

[1] Oracle® Fusion Middleware
REST API for Managing Credentials and Keystores with Oracle
Web Services Manager

11g Release 1 (11.1.1.7)

E65317-01

July 2015

Documentation that describes how to use the Oracle Web
Services Manager REST API for credential store, keystore,
and trust store management.

Oracle Fusion Middleware REST API for Managing Credentials and Keystores with Oracle Web Services
Manager, 11g Release 1 (11.1.1.7)

E65317-01

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Part I Get Started

1 About the REST API

1.1 Introducing the REST API ... 1-1
1.2 URL Structure.. 1-2
1.3 Supported REST Methods ... 1-2
1.4 Authentication... 1-2
1.5 Status Codes... 1-2
1.6 cURL Access .. 1-3

2 Use Cases

2.1 Managing the Credential Store Framework Using the REST API 2-1
2.2 Managing JKS Keystores Using the REST API ... 2-3
2.3 Managing KSS Keystores Using the REST API .. 2-5

Part II REST API Reference

3 Credential Store Management

Create a New Credential in the Credential Store... 3-2

View All Credentials in the Credential Store.. 3-4

Update a Credential in the Credential Store... 3-6

Delete a Credential from the Credential Store.. 3-8

4 JKS Keystore Management

View All Aliases in the JKS Keystore... 4-2

Import a Trusted Certificate into the JKS Keystore ... 4-3

Import a Trusted PKCS#7 Certificate into the JKS Keystore .. 4-5

View a Trusted Certificate in the JKS Keystore .. 4-7

Delete a Trusted Certificate from the JKS Keystore... 4-9

iv

5 KSS Keystore Management

Create a KSS Keystore .. 5-2

Import a KSS Keystore ... 5-4

Update the Password for a KSS Keystore ... 5-6

Import a Trusted Certificate into a KSS Keystore .. 5-8

View All KSS Keystores for a Stripe.. 5-10

View the Alias for the KSS Keystore ... 5-11

View a Trusted Certificate in the KSS Keystore .. 5-13

Delete a Certificate from a KSS Keystore ... 5-15

Create a Secret Key for a KSS Keystore .. 5-17

View Secret Key Properties for a KSS Keystore .. 5-19

Delete a KSS Keystore ... 5-21

6 Token Issuer Trust Management

Create Trusted Issuers and DN Lists ... 6-2

View a Trusted Issuer and DN Lists .. 6-5

Create a Token Attribute Rule for a Trusted DN .. 6-7

View All Token Attribute Rules .. 6-11

A Summary of REST APIs, Alphabetical by Resource Path

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—REST API for Managing Credentials and Keystores with Oracle Web Services
Manager.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

Part I
Part I Get Started

Get started using the Oracle Fusion Middleware REST API for managing credentials
and keystores.

Part I contains the following chapters:

■ Chapter 1, "About the REST API"

■ Chapter 2, "Use Cases"

1

About the REST API 1-1

1About the REST API

[2] This section introduces the Oracle Fusion Middleware representational state transfer
(REST) API for managing credentials and keystores.

Topics:
■ Introducing the REST API

■ URL Structure

■ Supported REST Methods

■ Authentication

■ Status Codes

■ cURL Access

1.1 Introducing the REST API
The credential and keystore management REST API provides endpoints for creating
and configuring credential stores, keystores, and trust stores for your domain or web
services.

You can access the REST endpoints through client applications such as:

■ Web browsers

■ cURL

■ GNU Wget

■ Postman

You can also use the Oracle WSM REST endpoints in REST client applications that are
developed in languages such as:

■ JavaScript

■ Ruby

■ Perl

■ Java

■ JavaFX

Before using the REST API, you need to understand a few important concepts, as
described in the following sections.

URL Structure

1-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

1.2 URL Structure
Use the following URL to manage security stores:

http(s)://host:port/idaas/contextpath/admin/v1/resource

Where:

■ host:port—Host and port where Oracle Fusion Middleware is running.

■ contextpath—Context path for the REST resource. This value can be set to
platform for resources that apply across the domain (for example, keystore and
credential management resources), or webservice for resources that apply to a
specific web services (for example, trust management resources).

■ resource—Relative path that defines the REST resource. For more information,
see "REST API Reference." To access the Web Application Definition Language
(WADL) document, specify application.wadl.

1.3 Supported REST Methods
The Oracle WSM REST endpoints support standard methods for creating and
managing Oracle WSM instances.

REST Method Task

GET Retrieve information about the REST resource.

POST Add a REST resource.

PUT Update a REST resource.

DELETE Delete a REST resource.

1.4 Authentication
You access the Oracle Fusion Middleware REST resources over HTTP and must
provide your Oracle WebLogic Server administrator user name and password.

For example, to authenticate using cURL, pass the user name and password (for
example, weblogic and welcome1) using the -u cURL option.

curl -i -X GET -u weblogic:welcome1
http://myhost:7001/idaas/platform/admin/v1/keystore

For POST and DELETE methods, which do not send data in the request body, if a
keystore or key is password-protected, you must pass the Base64-encrypted keystore
and key passwords, respectively, in custom headers. For example:

curl -i -X DELETE -u weblogic:welcome1 -H keystorePassword:cHdkMQ== -H
keyPassword:bXlQd2Qy
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/certificates?"stripeNam
e=myStripe&keystoreName=myKeystore&keyAlias=myAlias"

1.5 Status Codes
The HTTP methods used to manipulate the resources described in this section all
return one of the following HTTP status codes:

HTTP Status Code Description

200 OK The request was successfully completed. A 200 status is returned for successful GET or
POST method.

201 Created The request has been fulfilled and resulted in a new resource being created. The
response includes a Location header containing the canonical URI for the newly
created resource.

A 201 status is returned from a synchronous resource creation or an asynchronous
resource creation that completed before the response was returned.

202 Accepted The request has been accepted for processing, but the processing has not been
completed. The request may or may not eventually be acted upon, as it may be
disallowed at the time processing actually takes place.

When specifying an asynchronous (__detached=true) resource creation (for example,
when deploying an application), or update (for example, when redeploying an
application), a 202 is returned if the operation is still in progress. If __detached=false,
a 202 may be returned if the underlying operation does not complete in a reasonable
amount of time.

The response contains a Location header of a job resource that the client should poll to
determine when the job has finished. Also, returns an entity that contains the current
state of the job

400 Bad Request The request could not be processed because it contains missing or invalid information
(such as, a validation error on an input field, a missing required value, and so on).

401 Unauthorized The request is not authorized. The authentication credentials included with this
request are missing or invalid.

403 Forbidden The user cannot be authenticated. The user does not have authorization to perform
this request.

404 Not Found The request includes a resource URI that does not exist.

405 Method Not Allowed The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not supported for
this request URI.

406 Not Acceptable The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For
example, the client's Accept header request XML be returned, but the resource can
only return JSON.

415 Not Acceptable The client's ContentType header is not correct (for example, the client attempts to send
the request in XML, but the resource can only accept JSON).

500 Internal Server Error The server encountered an unexpected condition that prevented it from fulfilling the
request.

503 Service Unavailable The server is unable to handle the request due to temporary overloading or
maintenance of the server. The Oracle WSM REST web application is not currently
running.

cURL Access

About the REST API 1-3

1.6 cURL Access
The examples within this document use cURL to demonstrate how to access the Oracle
Java Cloud Service REST resources.

In the examples, one or more of the following options is used to direct the execution of
cURL

cURL Option Description

--data @file.json Identifies the request document, in JSON format, on the local
machine

--form "name=value" Identifies form data.

cURL Access

1-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

For example:

curl -i -X GET -u weblogic:welcome1
http://myhost:7001/idaas/platform/admin/v1/keystore

For information about downloading and using cURL, see http://curl.haxx.se.

-H Header that defines one or both of the following:

■ Content type of the request document

■ Base64-encrypted keystore or key password.

-i Displays response header information.

-u username:password Specifies the user name and password for the WebLogic
administrator for authentication.

-X Indicates the type of request (for example, GET, POST, and so
on). For more information about the supported REST
methods, see "Supported REST Methods" on page 1-2.

cURL Option Description

2

Use Cases 2-1

2Use Cases

[3] This section demonstrates several use cases using the REST API.

■ Managing the Credential Store Framework Using the REST API

■ Managing JKS Keystores Using the REST API

■ Managing KSS Keystores Using the REST API

2.1 Managing the Credential Store Framework Using the REST API
You can view and manage the credential store framework using the REST APIs
described in the following use case. Specifically, this use case shows you how to:

■ Create a credential in the credential store

■ View all credentials in the credential store

■ Delete a credential from the credential store

Note: For more information about credential store management, see
"Configuring the Credential Store" in Security and Administrator's
Guide for Web Services.

To manage the credential store framework using the REST API:

1. Create a credential in the credential store framework by performing the following
steps:

a. Create a JSON document, createcred.json, that defines the credential that
you want to create.

The following shows an example of the request document. In this example, the
name of the credential map is default, the credential key is myKey, and the
username and password credentials are myUsr and myPwd, respectively.

{
 "username" : "username",
 "credential" : "pwd",
 "key" : "mykey",
 "map" : "oracle.wsm.security"
}

For more information about the request attributes, see "Create a New
Credential in the Credential Store" on page 3-2.

Managing the Credential Store Framework Using the REST API

2-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

b. Using cURL, create a credential in the credential store framework, passing the
JSON document defined in the previous step.

curl -i -X POST -u username:password --data @createcred.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/credential

For more information about the cURL command-line options, see "cURL
Access" on page 1-3.

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "Create a New Credential in the Credential Store"
on page 3-2.

2. View all credentials in the credential store.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/credential

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response, showing all credentials in the
credential store:

{
 "CSF_MAP_NAME": "CSF_KEY_NAME",
 "default": "systemuser",
 "oracle.wsm.security": [
 "sign-csf-key",
 "jwt-sign-csf-key",
 "owsmtest.credentials",
 "basic.client.credentials",
 "weblogic-csf-key",
 "enc-csf-key",
 "mykey",
 "dummy-pwd-csf-key",
 "weblogic-kerberos-csf-key",
 "keystore-csf-key",
 "weblogic-windowsdomain-csf-key",
 "oratest-csf-key",
 "csr-csf-key",
 "invalid-csf-key",
 "ca-signed-sign-csf-key"
]
}

For more information, see "View All Credentials in the Credential Store" on
page 3-4.

3. Delete the credential from the credential store.

curl -i -X DELETE -u username:password
http://myhost:7001/idaas/webservice/admin/v1/credential?"key=mykey&map=oracle.w
sm.security"

Managing JKS Keystores Using the REST API

Use Cases 2-3

You must pass query parameters to define the map and key names associated with
the credential store that you want to delete. For more information, see "Delete a
Credential from the Credential Store" on page 3-8.

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response indicating the request succeeded.

{
 "STATUS": "Succeeded"
}

2.2 Managing JKS Keystores Using the REST API
You can view and manage Java Keystore (JKS) certificates within the current domain
using the REST APIs described in the following use case. Specifically, this use case
shows you how to:

■ View all aliases in the JKS keystore.

■ Import a trusted certificate into the JKS keystore.

■ View a trusted certificate in the JKS keystore.

■ Delete a trusted certificate from the JKS keystore.

Note: For information about JKS keystore management, see
"Configuring Keystores for Message Protection" in Security and
Administrator's Guide for Web Services.

To manage JKS keystores using the REST API:

1. View all of the aliases that currently exist in the JKS keystore within the current
domain:

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystore

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response, showing all aliases in the JKS
keystore.

{
 "aliases":"oratest,orakey,testkey,jkstest,ms-oauthkey"
}

For more information, see "View All Aliases in the JKS Keystore" on page 4-2.

2. Import the trusted certificate into the JKS keystore at the specified alias, by
performing the following steps:

a. Create a JSON document, importjks.json, that defines the trusted certificate
to import into the JKS keystore.

The following shows an example of the request document. In this example, the
trusted certificate provided must be Base64-encoded and the component type
must be set to JKS for this release.

Managing JKS Keystores Using the REST API

2-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

{
 "component":"JKS",
 "certificate":
"MIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAwSDEKMAgGA1UEBhMBeTEKMAgGA1UECB
MB\neTEKMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UECxMBeTEKMAgGA1UEAxMBeTAeFw0
xNDA3\nMDMxMTAwMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAYTAXkxCjAIBgNVBAgTAXkx
CjAIBgNV\nBAcTAXkxCjAIBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVBAMTAXkwggG3MIIBL
AYHKoZIzjgE\nATCCAR8CgYEA/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUf
tZPY1Y+r/F9bow\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKY
VDwT7g/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu/yIgMZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL
8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu/o66oL5V0wLPQeCZ1FZV4661FlP5nEHEIGAt
EkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qF
GQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7/s9JKgOBhAACgYBrvzkjozmv6t6T0GNJES1R3ypRsBs
8VLX2g3GotHd7Kht/TCj4HikelZDd\nuL0t96R5Q4A3srOgSIZ+0INRs1ER8y1Q37LyJNfyqYn5
KqLBlN9bhSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh+jXQT9+7n3ZUIBzH5aMhM
B8wHQYDVR0OBBYEFPdMpcEBbYSCYMdJiE4r\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH/G
1ixrEaWAG3lGWafkHgXxnzhwIUW5eSctgmaQBj\nvKaY0E6fYJzcp5c="
}

For more information about the request attributes, see "Import a Trusted
Certificate into the JKS Keystore" on page 4-3.

b. Using cURL, import the trusted certificate, specifying the alias of the trusted
key to be imported, mytestkey, and passing the JSON request document
defined in the previous step.

curl -i -X POST -u username:password -H Content-type:application/json
--data @importjks.json
http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

For more information about the cURL command-line options, see "cURL
Access" on page 1-3.

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS":"Succeeded",
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

For more information, see "Import a Trusted Certificate into the JKS Keystore"
on page 4-3.

3. View the trusted certificate that you imported in step 3:

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response, showing the details for the
trusted certificate.

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Thu Jul 03 04:00:16 PDT 2014",
 "NOT_AFTER":"Wed Oct 01 04:00:16 PDT 2014",
 "SERIAL_NO":"1784168778",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",

Managing KSS Keystores Using the REST API

Use Cases 2-5

 "CONTENT":"-----BEGIN CERTIFICATE-----\
nMIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAw
SDEKMAgGA1UEBhMBeTEKMAgGA1UECBMB\neTEKMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UEC
x
MBeTEKMAgGA1UEAxMBeTAeFw0xNDA3\nMDMxMTAwMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAY
T
AXkxCjAIBgNVBAgTAXkxCjAIBgNV\nBAcTAXkxCjAIBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVB
A
MTAXkwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA\/X9TgR11EilS30qcLuzk5\/YRt1I870QAwx4\/
g
LZRJmlFXUAiUftZPY1Y+r\/F9bow\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5\/oBHsQIsJPu6nX\/rf
G
G\/g7V+fGqKYVDwT7g\/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu\/yIgMZndFIAccCFQCXYFCPFSMLzL
K
SuYKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu\/o66oL5V0wLPQeCZ1FZV4661FlP5nE
H
EIGAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+q
F
GQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7\/s9JKgOBhAACgYBrvzkjozmv6t6T0GNJES1R3ypRsBs8VL
X
2g3GotHd7Kht\/TCj4HikelZDd\nuL0t96R5Q4A3srOgSIZ+0INRs1ER8y1Q37LyJNfyqYn5KqLBlN9
b
hSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh+jXQT9+7n3ZUIBzH5aMhMB8wHQYDVR0OB
B
YEFPdMpcEBbYSCYMdJiE4r\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH\/G1ixrEaWAG3lGWafk
H
gXxnzhwIUW5eSctgmaQBj\nvKaY0E6fYJzcp5c=\n-----END CERTIFICATE-----",
 "SIGNATURE": "7JmdaAc+5T+spDFFo9gsRA==",
 "Extensions": "{subjectKeyIDExtension {oid = 2.5.29.14, critical = false,
value = f74ca5c1016d848260c749884e2b710c5fecc7b8}}"
}

For more information, see "View a Trusted Certificate in the JKS Keystore" on
page 4-7.

4. Delete the trusted certificate from the JKS keystore.

curl -i -X DELETE -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response indicating the request succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "Delete a Trusted Certificate from the JKS Keystore" on
page 4-9.

2.3 Managing KSS Keystores Using the REST API
You can view and manage Keystore Service (KSS) keystores using the REST APIs
described in the following use case. Specifically, this use case shows you how to:

■ Create a KSS keystore

■ View all KSS keystores for a stripe

■ Import a trusted certificate into the KSS keystore

Managing KSS Keystores Using the REST API

2-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

■ View a trusted certificate in the JKS keystore

■ Delete the KSS keystore

Note: For more information about KSS keystore management, see
"Configuring the OPSS Keystore Service for Message Protection" in
Security and Administrator's Guide for Web Services.

To manage KSS keystores using the REST API:

1. Create a KSS keystore by performing the following steps:

a. Create a JSON document, createkss.json, that defines the KSS keystore that
you want to create.

The following shows an example of the request document. In this example, the
KSS stripe and keystore names are myStripe and myKeystore, respectively; the
password for the KSS keystore is mypwd; and the KSS keystore created is not
permission-based.

{
 "stripe" : "myStripe",
 "keystore" : "myKeystore",
 "pwd" : "mypwd",
 "permission" : "false"
}

For more information about the request attributes, see "Create a KSS Keystore"
on page 5-2.

b. Using cURL, create a KSS keystore, passing the JSON document defined in the
previous step.

curl -i -X POST -u username:password -H Content-Type:application/json
--data @createkss.json
http://myhost:7001/idaas/platform/admin/v1/keystoreservice

For more information about the cURL command-line options, see "cURL
Access" on page 1-3.

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "Create a KSS Keystore" on page 5-2.

2. View all KSS keystores for a stripe to confirm the KSS keystore was created.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/myStripe

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response, showing all KSS keystores in the
stripe:

{
 "keystore 1:"myKeystore"

Managing KSS Keystores Using the REST API

Use Cases 2-7

}

For more information, see "View All KSS Keystores for a Stripe" on page 5-10.

3. Import a trusted certificate into the KSS keystore by performing the following
steps:

a. Create a JSON document, importkss.json, that defines the details of the
trusted certificate that you want to import into the KSS keystore.

The following shows an example of the request document. In this example, the
KSS keystore is identified by its stripe and keystore names, myStripe and
myKeystore, respectively; the KSS keystore password, mypwd, is required; the
alias for the key is myAlias; the certificate is defined as a TrustedCertificate;
and keystoreEntry specifies the encrypted certificate contents.

{
 "keyAlias" : "myAlias",
 "keystoreEntry":
"MIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAwSDEKMAgGA1UEBhMBeTEKMAgGA1UECB
MB\neTEKMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UECxMBeTEKMAgGA1UEAxMBeTAeFw0
xNDA3\nMDMxMTAwMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAYTAXkxCjAIBgNVBAgTAXkx
CjAIBgNV\nBAcTAXkxCjAIBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVBAMTAXkwggG3MIIBL
AYHKoZIzjgE\nATCCAR8CgYEA/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUf
tZPY1Y+r/F9bow\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKY
VDwT7g/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu/yIgMZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL
8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu/o66oL5V0wLPQeCZ1FZV4661FlP5nEHEIGAt
EkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qF
GQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7/s9JKgOBhAACgYBrvzkjozmv6t6T0GNJES1R3ypRsBs
8VLX2g3GotHd7Kht/TCj4HikelZDd\nuL0t96R5Q4A3srOgSIZ+0INRs1ER8y1Q37LyJNfyqYn5
KqLBlN9bhSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh+jXQT9+7n3ZUIBzH5aMhM
B8wHQYDVR0OBBYEFPdMpcEBbYSCYMdJiE4r\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH/G
1ixrEaWAG3lGWafkHgXxnzhwIUW5eSctgmaQBj\nvKaY0E6fYJzcp5c=",
 "keystoreEntryType" : "TrustedCertificate",
 "keystoreName" : "myKeystore",
 "stripeName" : "myStripe",
 "keystorePassword" : "myPwd"
}

For more information about the request attributes, see "Import a Trusted
Certificate into a KSS Keystore" on page 5-8.

b. Using cURL, import a trusted certificate into the KSS keystore, passing the
JSON document defined in the previous step.

curl -i -X POST -u username:password -H Content-Type:application/json
--data @importcertkss.json
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/certificates

For more information about the cURL command-line options, see "cURL
Access" on page 1-3.

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

For more information, see "Import a Trusted Certificate into a KSS Keystore"
on page 5-8.

Managing KSS Keystores Using the REST API

2-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

4. View the trusted certificate that you just imported into the KSS keystore.

curl -i -X GET -u username:password -H keystorePassword:cHdkMQ==
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/certificates?"stripe
Name=myStripe&keystoreName=myKeystore&keyAlias=myAlias&keystoreEntryType=Truste
dCertificate"

You must pass query parameters to define the stripe name, keystore name and
entry type, and alias name associated with the trusted certificate you want to view.

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

The following shows an example of the response, showing the details of the
trusted certificate.

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Fri Jul 25 02:45:11 PDT 2014",
 "NOT_AFTER":"Thu Oct 23 02:45:11 PDT 2014",
 "SERIAL_NO":"982191050",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",
 "CONTENT":"-----BEGIN CERTIFICATE-----
\nMIIC7DCCAqqgAwIBAgIEOosLyjALBgcqhkjOOAQDBQAwS
EKMAgGA1UEBhMBcjEKMAgGA1UECBMB\ncjEKMAgGA1UEBxMBcjEKMAgGA1UEChMBcjEKMAgGA1UECxM
cjEKMAgGA1UEAxMBUjAeFw0xNDA3\nMjUwOTQ1MTFaFw0xNDEwMjMwOTQ1MTFaMEgxCjAIBgNVBAYTA
IxCjAIBgNVBAgTAXIxCjAIBgNV\nBAcTAXIxCjAIBgNVBAoTAXIxCjAIBgNVBAsTAXIxCjAIBgNVBAM
AVIwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA\/X9TgR11EilS30qcLuzk5\/YRt1I870QAwx4\/gL
RJmlFXUAiUftZPY1Y+r\/F9bow\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5\/oBHsQIsJPu6nX\/rfGG
/g7V+fGqKYVDwT7g\/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu\/yIgMZndFIAccCFQCXYFCPFSMLzLKS
YKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu\/o66oL5V0wLPQeCZ1FZV4661FlP5nEHE
GAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qFG
iaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7\/s9JKgOBhAACgYAjhpZybXj6rlXDow8srnSFE9dZJJpCKaQV
ACagQogePV+xlqPClDOoiQJ\nuvuUGHerDrThC1\/Wq5Uj1+TnkSKTy0qYxmQoq56xALa47np9TKtqt
4Vy8eUUorakG4lrjNt\/EgR\nfO675n+qINkKXKpcxaCicupRCYPkPXlnT4mtyKMhMB8wHQYDVR0OBB
EFDKbmPa2Il6SylJRPTv8\nQ+4CqpEhMAsGByqGSM44BAMFAAMvADAsAhQbkmlaUG5QDR5mXUiYC74p
\/FBOwIUGx5lc5Y01ppo\nvK3UgL7M8E3eOfc=\n-----END CERTIFICATE-----",
 "SIGNATURE":FEZN2l4SPFEK5jt2QZRb5Q==",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false,
value = 329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

For more information, see "View a Trusted Certificate in the KSS Keystore" on
page 5-13.

5. Delete the KSS keystore.

curl -i -X DELETE -u username:password -H keystorePassword:cHdkMQ==
http://myhost:7001/idaas/platform/admin/v1/keystoreservice?"stripeName=myStripe
&keystoreName=myKeystore"

For more information about the cURL command-line options, see "cURL Access"
on page 1-3.

You must pass query parameters to define the stripe and keystore name of the KSS
keystore you want to delete. For more information, see "Delete a KSS Keystore" on
page 5-21.

The following shows an example of the response indicating the request succeeded.

Managing KSS Keystores Using the REST API

Use Cases 2-9

HTTP/1.1 204 No Content

Managing KSS Keystores Using the REST API

2-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Part II
Part II REST API Reference

Review details about the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part II contains the following chapters:

■ Chapter 3, "Credential Store Management"

■ Chapter 4, "JKS Keystore Management"

■ Chapter 5, "KSS Keystore Management"

■ Chapter 6, "Token Issuer Trust Management"

■ Appendix A, "Summary of REST APIs, Alphabetical by Resource Path"

3

Credential Store Management 3-1

3Credential Store Management

Oracle Web Services Manager (WSM) uses the Credential Store Framework (CSF) to
manage the credentials in a secure form. You can view and manage the credential store
using a set of representational state transfer (REST) resources, as summarized below.

Before using the REST API, you need to understand how to access the REST resources
and other important concepts. See "About the REST API" on page 1-1.

For more information about credential store management, see "Configuring the
Credential Store" in Security and Administrator's Guide for Web Services.

Section Method Resource Path

Create a New Credential in the
Credential Store

POST /idaas/platform/admin/v1/credential

View All Credentials in the
Credential Store

GET /idaas/platform/admin/v1/credential

Update a Credential in the
Credential Store

PUT /idaas/platform/admin/v1/credential

Delete a Credential from the
Credential Store

DELETE /idaas/platform/admin/v1/credential

Create a New Credential in the Credential Store

3-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Create a New Credential in the Credential Store

Creates a new credential in the domain credential store.

3REST Request
POST /idaas/platform/admin/v1/credential

3Request Body

Media Types: application/json

The request body contains the details of the create request:

Attribute Description Required

"credential" Password for the credential. Yes

"key" Name of the key. Yes

"map" Name of the map (folder). Yes

"username" Username for the credential. Yes

3Response Body

Media Types: application/json

The response body returns the status of the create operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

3cURL Example
The following example shows how to create a credential in the credential store by
submitting a POST request on the REST resource using cURL. For more information,
see "cURL Access" on page 1-3.

curl -i -X POST -u username:password --data @createcred.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/credential

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "username" : "username",
 "credential" : "credential",

Create a New Credential in the Credential Store

Credential Store Management 3-3

 "key" : "mykey",
 "map" : "oracle.wsm.security"
}

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

View All Credentials in the Credential Store

3-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

View All Credentials in the Credential Store

Returns all credentials in the domain credential store.

3REST Request
GET /idaas/platform/admin/v1/credential

3Response Body

Media Types: application/json

The response body contains information about all credentials in the credential store,
including:

Attribute Description

"CSF_MAP_NAME" Name of the credential store map.

"default" List of keys in the default credential map.

"oracle.wsm.security" List of keys in the Oracle Web Services Manager (Oracle WSM)
security credential map.

3cURL Example
The following example shows how to view all credentials in a credential store by
submitting a GET request on the REST resource using cURL. For more information, see
"cURL Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/credential

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "CSF_MAP_NAME": "CSF_KEY_NAME",
 "default": "systemuser",
 "oracle.wsm.security": [
 "sign-csf-key",
 "jwt-sign-csf-key",
 "owsmtest.credentials",
 "basic.client.credentials",
 "weblogic-csf-key",
 "enc-csf-key",
 "mykey",
 "dummy-pwd-csf-key",
 "weblogic-kerberos-csf-key",
 "keystore-csf-key",

View All Credentials in the Credential Store

Credential Store Management 3-5

 "weblogic-windowsdomain-csf-key",
 "oratest-csf-key",
 "csr-csf-key",
 "invalid-csf-key",
 "ca-signed-sign-csf-key"
]
}

Update a Credential in the Credential Store

3-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Update a Credential in the Credential Store

Updates a credential in the domain credential store.

3REST Request
PUT /idaas/platform/admin/v1/credential

3Request Body

Media Types: application/json

The request body contains the details of the update request:

Attribute Description Required

"credential" Updated password for the key in the
keystore.

Yes

"key" Name of the key that you want to modify.
The key must exist.

Yes

"map" Name of the map (folder) that you want to
modify.

Yes

"username" Username for the key in the keystore. Yes

3Response Body

Media Types: application/json

The response body returns the status of the update operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

3cURL Example
The following example shows how to update a credential in the credential store by
submitting a PUT request on the REST resource using cURL. For more information, see
"cURL Access" on page 1-3.

curl -i -X PUT -u username:password --data @updatecred.json -H
Content-Type:application/json http://myhost:7001/idaas/patform/admin/v1/credential

Example of Request Body
The following shows an example of the request body in JSON format.

{

Update a Credential in the Credential Store

Credential Store Management 3-7

 "username" : "username",
 "credential" : "myNewPwd",
 "key" : "mykey",
 "map" : "oracle.wsm.security"
}

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Delete a Credential from the Credential Store

3-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Delete a Credential from the Credential Store

Deletes a credential from the domain credential store.

3REST Request
DELETE /idaas/platform/admin/v1/credential

3Parameters
The following table summarizes the DELETE request parameters.

Name Description Type

"key" Name of the key for the credential that you want to
delete.

Query

"map" Name of the map (folder) for the credential that you
want to delete.

Query

3Response Body

Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

3cURL Example
The following example shows how to delete a credential from the credential store by
submitting a DELETE request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

curl -i -X DELETE -u username:password
http://myhost:7001/idaas/platform/admin/v1/credential?"key=mykey&map=oracle.wsm.se
curity"

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"

Delete a Credential from the Credential Store

Credential Store Management 3-9

}

Delete a Credential from the Credential Store

3-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

4

JKS Keystore Management 4-1

4JKS Keystore Management

You can view and manage Java Keystore (JKS) keystores within a domain using a set
of representational state transfer (REST) resources, as summarized below.

Before using the REST API, you need to understand how to access the REST resources
and other important concepts. See "About the REST API" on page 1-1.

For information about JKS keystore management, see "Configuring Keystores for
Message Protection" in Security and Administrator's Guide for Web Services.

Task Method Resource Path

View All Aliases in the JKS
Keystore

GET /idaas/platform/admin/v1/keystore

Import a Trusted Certificate into the
JKS Keystore

POST /idaas/platform/admin/v1/keystore/{alias}

Import a Trusted PKCS#7
Certificate into the JKS Keystore

POST /idaas/platform/admin/v1/keystore/pkcs7/{alias}

View a Trusted Certificate in the JKS
Keystore

GET /idaas/platform/admin/v1/keystore/{alias}

Delete a Trusted Certificate from the
JKS Keystore

DELETE idaas/platform/admin/v1/keystore/{alias}

View All Aliases in the JKS Keystore

4-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

View All Aliases in the JKS Keystore

Returns all aliases for the trusted certificate entries in the JKS keystore.

4REST Request
GET /idaas/platform/admin/v1/keystore

4Response Body

Media Types: application/json

The response body contains the list of aliases:

Attribute Description

"aliases" Comma-separated list of aliases.

4cURL Example
The following example shows how to view all aliases for the trusted certificate entries
in the JKS keystore by submitting a GET request on the REST resource using cURL. For
more information, see "cURL Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystore

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "aliases":"oratest,orakey,testkey,jkstest,ms-oauthkey"
}

Import a Trusted Certificate into the JKS Keystore

JKS Keystore Management 4-3

Import a Trusted Certificate into the JKS Keystore

Imports a trusted certificate at the specified alias into the JKS keystore. The certificate
must be Base64 encoded.

4REST Request
POST /idaas/platform/admin/v1/keystore/{alias}

4Parameters
The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the trusted certificate to be imported.

The alias will be created. The alias must not already
exist in the JKS keystore; otherwise, the request will
fail.

Path

4Request Body

Media Types: application/json

The request body contains the details of the import request:

Attribute Description

"certificate" Base64-encoded certificate.

"component" Component to which the certificate is imported. This value
must be set to JKS.

4Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

"SUBJECT_DN" Subject DN list that was imported.

4cURL Example
The following example shows how to import a trusted certificate into the JKS keystore
by submitting a POST request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

Import a Trusted Certificate into the JKS Keystore

4-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

curl -i -X POST -u username:password --data @importjkscert.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "component":"JKS",
 "certificate":
"MIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAwSDEKMAgGA1UEBhMBeTEKMAgGA1UECBMB\neTE
KMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UECxMBeTEKMAgGA1UEAxMBeTAeFw0xNDA3\nMDMxMTA
wMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAYTAXkxCjAIBgNVBAgTAXkxCjAIBgNV\nBAcTAXkxCjA
IBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVBAMTAXkwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA/X9
TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow\n9subVWzXgTuAHTRv8mZ
gt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu/yIgM
ZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu/o66oL5V0w
LPQeCZ1FZV4661FlP5nEHEIGAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE
1YvH7YnoBJDvMpPG+qFGQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7/s9JKgOBhAACgYBrvzkjozmv6t6T0GN
JES1R3ypRsBs8VLX2g3GotHd7Kht/TCj4HikelZDd\nuL0t96R5Q4A3srOgSIZ+0INRs1ER8y1Q37LyJNf
yqYn5KqLBlN9bhSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh+jXQT9+7n3ZUIBzH5aMhMB8
wHQYDVR0OBBYEFPdMpcEBbYSCYMdJiE4r\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH/G1ixrEaWAG
3lGWafkHgXxnzhwIUW5eSctgmaQBj\nvKaY0E6fYJzcp5c="
}

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

Import a Trusted PKCS#7 Certificate into the JKS Keystore

JKS Keystore Management 4-5

Import a Trusted PKCS#7 Certificate into the JKS Keystore

Imports a PKCS#7 trusted certificate or a certificate chain associated with a private key
indicated by the specified alias into the JKS keystore.

4REST Request
POST /idaas/platform/admin/v1/keystore/pkcs7/{alias}

4Parameters
The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the private key for which the trusted PKCS#7
certificate will be imported. The alias must already in
the JKS keystore.

Path

4Request Body

Media Types: application/json

The request body contains the details of the import request:

Attribute Description

"certificate" Base64-encoded certificate.

"component" Component to which the certificate is imported. This value
must be set to JKS.

"keyPassword" Password for the private key.

4Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

"SUBJECT_DN" Subject DN list that was imported.

4cURL Example
The following example shows how to import a trusted PKCS#7 certificate into the JKS
keystore by submitting a POST request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

Import a Trusted PKCS#7 Certificate into the JKS Keystore

4-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

curl -i -X POST -u username:password --data @importjkscert.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/keystore/pkcs7/myprivatekey

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "component":"JKS",
 "certificate":
"MIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAwSDEKMAgGA1UEBhMBeTEKMAgGA1UECBMB\neTE
KMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UECxMBeTEKMAgGA1UEAxMBeTAeFw0xNDA3\nMDMxMTA
wMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAYTAXkxCjAIBgNVBAgTAXkxCjAIBgNV\nBAcTAXkxCjA
IBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVBAMTAXkwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA/X9
TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow\n9subVWzXgTuAHTRv8mZ
gt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu/yIgM
ZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu/o66oL5V0w
LPQeCZ1FZV4661FlP5nEHEIGAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE
1YvH7YnoBJDvMpPG+qFGQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7/s9JKgOBhAACgYBrvzkjozmv6t6T0GN
JES1R3ypRsBs8VLX2g3GotHd7Kht/TCj4HikelZDd\nuL0t96R5Q4A3srOgSIZ+0INRs1ER8y1Q37LyJNf
yqYn5KqLBlN9bhSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh+jXQT9+7n3ZUIBzH5aMhMB8
wHQYDVR0OBBYEFPdMpcEBbYSCYMdJiE4r\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH/G1ixrEaWAG
3lGWafkHgXxnzhwIUW5eSctgmaQBj\nvKaY0E6fYJzcp5c=",
 "keyPassword" : "myprivatekeypwd"
}

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

View a Trusted Certificate in the JKS Keystore

JKS Keystore Management 4-7

View a Trusted Certificate in the JKS Keystore

Returns details of the trusted certificate at the specified alias in the JKS keystore.

If the alias specifies a keyStore.TrustedCertificateEntry, the details of the trusted
certificate are returned. If the alias specifies a KeyStore.PrivateKeyEntry, the first
certificate in the trusted certificate chain is returned.

4REST Request
GET /idaas/platform/admin/v1/keystore/{alias}

4Parameters
The following table summarizes the GET request parameters.

Name Description Type

alias Name of alias for which you want to view a trusted
certificate.

Path

4Response Body

Media Types: application/json

The response body contains information about the certificate, including:

Attribute Description

"CONTENT" Contents of the Base64-encoded certificate.

"Extensions" Optional extensions that are used to issue a certificate for a
specific purpose. Each extension includes the following:

■ Object identifier (oid) that uniquely identifies it

■ Flag indicating whether the extension is critical

■ Value

"ISSUER_DN" List of trusted distinguished names.

"NOT_AFTER" Date the certificate expires.

"NOT_BEFORE" Date the certificate is activated.

"SERIAL_NO" Serial number of the JKS keystore.

"SIGNATURE" Base64-encoded signature key.

"SIGNING_ALGORITHM" Signing algorithm for the alias.

"SUBJECT_DN" Subject distinguished names list.

4cURL Example
The following example shows how to view all certificates for an alias in the JKS
keystore by submitting a GET request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

View a Trusted Certificate in the JKS Keystore

4-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "SUBJECT_DN":"CN=weblogic,OU=Testkey for JKS Mbean
test,O=Oracle,L=testcity,ST=teststate,C=us",
 "ISSUER_DN":"CN=weblogic,OU=Testkey for JKS Mbean test,O=Oracle,
L=testcity,ST=teststate,C=us",
 "NOT_BEFORE":"Tue Jun 25 02:20:38 PDT 2013",
 "NOT_AFTER":"Wed Nov 27 01:20:38 PST 2052",
 "SERIAL_NO":"1372152038",
 "SIGNING_ALGORITHM":"1.2.840.113549.1.1.5",
 "CONTENT":"-----BEGIN CERTIFICATE-----\nMIIDeDCCAmCgAwI
BAgIEUclg5jANBgkqhkiG9w0BAQUFADB9MQswCQYDVQQGEwJ1czESMBAGA1UE\nCBMJdGVzdHN0YXRlM
REwDwYDVQQHEwh0ZXN0Y2l0eTEPMA0GA1UEChMGT3JhY2xlMSMwIQYDVQQL\nExpUZXN0a2V5IGZvciB
KS1MgTWJlYW4gdGVzdDERMA8GA1UEAxMId2VibG9naWMwIBcNMTMwNjI1\nMDkyMDM4WhgPMjA1MjExM
jcwOTIwMzhaMH0xCzAJBgNVBAYTAnVzMRIwEAYDVQQIEwl0ZXN0c3Rh\ndGUxETAPBgNVBAcTCHRlc3R
jaXR5MQ8wDQYDVQQKEwZPcmFjbGUxIzAhBgNVBAsTGlRlc3RrZXkg\nZm9yIEpLUyBNYmVhbiB0ZXN0M
REwDwYDVQQDEwh3ZWJsb2dpYzCCASIwDQYJKoZIhvcNAQEBBQAD\nggEPADCCAQoCggEBAJtmzlqcnU+
9d4OIor0FIOfcgpI\/EOflbkTicUjPr1AefYl8EDnl+U7hlDQ+\nPzrsndjAtFbcmxghGuw+P7\/ztIX
BBqIViLFW7wEBMdnGcO6Oc9swDca5vIofwNtor2hGI\/mIUPNx\nd9ExE2JOuqJmgr5RPyThv6mmxrVU
WJGCuHg4leQvSOOXxZFRWKHHWFv8lWwaqdY3haYHVD2DlNwS\nEPWqVAPZD6Kcv58l9ucHxAER5n5+wJ
PHH7kkGJL2gv2LIUMhwy3rlv2Fbhy7\/MTCeXYkUno5CXH9\n+nnAdWZ\/MzuVxXdzEZv72kmW\/oHnX
jSZtEdAwdQJAETz9Cxqwt9VtzsCAwEAATANBgkqhkiG9w0B\nAQUFAAOCAQEAG2\/kH7IlgFw3MAekgl
oOgwLgl87OVtlAySORxg2YNw9Z4GYQ2bRIL5lxp4kbMYic\nhB1SjR7aPXV0Jufw8EkBZMwDbLf053d6
oPEGWF7e6roCcHlY\/mBFd7BQFHW0vlBAZN9e1HkavWNE\n4k3qmjgct5BegMi9jhGrSws5aZ33qyrWc
r8zlZ3dhu52z4uGRG0UVeRnBemdPIk++6obiRErU3+v\nlI\/JYsQJmDrQwZlWGjznkXnQw5toJQuWFd
oE2TUPF1r3KTZiJ+TyVh64wtbnUVptxr1lFjtSfqPq\n0nzVlZlyXTi\/Rv7X+ODkRp29Hozs95c9HA9
3vnCYRaneNin7Kw==\n-----END CERTIFICATE-----",
 "SIGNATURE":"eAnH79sc8iMkLZRKWzh4vQ==",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false, value =
329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

Delete a Trusted Certificate from the JKS Keystore

JKS Keystore Management 4-9

Delete a Trusted Certificate from the JKS Keystore

Deletes a trusted certificate (keyStore.TrustedCertificateEntry) with the specified
alias from the JKS keystore. You cannot delete the keyStore.PrivateKeyEntry.

4REST Request
DELETE /idaas/platform/admin/v1/keystore/{alias}

4Parameters
The following table summarizes the DELETE request parameters.

Name Description Type

alias Alias of the trusted certificate entry to be deleted. Path

4Response Body

Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

4cURL Example
The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

curl -i -X DELETE -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystore/testalias

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Delete a Trusted Certificate from the JKS Keystore

4-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

5

KSS Keystore Management 5-1

5KSS Keystore Management

You can view and manage Keystore Service (KSS) keystores using a set of
representational state transfer (REST) resources, as summarized below.

Before using the REST API, you need to understand how to access the REST resources
and other important concepts. See "About the REST API" on page 1-1.

For more information about KSS keystore management, see "Configuring the OPSS
Keystore Service for Message Protection" in Security and Administrator's Guide for Web
Services.

Table 5–1 KSS Keystore Management REST Resources

Section Method Resource Path

Create a KSS Keystore POST /idaas/platform/admin/v1/keystoreservice

Import a KSS Keystore POST /idaas/platform/admin/v1/keystoreservice/keystore

Update the Password for a KSS
Keystore

PUT /idaas/platform/admin/v1/keystoreservice

Import a Trusted Certificate into a
KSS Keystore

POST /idaas/platform/admin/v1/keystoreservice/certificates

View All KSS Keystores for a Stripe GET /idaas/platform/admin/v1/keystoreservice/{stripeName}

View the Alias for the KSS Keystore GET /idaas/platform/admin/v1/keystoreservice/alias/{strip
eName}/{keystoreName}/{entryType}

View a Trusted Certificate in the KSS
Keystore

GET /idaas/platform/admin/v1/keystoreservice/certificates

Delete a Certificate from a KSS
Keystore

DELETE /idaas/platform/admin/v1/keystoreservice/certificates

Create a Secret Key for a KSS
Keystore

POST /idaas/platform/admin/v1/keystoreservice/secretkey

View Secret Key Properties for a KSS
Keystore

GET /idaas/platform/admin/v1/keystoreservice/secretkey

Delete a KSS Keystore DELETE /idaas/platform/admin/v1/keystoreservice

Create a KSS Keystore

5-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Create a KSS Keystore

Creates a new Keystore Service (KSS) keystore.

5REST Request
POST /idaas/platform/admin/v1/keystoreservice

5Request Body

Media Types: application/json

The request body contains the details of the create request:

Attribute Description

"keystore" Name for the KSS keystore.

"permission" Boolean value that specifies whether to create a
permission-based keystore.

"pwd" Password for the KSS keystore.

"stripe" Name of the stripe to contain the KSS keystore.

5Response Body

Media Types: application/json

The response body returns the status of the create operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

5cURL Example
The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL. For more information, see "cURL Access" on
page 1-3.

curl -i -X POST -u username:password --data @createkss.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "stripe" : "myStripe",

Create a KSS Keystore

KSS Keystore Management 5-3

 "keystore" : "myKeystore",
 "pwd" : "myPwd",
 "permission" : "true"
}

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 201 Created

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Import a KSS Keystore

5-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Import a KSS Keystore

Imports a Keystore Service (KSS) keystore from a KSS keystore file.

5REST Request
POST /idaas/platform/admin/v1/keystoreservice/keystore

5Request Body

Media Types: multipart/form-data

The response body contains information about the import request, including:

Attribute Description

"keyAliases" Comma-separated list of aliases for the keys to be imported
from the keystoreFile.

"keyPasswords" Comma-separated list of passwords for the keys to be
imported from the keystoreFile.

"keystoreFile" Name of a valid local KSS keystore file

"keystoreName" Name for the KSS keystore.

"keystorePassword" Password for the local keystore file that is being imported and
the keystore entry, if password-protected.

"keystoreType" Keystore type. This value must be set to JKS.

"permission" Boolean value that specifies whether to import as a
permission-based keystore.

"stripeName" Name of the stripe.

5Response Body

Media Types: application/json

The response body contains information about the import operation, including:

Attribute Description

"alias n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

5cURL Example
The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL. For more information, see "cURL Access" on

Import a KSS Keystore

KSS Keystore Management 5-5

page 1-3.

curl -i -X POST -u username:password -H Content-Type:multipart/form-data --form
"stripeName=myStripe" --form "keystoreFile=@clientkeystore" --form
"keystoreName=myKeystore" --form "keystorePassword=myPwd" --form
"keystoreType=JKS" --form "keyAliases=client" --form "keyPasswords=myPwd2" --form
"permission=false"
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/keystore

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 201 Created

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS":"Succeeded",
 "SUCCESS_MSG":"Aliases:client imported successfully",
 "alias 1":"client"
}

Update the Password for a KSS Keystore

5-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Update the Password for a KSS Keystore

Updates the password for a Keystore Service (KSS) keystore.

5REST Request
PUT /idaas/platform/admin/v1/keystoreservice

5Request Body

Media Types: application/json

The response body contains information about the Load Balancer patches, including:

Attribute Description

"keystore" Name of the KSS keystore.

"newpass" New password for the keystore.

"oldpass" Old password for the keystore.

"stripe" Name of the stripe.

5Response Body

Media Types: application/json

The response body returns the status of the update operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

5cURL Example
The following example shows how to import a KSS keystore by submitting a PUT
request on the REST resource using cURL. For more information, see "cURL Access" on
page 1-3.

curl -i -X PUT -u username:password --data @updatekss.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "stripe" : "myStripe",
 "keystore" : "mykssstore",

Update the Password for a KSS Keystore

KSS Keystore Management 5-7

 "oldpass" : "myPwd",
 "newpass" : "myNewPwd"
}

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Import a Trusted Certificate into a KSS Keystore

5-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Import a Trusted Certificate into a KSS Keystore

Imports a trusted certificate into a Keystore Service (KSS) keystore.

5REST Request
POST /idaas/platform/admin/v1/keystoreservice/certificates

5Request Body

Media Types: application/json

The response body contains information about the import request, including:

Attribute Description

"keyAlias" Alias for the trusted certificate.

"keystoreEntry" Base64-encoded certificate.

"keystoreEntryType" Keystore entry type. Valid values include: Certificate,
TrustedCertificate, or SecretKey.

"keystoreName" Name of the KSS keystore.

"keystorePassword" Password for the KSS keystore.

"stripeName" Name of the stripe.

5Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

"SUBJECT_DN" Subject DN list that was imported.

5cURL Example
The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL. For more information, see "cURL Access" on
page 1-3.

curl -i -X POST -u username:password --data @importcertkss.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/certificates

Import a Trusted Certificate into a KSS Keystore

KSS Keystore Management 5-9

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "keyAlias" : "myAlias",
 "keystoreEntry":
"MIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAwSDEKMAgGA1UEBhMBeTEKMAgGA1UECBMB\neTE
KMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UECxMBeTEKMAgGA1UEAxMBeTAeFw0xNDA3\nMDMxMTA
wMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAYTAXkxCjAIBgNVBAgTAXkxCjAIBgNV\nBAcTAXkxCjA
IBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVBAMTAXkwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA/X9
TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow\n9subVWzXgTuAHTRv8mZ
gt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu/yIgM
ZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu/o66oL5V0w
LPQeCZ1FZV4661FlP5nEHEIGAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE
1YvH7YnoBJDvMpPG+qFGQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7/s9JKgOBhAACgYBrvzkjozmv6t6T0GN
JES1R3ypRsBs8VLX2g3GotHd7Kht/TCj4HikelZDd\nuL0t96R5Q4A3srOgSIZ+0INRs1ER8y1Q37LyJNf
yqYn5KqLBlN9bhSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh+jXQT9+7n3ZUIBzH5aMhMB8
wHQYDVR0OBBYEFPdMpcEBbYSCYMdJiE4r\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH/G1ixrEaWAG
3lGWafkHgXxnzhwIUW5eSctgmaQBj\nvKaY0E6fYJzcp5c=",
 "keystoreEntryType" : "TrustedCertificate",
 "keystoreName" : "myKeystore",
 "stripeName" : "myStripe",
 "keystorePassword" : "myPwd"
}

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

View All KSS Keystores for a Stripe

5-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

View All KSS Keystores for a Stripe

Returns all Keystore Service (KSS) keystores for a stripe.

5REST Request
GET /idaas/platform/admin/v1/keystoreservice/{stripeName}

5Parameters
The following table summarizes the GET request parameters.

Name Description Type

stripeName Name of stripe for which you want to view all KSS
keystores.

Path

5Response Body

Media Types: application/json

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

5cURL Example
The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL. For more information, see "cURL
Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/myStripe

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "keystore 1":"trust",
 "keystore 2":"castore"
}

View the Alias for the KSS Keystore

KSS Keystore Management 5-11

View the Alias for the KSS Keystore

Returns the alias for the Keystore Service (KSS) keystore.

5REST Request
GET
/idaas/platform/admin/v1/keystoreservice/alias/{stripeName}/{keystoreName}
/{entryType}

5Parameters
The following table summarizes the GET request parameters.

Name Description Type

entryType Keystore type. Valid values include Certificate,
TrustedCertificate, or SecretKey.

Path

keystoreName Name of the keystore. Path

stripeName Name of the stripe. Path

5Response Body

Media Types: application/json

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystore aliases in the stripe where n serves as an index
that starts at 1 and is incremented by 1 for each additional
property.

5cURL Example
The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL. For more information, see "cURL
Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/alias/myStripe/myKeysto
re/TrustedCertificate

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{

View the Alias for the KSS Keystore

5-12 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

 "keystore 1":"myAlias",
}

View a Trusted Certificate in the KSS Keystore

KSS Keystore Management 5-13

View a Trusted Certificate in the KSS Keystore

Returns a trusted certificates in the Keystore Service (KSS) keystore. If the keystore is
password-protected, you must provide a Base64-encoded header value for the
keystore password.

5REST Request
GET /idaas/platform/admin/v1/keystoreservice/certificates

5Parameters
The following table summarizes the GET request parameters.

Name Description Type

keyAlias Alias for trusted certificate. Query

keystoreEntryType Type of keystore entry. Valid values include
Certificate, TrustedCertificate, or
CertificateChain.

Query

keystoreName Name of the keystore. Query

stripeName Name of the stripe. Query

5Response Body

Media Types: application/json

The response body contains information about the certificate, including:

Attribute Description

"CONTENT" Contents of the Base64-encoded certificate.

"Extensions" Optional extensions that are used to issue a certificate for a
specific purpose. Each extension includes the following:

■ Object identifier (oid) that uniquely identifies it

■ Flag indicating whether the extension is critical

■ Set of values

"ISSUER_DN" List of trusted distinguished names.

"NOT_AFTER" Date the certificate expires.

"NOT_BEFORE" Date the certificate is activated.

"SERIAL_NO" Serial number of the JKS keystore.

"SIGNATURE" Base64-encoded signature key.

"SIGNING_ALGORITHM" Signing algorithm for the alias.

"SUBJECT_DN" Subject distinguished names list.

5cURL Example
The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL. For more information, see "cURL

View a Trusted Certificate in the KSS Keystore

5-14 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Access" on page 1-3.

curl -i -X GET -u username:password -H keystorePassword:cHdkMQ==
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/certificates?"stripeNam
e=myStripe&keystoreName=myKeystore&keyAlias=client&keystoreEntryType=Certificate"

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Fri Jul 25 02:45:11 PDT 2014",
 "NOT_AFTER":"Thu Oct 23 02:45:11 PDT 2014",
 "SERIAL_NO":"982191050",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",
 "CONTENT":"-----BEGIN CERTIFICATE-----
\nMIIC7DCCAqqgAwIBAgIEOosLyjALBgcqhkjOOAQDBQAwS
EKMAgGA1UEBhMBcjEKMAgGA1UECBMB\ncjEKMAgGA1UEBxMBcjEKMAgGA1UEChMBcjEKMAgGA1UECxM
cjEKMAgGA1UEAxMBUjAeFw0xNDA3\nMjUwOTQ1MTFaFw0xNDEwMjMwOTQ1MTFaMEgxCjAIBgNVBAYTA
IxCjAIBgNVBAgTAXIxCjAIBgNV\nBAcTAXIxCjAIBgNVBAoTAXIxCjAIBgNVBAsTAXIxCjAIBgNVBAM
AVIwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA\/X9TgR11EilS30qcLuzk5\/YRt1I870QAwx4\/gL
RJmlFXUAiUftZPY1Y+r\/F9bow\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5\/oBHsQIsJPu6nX\/rfGG
/g7V+fGqKYVDwT7g\/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu\/yIgMZndFIAccCFQCXYFCPFSMLzLKS
YKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu\/o66oL5V0wLPQeCZ1FZV4661FlP5nEHE
GAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qFG
iaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7\/s9JKgOBhAACgYAjhpZybXj6rlXDow8srnSFE9dZJJpCKaQV
ACagQogePV+xlqPClDOoiQJ\nuvuUGHerDrThC1\/Wq5Uj1+TnkSKTy0qYxmQoq56xALa47np9TKtqt
4Vy8eUUorakG4lrjNt\/EgR\nfO675n+qINkKXKpcxaCicupRCYPkPXlnT4mtyKMhMB8wHQYDVR0OBB
EFDKbmPa2Il6SylJRPTv8\nQ+4CqpEhMAsGByqGSM44BAMFAAMvADAsAhQbkmlaUG5QDR5mXUiYC74p
\/FBOwIUGx5lc5Y01ppo\nvK3UgL7M8E3eOfc=\n-----END CERTIFICATE-----",
 "SIGNATURE":FEZN2l4SPFEK5jt2QZRb5Q==",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false, value
= 329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

Delete a Certificate from a KSS Keystore

KSS Keystore Management 5-15

Delete a Certificate from a KSS Keystore

Deletes a certificate from a Keystore Service (KSS) keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the keystore
and key passwords.

5REST Request
DELETE /idaas/platform/admin/v1/keystoreservice/certificates

5Parameters
The following table summarizes the DELETE request parameters.

Name Description Type

keyAlias Alias for the certificate in the KSS keystore. Query

keystoreName Name of the keystore. Query

stripeName Name of stripe. Query

5Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

5cURL Example
The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

curl -i -X DELETE -u username:password -H keystorePassword:cHdkMQ== -H
keyPassword:bXlQd2Qy
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/certificates?"stripeNam
e=myStripe&keystoreName=myKeystore&keyAlias=myAlias"

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

Delete a Certificate from a KSS Keystore

5-16 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

{
 "STATUS": "Succeeded"
}

Create a Secret Key for a KSS Keystore

KSS Keystore Management 5-17

Create a Secret Key for a KSS Keystore

Creates a secret key used in symmetric encryption/decryption for a KSS keystore.

5REST Request
POST /idaas/platform/admin/v1/keystoreservice/secretkey

5Request Body

Media Types: application/json

The request body contains the details of the create request:

Attribute Description

"algorithm" Controls the cryptographic characteristics of the algorithms
that are used when securing messages.

"keyAlias" Alias for the secret key.

"keyPassword" Password for the secret key.

"keySize" Size measured in bits of the of the key used in cryptographic
algorithm.

"keystoreName" Name for the KSS keystore.

"keystorePassword" Password for the KSS keystore.

"stripeName" Name of the stripe.

5Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

5cURL Example
The following example shows how to create a secret key by submitting a POST request
on the REST resource using cURL. For more information, see "cURL Access" on
page 1-3.

curl -i -X POST -u username:password --data @secretkey.json -H
Content-Type:application/json
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/secretkey

Create a Secret Key for a KSS Keystore

5-18 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "myKeystore",
 "keyAlias" : "myKeyAlias",
 "keySize" : "56",
 "algorithm" : "DES",
 "keystorePassword" : "myPwd",
 "keyPassword" : "myKeyPwd"
}

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

View Secret Key Properties for a KSS Keystore

KSS Keystore Management 5-19

View Secret Key Properties for a KSS Keystore

Returns the secret key properties for a KSS keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the keystore
and key passwords.

5REST Request
GET /idaas/platform/admin/v1/keystoreservice/secretkey

5Parameters
The following table summarizes the GET request parameters.

Name Description Type

keyAlias Alias of the secret key. Query

keystoreName Name of the keystore. Query

stripeName Name of the stripe. Query

5Response Body

Media Types: application/json

The response body contains information about the certificate, including:

Attribute Description

"Property n" List of secret key properties, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
property.

5cURL Example
The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL. For more information, see "cURL
Access" on page 1-3.

curl -i -X GET -u username:password -H keystorePassword:bXlQd2Q= -H
keyPassword:bXlLZXlQd2Q=
http://myhost:7001/idaas/platform/admin/v1/keystoreservice/secretkey?"stripeName=m
yStripe&keystoreName=myKeystore&keyAlias=myKeyAlias"

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{

View Secret Key Properties for a KSS Keystore

5-20 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

 "Property 1":"DES"
}

Delete a KSS Keystore

KSS Keystore Management 5-21

Delete a KSS Keystore

Deletes a Keystore Service (KSS) keystore. If the keystore is password-protected, you
must provide Base64-encoded header values for the keystore password.

5REST Request
DELETE /idaas/platform/admin/v1/keystoreservice

5Parameters
The following table summarizes the DELETE request parameters.

Name Description Type

keystoreName Name of the keystore. Query

stripeName Name of the stripe. Query

5Response Body

Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

5cURL Example
The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL. For more
information, see "cURL Access" on page 1-3.

curl -i -X DELETE -u username:password -H keystorePassword:bXlQd2Q=
http://myhost:7001/idaas/platform/admin/v1/keystoreservice?"stripeName=myStripe&ke
ystoreName=myKeystore"

Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see "Status Codes."

HTTP/1.1 204 No Content

Delete a KSS Keystore

5-22 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

6

Token Issuer Trust Management 6-1

6Token Issuer Trust Management

You can view and manage token issuer trust configurations using a set of
representational state transfer (REST) resources, as summarized below.

Before using the REST API, you need to understand how to access the REST resources
and other important concepts. See "About the REST API" on page 1-1.

For more information about token issuer trust management, see "Defining Trusted
Issuers and a Trusted DN List for Signing Certificates" in Security and Administrator's
Guide for Web Services.

Section Method Resource Path

Create Trusted Issuers and DN Lists POST /idaas/webservice/admin/v1/trust/issuers

View a Trusted Issuer and DN Lists GET /idaas/webservice/admin/v1/trust/issuers

Create a Token Attribute Rule for a
Trusted DN

POST /idaas/webservice/admin/v1/trust/token

View All Token Attribute Rules GET /idaas/webservice/admin/v1/trust/token

Create Trusted Issuers and DN Lists

6-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Create Trusted Issuers and DN Lists

Create trusted issuers and distinguished name (DN) lists for signing certificates. The
trusted issuers will be stored in the specified trusted issuers document.

6REST Request
POST /idaas/webservice/admin/v1/trust/issuers

6Parameters
The following table summarizes the POST request parameters.

Name Description Type

documentName Name of trusted issuer document. Query

6Request Body

Media Types: application/json

The request body contains the details of the add request:

Attribute Description Required

"dn" List of DN values to be added to the trusted
issuer. For each DN, use a string that
conforms to RFC 2253, as described at the
following URL:
http://www.ietf.org/rfc/rfc2253.txt

Yes

"issuer" Groups information about a trusted issuer. Yes

"-name" Name of the trusted issuer. For example,
www.yourcompany.com. The default value for
the predefined SAML client policies is
www.oracle.com.

Yes

"jwt-trusted-dns" Groups information about JSON Web Token
(JWT) trusted issuers.

No

"saml-hok-trusted-dns" Groups information about SAML
holder-of-key trusted issuers.

No

"saml-sv-trusted-dns" Groups information about SAML sender
vouches trusted issuers.

No

"saml-trusted-dns" Groups the trusted issuers and DN lists. Yes

6Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Create Trusted Issuers and DN Lists

Token Issuer Trust Management 6-3

6cURL Example
The following example shows how to create a trusted issuers and DN lists by
submitting a POST request on the REST resource using cURL. For more information,
see "cURL Access" on page 1-3.

curl -i -X POST -u username:password --data @createtrust.json -H
Content-Type:application/json
http://myhost:7001/idaas/webservice/admin/v1/trust/issuers

Example of Request Body
The following shows an example of the request body in JSON format.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 200 OK

Create Trusted Issuers and DN Lists

6-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
}

View a Trusted Issuer and DN Lists

Token Issuer Trust Management 6-5

View a Trusted Issuer and DN Lists

Returns a trusted issuer and its distinguished name (DN) lists based on the document
name provided.

6REST Request
GET /idaas/webservice/admin/v1/trust/issuers

6Response Body

Media Types: application/json

The response body contains information about the trusted issuer and DN lists,
including:

Attribute Description

"dn" List of DN values to be added to the trusted issuer.

"issuer" Groups information about a trusted issuer.

"-name" Name of the trusted issuer.

"jwt-trusted-dns" Groups information about JSON Web Token (JWT) trusted
issuers.

"saml-hok-trusted-dns" Groups information about SAML holder-of-key trusted
issuers.

"saml-sv-trusted-dns" Groups information about SAML sender vouches trusted
issuers.

"saml-trusted-dns" Groups the DN lists.

6cURL Example
The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL. For more information, see
"cURL Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/trust/issuers

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [

View a Trusted Issuer and DN Lists

6-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

Create a Token Attribute Rule for a Trusted DN

Token Issuer Trust Management 6-7

Create a Token Attribute Rule for a Trusted DN

Creates a token attribute rule for a trusted distinguished name (DN). This operation
can be performed by the REST service or client. Only token attribute mapping is
supported on the client side.

6REST Request
POST /idaas/webservice/admin/v1/trust/token

6Request Body

Media Types: application/json

The request body contains the details of the add request:

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL: http://www.ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host or http(s)://host/root. For example, if
you set this value to https://messaging.us2.com/, then
the attribute rule applies to all service invocations with the
service URL of the form
https://messaging.us2.com/<path>

"filter" Defines the constraint values for trusted users and
attributes.

Note: This attribute is not applicable on the client side.

"mapping" Defines the mapping attributes for trusted users.

"-name" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

"token-attribute-rule" Groups information about a single token attribute rule.

"tokn-attribute-rules" Groups information about all token attribute rules.

"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mapping-attribute" Defines the user mapping attribute that the trusted DN
can assert.

Create a Token Attribute Rule for a Trusted DN

6-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

6Response Body

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

6cURL Example
The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL. For more information,
see "cURL Access" on page 1-3.

curl -i -X POST -u username:password --data @createrule.json
http://myhost:7001/idaas/webservice/admin/v1/trust/token

Example of Request Body - Service Side
The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 },
 "attributes":
 [
 {
 "-name": "tenant1",

"value" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "yourTrusted*". Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Attribute Description

Create a Token Attribute Rule for a Trusted DN

Token Issuer Trust Management 6-9

 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }
]
 }
]
 }
}

Example of Request Body - Client Side
The following shows an example of the request body in JSON format for creating a
token attribute rule on the client side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "https://messaging.us2.com/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"mail"
 }
 },
 }
]
 "token-attribute-rule":
 [
 {
 "-dn": "https://messaging.us2.com/mysvcInstance1-acme/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"uid"
 }
 },
 }
]
 }
}

Example of Response Header
The following shows an example of the response header.

Create a Token Attribute Rule for a Trusted DN

6-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

HTTP/1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

View All Token Attribute Rules

Token Issuer Trust Management 6-11

View All Token Attribute Rules

Returns all token attribute rules for a trust document. This operation can be performed
by the REST service or client. Only token attribute mapping is supported on the client
side.

6REST Request
GET /idaas/webservice/admin/v1/trust/token

6Response Body

Media Types: application/json

The response body contains information about all token attribute rules, including:

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC
2253, as described at the following URL:
http://www.ietf.org/rfc/rfc2253.txt

On the client side, URL specified using the following
format: http(s)://host or http(s)://host/root

"filter" Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as yourTrusted*. If you
specify multiple attribute filters, each filter should be
separated by a comma.

"mapping" Defines the mapping attributes for trusted users.

Note: This attribute is not applicable on the client side.

"-name" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

"token-attribute-rule" Groups information about a single token attribute rule.

"tokn-attribute-rules" Groups information about all token attribute rules.

"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mapping-attribute" Defines the user mapping attribute that the trusted DN
can assert.

"value" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "yourTrusted*". Multiple values
must be separated by a comma.

View All Token Attribute Rules

6-12 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

6cURL Example
The following example shows how to view all token attribute rules by submitting a
GET request on the REST resource using cURL. For more information, see "cURL
Access" on page 1-3.

curl -i -X GET -u username:password
http://myhost:7001/idaas/platform/admin/v1/trust/token

Example of Response Header
The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body—Service Side
The following shows an example of the response body in JSON format for viewing a
token attribute rule on the service side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "attributes":
 [
 {
 "-name": "tenant1",
 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }
],
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 }
 }
]
 }

View All Token Attribute Rules

Token Issuer Trust Management 6-13

}

Example of Response Body - Client Side
The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "https://messaging.us2.com/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"mail"
 }
 },
 }
]
 "token-attribute-rule":
 [
 {
 "-dn": "https://messaging.us2.com/mysvcInstance1-acme/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"uid"
 }
 },
 }
]
 }
}

View All Token Attribute Rules

6-14 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

A

Summary of REST APIs, Alphabetical by Resource Path A-1

ASummary of REST APIs, Alphabetical by
Resource Path

The credential and keystore management REST API provides a powerful set of
resources that you can use to manage web service security, including credential stores,
keystores, and trust stores.

Before using the REST API, you need to understand how to access the REST resources
and other important concepts. See "About the REST API" on page 1-1.

The following table summarizes the REST resource paths, alphabetically by resource
path.

REST Resource Method More Information

/idaas/platform/admin/v1/credential GET View All Credentials in the
Credential Store

/idaas/platform/admin/v1/credential DELETE Delete a Credential from the
Credential Store

/idaas/platform/admin/v1/credential POST Create a New Credential in
the Credential Store

/idaas/platform/admin/v1/credential PUT Update a Credential in the
Credential Store

/idaas/platform/admin/v1/keystore GET View All Aliases in the JKS
Keystore

/idaas/platform/admin/v1/keystore/{alias} GET View a Trusted Certificate in
the JKS Keystore

/idaas/platform/admin/v1/keystore/{alias} DELETE Delete a Trusted Certificate
from the JKS Keystore

/idaas/platform/admin/v1/keystore/{alias} POST Import a Trusted Certificate
into the JKS Keystore

/idaas/platform/admin/v1/keystore/pkcs7/{alias} POST View a Trusted Certificate in
the JKS Keystore

/idaas/platform/admin/v1/keystoreservice DELETE Delete a KSS Keystore

/idaas/platform/admin/v1/keystoreservice POST Create a KSS Keystore

/idaas/platform/admin/v1/keystoreservice PUT Update the Password for a
KSS Keystore

/idaas/platform/admin/v1/keystoreservice/alias/{stripeName}
/{keystoreName}/{entryType}

GET View the Alias for the KSS
Keystore

A-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

/idaas/platform/admin/v1/keystoreservice/certificates GET View a Trusted Certificate in
the KSS Keystore

/idaas/platform/admin/v1/keystoreservice/certificates DELETE Delete a Certificate from a
KSS Keystore

/idaas/platform/admin/v1/keystoreservice/certificates POST Import a Trusted Certificate
into a KSS Keystore

/idaas/platform/admin/v1/keystoreservice/keystore POST Import a KSS Keystore

/idaas/platform/admin/v1/keystoreservice/secretkey GET View Secret Key Properties
for a KSS Keystore

/idaas/platform/admin/v1/keystoreservice/secretkey POST Create a Secret Key for a
KSS Keystore

/idaas/platform/admin/v1/keystoreservice/{stripeName} GET View All KSS Keystores for
a Stripe

/idaas/webservice/admin/v1/trust/issuers GET View a Trusted Issuer and
DN Lists

/idaas/webservice/admin/v1/trust/issuers POST Create Trusted Issuers and
DN Lists

/idaas/webservice/admin/v1/trust/token GET View All Token Attribute
Rules

/idaas/webservice/admin/v1/trust/token POST Create a Token Attribute
Rule for a Trusted DN

REST Resource Method More Information

	Contents
	Preface
	Documentation Accessibility
	Conventions

	Part I Get Started
	1 About the REST API
	1.1 Introducing the REST API
	1.2 URL Structure
	1.3 Supported REST Methods
	1.4 Authentication
	1.5 Status Codes
	1.6 cURL Access

	2 Use Cases
	2.1 Managing the Credential Store Framework Using the REST API
	2.2 Managing JKS Keystores Using the REST API
	2.3 Managing KSS Keystores Using the REST API

	Part II REST API Reference
	3 Credential Store Management
	Create a New Credential in the Credential Store
	View All Credentials in the Credential Store
	Update a Credential in the Credential Store
	Delete a Credential from the Credential Store

	4 JKS Keystore Management
	View All Aliases in the JKS Keystore
	Import a Trusted Certificate into the JKS Keystore
	Import a Trusted PKCS#7 Certificate into the JKS Keystore
	View a Trusted Certificate in the JKS Keystore
	Delete a Trusted Certificate from the JKS Keystore

	5 KSS Keystore Management
	Create a KSS Keystore
	Import a KSS Keystore
	Update the Password for a KSS Keystore
	Import a Trusted Certificate into a KSS Keystore
	View All KSS Keystores for a Stripe
	View the Alias for the KSS Keystore
	View a Trusted Certificate in the KSS Keystore
	Delete a Certificate from a KSS Keystore
	Create a Secret Key for a KSS Keystore
	View Secret Key Properties for a KSS Keystore
	Delete a KSS Keystore

	6 Token Issuer Trust Management
	Create Trusted Issuers and DN Lists
	View a Trusted Issuer and DN Lists
	Create a Token Attribute Rule for a Trusted DN
	View All Token Attribute Rules

