy requests based on the MIME
type of the requested file. Or you can use a combination of the two methods. If a
request matches both criteria, the request is proxied by path. You can also specify
additional parameters for each type of request that define additional behavior of the
plug-in. For more information, see Section 3.3, "Configuring the Apache HTTP Server
Plug-In".

3.1.3 Apache 2.2

Although this document refers to Apache 2.0, you can apply the same instructions to
use Apache 2.2 with the libraries shown in Table 3-2.

3.1.4 Certifications

The Apache HTTP Server Plug-In is supported on AIX, Linux, Solaris, Windows, and
HPUX11 platforms. For information on support for specific versions of Apache, see
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

3.2 Installing the Apache HTTP Server Plug-In

The Apache HTTP Server Plug-In is included with WebLogic Server under the wrL,_
HOME/server/plugin directory.

You can install the Apache HTTP Server Plug-In as an Apache module in your Apache
HTTP Server installation and link it as a Dynamic Shared Object (DSO).

A DSO is compiled as a library that is dynamically loaded by the server at run time,
and can be installed without recompiling Apache.

3.2.1 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object

The Apache plug-in is distributed as a shared object (.so) for Solaris, Linux, AIX,
Windows, and HPUX11 platforms.

3-2 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing the Apache HTTP Server Plug-In

Note: The WebLogic Server version 10.3 installation did not include
the Apache HTTP server plug-ins. The Apache HTTP Server plug-ins
are available in a separate zip file, available from the Oracle download
and support sites. These plug-ins contain a fix for the security
advisory described at:

http://www.oracle.com/technology/deploy/security/ale
rts/alert_cve2008-3257.html

After downloading the zip file, extract the zip to a directory of your

choice on disk.

Table 3-1 shows the directories that contain shared object files for various platforms.

Table 3-2 identifies the WebLogic Server Apache Plug-In modules for different
versions of Apache HTTP Server and different encryption strengths.

Table 3—-1 Locations of Plug-In Shared Object Files

Operating System

Shared Object Location Under WL_HOME/server/plugin

AIX aix/ppc

Solaris solaris /sparc
solaris/sparc/largefile’
solaris/x86
solaris/x86/largefile?

Linux linux /1686
linux/i686/largefile®
linux/ia64
linux/x86_64

Windows (Apache2.0and ~ win\32

2.2, 32-bit)

HPUX11 hpux11/IPF64

hpux11/PA_RISC

Note: If you are running Apache 2.0.x server on HP-UX11, set
the environment variables specified immediately below before
you build the Apache server. Because of a problem with the
order in which linked libraries are loaded on HP-UX, a core
dump can result if the load order is not preset as an environment
variable before building. Set the following environment
variables before proceeding with the Apache configure, make,
and make install steps, (described in Apache HTTP Server
documentation at
http://httpd.apache.org/docs-2.1/install.html#c
onfigure):

export EXTRA_LDFLAGS="-1lstd -lstream -1Csup -1m -1cl
-1d1d -lpthread"

1 See "Support for Large Files in Apache 2.0" on page 3-5
2 See "Support for Large Files in Apache 2.0" on page 3-5
3 See "Support for Large Files in Apache 2.0" on page 3-5

Choose the appropriate version of the plug-in shared object from the following table:

Installing and Configuring the Apache HTTP Server Plug-In 3-3

Installing the Apache HTTP Server Plug-In

Table 3-2 Apache Plug-In Shared Object File Versions

Apache Version Regular Strength Encryption 128-bit Encryption
Standard Apache Version mod_wl_20.so mod_wl128_20.so
2.0.x

Standard Apache Version mod_wl_22.s0 mod_wl128_22.so0
2.2.x

To install the Apache HTTP Server Plug-In as a dynamic shared object:
1. Locate the shared object directory for your platform using Table 3-1.

Note: Before making your selection, please review Section 3.2.2,
"Support for Large Files in Apache 2.0".

2. Identify the plug-in shared object file for your version of Apache in Table 3-2.

3. Verify that the WebLogic Server Apache HTTP Server Plug-In mod_so.c module is
enabled.

The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server
installation as a Dynamic Shared Object (DSO). DSO support in Apache is based
on module mod_so.c, which must be enabled before mod_w1_20.so is loaded. If
you installed Apache HTTP Server using the script supplied by Apache, mod_so.c
is already enabled. Verify that mod_so.c is enabled by executing the following
command:

APACHE_HOMEN\bin\apachectl -1
(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

This command lists all enabled modules. If mod_so.c is not listed, you must
rebuild your Apache HTTP Server, making sure that the following options are
configured:

--enable-module=so
--enable-rule=SHARED CORE

See Apache 2.0 Shared Object (DSO) Support at
http://httpd.apache.org/docs/2.0/dso.html.

4, Install the Apache HTTP Server Plug-In module for Apache 2.0.x by copying the
mod_wl_20. so file to the APACHE_HOME\modules directory and adding the
following line to your APACHE_HOME/conf /httpd. conf file manually:

LoadModule weblogic_module modules/mod_wl_20.so0

5. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in Section 7.2,
"General Parameters for Web Server Plug-Ins". To modify the behavior of your
Apache HTTP Server Plug-In, define these parameters:

» InaLocation block, for parameters that apply to proxying by path, or

» Inan IfModule block, for parameters that apply to proxying by MIME type.

3-4 Using Web Server Plug-Ins with Oracle WebLogic Server

Configuring the Apache HTTP Server Plug-In

6. Verify the syntax of the APACHE_HOME\conf\httpd. conf file with the
following command:

APACHE_HOME\bin\apachectl -t
The output of this command reports any errors in your httpd. conf file or
returns:

Syntax OK

7. Restart Weblogic Server.
8. Start (or restart if you have changed the configuration) Apache HTTP Server.

9. Test the plug-in by opening a browser and setting the URL to the Apache Server
plus “/weblogic/”, which should bring up the default WebLogic Server HTML
page, welcome file, or default servlet, as defined for the default Web Application
on WebLogic Server. For example:

http://myApacheserver.com/weblogic/

3.2.2 Support for Large Files in Apache 2.0

The version of Apache 2.0 that ships with some operating systems, including some
versions of Solaris and Linux, is compiled with the following flags:

-D_LARGEFILE_SOURCE
-D_FILE OFFSET BITS=64

These compilation flags enable support for files larger than 2 GB. If you want to use a
WebLogic Server Web server plug-in on such an Apache 2.0 Web server, you must use
plug-ins compiled with the same compilation flags, which are available in the largefile
subdirectory for your operating system. For example:

C:\WL_HOME\server\plugin\solaris\sparc\largefile

Note: Apache 2.2 does not require special compilation flags to
support files larger than 2 GB. Therefore, you do not need to use a
specially compiled Web server plug-in if you are running Apache 2.2.

3.3 Configuring the Apache HTTP Server Plug-In

After installing the plug-in in the Apache HTTP Server, configure the WebLogic Server
Apache Plug-In and configure the server to use the plug-in. This section explains how
to edit the Apache httpd. conf file to instruct the Apache server to load the
WebLogic Server library for the plug-in as an Apache module, and to specify the
application requests that should be handled by the module.

3.3.1 Editing the httpd.conf File

Edit the httpd. conf file in your Apache HTTP server installation to configure the
Apache HTTP Server Plug-In.

This section explains how to locate and edit the ht tpd. conf file, to configure the
server to use the WebLogic Server Apache Plug-In, to proxy requests by path or by
MIME type, to enable HTTP tunneling, and to use other WebLogic Server plug-in
parameters.

1. Open the httpd. conf file.

Installing and Configuring the Apache HTTP Server Plug-In 3-5

Configuring the Apache HTTP Server Plug-In

The file is located at APACHE_HOME\conf\httpd.conf (wWhere APACHE_HOME is
the root directory of your Apache HTTP server installation). See a sample
httpd. conf file at Section 3.4, "Setting Up Perimeter Authentication".

2. Ensure that the WebLogic Server modules are included for Apache 2.0.x, manually
add the following line to the httpd. conf file:

LoadModule weblogic_module modules\mod_wl_20.so0

3. Add an IfModule block that defines one of the following:

= For a non-clustered WebLogic Server: the WebLogicHost and
WebLogicPort parameters.

» For a cluster of WebLogic Servers: the WebLogicCluster parameter.
For example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001

</IfModule>

4. To proxy requests by MIME type, add a MatchExpression line to the IfModule
block. Note that if both MIME type and proxying by path are enabled, proxying by
path takes precedence over proxying by MIME type.

For example, the following I £Module block for a non-clustered WebLogic Server
specifies that all files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.Jjsp

</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.Jjsp
MatchExpression *.xyz

</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers, use
the WebLogicCluster parameter instead of the WebLogicHost and
WebLogicPort parameters. For example:

<IfModule mod_weblogic.c>
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

5. To proxy requests by path, use the Location block and the SetHandler
statement. SetHandler specifies the handler for the Apache HTTP Server Plug-In
module. For example the following Location block proxies all requests containing
/weblogic in the URL:

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic

3-6 Using Web Server Plug-Ins with Oracle WebLogic Server

Configuring the Apache HTTP Server Plug-In

</Location>

The PathTrim parameter specifies a string trimmed from the beginning of the
URL before the request is passed to the WebLogic Server instance (see Section 7.2,
"General Parameters for Web Server Plug-Ins").

6. Optionally, enable HTTP tunneling for t3 or IIOP.

a. Toenable HTTP tunneling if you are using the t3 protocol and
weblogic. jar, add the following Location block to the httpd. conf file:

<Location /bea_wls_internal/HTTPClnt>
SetHandler weblogic-handler
</Location>

b. To enable HTTP tunneling if you are using the IIOP, the only protocol used by
the WebLogic Server thin client, wlclient. jar, add the following
Location block to the httpd. conf file:

<Location /bea_wls_internal/iiop>
SetHandler weblogic-handler
</Location>

7. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in Section 7.2,
"General Parameters for Web Server Plug-Ins". To modify the behavior of your
Apache HTTP Server Plug-In, define these parameters either:

» InaLocation block, for parameters that apply to proxying by path, or

» Inan IfModule block, for parameters that apply to proxying by MIME type.

3.3.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks

If you choose to not use the IfModule, you can instead directly place the WebLogic
properties inside Location or VirtualHost blocks. Consider the following
examples of the Location and VirtualHost blocks:

<Location /weblogic>

SetHandler weblogic-handler
WebLogicHost myweblogic.server.com
WebLogicPort 7001

</Location>

<Location /weblogic>

SetHandler weblogic-handler

WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
</Location>

<VirtualHost apachehost:80>
SetHandler weblogic-handler
WebLogicServer weblogic.server.com
WebLogicPort 7001

</VirtualHost>

3.3.2 Including a weblogic.conf File in the httpd.conf File

If you want to keep several separate configuration files, you can define parameters in a
separate configuration file called weblogic. conf file, by using the Apache Include
directive in an TfModule block in the httpd. conf file:

Installing and Configuring the Apache HTTP Server Plug-In 3-7

Configuring the Apache HTTP Server Plug-In

<IfModule mod_weblogic.c>

Config file for WebLogic Server that defines the parameters
Include conf/weblogic.conf

</IfModule>

The syntax of weblogic. conf files is the same as that for the ht tpd. conf file.

This section describes how to create weblogic. conf files, and includes sample
weblogic.conf files.

3.3.2.1 Creating weblogic.conf Files
Be aware of the following when constructing a weblogic. conf file.

Enter each parameter on a new line. Do not put ‘=" between a parameter and its
value. For example:

PARAM 1 valuel
PARAM_2 value2
PARAM 3 value3

If a request matches both a MIME type specified in a MatchExpression inan
IfModule block and a path specified in a Location block, the behavior specified
by the Location block takes precedence.

If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host
within the <VirtualHost> block (see Apache Virtual Host documentation at
http://httpd.apache.org/docs/vhosts/).

If you want to have only one log file for all the virtual hosts configured in your
environment, you can achieve it using global properties. Instead of specifying the
same Debug, WLLogFile and WLTempDir properties in each virtual host you can
specify them just once in the <IfModule> tag.

Sample httpd. conf file:

<IfModule mod_weblogic.c>
WebLogicCluster johndoe02:8005, johndoe:8006

Debug ON

WLLogFile c:/tmp/global_proxy.log
WLTempDir "c:/myTemp"
DebugConfigInfo On

KeepAliveEnabled ON
KeepAliveSecs 15
</IfModule>

<Location /jurl>
SetHandler weblogic-handler
WebLogicCluster agarwalp01:7001
</Location>

<Location /web>
SetHandler weblogic-handler
PathTrim/web
Debug OFF
WLLogFile c:/tmp/web_log.log
</Location>

<Location /foo>
SetHandler weblogic-handler
PathTrim/foo

3-8 Using Web Server Plug-Ins with Oracle WebLogic Server

Configuring the Apache HTTP Server Plug-In

Debug ERR
WLLogFile c:/tmp/foo_proxy.log
</Location>

= All the requests which match /jurl/* will have Debug Level set to ALL and log
messages will be logged to c: /tmp/global_proxy. log file. All the requests
which match /web/* will have Debug Level set to OFF and no log messages will
be logged. All the requests which match /foo/* will have Debug Level set to ERR
and log messages will be logged to c: /tmp/foo_proxy . log file.

= Oracle recommends that you use the MatchExpression statement instead of the
<Files> block.

3.3.2.2 Sample weblogic.conf Configuration Files

The following examples of weblogic . conf files may be used as templates that you
can modify to suit your environment and server. Lines beginning with # are
comments.

Example 3-1 Example Using WebLogic Clusters

These parameters are common for all URLs which are

directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks. (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
ErrorPage http://myerrorpage.mydomain.com
MatchExpression *.jsp

</IfModule>

FHEH R

In Example 3-2, the MatchExpression parameter syntax for expressing the filename
pattern, the WebLogic Server host to which HTTP requests should be forwarded, and
various other parameters is as follows:

MatchExpression [filename pattern] [WebLogicHost=host] \ [paramName=value]

The first Mat chExpression parameter below specifies the filename pattern *.jsp, and
then names the single WebLogicHost. The paramName=value combinations
following the pipe symbol specify the port at which WebLogic Server is listening for
connection requests, and also activate the Debug option. The second
MatchExpression specifies the filename pattern *.http and identifies the
WebLogicCluster hosts and their ports. The paramName=value combination
following the pipe symbol specifies the error page for the cluster.

Example 3-2 Example Using Multiple WebLogic Clusters

These parameters are common for all URLs which are

directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
MatchExpression *.jsp WebLogicHost:myHost|WebLogicPort:7001|Debug:ON
MatchExpression *.html WebLogicCluster=myHostl:7282,myHost2:7283|ErrorPage=
http://www.xyz.com/error.html

Installing and Configuring the Apache HTTP Server Plug-In 3-9

Configuring the Apache HTTP Server Plug-In

</IfModule>

Example 3-3 shows an example without WebLogic clusters.

Example 3-3 Example Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)
<IfModule mod_weblogic.c>

WebLogicHost myweblogic.server.com

WebLogicPort 7001

MatchExpression *.jsp
</IfModule>

Example 34 shows an example of configuring multiple name-based virtual hosts.

Example 3-4 Example Configuring Multiple Name-Based Virtual Hosts

VirtualHostl = localhost:80

<VirtualHost 127.0.0.1:80>

DocumentRoot "C:/test/VirtualHostl"
ServerName localhost:80

<IfModule mod_weblogic.c>

#... WLS parameter ...

WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>

</VirtualHost>

VirtualHost2 = 127.0.0.2:80

<VirtualHost 127.0.0.2:80>

DocumentRoot "C:/test/VirtualHostl"
ServerName 127.0.0.2:80

<IfModule mod_weblogic.c>

#... WLS parameter ...

WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2

#... WLS parameter ...

</IfModule>

</VirtualHost>

You must define a unique value for ServerName or some Plug-In parameters will not
work as expected.

3.3.2.3 Template for the Apache HTTP Server httpd.conf File

This section contains a sample httpd. conf file for Apache 2.0. You can use this
sample as a template and modify it to suit your environment and server. Lines
beginning with # are comments.

Note that Apache HTTP Server is not case sensitive.

Example 3-5 Sample httpd.conf file for Apache 2.0

FhEF R
APACHE-HOME/conf/httpd.conf file

3-10 Using Web Server Plug-Ins with Oracle WebLogic Server

Setting Up Perimeter Authentication

FhEH R R R R R R
LoadModule weblogic_module libexec/mod_wl_20.so

<Location /weblogic>

SetHandler weblogic-handler
PathTrim /weblogic
ErrorPage http://myerrorpagel .mydomain.com

</Location>

<Location /servletimages>

SetHandler weblogic-handler
PathTrim /something
ErrorPage http://myerrorpagel .mydomain.com

</Location>

<IfModule mod_weblogic.c>

MatchExpression *.jsp
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
ErrorPage http://myerrorpage.mydomain.com

</IfModule>

3.4 Setting Up Perimeter Authentication

Use perimeter authentication to secure WebLogic Server applications that are accessed
via the Apache Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your WebLogic Server application, including users who access your
WebLogic Server application through the Apache HTTP Server Plug-In. Create an
Identity Assertion Provider that will safely secure your Plug-In as follows:

1.

Create a custom Identity Assertion Provider on your WebLogic Server application.
See "How to Develop a Custom Identity Assertion Provider" in Developing Security
Providers for Oracle WebLogic Server.

Configure the custom Identity Assertion Provider to support the Cert token type
and make Cert the active token type. See "How to Create New Token Types" in
Developing Security Providers for Oracle WebLogic Server.

Set clientCertProxy to True in the web.xml deployment descriptor file for the
Web application (or, if using a cluster, optionally set the Client Cert Proxy Enabled
attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). The clientCertProxy attribute can be
used with a third party proxy server, such as a load balancer or an SSL accelerator,
to enable 2-way SSL authentication. For more information about the
clientCertProxy attribute, see "context-param" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Once you have set clientCertProxy, be sure to use a connection filter to ensure
that WebLogic Server accepts connections only from the machine on which the
Apache Plug-In is running. See "Using Network Connection Filters" in
Programming Security for Oracle WebLogic Server.

Web server plug-ins require a trusted Certificate Authority file in order to use SSL
between the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility
to export a trusted Certificate Authority file from the DemoTrust . jks keystore
file that resides in WL_HOME/server/1lib.

a. To extract the wisdemoca file, for example, use the command:

keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias

Installing and Configuring the Apache HTTP Server Plug-In 3-11

Using SSL with the Apache Plug-In

wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.
To look at all of the keystore's trusted CA files, use:

keytool -list -keystore DemoTrust.jks

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java utils.der2pem
trustedcafile.der

See "Identity Assertion Providers" in Developing Security Providers for Oracle WebLogic
Server.

3.5 Using SSL with the Apache Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the Apache HTTP Server Plug-In and WebLogic Server. The SSL protocol provides
confidentiality and integrity to the data passed between the Apache HTTP Server
Plug-In and WebLogic Server.

The Apache HTTP Server Plug-In does not use the transport protocol (http or https)
specified in the HTTP request (usually by the browser) to determine whether or not
the SSL protocol is used to protect the connection between the Apache HTTP Server
Plug-In and WebLogic Server.

Although two-way SSL can be used between the HTTP client and Apache HTTP
server, note that one-way SSL is used between Apache HTTP Server and WebLogic
Server.

3.5.1 Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server
To use the SSL protocol between Apache HTTP Server Plug-In and WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL.

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring SSL.

3. Inthe Apache Server, set the WebLogicPort parameter in the httpd. conf file to
the WebLogic Server SSL listen port configured in Step 2.

4. Inthe Apache Server, set the SecureProxy parameter in the httpd. conf file to
ON.

5. Setany additional parameters in the httpd. conf file that define information
about the SSL connection. For a complete list of the SSL parameters that you can
configure for the plug-in, see Section 7.3, "SSL Parameters for Web Server
Plug-Ins".

3.5.2 Issues with SSL-Apache Configuration

These known issues arise when you configure the Apache plug-in to use SSL:

s To prepare the plug-in configuration, using Internet Explorer click the lock and go
to the certificates path:

— Select the root CA (at the top).
- Display it.

3-12 Using Web Server Plug-Ins with Oracle WebLogic Server

Connection Errors and Clustering Failover

— Detail and then copy this certificate (using the export wizard) to a file using
the Coded "Base 64 X509" option.

- Save the file, for example, to "MyWeblogicCAToTrust.cer" (which is also a
PEM file).

s The PathTrim parameter (see Section 7.3, "SSL Parameters for Web Server
Plug-Ins") must be configured inside the <Location> tag.

The following configuration is incorrect:

<Location /weblogic>
SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>

WebLogicHost localhost

WebLogicPort 7001

PathTrim /weblogic
</IfModule>
The following configuration is the correct setup:

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic
</Location>

s The current implementation of the WebLogic Server Apache Plug-In does not
support the use of multiple certificate files with Apache SSL.

3.6 Connection Errors and Clustering Failover

When the Apache HTTP Server Plug-In attempts to connect to WebLogic Server, the
plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host and, after a connection is established, how
long the plug-in waits for a response. If the plug-in cannot connect or does not receive
a response, the plug-in attempts to connect and send the request to other WebLogic
Server instances in the cluster. If the connection fails or there is no response from any
WebLogic Server in the cluster, an error message is sent.

Figure 3-1 demonstrates how the plug-in handles failover.

3.6.1 Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
the following problems:

= Physical problems with the host machine
= Network problems
s Other server failures

Failure of all WebLogic Server instances to respond could indicate the following
problems:

= WebLogic Server is not running or is unavailable
= A hung server

= A database problem

Installing and Configuring the Apache HTTP Server Plug-In 3-13

Connection Errors and Clustering Failover

An application-specific failure

3.6.2 Tuning to Reduce Connection_Refused Errors

Under load, an Apache plug-in may receive CONNECTION_REFUSED errors from a
back-end WebLogic Server instance. Follow these tuning tips to reduce
CONNECTION_REFUSED errors:

Increase the AcceptBackLog setting in the configuration of your WebLogic
Server domain.

On Apache 2.0.x, set the KeepAlive directive in the httpd. conf file to On. For
example:

KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "Off" to deactivate.

#

KeepAlive On

See Apache HTTP Server 2.0 documentation at
http://httpd.apache.org/docs-project/.

Decrease the time wait interval. This setting varies according to the operating
system you are using. For example:

— On Windows NT, set the TcpTimedWaitDelay on the proxy and WebLogic
Server servers to a lower value. Set the TIME_WAIT interval in Windows NT
by editing the registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

If this key does not exist you can create it as a DWORD value. The numeric
value is the number of seconds to wait and may be set to any value between
30 and 240. If not set, Windows NT defaults to 240 seconds for TIME_WAIT.

- On Windows 2000, lower the value of the TcpTimedWaitDelay by editing
the registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

— On Solaris, reduce the setting tcp_time_wait_interval to one second (for
both the WebLogic Server machine and the Apache machine, if possible):

sndd /dev/tcp
param name to set - tcp_time_wait_interval
value=1000

Increase the open file descriptor limit on your machine. This limit varies by
operating system. Using the limit (.csh) or ulimit (.sh) directives, you can make a
script to increase the limit. For example:

#!/bin/sh
ulimit -S -n 100
exec httpd

On Solaris, increase the values of the following tunables on the WebLogic Server
machine:

tcp_conn_req max_dg
tcp_conn_req max_g0

3-14 Using Web Server Plug-Ins with Oracle WebLogic Server

Connection Errors and Clustering Failover

3.6.3 Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server instance the plug-in only attempts to
connect to the server defined with the WebLogicHost parameter. If the attempt fails, an
HTTP 503 error message is returned. The plug-in continues trying to connect to that
same WebLogic Server instance for the maximum number of retries as specified by the
ratio of ConnectTimeoutSecs and ConnectRetrySecs.

3.6.4 The Dynamic Server List

The WebLogicCluster parameter is required to proxy to a list of back-end servers
that are clustered, or to perform load balancing among non-clustered managed server
instances.

In the case of proxying to clustered managed servers, when you use the
WebLogicCluster parameter in your httpd. conf or weblogic. conf file to
specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load
balancing among the members of the cluster. After the first request is routed to one of
these servers, a dynamic server list is returned containing an updated list of servers in
the cluster. The updated list adds any new servers in the cluster and deletes any that
are no longer part of the cluster or that have failed to respond to requests. This list is
updated automatically with the HTTP response when a change in the cluster occurs.

3.6.5 Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie or in the POST data, or
encoded in a URL, the session ID contains a reference to the specific server instance in
which the session was originally established (called the primary server). A request
containing a cookie attempts to connect to the primary server. If that attempt fails, the
plug-in attempts to make a connection to the next available server in the list in a
round-robin fashion. That server retrieves the session from the original secondary
server and makes itself the new primary server for that same session. See Figure 3-1.

Note: If the POST data is larger than 64K, the plug-in will not parse
the POST data to obtain the session ID. Therefore, if you store the
session ID in the POST data, the plug-in cannot route the request to
the correct primary or secondary server, resulting in possible loss of
session data.

Installing and Configuring the Apache HTTP Server Plug-In 3-15

Connection Errors and Clustering Failover

Figure 3-1 Connection Failover

Client Sends HTTP request
to Web server and the
request is proxied by the

Parse headers and return
response to the client
h

plug-in
Plug-In receives request
from the Web server Mark this sever as
s this the firs "bad" in the
Yes failover? dynamic server
list
A
No Weblogic
session 10 in
request?
No
otal time of this request
exceaded
onnection TimeOQutSecs?.
Connect to primary
server defined in cookie
Yes
Yes No Send HTTP error Idempotent
successful within code 5xx to client N ON?
WLSocketTimeOut T ©
4
A 4
Try next server in
.) Sleep for
dynamic server list or fe— ;
WebLogicCluster ConnectionRetrySeconds
Connection No Yes
successful within Max retries
WL SocketTimeOut exceeded?
secs?
No
L ¥ Yes
Send headers and POST | Wait for response for N Server
data to WeblLaogic server | WLIOTimeQutSecs " responded?

In this figure, the Maximum number of retries allowed in the red loop is equal to

ConnectTimeoutSecs/ConnectRetrySecs.

3-16 Using Web Server Plug-Ins with Oracle WebLogic Server

4

Installing and Configuring the Microsoft IIS
Plug-In

The following sections describe how to install and configure the Microsoft Internet
Information Server Plug-In:

= Section 4.1, "Overview of the Microsoft Internet Information Server Plug-In"
s Section 4.2, "Certifications"
= Section 4.3, "Using Wildcard Application Mappings to Proxy by Path"

= Section 4.4, "Installing and Configuring the Microsoft Internet Information Server
Plug-In"

= Section 4.5, "Installing and Configuring the Microsoft Internet Information Server
Plug-In for IIs 7.0"

= Section 4.6, "Proxying Requests from Multiple Virtual Web Sites to WebLogic
Server"

= Section 4.7, "Creating ACLs Through IIS"

= Section 4.8, "Setting Up Perimeter Authentication”

= Section 4.9, "Using SSL with the Microsoft Internet Information Server Plug-In"
= Section 4.10, "Proxying Servlets from IIS to WebLogic Server"

m Section 4.11, "Testing the Installation"

= Section 4.12, "Connection Errors and Clustering Failover"

4.1 Overview of the Microsoft Internet Information Server Plug-In

The Microsoft Internet Information Server Plug-In allows requests to be proxied from a
Microsoft Internet Information Server (I1IS) to WebLogic Server. The plug-in enhances
an IIS installation by allowing WebLogic Server to handle those requests that require
the dynamic functionality of WebLogic Server.

You use the Microsoft Internet Information Server Plug-In in an environment where
the Internet Information Server (IIS) serves static pages such as HTML pages, while
dynamic pages such as HTTP Servlets or JavaServer Pages are served by WebLogic
Server. WebLogic Server may be operating in a different process, possibly on a
different host. To the end user—the browser—the HTTP requests delegated to
WebLogic Server still appear to be coming from IIS. The HTTP-tunneling facility of the
WebLogic client-server protocol also operates through the plug-in, providing access to
all WebLogic Server services.

Installing and Configuring the Microsoft IIS Plug-In 4-1

Certifications

4.1.1 Connection Pooling and Keep-Alive

The Microsoft Internet Information Server Plug-In improves performance using a pool
of connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1
keep-alive connections between the plug-in and WebLogic Server by re-using the same
connection for subsequent requests from the same client. If the connection is inactive
for more than 30 seconds, (or a user-defined amount of time) the connection is closed.
The connection with the client can be reused to connect to the same client at a later
time if it has not timed out. You can disable this feature if desired. For more
information, see KeepAliveEnabled in Table 7-1.

4.1.2 Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on either the URL of the request or a portion of
the URL. This is called proxying by path.

You can also proxy a request based on the MIME type of the requested file, which is
called proxying by file extension.

You can also enable both methods. If you do enable both methods and a request
matches both criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that
define additional behavior of the plug-in. For more information, see Section 4.3, "Using
Wildcard Application Mappings to Proxy by Path" and Section 4.4, "Installing and
Configuring the Microsoft Internet Information Server Plug-In".

4.2 Certifications

For the latest information on operating system and IIS version compatibility with the
Microsoft Internet Information Server Plug-In, see
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

4.3 Using Wildcard Application Mappings to Proxy by Path

As described in "Installing Wildcard Application Mappings (IIS 6.0)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/
Library/IIS/5c5aeb5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true),
and "Add a Wildcard Script Map" for IIS 7.0
(http://technet.microsoft.com/en-us/library/cc754606 (WS.10) .aspx
), you can configure a Web site or virtual directory to run an Internet Server API
(ISAPT) application at the beginning of every request to that Web site or virtual
directory, regardless of the extension of the requested file. You can use this feature to
insert a mapping to iisproxy.dll and thereby proxy requests by path to WebLogic
Server.

4.3.1 Installing Wildcard Application Mappings (lIS 6.0)

The following steps summarize the instructions available at "Installing Wildcard
Application Mappings (IIS 6.0)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/
Library/IIS/5c5ae5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true)
for adding a wildcard application mapping to a Web server or Web site in IIS 6.0:

4-2 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In

In IIS Manager, expand the local computer, expand the Web Sites folder, right-click
the Web site or virtual directory that you want, and then click Properties.

Click the appropriate tab: Home Directory, Virtual Directory, or Directory.

In the Application settings area, click Configuration, and then click the Mappings
tab.

To install a wildcard application map, do the following;:
a. On the Mappings tab, click Insert.

b. Type the path to the iisproxy.dll DLL in the Executable text box or click
Browse to navigate to.

c. Click OK.

4.3.2 Adding a Wildcard Script Map for IIS 7.0

The following steps summarize the instructions available at "Add a Wildcard Script
Map" for IIS 7.0
(http://technet.microsoft.com/en-us/library/cc754606 (WS.10) .aspx
) to add a wildcard script map to do proxy-by-path with ISAPI in IIS 7.0:

1.

Open IIS Manager and navigate to the level you want to manage. For information
about opening IIS Manager, see "Open IIS Manager" at
http://technet.microsoft.com/en-us/library/cc770472(WS.10) .as
px. For information about navigating to locations in the Ul, see "Navigation in IIS
Manager" at
http://technet.microsoft.com/en-us/library/cc732920(WS.10) .as
px.

In Features View, on the server, site, or application Home page, double-click
Handler Mappings.

On the Handler Mappings page, in the Actions pane, click Add Wildcard Script
Map.

In the Executable box, type the full path or browse to the iisproxy.dll that
processes the request. For example, type
systemroot\system32\inetsrv\iisproxy.dll.

In the Name box, type a friendly name for the handler mapping.
Click OK.

Optionally, on the Handler Mappings page, select a handler to lock or unlock it.
When you lock a handler mapping, it cannot be overridden at lower levels in the
configuration. Select a handler mapping in the list, and then in the Actions pane,
click Lock or Unlock.

After you add a wildcard script map, you must add the executable to the ISAPI
and CGI Restrictions list to enable it to run. For more information about ISAPI and
CGl restrictions, see "Configuring ISAPI and CGI Restrictions in IIS 7" at
http://technet.microsoft.com/en-us/library/cc730912(WS.10) .as
pX.

4.4 Installing and Configuring the Microsoft Internet Information Server

Plug-In

To install the Microsoft Internet Information Server Plug-In:

Installing and Configuring the Microsoft 1IS Plug-In 4-3

Installing and Configuring the Microsoft Internet Information Server Plug-In

1. Copy the iisproxy.dll file from the WL_HOME/server/plugin/win/32 or WL_
HOME/server/plugin/win/64 directory of your WebLogic Server installation
(where WL_HOME is the top-level directory for the WebLogic Platform and Server
and contains the WebLogic Server installation files into a convenient directory that
is accessible to IIS). This directory must also contain the 1isproxy.ini file that
you will create in step 4. Set the user permissions for the iisproxy.dll file to
include the name of the user who will be running IIS. One way to do this is by
right clicking on the iisproxy.dl1 file and selecting Permissions, then adding
the username of the person who will be running IIS.

2. If you want to configure proxying by file extension (MIME type) complete this
step. (You can configure proxying by path in addition to or instead of configuring
by MIME type. See step 3.)

a. Start the Internet Information Service Manager by selecting it from the Start
menu.

b. In the left panel of the Service Manager, select your Web site (the default is
“Default Web Site”).

Figure 4-1 Selecting Web Site in Service Manager

W Internet Information Services (11S) Manager . B =10] x|
|¥g Ele Action Yiew Window Help =121l
e~ | BO@EEFRE|L[(2]» =m0 |
K4 internet Information Services | Name | Path | Status
-0 Qa7S (local computer) e
- _) Application Pools _J weblogic
= _1 Web Sites | error. hitmi
] Default Web Site
] Josh
- Web Service Extensior: %
< |3 f N | I

c. Click the “Play” arrow in the toolbar to start.

d. Open the properties for the selected Web site by right-clicking the Web site
selection in the left panel and selecting Properties.

4-4 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In

Figure 4-2 Selecting Properties for Selected Web Site

‘Q: Internet Information Services (IIS) Manager o] |
g File Action Mew |Window Help |_|— _lil
= | BHE|XHFREB| 2 (2] > =m0
h Inkternet Information Services ame | Path | Status
= Ii! Q&7S (local computer) dis
Bl) &pplication Pools {23 weblogic
_J) wish Sites |=] error.html

- Josh E baic
Bl) wWeb Servia Open
Permissions
Browse

Start
Stop
Pause

Pew 3
] | all Tasks 3 I LI

Opens property sheet fi View 3 |

Few Window from Here

Delete
Rename
Refresh
Export List...

Help e

e. In the Properties panel, select the Home Directory tab, and click the
Configuration button in the Applications Settings section.

Figure 4-3 Home Directory Tab of the Properties Panel

Default Web Site Properties 21x]

Documents I Directory Security l HTTF Headers I Cuskom Errors I
webSite | Performance | ISAPI Filters Home Directory
The content For this resource should come from:

&+ A directory located on this computer
" A share located on another computer
| " A redirection ko a LRL

Local path: I C:ipluginsiiishome Erowse. .. |

= Scripk source access = Log wisits
¥ Read v Index this resource
IV write

¥ Directory browsing

Application settings

Application name: I Default Application
Starting poink: <Default Web Site=
Execute permissions: IScr'pts and Executables vI

Application poal: IDeFaLitnppPod ;l Unjoad |

(6] 4 | Cancel I apply E Help |

f. On the Mappings tab, click the Add button to add file types and configure
them to be proxied to WebLogic Server.

Installing and Configuring the Microsoft IS Plug-In 4-5

Installing and Configuring the Microsoft Internet Information Server Plug-In

Figure 4-4 Click the Add Button to Add File Types

Application Configuration il

Mappings IOptiDns I Debugging I I%

¥ Cache ISAPI extensions

— application extensions

Extens. .. I Executable Path I Werbs -

.as3 CWINDOWSsystem32iinetsrviasp.dl GET,HEA..

.asp CWINDOWS | system32linetsrviasp.dl GET,HEA.._ |

.odx CHWINDOWShsystem32iinetsrviasp.dl GET,HEA..

.cer CHWINDOWSsystem32iinetsrviasp.dl GET,HEA..

.idc CWINDOW S system32iinetsrihttp. .. GET,POiILI
»

| |

Edit... Eemove |

wWildcard application maps {order of implementation):

Inserkt... I
Edit. .. I
Remove I

Move Lp I MMave Cown |

Ok I Cancel | Help |

In the Add dialog box, browse to find the iisproxy.dll file.
Set the Extension to the type of file that you want to proxy to WebLogic Server.

i. If you are configuring for IIS 6.0 or later, be sure to deselect the “Check that
file exists” check box. The behavior of this check has changed from earlier
versions of IIS: it used to check that the iisproxy.dll file exists; now it checks
that files requested from the proxy exist in the root directory of the Web server.
If the check does not find the files there, the iisproxy.dll file will not be allowed
to proxy requests to the WebLogic Server.

j. In the Directory Security tab, set the Method exclusions as needed to create a
secure installation.

k. When you finish, click the OK button to save the configuration. Repeat this
process for each file type you want to proxy to WebLogic.

. When you finish configuring file types, click the OK button to close the
Properties panel.

Note: Inthe URL, any path information you add after the server and
port is passed directly to WebLogic Server. For example, if you request
a file from IIS with the URL:

http:/ /myiis.com/jspfiles /myfile.jsp

it is proxied to WebLogic Server with a URL such as
http:/ /mywebLogic:7001/jspfiles /myfile.jsp

Note: To avoid out-of-process errors, do not deselect the "Cache
ISAPI Applications" check box.

3. If you want to configure proxying by path complete this step. (In addition to
proxying by file type, you can configure the Microsoft Internet Information Server

4-6 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In

Plug-In to serve files based on their path by specifying some additional
parameters in the iisproxy.ini file.) Proxying by path takes precedence over
proxying by MIME type.

You can also proxy multiple Web sites defined in IIS by path. For more
information, see Section 4.6, "Proxying Requests from Multiple Virtual Web Sites to
WebLogic Server".

To configure proxying by path:

a. Start the Internet Information Service Manager by selecting it from the Start
menu.

b. Place the iisforward.dll file in the same directory as the iisproxy.dll
file and add the iisforward.dll file as a filter service in IIS (WebSite
Properties ->ISAPI Filters tab -> Add the iisforward dll). Set the user
permissions for the iisforward.dll file to include the name of the user
who will be running IIS. One way to do this is by right clicking on the
iisproxy.dll file and selecting Permissions, then adding the username of
the person who will be running IIS.

c. Register .wlforward as a special file type to be handled by iisproxy.dllin
IIS.

d. Define the property WlForwardPath in iisproxy.ini. WlForwardPath
defines the path that is proxied to WebLogic Server, for example:
WlForwardPath=/weblogic.

e. Set the PathTrim parameter to trim off the WlForwardPath when necessary.
For example, using

WlForwardPath=/weblogic
PathTrim=/weblogic

trims a request from IIS to Weblogic Server. Therefore, /weblogic/session is
changed to /session.

f. If you want requests that do not contain extra path information (in other
words, requests containing only a host name), set the DefaultFileName
parameter to the name of the welcome page of the Web Application to which
the request is being proxied. The value of this parameter is appended to the
URL.

g. If you need to debug your application, set the Debug=ON parameter in
iisproxy.ini. A c:\tmp\iisforward. log is generated containing a log
of the plug-in’s activity that you can use for debugging purposes.

In WebLogic Server, create the iisproxy. ini file.

The iisproxy.ini file contains name=value pairs that define configuration
parameters for the plug-in. The parameters are listed in Table 7-1.

Use the example iisproxy.ini file in Section 4.6.1, "Sample iisproxy.ini File" as
a template for your iisproxy.ini file.

Note: Changes in the parameters will not go into effect until you
restart the “IIS Admin Service” (under services, in the control panel).

Oracle recommends that you locate the 1isproxy.ini file in the same directory
that contains the iisproxy.dl1l file. You can also use other locations. If you

Installing and Configuring the Microsoft IIS Plug-In 4-7

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

place the file elsewhere, note that WebLogic Server searches for 1isproxy.ini in
the following directories, in the following order:

a. In the same directory where iisproxy.dl1l is located.

b. Inthe home directory of the most recent version of WebLogic Server that is
referenced in the Windows Registry. (If WebLogic Server does not find the
iisproxy.ini file in the home directory, it continues looking in the
Windows Registry for older versions of WebLogic Server and looks for the
iisproxy.ini file in the home directories of those installations.)

c. Inthe directory c:\weblogic, if it exists.

5. Define the WebLogic Server host and port number to which the Microsoft Internet
Information Server Plug-In proxies requests. Depending on your configuration,
there are two ways to define the host and port:

= If you are proxying requests to a single WebLogic Server, define the
WebLogicHost and WebLogicPort parameters in the iisproxy. ini file. For
example:

WebLogicHost=1localhost
WebLogicPort=7001

= If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy . ini file. For example:
WebLogicCluster=myweblogic.com:7001, yourweblogic.com:7001
Where myweblogic.com and yourweblogic.com are instances of Weblogic

Server running in a cluster.

6. Optionally, enable HTTP tunneling by following the instructions for proxying by
path (see Section 4.3, "Using Wildcard Application Mappings to Proxy by Path"),
substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you wish to handle HTTP
tunneling requests.

7. Setany additional parameters in the iisproxy.ini file. A complete list of
parameters is available in the appendix Section 7.2, "General Parameters for Web
Server Plug-Ins".

8. If you are proxying servlets from IIS to WebLogic Server and you are not proxying
by path, read the section Section 4.10, "Proxying Servlets from IIS to WebLogic
Server".

9. The installed version of IIS with its initial settings does not allow the
iisproxy.dll. Use the IIS Manager console to enable the Plug-In:

a. Open the IIS Manager console.
b. Select Web Service Extensions.

c. Set “All Unknown ISAPI Extensions” to Allowed.

4.5 Installing and Configuring the Microsoft Internet Information Server
Plug-In for lis 7.0

This section describes differences in how you set up the Microsoft Internet Information
Server Plug-In for IIs 7.0.

4-8 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

To set up the Microsoft Internet Information Server Plug-In for IIs 7.0, follow these

steps:

1. Create a web application in IIS Manager by right clicking on Web Sites -> Add
Web Site.

Fill in the Web Site Name with the name you want to give to your web application;
for example, MyApp. Select the physical path of your web application Port (any
valid port number not currently in use).

Click OK to create the web application.

If you can see the name of your application under Web Sites it means that your
application has been created and started running. Click on the MyApp node under
Web Sites to see all of the settings related to the MyApp application, which you
can change, as shown in Figure 4-5.

Figure 4-5 Application Home Page

i Intemat Infarnation Servces 010 Minager Ll E=sras.)
Q 3 [@ v LovTTAL 0 WebSae: » Mylipp » @ @ -
File Veew Help
Comnections PR
. 0 MyApp Home z

Manage Web Site

Group by: Ares

Feature Name y Description
¥ L

4 93 LOVISTAL (cvistal\ersjaram |
i Pools

ASPNET
&1 NET Compilation Canfigue
@ NET Globalization Configy

e properties for compiling masaged code
alization properties for managed code
s ek track wser-selected prefereres i ASP.N

gt and Farm:

il adérers and delivery option
| 3 @
o, fushentication

[Lecd

@ Oefault Docureet

L Dirnctany Beorwiing
iErmor Py

Hodules Config anaged code modules that process requ

£ 53 Settings Specify requirements for S50 and client certificates.

Features Vorw |15 Content View

2. Click on "Handler Mappings" to set the mappings to the handler for a particular
MIME type.

Installing and Configuring the Microsoft IIS Plug-In 4-9

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Figure 4-6 Setting the Handler Mappings

%5 Itemet Information Services (5 Manager
G or [@ 0 woama » websees » Mg »

Fie View Help

Connections Actions
- e Handler Mappings :
245 LOMISTAL Joistalhorafaramd || 1 et specityythe resources, such s DALY and mamiged code, hat handie renponses for specfi

o Application Pool: request types
o (@] Web S2es

@ Defat Wb Se Group byt State

@ Tent Hare G Path ate Path Type H:

@ Mysep Erabled @
OPTIONSVerbHandler - Erabled Unipe(-hkd Pr
SEINC-sherm *=.shten Erabled Fe e
SEINC- shemd *=.shtenl Erabled Fde e
SENG-stm st Erabled Fae %
TRACEVerbHandler - Erabled Unipecded P
SaaticFile - Erabled Fde or Directory St

3. Click on the StaticFile and change the Request path from * to **. Click OK.

Figure 4-7 Editing the Request Path for Module

WY Intemet Information Services (25} Manager
Gy (@ woaman s websmes » Mg »

Fide Veew Help

Connections . Actions
. e Handler Mappings PRI
P istal\eragaram) |
S LOISTAL Qewistal\ussiamt | |y v, teaues te specify the resourees, such a3 DAL and enanaged code, that handle sesponses for speciic
2 Bpplication Pools A
2 QUL
& W ‘Web Stes
@ Defou Web Sae o b RS Ny 0 e

@ Tet Name L

+ @ Myngp Enabled | Peguestpath: X

Dt >

:ﬁ‘;—ln: ' opmons{ S L
SHNC-she| Example: * b, wive.axd e

SSNC-sh] Madule: - |8
SANC-stn] Fae isingModule = L
SwticFile @
TRACEVer PR
‘wifarsard) d sz
" aticFle PR

| Request Restrictians...
[o [Camcel

Features Vorw |13 Content Virw

root web.config ,

4. Click on MyApp and then click on "Add Script Map..." on the right-hand side
menu options. Enter * for the Request path.

Browse to the iisproxy.dll file and add it as the executable. Name it proxy.

4-10 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Figure 4-8 Editing the Request Path for Script

3 Intermet Information Services (55 Minager

R
G C (@ ouma v webste + Muge » @« e
Fde Voew Help
Camnection - &
: e Handler Mappings)
S LOISTAL Qewistal\ssiramt | |y, v, featues te specify the resourees, such 3 DAL and enanaged code, that handle sesponses for specifc
23 Pephieation Pools e
R
& & ‘Web Stes
) Group by
@ DefauWeb Sae P b =]
@ Test Hame Bl
+ @ Myhpp . Enabled | Pequest path:
ts
:ﬁ‘;— " oemony| [Ly
SONC-shy| Example: * b, wive axd e
SSINC-sh Executsble: =@
SINC-# Cl phaginsisprapdl py
SeaticFile =
TRACEV ol b
wifarward ot
ooy prony T

| Request Restrictians...

[o [conce

Features Vorw |15 Content View

‘localhost’ app H

root web.config ,

5. Click on the "Request Restrictions..." button and uncheck the box "Invoke handler
only if the request is mapped to".

Figure 4-9 Editing the Request Restrictions

W Itemet Information Serices (5] Manager

oldls
GO (@ o v wesae v Migiee » @ e
File View Help
Cemnections . Actions
. e Handler Mappings PRI

S LOVISTAL Devistalheragaran)

U th
O Bppheation Posls

Festure o specify the resources, such 33 DLL3 and anaged code, that handle respondes fue specific

request types.
i Web Sty
@ Default'Web Site Group by Fequest Revtrict e
@ Test Hame H:
+ @ Mytpp Enabled | | Mipping [Verbs x
o | el | _ A
pr—— & handler coly if request s mapped to: =
SANC-1h] e | @
SEINC-str e
SaticFile @
TRACEVer| 4 Br
wifarweard] 4 I
prey '] L

1 oK ' Cancel

Features Vorw |3 Content View

lncalhost’ app roctweb.config,

6. Click OK to add this Handler mapping. Click Yes on the Add Script Map dialog
box.

Installing and Configuring the Microsoft IS Plug-In 4-11

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Figure 4-10 Adding the Script Map

W Intemet Information Sarvices (13) Marager

o l@lE
s (@ Loasar v websae » Mpgp » e
File Veew Help
Comnections) Actions
- e Handler Mappings e
PEC] TAL .
W LOASTAL (ovistalharafaram| | -y, v e sture to specify the resources, such o3 DLLs nd soaged code, that handbe respands for specific
L2 Application Pools request types
+ Wb Stes
@ Defwit Wb S Group byt State
@ Tent Hame . Path ate Path Type H: =
@ Mytep Enabled @ repy
OPTIONSVerkHandler . Erabled Unspecified P
SERIC- 1 hdd Seript Mg e
SEINC- shemd
SNC- g gt Mip =
TRACEW:
SaticFile)

Wield yeu ik to enable this IS4PT extensio
eatee

s, it will 4 your
n "Alwerd” antey i the FAP] and C51 Restrictions list.
the eatenmeond already exists we wll allow it

ver | o [canent

Request Restrsctions..

Features Vorw |5 Content View

7. If you want to configure proxying by path, click on Add Script Map. Provide the
Request path as * .wlforward and select the executable as iisproxy.dll.

Click on the "Request Restrictions..." button and uncheck the box "Invoke handler
only if the request is mapped to".

Click OK to add this Handler mapping. Click Yes on the Add Script Map dialog
box.

Figure 4-11 Adding the Script Map for Proxying by Path

W3 Intemet Information Services (55 Minager

R
G oy (@ woamar v websmes » Mot » e -
Eie Moew Help
Connections . Actions
- q Handler Mappings
PR T T T—"
4 -89 LOVISTAL fodstaltonfanamd | | . vri. b o speciy the resources, such a5 DLLs and manwged code, that handle respandes for specific
L} Application Pools et e
+ 3 Web St
@ Defwun Web Sae Group by: State
@ Tent Hame - Path Seane Path Type H
@ Mytop . == x
| hgp Data Edn Seript Map B8 ===]
phugins Unspecified Br
. Request path: Unspecified Iz
e — Fie L
Eample: *bas, wove.aod Fie e
Estcutable: Fily b
FTCT—T Unipacifind Pr
e Unspacified b
Fie =
wiforsard
ok | [cancel
7 Featres Vorw |5 Contant Vorw
C H rostweb.config, "Mypp®> b |

8. Click on the MyApp application on the left-hand side and click on ISAPI Filters.
Click Add to add the ISAPI filter.

4-12 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Enter the Filter name as forward and select the executable as iisforward.dll.
Click OK.

Figure 4-12 Editing ISAPI Filters

W3 Ivtemat Information Servces (5 Marager = w8
G os (@ woama v websmes » Mg » @« e
Fle Mow Help
Connections) Actions
~ & 5P Filters
P T T —
4 % Lo ””‘:1:::“"'"“ Use this feature to corfigure IS4P1 ilters that process requests made to the Web server,
o (8] Web St B TSAP Fiter =8) 3
@ Defauin Wb 52 -
@ Tet || ORI L
- @ Myhpp Perwars
_ Bpp_Dats Executable:
1 phugins

CADSphuginshiisforaard. il

[cama

Featiares Vorw |5 Content Verw

oot web.confis

9. Click on the Root node of the IIS Manager tree and click on the ISAPI and CGI
Restrictions. Make sure to check the "Allow unspecified ISAPI modules" checkbox.

Figure 4-13 Editing ISAPI and CGI Restrictions

3 Intermat Information Services (5] Mirager

=
Qe [% woamay @ e
File View Help
Connections L Actions
il“’l ISAP! and CGI Restrictions 3
95 LEVISTAL Jowstal\ersjaram) .)
his fur o A o S un on the 'W rver,
2 pplcston posh Use this feature to specify the ISAPL and CGl extensions that ¢an run on the Wb serve
+ 5 Web St Group by: Mo Grouping
8 Defak Wb Ste Description Restriction Path
Test
No Deicnptson] Allewed
@ Mmoo d e

CADSphagingissprosy.dil
CARphaginsiisforward.dil
CADSphaging\itprony L8,

[No Description] Allowed
(Mo Description] Allowed

Edit IS8PY and O Restrictions Settings s
7| Allow unspecified CH modules

#| Allow unspecified 1S4 modules

v | [Features Virw | 5 Content View
c lncalhast’ 3pg

roct web.canfig

10. Create a file called iisproxy.ini with the following contents and place it in the
directory with the plug-in:

WebLogicHost= @hostname@
WebLogicPort= @port@

Installing and Configuring the Microsoft IS Plug-In 4-13

Proxying Requests from Multiple Virtual Web Sites to WebLogic Server

ConnectRetrySecs=5
ConnectTimeoutSecs=25
Debug=ALL
DebugConfigInfo=0N
KeepAliveEnabled=true

WlForwardPath=/weblogic
PathTrim=/weblogic

WLLogFile=@Log file name@
SecureProxy=0FF

11. Open the Internet Explorer browser and enter http://<hostname>:<port>.
You should be able to see the Medrec Sample Application from your Weblogic
Server.

If you want to run the plug-in in SSL mode, change the value of WeblogicPort
to the SSL port of your application, and change the SecureProxy value to ON.

Figure 4-14 Medrec Sample Application

More Samples | Documentation | dev2dev [Snart wning MadRecl | | Stact the Adevinistasion Goniste |
Avitek™ Medical Records Sample Application

Avitek Medical Records {or MedRec) is 3 WebLogic

Server sample application suite that demonstrates all
aspects of the Java Platform, Enterprise Edition (Java
E£). MedRoc is designed as an educational tool for all
levels of Java EE developers. It showeases the use of

Patient Info

o (WITER
< Medical Records

each Java EE component, and illustrates best-practice
design pattems for component interaction and chent
development, MedRec also dustrates best practices for
developing and deploying applications with WablLogic

Server.
Hame
The MedRec suite consists of four separate Java EE
5 ns that e h e
applications that correspond to each user type .
* Patient - The Patient application allows Patients I = 7
to log in, edit their peofile iformation, or request Date Reason for Visit Physician

that their profile be added to the system.
Patients can also view pror medical recards af
wisits with their physician

* Controller - The Controller ap)

Twisted knie whié playing soccer. [Or. Phil B Lance

Sneezing, coughing, stuffy head. |Or. Kathy E Wison
Or. Phil B Lance

cation provices.

ected Mads: O

4.6 Proxying Requests from Multiple Virtual Web Sites to WebLogic
Server

To proxy requests from multiple Web sites (defined as virtual directories in IIS) to
WebLogic Server:

1. Create a new directory for the virtual directories. This directory will contain dll
and ini files used to define the proxy.

2. Copy iisforward.dll to the directory you created in stepl.
3. Register the iisforward.dll for each website with IIS.

4. Create a file called iisforward. ini. Place this file in the same directory that
contains iisforward.dll. This file should contain the following entry for each
virtual website defined in IIS:

vhostN=websiteName:port
websiteName:port=dll_directory/iisproxy.ini

Where:

4-14 Using Web Server Plug-Ins with Oracle WebLogic Server

Proxying Requests from Multiple Virtual Web Sites to WebLogic Server

= Nis an integer representing the virtual website. The first virtual website you
define should use the integer 1 and each subsequent website should increment
this number by 1.

= websiteName is the name of the virtual website as registered with IIS.
= port is the port number where IIS listens for HTTP requests.

s dll_directory is the path to the directory you created in step 1.

For example:

vhostl=strawberry.com:7001
strawberry.com:7001=c:\strawberry\iisproxy.ini
vhost2=blueberry.com:7001
blueberry.com:7001=c:\blueberry\iisproxy.ini

5. Create an iisproxy.ini file for the virtual Web sites, as described in step 4 in
Section 4.1.2, "Proxying Requests". Copy this iispoxy . ini file to the directory
you created in step 1.

6. Copy iisproxy.dll to the directory you created in step 1.

7. InlIIS 5.0, set the value for the Application Protection option to high (isolated). If
the Application Protection option is set to Medium(pooled), the iisproxy.dll that
registered as the first website will always be invoked. In this event, all the
requests will be proxied to the same WebLogic Server instances defined in the
iisproxy.ini of the first website.

For IIS 6.0 and later, create a separate application pool for each virtual directory.

As described in "Creating Application Pools (IIS 6.)"
(http://www.microsoft.com/technet/prodtechnol /WindowsServer20
03/Library/IIS/93275ef2-2£85-4ebl1-8b92-a67545bellbd . mspx?mfr=
true), you can isolate different Web applications or Web sites in pools, which are
called application pools. In an application pool, process boundaries separate each
worker process from other worker processes so that when an application is routed
to one application pool, applications in other application pools do not affect that
application.

4.6.1 Sample iisproxy.ini File

Here is a sample iisproxy.ini file for use with a single, non-clustered WebLogic
Server. Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.
WebLogicHost=1localhost

WebLogicPort=7001

ConnectTimeoutSecs=20

ConnectRetrySecs=2

Here is a sample 1isproxy.ini file with clustered WebLogic Servers. Comment lines
are denoted with the “#” character.

This file contains initialization name/value pairs

for the IIS/WebLogic plug-in.
WebLogicCluster=myweblogic.com:7001, yourweblogic.com:7001
ConnectTimeoutSecs=20

ConnectRetrySecs=2

Installing and Configuring the Microsoft IIS Plug-In 4-15

Creating ACLs Through IIS

Note: If you are using SSL between the plug-in and WebLogic Server,
the port number should be defined as the SSL listen port.

4.7 Creating ACLs Through IIS

ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure
that the Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To
enable the use of Basic Authentication, grant each user account the Log On Locally
user right on the IIS server. Two problems may result from Basic Authentication's use
of local logon:

» If the user does not have local logon rights, Basic Authentication does not work
even if the FrontPage, IIS, and Windows NT configurations appear to be correct.

= A user who has local log-on rights and who can obtain physical access to the host
computer running IIS will be permitted to start an interactive session at the
console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure that
the Allow Anonymous option is “on” and all other options are “off”.

4.8 Setting Up Perimeter Authentication

Use perimeter authentication to secure your WebLogic Server applications that are
accessed via the Microsoft Internet Information Server Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your WebLogic Server application, including users who access your
WebLogic Server application through the Microsoft Internet Information Server
Plug-In. Create an Identity Assertion Provider that will safely secure your Plug-In as
follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application.
See "How to Develop a Custom Identity Assertion Provider" in Developing Security
Providers for Oracle WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the "Cert" token type
and make it the active token type. See "How to Create New Token Types" in
Developing Security Providers for Oracle WebLogic Server.

3. Setthe clientCertProxy attribute to True in the web.xml deployment
descriptor file for the Web application (or, if using a cluster, optionally set the
Client Cert Proxy Enabled attribute to true for the whole cluster on the
Administration Console Cluster-->Configuration-->General tab). See
"context-param" in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure
that WebLogic Server accepts connections only from the machine on which the
Microsoft Internet Information Server Plug-In is running. See "Using Network
Connection Filters" in Programming Security for Oracle WebLogic Server.

5. Web server plug-ins require a trusted Certificate Authority file in order to use SSL
between the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility

4-16 Using Web Server Plug-Ins with Oracle WebLogic Server

Using SSL with the Microsoft Internet Information Server Plug-In

to export a trusted Certificate Authority file from the DemoTrust . jks keystore
file that resides in WI,_ HOME/server/lib.

a. To extract the wlsdemoca file, for example, use the command:

keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

To look at all of the keystore's trusted CA files, use: keytool -list
-keystore DemoTrust.jks.

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java
utils.der2pem trustedcafile.der.

See "Identity Assertion Providers" in Developing Security Providers for Oracle
WebLogic Server for more information about Identity Assertion Providers.

4.9 Using SSL with the Microsoft Internet Information Server Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
WebLogic Server and the Microsoft Internet Information Server Plug-In. The SSL
protocol provides confidentiality and integrity to the data passed between the
Microsoft Internet Information Server Plug-In and WebLogic Server.

The Microsoft Internet Information Server Plug-In does not use the transport protocol
(http or https) to determine whether the SSL protocol will be used to protect the
connection between the proxy plug-in and the Microsoft Internet Information Server.
In order to use the SSL protocol with the Microsoft Internet Information Server
Plug-In, configure the WebLogic Server instance receiving the proxied requests to use
the SSL protocol. The port on the WebLogic Server that is configured for secure SSL
communication is used by the Microsoft Internet Information Server Plug-In to
communicate with the Microsoft Internet Information Server.

To use the SSL protocol between Microsoft Internet Information Server Plug-In and
WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL.

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring SSL.

3. Set the WebLogicPort parameter in the 1isproxy.ini file to the listen port
configured in step 2.

4. Set the SecureProxy parameter in the iisproxy. ini file to ON.

5. Set additional parameters in the 1isproxy. ini file that define the SSL
connection. For a complete list of parameters, see Section 7.3, "SSL Parameters for
Web Server Plug-Ins".

For example:

WebLogicHost=myweblogic.com
WebLogicPort=7002
SecureProxy=0N

Installing and Configuring the Microsoft IIS Plug-In 4-17

Proxying Servlets from I1S to WebLogic Server

4.10 Proxying Servlets from IIS to WebLogic Server

You can proxy servlets by path if the iisforward.dll is registered as a filter. You
would then invoke your servlet with a URL similar to the following:

http://IISserver/weblogic/myServlet

To proxy servlets if iisforward.dll is not registered as a filter, you must configure
servlet proxying by file type.To proxy servlets by file type:

1.

Register an arbitrary file type (extension) with IIS to proxy the request to the
WebLogic Server, as described in step 2 under Section 4.4, "Installing and
Configuring the Microsoft Internet Information Server Plug-In".

Register your servlet in the appropriate Web Application. For more information on
registering servlets, see Creating and Configuring Servlets.

Invoke your servlet with a URL formed according to this pattern:
http://www.myserver.com/virtualName/anyfile.ext

where virtualName is the URL pattern defined in the <servlet-mapping>
element of the Web Application deployment descriptor (web.xml) for this servlet

and ext is a file type (extension) registered with IIS for proxying to WebLogic
Server. The anyfile part of the URL is ignored in this context.

Note: If the image links called from the servlet are part of the Web
Application, you must also proxy the requests for the images to
WebLogic Server by registering the appropriate file types (probably
.gif and jpg) with IIS. You can, however, choose to serve these images
directly from IIS if desired.

If the servlet being proxied has links that call other servlets, then these
links must also be proxied to WebLogic Server, conforming to the
pattern described in step 3.

4.11 Testing the Installation

After you install and configure the Microsoft Internet Information Server Plug-In,
follow these steps for deployment and testing:

1.
2.
3.

Make sure WebLogic Server and IIS are running.
Save a JSP file into the document root of the default Web Application.

Open a browser and set the URL to the IIS plus filename.jsp, as shown in this
example:

http://myii.server.com/filename. jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

4.12 Connection Errors and Clustering Failover

When the Microsoft Internet Information Server Plug-In attempts to connect to
WebLogic Server, the plug-in uses several configuration parameters to determine how
long to wait for connections to the WebLogic Server host, and, after a connection is
established, how long the plug-in waits for a response. If the plug-in cannot connect or
does not receive a response, the plug-in attempts to connect and sends the request to

4-18 Using Web Server Plug-Ins with Oracle WebLogic Server

Connection Errors and Clustering Failover

other WebLogic Servers in the cluster. If the connection fails or there is no response
from any WebLogic Server instance in the cluster, an error message is sent.

Figure 4-15 demonstrates how the plug-in handles failover.

Figure 4-15 Connection Failover

Client Sends HTTP request Parse headers and return
to Web server and the response to the client
request is proxied by the -

plug-in

Plug-In receives request
from the Web server

Mark this sever as
"bad" in the
dynamic server
list
Yy

s this the firs
failover?

Yes

Weblogic
session 1D in
request?

No

atal time of this request

exceeded
ConnectionTimeOutSecs?,
Connect to primary
server defined in cookie
Yes
Send HTTP error Idempotent
Yes No . -
successful within code 5xx to client No ON?
WL SockefTimeOut T
ry
4
Try next server in
dynamic sarver list or Connacn'sc::;ﬂrfrorSsconds
WeblLogicCluster Y

Yes Yas

Max retries
exceeded?

successful within
WL SocketTimeOut

No
L ¥ Yes
Send headers and POST | Wait for response for N Server
data to WebLogic server WLIOTimeOutSecs g responded?

4.12.1 Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
problems with the host machine, networking problems, or other server failures.

Failure of any WebLogic Server instance in the cluster to respond, could indicate that
WebLogic Server is not running or is unavailable, a hung server, a database problem,
or other application failure.

4.12.2 Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server, the plug-in only attempts to connect
to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP

Installing and Configuring the Microsoft IIS Plug-In 4-19

Connection Errors and Clustering Failover

503 error message is returned. The plug-in continues trying to connect to WebLogic
Server as determined by the ConnectTimeoutSecs and ConnectRetrySecs
parameters.

4.12.3 The Dynamic Server List

The WebLogicCluster parameter is required to proxy to a list of back-end servers
that are clustered, or to perform load balancing among non-clustered managed server
instances.

In the case of proxying to clustered managed servers, when you use the
WebLogicCluster parameter in your httpd. conf or weblogic. conf file to
specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load
balancing among the members of the cluster. After the first request is routed to one of
these servers, a dynamic server list is returned containing an updated list of servers in
the cluster. The updated list adds any new servers in the cluster and deletes any that
are no longer part of the cluster or that have failed to respond to requests. This list is
updated automatically with the HTTP response when a change in the cluster occurs.

4.12.4 Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie or in the POST data, or
encoded in a URL, the session ID contains a reference to the specific server instance in
which the session was originally established (called the primary server). A request
containing a cookie attempts to connect to the primary server. If that attempt fails, the
plug-in attempts to make a connection to the next available server in the list in a
round-robin fashion. That server retrieves the session from the original secondary
server and makes itself the new primary server for that same session. For more
information see Figure 4-15.

Note: If the POST data is larger than 64K, the plug-in will not parse
the POST data to obtain the session ID. Therefore, if you store the
session ID in the POST data, the plug-in cannot route the request to
the correct primary or secondary server, resulting in possible loss of
session data.

4-20 Using Web Server Plug-Ins with Oracle WebLogic Server

O

Installing and Configuring the Sun Java
System Web Server Plug-In

This release documents how to install and configure the Sun Java System Web Server
plug-in.
In previous releases of WebLogic Server, this plug-in was referred to as the Netscape

Enterprise Server plug-in. References to file specifications in this chapter continue to
use the Netscape Enterprise Server nomenclature.

The following sections describe how to install and configure the Sun Java System Web
Server proxy plug-in:

= Section 5.1, "Overview of the Sun Java System Web Server Plug-In"

= Section 5.2, "Installing and Configuring the Sun Java System Web Server Plug-In"
m Section 5.3, "Setting Up Perimeter Authentication”

= Section 5.4, "Using SSL with the Sun Java System Web Server Plug-In"

= Section 5.5, "Connection Errors and Clustering Failover"

5.1 Overview of the Sun Java System Web Server Plug-In

The Sun Java System Web Server Plug-In enables requests to be proxied from Sun Java
System Web Server to WebLogic Server. The plug-in enhances a Sun Java System Web
Server installation by allowing WebLogic Server to handle those requests that require
the dynamic functionality of WebLogic Server.

The Sun Java System Web Server Plug-In is designed for an environment where Sun
Java System Web Server serves static pages, and a Weblogic Server instance (operating
in a different process, possibly on a different machine) is delegated to serve dynamic
pages, such as JSPs or pages generated by HTTP Servlets. The connection between
WebLogic Server and the Sun Java System Web Server Plug-In is made using clear text
or Secure Sockets Layer (SSL). To the end user—the browser—the HTTP requests
delegated to WebLogic Server appear to come from the same source as the static pages.
Additionally, the HTTP-tunneling facility of WebLogic Server can operate through the
Sun Java System Web Server Plug-In, providing access to all WebLogic Server services
(not just dynamic pages).

The Sun Java System Web Server Plug-In operates as a module within a Sun Java
System Web Server. The module is loaded at startup, and then certain HTTP requests
are delegated to it. The module is similar to an HTTP (Java) servlet, except that a
module is written in code native to the platform.

Installing and Configuring the Sun Java System Web Server Plug-In 5-1

Installing and Configuring the Sun Java System Web Server Plug-In

For more information on supported versions of Sun Java System Web Server see
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

5.1.1 Connection Pooling and Keep-Alive

The WebLogic Server Sun Java System Web Server Plug-In provides efficient
performance by using a re-usable pool of connections from the plug-in to WebLogic
Server. The plug-in automatically implements “keep-alive” connections between the
plug-in and WebLogic Server. If a connection is inactive for more than 30 seconds or a
user-defined amount of time, the connection is closed. You can disable this feature if
desired. For more information, see KeepAliveEnabled in Table 7-1.

5.1.2 Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on the URL of the request (or a portion of the
URL). This is called proxying by path. You can also proxy request based on the MIME
type of the requested file. Or you can use a combination of both methods. If a request
matches both criteria, the request is proxied by path. You can also specify additional
parameters for each of these types of requests that define additional behavior of the
plug-in. For more information, see Section 5.2, "Installing and Configuring the Sun
Java System Web Server Plug-In".

Note: The request processing behavior has changed in Sun Java
System Web Server 7.0 Update 2 release. See
http://wikis.sun.com/display/WebServerdocs/Release+N
otes, issue 6747123.

5.2 Installing and Configuring the Sun Java System Web Server Plug-In
To install and configure the Sun Java System Web Server Plug-In:
1. Copy the library.

The WebLogic Sun Java System Web Server plug-in module is distributed as a
shared object (.so) on UNIX platforms and as a dynamic-link library (.dll) on
Windows. These files are located in the WI._
HOME/server/plugin/OperatingSystem/Architecture directory of your
WebLogic Server distribution. WL_HOME represents the top level installation
directory for your WebLogic platform. The server directory contains installation
files for WebLogic Server. OperatingSystem refers to the operating system, such as
UNIX or Windows.

Choose the appropriate library file for your environment from based on
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html and copy that file into the file system where Sun
Java System Web Server is located.

The Sun Java System Web Server 7.0 can use the plug-in named xxx_61. For
example, libproxy128_61.so and libproxy_61.so.

2. Read Section 5.2.1, "Guidelines for Modifying the obj.conf File", then modify the
obj . conf file as described in the following steps. The obj . conf file defines
which requests are proxied to WebLogic Server and other configuration
information.

5-2 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Sun Java System Web Server Plug-In

Locate and open obj . conf.
The obj.conf file for your instance is in the following location:

NETSCAPE_HOME/https-INSTANCE_NAME/config/obj.conf

Where NETSCAPE_HOME is the root directory of the installation, and INSTANCE
NAME is the particular “instance” or server configuration that you are using. For
example, on a UNIX machine called myunixmachine, the obj . conf file would be
found here:

/usr/local/netscape/enterprise-351/
https-myunixmachine/config/obj.conf

Instruct Sun Java System Web Server to load the native library (the .so or .dll file)
as a module.

To use iPlanet 4.x or earlier, add the following lines to the beginning of the obj.conf
file.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED_LIBRARY
Init fn="wl_init"

Where SHARED LIBRARY is the shared object or dll (for example libproxy.so) that
you installed in step 1 under Section 5.2, "Installing and Configuring the Sun Java
System Web Server Plug-In". The function 1oad-modules tags the shared library
for loading when Sun Java System Web Server starts up. The values wl_proxy
and wl_init identify the functions that the Sun Java System Web Server Plug-In
executes.

To use iPlanet 6.0, add the following lines to the beginning of the magnus . conf
file. These lines instruct Sun Java System Web Server to load the native library (the
.so or .dll file) as a module:

"

Note: Spacing is important. There must be a space between the
and \, or there must be a leading space before shlib.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED_LIBRARY
Init fn="wl_init"

Where SHARED LIBRARY is the shared object or dll (for example libproxy.so) that
you installed in step 1 under Section 5.2, "Installing and Configuring the Sun Java
System Web Server Plug-In". The function load-modules tags the shared library
for loading when Sun Java System Web Server starts up. The values wl_proxy
and wl_init identify the functions that the Sun Java System Web Server Plug-In
executes.

If you want to proxy requests by URL, (also called proxying by path.) create a
separate <Object> tag for each URL that you want to proxy and define the
PathTrim parameter. (You can proxy requests by MIME type, in addition to or
instead of proxying requests by path. See step 6 Proxying by path supersedes
proxying by MIME type.) The following is an example of an <Object> tag that
proxies a request containing the string * /weblogic/ *.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"

Installing and Configuring the Sun Java System Web Server Plug-In 5-3

Installing and Configuring the Sun Java System Web Server Plug-In

</0Object>

To create an <Object> tag to proxy requests by URL:

a. Specify a name for this object (optional) inside the opening <Object> tag
using the name attribute. The name attribute is informational only and is not
used by the Sun Java System Web Server Plug-In. For example:

<Object name=myObject ...>

b. Specify the URL to be proxied within the <Object> tag, using the ppath
attribute. For example:

<Object name=myObject ppath="*/weblogic/*>

The value of the ppath attribute can be any string that identifies requests
intended for Weblogic Server. When you use a ppath, every request that
contains that path is redirected. For example, a ppath of * /weblogic/*
redirects every request that begins http://enterprise.com/weblogic to
the Sun Java System Web Server Plug-In, which sends the request to the
specified Weblogic host or cluster.

c. Add the Service directive within the <Object> and </Object> tags. In the
Service directive you can specify any valid parameters as name=value pairs.
Separate multiple name=value pairs with one and only one space. For
example:

Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"

For a complete list of parameters, see Section 7.2, "General Parameters for Web
Server Plug-Ins". You must specify the following parameters:

For a non-clustered WebLogic Server: the WebLogicHost and WebLogicPort
parameters.

For a cluster of WebLogic Server instances: the WebLogicCluster parameter.

Always begin the Service directive with Service fn=wl_proxy, followed by
valid name=value pairs of parameters.

Here is an example of the object definitions for two separate ppaths that
identify requests to be sent to different instances of WebLogic Server:

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"

</Object>

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=otherserver.com\
WebLogicPort=7008

</0Object>

Note: Parameters that are not required, such as PathTrim, can be
used to further configure the way the ppath is passed through the Sun
Java System Web Server Plug-In. For a complete list of plug-in
parameters, see Section 7.2, "General Parameters for Web Server
Plug-Ins".

5-4 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Sun Java System Web Server Plug-In

If you are proxying requests by MIME type, add any new MIME types referenced
in the obj . conf file to the MIME.types file. You can add MIME types by using
the Netscape server console or by editing the MIME.types file directly.

To directly edit the MIME. types file, open the file for edit and type the following
line:

type=text/jsp exts=jsp

Note: For Netscape Enterprise Server 4.0 (iPlanet), instead of adding
the MIME type for JSPs, change the existing MIME type from
magnus-internal/jsp to text/jsp.

To use the Netscape console, select Manage Preferences/E Mime Types, and make
the additions or edits.

All requests with a designated MIME type extension (for example, .jsp) can be
proxied to the WebLogic Server, regardless of the URL. To proxy all requests of a
certain file type to WebLogic Server:

a. Add a Service directive to the existing default Object definition. (<Object
name=default ...>)

For example, to proxy all JSPs to a WebLogic Server, the following Service
directive should be added after the last line that begins with:

NameTrans fn=....

and before the line that begins with:

PathCheck.
Service method=" (GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicHost=192.1.1.4 WebLogicPort=7001 PathPrepend=/jspfiles

This Service directive proxies all files with the .jsp extension to the designated
WebLogic Server, where they are served with a URL like this:

http://WebLogic:7001/jspfiles/myfile.jsp

The value of the PathPrepend parameter should correspond to the context
root of a Web Application that is deployed on the WebLogic Server or cluster
to which requests are proxied.

After adding entries for the Sun Java System Web Server Plug-In, the default
Object definition will be similar to the following example:

<Object name=default>

NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual /https/ug"

NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"

Service method=" (GET|HEAD|POST|PUT)" type=text/jsp\
fn=wl_proxy WebLogicHost=localhost WebLogicPort=7001\

PathPrepend=/jspfiles

PathCheck fn=nt-uri-clean

PathCheck fn="check-acl" acl="default"

PathCheck fn=find-pathinfo

Installing and Configuring the Sun Java System Web Server Plug-In 5-5

Installing and Configuring the Sun Java System Web Server Plug-In

PathCheck fn=find-index index-names="index.html,home.html"
If a required parameter is missing from the configuration, when the object
is
invoked it issues an HTML error that notes the missing parameter from the
configuration.
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\ fn=imagemap
Service method= (GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) \
type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

b. Add a similar Service statement to the default object definition for all other
MIME types that you want to proxy to WebLogic Server.

c. To configure proxy-by-MIME for the JSP, you must add the following entry to
the mime.types file

type=text/jsp exts=jsp

For proxy-by-MIME to work properly you need to disable JAVA from the Sun One
Web Server otherwise SUN One will try to serve all requests that end in *jsp and
will return a 404 error as it will fail to locate the resource under $doc_root.

To disable JAVA from the Sun One Web Server, comment out the following in the
obj.conf file under the name="default"#NameTrans fn="ntrans-j2ee"
name="j2ee" and restart the webserver.

8. Optionally, if you are proxying by path, enable HTTP-tunneling:

a. If you are using weblogic.jar and tunneling the t3 protocol, add the following
object definition to the obj . conf file, substituting the WebLogic Server host
name and the WebLogic Server port number, or the name of a WebLogic
Cluster that you wish to handle HTTP tunneling requests.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4\ WebLogicPort=7001
</0Object>

b. If you are tunneling IIOP, which is the only protocol used by the WebLogic
Server thin client, wlclient . jar, add the following object definition to the
obj . conf file, substituting the WebLogic Server host name and the WebLogic
Server port number, or the name of a WebLogic Cluster that you wish to
handle HTTP tunneling requests.

<Object name="tunnel" ppath="*/iiop*">
Service fn=wl_proxy WebLogicHost=192.192.1.4\ WebLogicPort=7001
</0Object>

9. Deploy and test the Sun Java System Web Server Plug-In
a. Start WebLogic Server.

b. Start Sun Java System Web Server. If Sun Java System Web Server is already
running, you must either restart it or apply the new settings from the console
in order for the new settings to take effect.

c. To test the Sun Java System Web Server Plug-In, open a browser and set the
URL to the Sun Java System Web Server plus /weblogic/, which should

5-6 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Sun Java System Web Server Plug-In

bring up the default WebLogic Server HTML page, welcome file, or default
servlet, as defined for the default Web Application as shown in this example:

http://myenterprise.server.com/weblogic/

For information on how to create a default Web Application, see Developing
Web Applications, Servlets, and [SPs for Oracle WebLogic Server.

5.2.1 Guidelines for Modifying the obj.conf File

To use the Sun Java System Web Server Plug-In, you must make several modifications
to the obj . conf file. These modifications specify how requests are proxied to
WebLogic Server. You can proxy requests by URL or by MIME type. The procedure for
each is described in Section 5.2, "Installing and Configuring the Sun Java System Web
Server Plug-In".

The Netscape obj . conf file is very strict about the placement of text. To avoid
problems, note the following regarding the obj . conf file:

» Eliminate extraneous leading and trailing white space. Extra white space can cause
your Netscape server to fail.

= If you must enter more characters than you can fit on one line, place a backslash
(\) at the end of that line and continue typing on the following line. The backslash
directly appends the end of the first line to the beginning of the following line. If a
space is necessary between the words that end the first line and begin the second
line, be certain to use one space, either at the end of the first line (before the
backslash), or at the beginning of the second line.

= Do not split attributes across multiple lines. (For example, all servers in a cluster
must be listed in the same line, following WebLogicCluster.)

5.2.2 Sample obj.conf File (Not Using a WebLogic Cluster)

Below is an example of lines that should be added to the obj . conf file if you are not
using a cluster. You can use this example as a template that you can modify to suit
your environment and server. Lines beginning with # are comments.

Note: Make sure that you do not include any extraneous white space
in the obj.conf file. Copying and pasting from the samples below
sometimes adds extra white space, which can create problems when
reading the file.

You can read the full documentation on Enterprise Server configuration files in the
Sun Java System Web Server documentation.

#H ---—-————— BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------
(no cluster)

The following line locates the NES library for loading at

startup, and identifies which functions within the library are
NES functions. Verify the path to the library (the value

of the shlib=<...> parameter) and that the file is

readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so

Init fn="wl_init"

Configure which types of HTTP requests should be handled by the

Installing and Configuring the Sun Java System Web Server Plug-In 5-7

Installing and Configuring the Sun Java System Web Server Plug-In

NES module (and, in turn, by WebLogic). This is done

with one or more "<Object>" tags as shown below.

Here we configure the NES module to pass requests for
"/weblogic" to a WebLogic Server listening at port 7001 on
the host myweblogic.server.com.

<Object name="weblogic" ppath="*/weblogic/*">

Service fn=wl_proxy WebLogicHost=myweblogic.server.com\
WebLogicPort=7001 PathTrim="/weblogic"

</Object>

Here we configure the plug-in so that requests that

match "/servletimages/" is handled by the

plug-in/WebLogic.

<Object name="si" ppath="*/servletimages/*">

Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:

H H FH H H

type=text/jsp exts=jsp

This configuration means that any file with the extension
".jsp" are proxied to WebLogic. Then you must add the

Service line for this extension to the Object "default",

which should already exist in your obj.conf file:

<Object name=default>

NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual /https/ug"

NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"

Service method=" (GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicHost=1localhost WebLogicPort=7001 PathPrepend=/jspfiles

PathCheck fn=nt-uri-clean

PathCheck fn="check-acl" acl="default"

PathCheck fn=find-pathinfo

PathCheck fn=find-index index-names="index.html,home.html"

ObjectType fn=type-by-extension

ObjectType fn=force-type type=text/plain

Service method:(GET\HEAD) type=magnus-internal/imagemap\ fn=imagemap

Service method=(GET|HEAD) \

type=magnus-internal/directory fn=index-common

Service method:(GET\HEAD) type=*~magnus-internal/* fn=send-file

AddLog fn=flex-log name="access"

</0Object>

The following directive enables HTTP-tunneling of the

WebLogic protocol through the NES plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">

Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001

</Object>

#

- END SAMPLE OBJ.CONF CONFIGURATION ---------

#
#
#
#
#
#
#
#
#
#

5.2.3 Sample obj.conf File (Using a WebLogic Cluster)

Below is an example of lines that should be added to obj . conf if you are using a
WebLogic Server cluster. You can use this example as a template that you can modify
to suit your environment and server. Lines beginning with # are comments.

5-8 Using Web Server Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Sun Java System Web Server Plug-In

Note: Make sure that you do not include any extraneous white space
in the obj . conf file. Copying and pasting from the samples below
sometimes adds extra white space, which can create problems when
reading the file.

For more information, see the full documentation on Enterprise Server configuration

files from Netscape.

#H - BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------

(using a WebLogic Cluster)

#

The following line locates the NES library for loading at

startup, and identifies which functions within the library are
NES functions. Verify the path to the library (the value

of the shlib=<...> parameter) and that the file is

readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so
Init fn="wl_init"
Configure which types of HTTP requests should be handled by the
NES module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.
Here we configure the NES module to pass requests for
"/weblogic" to a cluster of WebLogic Servers.
<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy \
WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001,\
theirweblogic.com:7001" PathTrim="/weblogic"
</Object>
Here we configure the plug-in so that requests that
match "/servletimages/" are handled by the
plug-in/WebLogic.
<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy \
WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001,\
theirweblogic.com:7001"
</Object>
This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:

HH H H H H

type=text/jsp exts=jsp

This configuration means that any file with the extension
".jsp" is proxied to WebLogic. Then you must add the

Service line for this extension to the Object "default",

which should already exist in your obj.conf file:

<Object name=default>

NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"

NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"

Service method=" (GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\

WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001, \

theirweblogic.com:7001", PathPrepend=/jspfiles

HH FH H H H H H H FH H

Installing and Configuring the Sun Java System Web Server Plug-In 5-9

Setting Up Perimeter Authentication

PathCheck fn=nt-uri-clean

PathCheck fn="check-acl" acl="default"

PathCheck fn=find-pathinfo

PathCheck fn=find-index index-names="index.html,home.html"

ObjectType fn=type-by-extension

ObjectType fn=force-type type=text/plain

Service method=(GET|HEAD) type=magnus-internal/imagemap\ fn=imagemap
Service method= (GET|HEAD) \

type=magnus-internal/directory fn=index-common

Service method:(GET\HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"

</0Object>

The following directive enables HTTP-tunneling of the

WebLogic protocol through the NES plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">

Service fn=wl_proxy WebLogicCluster="myweblogic.com:7001,\
yourweblogic.com:7001, theirweblogic.com:7001"

</0Object>

5.3 Setting Up Perimeter Authentication

Use perimeter authentication to secure your WebLogic Server applications that are
accessed via the Sun Java System Web Server Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your WebLogic Server application, including users who access your
WebLogic Server application through the Sun Java System Web Server Plug-In. Create
an Identity Assertion Provider that will safely secure your Plug-In as follows:

1.

Create a custom Identity Assertion Provider on your WebLogic Server application.
See "How to Develop a Custom Identity Assertion Provider" in Developing Security
Providers for Oracle WebLogic Server.

Configure the custom Identity Assertion Provider to support the "Cert" token type
and make it the active token type. See "How to Create New Token Types" in
Developing Security Providers for Oracle WebLogic Server.

Set the clientCertProxy attribute to True in the web.xml deployment descriptor file
for the Web application (or, if using a cluster, optionally set the Client Cert Proxy
Enabled attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). See "context-param" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Once you have set clientCertProxy, be sure to use a connection filter to ensure that
WebLogic Server accepts connections only from the machine on which the Sun
Java System Web Server Plug-In is running. See "Using Network Connection
Filters" in Programming Security for Oracle WebLogic Server.

Web server plug-ins require a trusted Certificate Authority file in order to use SSL
between the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility
to export a trusted Certificate Authority file from the DemoTrust.jks keystore file
that resides in WL_HOME/server/lib.

a. To extract the wlsdemoca file, for example, use the command:

keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

5-10 Using Web Server Plug-Ins with Oracle WebLogic Server

Connection Errors and Clustering Failover

To look at all of the keystore's trusted CA files, use: keytool -list
-keystore DemoTrust.jks

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java
utils.der2pem trustedcafile.der

See "Identity Assertion Providers" in Developing Security Providers for Oracle WebLogic
Server for more information about Identity Assertion Providers.

5.4 Using SSL with the Sun Java System Web Server Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the Sun Java System Web Server Plug-In, and WebLogic Server. The SSL protocol
provides confidentiality and integrity to the data passed between the Sun Java System
Web Server Plug-In and WebLogic Server.

The Sun Java System Web Server Plug-In does not use the transport protocol (http or
https) specified in the HTTP request (usually by the browser) to determine whether or
not the SSL protocol will be used to protect the connection between the Sun Java
System Web Server Plug-In and WebLogic Server.

To use the SSL protocol between Sun Java System Web Server Plug-In and WebLogic
Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL.

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring SSL.

3. Set the WebLogicPort parameter in the Service directive in the obj . conf file to
the listen port configured in step 2.

4. Set the SecureProxy parameter in the Service directive in the obj . conf file file to
ON.

5. Set additional parameters in the Service directive in the obj . conf file that define
information about the SSL connection. For a complete list of parameters, see “SSL
Parameters for Web Server Plug-Ins” on page 7-14.

5.5 Connection Errors and Clustering Failover

When the Sun Java System Web Server Plug-In attempts to connect to WebLogic
Server, the plug-in uses several configuration parameters to determine how long to
wait for connections to the WebLogic Server host, and, after a connection is
established, how long the plug-in waits for a response. If the plug-in cannot connect or
does not receive a response, the plug-in attempts to connect and send the request to
other WebLogic Servers in the cluster. If the connection fails or there is no response
from any WebLogic Server in the cluster, an error message is sent.

Figure 5-1 demonstrates how the plug-in handles failover. The Maximum number of
retries allowed in the red loop is equal to ConnectTimeoutSecs =+
ConnectRetrySecs.

Installing and Configuring the Sun Java System Web Server Plug-In 5-11

Connection Errors and Clustering Failover

Figure 5-1 Connection Failover

Client Sends HTTP request Parse headers and return
to Web server and the response to the client
request is proxied by the -

plug-in

Plug-In receives request
from the Web server

Mark this sever as
"bad" in the
dynamic server
list
Yy

s this the firs
failover?

Yes

Weblogic
session 1D in
request?

No
atal time of this request
exceeded
ConnectionTimeOutSecs?,
Connect to primary
server defined in cookie
Yes
Yes Eonnection No Send HTTP error Idempotent
successful within code 5xx to client N ON?
WLSocketTimeOut ©
secs? T +
A 4
Try next server in
dynamic sarver list or Connacn'sc::;ﬂrfrorSsconds
WeblLogicCluster Y
Connection No Yes
successful within Max retries
WL SocketTimeOut exceeded?
secs?
No
L ¥ Yes
| Send headers and POST | Wait for response for N Server
data to WebLogic server WLIOTimeOutSecs g responded?

5.5.1 Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
possible problems with the host machine, networking problems, or other server
failures.

Failure of all WebLogic Server instances to respond, could indicate that WebLogic
Server is not running or is unavailable, a hung server, a database problem, or other
application failure.

5.5.2 Failover with a Single, Non-Clustered WebLogic Server

If you are running a single WebLogic Server instance, the plug-in attempts to connect
to that server which is defined with the WebLogicHost parameter. If the attempt fails,
an HTTP 503 error message is returned. The plug-in continues trying to connect to
WebLogic Server until ConnectTimeoutSecs is exceeded.

5-12 Using Web Server Plug-Ins with Oracle WebLogic Server

Connection Errors and Clustering Failover

5.5.3 The Dynamic Server List

The WebLogicCluster parameter is required to proxy to a list of back-end servers
that are clustered, or to perform load balancing among non-clustered managed server
instances.

In the case of proxying to clustered managed servers, when you use the
WebLogicCluster parameter in your httpd. conf or weblogic. conf file to
specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load
balancing among the members of the cluster. After the first request is routed to one of
these servers, a dynamic server list is returned containing an updated list of servers in
the cluster. The updated list adds any new servers in the cluster and deletes any that
are no longer part of the cluster or that have failed to respond to requests. This list is
updated automatically with the HTTP response when a change in the cluster occurs.

5.5.4 Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie or in the POST data, or
encoded in a URL, the session ID contains a reference to the specific server instance in
which the session was originally established (called the primary server). A request
containing a cookie attempts to connect to the primary server. If that attempt fails, the
plug-in attempts to make a connection to the next available server in the list in a
round-robin fashion. That server retrieves the session from the original secondary
server and makes itself the new primary server for that same session. For more
information, see Figure 5-1.

Note: If the POST data is larger than 64K, the plug-in will not parse
the POST data to obtain the session ID. Therefore, if you store the
session ID in the POST data, the plug-in cannot route the request to
the correct primary or secondary server, resulting in possible loss of
session data.

5.5.5 Failover Behavior When Using Firewalls and Load Directors

In most configurations, the Sun Java System Web Server Plug-In sends a request to the
primary instance of a cluster. When that instance is unavailable, the request fails over
to the secondary instance. However, in some configurations that use combinations of
firewalls and load-directors, any one of the servers (firewall or load-directors) can
accept the request and return a successful connection while the primary instance of
WebLogic Server is unavailable. After attempting to direct the request to the primary
instance of WebLogic Server (which is unavailable), the request is returned to the
plug-in as “connection reset.”

Requests running through combinations of firewalls (with or without load-directors)
are handled by WebLogic Server. In other words, responses of connection reset fail
over to a secondary instance of WebLogic Server. Because responses of connection
reset fail over in these configurations, servlets must be idempotent. Otherwise
duplicate processing of transactions may result.

Installing and Configuring the Sun Java System Web Server Plug-In 5-13

Connection Errors and Clustering Failover

5-14 Using Web Server Plug-Ins with Oracle WebLogic Server

6

Proxying Requests to Another Web Server

The following sections discuss how to proxy HTTP requests to another Web server:

Section 6.1, "Overview of Proxying Requests to Another Web Server"
Section 6.2, "Setting Up a Proxy to a Secondary Web Server"
Section 6.3, "Sample Deployment Descriptor for the Proxy Servlet"

6.1 Overview of Proxying Requests to Another Web Server

When you use WebLogic Server as your primary Web server, you may also want to
configure WebLogic Server to pass on, or proxy, certain requests to a secondary Web
server, such as Apache or Microsoft Internet Information Server. Any request that gets
proxied is redirected to a specific URL.You can even proxy to another Web server on a
different machine.You proxy requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request,
redirects it to the proxy URL, and sends the response to the client's browser back
through WebLogic Server. To use the HttpProxyServlet, you must configure it in a Web
Application and deploy that Web Application on the WebLogic Server that is
redirecting requests.

6.2 Setting Up a Proxy to a Secondary Web Server

To set up a proxy to a secondary HTTP server:

1.

Register the proxy servlet in your Web Application deployment descriptor (see
Example 6-1, "Sample web.xml for Use with ProxyServlet"). The Web Application
must be the default Web Application of the server instance that is responding to
requests. The class name for the proxy servlet is
weblogic.servlet.proxy.HttpProxyServlet. For more information, see
Developing Web Applications, Servlets, and |SPs for Oracle WebLogic Server.

Define an initialization parameter for the ProxyServlet with a <param-name>
of redirectURL and a <param-value> containing the URL of the server to
which proxied requests should be directed.

Optionally, define the following <KeyStore> initialization parameters to use
two-way SSL with your own identity certificate and key. If no <KeyStore> is
specified in the deployment descriptor, the proxy will assume one-way SSL.

s <KeyStore> — The key store location in your Web application.

s <KeyStoreType> — The key store type. If it is not defined, the default type
will be used instead.

Proxying Requests to Another Web Server 6-1

Sample Deployment Descriptor for the Proxy Servlet

s <PrivateKeyAlias> - The private key alias.

s <KeyStorePasswordProperties> — A property file in your Web
application that defines encrypted passwords to access the key store and
private key alias. The file contents looks like this:

KeyStorePassword={3DES}i4+50LCKenQ08BBv1sXTrg\=\=
PrivateKeyPassword={3DES}a4TcGAmtVVBRKtZwH3p7yA\=\=

You must use the weblogic.security.Encrypt command-line utility to encrypt
the password. For more information on the Encrypt utility, as well as the
CertGen, and der2pem utilities, see "Using the Oracle WebLogic Server Java
Utilities" in the Command Reference for Oracle WebLogic Server.

4. Map the ProxyServlet to a <url-pattern>. Specifically, map the file extensions you
wish to proxy, for example *jsp, or *html. Use the <servlet-mapping> element
in the web.xml Web Application deployment descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also
specifically map the following extensions: *.jsp, *.html, and *.html if you want to
proxy files ending with those extensions.

5. Deploy the Web Application on the WebLogic Server instance that redirects
incoming requests.

6.3 Sample Deployment Descriptor for the Proxy Servlet

Example 6-1 is an sample of a Web Applications deployment descriptor for using the
Proxy Servlet.

Example 6-1 Sample web.xml for Use with ProxyServiet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.
//DTD Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
<servlet>

<servlet-name>ProxyServlet</servlet-name>

<servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

<init-param>
<param-name>redirectURL</param-name>
<param-value>server:port</param-value>

</init-param>

<init-param>
<param-name>KeyStore</param-name>
<param-value>/mykeystore</param-value>

</init-param>

<init-param>
<param-name>KeyStoreType</param-name>
<param-value>jks</param-value>

</init-param>

<init-param>
<param-name>PrivateKeyAlias</param-name>
<param-value>passalias</param-value>

</init-param>

<init-param>
<param-name>KeyStorePasswordProperties</param-name>
<param-value>mykeystore.properties</param-value>

6-2 Using Web Server Plug-Ins with Oracle WebLogic Server

Sample Deployment Descriptor for the Proxy Servlet

</init-param>

</servlet>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Proxying Requests to Another Web Server 6-3

Sample Deployment Descriptor for the Proxy Servlet

6-4 Using Web Server Plug-Ins with Oracle WebLogic Server

7

Parameters for Web Server Plug-Ins

The following sections describe the parameters that you use to configure the Apache
and Microsoft IIS Web server plug-ins:

» Section 7.1, "Entering Parameters in Web Server Plug-In Configuration Files"
» Section 7.2, "General Parameters for Web Server Plug-Ins"

» Section 7.3, "SSL Parameters for Web Server Plug-Ins"

7.1 Entering Parameters in Web Server Plug-In Configuration Files

You enter the parameters for each Web server plug-in in special configuration files.
Each Web server has a different name for this configuration file and different rules for
formatting the file. For details, see the following sections on each plug-in:

» Chapter 3, "Installing and Configuring the Apache HTTP Server Plug-In"
» Chapter 4, "Installing and Configuring the Microsoft IIS Plug-In"

7.2 General Parameters for Web Server Plug-Ins

The general parameters for Web server plug-ins are shown in Table 7-1. Parameters
are case sensitive.

Table 7-1 General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to
WebLogicHost none WebLogic Server host (or virtual =~ ISAPI, Apache and
(Required when host name as defined in WebLogic NSAPI plug-in,
proxying to a single Server) to which HTTP requests ~ HttpClusterServlet, and
WebLogic Server .) should be forwarded. If youare HttpProxyServlet

using a WebLogic cluster, use the
WebLogicCluster parameter
instead of WebLogicHost.

Parameters for Web Server Plug-Ins 7-1

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
WebLogicPort none Port at which the WebLogic Server ISAPI, Apache and
(Required when host is listening for connection NSAPI plug-in,
proxying to a single requests from the plug-in (or from HttpClusterServlet, and
WebLogic Server.) other servers). (If you are using HttpProxyServlet

SSL between the plug-in and
WebLogic Server, set this
parameter to the SSL listen port
(see Configuring SSL) and set the
SecureProxy parameter to ON).

If you are using a WebLogic
Cluster, use the
WebLogicCluster parameter
instead of WebLogicPort.

7-2 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

WebLogicCluster none The WebLogicCluster ISAPI, Apache and
parameter is required to proxy a NSAPI plug-in,and
list of back-end servers that are HttpClusterServlet
clustered, or to perform load

balancing among non-clustered

managed server instances.

(Required when
proxying to a cluster of
WebLogic Servers, or to
multiple non-clustered
servers.)
List of WebLogic Servers that can
be used for load balancing. The
server or cluster list is a list of
host:port entries. If a mixed set of
clusters and single servers is
specified, the dynamic list
returned for this parameter will
return only the clustered servers.

The method of specifying the
parameter, and the required
format vary by plug-in. See the
examples in:

s Chapter 4, "Installing and
Configuring the Microsoft IIS
Plug-In"

s Chapter 3, "Installing and
Configuring the Apache
HTTP Server Plug-In"

If you are using SSL between the
plug-in and WebLogic Server, set
the port number to the SSL listen
port (see Configuring SSL) and
set the SecureProxy parameter
to ON.

The plug-in does a simple
round-robin between all available
servers. The server list specified in
this property is a starting point for
the dynamic server list that the
server and plug-in maintain.
WebLogic Server and the plug-in
work together to update the
server list automatically with new,
failed, and recovered cluster
members.

You can disable the use of the
dynamic cluster list by setting the
DynamicServerList parameter
to OFF.

The plug-in directs HTTP requests
containing a cookie, URL-encoded
session, or a session stored in the
POST data to the server in the
cluster that originally created the
cookie.

Parameters for Web Server Plug-Ins 7-3

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

PathTrim null As per the RFC specification, ISAPI, Apache and
generic syntax for URL is: NSAPI plug-in,
HttpClusterServlet, and

[PROTOCOL] : // [HOSTNAME] : { PORT HttpProxyServIet

}/{PATH} /{FILENAME} ; { PATH_
PARAMS}/{QUERY_STRING}...

PathTrim specifies the string
trimmed by the plug-in from the
{PATH} / {FILENAME} portion of
the original URL, before the
request is forwarded to WebLogic
Server. For example, if the URL

http://myWeb.server.com/weblo
gic/foo

is passed to the plug-in for
parsing and if PathTrimhas been
set to strip off /weblogic before
handing the URL to WebLogic
Server, the URL forwarded to
WebLogic Server is:

http:/ /myWeb.server.com:7001/f
00

Note that if you are newly
converting an existing third-party
server to proxy requests to
WebLogic Server using the
plug-in, you will need to change
application paths to /foo to
include weblogic/foo. You can
use PathTrimand PathPrepend
in combination to change this
path.

PathPrepend null As per the RFC specification, ISAPI, Apache and
generic syntax for URL is: NSAPI plug-in,
HttpClusterServlet, and

[PROTOCOL] : // [HOSTNAME] : { PORT HttpProxyServlet

}/{PATH}/{FILENAME} ; { PATH_
PARAMS}/ {QUERY_STRING} ...

PathPrepend specifies the path
that the plug-in prepends to the
{PATH} portion of the original
URL, after PathTrim is trimmed
and before the request is
forwarded to WebLogic Server.

Note that if you need to append
File Name, use
DefaultFileName plug-in
parameter instead of
PathPrepend.

7-4 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default

Description Applicable to

ConnectTimeoutSecs

10

Maximum time in seconds that NSAPI, ISAPI, and
the plug-in should attempt to Apache plug-in, and
connect to the WebLogic Server HttpClusterServlet
host. Make the value greater than
ConnectRetrySecs. If

ConnectTimeoutSecs expires

without a successful connection,

even after the appropriate retries

(see ConnectRetrySecs), an

HTTP 503/Service

Unavailable response is sent to

the client.

You can customize the error
response by using the ErrorPage
parameter.

ConnectRetrySecs

Interval in seconds that the NSAPI, ISAPI, and
plug-in should sleep between Apache plug-in, and
attempts to connect to the HttpClusterServlet
WebLogic Server host (or all of the

servers in a cluster). Make this

number less than the

ConnectTimeoutSecs. The

number of times the plug-in tries

to connect before returning an

HTTP 503/Service

Unavailable response to the

client is calculated by dividing
ConnectTimeoutSecs by

ConnectRetrySecs.

To specify no retries, set
ConnectRetrySecs equal to
ConnectTimeoutSecs.
However, the plug-in attempts to
connect at least twice.

You can customize the error
response by using the ErrorPage
parameter.

Parameters for Web Server Plug-Ins 7-5

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default

Description

Applicable to

Debug

OFF

Sets the type of logging performed
for debugging operations. The
debugging information is written
to the /tmp/wlproxy.log file
on UNIX systems and
c:\TEMP\wlproxy.log on
Windows NT /2000 systems.

Override this location and
filename by setting the WLLogFile
parameter to a different directory
and file. (See the WLTempDir
parameter for an additional way
to change this location.)

Ensure that the tmp or TEMP
directory has write permission
assigned to the user who is logged
in to the server. Set any of the
following logging options
(HFC,HTW,HFW, and HTC
options may be set in combination
by entering them separated by
commas, for example
“HFC,HTW”):

ON - The plug-in logs
informational and error messages.

OFF - No debugging information
is logged.

HFC - The plug-in logs headers
from the client, informational, and
error messages.

HTW - The plug-in logs headers
sent to WebLogic Server, and
informational and error messages.

HFW - The plug-in logs headers
sent from WebLogic Server, and
informational and error messages.

HTC - The plug-in logs headers
sent to the client, informational
messages, and error messages.

ERR - Prints only the Error
messages in the plug-in.

ALL - The plug-in logs headers
sent to and from the client,
headers sent to and from
WebLogic Server, information
messages, and error messages.

NSAPI, ISAPI, and
Apache plug-in,
HttpClusterServlet, and
HttpProxyServlet.

For HttpClusterServlet
and HttpProxyServlet,
the only possible values
are ON and OFF.

WLLogFile

See the Debug
parameter

Specifies path and file name for
the log file that is generated when
the Debug parameter is set to ON.
You must create this directory
before setting this parameter.

NSAPI, ISAPI, and
Apache plug-in,
HttpClusterServlet, and
HttpProxyServlet

7-6 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
WLDNSRefreshInterv 0 (Lookup once, Only applies to NSAPI and NSAPI and Apache
al during startup) Apache. plug-in

If defined in the proxy

configuration, specifies number of
seconds interval at which
WebLogic Server refreshes DNS
name to IP mapping for a server.
This can be used in the event that
a WebLogic Server instance is
migrated to a different IP address,
but the DNS name for that server's
IP remains the same. In this case,
at the specified refresh interval the
DNS<->IP mapping will be

updated.
WLTempDir See the Debug Specifies the directory where a NSAPI, ISAPI, and
parameter wlproxy.log will be created. If ~ Apache plug-in

the location fails, the Plug-In
resorts to creating the log file
under C: / temp in Windows and
/tmp in all Unix platforms.

Also specifies the location of the _
wl_proxy directory for POST
data files.

When both WLTempDir and
WLLogFile are set, WLLogFile
will override as to the location of
wlproxy.log. WLTempDir will
still determine the location of _

wl_proxy directory.
DebugConfigInfo OFF Enables the special query NSAP]I, ISAPL, and
parameter “__ Apache plug-in,

WebLogicBridgeConfig”. Use it to HttpClusterServlet, and
get details about configuration HttpProxyServlet
parameters from the plug-in.

For example, if you enable “__
WebLogicBridgeConfig” by
setting DebugConfigInfo and then
send a request that includes the
query string ?__
WebLogicBridgeConfig, then the
plug-in gathers the configuration
information and run-time
statistics and returns the
information to the browser. The
plug-in does not connect to
WebLogic Server in this case.

This parameter is strictly for
debugging and the format of the
output message can change with
releases. For security purposes,
keep this parameter turned OFF in
production systems.

Parameters for Web Server Plug-Ins 7-7

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default

Description

Applicable to

StatPath false

(Not available for the
Microsoft Internet
Information Server
Plug-In)

If set to true, the plug-in checks
the existence and permissions of
the translated path
(“Proxy-Path-Translated”) of the
request before forwarding the
request to WebLogic Server.

If the file does not exist, an HTTP
404 File Not Found response is
returned to the client. If the file
exists but is not world-readable,
an HTTP 403 /Forbidden response
is returned to the client. In either
case, the default mechanism for
the Web server to handle these
responses fulfills the body of the
response. This option is useful if
both the WebLogic Server Web
Application and the Web Server
have the same document root.

You can customize the error
response by using the ErrorPage
parameter.

NSAPI and Apache
plug-in

ErrorPage none

You can create your own error
page that is displayed when your
Web server is unable to forward
requests to WebLogic Server.

ISAPI, Apache, and
NSAPI plug-in

WLSocketTimeoutSecs 2 (must be
greater than 0)

Set the timeout for the socket
while connecting, in seconds.

WLIOTimeoutSecs (new 300
name for
HungServerRecoverSecs)

Defines the amount of time the
plug-in waits for a response to a
request from WebLogic Server.
The plug-in waits for
WLIOTimeoutSecs for the server
to respond and then declares that
server dead, and fails over to the
next server. The value should be
set to a very large value. If the
value is less than the time the
servlets take to process, then you
may see unexpected results.

Minimum value: 10

Maximum value: Unlimited

NSAPI, ISAPI, and
Apache plug-in

Idempotent ON

When set to ON and if the servers
do not respond within
WLIOTimeoutSecs (new name for
HungServerRecoverSecs), the
plug-ins fail over.

The plug-ins also fail over if
Idempotent is set to ON and the
servers respond with an error
such as READ_ERROR_FROM__
SERVER.

If set to “OFF” the plug-ins do not
fail over. If you are using the
Apache HTTP Server you can set
this parameter differently for
different URLs or MIME types.

ISAPI, Apache and
NSAPI plug-in, and
HttpClusterServlet

7-8 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description

Applicable to

WLCookieName

CookieName parameter
is deprecated

JSESSIONID

If you change the name of the
WebLogic Server session cookie in
the WebLogic Server Web
application, you need to change
the WLCookieName parameter in
the plug-in to the same value. The
name of the WebLogic session
cookie is set in the
WebLogic-specific deployment
descriptor, in the
<session-descriptor>
element.

NSAPI, ISAPI, and
Apache plug-in,
HttpClusterServlet, and
HttpProxyServlet

DefaultFileName

none

If the URI is “/” then the plug-in
performs the following steps:

Trims the path specified with the
PathTrim parameter.

Appends the value of
DefaultFileName.

Prepends the value specified with
PathPrepend.

This procedure prevents redirects
from WebLogic Server.

Set the DefaultFileName to the
default welcome page of the Web
Application in WebLogic Server to
which requests are being proxied.
For example, If the
DefaultFileName is set to
welcome.html, an HTTP request
like “http:/ /somehost/weblogic”
becomes

“http:/ /somehost/weblogic/welc

ome.html”. For this parameter to
function, the same file must be
specified as a welcome file in all
the Web Applications to which
requests are directed. For more
information, see Configuring
Welcome Pages.

Note for Apache users: If you are
using Stronghold or Raven
versions, define this parameter
inside of a Location block, and
not in an IfModule block.

NSAPI, ISAPI, and
Apache plug-in,
HttpClusterServlet, and
HttpProxyServlet

MaxPostSize

Maximum allowable size of POST
data, in bytes. If the
content-length exceeds
MaxPostSize, the plug-in
returns an error message. If set to
-1, the size of POST data is not
checked. This is useful for
preventing denial-of-service
attacks that attempt to overload
the server with POST data.

ISAPI, Apache and
NSAPI plug-in,
HttpClusterServlet, and
HttpProxyServlet

Parameters for Web Server Plug-Ins 7-9

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
MatchExpression none When proxying by MIME type, set Apache plug-in
(Apache HTTP Server the filename pattern inside of an

only) IfModule block using the

MatchExpression parameter.

Example when proxying by MIME

type:

<IfModule weblogic_module>
MatchExpression *.jsp

WebLogicHost=myHost | paramName

=value

</IfModule>

Example when proxying by path:

<IfModule weblogic_module>
MatchExpression /weblogic

WebLogicHost=myHost \ paramName

=value

</IfModule>

It is possible to define a new
parameter for MatchExpression
using the following syntax:

MatchExpression *.jsp
PathPrepend=/test
PathTrim=/foo

7-10 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default

Description

Applicable to

FileCaching

ON

When set to ON, and the size of the
POST data in a request is greater
than 2048 bytes, the POST data is
first read into a temporary file on
disk and then forwarded to the
WebLogic Server in chunks of
8192 bytes. This preserves the
POST data during failover,
allowing all necessary data to be
repeated to the secondary if the
primary goes down.

Note that when FileCachingis
ON, any client that tracks the
progress of the POST will see that
the transfer has completed even
though the data is still being
transferred between the
WebServer and WebLogic. So, if
you want the progress bar
displayed by a browser during the
upload to reflect when the data is
actually available on the
WebLogic Server, you might not
want to have FileCaching ON.

When set to OFF and the size of
the POST data in a request is
greater than 2048 bytes, the
reading of the POST data is
postponed until a WebLogic
Server cluster member is
identified to serve the request.
Then the plug-in reads and
immediately sends the POST data
to the WebLogic Server in chunks
of 8192 bytes.

Note that turning FileCaching
OFF limits failover. If the
WebLogic Server primary server
goes down while processing the
request, the POST data already
sent to the primary cannot be
repeated to the secondary.

Finally, regardless of how
FileCaching is set, if the size of
the POST data is 2048 bytes or less
the plug-in will read the data into
memory and use it if needed
during failover to repeat to the
secondary.

ISAPI, Apache and
NSAPI plug-in, and
HttpClusterServlet

FilterPriorityLevel

The values for this parameter are 0
(low), 1 (medium), and 2 (high).
The default value is 2. This
priority should be put in
iisforward.ini file. This property is
used to set the priority level for
the iisforward.dll filter in IIS.
Priority level is used by IIS to
decide which filter will be
invoked first, in case multiple

filters match the incoming request.

ISAPI plug-in

Parameters for Web Server Plug-Ins 7-11

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

WLExcludePathOrMime none This parameter allows you make =~ NSAPI, ISAP], and

Type exclude certain requests from Apache plug-in
proxying.

This parameter can be defined
locally at the Location tag level as
well as globally. When the
property is defined locally, it does
not override the global property
but defines a union of the two
parameters.

WIlForwardPath null If WIForwardPath is set to "/" all ~ ISAPI plug-in
requests are proxied. To forward
any requests starting with a
particular string, set
WIlForwardPath to the string. For
example, setting WlForwardPath
to /weblogic forwards all requests
starting with /weblogic to
Weblogic Server.

This parameter is required if you
are proxying by path. You can set
multiple strings by separating the
strings with commas. For
example:
WIForwardPath=/weblogic, /bea.

KeepAliveSecs 20 The length of time after which an ISAPI, Apache and
inactive connection between the NSAPI plug-in,
plug-in and WebLogic Server is HttpClusterServlet, and
closed. You must set HttpProxyServlet
KeepAliveEnabled to true (ON
when using the Apache plug-in)
for this parameter to be effective.

The value of this parameter must
be less than or equal to the value
of the Duration field set in the
Administration Console on the
Server/HTTP tab, or the value set
on the server Mbean with the
KeepAliveSecs attribute.

KeepAliveEnabled true (Microsoft ~ Enables pooling of connections ISAPI, Apache and
1IS plug-in) between the plug-in and NSAPI plug-in,
ON (Apache WebLogic Server. ggpgg}s(tesrs:;ﬁelft, and
plug-in) Valid values for the Microsoft IIS P ¥

plug-ins are true and false.

Valid values for the Apache
plug-in are ON and OFF.

7-12 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

QueryFromRequest OFF When set to ON, specifies that the ~ Apache plug-in

(Apache HTTP Server Apache plug-in use
only) (request_rec *)r->the request

to pass the query string to
WebLogic Server. (For more
information, see your Apache
documentation.) This behavior is
desirable in the following
situations:

= When a Netscape version 4.x
browser makes requests that
contain spaces in the query
string

= If you are using Raven
Apache 1.5.2 on HP

When set to OFF, the Apache
plug-in uses (request_rec
*) r->args to pass the query
string to WebLogic Server.

MaxSkipTime 10 If a WebLogic Server listed in ISAPI, Apache and
either the WebLogicCluster NSAPI plug-in, and
parameter or a dynamic cluster HttpClusterServlet
list returned from WebLogic
Server fails, the failed server is
marked as “bad” and the plug-in
attempts to connect to the next
server in the list.

MaxSkips sets the amount of
time after which the plug-in will
retry the server marked as “bad.”
The plug-in attempts to connect to
anew server in the list each time a
unique request is received (that is,
a request without a cookie).

Parameters for Web Server Plug-Ins 7-13

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
DynamicServerList ON When set to OFF, the plug-in NSAPI, ISAPL, and
ignores the dynamic cluster list Apache plug-in, and

used for load balancing requests HttpClusterServlet
proxied from the plug-in and only

uses the static list specified with

the WebLogicCluster parameter.

Normally this parameter should

remain set to ON.

There are some implications for
setting this parameter to OFF:

= If one or more servers in the
static list fails, the plug-in
could waste time trying to
connect to a dead server,
resulting in decreased
performance.

= Ifyouadd anew server to the
cluster, the plug-in cannot
proxy requests to the new
server unless you redefine
this parameter. WebLogic
Server automatically adds
new servers to the dynamic
server list when they become
part of the cluster.

WLProxySSL OFF Set this parameter to ON to NSAPI, ISAPI, and
maintain SSL communication Apache plug-in,
between the plug-in and HttpClusterServlet, and
WebLogic Server when the HttpProxyServlet

following conditions exist:

= An HTTP client request
specifies the HTTPS protocol

= Therequestis passed through
one or Mmore proxy servers
(including the WebLogic
Server proxy plug-ins)

s The connection between the
plug-in and WebLogic Server
uses the HTTP protocol

When WLProxySSL is set to ON,
the location header returned to the
client from WebLogic Server
specifies the HTTPS protocol.

7-14 Using Web Server Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
WLProxyPassThrough ~ OFF If you have a chained proxy NSAPI, ISAPL, and
setup, where a proxy plug-in ~ Apache plug-in,
or HttpClusterServlet is HttpClusterServlet, and
HttpProxyServlet

running behind some other
proxy or load balancer, you
must explicitly enable the
WLProxyPassThrough
parameter. Enabling this
parameter allows the plug-in
to trust the proxy fronting it,
under the assumption that the
network between them is
trusted so user certs and so
forth can be passed along.

WLLocallP none Defines the IP address (on the NSAPI, ISAPI, and
plug-in’s system) to bind to when Apache plug-in
the plug-in connects to a
WebLogic Server instance running
on a multihomed machine.

If WLLocalIP isnot set, a random
IP address on the multi-homed
machine is used.

WLSendHdrSeparately ~ ON When this parameter is set to ON, ISAPI plug-in
header and body of the response
are sent in separate packets.

Note: If you need to send the
header and body of the response
in two calls, for example, in cases
where you have other ISAPI filters
or programmatic clients that
expect headers before the body, set
this parameter to ON.

7.2.1 Location of POST Data Files

When the FileCaching parameter is set to ON, and the size of the POST data in a
request is greater than 2048 bytes, the POST data is first read into a temporary file on
disk and then forwarded to the WebLogic Server in chunks of 8192 bytes. This
preserves the POST data during failover.

The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows
it is located as follows (if WLTempDir is not specified):

1. Environment variable TMP
2. Environment variable TEMP
3. C:\Temp

/tmp/_wl_proxy is a fixed directory and is owned by the HTTP Server user. When
there are multiple HTTP Servers installed by different users, some HTTP Servers
might not be able to write to this directory. This condition results in an error similar to
the following:

Parameters for Web Server Plug-Ins 7-15

SSL Parameters for Web Server Plug-Ins

<TITLE>Weblogic Bridge Message

</TITLE>

</HEAD>

<BODY>

<H2>Failure of server APACHE bridge:</H2><P>

<hr>Cannot open TEMP post file '/tmp/_wl_proxy/_post_25444_36' for POST of
4564 bytes

® ® ® ® ® ® ®

To correct this condition, use the WLTempDir parameter to specify a different location
for the _wl_proxy directory for POST data files.

7.3 SSL Parameters for Web Server Plug-Ins

Note: SCG Certificates are not supported for use with WebLogic
Server Proxy Plug-Ins. Non-SCG certificates work appropriately and
allow SSL communication between WebLogic Server and the plug-in.

KeyStore-related initialization parameters are not supported for use
with WebLogic Server Proxy Plug-Ins

The SSL parameters for Web Server plug-ins are shown in Table 7-2. Parameters are
case sensitive.

7-16 Using Web Server Plug-Ins with Oracle WebLogic Server

SSL Parameters for Web Server Plug-Ins

Table 7-2 SSL Parameters for Web Server Plug-Ins

Parameter Default Description Applicable to

EnforceBasicConstraint ~ Strong This parameter closes a security hole which NSAPI, ISAPI,
existed with SSL certificate validation and Apache
where certificate chains with invalid V3 CA plug-in

certificates would not be properly rejected.
This allowed certificate chains with invalid
intermediate CA certificates, rooted with a
valid CA certificate to be trusted. X509 V3
CA certificates are required to contain the
BasicConstraints extension, marked as
being a CA, and marked as a critical
extension. This checking protects against
non-CA certificates masquerading as
intermediate CA certificates.

The levels of enforcement are as follows:
. OFF

This level entirely disables
enforcement and is not recommended.
Most current commercial CA
certificates should work under the
default STRONG setting.

EnforceBasicConstraints=off
EnforceBasicConstraints=false
= STRONG

Default. The BasicConstraints for V3
CA certificates are checked and the
certificates are verified to be CA
certificates.

EnforceBasicConstraints=strong
EnforceBasicConstraints=true
= STRICT

This level does the same checking as
the STRONG level, but in addition it
also strictly enforces IETF RFC 2459
which specifies the BasicConstraints
for CA certificates also must be
marked as "critical". This is not the
default setting because a number of
current commercially available CA
certificates don't conform to RFC 2459
and don't mark the BasicConstraints as
critical. Set this if you want to strict
conformance to RFC 2459.

EnforceBasicConstraints=strict

Parameters for Web Server Plug-Ins 7-17

SSL Parameters for Web Server Plug-Ins

Table 7-2 (Cont.) SSL Parameters for Web Server Plug-Ins

Parameter

Default

Description Applicable to

SecureProxy

OFF

Set this parameter to ON to enable the use =~ ISAPI, NSAPI,
of the SSL protocol for all communication and Apache
between the plug-in and WebLogic Server. plug-ins,
Remember to configure a port on the HttpClusterServ
corresponding WebLogic Server for the SSL let, and
protocol before defining this parameter. HttpProxyServl

This parameter may be set at two levels: in et

the configuration for the main server
and—if you have defined any virtual
hosts—in the configuration for the virtual
host. The configuration for the virtual host
inherits the SSL configuration from the
configuration of the main server if the
setting is not overridden in the
configuration for the virtual host.

TrustedCAFile

none

Name of the file that contains the digital ISAPI, NSAP]I,
certificates for the trusted certificate and Apache
authorities for the plug-in. This parameter plug-ins

is required if the SecureProxy parameter is

set to ON.

RequireSSLHostMatch

true

Determines whether the host name to ISAPI, NSAPI,
which the plug-in is connecting must and Apache
match the Subject Distinguished Name plug-ins

field in the digital certificate of the

WebLogic Server to which the proxy

plug-in is connecting.

When specifying SecureProxy=0N and
RequireSSLHostMatch=true in the
plug-in, then the value specified in the
ListenAddress property should exactly
match the hostname value specified in the
certificate.

When using the ExternalDNSName
property for WebLogic Server and setting
SecureProxy=0N and
RequireSSLHostMatch=true in the
plug-in, then the value specified in the
ExternalDNSName property should
exactly match the hostname value specified
in the certificate.

SSLHostMatchOID

22

The ASN.1 Object ID (OID) that identifies ~ ISAPI, NSAPI,
which field in the Subject Distinguished and Apache
Name of the peer digital certificate is to be plug-ins

used to perform the host match

comparison. The default for this parameter

corresponds to the CommonName field of

the Subject Distinguished Name. Common

OID values are:

s Sur Name—23

= Common Name—22

= Email—13

s Organizational Unit—30
s Organization—29

s Locality—26

7-18 Using Web Server Plug-Ins with Oracle WebLogic Server

SSL Parameters for Web Server Plug-Ins

Table 7-2 (Cont.) SSL Parameters for Web Server Plug-Ins

Parameter Default Description Applicable to
KeyStore none For generic proxy servlets, the key store Applies only to
location in a Web application when using the
two-way SSL to create a user-defined HttpClusterServ
identity certificate and key. let and to the
HttpProxyServl
et.
KeyStoreType none The key store type when using two-way Applies only to
SSL with a generic proxy servlet. If it is not the
defined, the default type will be used HttpClusterServ
instead. let and to the
HttpProxyServl
et.
PrivateKeyAlias none The private key alias when using two-way Applies only to
SSL with a generic proxy servlet. the
HttpClusterServ
let and to the
HttpProxyServl
et.
KeyStorePasswordProper none A property file in a Web application that Applies only to
ties defines encrypted passwords to access the the
key store and private key alias when using HttpClusterServ
two-way SSL with a generic proxy servlet. let and to the
The file contents looks like this: HttpProxyServl
et.

KeyStorePassword={3DES}i4+50LCKenQ08B
Bv1lsXTrg\=\=
PrivateKeyPassword={3DES}a4TcG4mtVVBR
KtZwH3p7yA\=\=

You must use the
weblogic.security.Encrypt
command-line utility to encrypt the
password. For more information on the
Encrypt utility, as well as the CertGen, and
der2pem utilities, see "Using the Oracle
WebLogic Server Java Ultilities" in the
Command Reference for Oracle WebLogic
Server.

Parameters for Web Server Plug-Ins 7-19

SSL Parameters for Web Server Plug-Ins

7-20 Using Web Server Plug-Ins with Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using Web Server Plug-Ins with Oracle WebLogic Server
	2.1 What Are Plug-Ins?
	2.2 Plug-Ins Included with Oracle WebLogic Server
	2.3 Plug-In Versions
	2.4 Oracle HTTP Server Plug-In Support
	2.5 Plug-In Two-Way SSL Support
	2.6 Set the WebLogic Plug-in Enabled Control in WebLogic Server

	3 Installing and Configuring the Apache HTTP Server Plug-In
	3.1 Overview of the Apache HTTP Server Plug-In
	3.1.1 Keep-Alive Connections in Apache Version 2.0
	3.1.2 Proxying Requests
	3.1.3 Apache 2.2
	3.1.4 Certifications

	3.2 Installing the Apache HTTP Server Plug-In
	3.2.1 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object
	3.2.2 Support for Large Files in Apache 2.0

	3.3 Configuring the Apache HTTP Server Plug-In
	3.3.1 Editing the httpd.conf File
	3.3.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks

	3.3.2 Including a weblogic.conf File in the httpd.conf File
	3.3.2.1 Creating weblogic.conf Files
	3.3.2.2 Sample weblogic.conf Configuration Files
	3.3.2.3 Template for the Apache HTTP Server httpd.conf File

	3.4 Setting Up Perimeter Authentication
	3.5 Using SSL with the Apache Plug-In
	3.5.1 Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server
	3.5.2 Issues with SSL-Apache Configuration

	3.6 Connection Errors and Clustering Failover
	3.6.1 Possible Causes of Connection Failures
	3.6.2 Tuning to Reduce Connection_Refused Errors
	3.6.3 Failover with a Single, Non-Clustered WebLogic Server
	3.6.4 The Dynamic Server List
	3.6.5 Failover, Cookies, and HTTP Sessions

	4 Installing and Configuring the Microsoft IIS Plug-In
	4.1 Overview of the Microsoft Internet Information Server Plug-In
	4.1.1 Connection Pooling and Keep-Alive
	4.1.2 Proxying Requests

	4.2 Certifications
	4.3 Using Wildcard Application Mappings to Proxy by Path
	4.3.1 Installing Wildcard Application Mappings (IIS 6.0)
	4.3.2 Adding a Wildcard Script Map for IIS 7.0

	4.4 Installing and Configuring the Microsoft Internet Information Server Plug-In
	4.5 Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0
	4.6 Proxying Requests from Multiple Virtual Web Sites to WebLogic Server
	4.6.1 Sample iisproxy.ini File

	4.7 Creating ACLs Through IIS
	4.8 Setting Up Perimeter Authentication
	4.9 Using SSL with the Microsoft Internet Information Server Plug-In
	4.10 Proxying Servlets from IIS to WebLogic Server
	4.11 Testing the Installation
	4.12 Connection Errors and Clustering Failover
	4.12.1 Possible Causes of Connection Failures
	4.12.2 Failover with a Single, Non-Clustered WebLogic Server
	4.12.3 The Dynamic Server List
	4.12.4 Failover, Cookies, and HTTP Sessions

	5 Installing and Configuring the Sun Java System Web Server Plug-In
	5.1 Overview of the Sun Java System Web Server Plug-In
	5.1.1 Connection Pooling and Keep-Alive
	5.1.2 Proxying Requests

	5.2 Installing and Configuring the Sun Java System Web Server Plug-In
	5.2.1 Guidelines for Modifying the obj.conf File
	5.2.2 Sample obj.conf File (Not Using a WebLogic Cluster)
	5.2.3 Sample obj.conf File (Using a WebLogic Cluster)

	5.3 Setting Up Perimeter Authentication
	5.4 Using SSL with the Sun Java System Web Server Plug-In
	5.5 Connection Errors and Clustering Failover
	5.5.1 Possible Causes of Connection Failures
	5.5.2 Failover with a Single, Non-Clustered WebLogic Server
	5.5.3 The Dynamic Server List
	5.5.4 Failover, Cookies, and HTTP Sessions
	5.5.5 Failover Behavior When Using Firewalls and Load Directors

	6 Proxying Requests to Another Web Server
	6.1 Overview of Proxying Requests to Another Web Server
	6.2 Setting Up a Proxy to a Secondary Web Server
	6.3 Sample Deployment Descriptor for the Proxy Servlet

	7 Parameters for Web Server Plug-Ins
	7.1 Entering Parameters in Web Server Plug-In Configuration Files
	7.2 General Parameters for Web Server Plug-Ins
	7.2.1 Location of POST Data Files

	7.3 SSL Parameters for Web Server Plug-Ins

