Oracle® Fusion Middleware

Java EE Developer's Guide for Oracle Application Development
Framework

11gRelease 1 (11.1.1.7.0)

E16272-05

March 2013

Documentation for Oracle Application Development
Framework (Oracle ADF) developers that describes how to
develop and deploy web-based applications using Java EE,
ADF Model, ADF Controller, and ADF Faces Rich Client
components.

ORACLE

Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework 11¢
Release 1 (11.1.1.7.0)

E16272-05
Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author: Robin Whitmore, Peter Jew, Patrick Keegan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen Xi
AN Lo 1= V< T SURSRRTT Xi
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e Xi
ReElated DOCUITIEIESeoveieeiieceeeeeeeeeee ettt eee et e et eae et e e ae e st e eteseseeenbeesseesnseesessnseensessnseenteesneesnees Xi
(@03 4 NT£=3 115 (o) 0 - I NPT U TSRS Xii

What's New in This Guide for Release 11.1.1.7.0 ..o, xiii

1 Introduction to Building Java EE Web Applications with Oracle ADF

1.1 Introduction to Oracle ADF.........cccccccoiiiiiiiiiniiii s 1-1
1.2 Developing with Oracle ADFcccccoiiiiiiiiiii s 1-2
1.3 Introduction to the ADF Sample Application.........ccccccciiiiiiiiicciicceeeeeeeeeenenenes 1-4
1.3.1 Running the Suppliers Module of the Fusion Order Demo Application.................... 1-5
1.3.2 Taking a Look at the Supplier Module Code.........ccccoovrmiiiiiiiiiicc, 1-6
1.3.3 Touring the Supplier Moduleccccciiiiiiiiiiiieceeeeeeeeee e 1-8

2 Using ADF Model Data Binding in a Java EE Web Application

2.1 Introduction to ADF Model Data BIindingccooeviiiiiiiiiie 2-1
2.2 Exposing Services with ADF Data COntrols ..o 2-3
2.21 How to Create ADF Data CONtrolscccoiiiiiiiiiiiiiiicciccececeeeeeeenenas 2-3
222 What Happens in Your Project When You Create a Data Control............ccccevueunenne 2-4
2.3 Paginated Fetching of Data in EJB Data Controls..........cccoooimiiiiiiiiiiiiiiccc 2-10
2.3.1 How to Change Paging Mode for a Data Control...........ccccoevvviiininiienicicccne 2-11
2.3.2 How to Set Range Size for a Data Control that Uses Range Pagingc.c............ 2-12
2.3.3 What You May Need to Know About the Scrollable and Range Paging Modes 2-12
2.3.4 How to Specify Access Mode for Individual Objects in the Data Control............... 2-13
2.3.5 What You May Need to Know About Sorting Tables Based on Range Paginated
Collections 2-13
2.3.6 How To Manually Implement Pagination Support in a Bean Data Control............ 2-14
2.3.7 How to Implement a Custom Handler for Querying and Pagination...................... 2-14
2.4 Using the Data Controls Panel............coooiiiiiii 2-14
2.41 How to Use the Data Controls Panelcccoooiii 2-16
2.4.2 What Happens When You Use the Data Controls Panel to Create Ul Components.........
2-17
2.4.3 What Happens at RUNtIME ... 2-22

vi

244
2.4.5

What You May Need to Know About Iterator Result Cachingcccccoooeeieinnene. 2-23
What You May Need to Know About Configuring Validation..........c.c.cccoeeienne. 2-25

Creating a Basic Databound Page

3.1

3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.2.1
3.4.22
3.4.2.3
3.5
3.5.1
3.5.2

3.5.3
3.5.4
3.5.5

3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.3

3.6.4
3.7

3.7.1
3.7.2
3.7.3

3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.9

Introduction to Creating a Basic Databound Page............cccccooeiiiiiiiiiiiiiiiiiiiins 3-1
Using Attributes to Create Text Fields.......cocooiiiiiiicicccccccccceceenes 3-2
How to Create a Text Field ... 3-2
What Happens When You Create a Text Field ..., 3-3
Creating and Using Iterator Bindingscccccocoeeciiiiiiiiiiiccceccceeenee 3-3
Creating and Using Value BINdingscccccoviiiiiiiniiiiiiicccces 3-4
Using EL Expressions to Bind UI Componentscccccovvvninnnninnnninenen. 3-5
Creating a Basic FOIMN........ccccooviiiiinii s 3-6
How to Create a FOIM ... 3-6
What Happens When You Create a FOrmccoooiiiiiiic 3-7
Incorporating Range Navigation into FOrms.........cccccoviiniiii, 3-8
How to Insert Navigation Controls into a Form...........ccccooevviiiiiiiiniiiii, 3-9
What Happens When You Create Command Buttons...........ccccceeviiiiiiiiinnnn 3-10
Action Bindings for Built-in Navigation Operationscccceceeuvuervrererrenenee 3-10
Iterator RangeSize Attribute ..o 3-10
EL Expressions Used to Bind to Navigation Operations...........ccccccevviiiiininennns 3-11
Creating a Form Using a Method That Takes Parameters..........cccccccccvuvvinnnnnnnncncnes 3-13
How to Create a Form or Table Using a Method That Takes Parameters................ 3-13
What Happens When You Create a Form Using a Method That Takes Parameters
3-14
What Happens at Runtime: Setting Parameters for a Method..........c.cccccccceeeennnne 3-15
What You May Need to Know About Setting Parameters with Methods................ 3-15

What You May Need to Know About Using Contextual Events Instead of Parameters..
3-15

Creating a Form to Edit an Existing Record ... 3-16
How to Create Edit FOrmS ... 3-16
What Happens When You Use Methods to Change Data...........ccccccccceuiiiiiiiicnnnne 3-17

Method Bindingsccccceueuiieiriiiiiiiiccceececeee s 3-18
Using EL Expressions to Bind to Methods ..o, 3-18

What You May Need to Know About the Difference Between the Merge and Persist
Methods 3-19

What You May Need to Know About Overriding Declarative methods................. 3-19
Creating an Input FOIMcooiiiii s 3-19
How to Create an Input Form Using a Task FIOWcccooeviiiiiiiniiicce 3-20
What Happens When You Create an Input Form Using a Task Flow....................... 3-21

What Happens at Runtime: Invoking the Create Action Binding from the Method
Activity 3-22

Using a Dynamic Form to Determine Data to Display at Runtime...........ccccocooverennnnes 3-22
How to Use Dynamic FOrmS..........ccovviiiiniiiiiiiiiiiiccs 3-23
What Happens When You Use Dynamic Components..........c.ccoceeveveeeiecinneienenenen 3-24
What Happens at Runtime: How Attribute Values Are Dynamically Determined 3-25
What You May Need to Know About Converters for Dynamic Forms.................... 3-25

Modifying the Ul Components and Bindings on a Form ... 3-26

Creating ADF Databound Tables

4.1 Introduction to Adding Tables ..o 4-1
4.2 Creating a Basic Tableccccciiiiiiiiiccccc e 4-1
4.21 How to Create a Basic Table..........cccooviiiiiiiiiiiiiiiicc, 4-2
422 What Happens When You Create a Tableccooooiiiiiiii 4-4
4221 Iterator and Value Bindings for Tables ... 4-4
4222 Code on the JSF Page for an ADF Faces Table ..o 4-5
423 What You May Need to Know About Setting the Current Row in a Table................ 4-8
4.3 Creating an Editable Table ... 4-9
4.31 How to Create an Editable Table............ccccooviiiiiiiiiiiccc 4-10
4.3.2 What Happens When You Create an Editable Tablecccccccovvniiinininnnnn 4-12
4.4 Creating an INput Table ... 4-13
4.41 How to Create an Input Table...........cooiiiiiiie 4-13
4.4.2 What Happens When You Create an Input Tableccooooi 4-14
4.4.3 What Happens at Runtime: How Create and Partial Page Refresh Work............... 4-16
4.4.4 What You May Need to Know About Creating a Row and Sorting Columns....... 4-16
4.5 Modifying the Attributes Displayed in the Tableccccooooiiii 4-17

Displaying Master-Detail Data

5.1 Introduction to Displaying Master-Detail Data...........cccccocooeiiiiiiiiiiiiiiiicis 5-1
5.2 Identifying Master-Detail Objects on the Data Controls Panel...........c.cccocoovrnnnnnncnce. 5-2
5.3 Using Tables and Forms to Display Master-Detail Objectscccccovieiiiiiiiiiiiiniieinnns 5-3
5.3.1 How to Display Master-Detail Objects in Tables and Forms.............cccccoovinininnnnee. 5-4
5.3.2 What Happens When You Create Master-Detail Tables and Formscccccccu.c... 5-5
5.83.2.1 Code Generated in the JSEPage.........cccocovvviiiinininiiiiiic, 5-5
5.3.2.2 Binding Objects Defined in the Page Definition File..........ccccccccovvnnnnnnnnnnne. 5-6
5.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms 5-7
5.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate
Pages 5-7

5.4 Using Trees to Display Master-Detail Objects...........cccccoeiiiiiiiiiiiiiiiiiiiiis 5-8
5.4.1 How to Display Master-Detail Objects in Trees.........cccccovrvvnninirnnncnnirecceenee 5-9
5.4.2 What Happens When You Create an ADF Databound Tree..........cccccocovvriiiiiiinnnnne. 5-11
54.21 Code Generated in the JSE Page.........ccccccevuviiiiiiininiiiniiiiiiiicncccceecces 5-11
5422 Binding Objects Defined in the Page Definition File............cccccoceeivnnvinnnene. 5-12
5.4.3 What Happens at Runtime: Displaying an ADF Databound Treeccccccco...... 5-13
5.5 Using Tree Tables to Display Master-Detail Objectscccccocvvvivinivinninnnniiinne, 5-13
5.5.1 How to Display Master-Detail Objects in Tree Tablescccccccevviriirnvrncnenenes 5-14
5.56.2 What Happens When You Create a Databound Tree Table............cccooovriniinnnnnnn. 5-14
5.5.2.1 Code Generated in the JSE Page.........ccccccovuviiiiiiniiiniiiiiniicccccceeecces 5-14
55.2.2 Binding Objects Defined in the Page Definition File..........cccccccocevivnnvnnnnne. 5-15
5.56.3 What Happens at Runtime: EVeNts.........ccoooviiiiiiiiiicccces 5-15
5.5.4 Using the Targetlterator PrOperty ... 5-16
5.6 Using Selection Events with Trees and Tablesccoooiiiiiiiiiccccccccnen 5-16
5.6.1 How to Use Selection Events with Trees and Tablesc.cccccceviiiiininnnnnn, 5-16
5.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events.......... 5-18

vii

viii

Creating Databound Selection Lists

6.1 Introduction to Selection LiStScccccciiiiiiiiiiiiiiiiiiccc s
6.2 Creating a Single Selection List.........c.ccccciiiiiiinnererr e
6.2.1 How to Create a Single Selection List Containing Fixed Valuescccccoeueenninei.
6.2.2 How to Create a Single Selection List Containing Dynamically Generated Values..
6.2.3 What Happens When You Create a Fixed Selection List.........c.cccccococeiiiceccicennnas
6.2.4 What Happens When You Create a Dynamic Selection List..........ccccoooiiiiiiinnnns
6.3 Creating a List with Navigation List BInding...........cccoooorioiii

Creating Databound Search Forms

7.1 Introduction to Creating Search FOrmsccooooiiiiiiiiii e
711 Query Search FOTMSc.ccouiiiiiiiiiiiiccccccece e
7.1.2 Quick Query Search FOImScccccoviiiiiiiiiiiiiiiiic
7.1.3 Filtered Table and Query-by-Example Searches............ccccoooiiiiiiiiiiiniiiceee,
7.2 Creating Query Search FOImMSccccciiiiiiiiiiiicccccceeece s
7.2.1 How to Create a Query Search Form with a Results Table or Tree Table................
722 How to Create a Query Search Form and Add a Results Component Later-...........
7.2.3 How to Persist Saved Searches into MDS ...,
7.2.4 What Happens When You Create a Query FOrmcccoovviiiiinniiniicicen,
7.2.5 What Happens at Runtime: Search FOrmscccoooiiiiiiii
7.3 Setting Up Search FOrm Propertiescccccocvcccuiciiinninicirrccrereeeereeee s
7.3.1 How to Set Search Form Properties on the Query Component.............ccccceuvvevenennne.
7.4 Creating Quick Query Search FOIMSccooouiiiiiiiiiiii
7.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table.....
7.4.2 How to Create a Quick Query Search Form and Add a Results Component Later
7.4.3 How to Set the Quick Query Layout Format..........cccoooioiiiiiiiic
7.4.4 What Happens When You Create a Quick Query Search Form..........ccccovieennee.
7.4.5 What Happens at Runtime: Quick QUEeTYcccooviiiiiiiiiiiiiccce
7.5 Creating Standalone Filtered Search Tables............ccccoooiiiiiiiiiiiii

Deploying an ADF Java EE Application

8.1 Introduction to Deploying ADF Java EE Web Applications............cccccceoeciiiiiiiiiicnnnns
8.1.1 Developing Applications with Integrated WebLogic Serverccccccovvvnrnenencnce.
8.1.2 Developing Applications to Standalone Application Servercccccevvvviiiininenne.
8.2 Running a Java EE Application in Integrated WebLogic Serverccccceeeiiiiinnnns
8.2.1 How to Run an Application in Integrated WebLogic Server...........cccccccoevciiccnennes
8.2.2 How to Run an Application with Metadata in Integrated WebLogic Server
8.3 Preparing the AppLCation ...
8.3.1 How to Create a Connection to the Target Application Servercccccoceccuereucnnes
8.3.2 How to Create Deployment Profiles...........cccoooiiiiiiiiiiiiic
8.3.2.1 Adding Customization Classes into a JARcccccceevvinniiinnniiinic
8.3.2.2 Creating a WAR Deployment Profile..........c.ccccocovviiinnniiinnciicrccceeene
8.3.2.3 Creating a MAR Deployment Profile ...,
8.3.24 Creating an EJB JAR Deployment Profileccccoovvninnnninnnnninnn,
8.3.2.5 Creating an Application-Level EAR Deployment Profilecccccccceeccennne
8.3.2.6 Delivering Customization Classes as a Shared Libraryc.cccccooiiiinnnnnan.

8.3.2.7 Viewing and Changing Deployment Profile Properties..........cccccccooiriireinnnen. 8-17

8.3.3 How to Create and Edit Deployment Descriptors..........ccoceueiiieieiniicieicicccee 8-17
8.3.3.1 Creating Deployment DeSCriptorsccccoeueururireririrerrnrirrcrreeeseeeeeeeeeeeas 8-18
8.3.3.2 Viewing or Modifying Deployment Descriptor Propertiesccccccoueunenen. 8-19
8.3.3.3 Configuring the application.xml File for Application Server Compatibility.... 8-19
8.3.3.4 Configuring the web.xml File for Application Server Compatibility 8-20
8.3.3.5 Enabling the Application for Real User Experience Insight..........c.cccccoceurvnnnnenn. 8-20
8.3.4 How to Deploy Applications with ADF Security Enabled............ccccccovninnnnnn 8-21
8.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)............c.......... 8-21
8.3.4.2 Configuring Security for WebLogic Server ..o, 8-22
8.3.4.2.1 Applications with JDBC Data Source for WebLogic.........cccccevvviviiiinininnnne. 8-23
8.3.4.3 Configuring Security for WebSphere Server ... 8-23
8.3.4.3.1 Applications with JDBC Data Source for WebSphereccccceevvnvinnnnnn. 8-23
8.3.4.3.2 Editing the web.xml File to Protect the Application Root for WebSphere 8-24
8.3.5 How to Replicate Memory Scopes in a Clustered Environmentc.cccccceeucuneene 8-24
8.3.6 How to Enable the Application for ADF MBeans...........ccccoceviiiiniinnniiiiiinennns 8-24
8.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server ...
8-25
8.4 Deploying the APPLiCationccccccciiiiiiiiicccccceee e 8-26
8.4.1 How to Deploy to the Application Server from JDeveloper ..o 8-28
8.4.2 How to Create an EAR File for Deploymentccccooiiiiiiiiciicccee 8-29
8.4.3 How to Deploy New Customizations Applied to ADF Llbrary........c.cccccovvrerencnnee 8-30
8.4.3.1 Exporting Customization to a Deployed Applicationcccccevvvvviininnninnn 8-30
8.4.3.2 Deploying Customizations to a JAR ..o, 8-31
8.4.4 What You May Need to Know About ADF Librariesccccccoevececccccncccnnene. 8-31
8.4.5 What You May Need to Know About EAR Files and Packaging..........c.cccooeueunee. 8-31
8.4.6 How to Deploy the Application Using Scripts and Ant ..o, 8-32
8.4.7 What You May Need to Know About JDeveloper Runtime Libraries 8-32
8.5 Postdeployment Configurationc.ccouieiiniiciiii 8-32
8.5.1 How to Migrate an Application..........ccocueuiiiiiioiiiicic e 8-32
8.5.2 How to Configure the Application Using ADF MBeanscccccocevuvrvrverivercnennes 8-33
8.6 Testing the Application and Verifying Deploymentc...ooooeiiiiiiic 8-33

Audience

Preface

Welcome to Java EE Developer’s Guide for Oracle Application Development Framework.

This document is intended for enterprise developers who need to create and deploy
database-centric Java EE applications using the Oracle Application Development
Framework (Oracle ADF). This guide explains how to build web applications using
the Enterprise JavaBeans (EJB), ADF Model, ADF Controller, and ADF Faces
technologies.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

» Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

» Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

» Oracle JDeveloper 11g Online Help

» Oracle JDeveloper 11g Release Notes, included with your JDeveloper 11g installation,
and on Oracle Technology Network

» Oracle Fusion Middleware Java API Reference for Oracle ADF Faces
» Oracle Fusion Middleware Java API Reference for Oracle ADF Faces Client JavaScript

» Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization
Components

xi

» Oracle Fusion Middleware Tag Reference for Oracle ADF Faces

s Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF
Faces

s Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors

s Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF
Skin Selectors

» Oracle Fusion Middleware Desktop Integration Developer’s Guide for Oracle Application
Development Framework

Conventions

Xii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in This Guide for Release
11.1.1.7.0

For Release 11.1.1.7.0, this guide has been updated. The following table lists the
sections that have been added or changed.

Note: This version of the guide may not contain the most recent
content. To view the latest version, access the guide directly from the
library on OTN. To see what has been added to this newer version,
compare the What's New sections of each guide.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the New Features page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

Sections Changes Made

Section 2.3, "Paginated Fetching of Data in EJB Data Added section to describe range paging feature added for
Controls" EJB and bean data controls.

Section 3.8.4, "What You May Need to Know About Added a section about how use an alternate format string
Converters for Dynamic Forms" for a converter in a dynamic form.

xiii

Xiv

1

Introduction to Building Java EE Web
Applications with Oracle ADF

This chapter describes the architecture and key functionality of the Oracle Application
Development Framework (Oracle ADF) when used to build a web application with
session and entity beans that use EJB 3.0 annotations and the Java Persistence API
(JPA), along with ADF Model, ADF Controller, and ADF Faces rich client. This chapter
also discusses high-level development practices.

This chapter includes the following sections:

s Section 1.1, "Introduction to Oracle ADF"

= Section 1.2, "Developing with Oracle ADF"

= Section 1.3, "Introduction to the ADF Sample Application"

1.1 Introduction to Oracle ADF

The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies to simplify and accelerate implementing
service-oriented applications. If you develop enterprise solutions that search, display;,
create, modify, and validate data using web, wireless, desktop, or web services
interfaces, Oracle ADF can simplify your job. Used in tandem, Oracle JDeveloper 11g
and Oracle ADF give you an environment that covers the full development lifecycle
from design to deployment, with drag and drop data binding, visual UI design, and
team development features built in.

Figure 1-1 illustrates where each Oracle ADF module fits in the web application
architecture. The core module in the framework is ADF Model, which is a declarative
data binding facility. The ADF Model layer enables a unified approach to bind any
user interface to any business service, without the need to write code. The other
modules that make up the application technology stack aside from E]Bs, are:

= ADF Faces rich client, which offers a rich library of AJAX-enabled Ul components
for web applications built with JavaServer Faces (JSF). For more information about
ADF Faces, refer to the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

= ADF Controller, which integrates JSF with ADF Model. The ADF Controller
extends the standard JSF controller by providing additional functionality, such as
reusable task flows that pass control not only between JSF pages, but also between
other activities, for instance method calls or other task flows. For more information
about ADF Controller, see "Part III Creating ADF Task Flows" of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

Introduction to Building Java EE Web Applications with Oracle ADF 1-1

Developing with Oracle ADF

Note: In addition to ADF Faces, Oracle ADF also supports using the
Swing, JSP, and standard JSF view technologies. For more information
about these technologies, refer to the JDeveloper online help. Oracle
ADF also provides support for using Microsoft Excel as a view layer
for your application. For more information, see the Oracle Fusion
Middleware Desktop Integration Developer’s Guide for Oracle Application
Development Framework

Figure 1-1 Simple Oracle ADF Architecture

Desktop Browser

‘ Swing | Office” ‘ JSP | JUSF | ADF Faces|| view

I i
ADFdi J ‘ Struts J JSF]ADFcl Controller

{ i

ADFm Model

i

Java | EJB| BAM| BPEL| web | ADFBC| BI | XML| Portlet|| gusiness

: Services Services
Toplink |

Metadata Services

Data Services

™
<

Packaged Apps

1ty \\
il

1.2 Developing with Oracle ADF

Oracle ADF emphasizes the use of the declarative programming paradigm throughout
the development process to allow users to focus on the logic of application creation
without having to get into implementation details. Using JDeveloper 11¢ with Oracle
ADE, you benefit from a high-productivity environment that automatically manages
your application’s declarative metadata for data access, validation, page control and
navigation, user interface design, and data binding.

Note: This guide covers developing an application with session and
entity beans using EJB 3.0 annotations and JPA (Java Persistence API)
for model persistence, along with the Oracle ADF Model layer, ADF
Controller, and ADF Faces. This process is very similar to developing
a Fusion web application. The main difference is that a Fusion web
application uses ADF Business Components for the back-end services.
When the development process and procedures are the same for both
application types, this guide refers you to the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework
for that information.

Please disregard any information in the Fusion Developer’s guide
regarding ADF Business Components (such as entity objects and view
objects). For similar information for EJB/JPA, refer to the "Developing
EJB and JPA Components" topic in the JDeveloper online help.

1-2 Java EE Developer's Guide for Oracle Application Development Framework

Developing with Oracle ADF

At a high level, the declarative development process for a Java EE web application
usually involves the following;:

Creating an application workspace: Using a wizard, JDeveloper automatically
adds the libraries and configuration needed for the technologies you select, and
structures your application into projects with packages and directories. For more
information, see the "Creating an Application Workspace" section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Modeling the database objects: You can create an offline replica of any database,
and use JDeveloper editors and diagrammers to edit definitions and update
schemas. For more information, see the "Modeling with Database Object
Definitions" section of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

Creating use cases: Using the UML modeler, you can create use cases for your
application. For more information, see the "Creating Use Cases" section of the
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Designing application control and navigation: You use diagrammers to visually
determine the flow of application control and navigation. JDeveloper creates the
underlying XML for you. For more information, see the "Designing Application
Control and Navigation using ADF Task Flows" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

Identifying shared resources: You use a resource library that allows you to view
and use imported libraries by simply dragging and dropping them into your
application. For more information, see the "Identifying Shared Resources" section
of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

Creating the persistence model: From your database tables, you create EJB 3.0
entity beans using wizards or dialogs. From those beans, you create the session
bean as the facade that will be used by the pages in your application. You can
implement validation rules and other types of business logic using editors on the
metadata files that describe the session bean and its underlying entity beans. For
more information about using JDeveloper with E]Bs, see the "Developing EJB and
JPA Components" topic in the JDeveloper online help.

Creating data controls for your services: Once you've created your entity and
session beans, you create the data controls that use metadata interfaces to abstract
the implementation of your E]Bs, and describe their operations and data
collections, including information about the properties, methods, and types
involved. These data controls are displayed in the Data Controls Panel. For more
information, see Chapter 2, "Using ADF Model Data Binding in a Java EE Web
Application."

Binding UI components to data using the ADF Model layer: When you drag an
object from the Data Controls panel, JDeveloper automatically creates the bindings
between the page and the data model. For more information, see Chapter 2, "Using
ADF Model Data Binding in a Java EE Web Application."

Implementing the user interface with JSF: JDeveloper’s Data Controls panel
contains a representation of the beans for your application. Creating a user
interface is as simple as dragging an object onto a page and selecting the Ul
component you want to display the underlying data. For UI components that are
not databound, you use the Component Palette to drag and drop components.
JDeveloper creates all the page code for you. For more information, see the

Introduction to Building Java EE Web Applications with Oracle ADF 1-3

Introduction to the ADF Sample Application

"Implementing the User Interface with JSF" section in the Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework.

For information about creating specific types of web pages, see the following in
this guide:

— Chapter 3, "Creating a Basic Databound Page"

— Chapter 4, "Creating ADF Databound Tables"

— Chapter 5, "Displaying Master-Detail Data"

— Chapter 6, "Creating Databound Selection Lists"
— Chapter 7, "Creating Databound Search Forms"

s Incorporating validation and error handling: Once your application is created, you
use editors to add additional validation and to define error handling. For more
information, see Section 2.4.5, "What You May Need to Know About Configuring
Validation."

= Developing pages and applications to allow customization: Using the
customization features provided by the Oracle Metadata Services (MDS), you can
create applications that customers can customize yet still easily accept upgrades,
create pages that allow end users to change the application UI at runtime, and
create applications that are completely customizable at runtime. For more
information, see the "Customizing Applications with MDS" and "Allowing User
Customizations at Runtime" chapters of the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

= Securing the application: You use editors to create roles and populate these with
test users. You then use a flat file editor to define security policies for these roles
and assign them to specific resources in your application. For more information,
see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

s Testing and debugging: JDeveloper includes an integrated application server that
allows you to fully test your application without needing to package it up and
deploy it. JDeveloper also includes the ADF Declarative Debugger, a tool that
allows you to set breakpoints and examine the data. For more information, see the
"Testing and Debugging ADF Components" chapter of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

= Deploying the application: You use wizards and editors to create and edit
deployment descriptors, JAR files, and application server connections. For more
information, see Chapter 8, "Deploying an ADF Java EE Application."

1.3 Introduction to the ADF Sample Application

As a companion to this guide, the Suppliers module of the Fusion Order Demo
application was created to demonstrate the use of the Java EE and ADF web
application technology stack to create transaction-based web applications as required
for a web supplier management system. The demonstration application is used to
illustrate points and provide code samples.

Before examining the individual components and their source code in depth, you may
find it helpful to install and become familiar with the functionality of the Fusion Order
Demo application. See the following sections of the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework for information:

1-4 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to the ADF Sample Application

s "Introduction to the Oracle Fusion Order Demo"

= "Setting Up the Fusion Order Demo Application"

1.3.1 Running the Suppliers Module of the Fusion Order Demo Application

The Suppliers module consists of a business services project named Model and a web
user interface project named ViewController. You run the Suppliers module of the
Fusion Order Demo application in JDeveloper by running the ViewController
project. The ViewController project uses JavaServer Faces (JSF) as the view
technology, and relies on the ADF Model layer to interact with the E]JBs in the Model
project. To learn more about the Suppliers module and to understand its
implementation details, see Section 1.3.2, "Taking a Look at the Supplier Module Code"
and Section 1.3.3, "Touring the Supplier Module."

To run the Suppliers module of the Fusion Order Demo application:

1. Download and install the Fusion Order Demo application as described in the
"Setting Up the Fusion Order Demo Application" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

2. Open the application in Oracle JDeveloper:
a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to and select
the SupplierModule_2.0.jws application workspace from the
SupplierModule directory. Click Open.

Figure 1-2 shows the Application Navigator after you open the file for the
application workspace. For a description of each of the projects in the
workspace, see Section 1.3.2, "Taking a Look at the Supplier Module Code."

Figure 1-2 The Supplier Module Projects in Oracle JDeveloper

(= Application Navigator |)
SupplierModule_2.0 - -
Projects EURE B = Th

¥ Troie
. @[] Application Sources
: &[] Offine Database Sources
EI ViewController
&[] Application Sources
-] Web Content

3. In the Application Navigator, click the Application Resources accordion title to
expand the panel.

4. In the Application Resources panel, expand the Connections and Database nodes.
5. Right-click FOD connection and choose Properties.

6. In the Edit Database Connection dialog, modify the connection information shown
in Table 1-1 for your environment.

Introduction to Building Java EE Web Applications with Oracle ADF 1-5

Introduction to the ADF Sample Application

Table 1-1 Connection Properties Required to Run the Fusion Order Demo Application

Property Description

Host Name The host name for your database. For example:
localhost

JDBC Port The port for your database. For example:
1521

SID The SID of your database. For example:
ORCL or XE

Do not modify the user name and password fod/fusion. These must remain
unchanged. Click OK.

7. In the Application Navigator, right-click Model and choose Rebuild.
8. In the Application Navigator, right-click ViewController and choose Run.

The login. jspx page is displayed. Because of the way security is configured in
this module, you must first log in.

9. Enter SHEMANT for User Name and welcomel for Password.

Once you log in, the browse page appears, which allows you to search for products.
Once you select a product in the results table, you can edit or remove the product
information. Using the command links at the top of the page, you can edit the
corresponding supplier’s information, or add a new supplier. For more information
about the Suppliers module at runtime, see Section 1.3.3, "Touring the Supplier
Module."

1.3.2 Taking a Look at the Supplier Module Code

Once you have opened the projects in Oracle JDeveloper, you can then begin to review
the artifacts within each project. The Model project contains the Java classes and
metadata files that allow the data to be displayed in the web application. The
oracle. fodemo. common project contains components used by multiple classes in
the application. The oracle. fodemo. supplier project contains the components
used to access the supplier data. Figure 1-3 shows the Model project and its associated
directories.

1-6 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to the ADF Sample Application

Figure 1-3 The Model Project in JDeveloper

: SupplierModule_2.0

ERE|Model

=[] Application Sources

=1l orade. fodema. common
r@ Service

(. @ Servicelnterceptor.java
=1l orade.fodemo.supplier
rﬁ] model

-1l service

&--[-7) META-INF

----- fivz| UpdateableCollection. xml

----- {5 UpdateableSinglevalue. xml
#--{_ 7] Offiine Database Sources

~ Projects Gl & VW~

The ViewController project contains the files for the web interface, including the
backing beans, deployment files, and JSPX files. The Application Sources node
contains the code used by the web client, including the managed and backing beans,
property files used for internationalization, and the metadata used by Oracle ADF to
display bound data. The Web Content node contains web files, including the JSP files,
images, skin files, deployment descriptors, and libraries. Figure 1-4 shows the
ViewController project and its associated directories.

Introduction to Building Java EE Web Applications with Oracle ADF 1-7

Introduction to the ADF Sample Application

Figure 1-4 The ViewController Project in JDeveloper

(=l Application Navigator | .
: SupplierModule_2.0 v: -
= Projects EURE B = Th

Madel
&8
=-[7] Application Sources
--[{fll orade.fodemo. frmwkext
-[iffl orade.fodemo.product
-[ifll orade. fodemo.security
[l orade.fodemo.serviet
[l orade.fodemo.skinning
[l orade.fodemo.supplier
[l product
-[ifll supplier
-[ifjl templates
-7 META-INF
=-{ 7] web Content

D images

D product

D skins

r_—l supplier

D templates

-] WEB-INF

D Page Flows
: - browse. jspx
- errorHandler . jspx
- login_error. jspx

...... Iogin.jspx

1.3.3 Touring the Supplier Module

The Supplier module contains eight main pages that allow a user to perform the
following functionality:

= Search for products: The browse. jspx page allows a user to search for products.
Search results are displayed in a table. Figure 1-5 shows the search form on the
browse page.

Figure 1-5 Search Form in Supplier Module

Search Advanced Saved Search Implick Search (w0

Match (& al O any
Product Id

Product Mame
Product Status
Shipping Class Code

Search Reset Save...

1-8 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to the ADF Sample Application

- For information about creating search forms, see Chapter 7, "Creating
Databound Search Forms."

Edit row data in a table: From the table on the browse. jspx page, a user can
select a product and choose Update to navigate to the productInfo. jspx page
(clicking the product link also navigates to this page). From the table, a user can
also click Remove, which launches a popup that allows the removal of the selected
product. Figure 1-6 shows the table on the browse page.

Figure 1-6 Table on the browse Page

View - & Update 3§ Remove 7 Detach

Product Id Product Mame Lisk Price Cost Price IMin. Price Produck Status
4 Treo 700w Phone/PDy 399,99 300 359,99 AVAILAELE

5 Tungsten E PO 195,99 100 175,99 AVAILAELE

15 Ipod Speakers 59,99 35 55,99 AVAILABLE

16 Creative Zen Vision YW 359,99 290 329,99 AVAILABLE

23 Ipod Mano 4Gk 249,95 150 199,95 AVAILABLE

29 LCD HD Telewvision 599,99 &00 599,99 AVAILABLE

3l 7 Megapixel Digital e 529,99 300 99,99 AVAILABLE

33 Zhocolate Phone 499,99 300 99,99 AVAILABLE

< >

- For information about creating tables, see Chapter 4, "Creating ADF
Databound Tables."

- For information about creating navigation in an application, see the "Getting
Started with ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

- For information about using buttons to edit a row in a table, see Section 4.3,
"Creating an Editable Table."

Edit row data in a form: From the productInfo.jspx page, a user can change
the data for a row. A selection list contains valid values for the product status. The
Choose File button allows a user to upload a graphic file, which is then displayed
below the form. Figure 1-7 shows the productInfo page.

Figure 1-7 The productinfo Page

Product Details

Product Id S
* Product Marme Tungsten E PDA

* Cosk Price 100
* List Price 195,99
* Min. Price 175.99
* Produck Skakus Available produck w
Image | | Browsze..
Save Cancel

- For information about creating a basic form, see Section 3.3, "Creating a Basic
Form."

Introduction to Building Java EE Web Applications with Oracle ADF 1-9

Introduction to the ADF Sample Application

— For information about creating a form from which a user can edit information,
see Section 3.6, "Creating a Form to Edit an Existing Record."

- For information about creating selection lists, see Section 6.2, "Creating a
Single Selection List."

- For information about using file upload, see the "Using File Upload" section of
the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle
Application Development Framework.

- For information about displaying graphics, see the "Displaying Images"
section of the Oracle Fusion Middleware Web User Interface Developer’s Guide for
Oracle Application Development Framework.

s The Add Supplier link takes the user to a series of pages contained within the
regisrationDetails. jspx page that are used to create a new supplier, as
shown in Figure 1-8.

Figure 1-8 Create a Supplier Train

™
Supplier Registration - Stepl

Supplier Details
* Supplier Mame
* Phone Mumnber
* Email

Ila' Cancel B et

- For information about creating a train, see the "Creating a Train" section of the
Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

- For information about creating forms that allow users to create new records,
see Section 3.7, "Creating an Input Form."

= Login to the application: The login. jspx page allows users to log in to the
application. For more information, see the "Enabling ADF Security in a Fusion
Web Application"” chapter of the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

1-10 Java EE Developer's Guide for Oracle Application Development Framework

2

Using ADF Model Data Binding in a Java EE
Web Application

This chapter describes how to create ADF model data controls for EJB session beans
and how to use the Data Controls panel to create databound UI components on JSF
web pages.

This chapter includes the following sections:

= Section 2.1, "Introduction to ADF Model Data Binding"

= Section 2.2, "Exposing Services with ADF Data Controls"

= Section 2.3, "Paginated Fetching of Data in EJB Data Controls"
= Section 2.4, "Using the Data Controls Panel"

For more comprehensive information about using ADF Model data binding, refer to
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

2.1 Introduction to ADF Model Data Binding

ADF Model implements two concepts that enable the decoupling of the user interface
technology from the business service implementation: data controls and declarative
bindings. Data controls abstract the implementation technology of a business service by
using standard metadata interfaces to describe the bean’s operations and data
collections, including information about the properties, methods, and types involved.
Using JDeveloper, you can view that information as icons which you can drag and
drop onto a page. Using those icons, you can create databound HTML elements (for
JSP pages), databound Ul components (for JSF pages), and databound Swing Ul
components (for ADF Swing panels) by dragging and dropping them from the panel
onto the visual editor for a page. JDeveloper automatically creates the metadata that
describes the bindings from the page to the services. At runtime, the ADF Model layer
reads the metadata information from the appropriate XML files for both the data
controls and the bindings, and then implements the two-way connection between your
user interface and your business services.

Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. There are three basic kinds of declarative
binding objects:

= Executable bindings: Include iterator bindings, which simplify the building of user
interfaces that allow scrolling and paging through collections of data and
drilling-down from summary to detail information. Executable bindings also

Using ADF Model Data Binding in a Java EE Web Application 2-1

Introduction to ADF Model Data Binding

include bindings that allow searching and nesting a series of pages within another

page.
= Value bindings: Used by UI componen

sophisticated list and tree bindings tha
and tree Ul controls.

= Action bindings: Used by Ul command components like hyperlinks or buttons to
invoke built-in or custom operations on data collections or a data control without

writing code.

Figure 2-1 shows how bindings connect UI components to data control collections and

methods.

Figure 2-1 Bindings Connect Ul Components to Data Controls

Product Details
P tid S

Save Cancel

=
S EEEsEEIEEEIEEEEEEEEEEEEEEEE

Bindings @ "

ts that display data. Value bindings range
from the most basic variety that work with a simple text field to more
t support the additional needs of list, table,

mergeProduct|...

Control [—]

getStatusLookupCod®"|
indCodesByTypelterator

E findProductByld
Iterator
Data
=

Data Caollections

Custom
Operation

The group of bindings supporting the Ul components on a page are described in a
page-specific XML file called the page definition file. The ADF Model layer uses this file
at runtime to instantiate the page’s bindings. These bindings are held in a
request-scoped map called the binding container. In a JSF application, the binding
container is accessible during each page request using the EL expression

#{bindings}.

Tip: For more information about ADF EL expressions, see the
"Creating ADF Data Binding EL Expressions” section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application

Development Framework.

2-2 Java EE Developer's Guide for Oracle Application Development Framework

Exposing Services with ADF Data Controls

To use the ADF Model layer to data-bind, you need to create a data control for your
services. The data controls will then appear as icons in the Data Controls panel, which
you can use to declaratively create pages whose components will be automatically
bound to those services.

2.2 Exposing Services with ADF Data Controls

Once you have your application’s services in place, you can use JDeveloper to create
data controls that provide the information needed to declaratively bind Ul
components to those services. In a Java EE application, you normally create entity
beans that represent tables in a database and then create a session facade over all the
EJBs. This facade provides a unified interface to the underlying entities. In an ADF
application, you can create a data control for the session bean, and that data control
will contain representation of all the EJBs under the session bean. The data control
consists of a number of XML metadata files that define the capabilities of the service
that the bindings can work with at runtime.

For example, the Suppliers module uses the FOD database schema, which contains a
number of relational database tables. The module has a number of entity beans that
represent the tables in the schema used by the Suppliers module. There is an
Addresses bean, a Product bean, a Persons bean, and so on. The module also
contains two session beans: the SupplierFacade bean, which is used to access the
beans created from tables, and the GenericServiceFacade bean, which contains
generic service methods used by all beans in the application. A data control exists for
each of those session beans, which allows developers to declaratively create UI pages
using the data and logic contained in those beans.

2.2.1 How to Create ADF Data Controls

You create data controls from within the Application Navigator of JDeveloper.

Before you begin:
1. Create JPA/E]B 3.0 entities. For more information, see the "Building a Persistence
Tier" section of the JDeveloper online help.

2. Create one or more session beans for the entities. For more information see the
"Implementing Business Processes in Session Facade Design Pattern" section of the
JDeveloper online help.

When creating your entities and session bean(s), keep the following in mind:

s For a class to be a valid data control source, it has to meet the JavaBeans
specification. It needs to have a public default constructor.

= Because the metadata files that represent the beans for the data control are
named based on the class names for the beans, you must ensure that if beans
have the same name, they are in different packages. If two beans with the
same name are in the same package, one metadata file will overwrite the other.

= If you rename the bean used to create a data control, you must re-create the
data control.

To create a data control:

1. In the Application Navigator, right-click the session bean for which you want to
create a data control.

2. From the context menu, select Create Data Control.

Using ADF Model Data Binding in a Java EE Web Application 2-3

Exposing Services with ADF Data Controls

3. In the Choose E]B Interface dialog, choose Local.

2.2.2 What Happens in Your Project When You Create a Data Control

When you create a data control based on an EJB session bean, the data control contains
a representation of all the methods exposed on the bean, as well as underlying entity
beans, and the methods and properties exposed on those.

For the data control to work directly with the service and the bindings, JDeveloper
creates the following metadata XML files:

= Data control definition file (DataControls. dcx). This file defines the factory
class and ID for each data control. It also contains settings that determine how the
data control behaves. For example, you can use the . dcx file to set global
properties, such as whether the service supports transactions. To change the
settings, you select the data control in the overview editor and change the value of
the property in the Property Inspector. Figure 2-2 shows the DataControls.dcx
file in the overview editor and Property Inspector of JDeveloper.

Figure 2-2 DataControls.dcx File in the Overview Editor and Property Inspector

QDa‘IaCnn‘h’nls.dmc E] @SupplierFamdeLoml - Property Inspector [;
Data Control Registry BIAE /(@ IH@
))))) -) [=] Other
This file lists the Orade ADF data controls published by this project. It contains information needed
to initialize the Data Control to work with a particular service (JavaBean, EJB, XML, Webservice and oid = |SupplierFamdeLomI |
z0 on). Jdeveloper creates this file the first time you create a Data Control.
o BeanClass: |oracle.Fodemo.supplier.ser... | i
[=] Data Controls
o Definition: |oracle.Fodemo.supplier.ser... | w
Definition id FactoryClass DTClass: | | o
orade.fodemo.common.ser... GenericServiceFacadeLocal orade.adf.model.adapter.Datal @ FactoryClass: [orace. adf.model.adapter. Dat
o ImplDef: |oracle.adfinternal.model.ad...| v
o SupportsFindMode: |false '| R
@ SupportsRangesize: |false '| A
o SupportsResetState: |false '| 7
o SupportsSortCollection: |1rue '| R
o SupportsTransactions: |false '| L4
o SupportsUpdates: |true '| R7

Example 2-1 shows the code from the corresponding XML file (available by
clicking the source tab).

Example 2—1 DataControls.dcx File

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
version="11.1.1.54.7" id="DataControls"
Package="oracle.fodemo.supplier.model">
<AdapterDataControl id="SupplierFacadeLocal"
FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
ImplDef="oracle.adfinternal .model.adapter.ejb.EjbDefinition"
SupportsTransactions="false" SupportsSortCollection="true"
SupportsResetState="false" SupportsRangesize="false"
SupportsFindMode="false" SupportsUpdates="true"
Definition="oracle.fodemo.supplier.service.SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.service.SupplierFacadeLocal"
xmlns="http://xmlns.oracle.com/adfm/datacontrol">
<CreatableTypes>
<TypeInfo FullName="oracle.fodemo.supplier.model.CountryCode"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.ProductCategory"/>

2-4 Java EE Developer's Guide for Oracle Application Development Framework

Exposing Services with ADF Data Controls

<TypeInfo FullName="oracle.fodemo.supplier.model.Addresses"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.AddressUsage" />
<TypeInfo FullName="oracle.fodemo.supplier.model.Person"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.Supplier"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.Product"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.ProductImage"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.ProductTranslation"/>
<TypelInfo FullName="oracle.fodemo.supplier.model.WarehouseStockLevel"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.OrderItem"/>
<TypeInfo FullName="oracle.fodemo.supplier.model.LookupCode" />
</CreatableTypes>
<Source>
<ejb-definition ejb-version="3.0" ejb-name="SupplierFacade"
ejb-type="Session"
ejb-business-interface="oracle.fodemo.supplier.service.SupplierFacadeLocal"
ejb-interface-type="1local"
initial-context-factory="weblogic.jndi.WLInitialContextFactory"
DataControlHandler="oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler"
xmlns="http://xmlns.oracle.com/adfm/adapter/ejb" />
</Source>
</AdapterDataControl>
<AdapterDataControl id="GenericServiceFacadeLocal"

</AdapterDataControl>
</DataControlConfigs>

= Structure definition files for every entity object and structured object that this
service exposes. These files define how attributes, accessors, and operations will
display and behave. For example, you can set how the label for an attribute will
display in a client. A structure definition file contains the following information:

= Attributes: Describes the attributes available on the service. You can set Ul
hints that define how these attributes will display in the Ul You can also set
other properties, such as whether the attribute value is required, whether it
must be unique, and whether it is visible. For information about setting Ul
hints, see the "Defining Attribute Control Hints for View Objects" section of
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

Note: View objects are ADF Business Components used to
encapsulate SQL queries and to simplify working with the results.
When reading this section, simply substitute "bean" for "view object."

You can also set validation for an attribute and create custom properties. For
more information, see the "Using the Built-in Declarative Validation Rules"
and the "How to Implement Generic Functionality Driven by Custom
Properties" sections of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

s Accessors: Describes the different accessor methods.

= Operations: Describes custom methods on the service, along with any
parameters.

Figure 2-3 shows the structure definition file for the Addresses bean in the
Suppliers module.

Using ADF Model Data Binding in a Java EE Web Application 2-5

Exposing Services with ADF Data Controls

Figure 2-3 Structure File in the Overview Editor

Attributes
[l Attributes Va

Accessors
QEEETE Name Type Default Value

5 address1 java.lang.String

3 address2 java.lang.String

3 addressId java.lang.Long

E3) dty java.lang.String

[E3 countryId java.lang.String

3 createdBy java.lang.String

=3 creationDate java.sgl. Timestamp

3 lastUpdatedBy java.lang.String

=3 lastUpdateDate java.sgl.Timestamp

) |atitude java.lang.Long

3 longitude java.lang.Long

=3 objectVersionld java.lang.Long

3 postalCode java.lang.String

3 stateProvince java.lang.String

EQ Validators 4 / %

[#] Custom Properties - 7 K

Example 2-2 shows the code from the corresponding XML file (available by
clicking the source tab).

Example 2-2 Structure File

<?xml version="1.0" encoding="UTF-8" ?>

<JavaBean xmlns="http://xmlns.oracle.com/adfm/beanmodel" version="11.1.1.54.7"
id="Addresses" Package="oracle.fodemo.supplier.model"
BeanClass="oracle.fodemo.supplier.model .Addresses" isJavaBased="true">

<Attribute Name="addressl" Type="java.lang.String" Precision="40">
<Properties>

<SchemaBasedProperties>

<LABEL ResId="oracle.fodemo.supplier.model.Addresses.addressl_LABEL"/>

<TOOLTIP ResId="oracle.fodemo.supplier.model.Addresses.addressl_TOOLTIP"/>
<DISPLAYWIDTH Value="40"/>

</SchemaBasedProperties>
</Properties>
</Attribute>
<Attribute Name="address2" Type="java.lang.String" Precision="40">
<Properties>
<SchemaBasedProperties>
<LABEL ResId="oracle.fodemo.supplier.model.Addresses.address2_LABEL"/>

<TOOLTIP ResId="oracle.fodemo.supplier.model.Addresses.address2_TOOLTIP"/>
<DISPLAYWIDTH Value="40"/>

</SchemaBasedProperties>
</Properties>
</Attribute>

<AccessorAttribute id="addressUsageList" IsCollection="true"
RemoveMethod="removeAddressUsage"
AddMethod="addAddressUsage"
BeanClass="oracle.fodemo.supplier.model.AddressUsage"
CollectionBeanClass="UpdateableCollection">
<Properties>
<Property Name="RemoveMethod" Value="removeAddressUsage"/>
<Property Name="AddMethod" Value="addAddressUsage"/>
</Properties>
</AccessorAttribute>

2-6 Java EE Developer's Guide for Oracle Application Development Framework

Exposing Services with ADF Data Controls

<MethodAccessor IsCollection="false"
Type="oracle.fodemo.supplier.model.AddressUsage"
BeanClass="oracle.fodemo.supplier.model.AddressUsage"
id="addAddressUsage" ReturnNodeName="AddressUsage">
<ParameterInfo id="addressUsage"
Type="oracle. fodemo.supplier.model.AddressUsage"
isStructured="true"/>
</MethodAccessor>
<MethodAccessor IsCollection="false"
Type="oracle. fodemo.supplier.model.AddressUsage"
BeanClass="oracle.fodemo.supplier.model.AddressUsage"
id="removeAddressUsage" ReturnNodeName="AddressUsage">
<ParameterInfo id="addressUsage"
Type="oracle. fodemo.supplier.model .AddressUsage"
isStructured="true"/>
</MethodAccessor>

<ConstructorMethod IsCollection="true"
Type="oracle.fodemo.supplier.model.Addresses"
BeanClass="oracle.fodemo.supplier.model.Addresses"
id="Addresses">

<ParameterInfo id="addressl" Type="java.lang.String" isStructured="false"/>

<ParameterInfo id="address2" Type="java.lang.String" isStructured="false"/>

<ParameterInfo id="addressId" Type="java.lang.Long" isStructured="false"/>

<ParameterInfo id="city" Type="java.lang.String" isStructured="false"/>

<ParameterInfo id="countryId" Type="java.lang.String" isStructured="false"/>

<ParameterInfo id="createdBy" Type="java.lang.String" isStructured="false"/>

<ParameterInfo id="creationDate" Type="java.sql.Timestamp"
isStructured="false"/>

<ParameterInfo id="lastUpdateDate" Type="java.sql.Timestamp"
isStructured="false"/>

<ParameterInfo id="lastUpdatedBy" Type="java.lang.String"
isStructured="false"/>

<ParameterInfo id="latitude" Type="java.lang.Long" isStructured="false"/>

<ParameterInfo id="longitude" Type="java.lang.Long" isStructured="false"/>

<ParameterInfo id="objectVersionId" Type="java.lang.Long"
isStructured="false"/>

<ParameterInfo id="postalCode" Type="java.lang.String"
isStructured="false"/>

<ParameterInfo id="stateProvince" Type="java.lang.String"

isStructured="false"/>

</ConstructorMethod>

<ConstructorMethod IsCollection="true"
Type="oracle. fodemo.supplier.model .Addresses"
BeanClass="oracle.fodemo.supplier.model.Addresses"
id="Addresses"/>

<ResourceBundle>

<PropertiesBundle xmlns="http://xmlns.oracle.com/adfm/resourcebundle"
PropertiesFile="oracle.fodemo.supplier.model.ModelBundle" />
</ResourceBundle>

</JavaBean>

JDeveloper also adds the icons to the Data Controls panel that you can use to create
databound UI components. The Data Controls panel lists all the data controls that
have been created for the application’s business services and exposes all the
collections, methods, and built-in operations that are available for binding to Ul
components.

Using ADF Model Data Binding in a Java EE Web Application 2-7

Exposing Services with ADF Data Controls

Tip: If the Data Controls panel is not visible, see the "How to Open
the Data Controls Panel" section of the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework for
instructions on opening the panel.

When a data control is created for a session bean, and that session bean was
configured to contain an accessor method for the underlying beans, those beans
appear as an accessor returned collection whose name matches the bean instance
name. The Data Controls panel reflects the master-detail hierarchies in your data
model by displaying detail data collections nested under their master data collection.
For example, Figure 2—4 shows the Data Controls panel for the Suppliers module of
the Fusion Order Demo application. Note that the Addresses, Person, and Product
beans are all represented by accessor returned collections in the Data Controls panel.

The Data Controls panel also displays each service method on the session bean as a
method icon whose name matches the method name. If a method accepts arguments,
those arguments appear in a Parameters node as parameters nested inside the
method's node. Objects that are returned by the methods appear as well, as shown in
Figure 2-4.

Figure 2—4 Data Controls Panel

* Data Controls @Y
=] Emwmw snsnmnsnnn@snnnnnnnnp data control

I persistLockupCode (LockupCode)
(= removelookupCode(LookupCods)
SupplierFacadelocal mesmsssnsnnnnsamunnsp gata control

() Constructors
;_E_—Iadd'esses
E] cecnccannnnnnnanannsp accessor returned collection

|E=| warehouseStodkLevelFindal
D findProductByld(long) sessmssmssmnsnnnnnnnsnn e seryice method
= [parameters
D productld smssmsannsnsnnpannnssadp parameter
Bl Productasnmsnnnnnnnnnnnnapnnand method returm
=[] mergeAddresses(Addresses)
=-{_] Parameters
10 addresses
® 5] Addresses
[=] mergeaddressUsage(AddressUsage)
mergeCountryCode(CountryCode)
[=] mergeOrderltem(OrderItem)
= mergePerson(Person)
[E] mergeProduct{Product)
[E] mergeProductCategory(ProductCategory.
[E=] mergeProductimage(Productimage)
=] mergeProductTranslation(FroductTranslat
[=] mergeSupplier (Suppher)
=] mergeWarehouseStock evel(Warehouses
#-15] persistAddresses(Addresses)
)

- [=] persistAddressiisage(AddressUsage)
T[] nerdettantruadalCa mtrurads)

)

- 8- - -

@

2-8 Java EE Developer's Guide for Oracle Application Development Framework

Exposing Services with ADF Data Controls

Each returned collection or object displays any attributes and custom methods that
were defined on the associated bean. Figure 2-5 shows the attributes and methods
defined on the Supplier bean that is returned by the supplierFindAll accessor
method.

Figure 2-5 Child Nodes to Returned Collections

TR smnemnnnnnnnsPp gecessor returned collection
(i createdBy

{z@ creationDate
{EE emal
(5 lastUpdateDate
58 lastUpdatedBy
I (#i8 objectVersionld mesmsnunnnnunp gitributes
{E8 phaneMurmber
58 supplierld

[E] personlist samssmssmsnnsPp accessors forrelated beans
i[5 productiist

addProduct(Product)
[=] removePerson(Person) == e=sssssnsnnPp methods on the bean
[E] removeProduct{Product)
=[] Operatons wwanwanwnnuns P pyjiitin operations
Create
Delete
5% Execute
48} First
{é} Last
{g} MNext
Next Set
@} Previous
Previous Set
3 {83 removeRowWithKey
#-{8} setCurentRowWithKey
£ {‘3 setCurentRowWithKeyValue
= [Z) Mamed Criteria
"B All Querisble Attributes ®® e === e=ssua P implicit view criteria

By default, implicit view criteria are created for each attribute that is able to be queried
on a bean. They appear as the All Queriable Attributes node under the Named Criteria
node, as shown in Figure 2-5. This node is used to create quick search forms, as
detailed in Chapter 7, "Creating Databound Search Forms."

As shown in Figure 2-5, the Operations node under a returned collection displays all
its available built-in operations. If an operation accepts one or more parameters, then
those parameters appear in a nested Parameters node. At runtime, when one of these
data collection operations is invoked by name by the data binding layer, the data
control delegates the call to an appropriate method on the bean interface to handle the
built-in functionality. Most of the built-in operations affect the current row. Only the
execute operation refreshes the data control itself. Following are the built-in
operations:

s Create: Creates a new row that becomes the current row, but does not insert it.
s Delete: Deletes the current row.

= Execute: Refreshes the data collection by executing or reexecuting the accessor
method.

s First: Sets the first row in the row set to be the current row.
s Last: Sets the last row in the row set to be the current row.

» Next: Sets the next row in the row set to be the current row.
» Next Set:Navigates forward one full set of rows.

= Previous: Sets the previous row in the row set to be the current row.

Using ADF Model Data Binding in a Java EE Web Application 2-9

Paginated Fetching of Data in EJB Data Controls

Previous Set:Navigates backward one full set of rows.

removeCurrentRowWithKey: Tries to find a row using the serialized string
representation of the row key passed as a parameter. If found, the row is removed.

setCurrentRowWithKey: Tries to find a row using the serialized string
representation of the row key passed as a parameter. If found, that row becomes
the current row.

setCurrentRowlWithKeyValue: Tries to find a row using the primary key
attribute value passed as a parameter. If found, that row becomes the current row.

Note: By default, JavaBeans assume the rowIndex as the key. If you
do not explicitly define a key, the index will be used.

The Data Controls panel is a direct representation of the DataControls.dcx and
structure definition files created when you created a data control. By editing the files,
you can change the elements displayed in the panel.

Note: Whenever changes are made to the underlying services, you
need to manually refresh the data control in order to view the
changes. To refresh the data control, click the Refresh icon in the
header of the Data Controls panel.

2.3 Paginated Fetching of Data in EJB Data Controls

When you create an E]JB or bean data control, you can determine how records are
accessed from the database and whether to limit the number of records that are held in
memory at a time.

There are the following possibilities for fetching and storing data in memory:

Scrollable access mode.

If you accept the defaults when creating the data control, the data access mode is
set to scrollable. This means that the data that your application needs to
display is retrieved from the database as needed (in increments equal to the range
size specified by the Ul component’s iterator) and stored in memory. Then, when
the user scrolls forward through the application, additional rows are fetched as
needed and stored in memory. All rows that have been fetched remain in memory.

For example, if the running application contains a table that displays rows 1
through 20 on a web page and the table’s iterator has a range size of 25 (the
default), the data control will fetch the first 25 rows. If the user scrolls down to
display rows 477 through 496 of the result set, the data will be fetched in sets of 25
as the user scrolls until rows 26 through 500 are fetched. At that point, a total of
500 rows will be stored in memory.

This is the default mode for data controls using

oracle.adf .model.adapter.bean.DataFilterHandler and
oracle.adf .model.adapter.bean.jpa.JPQLDataFilterHandler.
However, for data controls using

oracle.adf .model.adapter.bean.DataFilterHandler, you still need to
add paging methods to your data control to implement the access mode. For more
information, see Section 2.3.6, "How To Manually Implement Pagination Support
in a Bean Data Control."

2-10 Java EE Developer's Guide for Oracle Application Development Framework

Paginated Fetching of Data in EJB Data Controls

= Range paging access mode

To limit the amount of records that are fetched and stored in memory at a time,
you can use the rangePaging access mode. As with scrollable mode, range
paging mode allows your applications to fetch data in increments. The main
difference in range paging mode is that only the most recently fetched increment is
retained in memory. So, for example, if the accessor iterator’s rangeSize
attribute is set to 25, no more than 25 records will be held in memory at any given
time.

In a range paging version of the scrollable example above, the data control would
fetch rows 1 through 25 and hold them in memory in order to display rows 1
through 20. If the user scrolled down, the data control would fetch data in
increments of 25 as the user was scrolling but release the previous 25 records from
memory as it fetched a new range. By the time the user reached rows 477 through
496 as in the example above, only rows 476 through 500 would be in memory.

When scrolling to a position that displays data from multiple increments, only the
data from the increment last fetched is held in memory.

Note: When you use range paging in a data control, the built-in
navigation operation Last does not work on databound Ul
components created from that data control.

= No pagination. When there is no pagination, all available data for a Ul component
is fetched. No pagination is implemented when the data control does not
implement a data control handler, such as
oracle.adf.model.adapter.bean.DataFilterHandler or
oracle.adf .model.adapter.bean.jpa.JPQLDataFilterHandler. You
can also use annotations to turn off paging for specific collections. For more
information, see Section 2.3.4, "How to Specify Access Mode for Individual Objects
in the Data Control."

s Custom pagination. If the built-in pagination options do not suit your needs, you
can implement your own pagination by implementing a custom handler class. For
more information, see Section 2.3.7, "How to Implement a Custom Handler for
Querying and Pagination."

For more information about access mode and data control handlers, see Section 2.3.3,
"What You May Need to Know About the Scrollable and Range Paging Modes."

2.3.1 How to Change Paging Mode for a Data Control

If you want to change the paging mode for an EJB or bean data control, you can do so
in the Data Controls panel.

Note: For data controls using the
oracle.adf.model.adapter.bean.DataFilterHandler or
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHand
ler handler, the default access mode is scrollable.

Before you begin:

It may be helpful to have a general understanding of access modes for EJB and bean
data controls. For more information, see Section 2.3, "Paginated Fetching of Data in EJB
Data Controls.".

Using ADF Model Data Binding in a Java EE Web Application 2-11

Paginated Fetching of Data in EJB Data Controls

You need to complete this task:

Create an EJB or bean data control. For more information, see Section 2.2.1, "How to
Create ADF Data Controls.".

To change paging mode for a data control:

1. In the Data Controls panel, right-click the data control’s node and choose Edit
Definition.

2. In the ejb-definition Properties or the bean-definition Properties dialog, select
rangePaging or scrollable from the AccessMode dropdown list.

3. If you are changing the data control to use range paging, make sure that the data
control’s FactoryClass property is specified as
oracle.adf .model.adapter.bean.BeanDCFactoryImpl.

You can access the FactoryClass property in the source editor for the
DataControls.dcx file or in the Property Inspector that appears when you open
DataControls.dcx in the source editor or overview editor.

2.3.2 How to Set Range Size for a Data Control that Uses Range Paging

When you set a data control’s access mode to rangePaging, the data control
determines the range size by reading the rangeSize property of the accessor iterator
of each component that is bound to a collection in the data control.

To set the range size for a component:

1. In the Application Navigator, select the page containing the component that is
bound to the data control.

2. In the Structure window, select the component that is bound to the data control
collection.

3. In the Property Inspector, expand the Behavior node, and set the rangeSize
property to the desired value.

For more information on iterator bindings, see "Creating and Using Iterator Bindings"
in Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

2.3.3 What You May Need to Know About the Scrollable and Range Paging Modes

Data controls that support scrollable and range paging modes rely on methods in the
bean class to implement that functionality. The method that the data control uses
depends on the data control handler class that the data control uses.

For JPA-based data controls, typically the JPQLDataFilterHandler handler is
specified. JPQLDataFilterHandler relies on the presence of JPA queries and a
queryByRange () method in the bean.

For non-JPA bean data controls (and for JPA-based bean and EJB data controls that do
not have a queryByRange () method), DataFilterHandler is specified. To
implement range paging in data controls that use this handler, you need to add code to
your bean class as shown in Section 2.3.6, "How To Manually Implement Pagination
Support in a Bean Data Control."

For data controls that do not have either of these handler classes (such as data controls
that were generated in an earlier version of the IDE), there is no built-in support for
scrollable or range paging.

2-12 Java EE Developer's Guide for Oracle Application Development Framework

Paginated Fetching of Data in EJB Data Controls

2.3.4 How to Specify Access Mode for Individual Objects in the Data Control

If your data control encompasses multiple collections of different sizes, you may wish
to set different access modes for some of the collections. You can do so by placing
annotations on the accessor methods in the bean that the data control represents.

For the methods on which the annotations are used, the annotations override the
access mode set for the data control. If an accessor method does not have such an
annotation, it inherits its access mode from the one that is defined for the data control.

To specify access mode for individual objects in a bean or EJB data control:
1. Open the bean class on which the data control is based.

2. Add annotations for the accessor methods for which you want a different access
mode than that generally specified for the data control.

Example 2-3 shows the necessary import statements and the available annotations
and how they can be used on a collection.

Example 2-3 Access Mode Annotations

import oracle.adf.model.adapter.bean.annotation.AccessMode;
import oracle.adf.model.adapter.bean.annotation.AccessModeType;

* List with scrollable access

*/
@AccessMode (type=AccessModeType . SCROLLABLE)
public List<Employees> getEmployees() {

* List with range paging.

*/
@AccessMode (type=AccessModeType . RANGE_PAGING)
public List<Employees> getEmployees() {

* List with no paging.

*/
@AccessMode (type=AccessModeType.NO_PAGING)
public List<Countries> getCountries() {

2.3.5 What You May Need to Know About Sorting Tables Based on Range Paginated

Collections

By default, if a user sorts a table that is bound to a JPA-based data control, the ADF
Model runtime forces the iterator to return all rows into memory for sorting, even if
the back-end JPQL queries have already done the sort at the database level, which can
cause memory problems if collection is too large. If you are using range paging for a
collection, you can disable the ADF Model runtime full in-memory sort and have the
data control handle it instead, based on just the currently selected range.

To use the data control to handle the sort for range paginated collections:

1. In the Application Navigator, double-click the DataControls.dcx file to open it
in the overview editor.

2. In the overview editor, select the node for the data control that you want to edit.

3. In the Property Inspector, set the ImplementsSort property to true.

Using ADF Model Data Binding in a Java EE Web Application 2-13

Using the Data Controls Panel

2.3.6 How To Manually Implement Pagination Support in a Bean Data Control

With non-JPA data controls (or any bean data control that uses the
oracle.adf.model.adapter.bean. jpa.DataFilterHandler handler), you
need to add three methods for each collection in the session or service facade in order
for the ADF Model runtime to implement scrollable paging and range paging. The
method signatures should take the following form:

List<EntityBeanName> getEntityBeanNameList ()
List<EntityBeanName> getEntityBeanNameList (int firstResult, int maxResults)
long getEntityBeanNameListSize ()

2.3.7 How to Implement a Custom Handler for Querying and Pagination

If the built-in querying and paging options are not sufficient for your application, you
can implement your own custom paging and querying behavior by providing your
own data handler class for your data control.

To implement a custom handler for querying and pagination:
1. Write a custom data control handler class and add it to the data control’s project.

You can sub-classes an existing handler, such as
oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler or
oracle.adf .model.adapter.bean.DataFilterHandler. See Example 2—4
for an outline of a custom handler class.

2. In the Source view of the DataControls.dcx file, type the fully-qualified class
name of the handler as the value for the DataControlHandler attribute of each
data control.

DataControlHandler is an attribute of the ejb-definition element of EJB
data controls and an attribute of the bean-definition element for bean data
controls.

Example 2-4 Custom Data Control Handler

public class MyJPQLDataFilterHandler extends JPQLDataFilterHandler
{
public boolean invoke (Map bindingContext,
OperationBinding action,
DataFilter filter)
{
/** TODO: Developer provides custom criteria. */

}

public Object invoke(RowContext rowCtx, String name,
DataFilter filter)
{
/** TODO: Developer provides custom criteria. */

}

2.4 Using the Data Controls Panel

You can design a databound user interface by dragging an item from the Data Controls
panel and dropping it on a page as a specific Ul component. When you use data
controls to create a Ul component, JDeveloper automatically creates the various code
and objects needed to bind the component to the data control you selected.

2-14 Java EE Developer's Guide for Oracle Application Development Framework

Using the Data Controls Panel

In the Data Controls panel, each object is represented by a specific icon. Table 2-1
describes what each icon represents, where it appears in the Data Controls panel
hierarchy, and what components it can be used to create.

Table 2-1 The Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Data Represents a data control. You cannot use the data control itself ~Serves as a container for

I% Control to create UI components, but you can use any of the child the other objects, and is

objects listed under it. Depending on how your business not used to create
services were defined, there may be more than one data control. anything.

E Accessor Represents an object returned by a bean-style accessor method For collections: forms,
Returned on the business service. For example, if when you created a tables, trees, range
Collection session bean, you chose to also create accessor methods for each navigation components,

of the Java entities under the session bean, then an accessor and master-detail widgets.
returned collection is displayed for each of those entities. For si Lo
or single objects: forms,
If an entity contains a relationship to another entity (for master-detail widgets, and
example, a foreign key), then a child accessor returned selection lists.
collection is shown for that entity In ADEF, the relationship F information
between parent and child entities is called a master-detail gr n,:ore I? © f d
relationship. about creating torms, an
navigation components,
The children under a collection may be attributes of the see Chapter 3, "Creating a
elements that make up the collection, operations on the entire ~ Basic Databound Page."
collection, or operations on the row for each element in the F inf .
collection. or more in ormation
about creating tables, see
Chapter 4, "Creating ADF
Databound Tables."
For information about
creating trees and other
master-detail Ul
components, see
Chapter 5, "Displaying
Master-Detail Data."
For information about
creating lists, see
Chapter 6, "Creating
Databound Selection
Lists."
Attribute Represents a discrete data element in an object (for example, an Label, text field, date and

[z¥3)

attribute in a row). Attributes appear as children under the
collections or method returns to which they belong.

selection list components.

For information about
creating text fields, see
Section 3.2, "Using
Attributes to Create Text
Fields."

Using ADF Model Data Binding in a Java EE Web Application 2-15

Using the Data Controls Panel

Table 2-1 (Cont.) The Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Method Represents an operation in the data control or one of its exposed Command components.
structures that may accept parameters, perform some business
logic, and optionally return a single value, a structure, or a
collection of a single value and a structure.

For methods that accept
parameters: command
components and
parameterized forms.

For information about
creating command
components from
methods, see Section 3.6,
"Creating a Form to Edit
an Existing Record."

For information about
creating parameterized
forms, see Section 3.5,
"Creating a Form Using a

Method That Takes
Parameters."
=] Method Represents an object that is returned by a custom method. The For single values: text
Return returned object can be a single value or a collection. fields and selection lists.
A method return appears as a child under the method that For collections: forms,
returns it. The objects that appear as children under a method tables, trees, and range
return can be attributes of the collection, other methods that navigation components.

perform actions related to the parent collection, or operations

that can be performed on the parent collection. When a single-value

method return is dropped,
the method is not invoked
automatically by the
framework. A user either
has to also create an
invoke action as an
executable, or drop the
corresponding method as
a button to invoke the

method.
- Operation Represents a built-in data control operation that performs Command components
actions on the parent object. Data control operations are located such as buttons or links.

in an Operations node under collections or method returns. The
operations that are children of a particular collection or method
return operate on those objects only.

For information about
creating command
components from

If an operation requires one or more parameters, they are listed ~operations, see Section 3.4,
in a Parameters node under the operation. "Incorporating Range
Navigation into Forms."

Ia Parameter Represents a parameter value that is declared by the method or Label, text, and selection
- operation under which it appears. Parameters appear in the list components.
Parameters node under a method or operation.

2.4.1 How to Use the Data Controls Panel

JDeveloper provides you with a predefined set of Ul components from which to
choose for each data control item you drop.

To use the Data Controls panel to create Ul components:

1. Select an item in the Data Controls panel and drag it onto the visual editor for
your page. For a definition of each item in the panel, see Table 2-1.

2. From the ensuing context menu, select a Ul component.

2-16 Java EE Developer's Guide for Oracle Application Development Framework

Using the Data Controls Panel

When you drag an item from the Data Controls panel and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for
the item you dropped.

Figure 2-6 shows the context menu displayed when an accessor returned
collection from the Data Controls panel is dropped on a page.

Figure 2-6 Data Controls Panel Context Menu

Create

0% Carousel
Form 3
Gantt]
Gauge...
Geographic Map »
Graph...
Hierarchy Viewer...
Multiple Selection]
Mavigation]
Single Selection]

[ADF Read-only Table...

Cancel [ADF Read-Only Dynamic Table

[EH apF Dynamic Table
ADF Pivot Table...

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look.

The resulting UI component appears in the JDeveloper visual editor, as shown in
Figure 2-7.

Figure 2-7 Databound Ul Component: ADF Table

address1 | address2 | addressid | city | countryld

#{...addres=1.inp #{...addrez=2.inp #{...addressid.inp #{.__city inputValu #{...countryld.inm

Tip: Instead of creating automatically bound UI components using
the Data Controls panel, you can create your Ul first and then bind the
components to the ADF Model layer. For more information, see the
"Using Simple Ul First Development" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

2.4.2 What Happens When You Use the Data Controls Panel to Create Ul Components

When a web application is built using the Data Controls panel, JDeveloper does the
following:

Creates a DataBindings . cpx file in the default package for the project (if one
does not already exist), and adds an entry for the page.

DataBindings. cpx files define the binding context (a container object that holds

a list of available data controls and data binding objects) for the application. Each

DataBindings.cpx file maps individual pages to the binding definitions in the

page definition file and registers the data controls used by those pages. Figure 2-8
shows a DataBindings . cpx file in the overview editor of JDeveloper.

Using ADF Model Data Binding in a Java EE Web Application 2-17

Using the Data Controls Panel

Figure 2-8 DataBindings.cpx File in the Overview Editor
Data Binding Registry

This file defines the Orade ADF binding context for your application. JDeveloper creates this file the first time you data bind a UI con
-] Page Mappings

path
[templates/StoreFrontTemplate. jspx
Jbrowse. jspx
[supplier fsupplierDetails. jspx
fogin_error.jspx
Jogin. jspx
ferrorHandler. jspx
[product/addProduct. jspx
[supplierfreqStep].jsff
[supplier freqStep2.jsff
[supplier freqStep3.jsff
[supplier fregistrationDetails. jspx
[productyproductinfo.jspx

[=] Page Definition Usages

orade_fodemo_supplier_StoreFrontTemplatePageDef
orade_fodemo_supplier_browsePageDef
orade_fodemo_supplier_supplierdetailPageDef
orade_fodemo_supplier_login_errorPageDef
orade_fodemo_supplier_supplierRegistrationPageDef
orade_fodemo_supplier_supplierRegistrationPageDef1
orade_fodemo_supplier_loginPageDef
orade_fodemo_supplier_errorHandlerPageDef
orade_fodemo_supplier_addProductPageDef
orade_fodemo_supplier_regStep1PageDef
orade_fodemo_supplier_regStep2PageDef
orade_fodemo_supplier_regStep3PageDef
orade_fodemo_supplier_registrationDetailsPageDef
orade_fodemo_supplier_productinfoPageDef

EEHEEEEEEEEEEEE =

usageld
orade_fodemo_supplier_StoreFrontTemplateFageDef
orade_fodemo_supplier_browsePageDef
orade_fodemo_supplier_supplierdetailPageDef
orade_fodemo_supplier_login_errorPageDef
orade_fodemo_supplier_loginPageDef
orade_fodemo_supplier_errorHandlerPageDef
orade_fodemo_supplier_addProductPageDef
orade_fodemo_supplier_regStepiPageDef
orade_fodemo_supplier_regStep2PageDef
orade_fodemo_supplier_regStep3PageDef
orade_fodemo_supplier_registrationDetailsPageDef
orade_fodemo_supplier_productInfoPageDef

path

templates. StoreFrontTemplatePageDef

orade. fodemo.supplier. pageDefs. browsePageDef

orade. fodemo.supplier.pageDefs. supplierdetailPfageDef

orade. fodemo.supplier.pageDefs.login_errorPageDef
ier. supplierReqistrationPageDef

supplier. supplierRegistrationPageDef1

orade. fodemo.supplier.pageDefs.loginPageDef

orade. fodemo.supplier. pageDefs. errorHandlerPageDef

product.addProductPageDef

supplier.regStep 1PageDef

supplier.reqStep?PageDef

supplier.reqStep3PageDef

supplier.registrationDetailsPageDef

product. productinfoPageDef

Example 2-5 shows the code from the corresponding XML file.

Example 2-5 DataBindings.cpx File

<?xml version="1.0" encoding="UTF-8" ?>
<Application xmlns="http://xmlns.oracle.com/adfm/application"
version="11.1.1.54.7" id="DataBindings" SeparateXMLFiles="false"
Package="oracle.fodemo.supplier" ClientType="Generic"
ErrorHandlerClass="oracle. fodemo. frmwkext .CustomErrorHandlerImpl">
<definitionFactories>
<factory nameSpace="http://xmlns.oracle.com/adf/controller/binding"
className="oracle.adf.controller.internal.binding.
TaskFlowBindingDefFactoryImpl"/>
<dtfactory className="oracle.adf.controller.internal.dtrt.binding.
BindingDTObjectFactory"/>
</definitionFactories>
<pageMap>
<page path="/templates/StoreFrontTemplate.jspx"
usageId="oracle_fodemo_supplier_StoreFrontTemplatePageDef"/>
<page path="/browse.jspx" usageld="oracle_fodemo_supplier_browsePageDef"/>
<page path="/supplier/supplierDetails.jspx"
usageId="oracle_fodemo_supplier_supplierdetailPageDef"/>
<page path="/login_error.jspx"
usageId="oracle_fodemo_supplier_login_errorPageDef" />

</pageMap>
<pageDefinitionUsages>
<page id="oracle_fodemo_supplier_ StoreFrontTemplatePageDef"
path="templates.StoreFrontTemplatePageDef"/>
<page id="oracle_fodemo_supplier_ browsePageDef"

2-18 Java EE Developer's Guide for Oracle Application Development Framework

Using the Data Controls Panel

path="oracle.fodemo.supplier.pageDefs.browsePageDef" />
<page id="oracle_fodemo_supplier_supplierdetailPageDef"
path="oracle.fodemo.supplier.pageDefs.supplierdetailPageDef"/>
<page id="oracle_fodemo_supplier_login_errorPageDef"
path="oracle.fodemo.supplier.pageDefs.login_errorPageDef" />

</pageDefinitionUsages>
<dataControlUsages>
<dc id="GenericServiceFacadeLocal"
path="oracle.fodemo.supplier.model.GenericServiceFacadeLocal"/>
<dc id="SupplierFacadeLocal"
path="oracle.fodemo.supplier.model.SupplierFacadeLocal"/>
</dataControlUsages>
</Application>

For more information about the . cpx file, see the "Working with the
DataBindings.cpx File" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

» Creates the adfm.xml file in the META-INF directory. This file creates a registry
for the DataBindings. cpx file, and is used by the applications metadata layer to
allow customization and personalization of the application. Example 2—-6 shows an
example of an adfm. xm1l file.

Example 2-6 adfm.xml File

<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"
version="11.1.1.0.0">
<DataBindingRegistry path="oracle/fodemo/supplier/DataBindings.cpx"/>
</MetadataDirectory>

= For web applications, registers the ADF binding filter in the web . xm1 file.

The ADF binding filter preprocesses any HTTP requests that may require access to
the binding context. For more information about the filter, see the "Configuring the
ADF Binding Filter" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

= Adds the following libraries to the project:
— ADF Model Runtime
- ADF Model Generic Runtime

= Adds a page definition file (if one does not already exist for the page) to the page
definition subpackage. The default subpackage is view.pageDefs in the
adfmsrc directory.

The page definition file (pageNamePageDef . xml) defines the ADF binding
container for each page in an application’s view layer. The binding container
provides runtime access to all the ADF binding objects. Figure 2-9 shows a page
definition file in the overview editor of JDeveloper.

Using ADF Model Data Binding in a Java EE Web Application 2-19

Using the Data Controls Panel

Figure 2-9 Page Definition File

[ElbrowsePageDefaxml |

Page Data Binding Definition

This shows the Orade ADF data bindings defined for your page. Select a binding to see its relationship to the underlying Data Control.

Data Binding Registry: orade/fodemo/supplier [DataBindings. cpx

r Bindings and Executables r{knlmdud Events rPa'anem |

=] Model
Bindings % 7 X Executables & 7 X Data Control

3 [variables [supplierFacadelocal

[=] removeProduct E pageTemplateBinding | | [Constructors

[Delete (= supplierFacadelocallterator| | i =] addresses
(Sl productFindAliterator | — ..]| addressesFindAl
Ck ImplicitViewCriteriaQuery | | | | L. : addressUsageFindAll

----- | countryCodeFindall

orderTtemFindAll

person

personFindAll

product

productCategoryFindAll

----- productImageFindAll
productTranslationFindAll

supplier

supplierFindAll
warehouseStockLevelFindAll

----- =] findProductByld(Long)

----- =] mergeAddresses(Addresses)

----- =] mergeAddressisage(AddressUsage)
----- {E] mergeCountryCode(CountryCode)
----- =] mergeOrderltem(OrderTtem)

----- =] mergePerson(Person)

----- =] mergeProduct(Product)

----- {E] mergeProductCategory(ProductCategory)
----- {E=] mergeProductimage(Productimage)

= Configures the page definition file, which includes adding definitions of the
binding objects referenced by the page. Example 2-7 shows the corresponding
XML for a page definition.

Example 2-7 Page Definition File

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
version="11.1.1.54.43" id="browsePageDef"
Package="oracle. fodemo.supplier.pageDefs">
<parameters/>
<executables>
<variableIterator id="variables"/>
<page path="templates.StoreFrontTemplatePageDef" id="pageTemplateBinding"
Refresh="1ifNeeded" />
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocallterator"/>
<accessorlterator MasterBinding="SupplierFacadeLocalIlterator"
Binds="productFindAll" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model.Product"
id="productFindAllIterator" Refresh="ifNeeded"/>
<searchRegion Criteria="_ ImplicitViewCriteria_ "
Customizer="oracle.jbo.uicli.binding.JUSearchBindingCustomizer"
Binds="productFindAllIterator"
id="ImplicitViewCriteriaQuery" />
</executables>
<bindings>
<tree IterBinding="productFindAllIterator" id="productFindAll">
<nodeDefinition DefName="oracle.fodemo.supplier.model.Product"

2-20 Java EE Developer's Guide for Oracle Application Development Framework

Using the Data Controls Panel

Name="productFindAl1l0">
<AttrNames>
<Item Value="productId"/>
<Item Value="productName" />
<Item Value="costPrice"/>
<Item Value="listPrice"/>
<Item Value="minPrice"/>
<Item Value="productStatus"/>
</AttrNames>
</nodeDefinition>
</tree>
<methodAction id="removeProduct" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="removeProduct"
IsViewObjectMethod="false" DataControl="SupplierFacadeLocal"
InstanceName="SupplierFacadeLocal.dataProvider">
<NamedData NDName="product"
NDValue="${bindings.productFindAllIterator.currentRow.dataProvider}"
NDType="oracle.fodemo.supplier.model.Product" />
</methodAction>
<action IterBinding="productFindAllIterator" id="Delete"
RequiresUpdateModel="false" Action="removeCurrentRow"/>
</bindings>
</pageDefinition>

For more information about the page definition file, see the "Working with Page
Definition Files" section of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

= Adds prebuilt components to the view page.

These prebuilt components include ADF data bindings that reference the binding
objects in the page definition file. Example 2-8 shows a JSF page that contains
components that have been bound using ADF Model data binding. Note that
values of the output text components are bound to values of the
productsFindAll binding object, as defined in the page definition file in
Example 2-7.

Example 2-8 JSF Page with ADF Model Data Binding

<af:column sortProperty="costPrice" sortable="false"
headerText="#{bindings.productFindAll.hints.costPrice.label}"
id="c6" align="right">
<af:outputText value="#{row.costPrice}" id="otl">
<af:convertNumber groupingUsed="false"
pattern="#{bindings.productFindAll.hints.costPrice.format}"/>
</af:outputText>
</af:column>
<af:column sortProperty="listPrice" sortable="false"
headerText="#{bindings.productFindAll.hints.listPrice.label}"
id="cl" align="right">
<af:outputText value="#{row.listPrice}" id="ot6">
<af:convertNumber groupingUsed="false"
pattern="#{bindings.productFindAll .hints.listPrice.format}"/>
</af:outputText>
</af:column>
<af:column sortProperty="minPrice" sortable="false"
headerText="#{bindings.productFindAll.hints.minPrice.label}"

Using ADF Model Data Binding in a Java EE Web Application 2-21

Using the Data Controls Panel

id="c3" align="right">
<af:outputText value="#{row.minPrice}" id="ot3">
<af:convertNumber groupingUsed="false"
pattern="#{bindings.productFindAll.hints.minPrice.format}"/>
</af:outputText>
</af:column>.

s For applications that use ADF Faces, adds all the files, and configuration elements
required by ADF Faces components. For more information, see the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application Development
Framework.

2.4.3 What Happens at Runtime

When a page contains ADF bindings, at runtime the interaction with the business
services initiated from the client or controller is managed by the application through
the binding context. The binding context is a runtime map (named data and
accessible through the EL expression # {data}) of all data controls and page
definitions within the application.

The ADF lifecycle creates the ADF binding context from the DataControls.dcx,
DataBindings.cpx, and page definition files, as shown in Figure 2-10. The
DataControls.dcx file defines the data controls available to the application at
design time, while the DataBindings . cpx files define what data controls are
available to the application at runtime. A DataBindings . cpx file lists all the data
controls that are being used by pages in the application and maps the binding
containers, which contain the binding objects defined in the page definition files, to
web page URLs, or in the case of a Java Swing application, the Java class. The page
definition files define the binding objects used by the application pages. There is one
page definition file for each page.

2-22 Java EE Developer's Guide for Oracle Application Development Framework

Using the Data Controls Panel

Figure 2-10 ADF Binding File Runtime Usage

ADF data binding files

Data contraol
description flie

.dlew

Dot Comirel
Dierts Comirol

Data binding
description flle

-
Drata Comirol Ref

[Bindirg Coninimer Refl
Binding Conininer FafZ —+ Binding Contexi

Page definition
flles

xml
Dats Binding Olject]

Dista Binding Cljeci2

Diatn Binding Oljactd

The binding context does not contain real live instances of these objects. Instead, the
map first contains references that become data control or binding container objects on
demand. When the object (such as the page definition) is released from the application
(for example when a task flow ends or when the binding container or data control is
released at the end of the request), data controls and binding containers turn back into
reference objects. For more information, see the "Understanding the Fusion Page
Lifecycle" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

2.44 What You May Need to Know About Iterator Result Caching

When a data control modifies a collection, the data control must instantiate a new
instance of the collection in order for the ADF Model layer to understand that it has
been modified. In other words, although some action in the client may change the
collection, that change will not be reflected in the Ul unless a new instance of the
collection is created. However, for performance reasons, accessor and method iterators
cache their results set (by default, the cacheResults attribute on the iterator is set to
true). This setting means that the iterator is refreshed and a new instance of the
collection is created only when the page is first rendered. The iterator is not refreshed
when the page is revisited, for example, if the page is refreshed using partial page
rendering, or if the user navigates back to the page.

For example, say you want to allow sorting on a table on your page. Because you want
the page to refresh after the sort, you add code to the listener for the sort event that
will refresh the table using partial page rendering (for more information, see the
"Rendering Partial Page Content" chapter of the Oracle Fusion Middleware Web User
Interface Developer’s Guide for Oracle Application Development Framework). Because the
instance of the collection for the table has already been instantiated and is cached, the
accessor iterator will not reexecute, which means that a new instance of the collection

Using ADF Model Data Binding in a Java EE Web Application 2-23

Using the Data Controls Panel

with the new sort order will not be created, so the sort order on the page will remain
the same.

To work around this issue, you can either configure the iterator so that it does not
cache the results, or you can place a button on the page that can be used to reexecute
the iterator when the page is refreshed. If your page does not have a button whose
action attribute can be bound to a method, then you can use an invokeAction
executable that will be invoked whenever the page is refreshed.

Note: If your page uses the navigation operations to navigate
through the collection, do not set CacheResults to false, as that
navigation will no longer work. You must use a button to reexecute
the iterator. For more information about the navigation operations, see
Section 3.4, "Incorporating Range Navigation into Forms."

Performance Tip: If you set an iterator to not cache its result set, and
that result set is a collection that may return a large number of rows,
performance will be negatively affected. For large result sets, you
should use an invokeAction.

To set an iterator to not cache its result set:

1. Open the page definition file, and in the Structure window;, select the iterator
whose results should not be cached.

2. In the Property Inspector, expand the Advanced section and set CacheResults to
false.

To use a button to reexecute the iterator:

1. From the ADF Faces page of the Component Palette, drag and drop a Button onto
the page.

2. In the Structure window;, right click the button and in the context menu, choose
Bind to ADF Control.

3. Inthe Bind to ADF Control dialog, expand the accessor associated with the iterator
to reexecute, expand that accessor’s Operations node, and select Execute.

To use an invokeAction to reexecute the iterator:

1. Open the page definition file, and in the Structure window, right-click executables
and choose Insert inside executables > invokeAction.

2. In the Insert invokeAction dialog, set id to a unique name. Use the Binds
dropdown list to select the iterator to be reexecuted.

3. With the newly created invokeAction still selected, in the Property Inspector, set
Refresh to prepareModel.

This setting will cause the accessor method to be invoked during the Prepare
Model phase. This refreshes the binding container.

4. Set RefreshCondition to an EL expression that will cause the refresh to happen
only if any value has actually changed. If this condition is not set, the
invokeAction will be called twice.

For example, the expression #{ (userState.refresh) and
(tadfFacesContext.postback) } will cause the refresh to happen only if the
page is refreshed.

2-24 Java EE Developer's Guide for Oracle Application Development Framework

Using the Data Controls Panel

For more information about the page lifecycle phases and using the refresh and
refreshCondition attributes, see "The JSF and ADF Page Lifecycle" section of
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

2.4.5 What You May Need to Know About Configuring Validation

You can set validation on the attribute bindings in a page definition file. When a user
edits or enters data in a field for an attribute for which validation has been defined,
and submits the form, the bound data is validated against the configured rules and
conditions. If validation fails, the application displays an error message. For
information and procedures on setting model layer validation, see the "Adding ADF
Model Layer Validation" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

When you set validation, you can define the error message that will be displayed. By
default, these messages are displayed in a client dialog. You can configure these
messages to display inline instead. For more information, see the "Displaying Error
Messages" section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

You can also change the way messages are handled by creating your own error
handling class. For more information, see the "Customizing Error Handling" section of
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Using ADF Model Data Binding in a Java EE Web Application 2-25

Using the Data Controls Panel

2-26 Java EE Developer's Guide for Oracle Application Development Framework

3

Creating a Basic Databound Page

This chapter describes how to use the Data Controls panel to create basic databound
pages that are based on ADF Faces components. It includes information on creating

text fields from individual attributes, generating entire forms from accessor returned
collections, and creating forms for editing existing records and creating new records.

This chapter includes the following sections:

» Section 3.1, "Introduction to Creating a Basic Databound Page"

= Section 3.2, "Using Attributes to Create Text Fields"

= Section 3.3, "Creating a Basic Form"

= Section 3.4, "Incorporating Range Navigation into Forms"

= Section 3.5, "Creating a Form Using a Method That Takes Parameters"

= Section 3.6, "Creating a Form to Edit an Existing Record"

= Section 3.7, "Creating an Input Form"

= Section 3.8, "Using a Dynamic Form to Determine Data to Display at Runtime"

= Section 3.9, "Modifying the Ul Components and Bindings on a Form"

3.1 Introduction to Creating a Basic Databound Page

You can create Ul pages that allow you to display and collect information using data
controls created for your business services. For example, using the Data Controls
panel, you can drag an attribute for an item, and then choose to display the value
either as read-only text or as an input text field with a label. JDeveloper creates all the
necessary JSF tag and binding code needed to display and update the associated data.
For more information about the Data Controls panel and the declarative binding
experience, see Chapter 2, "Using ADF Model Data Binding in a Java EE Web
Application."

Instead of having to drop individual attributes, JDeveloper allows you to drop all
attributes for an object at once as a form. The actual UI components that make up the
form depend on the type of form dropped. You can create forms that display values,
forms that allow users to edit values, and forms that collect values (input forms).

For example, the Suppliers module contains a page that allows users to view and edit
information about a supplier, as shown in Figure 3-1. This form was created by
dragging and dropping the supplierFindAll accessor collection from the Data
Controls panel.

Creating a Basic Databound Page 3-1

Using Attributes to Create Text Fields

Figure 3—1 Supplier Details Form in the Suppliers Module

i Edit Supplier Details

* Supplier Mame Transiskor Ciky
* Email contacki@bransistorcity, examp

* Phone Mumber 303.555.0177
* Supplier Status Approved supplier W

Save Zancel

Once you create the Ul components, you can then drop built-in operations as
command UI components that allow you to navigate through the records in a
collection or that allow users to operate on the data. For example, you can create a
button that allows users to delete data objects displayed in the form. You can also
modify the default components to suit your needs.

3.2 Using Attributes to Create Text Fields

JDeveloper allows you to create text fields declaratively in a WYSIWYG development
environment for your JSF pages, meaning you can design most aspects of your pages
without needing to look at the code. When you drag and drop items from the Data
Controls panel, JDeveloper declaratively binds ADF Faces text Ul components to
attributes on a data control using an attribute binding.

3.2.1 How to Create a Text Field

To create a text field that can display or update an attribute, you drag and drop an
attribute of a collection from the Data Controls panel.

To create a bound text field:

1. From the Data Controls panel, select an attribute for a collection. For a description

of the icons that represent attributes and other objects in the Data Controls panel,
see Table 2-1.

For example, Figure 3-2 shows the address1 attribute under the
addressFindAll accessor collection of the SupplierFacedLocal data control

in the Supplier module. This is the attribute to drop to display or enter the first
part of an address.

Figure 3-2 Attributes Associated with a Collection in the Data Controls Panel

Data Controls @
EE SupplierFacadelocal
(-] Constructars
BE addressesFindall
----- i faddress 1
) address2
) addressId

& countryId

& createdBy

=3 creationDate
o) lastUpdateDate

2. Drag the attribute onto the page, and from the context menu choose the type of

widget to display or collect the attribute value. For an attribute, you are given the
following choices:

3-2 Java EE Developer's Guide for Oracle Application Development Framework

Using Attributes to Create Text Fields

s Text:

— ADF Input Text w/ Label: Creates an ADF Faces inputText component
with a nested validator component. The label attribute is populated.

Tip: For more information about validators and other attributes of
the inputText component, see the "Using Input Components and
Defining Forms" chapter of the Oracle Fusion Middleware Web User
Interface Developer’s Guide for Oracle Application Development Framework.

— ADF Input Text: Creates an ADF Faces inputText component with a
nested validator component. The label attribute is not populated.

— ADF Output Text w/ Label: Creates a panellLabelAndMessage
component that holds an ADF Faces outputText component. The 1abel
attribute on the panelLabelAndMessage component is populated.

— ADF Output Text: Creates an ADF Faces outputText component. No
label is created.

— ADF Output Formatted w/Label: Same as ADF Output Text w/Label, but
uses an outputFormatted component instead of an outputText
component. The outputFormatted component allows you to add a
limited amount of HTML formatting. For more information, see the
"Displaying Output Text and Formatted Output Text" section of the Oracle
Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

— ADF Output Formatted: Same as ADF Output Formatted w/Label, but
without the label.

- ADF Label: An ADF Faces outputLabel component.

= Single Selections: Creates single selection lists. For more information about
creating lists on a JSF page, see Chapter 6, "Creating Databound Selection
Lists."

For the purposes of this chapter, only the text components (and not the lists) will
be discussed.

3.2.2 What Happens When You Create a Text Field

When you drag an attribute onto a JSF page and drop it as a Ul component, among
other things, a page definition file is created for the page (if one does not already
exist). For a complete account of what happens when you drag an attribute onto a
page, see Section 2.4.2, "What Happens When You Use the Data Controls Panel to
Create Ul Components." Bindings for the iterator and attributes are created and added
to the page definition file. Additionally, the necessary JSPX page code for the Ul
component is added to the JSF page.

3.2.2.1 Creating and Using lterator Bindings

Whenever you create Ul components on a page by dropping an item that is part of a
collection from the Data Controls panel (or you drop the whole collection as a form or
table), JDeveloper creates an iterator binding if it does not already exist. An iterator
binding references an iterator for the data collection, which facilitates iterating over its
data objects. It also manages currency and state for the data objects in the collection.
An iterator binding does not actually access the data. Instead, it simply exposes the
object that can access the data and it specifies the current data object in the collection.
Other bindings then refer to the iterator binding in order to return data for the current

Creating a Basic Databound Page 3-3

Using Attributes to Create Text Fields

object or to perform an action on the object’s data. Note that the iterator binding is not
an iterator. It is a binding to an iterator.

For example, if you drop the address1 attribute under the addressFindall
collection, JDeveloper creates an iterator binding for the

SupplierFacadeLocal data control and an accessorIterator binding for the
addressFindAll accessor, which in turn has the SupplierFacadeLocal iterator as its
master binding.

Tip: There is one accessor iterator binding created for each collection
returned from an accessor. This means that when you drop two
attributes from the same accessor (or drop the attribute twice), they
use the same binding. This is fine, unless you need the binding to
behave differently for the different components. In that case, you will
need to manually create separate iterator bindings.

The iterator binding’s rangeSize attribute determines how many rows of data are
fetched from a data control each time the iterator binding is accessed. This attribute
gives you a relative set of 1-n rows positioned at some absolute starting location in the
overall row set. By default, the attribute is set to 25. Example 3-1 shows the iterator
bindings created when you drop an attribute from the addressFindAll accessor
collection.

Example 3-1 Page Definition Code for an Iterator Accessor Binding

<executables>
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocalIlterator"/>
<accessorIterator MasterBinding="SupplierFacadeLocallterator"
Binds="addressesFindAll" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model .Addresses"
id="addressesFindAllIterator"/>
</executables>

This metadata allows the ADF binding container to access the attribute values.
Because the iterator binding is an executable, by default it is invoked when the page is
loaded, thereby allowing the iterator to access and iterate over the collection returned
by the addressFindAll accessor. This means that the iterator will manage all the
objects in the collection, including determining the current row in the collection or
determining a range of address objects.

3.2.2.2 Creating and Using Value Bindings

When you drop an attribute from the Data Controls panel, JDeveloper creates an
attribute binding that is used to bind the UI component to the attribute’s value. This
type of binding presents the value of an attribute for a single object in the current row
in the collection. Value bindings can be used both to display and to collect attribute
values.

For example, if you drop the address] attribute under the addressFindall
accessor as an ADF Output Text w/Label widget onto a page, JDeveloper creates an
attribute binding for the address1 attribute. This allows the binding to access the
attribute value of the current record. Example 3-2 shows the attribute binding for
addressl created when you drop the attribute from the addressFindAll accessor.
Note that the attribute value references the iterator named
addressesFindAllIterator.

3-4 Java EE Developer's Guide for Oracle Application Development Framework

Using Attributes to Create Text Fields

Example 3—-2 Page Definition Code for an Attribute Binding
<bindings>
<attributeValues IterBinding="addressesFindAllIterator" id="addressl">
<AttrNames>
<Item Value="addressl"/>
</AttrNames>
</attributeValues
</bindings>

For information regarding the attribute binding element properties, see the "Oracle
Binding Properties" appendix of the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

3.2.2.3 Using EL Expressions to Bind Ul Components

When you create a text field by dropping an attribute from the Data Controls panel,
JDeveloper creates the Ul component associated with the widget dropped by writing
the corresponding tag to the JSF page.

For example, when you drop the address1 attribute as an Output Text w/Label
widget, JDeveloper inserts the tags for a panelLabelAndMessage component and
an outputText component. It creates an EL expression that binds the 1abel attribute
of the panellLabelAndMessage component to the 1abel property of hints created
for the address1’s binding. This expression evaluates to the label Ul hint set in the
Java object’s structure XML file. It creates another expression that binds the
outputText component’s value attribute to the inputValue property of the
address1 binding, which evaluates to the value of the address1 attribute for the
current row. An ID is also automatically generated for both components.

Tip: JDeveloper automatically generates IDs for all ADF Faces
components. You can override these values as needed.

Example 3-3 shows the code generated on the JSF page when you drop the address1
attribute as an Output Text w/Label widget.

Example 3-3 JSF Page Code for an Attribute Dropped as an Output Text w/Label
<af:panellLabelAndMessage label="#{bindings.addressl.hints.label}"
id="plaml">
<af:outputText value="#{bindings.addressl.inputvValue}" id="otl"/>
</af:panellLabelAndMessage>

If instead you drop the address1 attribute as an Input Text w/Label widget,
JDeveloper creates an inputText component. As Example 3—4 shows, similar to the
output text component, the value is bound to the inputValue property of the
addressl binding. Additionally, the following properties are also set:

= label: Bound to the label property of the control hint set on the object.

» reguired: Bound to the mandatory property, which in turn references the
isNotNull property of the UI control hint.

s columns: Bound to the displayWidth property of the control hint, which
determines how wide the text box will be.

» maximumLength: Bound to the precision property of the control hint. This control
hint property determines the maximum number of characters per line that can be
entered into the field.

In addition, JDeveloper adds a validator component.

Creating a Basic Databound Page 3-5

Creating a Basic Form

Example 3-4 JSF Page Code for an Attribute Dropped as an Input Text w/Label

<af:inputText value="#{bindings.addressl.inputValue}"
label="#{bindings.addressl.hints.label}"
required="#{bindings.addressl.hints.mandatory}"
columns="#{bindings.addressl.hints.displayWidth}"
maximumLength="#{bindings.addressl.hints.precision}">
shortDesc="#{bindings.addressl.hints.tooltip}" id="itl">
<f:validator binding="#{bindings.addressl.validator}"/>
</af:inputText>

You can change any of these values to suit your needs. For example, the 1sNotNull
control hint on the structure file is set to false by default, which means that the
required attribute on the component will evaluate to false as well. You can
override this value by setting the required attribute on the component to true. If
you decide that all instances of the attribute should be mandatory, then you can
change the control hint in the structure file, and all instances will be required. For more
information about these properties, see Section 2.4.2, "What Happens When You Use
the Data Controls Panel to Create Ul Components."

3.3 Creating a Basic Form

Instead of dropping each of the individual attributes of a collection to create a form,
you can create a complete form that displays or collects data for all the attributes on an
object. For example, the form on the Edit Suppliers Details page was created by
dropping the productFindAll accessor collection from the Data Controls panel.

You can also create forms that provide more functionality than simply displaying data
from a collection. For information about creating a form that allows a user to update
data, see Section 3.6, "Creating a Form to Edit an Existing Record." For information
about creating forms that allow users to create a new object for the collection, see
Section 3.7, "Creating an Input Form." You can also create search forms. For more
information, see Chapter 7, "Creating Databound Search Forms."

3.3.1 How to Create a Form

To create a form using a data control, you bind the UI components to the attributes on
the corresponding object in the data control. JDeveloper allows you to do this
declaratively by dragging and dropping a returned collection from the Data Controls
panel.

To create a basic form:

1. From the Data Controls panel, select the collection that returns the data you wish
to display. Figure 3-3 shows the productFindAll accessor returned collection.

Figure 3-3 productFindAll Accessor in the Data Controls Panel

&[5 productFindall
-3 attributel
-E5 attribute10
-E) attribute11
&5 attribute12
-5 attribute13
-5 attribute14
-E attribute15
-3 attribute2

3-6 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Basic Form

2. Drag the collection onto the page, and from the context menu choose the type of
form that will be used to display or collect data for the object. For a form, you are
given the following choices:

- ADF Form: Launches the Edit Form Fields dialog that allows you to select
individual attributes instead of having JDeveloper create a field for every
attribute by default. It also allows you to select the label and UI component
used for each attribute. By default, ADF inputText components are used for
most attributes. Each inputText component has the 1abel attribute
populated.

Attributes that are dates use the InputDate component. Additionally, if a
control hint has been created for an attribute, or if the attribute has been
configured to be a list, then the component set by the hint is used instead.
InputText components contain a validator tag that allows you to set up
validation for the attribute, and if the attribute is a number or a date, a
converter is also included.

Tip: For more information about validators, converters, and other
attributes of the inputText component, see the "Using Input
Components and Defining Forms" chapter of the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

- ADF Read-Only Form: Same as the ADF Form, but read-only outputText
components are used. Since the form is meant to display data, no validator
tags are added (converters are included). Attributes of type Date use the
outputText component when in a read-only form. All components are
placed inside panelLabelAndMessage components, which have the 1abel
attribute populated. The panelLabelAndMessage components are placed
inside a panelFormLayout component.

— ADF Dynamic Form: Creates a form whose bindings are determined at
runtime. For more information, see Section 3.8, "Using a Dynamic Form to
Determine Data to Display at Runtime."

3. In the Edit Form Fields dialog, configure your form.

You can elect to include navigational controls that allow users to navigate through
all the data objects in the collection. For more information, see Section 3.4,
"Incorporating Range Navigation into Forms." You can also include a Submit
button used to submit the form. This button submits the HTML form and applies
the data in the form to the bindings as part of the JSF/ADF page lifecycle. For
additional help in using the dialog, click Help. All UI components are placed
inside a panelFormLayout component.

4. If you are building a form that allows users to update data, you now need to drag
and drop a method that will perform the update. For more information, see
Section 3.6, "Creating a Form to Edit an Existing Record."

3.3.2 What Happens When You Create a Form

Dropping an object as a form from the Data Controls panel has the same effect as
dropping a single attribute, except that multiple attribute bindings and associated Ul
components are created. The attributes on the UI components (such as value) are
bound to properties on that attribute’s binding object (such as inputvalue) or to the
values of control hints set on the corresponding service. Example 3-5 shows some of

Creating a Basic Databound Page 3-7

Incorporating Range Navigation into Forms

the code generated on the JSF page when you drop the suppliersFindAll accessor
collection as a default ADF form to create the Edit Suppliers Details form.

Note: If an attribute is marked as hidden on the associated structure
definition file, then no corresponding Ul is created for it.

Example 3-5 Code on a JSF Page for an Input Form

<af:panelFormLayout id="pfll">
<af:inputText value="#{bindings.supplierName.inputValue}"
label="#{bindings.supplierName.hints.label}"
required="#{bindings.supplierName.hints.mandatory}"
columns="#{bindings.supplierName.hints.displayWidth}"
maximumLength="#{bindings.supplierName.hints.precision}"
shortDesc="#{bindings.supplierName.hints.tooltip}"
id="it4">
<f:validator binding="#{bindings.supplierName.validator}"/>
</af:inputText>
<af:inputText value="#{bindings.email.inputValue}"
label="#{bindings.email.hints.label}"
required="#{bindings.email.hints.mandatory}"
columns="#{bindings.email.hints.displayWidth}"
maximumLength="#{bindings.email.hints.precision}"
shortDesc="#{bindings.email.hints.tooltip}"
id="it3">
<f:validator binding="#{bindings.email.validator}"/>
</af:inputText>
<af:inputText value="#{bindings.phoneNumber.inputvValue}"
label="#{bindings.phoneNumber.hints.label}"
required="#{bindings.phoneNumber.hints.mandatory}"
columns="#{bindings.phoneNumber.hints.displayWidth}"
maximumLength="#{bindings.phoneNumber.hints.precision}"
shortDesc="#{bindings.phoneNumber.hints.tooltip}"
id="itl">
<f:validator binding="#{bindings.phoneNumber.validator}"/>
</af:inputText>
<af:inputText value="#{bindings.supplierStatus.inputValue}"
label="#{bindings.supplierStatus.hints.label}"
required="#{bindings.supplierStatus.hints.mandatory}"
columns="#{bindings.supplierStatus.hints.displayWidth}"
maximumLength="#{bindings.supplierStatus.hints.precision}"
shortDesc="#{bindings.supplierStatus.hints.tooltip}"
id="it2">
<f:validator binding="#{bindings.supplierStatus.validator}"/>
</af:inputText>

</af:panelFormLayout>

Note: For information regarding the validator and converter tags,
see the "Validating and Converting Input" chapter of the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

3.4 Incorporating Range Navigation into Forms

When you create an ADF Form, if you elect to include navigational controls,
JDeveloper includes ADF Faces command components bound to existing navigational

3-8 Java EE Developer's Guide for Oracle Application Development Framework

Incorporating Range Navigation into Forms

logic on the data control. This built-in logic allows the user to navigate through all the
data objects in the collection. For example, Figure 3—4 shows a form that would be
created if you dragged the suppliersFindAll accessor and dropped it as an ADF
Form that uses navigation.

Figure 3—4 Navigation in a Form

Supplier ID supplierid. inputValue}

Status

Supplier Name | #...supplierName.inputValue}
#{...supplierStatus.inputValue}

Phone Number phoneNumber input\Value}
Email | #{...email.inputValue}
First Previous: Next Last

3.41 How to Insert Navigation Controls into a Form

By default, when you choose to include navigation when creating a form using the
Data Controls panel, JDeveloper creates First, Last, Previous, and Next buttons that
allow the user to navigate within the collection.

You can also add navigation buttons to an existing form manually.

To manually add navigation buttons:

1. From the Data Controls panel, select the operation associated with the collection of
objects on which you wish the operation to execute, and drag it onto the JSF page.

For example, if you want to navigate through a collection of products, you would
drag the Next operation associated with the suppliersFindAll accessor.
Figure 3-5 shows the operations associated with the suppliersFindall
accessor.

Figure 3-5 Operations Associated with a Collection

----- & createdBy

----- =@ creationDate

----- 53 email

----- 53 |astlpdateDate

----- 3 lastUpdatedBy

----- & objectVersionld

----- &8 phoneMumber

----- &8 supplierld

----- &8 supplierMame

----- @ supplierStatus

----- 55 wiskin

EJ---E personsList

EJ---E productsBaselist

-{=] addPersons(Persons)

- [E] addproductsBase(ProductsBase)
- [E] removePersons(Persons)

- {=] removeProductsBase(ProductsBase)
=-7] Operations

43} Previous

----- Previous Set

E:I--- removeRowWithKey

EJ--- setCurrentRowWithKey
E:I--- setCurrentRowWithKeyValue
& Z7) Named Criteria

Creating a Basic Databound Page 3-9

Incorporating Range Navigation into Forms

2. From the ensuing context menu, choose either ADF Button or ADF Link.

Tip: You can also drop the First, Previous, Next, and Last buttons at
once. To do so, drag the corresponding collection, and from the
context menu, choose Navigation > ADF Navigation Buttons.

3.4.2 What Happens When You Create Command Buttons

When you drop any operation as a command component, JDeveloper:
= Defines an action binding in the page definition file for the associated operations
= Configures the iterator binding to use partial page rendering for the collection

= Inserts code in the JSF page for the command components

3.4.2.1 Action Bindings for Built-in Navigation Operations

Action bindings execute business logic. For example, they can invoke built-in methods
on the action binding object. These built-in methods operate on the iterator or on the
data control itself, and are represented as operations in the Data Controls panel.
JDeveloper provides navigation operations that allow users to navigate forward,
backwards, to the first object in the collection, and to the last object.

Like value bindings, action bindings for operations contain a reference to the iterator
binding when the action binding is bound to one of the iterator-level actions, such as
Next or Previous. These types of actions are performed by the iterator, which
determines the current object and can therefore determine the correct object to display
when a navigation button is clicked.

Action bindings use the RequiresUpdateModel property, which determines
whether or not the model needs to be updated before the action is executed. In the case
of navigation operations, by default this property is set to true, which means that any
changes made at the view layer must be moved to the model before navigation can
occur. Example 3-6 shows the action bindings for the navigation operations.

Example 3-6 Page Definition Code for an Operation Action Binding

<action IterBinding="CustomerInfoVOlIterator" id="First"
RequiresUpdateModel="true" Action="first"/>

<action IterBinding="CustomerInfoVOlIterator" id="Previous"
RequiresUpdateModel="true" Action="previous"/>

<action IterBinding="CustomerInfoVOlIterator" id="Next"
RequiresUpdateModel="true" Action="next"/>

<action IterBinding="CustomerInfoVOlIterator" id="Last"
RequiresUpdateModel="true" Action="last"/>

3.4.2.2 Ilterator RangeSize Attribute

Iterator bindings have a rangeSize attribute that the binding uses to determine the
number of data objects to make available for the page for each iteration. This attribute
helps in situations when the number of objects in the data source is quite large. Instead
of returning all objects, the iterator binding returns only a set number, which then
become accessible to the other bindings. Once the iterator reaches the end of the range,
it accesses the next set. Example 3-7 shows the default range size for the
suppliersFindAll iterator.

Example 3-7 RangeSize Attribute for an Iterator

<accessorIterator MasterBinding="SessionEJBLocalIterator"
Binds="suppliersFindAll" RangeSize="25"

3-10 Java EE Developer's Guide for Oracle Application Development Framework

Incorporating Range Navigation into Forms

DataControl="SessionEJBLocal" BeanClass="model.Suppliers"
id="suppliersFindAllIterator" ChangeEventPolicy="ppr"/>

Note: This rangeSize attribute is not the same as the rows
attribute on a table component.

By default, the rangeSize attribute is set to 25. This means that a user can view 25
objects, navigating back and forth between them, without needing to access the data
source. The iterator keeps track of the current object. Once a user clicks a button that
requires a new range (for example, clicking the Next button on object number 25), the
binding object executes its associated method against the iterator, and the iterator
retrieves another set of 25 records. The bindings then work with that set. You can
change this setting as needed. You can set it to -1 to have the full record set returned.

Note: When you create a navigable form using the Data Controls
panel, the CacheResults property on the associated iterator is set to
true. This ensures that the iterator’s state, including currency
information, is cached between requests, allowing it to determine the
current object. If this property is set to false, navigation will not
work.

Table 3-1 shows the built-in navigation operations provided on data controls and the
result of invoking the operation or executing an event bound to the operation. For
more information about action events, see the "What Happens at Runtime: How
Action Events and Action Listeners Work" section of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Table 3—-1 Built-in Navigation Operations

Operation When invoked, the associated iterator binding will...

First Move its current pointer to the beginning of the result set.

Last Move its current pointer to the end of the result set.

Previous Move its current pointer to the preceding object in the result set. If

this object is outside the current range, the range is scrolled
backward a number of objects equal to the range size.

Next Move its current pointer to the next object in the result set. If this
object is outside the current range, the range is scrolled forward a
number of objects equal to the range size.

Previous Set Move the range backward a number of objects equal to the range
size attribute.

Next Set Move the range forward a number of objects equal to the range
size attribute.

3.4.2.3 EL Expressions Used to Bind to Navigation Operations

When you create command components using navigation operations, the command
components are placed in a panelGroupLayout component. JDeveloper creates an
EL expression that binds a navigational command button’s actionListener
attribute to the execute property of the action binding for the given operation.

At runtime an action binding will be an instance of the FacesCtrlActionBinding
class, which extends the core JUCtrlActionBinding implementation class. The
FacesCtrlActionBinding class adds the following methods:

Creating a Basic Databound Page 3-11

Incorporating Range Navigation into Forms

m public void execute (ActionEvent event): Thisis the method thatis
referenced in the actionListener property, for example
#{bindings.First.execute}.

This expression causes the binding’s operation to be invoked on the iterator when
a user clicks the button. For example, the First command button’s
actionListener attribute is bound to the execute method on the First
action binding.

s public String outcome (): This can be referenced in an Action property, for
example # {bindings.Next.outcome}.

This can be used for the result of a method action binding (once converted to a
String) as a JSF navigation outcome to determine the next page to navigate to.

Note: Using the outcome method on the action binding implies tying
the view-controller layer too tightly to the model, so it should rarely
be used.

Every action binding for an operation has an enabled boolean property that Oracle
ADF sets to false when the operation should not be invoked. By default, JDeveloper
binds the Ul component’s disabled attribute to this value to determine whether or
not the component should be enabled. For example, the UI component for the First
button has the following as the value for its disabled attribute:

#{!bindings.First.enabled}

This expression evaluates to t rue whenever the binding is not enabled, that is, when
the operation should not be invoked, thereby disabling the button. In this example,
because the framework will set the enabled property on the binding to false
whenever the first record is being shown, the First button will automatically be
disabled because its disabled attribute is set to be true whenever enabled is
False. For more information about the enabled property, see the "Oracle ADF
Binding Properties" appendix of the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

Example 3-8 shows the code generated on the JSF page for navigation operation
buttons. For more information about the partialSubmit attribute on the button, see
the "Enabling Partial Page Rendering Declaratively" section of the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application Development
Framework. For information about automatic partial page rendering for the binding,
see the "What You May Need to Know About Automatic Partial Page Rendering"
section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Example 3-8 JSF Code for Navigation Buttons Bound to ADF Operations

<f:facet name="footer">
<af :panelGroupLayout>
<af:commandButton actionListener="#{bindings.First.execute}"
text="First"
disabled="#{!bindings.First.enabled}"
partialSubmit="true" id="cbl"/>
<af:commandButton actionListener="#{bindings.Previous.execute}"
text="Previous"
disabled="#{!bindings.Previous.enabled}"
partialSubmit="true" id="cb2"/>
<af:commandButton actionListener="#{bindings.Next.execute}"

3-12 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Form Using a Method That Takes Parameters

text="Next"
disabled="#{!bindings.Next.enabled}"
partialSubmit="true" id="cb3"/>
<af:commandButton actionListener="#{bindings.Last.execute}"
text="Last"
disabled="#{!bindings.Last.enabled}"
partialSubmit="true" id="cbd"/>
</af:panelGroupLayoutr>
</f:facet>

3.5 Creating a Form Using a Method That Takes Parameters

There may be cases where a page needs information before it can display content. For
these types of pages, you create the form using a returned collection from a method
that takes parameters. The requesting page needs to supply the value of the
parameters in order for the method to execute.

For example, the form on the productInfo page is created using the returned
collection from the findProductById (Long) method. Instead of returning all
products, it returns only the product the user selected on the previous page. The
toolbar button on the previous page sets the parameter (Long), which provides the
product’s ID. For more information about using a command component to set a
parameter value, see Section 3.5.4, "What You May Need to Know About Setting
Parameters with Methods."

3.5.1 How to Create a Form or Table Using a Method That Takes Parameters

To create forms that require parameters, you must be able to access the values for the
parameters in order to determine the record(s) to return. You access those values by
adding logic to a command button on another page that will set the parameter value
on some object that the method can then access. For example, on the browse. jspx
page, the Edit toolbar button sets the product ID in the pageFlow scope. To create the
form showing the product information, you use the return of the
findProductById(Long) method, and you have that method access the parameter
on the pageFlow scope, where it is stored.

Before you begin:

You need to create a method on your session bean that will return the items needed to
be displayed in your form. For example, the findProductById (Long) method was
added to the SupplierFacadeBean. java class.

Tip: You need to refresh the Data Controls panel in order for any
changes made to services to display in the panel. To refresh the panel,
click the Refresh icon.

To create a form or table that uses parameters:

1. From the Data Controls panel, drag a collection that is a return of a method that
takes a parameter or parameters and drop it as any type of form.

For example, to create the form that displays when you click the toolbar button to
edit a product, you would drag and drop the Product return, as shown in
Figure 3-6.

Creating a Basic Databound Page 3-13

Creating a Form Using a Method That Takes Parameters

Figure 3-6 Return of a Custom Method That Takes Parameters

Data Controls C g
E warehouseStodd evelFindAll
EI findProductById{Long)
. =[] Parameters
‘... 73 productld
mergeAddresses(Addresses)
mergeAddressUsage{Addresslsage)

In the Edit Form Fields dialog, configure the form as needed and click OK.
For help in using the dialogs, click Help.

Because the method takes parameters, the Edit Action Binding dialog opens,
asking you to set the value of the parameters.

In the Action Binding Editor, enter the value for each parameter by clicking the
browse (...) icon in the Value field to open the EL Expression Builder. Select the
node that represents the value for the parameter.

For example, the toolbar button uses a setActionListenerComponent that
sets the productId parameter value on the pageFlow scope. To access that
value, you would use # {pageFlowScope.ProductId} as the value for the
parameter.

This editor uses the value to create the NamedData element that will represent the
parameter when the method is executed. Since you are dropping a collection that
is a return of the method (unlike a method bound to a command button), this
method will be run when the associated iterator is executed as the page is loaded.
You want the parameter value to be set before the page is rendered. This means
the NamedData element needs to get this value from wherever the sending page
has set it.

3.5.2 What Happens When You Create a Form Using a Method That Takes Parameters

When you use a return of a method that takes parameters to create a form, JDeveloper:

Creates an action binding for the method, a method iterator binding for the result
of the method, and attribute bindings for each of the attributes of the object, or in
the case of a table, a table binding. It also creates NamedData elements for each
parameter needed by the method.

Inserts code in the JSF page for the form using ADF Faces components.

Example 3-9 shows the action method binding created when you drop the
findProductById (Long) method, where the value for the productId was set to
the ProductId attribute stored in pageFlowScope.

Example 3-9 Method Action Binding for a Method Return

<bindings>

<methodAction id="findProductById" RequiresUpdateModel="true"

Action="invokeMethod" MethodName="findProductById"
IsViewObjectMethod="false" DataControl="SupplierFacadeLocal"
InstanceName="SupplierFacadeLocal.dataProvider"
ReturnName="SupplierFacadeLocal .methodResults.findProductById_
SupplierFacadeLocal_dataProvider_findProductById result">
<NamedData NDName="productId" NDValue="#{pageFlowScope.ProductId}"

3-14 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Form Using a Method That Takes Parameters

NDType="java.lang.Long"/>
</methodAction>

</bindings>

Note that the NamedData element will evaluate to productID on the
pageFlowScope, as set by any requesting page.

3.5.3 What Happens at Runtime: Setting Parameters for a Method

Unlike a method executed when a user clicks a command button, a method used to
create a form is executed as the page is loaded. When the method is executed in order
to return the data for the page, the method evaluates the EL expression for the
NamedData element and uses that value as its parameter. It is then able to return the
correct data. If the method takes more than one parameter, each is evaluated in turn to
set the parameters for the method.

For example, when the ProductInfo page loads, it takes the value of the ProductId
parameter on the pageFlow scope, and sets it as the value of the parameter needed by
the findProductById (Integer) method. Once that method executes, it returns
only the record that matches the value of the parameter. Because you dropped the
return of the method to create the form, that return is the product that is displayed.

3.5.4 What You May Need to Know About Setting Parameters with Methods

There may be cases where an action on one page needs to set parameters that will be
used to determine application functionality. For example, you can create a command
button on one page that will navigate to another page, but a component on the
resulting page will display only if the parameter value is false.

You can use a managed bean to pass this parameter between the pages, and to contain
the method that is used to check the value of this parameter. A
setPropertyListener component with the type property set to action, whichis
nested in the command button, is then used to set parameter. For more information
about setting parameters using methods, see the "Setting Parameter Values Using a
Command Component" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

Note: If you are using task flows, you can use the task flow
parameter passing mechanism. For more information, see the "Using
Parameters in Task Flows" chapter of the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

3.5.5 What You May Need to Know About Using Contextual Events Instead of

Parameters

Often a page or a region within a page needs information from somewhere else on the
page or from a different region (for more information about regions, see the "Using
Task Flows as Regions" sections of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework). While you can pass parameters to
obtain that information, doing so makes sense only when the parameters are well
known and the inputs are EL-accessible to the page. Parameters are also useful when a
task flow may need to be restarted if the parameter value changes.

However, suppose you have a task flow with multiple page fragments that contain
various interesting values that could be used as input on one of the pages in the flow.

Creating a Basic Databound Page 3-15

Creating a Form to Edit an Existing Record

If you were to use parameters to pass the value, the task flow would need to surface
output parameters for the union of each of the interesting values on each and every
fragment. Instead, for each fragment that contains the needed information, you can
define a contextual event that will be raised when the page is submitted. The page or
fragment that requires the information can then subscribe to the various events and
receive the information through the event.

You can create and configure contextual events using a page definition file. For more
information, see the "Creating Contextual Events" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

3.6 Creating a Form to Edit an Existing Record

You can create a form that allows a user to edit the current data, and then commit
those changes to the data source. To do this, you use methods that can modify data
records associated with the collection to create command buttons. For example, you
can use the default mergeSuppliers (Suppliers) method to create a button that
allows a user to update a supplier.

If the page is not part of a bounded task flow, you need to use the merge or persist
method associated with the collection to merge the changes back into the collection
(for more information about the difference between the two, see Section 3.6.3, "What
You May Need to Know About the Difference Between the Merge and Persist
Methods"). If the page is part of a transaction within a bounded task flow, you use the
commit and rollback operations to resolve the transaction in a task flow return
activity. For more information, see the "Using Task Flow Return Activities" section of
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

3.6.1 How to Create Edit Forms

To use methods on a form, you follow the same procedures as with the operations.

To create an edit form:

1. From the Data Controls panel, drag the collection for which you wish to create the
form, and choose ADF Form from the context menu.

This creates a form using inputText components, which will allow the user to
edit the data in the fields.

2. From the Data Controls panel, select the merge or persist method associated with
the collection of objects on which you wish the operation to execute, and drag it
onto the JSF page.

For example, if you want to be able to update a supplier record and will not be
working with that instance again, you would drag the

mergeSuppliers (Suppliers) method. For more information about the
difference between the merge and persist methods, see Section 3.6.3, "What You
May Need to Know About the Difference Between the Merge and Persist
Methods."

3. From the ensuing context menu, choose either ADF Button or ADF Link.

4. In the Edit Action Binding dialog, you need to populate the value for the method’s
parameter. For the merge methods (and the other default methods), this is the
object being updated.

a. In the Parameters section, use the Value dropdown list to select Show EL
Expression Builder.

3-16 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Form to Edit an Existing Record

C.

In the Expression Builder, expand the node for the accessor’s iterator, then
expand the currentRow node, and select dataProvider.

This will create an EL expression that evaluates to the data for the current row
in the accessor’s iterator.

Click OK.

For example, if you created a form using the suppliersFindAll accessor
collection, then JDeveloper would have created an accessorIterator binding
named suppliersFindAllIterator. You would need to select the
dataProvider for the current row under that iterator, as shown in Figure 3-7.
This reference means that the parameter value will resolve to the value of the row

currently being shown in the form.

Figure 3-7 dataProvider for the Current Row on the suppliersFindAlllterator Binding

® Variables

(X

Expression Builder () Dynamic (${}) (2) Deferred (#3)
Select values from variables and operators to create an expression or directly type the expression here:

H @ ¢

Expression:

#{bindings.suppliersFindAllterator. currentRow. dataProvider}

Variables: |Common

- | Operands:

g

== suppliersFindAllIterator
----- =8 accessorlterator
----- 3 actionBindingList
----- =3 alRowsInRange
----- [E@ attributeDefs

----- 3 bindingContainer
----- &3 changeEventRate

oA W AW
LU [

[=-E3 currentRow
Y= taProvider
----- 3 currentRowIndexInRange
----- =2 currentRowkeyString
..... EFEL_rurrentR nudifithkew

= % =

Description

Help

OK J | Cancel

Note: If the page is part of a transaction within a bounded task flow,
then instead of creating a button from the merge method (or other
default method), you would set that method as the value for the
transaction resolution when creating the task flow return activity. For
more information, see the "Using Task Flow Return Activities" section
of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

3.6.2 What Happens When You Use Methods to Change Data

When you drop a method as a command button, JDeveloper:

Defines a method binding for the method. If the method takes any parameters,

JDeveloper creates NamedData elements that hold the parameter values. For more

information about NamedData elements, see Section 3.5.3, "What Happens at
Runtime: Setting Parameters for a Method."

Creating a Basic Databound Page 3-17

Creating a Form to Edit an Existing Record

= Inserts code in the JSF page for the ADF Faces command component. This code is
the same as code for any other command button, as described in Section 3.6.2.2,
"Using EL Expressions to Bind to Methods." However, instead of being bound to
the execute method of an action binding for an operation, the buttons are bound
to the execute method of the action binding for the method that was dropped.

3.6.2.1 Method Bindings

Similar to when you create a button from a built-in operation, when you create a
button from a method, JDeveloper creates an action binding for the method.
Example 3-10 shows the action binding created when you drop the
mergeSuppliers (Suppliers) method.

Example 3-10 Page Definition Code for an Action Binding Used by the Iterator
<bindings>
<methodAction id="mergeSuppliers" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="mergeSuppliers"
IsViewObjectMethod="false" DataControl="SessionEJBLocal"
InstanceName="SessionEJBLocal.dataProvider"
ReturnName="SessionEJBLocal .methodResults.mergeSuppliers_
SessionEJBLocal_dataProvider_persistSuppliers_result">
<NamedData NDName="suppliers" NDType="model.Suppliers"/>
</methodAction>
</bindings>

In this example, when the binding is accessed, the method is invoked because the
action property value is invokeMethod.

When you drop a method that takes parameters onto a JSF page, JDeveloper also
creates NamedData elements for each parameter. These elements represent the
parameters of the method. For example, the mergeSuppliers (Suppliers) method
action binding contains a NamedData element for the Suppliers parameter.

3.6.2.2 Using EL Expressions to Bind to Methods

Like creating command buttons using navigation operations, when you create a
command button using a method, JDeveloper binds the button to the method using
the actionListener attribute. The button is bound to the execute property of the
action binding for the given method. This binding causes the binding’s method to be
invoked on the business service. For more information about the actionListener
attribute, see the "What Happens at Runtime: How Action Events and Action Listeners
Work" section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

Tip: Instead of binding a button to the execute method on the
action binding, you can bind the button to a method in a backing bean
that overrides the execute method. Doing so allows you to add logic
before or after the original method runs. For more information, see
Section 3.6.4, "What You May Need to Know About Overriding
Declarative methods."

Like navigation operations, the disabled property on the button uses an EL
expression to determine whether or not to display the button. Example 3-11 shows the
EL expression used to bind the command button to the

mergeSuppliers (Suppliers) method.

3-18 Java EE Developer's Guide for Oracle Application Development Framework

Creating an Input Form

Example 3-11 JSF Code to Bind a Command Button to a Method

<af:commandButton actionListener="#{bindings.mergeSupplier.execute}"
text="mergeSupplier"
disabled="#{!bindings.mergeSupplier.enabled}"
id="cbl"/>

Tip: When you drop a UI component onto the page, JDeveloper
automatically gives it an ID based on the number of the same type of
component previously dropped, for example, cbl, cb2. You may
want to change the ID to something more descriptive, especially if you
will need to refer to it in a backing bean that contains methods for
multiple UI components on the page.

3.6.3 What You May Need to Know About the Difference Between the Merge and Persist

Methods

If when you created your session bean, you chose to expose the merge and persist
methods for a structured object, then those methods appear in the Data Controls panel
and you can use them to create buttons that allow the user to merge and persist the
current instance of the object. Which you use depends on whether the page will need
to interact with the instance once updates are made. If you want to be able to continue
to work with the instance, then you need to use the persist method.

The merge methods are implementations of the JPA EntityManager . merge method.
This method takes the current instance, copies it, and passes the copy to the
PersistenceContext. It then returns a reference to that persisted entity and not to
the original object. This means that any subsequent changes made to that instance will
not be persisted unless the merge method is called again.

The persist methods are implementations of the JPA EntityManager.persist
method. Like the merge method, this method passes the current instance to the
PersistenceContext. However, the context continues to manage that instance so
that any subsequent updates will be made to the instance in the context.

3.6.4 What You May Need to Know About Overriding Declarative methods

When you drop an operation or method as a command button, JDeveloper binds the
button to the execute method for the operation or method. However, there may be
occasions when you need to add logic before or after the existing logic. JDeveloper
allows you to add logic to a declarative operation by creating a new method and
property on a managed bean that provides access to the binding container. By default,
this generated code executes the operation or method. You can then add logic before or
after this code. JDeveloper automatically binds the command component to this new
method, instead of to the execute property on the original operation or method. Now
when the user clicks the button, the new method is executed. For more information,
see the "Overriding Declarative Methods" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

3.7 Creating an Input Form

You can create a form that allows a user to enter information for a new record and then
commit that record to the data source. You need to use a task flow that contains a
method activity that will call the Create operation before the page with the input
form is displayed. This method activity causes a blank row to be inserted into the row
set which the user can then populate using a form.

Creating a Basic Databound Page 3-19

Creating an Input Form

Tip: For more information about task flows, see the "Creating ADF
Task Flows" part of the Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

For example, in the Supplier module, you could create a new form that allows the user
to create an address. You might create a create-address-task-£flow task flow that
contains a createAddress method activity, which calls the Create operation on the
addresses accessor. Control is then passed to the createAddress view activity,

which displays a form where the user can enter a new address, as shown in Figure 3-8.

Figure 3-8 Create an Address

* address ID 1
* dddress1 514 W Superior Sk
Addressz
* Ziky Kokomo
Postal Code 46501
* Stake/Province IR
* Counkey I US

Save

Note: If your application does not use task flows, then the calling
page should invoke the create operation similar to the way in which
a task flow’s method activity would. For example, you could provide
application logic within an event handler associated with a command
button on the calling page.

3.7.1 How to Create an Input Form Using a Task Flow

You create an input form within a bounded task flow to ensure proper transaction
handling.

Before you begin:

You need to create a bounded task flow that will contain both the form and the method
activity that will execute the Create operation. The task flow should start a new
transaction. For procedures, see the "Creating a Task Flow" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

To create an input form:

1. To the bounded task flow, add a method activity. Have this activity execute the
Create operation associated with the accessor for which you are creating the
form. For these procedures on using method activities, see the "Using Method Call
Activities" section of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

For example, to create the form that would allow users to create addresses, you
would have the method activity execute the Create operation associated with the
addresses accessor.

2. In the Property Inspector, enter a string for the fixed-outcome property. For
example, you might enter create as the £ixed-outcome value.

3-20 Java EE Developer's Guide for Oracle Application Development Framework

Creating an Input Form

Add a view activity that represents the page for the input form. For information
on adding view activities, see the "Using View Activities" section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Add a control flow case from the method activity to the view activity. In the
Property Inspector, enter the value of the fixed-outcome property of the method
activity set in Step 2 as the value of the from-outcome of the control flow case.

Open the page for the view activity in the design editor, and from the Data
Controls panel, drag the collection for which the form will be used to create a new
record, and choose ADF Form from the context menu.

For example, for the form to create addresses, you would drag the addresses
accessor collection from the Data Controls panel.

Tip: If you want the user to be able to create multiple entries before
committing to the database, do the following:

1. Inthe task flow, add another control flow case from the view activity back
to the method activity, and enter a value for the from-outcome method.
For example, you might enter createAnother.

2. Drag and drop a command component from the Component Palette onto
the page, and set the action attribute to the from-outcome just
created. This will cause the task flow to return to the method activity and
reinvoke the Create operation.

In the task flow, add a return activity. This return activity must execute the commit
operation on the data control. For these procedures, see the "Using Task Flow
Return Activities" section of the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

Tip: If when you set the return activity to execute the commit
operation the activity shows an error, it is probably because the task
flow itself is not set up to start a transaction. You need to set it to do
so. For more information, see the "Managing Transactions" section of
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

Add a control flow case from the view activity to the return activity. Set the
fixed-outcome attribute to a text string. For example, you might set it to
return.

From the Component Palette, drag and drop a button or other command
component that will be used to invoke the return activity. Set the action attribute
to the text string set as the fixed-outcome created in Step 7.

3.7.2 What Happens When You Create an Input Form Using a Task Flow

When you use an ADF Form to create an input form, JDeveloper:

Creates an iterator binding for the accessor and an action binding for the Create
operation in the page definition for the method activity. The Create operation is
responsible for creating a row in the row set and populating the data source with
the entered data. In the page definition for the page, JDeveloper creates an iterator
binding for the returned collection and attribute bindings for each of the attributes
of the object in the collection, as for any other form.

Creating a Basic Databound Page 3-21

Using a Dynamic Form to Determine Data to Display at Runtime

= Inserts code in the JSF page for the form using ADF Faces inputText
components, and in the case of the operations, commandBut ton components.

For example, the form shown in Figure 3-8 might be displayed by clicking a "Create
Address" link on the main page. This link then navigates to the form where you can
input data for a new address. Once the address is created, and you click the Save
button, you return to the main page. Figure 3-9 shows a
create-address-task-flow task flow with the newAddress method activity.

Figure 3-9 Task Flow for an Input Form

commit }‘ @
| l

[1 Create “
@

Y

newAddres‘s createfddress taskFIDwRetu'rnl

Example 3-12 shows the page definition file for the method activity.

Example 3—-12 Page Definition Code for a Creation Method Activity

<executables>
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocalIterator"/>
<accessorlterator MasterBinding="SupplierFacadeLocalIlterator"
Binds="addresses" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model .Addresses"
id="addressesIterator"/>
</executables>
<bindings>
<action IterBinding="addressesIterator" id="Create"
RequiresUpdateModel="true" Action="createRow"/>
</bindings>

3.7.3 What Happens at Runtime: Invoking the Create Action Binding from the Method

Activity

When the newAddress method activity is accessed, the Create action binding is
invoked, which executes the CreateInsertRow operation, and a new blank instance
for the collection is created. Note that during routing from the method activity to the
view activity, the method activity’s binding container skips validation for required
attributes, allowing the blank instance to be displayed in the form on the page.

3.8 Using a Dynamic Form to Determine Data to Display at Runtime

ADF Faces offers a library of dynamic components that includes dynamic form and
dynamic table widgets that you can drop from the Data Controls panel. Dynamic
components differ from standard components in that all the binding metadata is
created at runtime. This dynamic building of the bindings allows you set display
information using control hints for attributes on the entity, instead of configuring the
information in the Edit Form Fields dialog as you drop the control onto the page. Then
if you want to change how the data displays, you need only change it in the structure
definition file, and all dynamic components bound to that Java object will change their

3-22 Java EE Developer's Guide for Oracle Application Development Framework

Using a Dynamic Form to Determine Data to Display at Runtime

display accordingly. With standard components, if you want to change any display
attributes (such as the order or grouping of the attributes), you would need to change
each page on which the data is displayed.

For example, in the Suppliers module, you could set the category and field order
attribute hints on the Suppliers Java object that groups the supplierName and
supplierID attributes together and at the top of a form (or at the leftmost columns of
a table), the supplierStatus at the bottom of a form (or the rightmost columns of a
table), and the email and phoneNumber together and at the middle of a form or
table.

Figure 3-10 shows a dynamic form at runtime created by dragging and dropping the
Supplier collection with control hints set in this manner.

Figure 3-10 Dynamic Form Displays Based on Hints Set on the Metatdata for the Java
Object

* Supplierld 100
* cupplierMamme Stuffz
PhoneMumnber 402,555.0155

Email contachi@stuffz, example,com

* Supplierstatus ACTIVE

3.8.1 How to Use Dynamic Forms

To use dynamic forms you first need to set control hints (especially the order and
grouping hints) on the structure file for the corresponding Java objects. Next you
import the libraries for the dynamic components. You can then drop the dynamic form
or table widgets onto your page.

Before you begin:
You need to set the category and field order control hints on the attributes in the
structure file for the associated Java object.

For example, for the dynamic form in Figure 3-10, you would set the category and
field order control hints for the supplierld, supplierName, phoneNumber,
email, and supplierStatus attributes, as follows:

1. Enter a String for the Category field.

Use this same String for the Category value for any other attribute that you want
to appear with this attribute in a group. For example, the Category value for both
the phoneNumber and email attributes is contact.

2. Enter a number for the Field Order field that represents where in the group this
attribute should appear.

For example, the phoneNumber has a Field Order value of 1 and the email
attribute has a value of 2.

For procedures on creating control hints, see the "Defining Attribute Control Hints for
View Objects" section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

To use dynamic components:
1. If not already included, import the dynamic component library.

Creating a Basic Databound Page 3-23

Using a Dynamic Form to Determine Data to Display at Runtime

1. In the Application Navigator, right-click the view project in which the
dynamic components will be used, and from the context menu, choose Project
Properties.

2, In the Project Properties dialog, select the JSP Tag Libraries node.
3. On the JSP Tag Libraries page, click Add.

4. Inthe Choose Tag Libraries dialog, select ADF Dynamic Components and
click OK.

5. On the JSP Tag Libraries page, click OK.

2. From the Data Controls panel, drag the collection onto the page, and from the
context menu, choose Forms > ADF Dynamic Form.

Tip: If dynamic components are not listed, then the library was not
imported into the project. Repeat Step 1.

3. In the Property Inspector, enter the following: for the Category field:

= Category: Enter the string used as the value for the Category Ul hint for the
first group you’d like to display in your form. For example, in Figure 3-10, the
Category value would be id.

» Editable: Enter true if you want the data to be editable (the default). Enter
false if the data should be read-only.

4. Repeat Steps 2 and 3 for each group that you want to display on the form. For
example, the form in Figure 3-10 is actually made up of three different forms: one
for the category id, one for the category contact, and one for the category
status.

3.8.2 What Happens When You Use Dynamic Components

3-24

When you drop a dynamic form, only a binding to the iterator is created.

Example 3-13 shows the page definition for a page that contains one dynamic form
component created by dropping the supplier collection. Note that no attribute
bindings are created.

Example 3-13 Page Definition Code for a Dynamic Form

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
version="11.1.1.53.2" id="DynamicFormPageDef"
Package="package.pageDefs">
<parameters/>
<executables>
<iterator Binds="root" RangeSize="25"
DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocalIlterator"/>
<accessorIterator MasterBinding="SupplierFacadelLocallIterator"
Binds="supplier" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model.Supplier"
id="supplierIterator"/>
</executables>
<bindings/>
</pageDefinition>

JDeveloper inserts a form tag which contains a dynamic form tag for each of the forms
dropped. The form tag’s value is bound to the iterator binding, as shown in

Java EE Developer's Guide for Oracle Application Development Framework

Using a Dynamic Form to Determine Data to Display at Runtime

Example 3-14. This binding means the entire form is bound to the data returned by the
iterator. You cannot set display properties for each attribute individuality, nor can you
rearrange attributes directly on the JSF page.

Example 3-14 JSF Page Code for a Dynamic Form

<af:document>
<af:messages/>
<af:form>
<dynamic: form value="#{bindings.supplierIterator}" id="f1"
category="id"/>
<dynamic:form value="#{bindings.supplierIterator}" id="f2"
category="contact"/>
<dynamic: form value="#{bindings.supplierIterator}" id="£3"
category="status"/>
</af:form>
</af:document>

Tip: You can set certain properties that affect the functionality of the
form. For example, you can make a form available for upload, set the
rendered property, or set a partial trigger. To do this, select the

af: formtag in the Structure window, and set the needed properties

using the Property Inspector.

3.8.3 What Happens at Runtime: How Attribute Values Are Dynamically Determined

When a page with dynamic components is rendered, the bindings are created just as
they are when items are dropped from the Data Controls panel at design time, except
that they are created at runtime. For more information, see Section 3.3.2, "What
Happens When You Create a Form."

Tip: While there is a slight performance hit because the bindings
need to be created at runtime, there is also a performance gain because
the JSF pages do not need to be regenerated and recompiled when the
structure of the view object changes.

3.8.4 What You May Need to Know About Converters for Dynamic Forms

By default, when you create a dynamic form, any necessary converters are created
dynamically and the converter’s pattern string is set to the format hint on the attribute
definition in the view object.

If you want to use an alternate format string for a converter for attributes of a given
Java type, you can do so by creating a custom converter and registering it in the
faces-config.xml file to be used on attributes of that type. Example 3-15 shows a
faces-config.xml entry for a converter for java.sqgl.Date attributes.

Example 3-15 faces-config.xml Entry for a Custom Converter
<converter>
<display-name>Date Time Converter</display-name>
<converter-for-class>java.sql.Date</converter-for-class>

<converter-class>sample.apps.view.DateTimeConverter</converter-class>
</converter>

The custom converter that you create must extend an ADF Faces or Trinidad converter

class (such as
org.apache.myfaces.trinidadinternal.convert.DateTimeConverter

Creating a Basic Databound Page 3-25

Modifying the Ul Components and Bindings on a Form

and implement the getPattern () method. For more information on creating a
custom converter, see "Creating Custom JSF Converters" in the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

The dynamic form looks up the converter based on the Java type specified in the
faces-config.xml entry. If the attribute definition in the view object has a format
hint specified, then that hint is used as a pattern on the converter. Otherwise, the
pattern is untouched and the default pattern from the return of the converter’s
getPattern () method is used.

3.9 Modifying the Ul Components and Bindings on a Form

Once you use the Data Controls panel to create any type of form (except a dynamic
form), you can then delete attributes, change the order in which they are displayed,
change the component used to display data, and change the attribute to which the
components are bound.

For more information about modifying existing Ul components and bindings, see the
"Modifying the Ul Components and Bindings on a Form" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

3-26 Java EE Developer's Guide for Oracle Application Development Framework

4

Creating ADF Databound Tables

This chapter describes how to use the Data Controls panel to create basic databound
tables that are based on ADF Faces components, including editable tables and input
tables.

This chapter includes the following sections:

= Section 4.1, "Introduction to Adding Tables"

» Section 4.2, "Creating a Basic Table"

» Section 4.3, "Creating an Editable Table"

» Section 4.4, "Creating an Input Table"

= Section 4.5, "Modifying the Attributes Displayed in the Table"

4.1 Introduction to Adding Tables

Unlike forms, tables allow you to display more than one data object from a collection
returned by an accessor at a time. Figure 4-1 shows a table on the browse page of the
Suppliers module, with the products returned from the search.

Figure 4-1 Results Table Displays Products That Match the Search Criteria

Yiew w & Update 38 Remove = Detach

Product Id Product Marne Lisk Price: Zost Price Min, Price Product Status
4 Tren 700w Phone/PDy 399,99 300 359,99 aVAILABLE

5 Tungsten E PDA 195,99 100 175,99 AVAILABLE

15 Ipod Speakers 59,99 35 55,99 AVAILABLE

16 Creative Zen Vision YW 359,99 290 329,99 AVAILABLE

23 Ipod Mano 4Gk 249,95 150 199,95 AVAILABLE

29 LCD HD Telewvision 599,99 &00 599,99 AVAILABLE

3l 7 Megapixel Digital e 529,99 300 99,99 AVAILABLE

33 Zhocolate Phone 499,99 300 99,99 AVAILABLE

< >

You can create tables that simply display data, or you can create tables that allow you
to edit or create data. Once you drop an accessor as a table, you can add command
buttons bound to actions that execute some logic on a selected row. You can also
modify the default components to suit your needs.

4.2 Creating a Basic Table

Unlike with forms where you bind the individual Ul components that make up a form
to the individual attributes on the collection, with a table you bind the ADF Faces

Creating ADF Databound Tables 4-1

Creating a Basic Table

table component to the complete collection or to a range of n data objects at a time
from the collection. The individual components used to display the data in the
columns are then bound to the attributes. The iterator binding handles displaying the
correct data for each object, while the table component handles displaying each
object in a row. JDeveloper allows you to do this declaratively, so that you don’t need
to write any code.

4.2.1 How to Create a Basic Table

To create a table using a data control, you bind the table component to a returned
collection. JDeveloper allows you to do this declaratively by dragging and dropping a
collection from the Data Controls panel.

Tip: You can also create a table by dragging a table component from
the Component Palette and completing the Create ADF Faces Table
wizard. For more information, see the "How to Display a Table on a
Page" section of the Oracle Fusion Middleware Web User Interface
Developer’s Guide for Oracle Application Development Framework.

To create a databound table:

1.

From the Data Controls panel, select a collection.

For example, to create a simple table in the Suppler module that displays products
in the system, you would select the productFindAll accessor collection.

Drag the collection onto a JSF page, and from the context menu, choose the
appropriate table.

When you drag the collection, you can choose from the following types of tables:

ADF Table: Allows you to select the specific attributes you need your editable
table columns to display, and what Ul components to use to display the data.
By default, ADF inputText components are used for most attributes, thus
enabling the table to be editable. Attributes that are dates use the inputDate
component. Additionally, if a control type control hint has been created for an
attribute, or if the attribute has been configured to be a list, then the
component set by the hint is used instead. For more information about setting
control hints, see the "Defining Attribute Control Hints for View Objects"
section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework

ADF Read-Only Table: Same as the ADF Table; however, each attribute is
displayed in an outputText component.

ADF Read-Only Dynamic Table: Allows you to create a table when the
attributes returned and displayed are determined dynamically at runtime.
This component is helpful when the attributes for the corresponding object are
not known until runtime, or you do not wish to hardcode the column names
in the JSF page.

The ensuing Edit Table Columns dialog shows each attribute in the collection, and
allows you to determine how these attributes will behave and appear as columns
in your table.

Note: If the collection contains a structured attribute (an attribute
that is neither a Java primitive type nor a collection), the attributes of
the structured attributes will also appear in the dialog.

4-2 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Basic Table

Using this dialog, you can do the following;:

Allow the ADF Model layer to handle selection by selecting the Row Selection
checkbox. Selecting this option means that the iterator binding will access the
iterator to determine the selected row. Select this option unless you do not
want the table to allow selection.

Allow the ADF Model layer to handle column sorting by selecting the Sorting
checkbox. Selecting this option means that the iterator binding will access the
iterator, which will perform an order-by query to determine the order. Select
this option unless you do not want to allow column sorting.

Allow the columns in the table to be filtered using entered criteria by selecting
the Filtering checkbox. Selecting this option allows the user to enter criteria in
text fields above each column. That criteria is then used to build a
Query-by-Example (QBE) search on the collection, so that the table will
display only the results returned by the query. For more information, see
Section 7.5, "Creating Standalone Filtered Search Tables."

Group columns for selected attributes together under a parent column, by
selecting the desired attributes (shown as rows in the dialog), and clicking the
Group button. Figure 4-2 shows how two grouped columns appear in the
visual editor after the table is created.

Figure 4-2 Grouped Columns in an ADF Faces Table

Group . . .

Cozt P List P
Product id Product Name ostrce sHEree
#{.. productid} #{.. productName} #{...costPrice} #{._liztPrice}

Change the display label for a column by entering text or an EL expression to
bind the label value to something else, for example, a key in a resource file. By
default, the label is bound to the 1abels property for any control hint defined
for the attribute on the table binding. This binding allows you to change the
value of a label text one time in the structure file, and have the change
propagate to all pages that display the label.

Change the value binding for a column by selecting a different attribute to
bind to. If you simply want to rearrange the columns, you should use the
order buttons. If you do change the attribute binding for a column, the label
for the column also changes.

Change the Ul component used to display an attribute using the dropdown
menu. The Ul components are set based on the table you selected when you
dropped the collection onto the page, on the type of the corresponding
attribute (for example, inputDate components are used for attributes that are
dates), and on whether or not default components were set as control hints in
the Java class’s structure file.

Tip: If one of the attributes for your table is also a primary key, you
may want to choose a UI component that will not allow a user to
change the value.

Tip: If you want to use a component that is not listed in the
dropdown menu, use this dialog to select the outputText
component, and then manually add the other tag to the page.

Creating ADF Databound Tables 4-3

Creating a Basic Table

s Change the order of the columns using the order buttons.

= Add a column using the Add icon. There’s no limit to the number of columns
you can add. When you first click the icon, JDeveloper adds a new column
line at the bottom of the dialog and populates it with the values from the first
attribute in the bound collection; subsequent new columns are populated with
values from the next attribute in the sequence, and so on.

s Delete a column using the Delete icon.

4. Once the table is dropped on the page, you can use the Property Inspector to set
other display properties of the table. For example, you may want to set the width
of the table to a certain percentage or size. For more information about display
properties, see the "Using Tables and Trees" chapter of the Oracle Fusion Middleware
Web User Interface Developer’s Guide for Oracle Application Development Framework.

Tip: When you set the table width to 100%, the table will not include
borders, so the actual width of the table will be larger. To have the
table set to 100% of the container width, expand the Style section of
the Property Inspector, select the Box tab, and set the Border wWidth
attribute to 0 pixels.

5. If you want the user to be able to edit information in the table and save any
changes, you need to provide a way to submit and persist those changes. For more
information, see Section 4.3, "Creating an Editable Table." For procedures on
creating tables that allow users to input data, see Section 4.4, "Creating an Input
Table."

4.2.2 What Happens When You Create a Table

Dropping a table from the Data Controls panel has the same effect as dropping a text
field or form. Briefly, JDeveloper does the following:

s Creates the bindings for the table and adds the bindings to the page definition file
= Adds the necessary code for the UI components to the JSF page

For more information, see Section 3.2.2, "What Happens When You Create a Text
Field."

4.2.2.1 Iterator and Value Bindings for Tables

When you drop a table from the Data Controls panel, a tree value binding is created. A
tree consists of a hierarchy of nodes, where each subnode is a branch off a higher level
node. In the case of a table, it is a flattened hierarchy, where each attribute (column) is
a subnode off the table. Like an attribute binding used in forms, the tree value binding
references the accessor iterator binding, while the accessor iterator binding references
the iterator for the data control, which facilitates iterating over the data objects in the
collection. Instead of creating a separate binding for each attribute, only the tree
binding to the table node is created. In the tree binding, the At trNames element
within the nodeDefinition element contains a child element for each attribute that
you want to be available for display or reference in each row of the table.

The tree value binding is an instance of the FacesCtrlHierBinding class that
extends the core JUCtrlHierBinding class to add two JSF specific properties:

s collectionModel: Returns the data wrapped by an object that extends the
javax.faces.model.DataModel object that JSF and ADF Faces use for
collection-valued components like tables.

4-4 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Basic Table

= treeModel: Extends collectionModel to return data that is hierarchical in
nature. For more information, see Chapter 5, "Displaying Master-Detail Data."

Example 4-1 shows the value binding for the table created when you drop the
productFindAll accessor collection. For simplicity, only a few of the attributes from
the collection are shown.

Example 4-1 Value Binding Entries for a Table in the Page Definition File

<bindings>
<tree IterBinding="productFindAllIterator" id="productFindAll">
<nodeDefinition DefName="oracle.fodemo.supplier.model.Product">
<AttrNames>
<Item Value="productId"/>
<Item Value="productName"/>
<Item Value="costPrice"/>
<Item Value="listPrice"/>
<Item Value="minPrice"/>
<Item Value="productStatus"/>
<Item Value="shippingClassCode" />
<Item Value="warrantyPeriodMonths"/>
</AttrNames>
</nodeDefinition>
</tree>
</bindings>

Only the table component needs to be bound to the model (as opposed to the columns
or the text components within the individual cells), because only the table needs access
to the data. The tree binding for the table drills down to the individual structure
attributes in the table, and the table columns can then derive their information from
the table component.

4.2.2.2 Code on the JSF Page for an ADF Faces Table

When you use the Data Controls panel to drop a table onto a JSF page, JDeveloper
inserts an ADF Faces table component, which contains an ADF Faces column
component for each attribute named in the table binding. Each column then contains
another component (such as an inputText or outputText component) bound to the
attribute’s value. Each column’s heading is bound to the 1abels property for the
control hint of the attribute.

Tip: If an attribute is marked as hidden in the associated structure
file, no corresponding Ul is created for it.

Example 4-2 shows a simplified code excerpt from a table created by dropping the
productFindAll accessor collection as a read-only table.

Example 4-2 Simplified JSF Code for an ADF Faces Table

<af:table value="#{bindings.productFindAll.collectionModel}" var="row"
rows="#{bindings.productFindAll.rangeSize}"
emptyText="#{bindings.productFindAll.viewable ? 'No data to display.'
'Access Denied.'}"
fetchSize="#{bindings.productFindAll.rangeSize}"
rowBandingInterval="0" id="tl1">
<af:column sortProperty="productId" sortable="false"
headerText="#{bindings.productFindAll.hints.productId.label}"
id="cl">
<af:outputText value="#{row.productId}" id="ot8">

Creating ADF Databound Tables 4-5

Creating a Basic Table

<af:convertNumber groupingUsed="false"
pattern="#{bindings.productFindAll.hints.productId. format}"/>
</af:outputText>
</af:column>
<af:column sortProperty="productName" sortable="false"
headerText="#{bindings.productFindAll.hints.productName.label}"
id="c4">
<af:outputText value="#{row.productName}" id="ot7"/>
</af:column>

</af:table>

The tree binding iterates over the data exposed by the iterator binding. Note that the
table’s value is bound to the collectionModel property, which accesses the
collectionModel object. The table wraps the result set from the iterator binding in a
collectionModel object. The collectionModel allows each item in the collection
to be available within the table component using the var attribute.

In the example, the table iterates over the rows in the current range of the
productFindAll accessor binding. This binding binds to a row set iterator that
keeps track of the current row. When you set the var attribute on the table to row,
each column then accesses the current data object for the current row presented to the
table tag using the row variable, as shown for the value of the af : outputText tag:

<af:outputText value="#{row.productId}"/>

When you drop an ADF Table (as opposed to an ADF Read-Only Table), instead of
being bound to the row variable, the value of the input component is implicitly bound
to a specific row in the binding container through the bindings property, as shown in
Example 4-3. Additionally, JDeveloper adds validator and converter components for
each input component. By using the bindings property, any raised exception can be
linked to the corresponding binding object or objects. The controller iterates through
all exceptions in the binding container and retrieves the binding object to get the client
ID when creating FacesMessage objects. This retrieval allows the table to display
errors for specific cells. This strategy is used for all input components, including
selection components such as lists.

Example 4-3 Using Input Components Adds Validators and Converters

<af:table value="#{bindings.productFindAll.collectionModel}" var="row"
rows="#{bindings.productFindAll.rangeSize}"
emptyText="#{bindings.productFindAll.viewable ? 'No data to display.'
'Access Denied.'}"
fetchSize="#{bindings.productFindAll.rangeSize}"
rowBandingInterval="0"
selectedRowKeys="#{bindings.productFindAlll.collectionModel.selectedRow}"
selectionListener="4#{bindings.productFindAlll.collectionModel.
makeCurrent}"
rowSelection="single"
filterModel="#{bindings.productFindAllQuery.queryDescriptor}"
queryListener="#{bindings.productFindAllQuery.processQuery}"
filterVisible="true" varStatus="vs" id="tl1">
<af:column sortProperty="productId" sortable="false"
headerText="#{bindings.productFindAll.hints.productId.label}"
id="c5">
<af:inputText value="#{row.bindings.productId.inputvalue}"
label="#{bindings.productFindAll.hints.productId.label}"
required="#{bindings.productFindAll.hints.productId.mandatory}"
columns="#{bindings.productFindAll.hints.productId.displayWidth}"
maximumLength="#{bindings.productFindAll.hints.productId.precision}"

4-6 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Basic Table

shortDesc="#{bindings.productFindAll .hints.productId.tooltip}"

id="it4">
<f:validator binding="#{row.bindings.productId.validator}"/>
<af:convertNumber groupingUsed="false"

</af:column>

</af:table>

pattern="#{bindings.productFindAll.hints.productId.format}"/>
</af:inputText>

For more information about using ADF Faces validators and converters, see the
"Validating and Converting Input” chapter of the Oracle Fusion Middleware Web User
Interface Developer’s Guide for Oracle Application Development Framework.

Table 4-1 shows the other attributes defined by default for ADF Faces tables created
using the Data Controls panel.

Table 4-1

ADF Faces Table Attributes and Populated Values

Attribute

Description

Default Value

rows

Determines how
many rows to
display at one time.

An EL expression that, by default, evaluates to
the rangeSize property of the associated
iterator binding, which determines how many
rows of data are fetched from a data control at
one time. Note that the value of the rows
attribute must be equal to or less than the
corresponding iterator’s rangeSize value, as
the table cannot display more rows than are
returned. For more information about the
rangeSize property, see Section 3.4.2.2,
"Iterator RangeSize Attribute."

emptyText

Text to display when
there are no rows to
return.

An EL expression that evaluates to the
viewable property on the iterator. If the table is
viewable, the attribute displays No data to
display when no objects are returned. If the
table is not viewable (for example, if there are
authorization restrictions set against the table),
it displays Access Denied.

fetchSize

Number of rows of
data fetched from the
data source.

An EL expression that, by default, evaluates to
the rangesSize property of the associated
iterator binding. For more information about
the rangeSize property, see Section 3.4.2.2,
"Iterator RangeSize Attribute." This attribute
can be set to a larger number than the rows
attribute.

selectedRowKeys

The selection state
for the table.

An EL expression that, by default, evaluates to
the selected row on the collection model.

selectionListener

Reference to a
method that listens
for a selection event.

An EL expression that, by default, evaluates to
the makeCurrent method on the collection
model.

rowSelection

Determines whether
rows are selectable.

Set to single to allow one row to be selected
at a time.

Column Attributes

sortProperty

Determines the
property by which to
sort the column.

Set to the column’s corresponding attribute
binding value.

Creating ADF Databound Tables 4-7

Creating a Basic Table

Table 4-1 (Cont.) ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

sortable Determines whether Set to false. When set to true, the iterator
a column can be binding will access the iterator to determine
sorted. the order.

headerText Determines the text ~ An EL expression that, by default, evaluates to
displayed at the top the label control hint set on the corresponding
of the column. attribute.

4.2.3 What You May Need to Know About Setting the Current Row in a Table

When you use tables in an application and you allow the ADF Model layer to manage
row selection, the current row is determined by the iterator. When a user selects a row
in an ADF Faces table, the row in the table is shaded, and the component notifies the
iterator of the selected row. To do this, the selectedRowKeys attribute of the table is
bound to the collection model’s selected row, as shown in Example 4—4.

Example 4-4 Selection Attributes on a Table

<af:table value="#{bindings.Productsl.collectionModel}" var="row"

selectedRowKeys="#{bindings.Products.collectionModel.selectedRow}"
selectionListener="#{bindings.Products.collectionModel.

makeCurrent}"
rowSelection="single">

This binding binds the selected keys in the table to the selected row of the collection
model. The selectionListener attribute is then bound to the collection model’s
makeCurrent property. This binding makes the selected row of the collection the
current row of the iterator.

Note: If you create a custom selection listener, you must create a
method binding to the makeCurrent property on the collection
model (for example,

#{binding.Products.collectionModel .makeCurrent}) and
invoke this method binding in the custom selection listener before any
custom logic.

Although a table can handle selection automatically, there may be cases where you
need to programmatically set the current row for an object on an iterator.

You can call the getKey () method on any view row to get a Key object that
encapsulates the one or more key attributes that identify the row. You can also use a
Key object to find a view row in a row set using the findByKey (). At runtime, when
either the setCurrentRowWithKey or the setCurrentRowlithKeyValue built-in
operation is invoked by name by the data binding layer, the findByKey () method is
used to find the row based on the value passed in as a parameter before the found row
is set as the current row.

The setCurrentRowWithKey and setCurrentRowWithKeyValue operations both
expect a parameter named rowKey, but they differ precisely by what each expects that
rowKey parameter value to be at runtime:

4-8 Java EE Developer's Guide for Oracle Application Development Framework

Creating an Editable Table

The setCurrentRowWithKey Operation
setCurrentRowliithKey expects the rowKey parameter value to be the serialized

string representation of a view row key. This is a hexadecimal-encoded string that looks
like this:

000200000002€20200000002C102000000010000010A5AB7DADY

The serialized string representation of a key encodes all of the key attributes that
might comprise a view row's key in a way that can be conveniently passed as a single
value in a browser URL string or form parameter. At runtime, if you inadvertently
pass a parameter value that is not a legal serialized string key, you may receive
exceptions like oracle. jbo.InvalidParamException or
java.io.EOFException as a result. In your web page, you can access the value of
the serialized string key of a row by referencing the rowKeyStr property of an ADF
control binding (for example. # {bindings.SomeAttrName.rowKeyStr}) or the
row variable of an ADF Faces table (for example, # {row.rowKeyStr}).

setCurrentRowWithKeyValue

The setCurrentRowWithKeyValue operation expects the rowKey parameter value
to be the literal value representing the key of the view row. For example, its value
would be simply "201" to find product number 201.

4.3 Creating an Editable Table

You can create a table that allows the user to edit information within the table, and
then commit those changes to the data source. To do this, you use operations that can
modify data records associated with the returned collection (or the data control itself)
to create command buttons, and place those buttons in a toolbar in the table. For
example, the table in the browse. jspx page has a button that allows the user to
remove a product. While this button currently causes a dialog to display that allows
the user to confirm the removal, the button could be bound to a method that directly
removes the product.

Tip: To create a table that allows you to insert a new record into the
data store, see Section 4.4, "Creating an Input Table."

As with editable formes, it is important to note that the ADF Model layer is not aware
that any row has been changed until a new instance of the collection is presented.
Therefore, you need to invoke the execute operation on the accessor iterator in order
for any changes to be committed. For more information, see Section 2.4.4, "What You
May Need to Know About Iterator Result Caching."

When you decide to use editable components to display your data, you have the
option of having the table displaying all rows as editable at once, or having it display
all rows as read-only until the user double-clicks within the row. Figure 4-3 shows a
table whose rows all have editable fields. The page is rendered using the components
that were added to the page (for example, inputText, inputDate, and
inputNumberSpinbox components).

Creating ADF Databound Tables 4-9

Creating an Editable Table

Figure 4-3 Table with Editable Fields

ShippingOptionId Country Code CostPerClassiItemn LastUpdatedBy Lastlpdatelrate
1 EN 318 0 9j15/2012 [
2 EM 4.5 0 aisizoiz [y
3 EM 4,25 0 giisizotz [y
4 EM 0 0 gisizoiz [y

Figure 4-4 shows the same table, but configured so that the user must double-click (or
single-click if the row is already selected) a row in order to edit or enter data. Note that
outputText components are used to display the data in the nonselected rows, even
though the same input components as in Figure 4-3 were used to build the page. The
only row that actually renders those components is the row selected for editing.

Figure 4-4 Click to Edit a Row

ShippingOptionId Counkry Code CostPerClass1Itemn LastUpdatedBy Lastlpdateliate

1 EM 315 1] ar1siz01z

2 EM 4.5 0 9/15/2012 [z
3 EM 4,25 1] % Q/15/2012

4 EN 0 0 9/15/201z

For more information about how ADF Faces table components handle editing, see the
"Editing Data in Tables, Trees, and Tree Tables" section of the Oracle Fusion Middleware
Web User Interface Developer’s Guide for Oracle Application Development Framework.

4.3.1 How to Create an Editable Table

To create an editable table, you follow procedures similar to those for creating a basic
table, then you add command buttons bound to operations. However, in order for the
table to contain a toolbar, you need to add an ADF Faces component that associates the
toolbar with the items in the collection used to build the table.

To create an editable table:
1. From the Data Controls panel, select the collection to display in the table.

For example, to create a simple table in the Suppliers module that will allow you
to edit suppliers in the system, you would select the supplierFindall accessor
collection.

2. Drag the accessor onto a JSF page, and from the context menu, choose ADF Table.

3. Use the ensuing Edit Table Columns dialog to determine how the attributes
should behave and appear as columns in your table. Be sure to select the Row
Selection checkbox, which will allow the user to select the row to edit.

For more information about using this dialog to configure the table, see
Section 4.2, "Creating a Basic Table."

4. With the table selected in the Structure window, expand the Behavior section of
the Property Inspector and set the EditingMode attribute. If you want all the rows
to be editable select editAll. If you want the user to click into a row to make it
editable, select clickToEdit.

5. From the Structure window, right-click the table component and select Surround
With from the context menu.

4-10 Java EE Developer's Guide for Oracle Application Development Framework

Creating an Editable Table

6. In the Surround With dialog, ensure that ADF Faces is selected in the dropdown
list, select the Panel Collection component, and click OK.

The panelCollection component’s toolbar facet will hold the toolbar which, in
turn, will hold the command components used to update the data.

7. In the Structure window, right-click the panelCollection’s toolbar facet folder,
and from the context menu, choose Insert inside toolbar > Toolbar.

This creates a toolbar that already contains a default menu which allows users to
change how the table is displayed, and a Detach link that detaches the entire table
and displays it such that it occupies the majority of the space in the browser
window. For more information about the panelCollection component, see the
"Displaying Table Menus, Toolbars, and Status Bars" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

8. From the Data Controls panel, select the method or operation associated with the
collection of objects on which you wish to execute the logic, and drag it onto the
toolbar component in the Structure window. This will place the databound
command component inside the toolbar.

For example, if you want to be able to remove a supplier record, you would drag
the removeSuppliers (Suppliers) method. Figure 4-5 shows the remove
methods in the Suppliers module.

Figure 4-5 Operations Associated with a Collection

Data Controls 5
removeShippingOptionTranslations{Ship)

EIl:I Parameters

: 7@ suppliers
removelarehouses(Warehouses)
=] removeWarehouseStocklevels(Warehot

9. For the context menu, choose Operations > ADF Toolbar Button.

Because the method takes parameters, the Action Binding Editor opens, asking
you to set the value of the parameters.

10. In the Edit Action Binding dialog, you need to populate the value for the method’s
parameter. For the remove methods (and the other default methods), this is the
selected object.

a. In the Parameters section, use the Value dropdown list to select Show EL
Expression Builder.

b. In the Expression Builder, expand the node for the accessor’s iterator, then
expand the currentRow node, and select dataProvider.

This will create an EL expression that evaluates to the data for the current row
in the accessor’s iterator.

c. Click OK.

For example, if you created a table using the suppliersFindAll accessor, then
JDeveloper would have created an accessorIterator binding named
suppliersFindAllIterator. You would need to select the dataProvider
object for the current row under that iterator, as shown in Figure 4-6. This

Creating ADF Databound Tables 4-11

Creating an Editable Table

reference means that the parameter value will resolve to the value of the currently
selected row.

Figure 4-6 dataProvider for the Current Row on the suppliersFindAlllterator Binding

& Variables [X]

Expression Builder () Dynamic (${}) () Deferred (#{)
Select values from variables and operators to create an expression or directly type the expression here:

Expression: H @

#{bindings.suppliersFindallterator. currentRow. dataProvider}

Variables: |Common v| Operands:
(@) e
|| suppliersFindAllIterator Il
----- =) accessorlterator =
----- @ actionBindingList i_
----- A alRowsInRange (:
----- 3 attributeDefs __
----- [bindingContainer =
----- =@ changeEventRate
..... =3 dass |
[=-=3 currentRow
R lia taProvider
----- 3 currentRowIndexInRange *
----- &8 currentRowKeyString |
..... L current? nudfithkey S
Description
| Help | | oK J | Cancel |

11. To notify the ADF Model layer that the collection has been modified, you need to
also bind the toolbar button to a method that will refresh the iterator.

1. Open the page definition for the JSPX file by right-clicking the file and
choosing Go to Page Definition.

2. In the Structure Window for the page definition, right-click bindings and
choose Insert inside bindings > Generic Bindings > action.

3. In the Create Action Binding dialog, use the Select an Iterator dropdown list
to select the iterator associated with the collection, and for Operation, select
Execute.

JDeveloper creates an action binding for the execute operation of the iterator.
You now need to have your command button call this operation.

12. In the JSF page, select the command component created when you dropped the
method in Step 10. In the Property Inspector, set Action to the following:

#{bindings.Execute.execute}
When the command component is clicked, the binding to the action attribute is

evaluated after the binding for the actionListener attribute. This order ensures
iterator refreshes and/or executes after the deletion of entity.

4.3.2 What Happens When You Create an Editable Table

Creating an editable table is similar to creating a form used to edit records. Action
bindings are created for the operations dropped from the Data Controls panel. For
more information, see Section 3.6.2, "What Happens When You Use Methods to
Change Data."

4-12 Java EE Developer's Guide for Oracle Application Development Framework

Creating an Input Table

4.4 Creating an Input Table

You can create a table that allows users to insert a new blank row into a table and then
add values for each column (any default values set on the corresponding entity object
will be automatically populated).

4.4.1 How to Create an Input Table

When you create an input table, you want the user to see the new blank row in the
context of the other rows within the current row set. To allow this insertion, you need
to use the create operation associated with the accessor for the collection. For
example, to create a table that allows users to create new suppliers, you would create a
table from the supplierFindAll accessor collection and then add a button using the
create operation for the supplierFindAll accessor collection.

Because the create operation only creates a row in the cache, you also need to add a
button that actually merges the newly created row into the collection. Figure 4-7
shows how this table might look with a new row created.

Figure 4-7 User Can Create Suppliers in This Input Table

Wiew - Create Mew Supplier Commit New Suppliers % iz Detach

Supplierld SupplierMame Ernail PhoneMumber SupplierStat:
100 Skuffz conkact@stuffz.ex 402.555,0158 ACTIVE ”~
101 Mewus contact@rexus.ex 6055550114 ACTIVE
10z Gifts-M-Mare contact@giftsnmot 225,555, 0181 LCTIVE
103 Ernpioriurn contacki@emporion. 2125550195 LCTIVE
104 Jeffery And Micha: contact@jeffery-r 419.555.0167 ACTIVE
105 Games Galare contacki@garnes_g 630,555.0127 LCTIVE
106 Transistor Ciky contacki@bransistor - 3003,555.0177 LCTIVE
107 Mercury Irnports contack@mercury- 562,555, 0105 ACTIVE
108 BigSwamp conkact@bigswamy 248,555,0154 ACTIVE

<ID'I-J Z-Mart contact@ezmart.ex 959,555.0120 SCTIVE 5 o

ADF Faces components can be set so that one component refreshes based on an
interaction with another component, without the whole page needing to be refreshed.
This is known as partial page rendering. When the user clicks the button to create the
new row, you want the table to refresh to display that new row. To have that happen,
you need to configure the table to respond to that user action.

Before you begin:

You need to create an editable table, as described in Section 4.3, "Creating an Editable
Table."

To create an input table:

1. From the Data Controls panel, drag the create operation associated with the
dropped collection and drop it as a toolbar button into the toolbar.

Tip: You may want to change the ID to something more

recognizable, such as Create. This will make it easier to identify
when you need to select it as the partial trigger.

Creating ADF Databound Tables 4-13

Creating an Input Table

In the Structure window;, select the table component.

In the Property Inspector, expand the Behavior section, click the dropdown menu
for the PartialTriggers attribute, and select Edit.

In the Edit Property dialog, expand the toolbar facet for the panelCollection
component and then expand the toolbar that contains the Create command
component. Select that component and shuttle it to the Selected panel. Click OK.
This sets that component to be the trigger that will cause the table to refresh.

Create a button that allows the user to merge the new object(s) into the collection.
From the Data Controls panel, drag the merge method associated with the
collection used to create the table, and drop it as a toolbar button or link into the
toolbar.

Tip: If you will want the user to be able to continue updating the
row after it is persisted, then you should create the button using the
persist method instead. For more information, see Section 3.6.3, "What
You May Need to Know About the Difference Between the Merge and
Persist Methods."

Figure 4-8 shows merge method for the Suppliers collection.

Figure 4-8 Merge Methods in the Data Controls Panel

Data Controls @a '?
mergeShippingOptionTranslations(Shippi
=8

EI{:I Parameters
s [:] SL.IDD“EFS

EI Suppliers

----- =13 createdBy

----- =73 creationDate

----- == email

----- 3 |astlpdateDate

----- =3 |astUpdatedBy

----- &3 objectVersionld

----- EE phoneMumber

----- =3 supplierld

4.4.2 What Happens When You Create an Input Table

When you use the create operation to create an input table, JDeveloper:

Creates an iterator binding for the collection, an action binding for the create
operation, and attribute bindings for the table. The create operation is
responsible for creating the new row in the row set. If you created command
buttons or links using the merge method, JDeveloper also creates an action
binding for that method.

Inserts code in the JSF page for the table for the ADF Faces components.

Example 4-5 shows the page definition file for an input table created from the
Supplier collection (some attributes were deleted in the Edit Columns dialog when
the collection was dropped).

4-14 Java EE Developer's Guide for Oracle Application Development Framework

Creating an Input Table

Example 4-5 Page Definition Code for an Input Table

<executables>
<variablelterator id="variables"/>
<iterator Binds="root" RangeSize="25" DataControl="SessionEJBLocal"
id="SessionEJBLocalIterator"/>
<accessorIterator MasterBinding="SessionEJBLocalIterator"
Binds="suppliersFindAll" RangeSize="25"
DataControl="SessionEJBLocal" BeanClass="model.Suppliers"
id="suppliersFindAllIterator"/>
</executables>
<bindings>
<action IterBinding="suppliersFindAllIterator" id="Create"
RequiresUpdateModel="true" Action="createRow"/>
<methodAction id="mergeSuppliers" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="mergeSuppliers"
IsViewObjectMethod="false" DataControl="SessionEJBLocal"
InstanceName="SessionEJBLocal.dataProvider"
ReturnName="SessionEJBLocal.methodResults.mergeSuppliers_
SessionEJBLocal_dataProvider_mergeSuppliers_result">
<NamedData NDName="suppliers"
NDValue="#{bindings.Create.currentRow.dataProvider}"
NDType="model.Suppliers"/>
</methodAction>
<tree IterBinding="suppliersFindAllIterator" id="suppliersFindAll">
<nodeDefinition DefName="model.Suppliers">
<AttrNames>
<Item Value="email"/>
<Item Value="phoneNumber"/>
<Item Value="supplierId"/>
<Item Value="supplierName"/>
<Item Value="supplierStatus"/>
</AttrNames>
</nodeDefinition>
</tree>
</bindings>

Example 4-6 shows the code added to the JSF page that provides partial page
rendering, using the Create Supplier and Commit New Suppliers command toolbar
button as the triggers to refresh the table.

Example 4-6 Partial Page Trigger Set on a Command Button for a Table

<af:form id="f1">
<af:panelCollection id="pcl">
<f:facet name="menus"/>
<f:facet name="toolbar">
<af:toolbar id="t2">
<af:commandToolbarButton actionListener="#{bindings.Create.execute}"
text="Create New Supplier"
disabled="#{!bindings.Create.enabled}"
id="ctbl"/>
<af:commandToolbarButton
actionListener="#{bindings.mergeSuppliers.execute}"
text="Commit New Suppliers"
disabled="#{!bindings.mergeSuppliers.enabled}"
id="ctb2"/>
</af:toolbar>
</f:facet>
<f:facet name="statusbar"/>
<af:table value="#{bindings.suppliersFindAll.collectionModel}"

Creating ADF Databound Tables 4-15

Creating an Input Table

var="row" rows="#{bindings.suppliersFindAll.rangeSize}"
emptyText="#{bindings.suppliersFindAll.viewable ? 'No data to
display.' : 'Access Denied.'}"
fetchSize="#{bindings.suppliersFindAll.rangeSize}"
rowBandingInterval="0"
selectedRowKeys=
"#{bindings.suppliersFindAll.collectionModel.selectedRow}"
selectionListener=
"#{bindings.suppliersFindAll.collectionModel .makeCurrent}"
rowSelection="single" id="t1"
partialTriggers="::ctbl ::ctb2">
<af:column sortProperty="supplierId" sortable="false"
headerText=
"#{bindings.suppliersFindAll.hints.supplierId.label}"
id="c6">
<af:inputText value="#{row.bindings.supplierId.inputValue}"
label="#{bindings.suppliersFindAll.hints.supplierId.label}"
required="#{bindings.suppliersFindAll.hints.supplierId.mandatory}"
columns="#{bindings.suppliersFindAll.hints.supplierId.displayWidth}"
maximumLength="#{bindings.suppliersFindAll.hints.supplierId.precision}"
shortDesc="#{bindings.suppliersFindAll.hints.supplierId.tooltip}"
id="it4">
<f:validator binding="#{row.bindings.supplierId.validator}"/>
<af:convertNumber groupingUsed="false"
pattern="#{bindings.suppliersFindAll.hints.supplierId.format}"/>
</af:inputText>
</af:column>

</af:table>
</af:panelCollection>
</af:form>

4.4.3 What Happens at Runtime: How Create and Partial Page Refresh Work

When the button bound to the create operation is invoked, the action executes, and a
new instance for the collection is created as the page is rerendered. Because the button
was configured to be a trigger that causes the table to refresh, the table redraws with
the new empty row shown at the top. When the user clicks the button bound to the
merge method, the newly created rows in the row set are inserted into the database.
For more information about partial page refresh, see the "Rendering Partial Page
Content" chapter in the Oracle Fusion Middleware Web User Interface Developer’s Guide for
Oracle Application Development Framework.

4.4.4 What You May Need to Know About Creating a Row and Sorting Columns

If your table columns allow sorting, and the user has sorted on a column before
inserting a new row, then that new row will not be sorted. To have the column sort
with the new row, the user must first sort the column opposite to the desired sort, and
then re-sort. This is because the table assumes the column is already sorted, so clicking
on the desired sort order first will have no effect on the column.

For example, say a user had sorted a column in ascending order, and then added a
new row. Initially, that row appears at the top. If the user first clicks to sort the column
again in ascending order, the table will not re-sort, as it assumes the column is already
in ascending order. The user must first sort on descending order and then ascending
order.

4-16 Java EE Developer's Guide for Oracle Application Development Framework

Modifying the Attributes Displayed in the Table

If you want the data to automatically sort on a specific column in a specific order after
inserting a row, then programmatically queue a SortEvent after the commit, and
implement a handler to execute the sort.

4.5 Modifying the Attributes Displayed in the Table

Once you use the Data Controls panel to create a table, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute binding for the component. You can also add new
attributes, or rebind the table to a new data control.

For more information about modifying existing Ul components and bindings, see the
"Modifying the Attributes Displayed in the Table" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

Creating ADF Databound Tables 4-17

Modifying the Attributes Displayed in the Table

4-18 Java EE Developer's Guide for Oracle Application Development Framework

O

Displaying Master-Detail Data

This chapter describes how to use the Data Controls panel to create master-detail
objects that are based on ADF Faces components. It shows how to display
master-detail data by using prebuilt master-detail widgets, tables, trees and tree tables
and how to work with selection events.

This chapter includes the following sections:

= Section 5.1, "Introduction to Displaying Master-Detail Data"

= Section 5.2, "Identifying Master-Detail Objects on the Data Controls Panel"
= Section 5.3, "Using Tables and Forms to Display Master-Detail Objects"

» Section 5.4, "Using Trees to Display Master-Detail Objects"

= Section 5.5, "Using Tree Tables to Display Master-Detail Objects"

» Section 5.6, "Using Selection Events with Trees and Tables"

For information about using a selection list to populate a collection with a key value
from a related master or detail collection, see Chapter 6, "Creating Databound
Selection Lists."

5.1 Introduction to Displaying Master-Detail Data

When objects have a master-detail relationship, you can declaratively create pages that
display the data from both objects simultaneously. For example, the page shown in
Figure 5-1 displays an order in a form at the top of the page and its related order items
in a table at the bottom of the page. This is possible because the objects have a
master-detail relationship. In this example, the Order is the master object and
OrderItemis the detail object. ADF iterators automatically manage the
synchronization of the detail data objects displayed for a selected master data object.
Iterator bindings simplify building user interfaces that allow scrolling and paging
through collections of data and drilling-down from summary to detail information.

Displaying Master-Detail Data 5-1

Identifying Master-Detail Objects on the Data Controls Panel

Figure 5-1 Detail Table

Order
Creation Date 9f15/2012
Lask Updated 9/15/2012
Order Date 11,2012
Order 1D 1002
Ship Date
Skakus Code PICK
Tokal 1249,91

Firsk Previous Mezxk Lask

Order [tems

Quantity Lnit Price
1 199,95

3 49,99

1 599,99

You display master and detail objects in forms and tables. The master-detail form can
display these objects on separate pages. For example, you can display the master
object in a table on one page and detail objects in a read-only form on another page.

Note: There are some cases when the master-detail Ul components
that JDeveloper provides cannot provide the functionality you require.
For example, you may need to bind components programatically
instead of using the master-detail Ul components.

A master object can have many detail objects, and each detail object
can in turn have its own detail objects, down to many levels of depth.
If one of the detail objects in this hierarchy is dropped from the
Application Navigator as a master-detail form on a page, only its
immediate parent master object displays on the page. The hierarchy
will not display all the way up to the topmost parent object.

If you display the detail object as a tree or tree table object, it is
possible to display the entire hierarchy with multiple levels of depth,
starting with the topmost master object, and traversing detail children
objects at each node.

5.2 Identifying Master-Detail Objects on the Data Controls Panel

You can declaratively create pages that display master-detail data using the Data
Controls panel. The Data Controls panel displays master-detail related objects in a
hierarchy that mirrors the data model where the detail objects are children of the
master objects.

To display master-detail objects as form or table objects, drag the detail object from the
Data Controls panel and drop it on the page. Its master object is automatically created
on the page.

Figure 5-2 shows two master-detail related accessor returned collections in the Data
Controls panel. ProductImageList appears as a child of ProductFindall.

5-2 Java EE Developer's Guide for Oracle Application Development Framework

Using Tables and Forms to Display Master-Detail Objects

Note: The master-detail hierarchy displayed in the Data Controls
panel does not reflect the cardinality of the relationship (that is,
one-to-many, one-to-one, many-to-many). The hierarchy simply shows
which accessor returned collection (the master) is being used to
retrieve one or more objects from another accessor returned collection
(the detail).

Figure 5-2 Master-Detail Objects in the Data Controls Panel

Daka Contrals @Y
=€) productFindall

----- {50 attributel

----- &) attribute10

-----) attribute1l

----- &) attributel2

----- =78 attribute13

----- {73 attributel4

----- &) attribute1s

----- =) attribute2

----- &) attribute3

----- =3 attribubes

----- &) attributes

----- =3 attributes

----- {E7@) attribute?

----- &) attributed

-----) attributed

----- & attributeCategory
----- =33 costPrice
----- e lcreatedey
----- =93 creationDate

----- & externallr

----- & lastlpdateDate

----- &) |astlpdatedBy

----- &) listPrice

----- =33 minPrice

----- &3 ohjectversionId

----- = productId

----- & productiame

----- & productSkatus

----- &3 shippingClassCode
----- & warrantyPeriodMonths
EJ---E productCategory
EJ---E supplier

EJ---{E_| productIrageList

In this example, the relationship between ProductFindAll and
ProductImageList is a one-way relationship.

5.3 Using Tables and Forms to Display Master-Detail Objects

You can create a master-detail browse page in a single declarative action using the
Data Controls panel. All you have to do is drop the detail accessor returned collection
on the page and choose the type of widget you want to use.

The prebuilt master-detail widgets available from the Data Controls panel include
range navigation that enables the end user to scroll through the data objects in
collections. You can delete unwanted attributes by removing the text field or column
from the page.

Figure 5-3 shows an example of a prebuilt master-detail widget, which displays
warehouse information in a form at the top of the page and stock levels in a table at
the bottom of the page. When the user clicks the Next button to scroll through the
records in the master data at the top of the page, the page automatically displays the
related detail data.

Displaying Master-Detail Data 5-3

Using Tables and Forms to Display Master-Detail Objects

Figure 5-3 Prebuilt Data Controls Panel Master-Detail Widget

WarehousesView1l
warehouseld 101
AddressId 1
WarehouseMame Mid-america Warehouse
CreatedBy O
CreationDakte 9/15f2012
LastUpdatedBy 0
Lastlpdatebate 9§15/2012
OhbijectiersionId 1

First Previous Mexk Last

WarehouseStocklLevelsView?2

ProductId ‘Warehouseld QuantityOnHar

1 101 200 A
2 101 750

3 101 1295

4 101 1350

il 101 Fao

g 101 925

11 101 1020

12 101 300

14 101 250

16 101 750

19 101 250

28 101 750

29 101 350

30 101 250

31 101 250

3z 101 150

a3 nt 750 b
< >

5.3.1 How to Display Master-Detail Objects in Tables and Forms

If you do not want to use the prebuilt master-detail widgets, you can drag and drop
the master and detail objects individually from the Data Controls panel as tables and
forms on a single page or on separate pages.

The Data Controls panel enables you to create both the master and detail widgets on
one page with a single declarative action using prebuilt master-detail forms and tables.

To create a master-detail page using the prebuilt ADF master-detail forms and
tables:

1. From the Data Controls panel, locate the detail object.
2. Drag and drop the detail object onto the JSF page.

Note: If you want to create an editable master-detail form, drop the
master object and the detail object separately on the page.

3. In the context menu, choose one of the following master-details Ul components:

s ADF Master Table, Detail Form: Displays the master objects in a table and the
detail objects in a read-only form under the table.

When a specific data object is selected in the master table, the first related
detail data object is displayed in the form below it. The user must use the form
navigation to scroll through each subsequent detail data object.

5-4 Java EE Developer's Guide for Oracle Application Development Framework

Using Tables and Forms to Display Master-Detail Objects

= ADF Master Form, Detail Table: Displays the master objects in a read-only
form and the detail objects in a read-only table under the form.

When a specific master data object is displayed in the form, the related detail
data objects are displayed in a table below it.

= ADF Master Form, Detail Form: Displays the master and detail objects in
separate forms.

When a specific master data object is displayed in the top form, the first
related detail data object is displayed in the form below it. The user must use
the form navigation to scroll through each subsequent detail data object.

s ADF Master Table, Detail Table: Displays the master and detail objects in
separate tables.

When a specific master data object is selected in the top table, the first set of
related detail data objects is displayed in the table below it.

5.3.2 What Happens When You Create Master-Detail Tables and Forms

When you drag and drop an accessor returned collection from the Data Controls
panel, JDeveloper does many things for you, including adding code to the JSF page
and the corresponding entries in the page definition file.

5.3.2.1 Code Generated in the JSF Page

The JSF code generated for a prebuilt master-detail widget is similar to the JSF code
generated when you use the Data Controls panel to create a read-only form or table. If
you are building your own master-detail widgets, you might want to consider
including similar components that are automatically included in the prebuilt
master-detail tables and forms.

The tables and forms in the prebuilt master-detail widgets include a panelHeader
tag that contains the fully qualified name of the data object populating the form or
table. You can change this label as needed using a string or an EL expression that binds
to a resource bundle.

If there is more than one data object in a collection, a form in a prebuilt master-detail
widget includes four commandButton tags for range navigation: First, Previous,
Next, and Last. These range navigation buttons enable the user to scroll through the
data objects in the collection. The actionListener attribute of each button is bound
to a data control operation, which performs the navigation. The execute property
used in the actionListener binding invokes the operation when the button is
clicked. (If the form displays a single data object, JDeveloper automatically omits the
range navigation components.)

Tip: If you drop an ADF Master Table, Detail Form or ADF Master
Table, Detail Table widget on the page, the parent tag of the detail
component (for example, panelHeader tag or table tag)
automatically has the partialTriggers attribute set to the id of the
master component. At runtime, the partialTriggers attribute
causes only the detail component to be rerendered when the user
makes a selection in the master component, which is called partial
rendering. When the master component is a table, ADF uses partial
rendering, because the table does not need to be rerendered when the
user simply makes a selection in the facet. Only the detail component
needs to be rerendered to display the new data.

Displaying Master-Detail Data 5-5

Using Tables and Forms to Display Master-Detail Objects

5.3.2.2 Binding Objects Defined in the Page Definition File

Example 5-1 shows the page definition file created for a master-detail page that was
created by dropping WarehouseStockLevelList, which is a detail object under the
ProductFindAll object, on the page as an ADF Master Form, Detail Table.

The executables element defines two accessorIterators: one for the product
(the master object) and one for WarehouseStockLevels (the detail object). At
runtime, the Ul-aware data model and the row set iterator keep the row set of the
detail collection refreshed to the correct set of rows for the current master row as that
current row changes.

The bindings element defines the value bindings. The attribute bindings that
populate the text fields in the form are defined in the attributevValues elements.
The id attribute of the attributevValues element contains the name of each data
attribute, and the TterBinding attribute references an iterator binding to display
data from the master object in the text fields.

The attribute bindings that populate the text fields in the form are defined in the
attributevalues elements. The id attribute of the attributevalues element
contains the name of each data attribute, and the IterBinding attribute references an
iterator binding to display data from the master object in the text fields.

The range navigation buttons in the form are bound to the action bindings defined in
the action elements. As in the attribute bindings, the IterBinding attribute of the
action binding references the iterator binding for the master object.

The table, which displays the detail data, is bound to the table binding object defined
in the table element. The IterBinding attribute references the iterator binding for
the detail object.

Example 5-1 Binding Objects Defined in the Page Definition for a Master-Detail Page

<executables>
<variablelterator id="variables"/>
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocallterator"/>
<accessorIterator MasterBinding="SupplierFacadeLocallterator"
Binds="productFindAll" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model.Product"
id="productFindAllIterator"/>
<accessorIterator MasterBinding="productFindAllIterator"
Binds="warehouseStockLevelList" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model.WarehouseStockLevel"
id="warehouseStockLevelListIterator"/>
</executables>
<bindings>
<action IterBinding="productFindAllIterator" id="First"
RequiresUpdateModel="true" Action="first"/>
<action IterBinding="productFindAllIterator" id="Previous"
RequiresUpdateModel="true" Action="previous"/>

<attributeValues IterBinding="productFindAllIterator" id="attributel">

<AttrNames>
<Item Value="warrantyPeriodMonths"/>
</AttrNames>
</attributeValues>

<tree IterBinding="productFindAllIterator" id="productFindAll">

5-6 Java EE Developer's Guide for Oracle Application Development Framework

Using Tables and Forms to Display Master-Detail Objects

<nodeDefinition DefName="oracle.fodemo.supplier.model.Product">
<AttrNames>
<Item Value="attributeCategory"/>
<Item Value="listPrice"/>
<Item Value="minPrice"/>
<Item Value="objectVersionId"/>
<Item Value="productId"/>
<Item Value="productName"/>
<Item Value="productStatus"/>
</AttrNames>
</nodeDefinition>
</tree>
<tree IterBinding="warehouseStockLevelListIterator"
id="warehouseStockLevelList">
<nodeDefinition DefName="oracle.fodemo.supplier.model.WarehouseStockLevel">
<AttrNames>
<Item Value="lastUpdateDate"/>
<Item Value="objectVersionId"/>
<Item Value="productId"/>
<Item Value="quantityOnHand"/>
<Item Value="warehouseId"/>
</AttrNames>
</nodeDefinition>
</tree>
</bindings>

5.3.3 What Happens at Runtime: ADF lterator for Master-Detail Tables and Forms

At runtime, an ADF iterator determines which row from the master table object to
display in the master-detail form. When the form first displays, the first master table
object row appears highlighted in the master section of the form. Detail table rows that
are associated with the master row display in the detail section of the form.

As described in Section 5.3.2.2, "Binding Objects Defined in the Page Definition File,"
ADF iterators are associated with underlying rowsetIterator objects. These
iterators manage which data objects, or rows, currently display on a page. At runtime,
the row set iterators manage the data displayed in the master and detail components.

Both the master and detail row set iterators listen to row set navigation events, such as
the user clicking the range navigation buttons, and display the appropriate row in the
UL In the case of the default master-detail components, the row set navigation events
are the command buttons on a form (First, Previous, Next, Last).

The row set iterator for the detail collection manages the synchronization of the detail
data with the master data. The detail row set iterator listens for row navigation events
in both the master and detail collections. If a row set navigation event occurs in the
master collection, the detail row set iterator automatically executes and returns the
detail rows related to the current master row.

5.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate

Pages

The default master-detail components display the master-detail data on a single page.
However, using the master and detail objects on the Data Controls panel, you can also
display the collections on separate pages, and still have the binding iterators manage
the synchronization of the master and detail objects.

Displaying Master-Detail Data 5-7

Using Trees to Display Master-Detail Objects

To display master-detail objects on separate pages, create two pages, one for the
master object and one for the detail object, using the individual tables or forms
available from the Data Controls panel. Remember that the detail object iterator
manages the synchronization of the master and detail data. Be sure to drag the
appropriate detail object from the Data Controls panel when you create the page to
display the detail data. For more information, see Section 5.2, "Identifying
Master-Detail Objects on the Data Controls Panel."

To handle the page navigation, create an ADF task flow, and then add two view
activities to it, one for the master page and one for the detail page. Add command
buttons or links to each page, or use the default Submit button available when you
create a form or table using the Data Controls panel. Each button must specify a
navigation rule outcome value in the action attribute. In the
task-flow-defintion.xml file, add a navigation rule from the master data page to
the detail data page, and another rule to return from the detail data page to the master
data page. The from-outcome value in the navigation rules must match the outcome
value specified in the action attribute of the buttons.

5.4 Using Trees to Display Master-Detail Objects

In addition to tables and forms, you can also display master-detail data in hierarchical
trees. The ADF Faces tree component is used to display hierarchical data. It can
display multiple root nodes that are populated by a binding on a master object. Each
root node in the tree may have any number of branches, which are populated by
bindings on detail objects. A tree can have multiple levels of nodes, each representing
a detail object of the parent node. Each node in the tree is indented to show its level in
the hierarchy.

The tree component includes mechanisms for expanding and collapsing the tree
nodes; however, it does not have focusing capability. If you need to use focusing,
consider using the ADF Faces treeTable component (for more information, see
Section 5.5, "Using Tree Tables to Display Master-Detail Objects"). By default, the icon
for each node in the tree is a folder; however, you can use your own icons for each
level of nodes in the hierarchy.

Figure 5-4 shows an example of a tree that displays two levels of nodes: root and
branch. The root node displays parent product categories such as Media, Office, and
Electronics. The branch nodes display and subcategories under each parent category,
such as Hardware, Supplies, and Software under the Office parent category.

5-8 Java EE Developer's Guide for Oracle Application Development Framework

Using Trees to Display Master-Detail Objects

Figure 5-4 Databound ADF Faces Tree

Browse

Audio and Yideo
Carmera and Phoko
Cell Phones
Games

Biooks
OYDs
Music
Perindicals

T T

Hardware

RS

Software
¥ Supplies

5.4.1 How to Display Master-Detail Objects in Trees

A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. Each node level in a databound ADF Faces tree component is populated
by a different data collection. In JDeveloper, you define a databound tree using the
Edit Tree Binding dialog, which enables you to define the rules for populating each
node level in the tree. There must be one rule for each node level in the hierarchy. Each
rule defines the following node-level properties:

» The accessor returned collection that populates that node level

» The attributes from the accessor returned collection that are displayed at that node
level

To display master-detail objects in a tree:

1. Drag the master object from the Data Controls panel, and drop it onto the page.
This should be the master data that will represent the root level of the tree.

2. In the context menu, choose Trees > ADF Tree.

JDeveloper displays the Edit Tree Binding dialog, as shown in Figure 5-5. You use
the binding editor to define a rule for each level that you want to appear in the
tree.

Displaying Master-Detail Data 5-9

Using Trees to Display Master-Detail Objects

Figure 5-5 Edit Tree Binding Dialog

Edit Tree Binding fgl

Select the data source For the root bree node, and decide which attributes wou want to display in
the tree, To add additional tree level rules For child collections, select the parent tree level rule
andclick the Add icon. If no child collections are available For the selected node, the Add icon is

disabled,
Root Daka Source: HE SupplierFacadelocal root, productFindal '| | Add... |
Tree Level Rules: ap- 3

I cracle.fodemo, supplier. model Product

Accessor: [Enable Filtering:

Available Attributes: Display Attributes:
lastUpdatedEy
listPrice
minPrice
obijectyersionld
productId

oroduct Status

82 ¥y
EEEE

shippingClassCode
wattantyPeriodMonths

Target Daka Source

| Help | | [o]:4 _J | Cancel |

3. In the Root Data Source dropdown list, select the accessor returned collection that
will populate the root node level.

This will be the master data collection. By default, this is the same collection that
you dragged from the Data Controls panel to create the tree, which was a master
collection.

Tip: If you don't see the accessor returned collection you want in the
Root Data Source list, click the Add button. In the Add Data Source
dialog, select a data control and an iterator name to create a new data
source.

4. Click the Add icon to add the root data source you selected to the Tree Level
Rules list.
5. In the Tree Level Rules list, select the data source you just added.

6. Select an attribute in the Available Attributes list and move it to the Display
Attributes list.

The attribute will be used to display nodes at the master level.

After defining a rule for the master level, you must next define a second rule for
the detail level that will appear under the master level in the tree.

7. To add a second rule, click the Add icon above the Tree Level Rules list.

A detail data source should appear automatically under the master data source, as
shown in Figure 5-6.

5-10 Java EE Developer's Guide for Oracle Application Development Framework

Using Trees to Display Master-Detail Objects

Figure 5-6 Master-Detail Tree Level Rules

Rook Data Source: |E SupplierFacadeLocal root. productFindal '| | Add... |

Tree Level Rules: + < x

== orade.fodemo. supplier.model. Product] <warehouseStockLevellist =)

B oracle.fodema,supplier model, WarehouseStocklevel

For example, if you specified ProductFindAll as the master root data source,
WarehouseStockLevelList will automatically appear underneath in the Tree
Level Rules list, because the two data sources share a master-detail relationship.

If you are creating a tree with a recursive master-detail hierarchy, then you only
need to define a rule that specifies a data source with a self-accessor. A recursive
tree displays root nodes based on a single collection and displays the child nodes
from the attributes of a self-accessor that recursively fetches data from that
collection. The recursive tree differs from a typical master-detail tree because it
requires only a single rule to define the branches of the tree. A recursive data
source should display the data source followed by the name of the self-accessor in
brackets, as shown in Figure 5-7.

Figure 5-7 Recursive Tree-Level Rule

Root Data Source: |E HRModuleDataControl Employees v| | Add... |

Tree Level Rules: EP T x M

B test.model.Emplovee: irectReparts =)

For example, in a collection defined by EmployeesView, the root node of each
branch could be specified by the ManagerId for the employee, and the child
nodes of the same branch would then be the employees who are related to the
ManagerId, as specified by the self-accessor DirectReports.

8. C(lick OK.

9. You can add data sources to the Tree Level Rules list to increase the number of
nodes that display in the tree. The order of the remaining data sources should
follow the hierarchy of the nodes you want to display in the tree.

5.4.2 What Happens When You Create an ADF Databound Tree

When you drag and drop from the Data Controls panel, JDeveloper does many things
for you.

When you create a databound tree using the Data Controls panel, JDeveloper adds
binding objects to the page definition file, and it also adds the tree tag to the JSF page.
The resulting UI component is fully functional and does not require any further
modification.

5.4.2.1 Code Generated in the JSF Page

Example 5-2 shows the code generated in a JSF page when you use the Data Controls
panel to create a tree. This sample tree displays the order numbers as the root nodes
and the product names as the leaf nodes.

Example 5-2 Code Generated in the JSF Page for a Databound Tree

<af:tree
value="#{bindings.orderItemFindAll.treeModel}"

Displaying Master-Detail Data 5-11

Using Trees to Display Master-Detail Objects

var="node"
selectionListener="#{bindings.orderItemFindAll.treeModel .makeCurrent}"
rowSelection="single" id="orderItemsTree">
<f:facet name="nodeStamp">
<af:outputText value="#{node}" id="ot2"/>
</f:facet>
</af:tree>

By default, the af : tree tag is created inside a form. The value attribute of the tree
tag contains an EL expression that binds the tree component to the
orderItemFindAll tree binding object in the page definition file. The treeModel
property in the binding expression refers to an ADF class that defines how the tree
hierarchy is displayed, based on the underlying data model. The var attribute
provides access to the current node.

In the £ : facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component.

The ADF Faces tree component uses an instance of the

oracle.adf.view. faces.model.PathSet class to display expanded nodes. This
instance is stored as the treeState attribute on the component. You may use this
instance to programmatically control the expanded or collapsed state of an element in
the hierarchy. Any element contained by the PathsSet instance is deemed expanded.
All other elements are collapsed.

5.4.2.2 Binding Objects Defined in the Page Definition File

Example 5-3 shows the binding objects defined in the page definition file for the ADF
databound tree.

Example 5-3 Binding Objects Defined in the Page Definition File for a Databound Tree

<executables>
<variablelterator id="variables"/>
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocallterator"/>
<accessorlterator MasterBinding="SupplierFacadeLocalIlterator"
Binds="orderItemFindAll" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model.OrderItem"
id="orderItemFindAllIterator"/>
</executables>
<bindings>
<tree IterBinding="orderItemFindAllIterator" id="orderItemFindAll">
<nodeDefinition DefName="oracle.fodemo.supplier.model.OrderItem"
Name="orderItemFindAl110">
<AttrNames>
<Item Value="orderId"/>
</AttrNames>
<Accessors>
<Item Value="product"/>
</Accessors>
</nodeDefinition>
<nodeDefinition DefName="oracle.fodemo.supplier.model.Product"
Name="orderItemFindAlll">
<AttrNames>
<Item Value="productName" />
</AttrNames>

5-12 Java EE Developer's Guide for Oracle Application Development Framework

Using Tree Tables to Display Master-Detail Objects

</nodeDefinition>
</tree>
</bindings>

The tree element is the value binding for all the attributes displayed in the tree. The
iterBinding attribute of the tree element references the iterator binding that
populates the data in the tree. The At trNames element within the tree element
defines binding objects for all the attributes in the master collection. However, the
attributes that you select to appear in the tree are defined in the At trNames elements
within the nodeDefinition elements.

The nodeDefinition elements define the rules for populating the nodes of the tree.
There is one nodeDefinition element for each node, and each one contains the
following attributes and subelements:

= DefName: An attribute that contains the fully qualified name of the data collection
that will be used to populate the node

m id: An attribute that defines the name of the node

= AttrNames: A subelement that defines the attributes that will be displayed in the
node at runtime

m Accessors: A subelement that defines the accessor attribute that returns the next
branch of the tree

The order of the nodeDefintion elements within the page definition file defines the
order or level of the nodes in the tree, where the first nodeDefinition element
defines the root node. Each subsequent nodeDefinition element defines a subnode
of the one before it.

5.4.3 What Happens at Runtime: Displaying an ADF Databound Tree

Tree components use org.apache.myfaces.trinidad.model.TreeModel to
access data. This class extends CollectionModel, which is used by the ADF Faces
table component to access data. For more information about the TreeModel class,
refer to the ADF Faces Javadoc.

When a page with a tree is displayed, the iterator binding on the tree populates the

root nodes. When a user expands or collapses a node to display or hide its branches, a
DisclosureEvent event is sent. The i sExpanded method on this event determines
whether the user is expanding or collapsing the node. The DisclosureEvent event

has an associated listener.

The DisclosureListener attribute on the tree is bound to the accessor attribute
specified in the node rule defined in the page definition file. This accessor attribute is
invoked in response to the DisclosureEvent event; in other words, whenever a user
expands the node the accessor attribute populates the branch nodes.

5.5 Using Tree Tables to Display Master-Detail Objects

Use the ADF Faces treeTable component to display a hierarchy of master-detail
collections in a table. The advantage of using a treeTable component rather than a
tree component is that the treeTable component provides a mechanism that
enables users to focus the view on a particular node in the tree.

For example, you can create a tree table that displays three levels of nodes: countries,
states or provinces, and cities. Each root node represents an individual country. The

Displaying Master-Detail Data 5-13

Using Tree Tables to Display Master-Detail Objects

branches off the root nodes display the state or provinces in the country. Each state or
province node branches to display the cities contained in it.

As with trees, to create a tree table with multiple nodes, it is necessary to have
master-detail relationships between the collections. For example, to create a tree table
with three levels of country, state, and city, it was necessary to have a master-detail
relationship from the CountryCodes collection to the StatesandProvinces
collection, and a master-detail relationship from the StatesandProvinces collection
to the Cities collection.

A databound ADF Faces treeTable displays one root node at a time, but provides
navigation for scrolling through the different root nodes. Each root node can display
any number of branch nodes. Every node is displayed in a separate row of the table,
and each row provides a focusing mechanism in the leftmost column.

You can edit the following treeTable component properties in the Property
Inspector:

= Range navigation: The user can click the Previous and Next navigation buttons to
scroll through the root nodes.

= List navigation: The list navigation, which is located between the Previous and
Next buttons, enables the user to navigate to a specific root node in the data
collection using a selection list.

= Node expanding and collapsing mechanism: The user can open or close each node
individually or use the Expand All or Collapse All command links. By default,
the icon for opening and closing the individual nodes is an arrowhead with a plus
or minus sign. You can also use a custom icon of your choosing.

s Focusing mechanism: When the user clicks on the focusing icon (which is
displayed in the leftmost column) next to a node, the page is redisplayed showing
only that node and its branches. A navigation link is provided to enable the user to
return to the parent node.

5.5.1 How to Display Master-Detail Objects in Tree Tables

The steps for creating an ADF Faces databound tree table are exactly the same as those
for creating an ADF Faces databound tree, except that you drop the accessor returned
collection as an ADF Tree Table instead of an ADF Tree.

5.5.2 What Happens When You Create a Databound Tree Table

When you drag and drop from the Data Controls panel, JDeveloper does many things
for you.

When you create a databound tree table using the Data Controls panel, JDeveloper
adds binding objects to the page definition file, and it also adds the treeTable tag to
the JSF page. The resulting UI component is fully functional and does not require any
further modification.

5.5.2.1 Code Generated in the JSF Page

Example 54 shows the code generated in a JSF page when you use the Data Controls
panel to create a tree table. This sample tree table displays two levels of nodes:
products and stock levels.

By default, the treeTable tag is created inside a form. The value attribute of the
tree table tag contains an EL expression that binds the tree component to the
binding object that will populate it with data. The treeModel property refers to an

5-14 Java EE Developer's Guide for Oracle Application Development Framework

Using Tree Tables to Display Master-Detail Objects

ADF class that defines how the tree hierarchy is displayed, based on the underlying
data model. The var attribute provides access to the current node.

Example 5-4 Code Generated in the JSF Page for a Databound ADF Faces Tree Table

<af:treeTable value="#{bindings.orderItemFindAll.treeModel}" var="node"
selectionListener="#{bindings.orderItemFindAll.treeModel .makeCurrent}"
rowSelection="single" id="ttl">
<f:facet name="nodeStamp">
<af:column id="cl">
<af:outputText value="#{node}" id="otl"/>
</af:column>
</f:facet>
<f:facet name="pathStamp">
<af:outputText value="#{node}" id="ot2"/>
</f:facet>
</af:treeTable>

In the facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component. The pathStamp facet renders the column and the path links above the
table that enable the user to return to the parent node after focusing on a detail node.

5.5.2.2 Binding Objects Defined in the Page Definition File

The binding objects created in the page definition file for a tree table are exactly the
same as those created for a tree.

5.5.3 What Happens at Runtime: Events

Tree components use oracle.adf.view.faces.model.TreeModel to access
data. This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as the
user clicking the Next or Previous buttons or selecting a row from the range
navigator). When the user initiates a row navigation event, the iterator displays the
appropriate row.

If the user changes the view focus (by clicking on the component’s focus icon), the
treeTable component generates a focus event (FocusEvent). The node to which
the user wants to change focus is made the current node before the event is delivered.
The treeTable component then modifies the focusPath property accordingly. You
can bind the FocusListener attribute on the tree to a method on a managed bean.
This method will then be invoked in response to the focus event.

When a user expands or collapses a node, a disclosure event (DisclosureEvent) is
sent. The isExpanded method on the disclosure event determines whether the user is
expanding or collapsing the node. The disclosure event has an associated listener,
DisclosureListener. The DisclosurelListener attribute on the tree table is
bound to the accessor attribute specified in the node rule defined in the page definition
file. This accessor attribute is invoked in response to a disclosure event (for example,
the user expands a node) and returns the collection that populates that node.

Displaying Master-Detail Data 5-15

Using Selection Events with Trees and Tables

The treeTable component includes Expand All and Collapse All links. When a user
clicks one of these links, the treeTable sends a DisclosureAllEvent event. The
isExpandAll method on this event determines whether the user is expanding or
collapsing all the nodes. The table then expands or collapses the nodes that are
children of the root node currently in focus. In large trees, the expand all command
will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view. faces.model.PathSet
class to determine expanded nodes. This instance is stored as the treeState attribute
on the component. You can use this instance to programmatically control the
expanded or collapsed state of a node in the hierarchy. Any node contained by the
PathSet instance is deemed expanded. All other nodes are collapsed. This class also
supports operations like addAll () and removeAll ().

For more information about the ADF Faces treeTable component, refer to the
oracle.adf.view. faces.component.core.data.CoreTreeTable classin the
ADEF Faces Javadoc.

5.5.4 Using the Targetlterator Property

You can expand a node binding in the page definition editor to view the page’s node
Definition elements. These are the same tree binding rules that you can configure
in the tree binding dialog.

For each node definition (rule), you can specify an optional TargetIterator
property. Its value is an EL expression that is evaluated at runtime when the user
selects a row in the tree. The EL expression evaluates an iterator binding in the current
binding container. The iterator binding’s row key attributes match (in order, number,
and data type) the row key of the iterator from which the nodeDefinition type's
rows are retrieved for the tree.

At runtime, when the tree control receives a selectionChanged event, it passes in
the list of keys for each level of the tree. These keys uniquely identify the selected
node.

The tree binding starts at the top of the tree. For each tree level whose key is present in
the Currently Selected Tree Node Keys list, if thereis a TargetIterator
property configured for that nodeDefinition, the tree binding performs a
setCurrentRowWithKey () operation on the selected target iterator. It uses the key
from the appropriate level of the Currently Selected Tree Node Keys list.

5.6 Using Selection Events with Trees and Tables

There may be cases when you need to determine which node in a tree or tree table has
been selected in order to handle some processing in your application. For example,
when a user selects a category node in a Browse tree, a selection event is fired. The
listener associated with this event needs to determine the product category of the node
selected, and then to return all products whose category attribute matches that value.

5.6.1 How to Use Selection Events with Trees and Tables

To programmatically use selection events, you need to create a listener in a managed
bean that will handle the selection event and perform the needed logic. You then need
to bind the selectionListener attribute of the tree or table to that listener.

To use selection events with trees and tables:
1. If one does not already exist, create a managed bean to contain the needed listener.

5-16 Java EE Developer's Guide for Oracle Application Development Framework

Using Selection Events with Trees and Tables

2. Create a listener method on the managed bean. For more information about
creating listener methods, see the "Using ADF Faces Server Events" section of the
Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework. Your listener should do the following;:

a. Access the component using the event source. Example 5-5 shows how the
productCategoriesTreeSelectionListener method on the HomeBean
managed bean accesses the tree that launched the selection event.

Example 5-5 Getting the Source of an Event

public void productCategoriesTreeSelectionListener (SelectionEvent evt) {
RichTree tree = (RichTree)evt.getSource();

For more information about finding the event source component, see the
"How to Return the Original Source of the Event" section of the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

b. Access the tree model to get the value of the model, use the RowKeySet object
to get the currently selected node, and then set that as the current row on the
model, as shown in Example 5-6. For more information about RowKeySet
objects, see Section 5.6.2, "What Happens at Runtime: RowKeySet Objects and
SelectionEvent Events."

Example 5-6 Setting the Current Row on a Tree Model

TreeModel model = (TreeModel)tree.getValue();
RowKeySet rowKeySet = evt.getAddedSet();
Object key = rowKeySet.iterator().next();
model.setRowKey (key) ;

¢. You can now add logic to execute against the currently selected row. For
example, the productCategoriesTreeSelectionListener method uses
the value binding of the selected row to determine the category ID, and then
uses that value as the parameter for another method that, when executed,
returns all products with that category ID, as shown in Example 5-7.

Example 5-7 Returning Objects That Match a Given Attribute Value

JUCtrlvalueBinding nodeBinding =

(JuCtrlvalueBinding)model .getRowData () ;
Number catId = (Number)nodeBinding.getAttribute("CategoryId");
_selectedCategory = (String)nodeBinding.getAttribute("CategoryName") ;

OperationBinding ob =

ADFUtils.findOperation ("ProductsByCategoriesExecuteWithParams") ;
ob.getParamsMap () .put ("category", catId);
ob.execute() ;

3. On the associated JSF page, select the tree or table component. In the Property
Inspector, expand the Behavior section and set the value of the
SelectionListener attribute to the listener method just created. You can use
the Edit option from the dropdown method to declaratively select the bean and
the method.

Displaying Master-Detail Data 5-17

Using Selection Events with Trees and Tables

5.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events

Whenever a user selects a node in a tree (or a row in a table), the component triggers
selection events. A selectionEvent event reports which rows were just deselected
and which rows were just selected. The current selection, that is, the selected row or
rows, is managed by the RowKeySet object, which keeps track of all currently selected
nodes by adding and deleting the associated key for the row into or out of the key set.
When a user selects a new node, and the tree or table is configured for single selection,
then the previously selected key is discarded and the newly selected key is added. If
the tree or table is configured for multiple selection, then the newly selected keys are
added to the set, and the previously selected keys may or may not be discarded, based
on how the nodes were selected. For example, if the user pressed the CTRL key, then
the newly selected nodes would be added to the current set.

5-18 Java EE Developer's Guide for Oracle Application Development Framework

6

Creating Databound Selection Lists

This chapter describes how to add selection lists components to pages. It includes
instructions for creating selection components with fixed-value lists or dynamically
generated lists. It also describes how to add navigation list bindings to let users
navigate through a list of objects in a collection.

This chapter includes the following sections:
s Section 6.1, "Introduction to Selection Lists"
» Section 6.2, "Creating a Single Selection List"

» Section 6.3, "Creating a List with Navigation List Binding"

6.1 Introduction to Selection Lists

Selection lists work the same way as do standard JSF list components. ADF Faces list
components, however, provide extra functionality such as support for label and
message display, automatic form submission, and partial page rendering.

When the user selects an item from a navigation list, a corresponding component
bound to the list also changes its value in response to the selection. For example, when
the user selects a product from a shopping list, the table that is bound to the products
list updates to display the details of the selected product.

6.2 Creating a Single Selection List

ADF Faces Core includes components for selecting a single value and multiple values
from a list. For example, selectOneChoice allows the user to select an item from a
dropdown list, and selectManyChoice allow the user to select several items from a
list of checkboxes. Selection list components are described in Table 6-1.

Table 6—1 ADF Faces Single and Multiple List Components

ADF Faces component Description Example
SelectOneChoice Select a single value from a list of items. ! emonade il
coffee
tea
fizz
beer
lemonade
SelectOneRadio Select a single value from a set of radio 51 lemonade
buttons. = ermen

Creating Databound Selection Lists 6-1

Creating a Single Selection List

Table 6-1 (Cont.) ADF Faces Single and Multiple List Components

ADF Faces component Description Example
SelectOneListbox Select a single value from a scrollable list of :
. Drinks coffee
items.
tea;green
SelectManyChoice Select multiple values from a sc.rollable list coffee; lemonade -
of checkboxes. Each selection displays at Al
the top of the list.
coffee £
[tea
[fizz
[item6 |
[item7 1
[]item8
[]item9
[]item10
[]itemi1
[]item12
[]item13
[]item14 -
SelectManyCheckbox Select multiple values from a group of coffee
checkboxes. tes
orange juice
[wine
SelectManyListbox Select multiple values from a scrollable list Al
of checkboxes. A
coffee i
tea;green z
SelectBooleanRadio Select a radio button in a group of radio Age [@110-18
buttons. The buttons can be placed
anywhere on the page. Parent's Name

Parent's E-Mall

Parent's Phone
@ 19100

Id

Password

6-2 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Single Selection List

Table 6-1 (Cont.) ADF Faces Single and Multiple List Components

ADF Faces component Description Example

SelectBooleanCheck Select a checkbox that toggles between

box selected and unselected states. Non Smoking room

Extra Keys |

Extra Pillows [+

Crib v

You can create selection lists using the SelectOneChoice ADF Faces component.
The steps are similar for creating other single-value selection lists, such as
SelectOneRadio and SelectOneListbox.

A databound selection list displays values from an accessor returned collection or a
static list and updates an attribute in another collection or a method parameter based
on the user’s selection. When adding a binding to a list, you use an attribute from the
data control that will be populated by the selected value in the list.

Note: Using an ADF Model list binding with the
valuePassThru=true on a selectOneChoice component is not
supported. The list binding will return indexes, not values.

To create a selection list, you choose a base data source and a list data source in the
Edit List Binding dialog:

= Base data source: Select the accessor returned collection that you want to bind to
your control and that contains the attributes to be updated from user selections.

s List data source: Select the accessor returned collection that contains the attributes
to display.

You can create two types of selection lists in the Edit List Binding dialog:

= Static list: List selections are based on a fixed list that you create manually by
entering values one at a time into the editor.

= Dynamic list: List selections are generated dynamically based on one or more
databound attribute values.

6.2.1 How to Create a Single Selection List Containing Fixed Values

You can create a selection list containing selections that you code yourself, rather than
retrieving the values from another data source.

Creating Databound Selection Lists 6-3

Creating a Single Selection List

Figure 6—1 Selection List Bound to a Fixed List of Values

Title Mr. -

=No Selection=
Dr.

Last Name [Miss

Person |mrs.
TYPe |ms.

First Name

Before you begin:
Prepare a list of values that you will enter into the component as a fixed list.

To create a list bound to a fixed list of values:

1. From the Data Controls panel, drag and drop the attribute onto the JSF page and
choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The accessor returned collection containing
the attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

To select a different accessor returned collection, click the Add icon next to the list.
2. Select the Fixed List radio button.

The Fixed List option lets end users choose a value from a static list that you
define.

3. In the Base Data Source Attribute list, choose an attribute.

The Base Data Source Attribute list contains all of the attributes in the collection
you selected in the Base Data Source list. For example, if you selected
CountryCodes as the Base Data Source, you can choose CountryName in the
list.

4. In the Set of Values box, enter each value you want to appear in the list. Press the
Enter key to set a value before typing the next value. For example, you could add
the country codes India, Japan, and Russia.

The order in which you enter the values is the order in which the list items are
displayed in the SelectOneChoice control at runtime.

The SelectOneChoice component supports a null value. If the user has not
selected an item, the label of the item is shown as blank, and the value of the
component defaults to an empty string. Instead of using blank or an empty string,
you can specify a string to represent the null value. By default, the new string
appears at the top of the list.

5. Click OK.

6.2.2 How to Create a Single Selection List Containing Dynamically Generated Values

You can populate a selection list component with values dynamically at runtime.

Before you begin:

Define two data sources: one for the list data source that provides the dynamic list of
values, and the other for the base data source that is to be updated based on the user’s
selection.

6-4 Java EE Developer's Guide for Oracle Application Development Framework

Creating a Single Selection List

To create a selection list bound containing dynamically generated values:

1. From the Data Controls panel, drag and drop the attribute onto the JSF page and
choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The accessor returned collection containing
the attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

To select a different accessor returned collection, click the Add icon next to the list.
2. Select the Dynamic List radio button.

The Dynamic List option lets you specify one or more base data source attributes
that will be updated from another set of bound values.

3. Click the Add button next to List Data Source.

4. In the Add Data Source dialog, select the accessor returned collection that will
populate the values in the selection list.

Note: The list and base collections do not have to form a
master-detail relationship, but the attribute in the list collection must
have the same type as the base collection attributes.

5. Accept the default iterator name and click OK.

The Data Mapping section of the Edit List Binding dialog updates with a default
data value and list attribute. The Data Value control contains the attribute on the
accessor returned collection that is updated when the user selects an item in the
selection list. The List Attribute Control contains the attribute that populates the
values in the selection list.

6. You can accept the default mapping or select different attributes items from the
Data Value and List Attribute lists to update the mapping.

To add a second mapping, click Add.
7. Click OK.

6.2.3 What Happens When You Create a Fixed Selection List

When you add a fixed selection list, J]Developer adds source code to the JSF page and
list and iterator binding objects to the page definition file.

Example 6-1 shows the page source code after you add a fixed SelectOneChoice
component to it.

Example 6-1 Fixed SelectOneChoice List in JSF Page Source Code
<af:selectOneChoice value="#{bindings.city.inputvValue}"
label="#{bindings.city.label}">
<f:selectItems value="#{bindings.city.items}"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the CountryId list binding object in the binding container

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Example 6-2.

Creating Databound Selection Lists 6-5

Creating a Single Selection List

Example 6-2 List Binding Object for the Fixed Selection List in the Page Definition File

<executables>
<variablelterator id="variables"/>
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocalIlterator"/>
<accessorIterator MasterBinding="SupplierFacadelLocallterator"
Binds="addressesFindAll" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model .Addresses"
id="addressesFindAllIterator"/>
</executables>
<bindings>
<list IterBinding="addressesFindAllIterator" id="city" DTSupportsMRU="true"
StaticList="true">
<AttrNames>
<Item Value="city"/>
</AttrNames>
<ValueList>
<Item Value="redwood city"/>
<Item Value="fremont"/>
<Item Value="stockton"/>
</ValueList>
</list>
</bindings>

6.2.4 What Happens When You Create a Dynamic Selection List

When you add a dynamic selection list to a page, JDeveloper adds source code to the
JSF page, and list and iterator binding objects to the page definition file.

Example 6-3 shows the page source code after you add a dynamic
SelectOneChoice component to it.

Example 6-3 Dynamic SelectOneChoice List in JSF Page Source Code

<af:selectOneChoice value="#{bindings.orderId.inputvValue}"
label="#{bindings.orderId.label}"
required="#{bindings.orderId.hints.mandatory}"
shortDesc="#{bindings.orderId.hints.tooltip}"
id="socl">
<f:selectItems value="#{bindings.orderId.items}" id="sil"/>
</af:selectOneChoice>

The f: selectItems tag, which provides the list of items for selection, is bound to
the items property on the orderId list binding object in the binding container.

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Figure 6—4.

Example 6-4 List Binding Object for the Dynamic Selection List in the Page Definition
File
<executables>
<variableIterator id="variables"/>
<iterator Binds="root" RangeSize="25" DataControl="FODFacadeLocal"
id="FODFacadeLocalIterator"/>
<accessorlterator MasterBinding="FODFacadeLocalIterator"

6-6 Java EE Developer's Guide for Oracle Application Development Framework

Creating a List with Navigation List Binding

Binds="orderslFindAll" RangeSize="25"
DataControl="FODFacadeLocal"
BeanClass="oracle.model.Ordersl"
id="orderslFindAllIterator"/>
<iterator Binds="root" RangeSize="25" DataControl="FODFacadeLocal"
id="FODFacadeLocalIteratorl"/>
<accessorIterator MasterBinding="FODFacadeLocalIteratorl"
Binds="ordersFindAll" RangeSize="-1"
DataControl="FODFacadeLocal"
BeanClass="oracle.model.Orders"
id="ordersFindAllIterator"/>
</executables>
<bindings>
<list IterBinding="orderslFindAllIterator" id="orderId"
DTSupportsMRU="true" StaticList="false"
ListIter="ordersFindAllIterator">

<AttrNames>

<Item Value="orderId"/>
</AttrNames>
<ListAttrNames>

<Item Value="orderId"/>
</ListAttrNames>

<ListDisplayAttrNames>
<Item Value="orderId"/>
</ListDisplayAttrNames>
</list>
</bindings>

By default, JDeveloper sets the RangeSize attribute on the iterator element for the
ordersFindAll iterator binding to a value of -1 thus allowing the iterator to
furnish the full list of valid products for selection. In the 1ist element, the id
attribute specifies the name of the list binding object. The IterBinding attribute
references the iterator that iterates over the order1FindAll collection. The
ListIter attribute references the iterator that iterates over the ordersFindall
collection. The At trNames element specifies the base data source attributes returned
by the base iterator. The ListAttrNames element defines the list data source
attributes that are mapped to the base data source attributes. The
ListDisplayAttrNames element specifies the list data source attribute that
populates the values users see in the list at runtime.

6.3 Creating a List with Navigation List Binding

Navigation list binding lets users navigate through the objects in a collection. As the
user changes the current object selection using the navigation list component, any
other component that is also bound to the same collection through its attributes will
display from the newly selected object.

In addition, if the collection whose current row you change is the master collection in a
data model master-detail relationship, the row set in the detail collection is
automatically updated to show the appropriate data for the new current master row.

Before you begin:
Create an accessor returned collection in the Data Controls panel.

To create a list that uses navigation list binding:

1. From the Data Controls panel, drag and drop an accessor returned collection to the
page and choose Create > Navigation > ADF Navigation Lists.

Creating Databound Selection Lists 6-7

Creating a List with Navigation List Binding

2. In the Edit List Binding dialog, from the Base Data Source dropdown list, select
the collection whose members will be used to create the list.

This should be the collection you dragged from the Data Controls panel. If the
collection does not appear in the dropdown menu, click the Add button to select
the collection you want.

3. From the Display Attribute dropdown list, select a single attribute, all the
attributes, or choose Select Multiple to launch a selection dialog.

In the Select Multiple Display Attributes dialog, shuttle the attributes you want to
display from the Available Attributes pane to the Attributes to Display pane.
Click OK to close the dialog.

4. Click OK.

6-8 Java EE Developer's Guide for Oracle Application Development Framework

7

Creating Databound Search Forms

This chapter describes how to create search forms to perform complex searches on
multiple attributes and search forms to search on a single attribute. For complex query
search forms, it describes how to set up the query search form mode, results table,
saved searches list, and personalization. For single attribute search forms, it describes
how to configure the form layout. In addition, it includes information on using
Query-by-Example (QBE) filtered table searches.

This chapter includes the following sections:

» Section 7.1, "Introduction to Creating Search Forms"

» Section 7.2, "Creating Query Search Forms"

» Section 7.3, "Setting Up Search Form Properties"

» Section 7.4, "Creating Quick Query Search Forms"

m Section 7.5, "Creating Standalone Filtered Search Tables"

7.1 Introduction to Creating Search Forms

You can create search forms that allow users to enter search criteria into input fields
for known attributes of an object. The search criteria can be entered via input text
fields or selected from a list of values in a popup list picker or dropdown list box. The
entered criteria is constructed into a query to be executed. The results of the query can
be displayed as a table, a form, or another UI component.

Search forms are region-based components that are reusable and personalizable. They
encapsulate and automate many of the actions and iterator management operations
required to perform a query. You can create several search forms on the same page
without any need to change or create new iterators.

The search forms are based on the model-driven af : query and af : quickQuery
components. Because these underlying components are model-driven, the search form
will change automatically to reflect changes in the model. The view layer does not
need to be changed.

The query search form is a full-featured search form. The quick query search form is a
simplified form with only one search criteria. Each of these search forms can be
combined with a filtered table to display the results, thereby enabling additional
search capabilities. You can also create a standalone filtered table to perform searches
without the query or quick query search panel.

A filtered table is a table that has additional Query-by-Example (QBE) search criteria
fields above each searchable column. When the filtering option of a table is enabled,
you can enter QBE-style search criteria for each column to filter the query results.

Creating Databound Search Forms 7-1

Introduction to Creating Search Forms

For more information about individual query and table components, see the "Using
Query Components" and the "Using Tables and Trees" chapters of the Oracle Fusion
Middleware Web User Interface Developer’s Guide for Oracle Application Development
Framework.

7.1.1 Query Search Forms

The query search form is the standard form for complex transactional searches. You
can build complex search forms with multiple search criteria fields each with a
dropdown list of built-in operators. You can also add custom operators and customize
the list. The query search form supports lists of values, AND and OR conjunctions, and
saving searches for future use.

A query search form has a basic mode and an advanced mode. The user can toggle
between the two modes using the basic/advanced button. At design time, you can
declaratively specify form properties (such as setting the default state) to be either
basic or advanced. Figure 7-1 shows an advanced mode query search form with three
search criteria.

Figure 7-1 Advanced Mode Query Search Form with Four Search Criteria Fields

Search Saved Search Implicit Search [= |

Match (@) All(C) Any
Product Id Equals
Product Name Starts with
Product Status Starts with

[«] [[]]

Shipping Class Code Starts with

Search Reset Save... Add Fields =

The advanced mode query form features are:

= Selecting search criteria operators from a dropdown list

» Adding custom operators and deleting standard operators

= Selecting WHERE clause conjunctions of either AND or OR (match all or match any)
» Dynamically adding and removing search criteria fields at runtime

= Saving searches for future use

= Personalizing saved searches

Typically, the query search form in either mode is used with an associated results table
or tree table. For example, the query results for the search form in Figure 7-1 may be
displayed in a table, as shown in Figure 7-2.

7-2 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to Creating Search Forms

Figure 7-2 Results Table for a Query Search

View w # Update 3¢ Remove iz Detach
Product Id Product Name Cost Price List Price
5 Tungsten E PDA 100 195.99
15 Ipod Speakers 35 89.99
16 Creative Zen Vision W 60 GB 290 389.99
23 Ipod Nano 4Gb 150 249.95
29 LCD HD Television 600 800.09
31 7 Megapixel Digital Camera 300 620.99
33 Chocolate Phone 300 499.99

The basic mode has all the features of the advanced mode except that it does not allow
the user to dynamically add search criteria fields. Figure 7-3 shows a basic mode
query search form with one search criteria field. Notice the lack of a dropdown list
next to the Save button used to add search criteria fields in the advanced mode.

Figure 7-3 Basic Mode Query Form with Four Search Criteria Fields

Search Saved Search Implicit Search [~ |

Match (O) All@ Any
Product Id 4
Product Name
Product Status
Shipping Class Code

Search Reset Save, .,

In either mode, each search criteria field can be modified by selecting operators such
as Greater Thanand Equal To from a dropdown list, and the entire search panel
can be modified by the Match All/Any radio buttons. Partial page rendering is also
supported by the search forms in almost all situations. For example, if a Between
operator is chosen, another input field will be displayed to allow the user to select the
upper range.

AMatch All selection implicitly uses AND conjunctions between the search criteria in
the WHERE clause of the query. A Match Any selection implicitly uses OR conjunctions
in the WHERE clause. Example 7-1 shows how a simplified WHERE clause may appear
(the real WHERE in the view criteria is different) when Match A1l is selected for the
search criteria shown in Figure 7-1.

Example 7-1 Simplified WHERE Clause Fragment When "Match All" Is Selected
WHERE (ProductId=4) AND (InStock > 2) AND (ProductName="Ipod")

Example 7-2 shows a simplified WHERE clause if Match Any is selected for the search
criteria shown in Figure 7-3.

Example 7-2 Simplified WHERE Clause Fragment When "Match Any" Is selected

WHERE (ProductId=4) OR (InStock > 2) OR (ProductName="Ipod")

Creating Databound Search Forms 7-3

Introduction to Creating Search Forms

7-4

Advanced mode query forms allow users to dynamically add search criteria fields to
the query panel to perform more complicated queries. These user-created search
criteria fields can be deleted, but the user cannot delete existing fields. Figure 7—4
shows how the Add Fields dropdown list is used to add the Categoryld criteria field
to the search form.

Figure 7-4 Dynamically Adding Search Criteria Fields at Runtime

Search Basic Saved Search Implicit Search | =

Match All 0 Any

Product Id Greater than El -
Product Name Starts with El
Product Status Starts with [~]
Shipping Class Code Starts with E|
Search Reset || Save... Add Fields
Product Id
Product Name

Product Status
Shipping Class Code

Figure 7-5 shows a user-added search criteria with the delete icon to its right. Users
can click the delete icon to remove the criteria.

Figure 7-5 User-Added Search Criteria with Delete Icon

Search Basic Saved Search Implicit Search [¥]
Match () All@) Any
Product Id Greater than
Product Name Starts with
Product Name Starts with
Product Status Starts with

] [[[« [5]
&

Shipping Class Code Starts with

Search Reset Save, ., Add Fields

If either Match All or Match Any is selected and then the user dynamically adds the
second instance of a search criteria, then both Match All and Match Any will be
deselected. The user must reselect either Match All or Match Any before clicking the
Search button.

If you intend for a query search form to have both a basic and an advanced mode, you
can define each search criteria field to appear only for basic, only for advanced, or for
both. When the user switches from one mode to the other, only the search criteria
fields defined for that mode will appear. For example, suppose three search fields for
basic mode (A, B, C) and three search fields for advanced mode (A, B, D) are defined
for a query. When the query search form is in basic mode, search criteria fields A, B,

Java EE Developer's Guide for Oracle Application Development Framework

Introduction to Creating Search Forms

and C will appear. When it is in advanced mode, then fields A, B, and D will appear.
Any search data that was entered into the search fields will also be preserved when the
form returns to that mode. If the user entered 35 into search field C in basic mode,
switched to advanced mode, and then switched back to basic, field C would reappear
with value 35.

Along with using the basic or advanced mode, you can also determine how much of
the search form will display. The default setting displays the whole form. You can also
configure the query component to display in compact mode or simple mode. The
compact mode has no header or border, and the Saved Search dropdown lists moves
next to the expand/collapse icon. Figure 7-6 shows a query component set to compact
mode.

Figure 7-6 Query Component in Compact Mode

<7 Saved Search | Implicit Search | x|
Match (@) All ©) Any
Product Id
Product Name

Product Status
Shipping Class Code

Advanced | Search | Reset | Save... |

The simple mode displays the component without the header and footer, and without
the buttons normally displayed in those areas. Figure 7-7 shows the same query
component set to simple mode.

Figure 7-7 Query Component in Simple Mode

Match (@) All) Any
Product Id
Product Name
Product Status
Shipping Class Code

Users can also create saved searches at runtime to save the state of a search for future
use. The entered search criteria values, the basic/advanced mode state, and the layout
of the results table/component can be saved by clicking the Save button to open a
Save Search dialog, as shown in Figure 7-8. User-created saved searches persist for the
session. If they are intended to be available beyond the session, you must configure a
persistent data store to store them. For Oracle ADF, you can use an access-controlled
data source such as MDS. For more information about using MDS, see the
"Customizing Applications with MDS" chapter in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

Creating Databound Search Forms 7-5

Introduction to Creating Search Forms

Figure 7-8 Runtime Saved Search Dialog Window
Create Saved Search *

* Name System Search 1 copy
[T]set as Defautt
Run Automaticaly

OK Cancel

When you perform a saved search, you can specify whether the layout of the results
component is also saved. Creating saved searches and saving the results components
layout require that MDS is configured. If you set the query component’s
saveResultsLayout attribute to always, the results component layout will be
saved. If saveResultsLayout is set to never, the layout is not saved.

Example 7-3 web.xml Entry for Saving Query Results Component Layout
<context-param>
<description>Saving results layout</description>
<param-name>oracle.adf.view.rich.query.SAVE_RESULTS_LAYOUT</param-name>
<param-value>true</param-value>
</context-param>

If saveResultsLayout is not defined, saving layout defaults to the application-level
property oracle.adf.view.rich.query.SAVE_RESULTS_LAYOUT in the

web . xml file. The default value of oracle.adf.view.rich.query.SAVE_
RESULTS_LAYOUT is true.

If the user made changes to the layout of a saved search and proceeds without saving,
a warning message appears to remind the user to save, otherwise the changes will be
lost. In addition, if the user adds or deletes search fields and proceeds without saving,
a warning message also appears.

Table 7-1 shows the saveResultsLayout and SAVE_RESULTS_LAYOUT values and
their resultant action. Note that MDS must be configured to save layout.

Table 7-1 Save Results Component Layout Attributes

Query Component Resultant
web.xml SAVE_RESULT_LAYOUT saveResultsLayout action
true always Saves layout
true never Not saved
true not defined Saves layout
false always Saves layout
false never Not saved
false not defined Saves layout

Table 7-2 lists the possible scenarios for creators of saved searches, the method of their
creation, and their availability.

7-6 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to Creating Search Forms

Table 7-2 Design Time and Runtime Saved Searches

Created at Design time as Created at Runtime with the
Creator View Criteria Save Button

Developer Developer-created saved
searches (system searches) are
created during application
development and typically are
a part of the software release.
They are created at design
time as view criteria. They are
usually available to all users
of the application and appear
in the lower part of the Saved
Search dropdown list.

Administrator Administrator-created saved
searches are created during
predeployment by site
administrators. They are
created before the site is made
available to the general end
users. Administrators can
create saved searches (or view
criteria) using the JDeveloper
design time when they are
logged in with the appropriate
role. These saved searches (or
view criteria) appear in the
lower part of the Saved
Search dropdown list.

End User End-user saved searches are
created at runtime using the
query form Save button. They
are available only to the user
who created them. End-user
saved searches appear in the
top part of the Saved Search
dropdown list.

End users can manage their saved searches by using the Personalize function in the
Saved Search dropdown list to bring up the Personalize Saved Searches dialog, as
shown in Figure 7-9.

End users can use the Personalize function to:
= Update a user-created saved search

» Delete a user-created saved search

= Set a saved search as the default

= Set a saved search to run automatically

= Set the saved search to show or hide from the Saved Search dropdown list

Creating Databound Search Forms 7-7

Introduction to Creating Search Forms

Figure 7-9 Personalize Saved Searches Dialog

Personalize Saved Searches X

Personalize Saved Searches
Implicit Search E|

v Set as Default
__ Run Automatically
v Show in Search List

CK || Cancel

7.1.2 Quick Query Search Forms

A quick query search form is intended to be used in situations where a single search
will suffice or as a starting point to evolve into a full query search. Both the query and
quick query search forms are ADF Faces components. A quick query search form has
one search criteria field with a dropdown list of the available searchable attributes
from the associated data collection. Typically, the searchable attributes are all the
attributes in the associated view collection. The user can search against the selected
attribute or search against all the displayed attributes. The search criteria field type
will automatically match the type of its corresponding attribute. An Advanced link
built into the form offers you the option to create a managed bean to control switching
from quick query to advanced mode query search form. For more information, see the
"Using Query Components" chapter in the Oracle Fusion Middleware Web User Interface
Developer’s Guide for Oracle Application Development Framework.

You can configure the form to have a horizontal layout, as shown in Figure 7-10.

Figure 7-10 Quick Query Search Form in Horizontal Layout

Search Product Id E| =+ Advanced

You can also choose a vertical layout, as shown in Figure 7-11.

Figure 7-11 Quick Query Search Form in Vertical Layout

Search
Search
Product Id E

Advanced

7.1.3 Filtered Table and Query-by-Example Searches

A filtered table can be created standalone or as the results table of a query or quick
query search form. Filtered table searches are based on Query-by-Example and use the
QBE text or date input field formats. The input validators are turned off to allow for

7-8 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to Creating Search Forms

entering characters such as > and <= to modify the search criteria. For example, you
can enter >1500 as the search criteria for a number column. Wildcard characters may
also be supported. If a column does not support QBE, the search criteria input field
will not render for that column.

The filtered table search criteria input values are used to build the query WHERE clause
with the AND operator. If the filtered table is associated with a query or quick query
search panel, the composite search criteria values are also combined to create the
WHERE clause.

Figure 7-12 shows a query search form with a filtered results table. When the user
enters a QBE search criteria, such as >100 for the PersonId field, the query result is
the AND of the query search criteria and the filtered table search criteria.

Figure 7-12 Query Search Form with Filtered Table

Persons
Search Advanced Saved Search ViewObjCriteria El

Match @ Al(C) Any

Gender F
LastName
Personld =
Search Reset Save...
=100
Gender LastName Personld
F Mikkiineni 126 -
F Nayer 125
F Bissot 129
F Greenberg 108
F Baida 116
F Colmenares 119
F Volman 123 =
F Lorentz 107
F Kochhar 101
F Pataballa 106
F Bralick 201
F Berman 203
F Benghiat 204
F Hemant 206
F Chen 209 =
q 11 »

Table 7-3 lists the acceptable QBE search operators that can be used to modify the
search value.

Table 7-3 Query-by-Example Search Criteria Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
AND And

OR Or

Creating Databound Search Forms 7-9

Creating Query Search Forms

7.2 Creating Query Search Forms

You create a query search form by dropping the All Queriable Attributes item from
the Data Controls panel onto a page. You have a choice of dropping only a search
panel, dropping a search panel with a results table, or dropping a search panel with a
tree table.

If you choose to drop the search panel with a table, you can select the filtering option
in the dialog to turn the table into a filtered table.

Typically, you would drop a query search panel with the results table or tree table.
JDeveloper will automatically create and associate a results table or tree table with the
query panel.

If you drop a query panel by itself and want a results component or if you already
have an existing component for displaying the results, you will need to match the
query panel’s ResultsComponentId with the results component’s Id.

7.2.1 How to Create a Query Search Form with a Results Table or Tree Table

You create a search form by dragging and dropping All Queriable Attributes from the
Data Controls panel onto the page. You have the option of having a results table or
only the query panel.

Before you begin:
You should have created a accessor returned collection in the Data Control panel.

To create a query search form with a results table or tree table:
1. From the Data Controls panel, select the accessor returned collection and expand
the Named Criteria node to display All Queriable Attributes.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

Note: Dropping All Queriable Attributes onto the page creates a
search form with a search criteria field for each searchable attribute
defined in the underlying collection. If you only want to create search
criteria fields for some of those attributes, you can create another
accessor returned collection in the Data Control panel that returns
only the attributes you want. You can then drag and drop All
Queriable Attributes from this new accessor returned collection.

3. From the context menu, choose Create > Query > ADF Query Panel with Table or
Create > Query > ADF Query Panel with Tree Table, as shown in Figure 7-13.

Figure 7-13 Data Controls Panel with Query Context Menu

Create

@8 ADF Query Panel
AT W < - ADF Query Panel with Table. ..
Table » | @8 ADF Query Panel with Tree Table..,

Cancel I

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

7-10 Java EE Developer's Guide for Oracle Application Development Framework

Creating Query Search Forms

After you have created the form, you may want to set some of its properties or add
custom functions. For more information on how to do this, see Section 7.3, "Setting Up
Search Form Properties."

7.2.2 How to Create a Query Search Form and Add a Results Component Later

You create a search form by dragging and dropping All Queriable Attributes from the
Data Controls panel onto the page. You have the option of having a results table or
only the query panel.

Before you begin:
You should have created a accessor returned collection in the Data Control panel.

To create a query search form and add a results component in a separate step:
1. From the Data Controls panel, select the accessor returned collection and expand
the Named Criteria node to display All Queriable Attributes.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

Note: Dropping All Queriable Attributes onto the page creates a
search form with a search criteria field for each searchable attribute
defined in the underlying collection. If you only want to create search
criteria fields for some of those attributes, you can create another
accessor returned collection in the Data Control panel that returns
only the attributes you want. You can then drag and drop All
Queriable Attributes from this new accessor returned collection.

3. Choose Create > Query > ADF Query Panel from the context menu, as shown in
Figure 7-13.

4. If you do not already have a results component, then drag the accessor returned
collection and drop it onto the page as a table, tree, or treetable component.

5. In the Property Inspector for the table, copy the value of the Id field.

6. In the Property Inspector for the query panel, paste the value of the table’s ID into
the query’s ResultsComponentld field.

After you have created the search form, you may want to set some of its properties or
add custom functions. See Section 7.3, "Setting Up Search Form Properties,” for more
information.

7.2.3 How to Persist Saved Searches into MDS

If you want saved searches to be persisted to MDS, you need to define the /persdef
namespace in the adf-config.xml file. In addition, you need to perform the regular
MDS configuration, such as specifying metadatapath. Example 7—4 shows an
adf-config.xml file with the /persdef namespace defined.

Example 7-4 Sample adf-config.xml with /persdef Namespace

<persistence-config>
<metadata-namespaces>
<namespace path="/persdef" metadata-store-usage="mdsstore"/>
</metadata-namespaces>
<metadata-store-usages>

Creating Databound Search Forms 7-11

Creating Query Search Forms

<metadata-store-usage id="mdsstore" deploy-target="true"
default-cust-store="true"/>
</metadata-store-usage>
</metadata-store-usages>
</persistence-config>

In order for the added saved searches to be available the next time the user logs in,
cust-config needs to be defined as part of the MDS configuration. For more
information about setting cust-config and MDS, see "How to Create Customization
Classes" of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework

If you are also saving the layout of the results component, the application must have
the ADF PageFlow Runtime and ADF Controller Runtime libraries installed. Set the
project’s technology scope to include ADF Page Flow.

7.2.4 What Happens When You Create a Query Form

When you drop a query search form onto a page, JDeveloper creates an af : query tag
on the page. If you drop a query with table or tree table, then an af: table tag or
af:treeTable tag will follow the af : query tag.

Under the af: query tag are several attributes that define the query properties. They
include:

s The id attribute, which uniquely identifies the query.

s The resultsComponentId attribute, which identifies the component that will
display the results of the query. Typically, this will be the table or tree table that
was dropped onto the page together with the query. You can change this value to
be the id of a different results component. For more information, see Section 7.2.2,
"How to Create a Query Search Form and Add a Results Component Later."

In the page definition file, JDeveloper creates an iterator, accessorlterators, and a
searchRegion entry in the executables section. Example 7-5 shows the sample
code for a page definition file.

In the page definition file executable section:

s Theiterator RangeSize property is set to a default value of 25. If you want a
different page size, you must edit this value.

s Theiterator id property is set to the root iterator. In the example, the value is set
to SupplierFacadelLocalIlterator

s The accessorlterator Binds property is set to the accessor. In the example, the
value is set to productFindAll.

s The accessorlterator id property is set to the accessor iterator. In the example, the
value is set to productFindAllIterator.

s The searchRegion Criteria propertyissetto_ImplicitViewCriteria_.

s The searchRegion Binds property is set to the search iterator. In the example,
the value is set to productFindAllIterator

s The searchRegion id property is set to ImplicitViewCriteriaQuery.

If the query was dropped onto the page with a table or tree, then in the page definition
file bindings section, a tree element is added with the Tterbinding property set to
the search iterator. In this example, the value is set to productFindAllIterator.

7-12 Java EE Developer's Guide for Oracle Application Development Framework

Setting Up Search Form Properties

Example 7-5 Search Form Code in the Page Definition File

<executables>
<variablelterator id="variables"/>
<iterator Binds="root" RangeSize="25" DataControl="SupplierFacadeLocal"
id="SupplierFacadeLocalIlterator"/>
<accessorIterator MasterBinding="SupplierFacadelLocallterator"
Binds="productFindAll" RangeSize="25"
DataControl="SupplierFacadeLocal"
BeanClass="oracle.fodemo.supplier.model.Product"
id="productFindAllIterator"/>
<searchRegion Criteria="_ ImplicitViewCriteria_ "
Customizer="oracle.jbo.uicli.binding.JUSearchBindingCustomizer"
Binds="productFindAllIterator"
id="ImplicitViewCriteriaQuery"/>
</executables>
<bindings>
<tree IterBinding="productFindAllIterator" id="productFindAll">
<nodeDefinition DefName="oracle.fodemo.supplier.model.Product">
<AttrNames>
<Item Value="listPrice"/>
<Item Value="minPrice"/>
<Item Value="objectVersionId"/>
<Item Value="productId"/>
<Item Value="productName"/>
</AttrNames>
</nodeDefinition>
</tree>
</bindings>

7.2.5 What Happens at Runtime: Search Forms

At runtime, the search form displays as a search panel on the page. The search panel
will display in either basic mode or advanced mode.

After the user enters the search criteria and clicks Search, a query is executed and the
results are displayed in the associated table, tree table, or component.

7.3 Setting Up Search Form Properties

Search form properties that can be set after the query component has been added to
the JSF page include:

= 1id of the results table or results component
s Show or hide of the basic/advanced button
m Position of the mode button

s Default, simple, or compact mode for display

7.3.1 How to Set Search Form Properties on the Query Component

After you have dropped the query search form onto a page, you can edit other form
properties in the Property Inspector, as shown in Figure 7-14. Some of the common
properties you may set are:

= Enabling or disabling the basic/advanced mode button

Creating Databound Search Forms 7-13

Creating Quick Query Search Forms

s Setting the ID of the query search form
» Setting the ID of the results component (for example, a results table)

= Selecting the default, simple, or compact mode for display

Figure 7-14 Property Inspector for a Query Component

B Query - Property Inspector =
I ZB@Fd RO
=l Appearance

DisplayMode: |W| R

SaveQueryMode: |<defau|t> (defa... '| R

LabelAlignment: |<defau|t> (start) '| ~
° Disclosed: |true '| e

ModeButtonPosition: |<defau|t> (toolb... '| &4

ModeChangeVisible: |<defau|t> (true) '| b

Type: |<default> (defa... v| R

One common option is to show or hide the basic/advanced button.

To enable or hide the basic/advanced button in the query form:
1. In the Structure window, double-click af:query.

2. In the Property Inspector, click the Appearance tab.

3. To enable the basic/advanced mode button, select true from the
ModeChangeVisible field. To hide the basic/advance mode button, select false
from the ModeChangeVisible field.

7.4 Creating Quick Query Search Forms

You can use quick query search forms to let users search on a single attribute of a
collection. Quick query search form layout can be either horizontal or vertical. Because
they occupy only a small area, quick query search forms can be placed in different
areas of a page. You can create a managed bean to enable users to switch from a quick
query to a full query search. For more information about switching from quick query
to query using a managed bean, see the "Using Query Components" chapter in the
Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

If you drop a quick query panel with a results table or tree, JDeveloper will
automatically create the results table, as described in Section 7.4.1, "How to Create a
Quick Query Search Form with a Results Table or Tree Table." If you drop a quick
query panel by itself and subsequently want a results table or component or if you
already have one, you will need to match the quick query Id with the results
component’s partialTrigger value, as described in Section 7.4.2, "How to Create a
Quick Query Search Form and Add a Results Component Later."

7-14 Java EE Developer's Guide for Oracle Application Development Framework

Creating Quick Query Search Forms

7.41 How to Create a Quick Query Search Form with a Results Table or Tree Table

You can create quick query searches using the full set of searchable attributes and
simultaneously add a table or tree table as the results component.

Before you begin:
Create an accessor returned collection in the Data Control panel.

To create a quick query search form with a results table:
1. From the Data Controls panel, select the accessor returned collection and expand
the Named Criteria node to display All Queriable Attributes.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query Panel
with Table or Create > Quick Query > ADF Quick Query Panel with Tree Table,
as shown in Figure 7-15.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

Figure 7-15 Data Control Panel with Quick Query Context Menu

7.4.2 How to Create a Quick Query Search Form and Add a Results Component Later

You can create quick query searches using the full set of searchable attributes and add
a table or tree table as the results component later.

Before you begin:
Create an accessor returned collection in the Data Control panel.

To create a quick query search form and add a results component in a separate

step:

1. From the Data Controls panel, select the accessor returned collection and expand
the Named Criteria node to display All Queriable Attributes

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query Panel.

4. If you do not already have a results component, then drag the accessor returned
collection and drop it onto the page as a table, tree, or treetable component.

5. In the Property Inspector for the quick query, copy the value of the Id field.

6. In the Property Inspector for the results component (for example, a table), paste or
enter the value into the PartialTriggers field.

Creating Databound Search Forms 7-15

Creating Quick Query Search Forms

7.4.3 How to Set the Quick Query Layout Format

The default layout of the form is horizontal. You can change the layout option using
the Property Inspector.

To set the layout:
1. In the Structure window, double-click af:quickQuery.

2. In the Property Inspector, on the Commons page, select the Layout property using
the dropdown list to specify default, horizontal, or vertical.

7.4.4 What Happens When You Create a Quick Query Search Form

When you drop a quick query search form onto a page, JDeveloper creates an
af :quickQuery tag. If you have dropped a quick query with table or tree table, then
an af:table tag or af: treeTable tag is also added.

Under the af : quickQuery tag are several attributes and facets that define the quick
query properties. Some of the tags are:

s The id attribute, which uniquely identifies the quick query. This value should be
set to match the results table or component’s partialTriggers value.
JDeveloper will automatically assign these values when you drop a quick query
with table or tree table. If you want to change to a different results component, see
Section 7.4.2, "How to Create a Quick Query Search Form and Add a Results
Component Later."

= The layout attribute, which specifies the quick query layout to be default,
horizontal, or vertical.

» The end facet, which specifies the component to be used to display the Advanced
link (that changes the mode from quick query to the query). For more information
about creating this function, see the "Using Query Components" chapter of the
Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

7.45 What Happens at Runtime: Quick Query

At runtime, the quick query search form displays a single search criteria field with a
dropdown list of selectable search criteria items. If there is only one searchable criteria
item, then the dropdown list box will not be rendered. An input component that is
compatible with the selected search criteria type will be displayed, as shown in

Table 7—4. For example, if the search criteria type is date, then inputDate will be
rendered.

Table 7-4 Quick Query Search Criteria Field Components

Attribute Type Rendered Component
DATE af:inputDate

VARCHAR af:inputText

NUMBER af:inputNumberSpinBox

In addition, a Search button is rendered to the right of the input field. If the end facet
is specified, then any components in the end facet are displayed. By default, the end
facet contains an Advanced link.

7-16 Java EE Developer's Guide for Oracle Application Development Framework

Creating Standalone Filtered Search Tables

7.5 Creating Standalone Filtered Search Tables

You use query search forms for complex searches, but you can also perform simple
QBE searches using the filtered table. You can create a standalone ADF-filtered table
without the associated search panel and perform searches using the QBE-style search
criteria input fields. For more information about filtered tables, see Section 7.1.3,
"Filtered Table and Query-by-Example Searches."

When creating a table, you can make almost any table a filtered table by selecting the
filtering option if the option is enabled. There are three ways to create a standalone
filtered table:

= You can drop a table onto a page from the Component Palette, bind it to a data
collection, and set the filtering option. For more information, see the "Using Query
Components" chapter of the Oracle Fusion Middleware Web User Interface Developer’s
Guide for Oracle Application Development Framework.

= You can create a filtered table by dragging and dropping an accessor returned
collection onto a page and setting the filtering option.

= You can also create a filtered table or a read-only filtered table by dropping All
Queriable Attributes onto the page. The resulting filtered table will have a
column for each searchable attribute and an input search field above each column.

You can set the QBE search criteria for each filterable column to be a case-sensitive or
case-insensitive search using the filterFeature attribute of af : column in the

af : table component. For more information, see the "Enable Filtering in Tables"
section of the Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle
Application Development Framework.

Before you begin:
Create an accessor returned collection in the Data Control panel.

To create a filtered table:

1. From the Data Controls panel, select the accessor returned collection and expand
the Named Criteria node to display All Queriable Attributes.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

3. From the context menu, choose Create > Tables > ADF Filtered Table or Create >
Tables >ADF Read-Only Filtered Table.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. Because the table is created by JDeveloper during quick query creation,
the filtering option is automatically enabled and not user-selectable, as shown in
Figure 7-16.

Creating Databound Search Forms 7-17

Creating Standalone Filtered Search Tables

Figure 7-16 Edit Table Columns Dialog for Filtered Table

-5 Edit Table Colum i

Row Selection

(@) None
(") Single Row
() Multiple Rows

Columns:

Display Label

) <default=
¥ <default>
8 <default>
¥ <default=
8 <default=
@ <default=
¥ <default=
8 <default>
8 <default>
=3 <default>
=8 <default>
¥ <default=

["] Enable Sorting

Value Binding

= Productld

= Supplierld

=3 Categoryld

=3 ProductMame

=3 CostPrice

=3 ListPrice

= MinPrice

= ProductStatus

=1 WarrantyPeriodMonths
=3 ShippingClassCode
= Language

= Sourcelang

= Description

+ X

Component To Use

= ADF Input Text w/ Label
2 ADF Input Text w/ Label
g2 ADF Input Text wj Label
2 ADF Input Text w/ Label
&5 ADF Input Text wj Label
= ADF Input Text wj Label
g5 ADF Input Text wj Label
g5 ADF Input Text wj Label
g5 ADF Input Text wj Label
&5 ADF Input Text wj Label
d5 ADF Input Text wj Label
5 ADF Input Text wj Label
&2 ADF Input Text wj Label

V

[oK] [

Cancel

7-18 Java EE Developer's Guide for Oracle Application Development Framework

8

Deploying an ADF Java EE Application

This chapter describes how to deploy Oracle ADF Java EE applications to a target
application server. It describes how to create deployment profiles, how to create
deployment descriptors, and how to load ADF runtime libraries. It includes
instructions for running an application in the Integrated WebLogic Server as well as
deploying to a standalone Oracle WebLogic Server or IBM WebSphere Application
Server.

This chapter includes the following sections:

= Section 8.1, "Introduction to Deploying ADF Java EE Web Applications"

= Section 8.2, "Running a Java EE Application in Integrated WebLogic Server"
= Section 8.3, "Preparing the Application”

= Section 8.4, "Deploying the Application"

» Section 8.5, "Postdeployment Configuration”

= Section 8.6, "Testing the Application and Verifying Deployment"

8.1 Introduction to Deploying ADF Java EE Web Applications

Deployment is the process of packaging application files as an archive file and
transferring this file to a target application server. You can use JDeveloper to deploy
Oracle ADF Java EE web applications directly to the application server (such as Oracle
WebLogic Server or IBM WebSphere Application Server), or indirectly to an archive
file as the deployment target, and then install this archive file to the target server. For
application development, you can also use JDeveloper to run an application in
Integrated WebLogic Server. JDeveloper supports deploying to server clusters. You
cannot use JDeveloper to deploy to individual Managed Servers within a cluster.

Note: Normally, you use JDeveloper to deploy applications for
development and testing purposes. If you are deploying Oracle ADF
Java EE web applications for production purposes, you can use
Enterprise Manager or scripts to deploy to production-level
application servers.

For more information about deployment to later-stage testing or
production environments, see the Oracle Fusion Middleware
Administrator’s Guide for Oracle Application Development Framework.

ADF Java EE applications are based on standardized, modular components and can be
deployed to the following application servers:

Deploying an ADF Java EE Application 8-1

Introduction to Deploying ADF Java EE Web Applications

= Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those modules and
handles many details of application behavior automatically, without requiring
programming. For information about which versions of Oracle WebLogic Server
are compatible with JDeveloper, see the certification information website at
http://www.oracle.com/technetwork/developer-tools/jdev/docume
ntation/index.html.

= IBM WebSphere Application Server - Network Deployment (ND)
= IBM WebSphere Application Server

For information about which versions of IBM WebSphere are compatible, see the
Oracle Fusion Middleware Third-Party Application Server Guide.

Deploying a Fusion web application is slightly different from deploying a standard
Java EE application. JSF applications that contain ADF Faces components have a few
additional deployment requirements:

= ADF Faces requires Sun’s JSF Reference Implementation 1.2 and MyFaces 1.0.8 (or
later).

You can use JDeveloper to:
= Run applications in Integrated WebLogic Server

You can run and debug applications using Integrated WebLogic Server and then
deploy to a remote a WebLogic Server or to WebSphere.

Integrated IBM WebSphere Application Server is not supported for this release.
= Deploy directly to the application server

You can deploy applications directly to the application server by creating a
connection to the server and choosing the name of that server as the deployment
target.

= Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on a target application server.

8.1.1 Developing Applications with Integrated WebLogic Server

If you are developing an application in JDeveloper and you want to run the
application in Integrated WebLogic Server, you do not need to perform the tasks
required for deploying directly to Oracle WebLogic Server or to an archive file.
JDeveloper has a default connection to Integrated WebLogic Server and does not
require any deployment profiles or descriptors. Integrated WebLogic Server has a
preconfigured domain that includes the ADF libraries, as well as the
-Djps.app.credential.overwrite.allowed=true setting, both of these are
required to run Oracle ADF applications. You can run an application by choosing Run
from the JDeveloper main menu.

8.1.2 Developing Applications to Standalone Application Server

Typically, for deployment to standalone application servers, you test and develop your
application by running it in Integrated WebLogic Server. You can then test the
application further by deploying it to testing Oracle WebLogic Server (in development
mode) or to IBM WebSphere Application Server to more closely simulate the
production environment.

8-2 Java EE Developer's Guide for Oracle Application Development Framework

Introduction to Deploying ADF Java EE Web Applications

In general, you use JDeveloper to prepare the application or project for deployment

by:

Creating a connection to the target application server
Creating deployment profiles (if necessary)

Creating deployment descriptors (if necessary, and that are specific to the
application server)

Updating application.xml and web.xml to be compatible with the application
(if required)

Enabling the application for Real User Experience Insight (RUEI) in web . xm1 (if
desired)

Migrating application-level security policy data to a domain-level security policy
store

Configuring the Oracle Single Sign-On (Oracle SSO) service and properties in the
domain jps-config.xml file when you intend the web application to run using
Oracle SSO

You must already have an installed application server. For Oracle WebLogic Server,
you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11¢g Application
Developer Installer to install one. For other applications servers, follow the
instructions in the applications server documentation to obtain and install the server.

You also must prepare the application server for ADF application deployment. For
more information, see the "Preparing the Standalone Application Server for
Deployment" section of the Oracle Fusion Middleware Administrator’s Guide for Oracle
Application Development Framework.

Installing the ADF runtime into the application server installation:
- For WebLogic Server

- If you installed Oracle WebLogic Server together with JDeveloper using
the Oracle 11g Installer for JDeveloper, the ADF runtime should already be
installed.

— If the ADF runtime is not installed and you want to use Oracle Enterprise
Manager to manage standalone ADF applications (which are applications
without Oracle SOA Suite or Oracle WebCenter Portal components), use
the Oracle Fusion Middleware 11g Application Developer Installer. This
installer will install the necessary Oracle Enterprise Manager components
into the Oracle WebLogic installation.

- If the ADF runtime is not installed and you do not need to install
Enterprise Manager, use the Oracle 11g Installer for JDeveloper.

— For WebSphere

*

Use the Oracle Fusion Middleware 11¢ Application Developer Installer to
install the ADF runtime and the necessary Oracle Enterprise Manager
components into the WebSphere installation. For information about
installing WebSphere, see the Oracle Fusion Middleware Third-Party
Application Server Guide.

Extending Oracle WebLogic Server domains or WebSphere Cells to be
ADF-compatible using the ADF runtime

Deploying an ADF Java EE Application 8-3

Running a Java EE Application in Integrated WebLogic Server

= For WebLogic, setting the Oracle WebLogic Server credential store overwrite
setting as required (-Djps.app.credential.overwrite.allowed=true
setting)

= Creating a global JDBC data source for applications that require a connection to a
data source

After the application and application server have been prepared, you can:
= Use JDeveloper to:

- Directly deploy to the application server using the deployment profile and the
application server connection.

- Deploy to an EAR file using the deployment profile. For ADF applications,
WAR and MAR files can be deployed only as part of an EAR file.

= Use Enterprise Manager, scripts, or the application’s administration tool to deploy
the EAR file created in JDeveloper. For more information, see the Oracle Fusion
Middleware Administrator’s Guide for Oracle Application Development Framework.

8.2 Running a Java EE Application in Integrated WebLogic Server

JDeveloper is installed with Integrated WebLogic Server, which you can use to test and
develop your application. For most development purposes, Integrated WebLogic
Server will suffice. When your application is ready to be tested, you can select the run
target and then choose the Run command from the main menu.

When you run the application target, JDeveloper detects the type of Java EE module to
deploy based on artifacts in the projects and workspace. JDeveloper then creates an
in-memory deployment profile for deploying the application to Integrated WebLogic
Server. JDeveloper copies project and application workspace files to an "exploded
EAR" directory structure. This file structure closely resembles the EAR file structure
that you would have if you were to deploy the application to an EAR file. JDeveloper
then follows the standard deployment procedures to register and deploy the
"exploded EAR" files into Integrated WebLogic Server. The "exploded EAR" strategy
reduces the performance overhead of packaging and unpackaging an actual EAR file.

In summary, when you select the run target and run the application in Integrated
WebLogic Server,]Developer:

» Detects the type of Java EE module to deploy based on the artifacts in the project
and application

» Creates a deployment profile in memory

» Copies project and application files into a working directory with a file structure
that would simulate the "exploded EAR" file of the application.

s Performs the deployment tasks to register and deploy the simulated EAR into
Integrated WebLogic Server

= Automatically migrates identities, credentials, and policies

Later on, if you plan to deploy the application to a standalone WebLogic Server
instance, you will need to migrate this security information.

Note: JDeveloper ignores the deployment profiles that were created
for the application when you run the application in Integrated
WebLogic Server.

8-4 Java EE Developer's Guide for Oracle Application Development Framework

Running a Java EE Application in Integrated WebLogic Server

The application will run in the base domain in Integrated WebLogic Server. This base
domain has the same configuration as a base domain in a standalone WebLogic Server
instance. In other words, this base domain will be the same as if you had used the
Oracle Fusion Middleware Configuration Wizard to create a base domain with the
default options in a standalone WebLogic Server instance.

JDeveloper will extend this base domain with the necessary domain extension
templates, based on the JDeveloper technology extensions. For example, if you have
installed JDeveloper Studio, JDeveloper will automatically configure the Integrated
WebLogic Server environment with the ADF runtime template (JRF Fusion
Middleware runtime domain extension template).

You can explicitly create a default domain for Integrated WebLogic Server. You can use
these domains to run and test your applications in addition to using the default
domain. Open the Application Server Navigator, right-click
IntegratedWebLogicServer and choose Create Default Domain.

JDeveloper has a default connection to Integrated WebLogic Server. You do not need to
create a connection to run an application. If you do want to manually create an
application server connection to Integrated WebLogic Server, use the instructions in
Section 8.3.1, "How to Create a Connection to the Target Application Server," to create
the connection, selecting Integrated Server instead of Standalone Server in Step 2.

8.2.1 How to Run an Application in Integrated WebLogic Server

You can test an application by running it in Integrated WebLogic Server. You can also
set breakpoints and then run the application within the ADF Declarative Debugger.

To run an application in Integrated WebLogic Server:

1. In the Application Navigator, select the project, unbounded task flow, JSF page, or
file as the run target.

2. Right-click the run target and choose Run or Debug.

If this is the first time you run your application in Integrated WebLogic Server, the
Configure Default Domain dialog appears for you to define an administrator
password for the new domain. Passwords you enter can be eight characters or
more and must have a numeric character.

8.2.2 How to Run an Application with Metadata in Integrated WebLogic Server

When an application is running in Integrated WebLogic Server, the MAR profile itself
will not be deployed to a repository, but a simulated MDS repository will be
configured for the application that reflects the metadata information contained in the
MAR. This metadata information is simulated, and the application runs based on this
location in source control.

By default, only the customizations in ADF view and ADF Model are included in the
MAR. If the Java EE application has customizations in other directories, you must
create a custom MAR profile that includes these directories.

Any customizations or documents created by the application that are not configured to
be stored in other MDS repositories are written to this simulated MDS repository
directory. For example, if you customize an object, the customization is written to the
simulated MDS repository. If you execute code that creates a new metadata object,
then this new metadata object is also written to the same location in the simulated
MDS repository. You can keep the default location for this directory (ORACLE_

HOME\ jdeveloper\systemXX.XX\o.mds.dt\adrs\Application\AutoGenera

Deploying an ADF Java EE Application 8-5

Running a Java EE Application in Integrated WebLogic Server

tedMar\mds_adrs_writedir), or you can set it to a different directory. You also
have the option to preserve this directory across different application runs, or to delete
it before each application run.

If your workspace has different working sets, only the metadata from the projects
defined in the working set and their dependent projects will be included in the MAR.
You can view and change a project’s dependencies by right-clicking the project in the
Application Navigator, choosing Project Properties, and then selecting Dependencies.
For instance, an application may have several projects but workingsetA is defined to
be viewcontroller2 and viewcontroller5; and viewcontroller5 hasa
dependency on modelprojectl. When you run or debug workingseta, only the
metadata for viewcontroller2, viewcontroller5, and modelprojectl will be
included in the MAR for deployment.

There should already be a MAR profile, either generated automatically by JDeveloper,
or manually generated by a user.

To deploy the MAR profile to Integrated WebLogic Server:

1. In the Application Navigator, right-click the application and choose Application
Properties.

2. In the Application Properties dialog, expand Run and choose MDS.
3. In the Run MDS page:
= Select the MAR profile from the MAR Profile dropdown list

= Enter a directory path in Override Location if you want to customize the
location of the simulated MDS repository.

= Select the Directory Content option. You can chose to preserve the
customizations across application runs or delete customizations before each
run.

Select the MAR profile from the MAR Profile dropdown list. Figure 8-1 shows
Demometadatal selected as the MAR profile.

8-6 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

Figure 8-1 Setting the Run MDS options

T Ok | | Cancel

[Application Properties - C:ibejdeveloperimyworkwipplicationphdcWipplicationphdc... @
i)| Run: MDS
e Application Conkent () Use Custom Settings
-+ Deplayment () Use Application Settings
-+ Resource Bundles
B R:U” MAR Profile: | Demometadatal =4
|-.-||::.-_=.

WS Policy Store Change from default only in advanced scenarios

MO Repository Direckary
This directory stores customizations and metadata documents generated at application runtime

Default Location:

| system11.1.1.1,32,52.81\0.mds.dthadrs\Applicationphdc\ Demometadatal imds_adrs_writedir |

Cverride Location:

| || Browse. .. |

Direckory Content:
-::}- Preserve customizations across application runs

() Delete customizations before each run

8.3 Preparing the Application

Before you deploy an ADF application to an application server, you must perform
prerequisite tasks within JDeveloper to prepare the application for deployment.

The prerequisite tasks are:

Creating a connection to the target application server

Creating deployment profiles

Creating deployment descriptors

Migrating applicable security, credentials, identities, and policies
Replicating memory scopes in a clustered environment

Enabling the application for ADF MBeans (optional)

8.3.1 How to Create a Connection to the Target Application Server

You can deploy applications to the application server via JDeveloper application
server connections.

If your application involves customization using MDS, you should register your MDS
repository with the application server:

WebLogic: register the MDS into the WebLogic Domain

For more information about registering MDS in WebSphere, see the Oracle Fusion
Middleware Administrator’s Guide.

WebSphere: register the MDS into the WebSphere Cell

For more information about registering MDS in WebSphere, see the Oracle Fusion
Middleware Third-Party Application Server Guide.

Deploying an ADF Java EE Application 8-7

Preparing the Application

To create a connection to an application server:
1. Launch the Application Server Connection wizard.

You can:

= Inthe Application Server Navigator, right-click Application Servers and
choose New Application Server Connection.

= In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

= In the Resource Palette, choose New > New Connections > Application
Server.

2. In the Create AppServer Connection dialog Usage page, select Standalone Server.
3. In the Name and Type page, enter a connection name.
4. In the Connection Type dropdown list, choose:
= WebLogic 10.3 to create a connection to Oracle WebLogic Server
s WebSphere Server 7.x to create a connection to IBM WebSphere Server
5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authorized to access the application server.

7. Click Next.
8. On the Configuration page, enter the information for your server:
For WebLogic:

s The Oracle WebLogic host name is the name of the WebLogic Server instance
containing the TCP/IP DNS where your application (. jar, .war, .ear) will
be deployed.

= In the Port field, enter a port number for the Oracle WebLogic Server instance
on which your application (. jar, .war, . ear) will be deployed.

If you don’t specify a port, the port number defaults to 7001.

= In the SSL Port field, enter an SSL port number for the Oracle WebLogic
Server instance on which your application (. jar, .war, . ear) will be
deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a
secure connection for deployment.

If you don’t specify an SSL port, the port number defaults to 7002.

= Select Always Use SSL to connect to the Oracle WebLogic Server instance
using the SSL port.

= Optionally enter a WebLogic Domain only if Oracle WebLogic Server is
configured to distinguish nonadministrative server nodes by name.

For WebSphere:

= In the Host Name field, enter the name of the WebSphere server containing
the TCP/IP DNS where your Java EE applications (. jar, .war, . ear) are
deployed. If no name is entered, the name defaults to localhost.

= In the SOAP Connector Port field, enter the port number. The host name and
port are used to connect to the server for deployment. The default SOAP
connector port is 8879.

8-8 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

10.

11.
12.
13.

14.

s In the Server Name field, enter the name assigned to the target application
server for this connection.

= In the Target Node field, enter the name of the target node for this connection.
A node is a grouping of Managed Servers. The default is machineNode01,
where machine is the name of the machine the node resides on

= In the Target Cell field, enter the name of the target cell for this connection. A
cell is a group of processes that host runtime components. The default is
machineNode01,Cell where machine is the name of the machine the node
resides on.

= In the Wsadmin script location field, enter, or browse to, the location of the
wsadmin script file to be used to define the system login configuration for
your IBM WebSphere application server connection. The default location is
websphere-home/bin/wsadmin. sh for Unix/Linux and
websphere-home/bin/wsadmin.bat for Windows.

Click Next.

If you have chosen WebSphere, the JMX page appears. On the J]MX page, enter the
JMX information:

= Select Enable JMX for this connection to enable JMX.

s In the RMI Port field, enter the port number of WebSphere's RMI connector
port. The default is 2809.

» In the WebSphere Runtime Jars Location field, enter or browse to the location
of the WebSphere runtime JARs.

s Inthe WebSphere Properties Location (for secure MBEAN access) field, enter
or browse to the location of the file that contains the properties for the security
configuration and the mbeans that are enabled. This field is optional.

Click Next.
If the SSI Signer Exchange Prompt dialog appears, click Y.
On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must pass
for the application to be deployable. If the test fails, return to the previous pages of
the wizard to fix the configuration.

Click Finish.

8.3.2 How to Create Deployment Profiles

A deployment profile defines the way the application is packaged into the archive that
will be deployed to the target environment. The deployment profile:

Specifies the format and contents of the archive file that will be created

Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

Describes the type and name of the archive file to be created

Highlights dependency information, platform-specific instructions, and other
information

You need a WAR deployment profile for each web view-controller project that you
want to deploy in your application. If you want to package seeded customizations or
place base metadata in the MDS repository, you need an application-level metadata

Deploying an ADF Java EE Application 8-9

Preparing the Application

archive (MAR) deployment profile as well. For more information about seeded
customizations, see the "Customizing Applications with MDS" section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework. If the application has customization classes, you need a JAR file for those
classes and you need to add that JAR when you create the EAR file. If you are using
EJB, you need an EJB JAR profile. Finally, you need an application-level EAR
deployment profile and you must select the projects you want to include from a list,
such as WAR and MAR profiles and customization classes JAR files. When the
application is deployed, the EAR file will include all the projects that were selected in
the deployment profile.

For Oracle ADF applications, you can deploy the application only as an EAR file. The
WAR and MAR files that are part of the application should be included in the EAR file
when you create the deployment profile.

8.3.2.1 Adding Customization Classes into a JAR

If your application has customization classes, create a JAR that contains only these
customization classes. When you create your EAR, you can add the JAR to the EAR
assembly. And when you create WAR profiles for your web projects, you must make
sure they don’t include the customization classes JAR.

Before you begin:

Make sure that your project has customization classes. You do not need to perform this
procedure if the application does not have customization classes. For more
information about customization classes, see the "How to Create Customization
Classes" section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

To add customization classes into a JAR:
1. In the Application Navigator, right-click the data model project that contains the
customization classes you want to create a JAR for, and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then JAR
File, and click OK.

Alternatively, if you want to create a shared library, select Shared Library JAR File
from the list of profile types, and click OK.

Note: If you don’t see Deployment Profiles in the Categories tree,
click the All Technologies tab.

3. In the Create Deployment Profile -- JAR File dialog, enter a name for the project
deployment profile (for example, CCArchive) and click OK.

In the Edit JAR Deployment Profile Properties dialog, select JAR Options.
Enter the location for the JAR file.

Expand Files Groups > Project Output > Filters.

N o a &

In the Files tab, select the customization classes you want to add to the JAR file. If
you are using a customization.properties file, it needs to be in the same
class loader as the JAR file. You can select the customization.properties file
to package it along with the customization classes in the same JAR.

8. Click OK to exit the Edit JAR Deployment Profile Properties dialog.

8-10 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

9. Click OK again to exit the Project Properties dialog.

10. In the Application Navigator, right-click the project containing the JAR
deployment profile, and choose Deploy > deployment profile > to JAR file.

Note: If this is the first time you deploy to a JAR from this
deployment profile, you choose Deploy > deployment profile and
select Deploy to JAR in the wizard.

8.3.2.2 Creating a WAR Deployment Profile

You will need to create a WAR deployment profile for each web-based project you
want to package into the application. Typically, the WAR profile will include the
dependent model projects it requires.

To create WAR deployment profiles for an application:

1. In the Application Navigator, right-click the web project that you want to deploy
and choose New.

You will create a WAR profile for each web project.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

3. In the Create Deployment Profile -- WAR File dialog, enter a name for the project
deployment profile and click OK.

4. In the Edit WAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

» If you have customization classes in your application, they must be loaded
from the EAR-level application class loader and not from the WAR. You will
later add these customization classes to the EAR.

By default, customization classes are added to the model project's WAR class
path. So for each WAR, you must exclude the customization classes.

If you created your customization classes in an extension project of the
application, be sure to deselect any customization class archive on the Library
Dependencies page of the WAR deployment profile for each view controller
project.

If you created your customization classes in the model project of the
application, deselect any customization classes on the File Groups >
WEB-INF/classes > Filters page of the WAR deployment profile for each view
controller project. If you are using a customization.properties file, it
should also be deselected.

= You might also want to change the Java EE web context root setting (choose
General in the left pane).

By default, when Use Project’s Java EE Web Context Root is selected, the
associated value is set to the project name, for example,
Applicationl-Projectl-context-root. Youneed to change this if you
want users to use a different name to access the application.

Deploying an ADF Java EE Application 8-11

Preparing the Application

If you are using custom JAAS LoginModule for authentication with JAZN, the
context root name also defines the application name that is used to look up the
JAAS LoginModule.

5. Click OK to exit the Edit WAR Deployment Profile Properties dialog.
6. Click OK again to exit the Project Properties dialog.
7. Repeat Steps 1 through 7 for all web projects that you want to deploy.

8.3.2.3 Creating a MAR Deployment Profile

If you have seeded customizations or base metadata that you want to place in the MDS
repository, you need to create a MAR deployment profile.

The namespace configuration under <mds-config> for MAR content in the
adf-config.xml file is generated based on your selections in the MAR Deployment
Profile Properties dialog.

Although uncommon, an enterprise application (packaged in an EAR) can contain
multiple web application projects (packaged in multiple WARs), but the metadata for
all these web applications will be packaged into a single metadata archive (MAR). The
metadata contributed by each of these individual web applications can be global
(available for all the web applications) or local to that particular web application.

To avoid name conflicts for metadata with global scope, make sure that all metadata
objects and elements have unique names across all the web application projects that
form part of the enterprise application.

To avoid name conflicts and to ensure that the metadata for a particular web
application remains local to that application, you can define a web-app-root for that
web application project.

The web-app-root is an element in the adf-settings.xml file for a web
application project. The adf-settings.xml file should be kept in the META-INF
directory under the public_html directory for the web project. Example 8-1 shows
the contents of a sample adf-settings.xml file.

Example 8—-1 web-app-root Element in the adf-settings.xml File
<?xml version="1.0" encoding="UTF-8" ?>
<adf-settings xmlns="http://xmlns.oracle.com/adf/settings"
xmlns:wap="http://xmlns.oracle.com/adf/share/http/config">
<wap:adf-web-config xmlns="http://xmlns.oracle.com/adf/share/http/config">
<web-app-root rootName="order"/>
</wap:adf-web-config>
</adf-settings>

In this example, the adf-settings.xml file has a web-app-root element that
defines rootName as order.

If your enterprise application has only one web application project, there is no need to
define a web-app-root element. If your enterprise application has multiple web
application projects, you should supply a web-app-root for all the web applications
except one, without which the deployment will fail. For example, if you have
web-applicationl, web-application2, and web-application3, two of these
web application projects must define a web-app-root to preclude any name
conflicts.

JDeveloper creates an auto-generated MAR when the Enable User Customizations
and Across Sessions using MDS options are selected in the ADF View page of the

8-12 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

Project Properties dialog or when you explicitly specify the deployment target
directory in the adf-config.xml file.

By default, only the customizations in ADF view and ADF Model are included in the
MAR. If the Java EE application has customizations in other directories, you must
create a custom MAR profile that includes those directories.

Before you begin:

Create an MDS repository for your customization requirements to deploy metadata
using the MAR deployment profile.

To create a MAR deployment profile:

1.

In the Application Navigator, right-click the application and choose New.
You will create a MAR profile if you want to include customizations.

In the New Gallery, expand General, select Deployment Profiles and then MAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

In the Create Deployment Profile -- MAR File dialog, enter a name for the MAR
deployment profile and click OK.

In the Edit MAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane.

Figure 8-2 shows a sample User Metadata directory tree.

Figure 8-2 Selecting Items for the MAR Deployment Profiles

& Edit MAR Deployment Profile Properties @
| &8)| Directories
- MAR Options
B Metadata File Graups | Deselect All Customizations |
[} User Metadata
¥ Directories =[] CJ Merged Contents of This File Group's Cantributors
5 HTML Roat Dir for StoreFr =[]0 account
... Directories ED 3 META-INF
. [E] adfm.xml
5[] £3 orace
E}D 3 fodemn
=R M) <torefront
2] £ account
E-[]C3 queries
A Se[] 3 dlient
]2 commen
b 13 links
[E] Customeraddressvo,xml
@ CustomerInterestsyo, xml
i @ CustomerPaymentOptionyO,cml
e @ CustomerRegistrationt'Q sl
----- [1C0 adfextensions
----- []C3 client
B[] C3 entities
E||:| (3 associations
=[] commen
= ----- 5] addressUsagesaddressesFkassoc, xml
Expand All Modes | | Collapse All Modes |
Help | | a4 J | Cancel |

Note the following important points:

Deploying an ADF Java EE Application 8-13

Preparing the Application

s Toinclude all customizations, you need only create a file group with the
desired directories.

s Toinclude files from other than ADF Model and ADF view, create a new file
group under User Metadata with the desired directories and explicitly select
the required content in the Directories page.

= ADF Model and ADF view directories are added by default. No further action
is required to package the ADF Model and ADF view customizations into the
MAR. ADF view content is added to HTML Root dir, while ADF Model
content is added to User Metadata. If your application has other
customization directories, such as from an EJB project, you must add those
directories.

s Toinclude the base metadata in the MDS repository, you need to explicitly
select these directories in the dialog.

When you select the base document to be included in the MAR, you also select
specific packages. When you select one package, all the documents (including
subpackages) under that package will be used. When you select a package,
you cannot deselect individual items under that package.

s If a dependent ADF library JAR for the project contains seeded
customizations, they will automatically be added to the MAR during MAR
packaging. They will not appear in the MAR profile.

s If ADF Library customizations were created in the context of the consuming
project, those customizations would appear in the MAR profile dialog by
default.

Click OK to exit the Edit MAR Deployment Profile Properties dialog.
Click OK again to exit the Application Properties dialog.

8.3.2.4 Creating an EJB JAR Deployment Profile

If you are using an EJB module in the model project, you need to create an EJB JAR
deployment profile.

Before you begin:
Create a model project that has an EJB module.

To create an EJB JAR deployment profile for an application:

1.

In the Application Navigator, right-click the web project that you want to deploy
and choose New.

In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

In the Create Deployment Profile -- EJB JAR File dialog, enter a name for the
deployment profile and click OK.

In the Edit EJB JAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

Click OK to exit the Edit E]B JAR Deployment Profile Properties dialog.
Click OK again to exit the Project Properties dialog.

8-14 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

8.3.2.5 Creating an Application-Level EAR Deployment Profile

The EAR file contains all the necessary application artifacts for the application to run
in the application server. For more information about the EAR file, see Section 8.4.5,
"What You May Need to Know About EAR Files and Packaging."

Before you begin:
= Add classes into a JAR file, as described in Section 8.3.2.1, "Adding Customization
Classes into a JAR."

n Create the WAR deployment profiles, as described in Section 8.3.2.2, "Creating a
WAR Deployment Profile."

To create an EAR deployment profile for an application:
1. In the Application Navigator, right-click the application and choose New.

You will create an EAR profile for the application.

2. In the New Gallery, expand General, select Deployment Profiles and then EAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

3. In the Create Deployment Profile -- EAR File dialog, enter a name for the
application deployment profile and click OK.

4. In the Edit EAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

Be sure that you:

n Select Application Assembly and then in the Java EE Modules list, select all
the project profiles that you want to include in the deployment, including any
WAR or MAR profiles.

= Select Platform, and select the application server you are deploying to, and
then select the target application connection from the Target Connection
dropdown list.

Note: If you are using custom JAAS LoginModule for authentication
with JAZN, the context root name also defines the application name
that is used to look up the JAAS LoginModule.

5. If you have customization classes in your application, configure these classes so
that they load from the EAR-level application class loader.

a. In the Edit EAR Deployment Profile Properties dialog, select Application
Assembly.

b. Select the JAR deployment profile that contains the customization classes, and
enter 1ib in the Path in EAR field at the bottom of the dialog.

Note: You should have created this JAR as described in
Section 8.3.2.1, "Adding Customization Classes into a JAR."

Deploying an ADF Java EE Application 8-15

Preparing the Application

The JAR file containing the customization classes is added to the EAR file’s 1ib
directory.

Note: If you have customization classes in your application, you
must also make sure they are not loaded from the WAR. By default,
customization classes that are added to the model project's Libraries &
Classpath are packaged to the WAR class path.

To make sure customization classes from an extension project are not
duplicated in the WAR, be sure to deselect any customization class
archive on the Library Dependencies page for the WAR.

If you created your customization classes in the model project of the
consuming application, deselect any customization classes on the File
Groups > WEB-INF/classes > Filters page for the WAR.

6. Click OK to exit the Deployment Profile Properties dialog.
7. Click OK again to exit the Application Properties dialog.

Note: To verify that your customization classes are put correctly in
the EAR class path, you can deploy the EAR profile to file system.
Then you can examine the EAR to make sure that the customization
class JAR is available in the EAR class path (the EAR/11ib directory)
and not available in the WAR class path (the WEB-INF/1ib and
WEB-INF/classes directories).

8.3.2.6 Delivering Customization Classes as a Shared Library

As an alternative to adding your customization classes to the EAR, as described in
Section 8.3.2.5, "Creating an Application-Level EAR Deployment Profile,” you can also
include the customization classes in the consuming application as a shared library.

Before you begin:

With the application containing the customization classes open in JDeveloper in the
Default role, use the procedure described in Section 8.3.2.1, "Adding Customization
Classes into a JAR," making sure that you select Shared Library JAR File as the type of
archive to create.

Note: This procedure describes how to create and use a shared
library if you are deploying to Oracle Weblogic Server.

To create and use a shared library for your customization classes:

1. In the Application Navigator, right-click the customization classes project, and
choose Deploy > deployment-profile.

2. In the Deploy wizard, select Deploy to a Weblogic Application Server and click
Next.

3. Select the appropriate application server, and click Finish.

This makes the shared library available on the application server. You must now
add a reference to the shared library from the consuming application.

4. Open the application you want to customize in JDeveloper in the Default role.

8-16 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

5. In the Application Resources panel of the Application Navigator, double-click the
weblogic-application.xml file to open it.

6. In the overview editor, click the Libraries tab.
7. In the Shared Library References section, click the add icon.

8. In the Library Name field of the newly created row in the Shared Library
References table, enter the name of the customization classes shared library you
deployed, and save your changes.

8.3.2.7 Viewing and Changing Deployment Profile Properties

After you have created a deployment profile, you can view and change its properties.

To view, edit, or delete a project’s deployment profile:
1. In the Application Navigator, right-click the project and choose Project Properties.

2. In the Project Properties dialog, click Deployment.

The Deployment Profiles list displays all profiles currently defined for the project.
3. In the list, select a deployment profile.
4. To edit or delete a deployment profile, click Edit or Delete.

8.3.3 How to Create and Edit Deployment Descriptors

Deployment descriptors are server configuration files that define the configuration of an
application for deployment and that are deployed with the Java EE application as
needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively,
JDeveloper opens the XML file in the source editor for you to edit its contents.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that
are specific to your target application server. For example, if you are deploying to
Oracle WebLogic Server, you can also have weblogic.xml,
weblogic-application.xml, and weblogic-ejb-jar.xml.

For WebLogic Server, make sure that the application EAR file includes a
weblogic-application.xml file that contains a reference to
adf.oracle.domain, and that it includes an
ADFApplicationLifecycleListener to clean up application resources between
deployment and undeployment actions. Example 8-2 shows a sample
weblogic-application.xml file.

Example 8-2 Sample weblogic-application.xml

<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
<listener>
<listener-class>oracle.adf.share.weblogic.listeners.
ADFApplicationLifecycleListener</listener-class>
</listener>
<listener>
<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>

Deploying an ADF Java EE Application 8-17

Preparing the Application

</listener>
<library-ref>
<library-name>adf.oracle.domain</library-name>
</library-ref>
</weblogic-application>

If you are deploying web services, you may need to modify your
weblogic-application.xml and web.xml files as described in the "How to
Deploy Web Services to Oracle WebLogic Server" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

If you want to enable the application for Real User Experience Insight (RUEI)
monitoring, you must add a parameter to the web . xm1 file, as described in
Section 8.3.3.5, "Enabling the Application for Real User Experience Insight."

During deployment to WebLogic, the application’s security properties are written to
the weblogic-application.xml file to be deployed with the application in the
EAR file.

Because the application server runs on Java EE 5, you may need to modify the
application.xml and web.xml files to be compatible with the server.

For IBM WebSphere, the deployment descriptors are created at runtime and cannot be
edited. Some of the relevant descriptors are shown in Table 8-1.

Table 8-1 IBM WebSphere Deployment Descriptors

WebSphere Action

ibm-application-bnd.xml This references the security role just mapped
inapplication.xml and maps it to the
well-known name "AllAuthenticatedUsers".
Similar to weblogic.xml for WebLogic
Server. Maps the "valid-users" JEE security
role to the well-known name "Users".

application.xml A standard Java EE deployment description,
but it is also used to populate a security
mapping for the “valid-users” role (which is
defined in web . xm1 when using ADF
Security).

<EAR_ROOT>/META-INF/manifest.mf References application-shared libraries such
as adf .oracle.domain.

<EAR_ROOT>/META-INF/deployment .xml References WAR-shared libraries such as
adf .oracle.domain.webapp.

8.3.3.1 Creating Deployment Descriptors

JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can
explicitly create them.

Before you begin:
Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:

1. In the Application Navigator, right-click the project for which you want to create a
descriptor and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then a
descriptor type, and click OK.

8-18 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

If you can’t find the item you want, make sure that you chose the correct project,
and then choose the All Technologies tab or use the Search field to find the
descriptor. If the item is not enabled, check to make sure that the project does not
already have a descriptor of that type. A project is allowed only one instance of a
descriptor.

JDeveloper starts the Create Deployment Descriptor wizard and then opens the
file in the overview or source editor, depending on the type of deployment
descriptor you choose.

Note: For EAR files, do not create more than one deployment
descriptor per application or workspace. These files are assigned to
projects, but have application workspace scope. If multiple projects in
an application have the same deployment descriptor, the one
belonging to the launched project will supersede the others. This
restriction applies to application.xml, weblogic-jdbc.xml,
jazn-data.xml, and weblogic.xml.

The best place to create an application-level descriptor is in the
Descriptors node of the Application Resources panel in the
Application Navigator. This ensures that the application is created
with the correct descriptors.

8.3.3.2 Viewing or Modifying Deployment Descriptor Properties

After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under
the Application Sources node.

To view or change deployment descriptor properties:
1. In the Application Navigator or in the Application Resources panel, double-click
the deployment descriptor.

2. In the editor window, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, JDeveloper opens the file in the source
editor.

8.3.3.3 Configuring the application.xml File for Application Server Compatibility

You may need to configure your application.xml file to be compliant with Java EE
5.

Note: Typically, your project has an application.xml file that is
compatible and you would not need to perform this procedure.

To configure the application.xml file:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

3. In the Select Descriptor page of the Create Java EE Deployment Descriptor dialog,
select application.xml and click Next.

Deploying an ADF Java EE Application 8-19

Preparing the Application

4. In the Select Version page, select 5.0 and click Next.
5. Inthe Summary page, click Finish.

6. Edit the application.xml file with the appropriate values.

8.3.3.4 Configuring the web.xml File for Application Server Compatibility

You may need to configure your web . xml file to be compliant with Java EE 5 (which
corresponds to servlet 2.5 and JSP 1.2).

Note: Typically, your project has a web . xml file that is compatible
and you would not need to perform this procedure. JDeveloper
creates a starter web . xm1 file when you create a project.

To configure the web.xml file:
1. Inthe Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

3. In the Select Descriptor page of the Create Java EE Deployment Descriptor dialog,
select web.xml and click Next.

4. In the Select Version page, select 2.5 and click Next.
5. Inthe Summary page, click Finish.

8.3.3.5 Enabling the Application for Real User Experience Insight

Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic
requested by, and generated from, your network. It measures the response times of
pages and transactions at the most critical points in the network infrastructure. Session
diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user experience,
to monitor your Key Performance Indicators (KPIs) and Service Level Agreements
(SLAs), and to trigger alert notifications on incidents that violate their defined targets.
You can implement checks on page content, site errors, and the functional
requirements of transactions. Using this information, you can verify your business and
technical operations. You can also set custom alerts on the availability, throughput, and
traffic of all items identified in RUEI.

For more information about RUEI, see the Oracle Real User Experience Insight User’s
Guide at http://download.oracle.com/docs/cd/E16339_
01/doc.60/el16359/toc.htm.

You must enable an application for RUEI by adding the context-param tag to the
web . xml file shown in Example 8-3.

Example 8-3 Enabling RUEI Monitoring for an Application in web.xml

<context-param>

<description>This parameter notifies ADF Faces that the
ExecutionContextProvider service provider is enabled.
When enabled, this will start monitoring and aggregating
user activity information for the client initiated
requests. By default this param is not set or is false.

</description>

<param-name>

8-20 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT PROVIDER
</param-name>
<param-value>true</param-value>
</context-param>

8.3.4 How to Deploy Applications with ADF Security Enabled

If you are developing an application in JDeveloper using Integrated WebLogic Server,
application security deployment properties are configured by default, which means
that the application and security credentials and policies will be overwritten each time
you redeploy for development purposes.

8.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)

Before you can deploy and run the web application with ADF Security enabled on the
application server, the administrator of the target server must configure the
domain-level jps-config.xml file for the Oracle Access Manager (OAM) security
provider. To assist with this configuration task, an Oracle WebLogic Scripting Tool
(WLST) script has been provided with the JDeveloper install. You can also use this
command for configuring WebSphere for OAM. For details about running this
configuration script (with command addOAMSSOProvider (loginuri,
logouturi, autologinuri)), see the procedure for configuring Oracle WebLogic
Server for a web application using ADF Security, OAM SSO, and OPSS SSO in the
Oracle Fusion Middleware Security Guide.

Running the configuration script ensures that the ADF Security framework defers to
the OAM service provider to clear the SSO cookie token. OAM uses this token to save
the identity of authenticated users and, unless it is cleared during logout, the user will
be unable to log out.

After the system administrator runs the script on the target server, the domain
jps-config.xml file will contain the following security provider definition that is
specific for ADF Security:

<propertySet name="props.auth.uri">
<property name="login.url.FORM" value="/${app.context}/adfAuthentication"/>
<property name="logout.url" value=""/>

</propertySet>

Additionally, the authentication type required by SSO is CLIENT-CERT. The web . xml
authentication configuration for the deployed application must specify the
<auth-method> element as one of the following CLIENT-CERT types.

WebLogic supports two types of authentication methods:
= For FORM-type authentication method, specify the elements like this:

<login-config>
<auth-method>CLIENT-CERT, FORM</auth-method>
<realm-name>myrealm</realm-name>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>

s For BASIC-type authentication method, specify the elements like this:

<login-config>
<auth-method>CLIENT-CERT, BASIC</auth-method>

Deploying an ADF Java EE Application 8-21

Preparing the Application

<realm-name>myrealm</realm-name>
</login-config>

WebSphere supports a single authentication method. Specify the elements like this:

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>myrealm</realm-name>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>

You can configure the web . xml file either before or after deploying the web
application. For further details about setting up the authentication method for Single
Sign-On, see the Oracle Fusion Middleware Security Guide.

8.3.4.2 Configuring Security for WebLogic Server

In a development environment, JDeveloper will automatically migrate
application-level credentials, identities, and policies to the remote WebLogic Server
instance only if the server is set up to be in development mode. Integrated WebLogic
Server is set up in development mode by default. You can set up a remote WebLogic
Server to be in development mode during Oracle WebLogic Server domain creation
using the Oracle Fusion Middleware Configuration Wizard. For more information
about configuring Oracle WebLogic Server domains, see Oracle Fusion Middleware
Creating Domains Using the Configuration Wizard.

JDeveloper will not migrate application-level security credentials to WebLogic Server
setup in production mode. Typically, in a production environment, administrators will
use Enterprise Manager or WLST scripts to deploy an application, including its
security requirements.

When you deploy an application to WebLogic Server, credentials (in the
cwallet.ssoand jazn-data.xml files) will either overwrite or merge with the
WebLogic Server domain-level credential store, depending on whether a property in
weblogic-application.xml is set to OVERWRITE or MERGE. In production-mode
WebLogic Server, to avoid security risks, only MERGE is allowed. For
development-mode WebLogic Server, you can set to OVERWRITE to test user names
and passwords. You can set the mode by running setDomainEnv.cmd or
setDomainEnv. sh with the following option added to the command (usually located
in ORACLE_HOME/user_projects/domains/MyDomain/bin) .

For setDomainEnv.cmd:

set EXTRA_JAVA_ PROPERTIES=-Djps.app.credential.overwrite.allowed=true
SEXTRA_JAVA_PROPERTIESS

For setDomainEnv. sh:

EXTRA_JAVA_PROPERTIES="-Djps.app.credential.overwrite.allowed=true
${EXTRA_JAVA_PROPERTIES}"
export EXTRA_JAVA_PROPERTIES

If the Administration Server is already running, you must restart it for this setting to
take effect.

You can check to see whether WebLogic Server is in production mode by using the
Oracle WebLogic Server Administration Console or by verifying the following line in
the WebLogic Server config.xml file:

8-22 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

<production-mode-enabled>true</production-mode-enabled>

By default, JDeveloper sets the application’s credentials, identities, and policies to
OVERWRITE. That is, the Application Policies, Credentials, and Users and Groups
options are selected by default in the Application Properties dialog Deployment page.
However, an application’s credentials will be migrated only if the target WebLogic
Server instance is set to development mode with
-Djps.app.credential.overwrite.allowed=true

When your application is ready for deployment to a production environment, you
should remove the identities from the jazn-data.xml file or disable the migration of
identities by deselecting Users and Groups from the Application Properties dialog.
Application credentials must be manually migrated outside of JDeveloper.

Note: Before you migrate the jazn-data.xml file to a production
environment, check that the policy store does not contain duplicate
permissions for a grant. If a duplicate permission (one that has the
same name and class) appears in the file, the administrator migrating
the policy store will receive an error and the migration of the policies
will be halted. You should manually edit the jazn-data.xml file to
remove any duplicate permissions from a grant definition.

For more information about migrating application credentials and other jazn-data
user credentials, see the Oracle Fusion Middleware Security Guide.

8.3.4.2.1 Applications with JDBC Data Source for WebLogic

If your application uses application-level JDBC data sources with password indirection
for database connections, you may need to create credential maps in WebLogic Server
to enable the database connection. For more information, see Section 8.3.7, "What You
May Need to Know About JDBC Data Source for Oracle WebLogic Server."

8.3.4.3 Configuring Security for WebSphere Server

Applications with credentials and policies in the jazn-data.xml and cwallet.sso
files can be migrated to WebSphere. You will need to perform additional tasks in
WebSphere Be aware that the opss-application.xml file is not included in the
application EAR file if it is intended for WebSphere.

Note: Before you migrate the jazn-data.xml file to a production
environment, check that the policy store does not contain duplicate
permissions for a grant. If a duplicate permission (one that has the
same name and class) appears in the file, the administrator migrating
the policy store will receive an error and the migration of the policies
will be halted. You should manually edit the jazn-data.xml file to
remove any duplicate permissions from a grant definition.

For more information about setting up WebSphere to accept credentials and policies,
see the Oracle Fusion Middleware Third-Party Application Server Guide.

8.3.4.3.1 Applications with JDBC Data Source for WebSphere

If your application uses application-level JDBC data sources with password indirection
for database connections, you will need to create a JDBC data source in WebSphere.
For more information, see the IBM WebSphere documentation.

Deploying an ADF Java EE Application 8-23

Preparing the Application

8.3.4.3.2 Editing the web.xml File to Protect the Application Root for WebSphere

When you enable ADF Security for your web application, the web . xm1 file includes
the Java EE security constraint al1Pages to protect the Java EE application root. By
default, to support deploying to Oracle WebLogic Server, JDeveloper specifies the URL
pattern for the security constraint as / (backslash). If you intend to deploy the
application to IBM WebSphere, the correct URL pattern is /* (backslash-asterisk).
Before you deploy the application to WebSphere, manually edit the web . xm1 file for
your application to change the al1Pages security constraint as follows:

<security-constraint>
<web-resource-collection>
<web-resource-name>allPages</web-resource-name>
<url-pattern>/*</url-pattern>
</web-resource-collection>

</security-constraint>

8.3.5 How to Replicate Memory Scopes in a Clustered Environment

If you are deploying an application that is intended to run in a clustered environment,
you need to ensure that all managed beans with a lifespan longer than one request are
serializable, and that the ADF framework is aware of changes to managed beans
stored in ADF scopes (view scope and page flow scope).

For more information, see the "How to Set Managed Bean Memory Scopes in a
Server-Cluster Environment" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

8.3.6 How to Enable the Application for ADF MBeans

An ADF application uses many XML files for setting configuration information. Some
of these configuration files have ADF MBean counterparts that are deployed with the
application. After the application has been deployed, you can change configuration
properties by accessing the ADF MBeans using the Enterprise Manager Fusion
Middleware Control MBean browser.

To enable ADF MBeans, you must register them in the web . xm1 file. Example 8—4
shows a web . xm1 file with listener entries for connections and configuration.

Example 8—-4 Enabling ADF MBeans in the web.xml File

<listener>
<listener-class>
oracle.adf .mbean.share.connection.ADFConnectionLifeCycleCallBack
</listener-class>
</listener>
<listener>
<listener-class>
oracle.adf .mbean.share.config.ADFConfigLifeCycleCallBack</listener-class>
</listener>

Additionally, the ADFConnection and ADFConfig MBeans require the application to
be configured with an MDS repository. MDS configuration entries in the
adf-config.xml file for a database-based MDS are shown in Example 8-5. For more
information about configuring MDS, see the Oracle Fusion Middleware Administrator’s
Guide.

8-24 Java EE Developer's Guide for Oracle Application Development Framework

Preparing the Application

Example 8-5 MDS Configuration Entries in the adf-config.xml File

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
<persistence-config>
<metadata-store-usages>
<metadata-store-usage
default-cust-store="true" deploy-target="true" id="myStore">
</metadata-store-usage>
</metadata-store-usages>
</persistence-config>
</mds-config>
</adf-mds-config>

In a production environment, an MDS repository that uses a database is required. You
can use JDeveloper, Enterprise Manager Fusion Middleware Control, or WLST
commands to switch from a file-based repository to a database MDS repository.

Additionally, if several applications are sharing the same MDS configuration, you can
ensure that each application has distinct customization layers by defining a
adf:adf-properties-child property in the adf-config.xml file. JDeveloper
automatically generates this entry when creating applications. If your
adf-config.xml file does not have this entry, add it to the file with code similar to
that of Example 8-6.

Example 8-6 Adding MDS Partition Code to the adf-config.xml File

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
<adf-property name="adfAppUID" value="Application3-4434"/>
<adf-property name="partition_customizations_by application_id"
value="true"/>
</adf:adf-properties-child>

The value attribute is either generated by JDeveloper or you can set it to any unique
identifier within the server farm where the application is deployed. This value can be
set to the value attribute of the adfAppUID property.

When adf-property name is set to adfAppUid, then the corresponding value
property should be set to the name of the application. By default, JDeveloper generates
the value property using the application’s package name. If the package name is not
specified, JDeveloper generates the value property by using the workspace name and
a four-digit random number.

For more information about configuring Oracle ADF applications using ADF MBeans,
see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

8.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic

Server

An Oracle ADF Java EE application can use a JDBC data source to connect to the
database. You use the Oracle WebLogic Server Administration Console to configure a
JDBC data source. A JDBC data source has three types: global, application level, and
application level with password indirection. You generally set up a global JDBC data
source in WebLogic Server. Any application that requires access to that database can
use that JDBC data source. An application can also include application-level JDBC
data sources. When the application is packaged for deployment, if the Auto Generate
and Synchronize weblogic-jdbc.xml Descriptor During Deployment option is
selected, JDeveloper creates a connection_name-jdbc.xml file for each connection

Deploying an ADF Java EE Application 8-25

Deploying the Application

that was defined. Each connection’s information is written to the corresponding
connection_name-jdbc.xml file (entries are also changed in
weblogic-application.xml and web.xml). When the application is deployed to
WebLogic Server, the server looks for application-level data source information before
it looks for the global data source.

If the application is deployed with password indirection set to true, WebLogic Server
will look for the connection_name-jdbc.xml file for user name information and it
will then attempt to locate application-level credential maps for these user names to
obtain the password. If you are using JDeveloper to directly deploy the application to
WebLogic Server, JDeveloper automatically creates the credential map and populates
the map to the server using an MBean call.

However, if you are deploying to an EAR file, JDeveloper will not be able to make the
MBean call to WebLogic Server. You must set up the credential maps using the Oracle
WebLogic Administration Console. Even if you have a global JDBC data source set up,
if you do not also have credential mapping set up, WebLogic Server will not be able to
map the credentials with passwords and the connection will fail. For more information
about JDBC data sources, password indirection, and how to set up application
credential mappings, see "JDBC Data Sources" in the "Deploying Applications" section
of the JDeveloper online help.

For more information, see the "Preparing the Standalone Application Server for
Deployment" section of the Oracle Fusion Middleware Administrator’s Guide for Oracle
Application Development Framework.

8.4 Deploying the Application

You can use JDeveloper to deploy applications directly to the standalone application
server or create an archive file and use other tools to deploy to the application server.

Note: Before you begin to deploy applications that use Oracle ADF
to the standalone application server, you need to prepare the
application server environment by performing tasks such as installing
the ADF runtime and creating and extending domains or cells. For
more information, see the "Preparing the Standalone Application
Server for Deployment" section of the Oracle Fusion Middleware
Administrator’s Guide for Oracle Application Development Framework.

Table 8-2 describes some common deployment techniques that you can use during the
application development and deployment cycle. The deployment techniques are listed
in order from deploying on development environments to deploying on production
environments. It is likely that in the production environment, the system
administrators deploy applications by using Enterprise Manager Fusion Middleware
Control or scripts.

8-26 Java EE Developer's Guide for Oracle Application Development Framework

Deploying the Application

Table 8-2 Deployment Techniques for Development or Production Environments

Deployment Technique Environment

When to Use

Test or
Development

Run directly from JDeveloper

When you are developing your application. You want
deployment to be quick because you will be repeating
the editing and deploying process many times.

JDeveloper contains Integrated WebLogic Server, on
which you can run and test your application.

Test or
Development

Use JDeveloper to directly deploy to the
target application server

When you are ready to deploy and test your application
on an application server in a test environment.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Test or
Development

Use JDeveloper to deploy to an EAR file,
then use the target application server’s
tools for deployment

When you are ready to deploy and test your application
on an application server in a test environment. As an
alternative to deploying directly from JDeveloper, you

can deploy to an EAR file and then use other tools to
deploy to the application server.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use Enterprise Manager or scripts to
deploy applications

Production When your application is in a test and production
environment. In production environments, system
administrators usually use Enterprise Manager or run

scripts to deploy applications.

Any necessary MDS repositories must be registered with the application server. If the
MDS repository is a database, the repository maps to a data source with MDS-specific
requirements.

If you are deploying the application to Oracle WebLogic Server, make sure to target
this data source to the WebLogic Administration Server and to all Managed Servers to
which you are deploying the application. For more information about registering
MDS, see the Oracle Fusion Middleware Administrator’s Guide.

If you are using the application server’s administrative consoles or scripts to deploy an
application packaged as an EAR file that requires MDS repository configuration in
adf-config.xml, you must run the getMDSArchiveConfig command to
configure MDS before deploying the EAR file. MDS configuration is required if the
EAR file contains a MAR file or if the application is enabled for DT@RT (Design Time
At Run Time).

For more information about WLST commands, see the Oracle Fusion Middleware
WebLogic Scripting Tool Command Reference. For more information about wsadmin
commands, see the Oracle Fusion Middleware Third-Party Application Server Guide and
the Oracle Fusion Middleware Configuration Guide for WebSphere.

If you plan to configure ADF connection information or adf-config.xml using ADF
MBeans after the application has been deployed, make sure that the application is
configured with MDS and that you have the MBean listeners enabled in the web . xm1
file. For more information, see Section 8.3.6, "How to Enable the Application for ADF
MBeans."

Deploying an ADF Java EE Application 8-27

Deploying the Application

8.4.1 How to Deploy to the Application Server from JDeveloper

Before you begin:
Create an application-level deployment profile that deploys to an EAR file.

Note: When you are deploying to Oracle WebLogic Server from
JDeveloper, ensure that the HTTP Tunneling property is enabled in the
Oracle WebLogic Server Administration Console. This property is
located under Servers > ServerName > Protocols. ServerName refers
to the name of Oracle WebLogic Server.

Note:]JDeveloper does not support deploying applications to
individual Managed Servers that are members of a cluster. You may
be able to target one or more Managed Servers within a cluster using
the Oracle WebLogic Server Administration Console or other Oracle
WebLogic tools; however, the cluster can be negatively affected. For
more information about deploying to Oracle WebLogic Server
clusters, see the Oracle Fusion Middleware Administrator’s Guide.

To deploy to the target application server from JDeveloper:
1. In the Application Navigator, right-click the application and choose Deploy >
deployment profile.

2. In the Deploy wizard Deployment Action page, select Deploy to Application
Server and click Next.

3. In the Select Server page, select the application server connection.

4. If you are deploying to a WebLogic Server instance, the WebLogic Options page
appears. Select a deploy option and click Next.

Note: If you are deploying an ADF application, do not use the
Deploy to all instances in the domain option.

5. Click Finish.

During deployment, you can see the process steps displayed in the deployment
Log window. You can inspect the contents of the modules (archives or exploded
EAR) being created by clicking on the links that are provided in the log window.
The archive or exploded EAR file will open in the appropriate editor or directory
window for inspection.

If the adf-config.xml file in the EAR file requires MDS repository
configuration, the Deployment Configuration dialog appears for you to choose the
target metadata repository or shared metadata repositories, as shown in

Figure 8-3. The Repository Name dropdown list allows you to choose a target
metadata repository from a list of metadata repositories registered with the
Administration Server. The Partition Name dropdown list allows you to choose
the metadata repository partition to which the application's metadata will be
imported during deployment. You can use WLST /wsadmin scripts, Oracle
WebLogic Server Administration Tool, or WebSphere Administrative Tool,
respectively, to configure and register MDS. For more information about managing
the MDS repository, see the Oracle Fusion Middleware Administrator’s Guide.

8-28 Java EE Developer's Guide for Oracle Application Development Framework

Deploying the Application

Figure 8-3 MDS Configuration and Customization for Deployment

- Deployinent Configuration

Configure and customize settings for this deployment o

MD3
- Metadata Repository

Repasitary Mame: | mds-muMewRenos b |

Repositary Type: DB

Pattition Mame: |mynpplication |v|

Path/IMDI Info: jdbe/mds/myNewRepos

- Shared Metadata Repositories

Mamespace Repository Type Partition PathIMDI Info

Help Deploy | | Cancel

Note: If you are deploying a Java EE application, click the
application menu next to the Java EE application in the Application
Navigator.

For more information on creating application server connections, see Section 8.3.1,
"How to Create a Connection to the Target Application Server."

Tip: You may get an exception in JDeveloper when trying to deploy
large EAR files. The workaround is to deploy the application using the
Oracle WebLogic Server Administration Console.

8.4.2 How to Create an EAR File for Deployment

You can also use the deployment profile to create an archive file (EAR file). You can
then deploy the archive file using Enterprise Manager, WLST /wsadmin scripts, Oracle
WebLogic Server Administration Console, or WebSphere Administrative Tool,
respectively.

Although an Oracle ADF Java EE application is encapsulated in an EAR file (which
usually includes WAR, MAR, and JAR components), it may have parts that are not
deployed with the EAR.

To create an EAR archive file:

= In the Application Navigator, right-click the application containing the
deployment profile, and choose Deploy > deployment profile > to EAR file.

Deploying an ADF Java EE Application 8-29

Deploying the Application

If an EAR file is deployed at the application level, and it has dependencies on a
JAR file in the data model project and dependencies on a WAR file in the
view-controller project, then the files will be located in the following directories by
default:

— ApplicationDirectory/deploy/EARdeploymentprofile EAR

— ApplicationDirectory/ModelProject/deploy/JARdeploymentprofil
e.JAR

- ApplicationDirectory/ViewControllerProject/deploy/WARdeployme
ntprofileWAR

Tip: Choose View >Log to see messages generated during the
creation of the archive file.

8.4.3 How to Deploy New Customizations Applied to ADF Llbrary

If you have created new customizations for an ADF Library, you can use the MAR
profile to deploy these customizations to any deployed application that consumes that
ADF Library. For instance, applicationa, which consumes ADFLibraryB, was
deployed to a remote application server. Later on, when new customizations are
added to ADFLibraryB, you only need to deploy the updated customizations into
applicationA. You do not need to repackage and redeploy the whole application,
nor do you need to manually patch the MDS repository.

Note: This procedure is for applying ADF Library customization
changes to an application that has already been deployed to a remote
application server. It is not for the initial packaging of customizations
into a MAR that will eventually be a part of an EAR. For information
about the initial packaging of the customization using a MAR, see
Section 8.3.2.3, "Creating a MAR Deployment Profile."

To deploy ADF Library customizations, create a new MAR profile that includes only
the customizations to be deployed and then use JDeveloper to:

= Deploy the customizations directly into the MDS repository in the remote
application server.

= Deploy the customizations to a JAR. And then import the JAR into the MDS
repository using tools such as the Fusion Middleware Control.

8.4.3.1 Exporting Customization to a Deployed Application

You can export the customizations directly from JDeveloper into the MDS repository
for the deployed application on the remote application server.

Before you begin:
Create new customizations to the ADF Library using the deployer role in JDeveloper.

To export the customizations directly into the application server:

1. In the Application Navigator, right-click the application and choose Deploy >
metadata.

2. In the Deploy Metadata dialog Deployment Action page, select Export to a
Deployed Application and click Next.

8-30 Java EE Developer's Guide for Oracle Application Development Framework

Deploying the Application

If the MAR profile is included in any of the application’s EAR profiles, Export to a
Deployed Application will be dimmed and disabled.

3. In the Application Server page, select the application server connection and click
Next.

4. For WebLogic Server, the Server Instance page appears. In this page, select the
server instance where the deployed application is located and click Next.

5. In the Deployed Application page, select the application you want to apply the
customizations to and click Next.

6. In the Sandbox Instance page, if you want to deploy to a sandbox, select Deploy to
an associated sandbox, choose the sandbox instance and click Next.

7. Inthe Summary page, verify the information and click Finish.

8.4.3.2 Deploying Customizations to a JAR

When you deploy the ADF Library customizations to a JAR, you are packaging the
contents as defined by the MAR profile.

Before you begin:
Create new customizations to the ADF Library using the deployer role in JDeveloper.

To deploy the customizations as a JAR

1. In the Application Navigator, right-click the application and choose Deploy >
metadata.

2. In the Deploy Metadata dialog Deployment Action page, select Deploy to MAR.

3. Inthe Summary page, click Finish.

4. Use Enterprise Manager Fusion Middleware Control or the application server’s
administration tool to import the JAR into the MDS repository.

8.4.4 What You May Need to Know About ADF Libraries

An ADF Library is a JAR file that contains JAR services registered for ADF
components such as ADF task flows, pages, or application modules. If you want the
ADF components in a project to be reusable, you create an ADF Library deployment
profile for the project and then create an ADF Library JAR based on that profile.

An application or project can consume the ADF Library JAR when you add it using
the Resource Palette or manually by adding it to the library classpath. When the ADF
Library JAR is added to a project, it will be included in the project’'s WAR file if the
Deployed by Default option is selected.

For more information, see the “"Reusing Application Components" section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

8.4.5 What You May Need to Know About EAR Files and Packaging

When you package an Oracle ADF application into an EAR file, it can contain the
following:

s WAR files: Each web-based view-controller project should be packaged into a
WAR file.

Deploying an ADF Java EE Application 8-31

Postdeployment Configuration

s MAR file: If the application has customizations that are deployed with the
application, it should be packaged into a MAR.

= ADF Library JAR files: If the application consumes ADF Library JARs, these JAR
files may be packaged within the EAR.

» Other JAR files: The application may have other dependent JAR files that are
required. They can be packaged within the EAR.

8.4.6 How to Deploy the Application Using Scripts and Ant

You can deploy the application using commands and automate the process by putting
those commands in scripts. The ojdeploy command can be used to deploy an
application without JDeveloper. You can also use Ant scripts to deploy the application.
JDeveloper has a feature to help you build Ant scripts. Depending on your
requirements, you may be able to integrate regular scripts with Ant scripts.

For more information about commands, scripts, and Ant, see the Oracle Fusion
Middleware Administrator’s Guide for Oracle Application Development Framework.

8.4.7 What You May Need to Know About JDeveloper Runtime Libraries

When an application is deployed, it includes some of its required libraries with the
application. The application may also require shared libraries that have already been
loaded to WebLogic Server as JDeveloper runtime libraries. It may be useful to know
which JDeveloper libraries are packaged within which WebLogic Server shared library.
For a listing of the contents of the JDeveloper runtime libraries, see the Oracle Fusion
Middleware Administrator’s Guide for Oracle Application Development Framework.

8.5 Postdeployment Configuration

After you have deployed your application to WebLogic Server, you can perform
configuration tasks.

8.5.1 How to Migrate an Application

If you want to migrate an Oracle ADF Java EE application from one application server
to another application server, you may need to perform some of the same steps you
did for a first time deployment.

In general, to migrate an application, you would:

= Load the ADF runtime (if it is not already installed) to the target application
server. For more information, see the "Preparing the Standalone Application
Server for Deployment" section of the Oracle Fusion Middleware Administrator’s
Guide for Oracle Application Development Framework.

= Configure the target application server with the correct database or URL
connection information.

= Migrate security information from the source to the target. For instructions, see
Section 8.3.4, "How to Deploy Applications with ADF Security Enabled."

= Deploy the application using Enterprise Manager, administration console, or
scripts. For more information, see the Oracle Fusion Middleware Administrator’s
Guide for Oracle Application Development Framework.

8-32 Java EE Developer's Guide for Oracle Application Development Framework

Testing the Application and Verifying Deployment

8.5.2 How to Configure the Application Using ADF MBeans

If ADF MBeans were enabled and packaged with the deployed application, you can
configure ADF properties using the Enterprise Manager Fusion Middleware Control
MBean Browser. For instructions to enable an application for MBeans, see Section 8.3.6,
"How to Enable the Application for ADF MBeans."

For information on how to configure ADF applications using ADF MBeans, see the
Oracle Fusion Middleware Administrator’s Guide for Oracle Application Development
Framework.

8.6 Testing the Application and Verifying Deployment

After you deploy the application, you can test it from Oracle WebLogic Server. To
test-run your ADF application, open a browser window and enter a URL:

s For non-Faces pages: http://<host>:port/<context root>/<page>

» For Faces pages: http://<host>:port/<context root>/faces/<view_
id>

where <view_id> is the view ID of the ADF task flow view activity.

Tip: The context root for an application is specified in the
view-controller project settings by default as
ApplicationName/ProjectName/context-root. You can
shorten this name by specifying a name that is unique across the
target application server. Right-click the view-controller project, and
choose Project Properties. In the Project Properties dialog, select Java
EE Application and enter a unique name for the context root.

Note: /faces has to be in the URL for Faces pages. This is because
JDeveloper configures your web . xm1 file to use the URL pattern of
/faces in order to be associated with the Faces Servlet. The Faces
Servlet does its per-request processing, strips out / faces part in the
URL, then forwards the URL to the JSP. If you do not include the

/ faces in the URL, then the Faces Servlet is not engaged (since the
URL pattern doesn't match). Your JSP is run without the necessary JSF
per-request processing.

Deploying an ADF Java EE Application 8-33

Testing the Application and Verifying Deployment

8-34 Java EE Developer's Guide for Oracle Application Development Framework

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 11.1.1.7.0
	1 Introduction to Building Java EE Web Applications with Oracle ADF
	1.1 Introduction to Oracle ADF
	1.2 Developing with Oracle ADF
	1.3 Introduction to the ADF Sample Application
	1.3.1 Running the Suppliers Module of the Fusion Order Demo Application
	1.3.2 Taking a Look at the Supplier Module Code
	1.3.3 Touring the Supplier Module

	2 Using ADF Model Data Binding in a Java EE Web Application
	2.1 Introduction to ADF Model Data Binding
	2.2 Exposing Services with ADF Data Controls
	2.2.1 How to Create ADF Data Controls
	2.2.2 What Happens in Your Project When You Create a Data Control

	2.3 Paginated Fetching of Data in EJB Data Controls
	2.3.1 How to Change Paging Mode for a Data Control
	2.3.2 How to Set Range Size for a Data Control that Uses Range Paging
	2.3.3 What You May Need to Know About the Scrollable and Range Paging Modes
	2.3.4 How to Specify Access Mode for Individual Objects in the Data Control
	2.3.5 What You May Need to Know About Sorting Tables Based on Range Paginated Collections
	2.3.6 How To Manually Implement Pagination Support in a Bean Data Control
	2.3.7 How to Implement a Custom Handler for Querying and Pagination

	2.4 Using the Data Controls Panel
	2.4.1 How to Use the Data Controls Panel
	2.4.2 What Happens When You Use the Data Controls Panel to Create UI Components
	2.4.3 What Happens at Runtime
	2.4.4 What You May Need to Know About Iterator Result Caching
	2.4.5 What You May Need to Know About Configuring Validation

	3 Creating a Basic Databound Page
	3.1 Introduction to Creating a Basic Databound Page
	3.2 Using Attributes to Create Text Fields
	3.2.1 How to Create a Text Field
	3.2.2 What Happens When You Create a Text Field
	3.2.2.1 Creating and Using Iterator Bindings
	3.2.2.2 Creating and Using Value Bindings
	3.2.2.3 Using EL Expressions to Bind UI Components

	3.3 Creating a Basic Form
	3.3.1 How to Create a Form
	3.3.2 What Happens When You Create a Form

	3.4 Incorporating Range Navigation into Forms
	3.4.1 How to Insert Navigation Controls into a Form
	3.4.2 What Happens When You Create Command Buttons
	3.4.2.1 Action Bindings for Built-in Navigation Operations
	3.4.2.2 Iterator RangeSize Attribute
	3.4.2.3 EL Expressions Used to Bind to Navigation Operations

	3.5 Creating a Form Using a Method That Takes Parameters
	3.5.1 How to Create a Form or Table Using a Method That Takes Parameters
	3.5.2 What Happens When You Create a Form Using a Method That Takes Parameters
	3.5.3 What Happens at Runtime: Setting Parameters for a Method
	3.5.4 What You May Need to Know About Setting Parameters with Methods
	3.5.5 What You May Need to Know About Using Contextual Events Instead of Parameters

	3.6 Creating a Form to Edit an Existing Record
	3.6.1 How to Create Edit Forms
	3.6.2 What Happens When You Use Methods to Change Data
	3.6.2.1 Method Bindings
	3.6.2.2 Using EL Expressions to Bind to Methods

	3.6.3 What You May Need to Know About the Difference Between the Merge and Persist Methods
	3.6.4 What You May Need to Know About Overriding Declarative methods

	3.7 Creating an Input Form
	3.7.1 How to Create an Input Form Using a Task Flow
	3.7.2 What Happens When You Create an Input Form Using a Task Flow
	3.7.3 What Happens at Runtime: Invoking the Create Action Binding from the Method Activity

	3.8 Using a Dynamic Form to Determine Data to Display at Runtime
	3.8.1 How to Use Dynamic Forms
	3.8.2 What Happens When You Use Dynamic Components
	3.8.3 What Happens at Runtime: How Attribute Values Are Dynamically Determined
	3.8.4 What You May Need to Know About Converters for Dynamic Forms

	3.9 Modifying the UI Components and Bindings on a Form

	4 Creating ADF Databound Tables
	4.1 Introduction to Adding Tables
	4.2 Creating a Basic Table
	4.2.1 How to Create a Basic Table
	4.2.2 What Happens When You Create a Table
	4.2.2.1 Iterator and Value Bindings for Tables
	4.2.2.2 Code on the JSF Page for an ADF Faces Table

	4.2.3 What You May Need to Know About Setting the Current Row in a Table

	4.3 Creating an Editable Table
	4.3.1 How to Create an Editable Table
	4.3.2 What Happens When You Create an Editable Table

	4.4 Creating an Input Table
	4.4.1 How to Create an Input Table
	4.4.2 What Happens When You Create an Input Table
	4.4.3 What Happens at Runtime: How Create and Partial Page Refresh Work
	4.4.4 What You May Need to Know About Creating a Row and Sorting Columns

	4.5 Modifying the Attributes Displayed in the Table

	5 Displaying Master-Detail Data
	5.1 Introduction to Displaying Master-Detail Data
	5.2 Identifying Master-Detail Objects on the Data Controls Panel
	5.3 Using Tables and Forms to Display Master-Detail Objects
	5.3.1 How to Display Master-Detail Objects in Tables and Forms
	5.3.2 What Happens When You Create Master-Detail Tables and Forms
	5.3.2.1 Code Generated in the JSF Page
	5.3.2.2 Binding Objects Defined in the Page Definition File

	5.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms
	5.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate Pages

	5.4 Using Trees to Display Master-Detail Objects
	5.4.1 How to Display Master-Detail Objects in Trees
	5.4.2 What Happens When You Create an ADF Databound Tree
	5.4.2.1 Code Generated in the JSF Page
	5.4.2.2 Binding Objects Defined in the Page Definition File

	5.4.3 What Happens at Runtime: Displaying an ADF Databound Tree

	5.5 Using Tree Tables to Display Master-Detail Objects
	5.5.1 How to Display Master-Detail Objects in Tree Tables
	5.5.2 What Happens When You Create a Databound Tree Table
	5.5.2.1 Code Generated in the JSF Page
	5.5.2.2 Binding Objects Defined in the Page Definition File

	5.5.3 What Happens at Runtime: Events
	5.5.4 Using the TargetIterator Property

	5.6 Using Selection Events with Trees and Tables
	5.6.1 How to Use Selection Events with Trees and Tables
	5.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events

	6 Creating Databound Selection Lists
	6.1 Introduction to Selection Lists
	6.2 Creating a Single Selection List
	6.2.1 How to Create a Single Selection List Containing Fixed Values
	6.2.2 How to Create a Single Selection List Containing Dynamically Generated Values
	6.2.3 What Happens When You Create a Fixed Selection List
	6.2.4 What Happens When You Create a Dynamic Selection List

	6.3 Creating a List with Navigation List Binding

	7 Creating Databound Search Forms
	7.1 Introduction to Creating Search Forms
	7.1.1 Query Search Forms
	7.1.2 Quick Query Search Forms
	7.1.3 Filtered Table and Query-by-Example Searches

	7.2 Creating Query Search Forms
	7.2.1 How to Create a Query Search Form with a Results Table or Tree Table
	7.2.2 How to Create a Query Search Form and Add a Results Component Later
	7.2.3 How to Persist Saved Searches into MDS
	7.2.4 What Happens When You Create a Query Form
	7.2.5 What Happens at Runtime: Search Forms

	7.3 Setting Up Search Form Properties
	7.3.1 How to Set Search Form Properties on the Query Component

	7.4 Creating Quick Query Search Forms
	7.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table
	7.4.2 How to Create a Quick Query Search Form and Add a Results Component Later
	7.4.3 How to Set the Quick Query Layout Format
	7.4.4 What Happens When You Create a Quick Query Search Form
	7.4.5 What Happens at Runtime: Quick Query

	7.5 Creating Standalone Filtered Search Tables

	8 Deploying an ADF Java EE Application
	8.1 Introduction to Deploying ADF Java EE Web Applications
	8.1.1 Developing Applications with Integrated WebLogic Server
	8.1.2 Developing Applications to Standalone Application Server

	8.2 Running a Java EE Application in Integrated WebLogic Server
	8.2.1 How to Run an Application in Integrated WebLogic Server
	8.2.2 How to Run an Application with Metadata in Integrated WebLogic Server

	8.3 Preparing the Application
	8.3.1 How to Create a Connection to the Target Application Server
	8.3.2 How to Create Deployment Profiles
	8.3.2.1 Adding Customization Classes into a JAR
	8.3.2.2 Creating a WAR Deployment Profile
	8.3.2.3 Creating a MAR Deployment Profile
	8.3.2.4 Creating an EJB JAR Deployment Profile
	8.3.2.5 Creating an Application-Level EAR Deployment Profile
	8.3.2.6 Delivering Customization Classes as a Shared Library
	8.3.2.7 Viewing and Changing Deployment Profile Properties

	8.3.3 How to Create and Edit Deployment Descriptors
	8.3.3.1 Creating Deployment Descriptors
	8.3.3.2 Viewing or Modifying Deployment Descriptor Properties
	8.3.3.3 Configuring the application.xml File for Application Server Compatibility
	8.3.3.4 Configuring the web.xml File for Application Server Compatibility
	8.3.3.5 Enabling the Application for Real User Experience Insight

	8.3.4 How to Deploy Applications with ADF Security Enabled
	8.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)
	8.3.4.2 Configuring Security for WebLogic Server
	8.3.4.3 Configuring Security for WebSphere Server

	8.3.5 How to Replicate Memory Scopes in a Clustered Environment
	8.3.6 How to Enable the Application for ADF MBeans
	8.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server

	8.4 Deploying the Application
	8.4.1 How to Deploy to the Application Server from JDeveloper
	8.4.2 How to Create an EAR File for Deployment
	8.4.3 How to Deploy New Customizations Applied to ADF LIbrary
	8.4.3.1 Exporting Customization to a Deployed Application
	8.4.3.2 Deploying Customizations to a JAR

	8.4.4 What You May Need to Know About ADF Libraries
	8.4.5 What You May Need to Know About EAR Files and Packaging
	8.4.6 How to Deploy the Application Using Scripts and Ant
	8.4.7 What You May Need to Know About JDeveloper Runtime Libraries

	8.5 Postdeployment Configuration
	8.5.1 How to Migrate an Application
	8.5.2 How to Configure the Application Using ADF MBeans

	8.6 Testing the Application and Verifying Deployment

