User's Guide for Oracle Business Intelligence Discoverer Web Services API
11g Release 1 (11.1.1)
E10412-04
November 2011
This document describes the Discoverer Web Services API. It also provides reference information to help you use the API to access Discoverer connections and workbooks.
Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Discoverer Web Services API 11g Release 1 (11.1.1)
E10412-04
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to the Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Discoverer Web Services API!
This guide is intended for developers of applications that use Discoverer data through Discoverer Web Services. Readers are assumed to have a working knowledge of Web services.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
Oracle BI Discoverer supports standard keyboard navigation. Standard keyboard navigation includes the use of the tab key, mnemonics (using the Alt key and the underlined character), and accelerators (such as Alt+F4 to exit a window).
You can access the documents referenced in this guide, and other information about Oracle Business Intelligence (for example, whitepapers, best practices, documentation updates, other collateral) on Oracle Technology Network at:
http://www.oracle.com/technology
Conventions used in this manual are shown in the table below:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
< >	Angle brackets enclose user-supplied names or values.
[]	Square brackets enclose optional clauses from which you can choose one or none.
Menu name	Command
For more information about the Discoverer Web Service API methods, see "Discoverer Web Services API Reference".	
Oracle Business Intelligence includes the JGoodies software, whose License Agreement follows:	
Copyright© 2003 JGoodies Karsten Lentzsch. All rights reserved.	
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:	
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.	
This chapter introduces the Discoverer Web Services API and describes how to use the API. It contains the following topics:	
SOAP (Simple Object Access Protocol) is a World Wide Web Consortium (W3C) recommendation for an XML protocol for exchanging information on the Web.	
The Oracle BI Discoverer Web Services are part of an Application Programming Interface (API) that enables a client to do the following:	
The SOAP endpoint URL for Discoverer Web Services is http(s)://<host>:<port>/discoverer/wsi	
.	
The WSDL (Web Services Definition Language) format is an industry standard that formally defines services and methods, and is used to define Discoverer Web Service APIs. Proxy classes for the services can be generated automatically.	
Notes	
http(s)://<host>:<port>/discoverer/wsi?wsdl	
The Discoverer Web Services are accessible only by trusted users. You must obtain the trusted user name and password set up by the Discoverer middle-tier administrator, to use these credentials in your code.	
For a code example that includes user credentials, see Example 1-4, "Set credentials to access the protected web service".	
For information about how to create trusted users, see Defining a trusted user to access Discoverer Web Services.	
The Discoverer Web Services support Oracle Single Sign-On , Oracle Applications Single Sign-On, and public connections in the current release.	
The Discoverer Web Services are stateful in nature. In other words, every instance of the web service client stub needs to have a single HTTP session with the Discoverer Web Service. This HTTP session can be used for all web service operations, for all client application users. For every user, the client application needs to call the login method, to inform the Discoverer Web Service about a new user session. Every user session is associated with a dedicated Discoverer session on the server side which is either created or reused from the Discoverer session pool. The associated Discoverer session is used in all interactions with the user. The client application must ensure that it calls the logout method after completing all operations for the user.	
The HTTP session established between the web service client and the server is tracked by cookies and is managed by the web service.	
It is useful to know the Discoverer session pool size, because every login() call and subsequent data fetching operation requires a Discoverer session, and every logout() call releases the session.	
The maximum session pool size value can be configured (in configuration.xml) using Oracle Fusion Middleware Control. The Discoverer session clean-up operation runs periodically removing any stale or inactive DiscovererSession objects from the pool.	
The SSOusername, Connectionkey, Workbook, Worksheet, and Locale methods are all used to determine which Discoverer sessions to pick up, to optimize allocation of Discoverer sessions for new login requests.	
The Discoverer Web Services can be distributed across a cluster and have no dependency on a single point of failure. Transparent failover is not supported; therefore in the event of a failure, each client must authenticate again to create new user sessions.	
A web service API call can result in an exception that must be handled by the client. Error messages are displayed using the locale that was selected during login.	
You can diagnose problems from log files and from web service exceptions. You can view log entries using Oracle Fusion Middleware Control. For more information, see Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Discoverer.	
To invoke the Discoverer Web Services you must comply with the following:	
Only trusted users can access Discoverer Web Services. You create trusted users by using the WebLogic Server Administration Console. For more information about creating users, see the "Create Users" topic in the WebLogic Administration Console Online Help.	
Note: By default, the Administrators group is assigned a scoped security role for the Discoverer application. To provide access to Discoverer Web Services, you can add the new user to the Administrators group.For more information about adding users to groups, see "Add users to groups topic" in the WebLogic Administration Console Online Help.	
For the new user to access Discoverer Web Services, you must assign the Discoverer scoped security role to the new user. For more information about adding users to security roles, see the "Add users to roles" topic in the WebLogic Administration Console Online Help.	
Before you create a Java class to invoke the Discoverer Web Services you must ensure that the Discoverer Web Services are installed and configured.	
To verify that the Discoverer Web Services are installed and configured, you access the endpoint URL. If you cannot access the URL, contact the Discoverer manager.	
Navigate to the link http://<host>:<port>/discoverer/wsi	
.	
You should be prompted for the user/password created in the earlier steps.	
Note: You can also use the user name and password of the 'weblogic' user that was entered during installation (for more information, see your middle tier administrator).	
The maxSessions setting for Discoverer Web Services should be configured using Fusion Middleware Control. This setting specifies the maximum number of Discoverer sessions that can be active at the same time (the recommended value is 20)	
For more information about configuring Discoverer Web Services using Fusion Middleware Control, see the Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Discoverer.	
You can obtain a set of proxy/client files by generating them from a set of web service client libraries. Oracle Web Services provide libraries for this purpose. For more information, see Oracle Fusion Middleware Developer's Guide for Oracle Web Services.	
To generate the Discoverer Web Service client from the Discoverer WSDL URL:	
http://<host>:<port>/discoverer/wsi?wsdl	
For more information, see "What is the WSDL format?", and "Writing a client application to invoke web services using generated web service client stubs".	
You must set the value of the SESSION_MAINTAIN_PROPERTY in the web service library. The SESSION_MAINTAIN_PROPERTY specifies whether sessions are stateful, and because Discoverer Web Services sessions are stateful, this property must be set to True	
as follows:	
Note: Each supported web service library has an equivalent SESSION_MAINTAIN_PROPERTY	
for maintaining stateful sessions. For more information, see your web service documentation.	
The following code examples provide an illustration of a basic client application:	
Example 1-1 Define a Java class	
Example 1-2 Instantiate the web service client stub	
Example 1-3 Ensure the client maintains the session	
This is needed as the Discoverer web service is stateful.	
Example 1-4 Set credentials to access the protected web service	
Example 1-5 Set the web service endpoint	
Example 1-6 Perform any web service operations on the stub	
Note: To compile the above client application, the web service libraries must be set in the classpath. When using the Oracle libraries, soap.jar, Http_client.jar and the downloaded proxy.jar must be present. For example, if you run the client application from the command prompt, you might set the Java classpath as follows:	
Note: If you use an integrated development environment such as Oracle JDeveloper or Eclipse, then set the Java classpath using the user interface for that environment	
The Discoverer Web Services API can be used by a client application to obtain XML data related to Discoverer connections and worksheets. A typical flow of events is suggested in the following flow (for more information, see "Typical flow of events: Detailed task examples"):	
Typical flow of events	
This starts a user session and provides a valid session key.	
Note: Oracle E-Business Suite users must use the AppConnect() API to generate the session key. For more information, see "Secure Access to Discoverer Web Services for Oracle E-Business Suite Users".	
This returns a list of connections for clients to use for display and selection.	
This returns a list of workbooks for user display and selection.	
In case of OLAP connections there can be folders along with workbooks.	
This returns just a list of worksheets with empty parameter information.	
This returns the LOV data in chunks which is used by clients for user display and selection.	
Alternatively, you can select worksheet parameters in the cascading style by invoking the getCascadeParameterValueList(). For more information see "Select worksheet parameters and obtain LOVs in the cascading style by invoking getCascadeParameterValueList()".	
Note: If the worksheet does not contain parameters, then the client should not invoke getParameterValueList() or getCascadeParameterValueList().	
The client performs a submit, passing parameters if required.	
A queryKey is obtained when a worksheet query request is submitted.	
This returns the current status of the query for user display and selection.	
Note: Queries must be executed sequentially, so that when the client application performs a single login call for a user, it must ensure that the query submission for a worksheet is made only after the previous query submission has yielded results.	
Note: For OLAP worksheets, the XML can contain aggregate totals. In that case, if the API client creates a total for an OLAP worksheet with Aggregate totals, it would yield wrong results.	
The following flow of events shows some typical Java class entries for each task example.	
The following code must be executed before you can successfully perform a login() API call.	
You must provide the user credentials to invoke the Discoverer Web Services before you can use the login() call. For more information, see "Provide the credentials to invoke Discoverer Web Services".	
Note: The login() call must be invoked before invoking any other Discoverer Web Services.	
Note: To access SSO-based connections, you can provide the GUID and SSOUsername as the Identifier and DisplayName respectively.	
Instead of using the login() API, Oracle E-Business Suite users can provide the secure ticket and connection details using the AppsConnect()	
API and access Discoverer Worksheets.	
Notes:	
In the AppsConnect()	
API, Ticket	
, ConnectString	
, and DiscoEulName	
are string wrapper objects. Values for these objects can be retrieved from the Discoverer URL that Discoverer users use to start Discoverer.	
A sample Discoverer Viewer URL is given below:	
hostname.domain	
/discoverer/viewer?Connect=[APPS_SECURE]discor11&SessionCookieName=discor11&eul=EUL_US&opendbid=HRIPWCMP&FrameDisplayStyle=separate&acf=453560870&NLS_LANG=AMERICAN_AMERICA&NLS_DATE_FORMAT=DD-MON-RRRR&NLS_NUMERIC_CHARACTERS=.,&NLS_DATE_LANGUAGE=AMERICAN&NLS_SORT=BINARY&exitURL=http://hostname.domain	
/OA_HTML/OA.jsp?OAFunc=OAHOMEPAGEThe value of the SessionCookieName	
parameter is the ticket	
key for the cookie.	
The value of the Connect	
parameter is the value that you pass for the ConnectString	
object. In the above URL, it is [APPS_SECURE]discor11.	
The value of the eul	
parameter is the value that you pass for the DiscoEulName	
object. In the above URL, it is EUL_US	
.	
The locale details can either be defined using the LocaleBean	
object or retrieved from the URL.	
The acf	
parameter identifies the user/responsibility/security group. Any change in this parameter results in a new Discoverer session.	
Once logged in, the user can invoke the getConnectionList() API to obtain a list of available connections as shown below:	
Before you can use the getFolderEntryList() API, you must provide credentials to invoke the Discoverer Web Services, and have a valid session key (by performing a login() call). For more information, see "Provide the credentials to invoke Discoverer Web Services", and "Use the identifier to invoke login()".	
Note: Oracle E-Business Suite users must use the AppsConnect() API to generate the session key. After connecting to Discoverer using AppsConnect(), for invoking the getFolderEntryList() API, you can pass a NULL value for the ConnectionKey.	
Notes:	
You can use the getWorksheetList() API to get a list of worksheets for a given workbook.	
Note: Oracle E-Business Suite users do not require to create a ConnectionKey as they connect to Discoverer using theAppsConnect() API. After connecting to Discoverer, for invoking the getWorksheetList() API, the ConnectionKey associated with the workbook can be passed as NULL or an empty string.	
The Key that you obtained from the above call can be used as the worksheet key for the subsequent web service calls.	
This API provides information about the dimensions of a Discoverer worksheet.	
Use this API to check whether any parameter metadata is available for the worksheet.	
This API returns an empty list if the worksheet does not contain any parameter.	
The parameters for this API are sessionKey, parameterKey, and an integer.	
The parameters for this API are sessionKey, parameterKey, an integer, and ParameterSelectList.	
The parameters for this API are sessionKey, workSheetKey, ParameterSelectList and QueryOption.	
ParameterSelectList helps you to pass a list of selected parameters. The code below is for multiple parameters and multiple vales for each parameter.	
The QueryOption helps you to control the properties of the result set. The supported result types are XMLROWSET, PDF, HTML, and XLS. For the XMLROWSET type, you can specify the number of rows per fetch.	
From the QueryOptions that you specify, the applicable options are considered; the others are discarded.	
The code below submits the query.	
Once you get the query status as Ready, you can get the worksheet data using the getWorksheetData() API. The code below shows how to get the worksheet data for XMLROWSET result type.	
The following code sample explains how to get the worksheet data for a binary data type (for example, XLS).	
The following text is an example of a Java class (wsiClient.java) that might invoke Discoverer Web Services:	
This chapter provides detailed reference information for the following Discoverer Web Services API.	
This API is used to establish a secure connection to Discoverer Web Services for Oracle E-Business Suite (EBS) users.	
This API call accepts the APP_SECURE ticket, Connection string, name of the EUL, and LocaleBean information and returns a unique SessionKey, which is then passed to all other API calls.	
API	Details
---	---
Method	Public SessionKey AppsConnect(ticket,ConnectStr,eul,locale) { }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
Ticket	
ConnectString	
DiscoEulName	
LocaleBean	
This API call obtains a list of connections. It accepts SessionKey and returns the Connection list object. In single sign-on mode the list of public connections and private connections is returned. The connection can be of type Relational, OLAP, or APPS.	
API	Details
---	---
Method	Public ConnectionList getConnectionList(SessionKey aSessionKey) { }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
ConnectionList	
Connection	
ConnectionName	
ConnectionKey	
ConnectionDescription	
ConnectionEUL	
ConnectionDBIdentifier	
ConnectionAccessType	
This API call uses a connection to obtain the list of non-scheduled workbooks and FolderEntries. It accepts SessionKey, ConnectionKey, and FolderEntrypath and provides a list of non-scheduled workbooks and FolderEntries data that is accessible from the connection for the FolderEntrypath. The list of non-scheduled workbooks includes all of the shared workbooks for the database user that was used in the connection.	
When the connection is to relational data, workbooks are stored in a single level in the EUL. The only valid value for FolderEntrypath is “”. An empty string specifies the root folder entry in both Discoverer Plus Relational and Discoverer Plus OLAP.	
When the connection is to OLAP data, FolderEntries and Workbooks are stored in the Discoverer Catalog. There can be multiple levels of FolderEntries, which can be queried by providing the appropriate FolderEntryPath. Clients must make successive calls to this method to browse FolderEntries.	
API	Details
---	---
Method	Public FolderEntryList getFolderEntryList(SessionKey aSessionKey, ConnectionKey aCkey, FolderEntrypath fpath) { }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
FolderEntryList	
FolderEntry	
FolderEntryName	
FolderEntryPath	
FolderEntryDescription	
FolderEntryType	
WorkbookKey	
This API call obtains the layout metadata for a selected worksheet. It accepts SessionKey and WorksheetKey, and it provides the Layout information for the worksheet that is identified by WorksheetKey.	
API	Details
---	---
Method	Public Layout getLayoutMetaData(SessionKey aSessionKey, WorksheetKey aWorksheetKey) {}
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
Layout	
Dimension	
Measure	
This API call obtains the parameter metadata for a selected worksheet. It accepts SessionKey and WorksheetKey and provides the list of parameters for the specified worksheet that is identified by WorksheetKey	
API	Details
---	---
Method	Public ParameterList getParameterMetaData(SessionKey aSessionKey, WorksheetKey aWorksheetKey) {}
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
ParameterList	
This API call obtains the parameter LOVs using a ParameterKey. It accepts SessionKey, ParameterKey, and numValues and provides the list of values (LOVs). You call this method for parameters that have LOVs. The LOVs are retrieved in chunks (the size is specified by numValues), and you can page through from start to finish in one direction only; there is no bi-directional paging support of parameters. The client application is responsible for caching the parameters.	
API	Details
---	---
Method	Public ParameterValueList getParameterValueList(SessionKey aSessionKey, ParameterKey aParamKey, int numValues){ }
Input:	
Output	
Exceptions	
Notes	
The following table lists the fields of the structures.	
Structure	Fields
---	---
ParameterValueList	
This API call obtains the parameter LOVs using a ParameterKey and ParameterSelectList. It accepts SessionKey, ParameterKey, numValues, and ParameterSelectList and provides the list of values (LOVs) in the cascading style. In cascading parameters, the LOVs of one parameter depends on the value selected for the preceding parameter in the worksheet. The LOVs are retrieved in chunks (the size is specified by numValues), and you can page through from start to finish in one direction only; there is no bi-directional paging support of parameters. The client application is responsible for caching the parameters.	
API	Details
---	---
Method	Public ParameterValueList getCascadeParameterValueList(SessionKey aSessionKey, ParameterKey aParamKey, int numValues, ParameterSelectList pselectList){ }
Input:	
Output	ParameterValueList
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
ParameterValueList	
This API call returns the status of the query, such as executing or canceled. It accepts SessionKey and QueryKey.	
API	Details
---	---
Method	Public QueryStatus getQueryStatus(SessionKey aSessionKey, QueryKey aQueryKey){ }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
QueryStatus	
Status is one of the following:	
This API call provides the web service component version. Any change in the web service interface or API causes the version number to change. Use the version number to assist you in determining the functionality that is available for the web service.	
API	Details
---	---
Method	Public String getVersion() { }
Input:	
Output	
A version of 1.0 implies support for integration with Oracle BI Publisher. A version of 2.0 implies support for integration with Oracle BI Publisher and interoperability with Oracle BI Enterprise Edition.	
Exceptions	
This API call provides the URL of the Discoverer Viewer instance that is hosted on the same machine as the web service. This URL can be used by clients to launch Discoverer Viewer from within their application.	
API	Details
---	---
Method	Public String getViewerURL(SessionKey aSessionKey, WorksheetKey aWorksheetkey, List aParameteSelectList){ }
Input:	
Output	
Exceptions	
This API call accepts SessionKey and QueryKey and provides the worksheet data in the format type that is specified in QueryOption in the submitWorksheetQuery method. If the result set is large and is Rowset XML, then by default, 25 rows of data are returned. For other format types, 1MB of data is returned. You can page through the remaining data by calling this method repeatedly. If the finished flag in QueryResults is false , then call the method again to continue paging through the data. You can page through from start to finish in one direction only; there is no bi-directional paging support.	
API	Details
---	---
Method	Public QueryResult getWorksheetData(SessionKey aSessionKey, QueryKey aQueryKey){ }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
QueryResult	
The following table describes the export types.	
Export type	Relational
---	---
HTML	HTML file is zipped and base64 encoded before transfer.
PDF file is base64 encoded before transfer.	PDF file is base64 encoded before transfer.
XLS	XLS file is base64 encoded before transfer. Similar to Discoverer Viewer, graphs are not exported.
For HTML, PDF, and XLS export types	
HTML, PDF, and XLS export types - Returns worksheet data for the page items selected in the worksheet.	
XLS export types - Returns worksheet data for all combination of page item values.	
HTML or PDF export types - Returns worksheet data for the selected page item.	
This export behavior is similar to Viewer with the exception that the "isCurrentPageItemsExportForOLAP" setting in the configuration.xml file is not respected.	
Sample Rowset XML structure	
This API call accepts SessionKey and WorkbookKey and provides the list of worksheets within a workbook that is specified in WorkbookKey.	
API	Details
---	---
Method	Public WorksheetList getWorkSheetList(SessionKey aSessionKey, WorkbookKey aWorkbookKey) {}
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
WorksheetList	
Worksheet	
WorksheetName	
WorksheetKey	
This API call accepts a SessionKey and returns a Boolean value that indicates whether the specified session is valid.	
API	Details
---	---
Method	Public boolean isSessionValid(SessionKey sKey) { }
Input:	
Output	
Exceptions	
This API call provides a mechanism for user identity propagation between the client application and the Discoverer Web Services. Authentication occurs during every invocation of the Discoverer Web Services. For more information, see "About authentication and authorization".For every login made by a client application, the Discoverer Web Services create a new Discoverer user session and allocate it to the user.This API call accepts UserCredential and LocaleBean information and returns a unique SessionKey, which is then passed to all other API calls. This API call does not create a new HTTP session if a session exists between the client application instance and the Discoverer Web Services.	
API	Details
---	---
Method	Public SessionKey login(UserCredential aUserCredential, LocaleBean aLocale) { }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
LocaleBean	
UserCredential	
Identifier	
DisplayName	
SessionKey	
This API call informs the Discoverer Web Services API about the completion of the user session. This call frees the dedicated Discoverer session that was associated with the user session and returns the Discoverer session to the session pool.	
API	Details
---	---
Method	Public void logout(SessionKey aSessionKey) { }
Input:	
Output	
Exceptions	
This API call cancels a query request and removes the resources that are associated with that request. Call this method for queries that have been submitted but whose data has not yet been fetched. If the query data has been fetched, then the resources are removed. This asynchronous API call returns immediately.	
API	Details
---	---
Method	Public Void requestQueryCancel(SessionKey aSessionKey, QueryKey){ }
Input:	
Output	
Exceptions	
This API call submits the query for the specified worksheet for execution. This asynchoronous API call returns immediately, without waiting for the query execution to complete.	
API	Details
---	---
Method	Public QueryKey submitWorksheetQuery(SessionKey aSessionKey, WorksheetKey aWorksheetkey, List aParameteSelectList, QueryOption aQueryOption){ }
Input:	
Output	
Exceptions	
The following table lists the fields of the structures.	
Structure	Fields
---	---
QueryKey	
ParameterSelect	
QueryOption	
LocaleBean	
Valid types are:	
 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. |