Developer's Guide for Oracle Entitlements Server
11g Release 1 (11.1.1)
E14097-03
August 2011
Oracle Fusion Middleware Developer's Guide for Oracle Entitlements Server 11g Release 1 (11.1.1)
E14097-03
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Michael Teger
Contributing Author:
Contributor:
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle Fusion Middleware Developer's Guide for Oracle Entitlements Server describes how to create authorization policies, request authorization decisions and delegate administration using the available application programming interfaces (API). It also contains information regarding the policy model, and how to use the API to create policy objects.
This document is intended for engineers who use Oracle Entitlements Server development tools to control access to an organization's protected resources. This might involve programmatically requesting an authorization decision, creating an authorization or role mapping policy, developing custom Security Modules and Attribute Retrievers, and managing policy objects.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following guides in the Oracle Entitlements Server documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
Oracle Entitlements Server uses a model to define the elements that comprise a policy and how to use those elements to create a policy. The Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server has detailed information on the policy model. It includes a glossary of the model's components and a use case for implementing policy. This chapter contains information on how the Oracle Entitlements Server policy model is implemented using the Management API. It contains the following sections:	
A policy is created to bestow an effect (GRANT or DENY) upon a request for a protected target resource based on the profile of the requesting principal. From a high level, the policy defines an association between an effect, a principal, the target resource, the resource's allowed actions and an optional condition. A policy is applicable to a request for access if the parameters in the request match those specified in the policy. Consider the syntax of this policy (also discussed in the Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server):	
Figure 1-1 illustrates how these elements map to policy-related objects (in the policy model) that can be used to create policies programmatically.	
An effect (PolicyRuleEntry.EffectType	
) and an optional condition (RuleExpressionEntry	
) are defined in a policy rule (PolicyRuleEntry	
). The target resource (ResourceEntry	
) and the actions that can be performed on it are defined in a ResourceActionsEntry	
. The requesting user, group or role is defined as the principal (PrincipalEntry	
) and the principal has been assigned a role defined in an AppRoleEntry	
. The optional obligation (ObligationEntry	
) specifies information returned to the caller with the decision. It will be evaluated during enforcement of the decision (rather than during evaluation of the decision); the information may or may not be used by the caller, or affect the decision itself. These programmatic objects are stored in an instance of a policy store (PolicyStore	
). For more information, see Section 1.2, "Composing A Simple Policy" and Section 2.2.1, "Accessing the Policy Store." Additionally:	
Composing a simple policy requires that the elements (or policy objects) be created in a particular order. For example, a ResourceEntry	
object can only be created after defining a ResourceTypeEntry	
object. A simple policy can be composed by following the sequence described below.	
A PolicyStore	
object represents the entire policy store. All policy management activity can be initiated only by an authenticated user with the administrative rights to retrieve a handle to the policy store and manage the policies. The user must be assigned to at least one Administrative Role. Errors will be returned for any methods the role is not authorized to call. For more information, see Section 2.2.1, "Accessing the Policy Store."	
Note: A policy store is created and configured during installation of Oracle Entitlements Server. For information, see Oracle Fusion Middleware Installation Guide for Oracle Identity Management.	
ApplicationPolicy	
. An ApplicationPolicy	
object is a child of the PolicyStore	
object and should be created as the overall container for policies and related information that secure the components of a particular application. You may create as many ApplicationPolicy	
objects as needed although it is recommended that only one is created for each application to be secured. After using the createApplicationPolicy	
method, the ApplicationPolicy	
object handle is returned. For more information, see Section 2.2.2, "Creating an Application Policy."	
ResourceTypeEntry	
. A ResourceTypeEntry	
object specifies one or more resource attributes, and definitions of all possible valid actions that can be performed on a particular kind of resource. The actions can be standard actions (GET and POST to a URL) or custom actions on a business object (transfer to or from a bank account). Consider the following ResourceTypeEntry	
objects and their valid actions:	
Actions will be granted or denied when accessing a protected ResourceEntry	
instance created from the ResourceTypeEntry	
. To create a ResourceTypeEntry	
, call the ResourceTypeManager	
which provides methods to create, read, update and modify the object. For more information, see Section 2.2.3, "Defining Resource Types."	
ResourceEntry	
from the ResourceTypeEntry	
. A specific protected target (ResourceEntry	
) will be instantiated from a ResourceTypeEntry	
object. The ResourceManager	
provides methods to create, read, update and delete a ResourceEntry	
. A ResourceEntry	
object represents a secured target (for example, an application), references a ResourceTypeEntry	
, and is created under a PolicyDomainEntry	
object. If no PolicyDomainEntry	
object is specified, it is created under the default PolicyDomainEntry	
object. For more information, see Section 2.2.4, "Instantiating a Resource."	
ResourceEntry	
using the ResourceActionsEntry	
interface. Build a ResourceActionsEntry	
object to define the actions that can be performed on a ResourceEntry	
object. The set of actions for a ResourceEntry	
object are a subset of the set of legal actions already defined in the ResourceTypeEntry	
it references. A ResourceActionsEntry	
object can be added directly to a policy or one or more can be added to a PermissionSetEntry	
. For general information, see Section 1.3.4, "Populating a Permission Set." For programming details on adding ResourceActionsEntry	
objects to a PermissionSetEntry	
object, see Section 2.3.4, "Defining Permission Sets."	
PolicyEntry	
. This includes:	
PolicyRuleEntry	
object. See Section 2.2.6, "Specifying a Policy Rule" for more information.	
PrincipalEntry	
object See Section 2.2.7, "Specifying the Principal" for more information. You can also specify an Application Role as the policy principal. See Section 1.3.1, "Creating an Application Role" for more information.	
ResourceActionsEntry	
object containing the target resource instance and applicable actions. See Section 2.2.5, "Associating Actions with the Resource" for more information.	
PolicyManager	
and creating the PolicyEntry	
. See Section 2.2.8, "Defining the Policy" for more information.	
See Chapter 4, "Distributing Policies" for more information.	
This sequence, and information on the creation of the policy objects, is reiterated in Chapter 2, "Constructing A Policy Programmatically" with additional information. Programming details regarding the management (including retrieval, modification and deletion) of policy objects is in Chapter 3, "Managing Policy Objects Programmatically."	
Section 1.2, "Composing A Simple Policy" documented the minimum components needed to create a policy. The following sections contain information on the objects that can be added to a simple policy to make it more fine grained.	
Additional programmatic information regarding the creation of these objects is in Chapter 2, "Constructing A Policy Programmatically." Additional programmatic information regarding the retrieval, modification, and deletion of these objects is in Chapter 3, "Managing Policy Objects Programmatically."	
An Application Role is a collection of users, groups, and other Application Roles. For example, you might grant an Application Role all privileges necessary for a given target application. After the Application Role is created, it can be assigned statically to a user by granting the user membership in the role. It can also be assigned dynamically by referencing the role in a Role Mapping Policy which will, in turn, grant the policy's principals the permissions defined in the policy itself. An Application Role can be assigned to an enterprise user, group, or role in an identity store, or another Application Role in the policy store. One target application may have several different roles, with each role assigned a different set of privileges for more fine-grained access.	
Application Roles are defined at the ApplicationPolicy	
level (thus, its name). The AppRoleEntry	
object represents the Application Role. The AppRoleManager	
provides the methods to create, delete, modify and search for application roles as well as methods to grant and revoke membership in the role. Membership can be granted statically through the use of the grantAppRole()	
method or dynamically with a Role Mapping Policy. A Role Mapping Policy assigns the role to users and an Authorization Policy defines the role's access rights.	
Note: For more information on Role Mapping Policies, see Section 1.3.2, "Defining A Role Mapping Policy."	
Application Roles use role inheritance and hierarchy. The inheritance pattern is such that a subject assigned to a role (using a Role Mapping Policy) also inherits any child roles as long as it is not prohibited by other Role Mapping Policies. When an AppRoleEntry	
is referenced as a policy principal, access to the resource of all users assigned the role is governed by the policy. For more information, see Section 2.3.1, "Creating Application Roles."	
Access to a protected resource can be granted by defining the resource and the specific users or groups that can access it in an Authorization Policy. But access can also be granted by defining an Application Role, setting the protected resource and Application Role in an Authorization Policy and creating a Role Mapping Policy to dynamically determine the users, prior to authorization, at runtime.	
As documented in Section 1.3.1, "Creating an Application Role," membership to an Application Role can be granted statically through the use of the grantAppRole()	
method or dynamically with a Role Mapping Policy (RolePolicyEntry	
). An Application Role, referenced as a Principal in a Role Mapping Policy, could grant a user access to the defined resources but the Role Mapping Policy needs to be resolved before an authorization decision is reached. The resolution answers the question Can the user requesting access be assigned this Application Role? Once a request for access to a resource is received, the Authorization Policies that apply are retrieved and evaluated. If the policy references any Application Roles as the principal, they must be evaluated before the access decision is made.	
You can also apply restrictions that limit access to the resource by defining conditions on the Role Mapping Policy and/or the Authorization Policy - such as the time of day or the day of the week. See Section 1.3.3, "Adding a Condition" for more information. Section 1.4, "Using Roles to Implement Policy" and Section 2.3.2, "Creating Role Mapping Policies" contains more information on Role Mapping Policies.	
A Condition can be added to either an Authorization Policy or a Role Mapping Policy as a way of setting an additional constraint on the policy. A Condition is written in the form of an expression that resolves to true or false (boolean) and has one of the following outcomes:	
PolicyRuleEntry	
is applicable. A Condition must be true for the PolicyRuleEntry	
to evaluate to a positive effect. Conditions can be complex combinations of boolean expressions that test the value of some user, resource, or system attribute or they can be custom Java evaluation functions that evaluate complex business logic. To create a Condition, call the ExtensionManager	
and create an object to be referenced in the policy. The ExtensionManager	
provides methods to create and manage an AttributeEntry	
(a name/value pair that can be dynamically added to a policy rule) or a FunctionEntry	
(externally implemented logic). Either can be added to a PolicyRuleEntry	
as a means of setting a Condition during policy evaluation. For more information, see Section 2.3.5, "Defining a Condition."	
A ResourceActionsEntry	
object associates a specific protected target (Resource) with the action(s) that can be performed on it. The ResourceActionsEntry	
object is specified when creating a simple policy or you can build a more complex policy by populating a PermissionSetEntry	
object (also referred to as the entitlement) with one or more ResourceActionEntry	
objects.	
To populate, call the PermissionSetManager	
, instantiate a PermissionSetEntry	
and add one or more ResourceActionsEntry	
objects. The PermissionSetEntry	
is then referenced in a PolicyEntry	
object. For more information, see Section 2.3.4, "Defining Permission Sets."	
An Obligation specifies optional information that is returned to the calling application with the access decision. This information may or may not be taken into account during policy enforcement based on settings defined by the application. The Obligation information is returned with the allowed policy effect (GRANT or DENY). For example, the reason a request for access has been denied might be returned as an Obligation. A different type of Obligation might involve sending a message; for example, if a certain amount of money is withdrawn from a checking account, send a text message to the account holder's registered mobile phone.	
Note: If a Condition evaluates to false, Obligations are not sent to the caller.	
To specify an Obligation, build an ObligationEntry	
object. This object contains a set of attributes that form the arguments of the Obligation. The ObligationEntry	
is then referenced in a PolicyEntry	
object. For more information, see Section 2.3.6, "Adding Obligations."	
As documented in Section 1.3.2, "Defining A Role Mapping Policy," when users and groups are mapped to Application Roles, the mapping can be static (using direct role membership) or dynamic (using a Role Mapping Policy). A Role Mapping Policy contains the Principal (User, Group), a Target (resource, resource name expression) and (optionally) a Condition. Roles can also be mapped to access rights using an Authorization Policy. An Authorization Policy can contain the Principal (User, Group, Application Role), a Target (resource, entitlement set, resource name expression), actions that can be performed on the target, and (optionally) a Condition and Obligation. The following happens during authorization evaluation:	
For more information, see Section 2.3.1, "Creating Application Roles" and Section 2.3.2, "Creating Role Mapping Policies."	
Oracle Entitlements Server contains Java application programming interfaces (API) for creating policy objects programmatically. This chapter contains information on how to create these various policy objects using the API. It contains the following sections:	
The Oracle Entitlements Server Java API can be used to construct, manage (read, modify, delete) and search for the policy objects discussed in Chapter 1, "Using the Policy Model." Policy definitions are constructed from these policy objects. A policy object is generally any interface that ends in Entry	
. The oracle.security.jps.service.policystore.info	
package comprises most of the policy objects including (but not limited to) the PolicyEntry	
, AppRoleEntry	
, and PermissionSetEntry	
. The oracle.security.jps.service.policystore.info.resource	
package comprises the ResourceEntry	
, ResourceTypeEntry	
and the ResourceActionsEntry	
. To construct or manage a policy object, you must:	
This may or may not entail the retrieval of a policy domain. See Chapter 5, "Delegating Policy Administration" for more information.	
A policy object is constructed and managed using an entity manager. The oracle.security.jps.service.policystore.entitymanager	
package comprises all interfaces including (but not limited to) the ResourceManager	
, PolicyManager	
, AppRoleManager	
, and PermissionSetManager	
.	
The following list documents more specifically how the API can be used to perform specific operations on policy objects.	
create	
method. Policy objects have common elements that should be defined when they are being created including a Name, Display Name and Description. Additional elements that are specific to the type of object being created must also be defined. See Section 2.2, "Executing A Simple Policy" and Section 2.3, "Creating Fine Grained Elements for a Simple Policy" for examples of the create	
method and descriptions of its parameters. Manager	
interface and use the modify	
method, passing to it a reference to the in-memory object. This will propogate the changes to the object itself in the policy store. See Chapter 3, "Managing Policy Objects Programmatically" for examples of these operations and descriptions of their parameters. delete	
method to remove it. Additionally, some objects allow cascade removal. See Chapter 3, "Managing Policy Objects Programmatically" for more information. Manager	
interface has a singular and plural get	
method for each type of query, respectively. Use the singular get	
method to search for, and retrieve, a specific policy object by passing the object's defined Name. Use the plural get	
method to retrieve mutiple objects using a complex query. With the plural get	
method, pass search criteria to it using the appropriate SearchQuery	
class as defined in the oracle.security.jps.service.policystore.search	
package. Table 2-1 documents the parameters and descriptions of the generic SearchQuery	
classes. Table 2-1 Using the Complex SearchQuery Parameters	
Parameter	Description
---	---
policy_object	An enum in which the properties used to perform the query are defined. May include Name, Display Name, Description and others that vary by object type. For the permitted properties of a particular search type, see the Java API Reference.
negation	A boolean that takes as a value either
operator	An enum that defines the
search string	Takes as a value the string used for the search.
An enum that defines how the search string is matched against the values being searched. It should define one of the following:	
See Chapter 3, "Managing Policy Objects Programmatically" for more information on these search operations. See the Oracle Entitlements Server Java API Reference for SearchQuery	
parameter information specific to the particular policy object.	
Table 2-2 lists the comparison operator options organized by data type.	
Table 2-2 Available Comparison Operators by Data Type	
Expression Data Type	Available Comparison Operator
---	---
String	STRING_EQUAL (supported when comparing multi-value attributes only) STRING_REGEXP_MATCH STRING_IS_IN
Boolean	BOOLEAN_EQUAL (supported when comparing multi-value attributes only)
Date	DATE_EQUAL (supported when comparing multi-value attributes only) DATE_GREATER_THAN DATE_GREATER_THAN_OR_EQUAL DATE_LESS_THAN DATE_LESS_THAN_OR_EQUAL VALID_UNTIL_DATE DATE_IS_IN
Integer	INTEGER_EQUAL (supported when comparing multi-value attributes only) INTEGER_GREATER_THAN INTEGER_GREATER_THAN_OR_EQUAL INTEGER_LESS_THAN INTEGER_LESS_THAN_OR_EQUAL INTEGER_IS_IN NOT
Time	TIME_EQUAL (supported when comparing multi-value attributes only) TIME_GREATER_THAN TIME_GREATER_THAN_OR_EQUAL TIME_LESS_THAN TIME_LESS_THAN_OR_EQUAL VALID_FOR_HOURS VALID_FOR_MINUTES VALID_FOR_MSECONDS VALID_FOR_SECONDS VALID_UNTIL_TIME TIME_IS_IN
For detailed information on the Oracle Entitlements Server Java API, see one or both of the Java API Reference guides.	
Executing the simple policy procedure documented in Section 1.2, "Composing A Simple Policy" requires that the objects be created in a particular order. For example, a ResourceEntry	
object can only be created after defining a ResourceType	
object. The following sections are listed in the correct order for executing a simple policy programmatically.	
Note: Before creating any policy objects, you should determine the overall organizational structure of the policy model components; for example, it may be beneficial to implement only oneApplicationPolicy object and, within that parent, delegate policies in multiple PolicyDomainEntry objects. For more information, see Section 5.7, "Delegating with a Policy Domain."	
Any policy management activity must be preceded by retrieving an instance of the PolicyStore	
object. The following procedure shows how the PolicyStore	
object is retrieved using interfaces in the oracle.security.jps	
package. Smith is specified as the user with the administrative rights to manage the policies.	
Caution: Errors will be returned for any methods the user is not authorized to call.	
PolicyStore	
. JpsContext	
declares a collection of service instances common to a particular domain in the file that configures Oracle Platform Security Services (OPSS), jps-config.xml	
. If there is more than one JpsContext	
defined in the jps-config.xml	
, the policy store specified in the default JpsContext	
will be returned. You can also get a particular JpsContext	
by name. See the Oracle Fusion Middleware Security Guide for more information on this configuration file. Parameters specific to Oracle Entitlements Server are documented in the Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
Notes:	
It is assumed the user is already authenticated.
An ApplicationPolicy
object is a container for all objects needed to define secure access to a particular application. An ApplicationPolicy
object should be created for each target to be secured. You may create as many as needed. Once created, the ApplicationPolicy
is represented by the ApplicationPolicy
interface which contains the programmatic managers needed to create resources, policies and other security objects used to define the application's access requirements. These security objects comprise those defined in Chapter 1, "Using the Policy Model."
Note: TheApplicationPolicy object is represented in the Oracle Entitlements Server Administration Console as an Application. |
You can create, delete and retrieve ApplicationPolicy
objects with the methods found in the PolicyStore
interface. Example 2-1 illustrates how to create an ApplicationPolicy
object using the createApplicationPolicy()
method.
Example 2-1 Using createApplicationPolicy() Method
The values of the createApplicationPolicy()
parameters are defined as:
ApplicationPolicy
object. ApplicationPolicy
object. ApplicationPolicy
object. Caution: Deleting anApplicationPolicy object deletes all child objects created within it. |
A ResourceTypeEntry
object specifies the full scope of traits for a particular kind of protected resource. It contains resource attributes and definitions of all possible valid actions that can be performed on the protected resource. From the higher level ResourceTypeEntry
object (associated with an ApplicationPolicy
object), you instantiate a specific Resource
object to represent an actual, secured target. Thus, the ResourceTypeEntry
must include the full range of actions that may be granted or denied on any Resource
instance of this type. The actions added to a ResourceTypeEntry
can be standard actions (GET and POST to a URL) or a custom action on a business object (transfer to or from a bank account).
Note: TheResourceTypeEntry object is represented in the Oracle Entitlements Server Administration Console as a Resource Type. |
To create, delete, retrieve or modify a ResourceTypeEntry
, obtain an instance of the ResourceTypeManager
. Example 2-2 creates a ResourceTypeEntry
named TradingResType within the TradingApp ApplicationPolicy
object. TradingResType has two permissible actions (BUY and SELL) and an attribute named ManagerType .
Example 2-2 Using the createResourceType() Method
TradingApp is the name of the ApplicationPolicy
object from which the ResourceTypeManager
is being retrieved. The values of the createResourceType()
parameters are defined as:
ResourceTypeEntry
. ResourceTypeEntry
. ResourceTypeEntry
. ResourceTypeEntry
- in this case, GET. Use the setAllAction()
method to set a default action keyword. ResourceTypeEntry
. If there are duplicate ones, they will be handled as one. To define one or more attributes, create them with the createAttribute()
method in the ExtensionManager
and reference them here. See Section 2.3.3, "Creating Attribute and Function Definitions" for more information. Attributes can also be null. /
(forward slash) is the default delimeter for the actions. Use the setResourceNameDelimiter()
method to set a different delimiter. The delimiter is passed to the method as a ResourceTypeEntry.ResourceNameDelimiter
enum. ResourceTypeEntry
objects can also be defined as hierarchical by invoking the object's setHierarchicalResource()
method. By passing true to the isHierarchical
parameter, the ResourceTypeEntry
will be set as hierarchical. A hierarchical ResourceTypeEntry
can then be used to instantiate a ResourceEntry
in which the following applies.
ResourceEntry
created from a hierarchical ResourceTypeEntry
is also applicable to any ResourceEntry
objects that are its children. ResourceEntry
created from a hierarchical ResourceTypeEntry
is inherited by any ResourceEntry
objects that are its children. The isHierarchicalResource()
method can be used to determine whether a ResourceTypeEntry
has been set as hierarchical. Additional information is noted in Section 2.2.4, "Instantiating a Resource."
A ResourceEntry
object represents a specific, secured target in a protected application. It can represent software components managed by a container (URLs, EJBs, JSPs) or business objects in an application (reports, transactions, revenue charts). See the Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server for more information on software components and business objects.
Note: TheResourceEntry object is represented in the Oracle Entitlements Server Administration Console as a Resource. |
To create a ResourceEntry
object, obtain an instance of the ResourceManager
using the getResourceManager()
method in the applicable ApplicationPolicy
or PolicyDomainEntry
. Following that, use the createResource()
method to create the object.
Note: AResourceEntry object is defined as an instance of a ResourceType object. Be sure the appropriate ResourceType is defined before attempting to create a ResourceEntry instance. For more information, see Section 2.2.3, "Defining Resource Types." |
Example 2-3 creates a checking account ResourceEntry
. Trading
refers to the ApplicationPolicy
object from which the ResourceManager
is being retrieved.
Example 2-3 Using createResource() Method
The values of the createResource()
parameters are defined as:
ResourceEntry
. ResourceEntry
. ResourceEntry
. ResourceTypeEntry
object from which the resource will be instantiated. ResourceEntry
. To define one or more attributes, create them with the createAttribute()
method in the ExtensionManager
and reference them here (instead of null). Once a ResourceEntry
is created, it can be paired with actions in a ResourceActionsEntry
or included in a PermissionSetEntry
. For more information, see Section 2.3.4, "Defining Permission Sets."
Note: As noted in Section 2.2.3, "Defining Resource Types," hierarchicalResourceEntry objects can be instantiated from ResourceTypeEntry objects. When instantiating a hierarchical ResourceEntry object:
|
A ResourceActionsEntry
object associates a Resource instance with a set of actions that can be performed on it. The Resource instance is specified as either a static ResourceEntry
or a dynamic ResourceNameExpression
.
Note: AResourceActionsEntry is not a named object that is independently managed. It is just an association. |
The following sections have more information.
The procedure to instantiate a ResourceEntry
is explained in Section 2.2.4, "Instantiating a Resource." After instantiating a ResourceEntry
, build a ResourceActionsEntry
object to define the actions that can be performed on the resource. The set of actions are defined in a list using a subset of the legal actions defined in the Resource's corresponding ResourceTypeEntry
. Example 2-4 builds a list that defines the association (resActsList
) between the ResourceEntry
and its actions using the ResourceActionsEntry
interface. This example creates a checking account ResourceEntry
and associates the checking account with the ability to read it or modify it.
Example 2-4 Building a ResourceActionsEntry with ResourceEntry
Bob_checking1 is the ResourceEntry
. The List defines the applicable actions for Bob_checking1 that will be governed by this ResourceActionsEntry
object: read and write. The allowable actions are culled from the parent ResourceTypeEntry
.
Instead of using a ResourceEntry
, a ResourceNameExpression
can be specified. A ResourceNameExpression
contains a defined ResourceTypeEntry
and a Java regular expression, expressed as a string. The string is used to match the ResourceEntry
instance at runtime. For example, assume the policy data in Table 2-3 has been defined. RAE1 and RAE2 are defined with specific ResourceEntry
objects, ResType1 and ResType2. RAE3 is defined with a ResourceNameExpression
; during the runtime evaluation of Policy3, http://*
is used to match the ResourceEntry
and returns ResType1, the ResourceEntry
for an HTTP URL.
Table 2-3 Matching ResourceNameExpression Objects
ResourceEntry | ResourceActionsEntry | Policies |
---|---|---|
ResType1 (HTTP URL) | RAE1 with ResType1 | Policy1 with RAE1 |
ResType2 (HTTPS URL) | RAE2 with ResType2 | Policy2 with RAE2 |
RAE3 with ResType1 | Policy3 with RAE3 |
Example 2-5 illustrates how to build a ResourceActionsEntry
with a ResourceNameExpression
.
Example 2-5 Building a ResourceActionsEntry with ResourceNameExpression
Table 2-4 has examples of the ResourceNameExpression
. While any regular expression can be used, the pattern expressions listed in the table are processed faster then regular expresisons.
Table 2-4 Examples of ResourceNameExpression
Expression | Description |
---|---|
Specific to Resource Type | To specify any action type, use the keyword specific to the Resource Type.
|
".*" | To specify all resources
|
"http.*" | To specify all resources beginning with http.
|
".*html" | To specify all resources ending in html.
|
You may also populate a Permission Set with one or more ResourceActionsEntry
objects. See Section 2.3.4, "Defining Permission Sets" for more information.
A PolicyRuleEntry
defines an Effect (and optionally a Condition). An Effect specifies the possible outcomes of the policy rule. Effects in Oracle Entitlements Server are GRANT or DENY. When the policy rule is evaluated (coupled with information regarding a principal and a target ResourceEntry
), the rights of the subject in terms of the ResourceEntry
are determined. All policies must contain one (and only one) Policy Rule. Example 2-6 illustrates how to create a PolicyRuleEntry
object named myRule
programmatically using the BasicPolicyRuleEntry
implementation.
Example 2-6 Create a PolicyRuleEntry
The values of the parameters are defined as:
PolicyRuleEntry.EffectType
enum defines the available effect types for Oracle Entitlements Server. The constants are GRANT or DENY. BooleanExpressionEntry
which represents an Expression
that returns a boolean value. See Section 2.3.5, "Defining a Condition" for more information. A PrincipalEntry
specifies the users, groups, or roles to which the policy pertains. Table 2-5 illustrates these types and how each can be specified programmatically.
Table 2-5 Specifying a Principal Programmatically
Principal Type | Example |
---|---|
User | Specify the class name of the user principal validation provider (PrincipalEntry aUser = new BasicPrincipalEntry ("weblogic.security.principal.WLSUserImpl", "smith"); List<PrincipalEntry> myPrincipal = new ArrayList<PrincipalEntry>(); myPrincipal.add(aUser); |
Group | Specify the class name of the group principal validation provider (PrincipalEntry aGroup = new BasicPrincipalEntry ("weblogic.security.principal.WLSGroupImpl", "Acme"); List<PrincipalEntry> myPrincipal = new ArrayList<PrincipalEntry>(); myPrincipal.add(aGroup); |
Role | Retrieve the tRole Application Role and add it to the AppRoleEntry aRole = appRoleManager.getAppRole(tRole); List<PrincipalEntry> principal = new ArrayList<PrincipalEntry>(); principals.add(tRole); See Section 2.3.1, "Creating Application Roles" for more information. |
Anonymous Role | Add PrincipalEntry anonymous = new AnonymousRoleEntry(); List<PrincipalEntry> principals = new ArrayList<PrincipalEntry>(); principals.add(anonymous); |
Authenticated Role | Add PrincipalEntry authenticated = new AuthenticatedRoleEntry(); List<PrincipalEntry> principals = new ArrayList<PrincipalEntry>(); principals.add(authenticated); |
When a policy's subject is multiple groups and/or roles, that policy applies to a user based on the principal semantic defined. Options include:
PRINCIPAL_AND_SEMANTIC
defines a policy that applies to a user if the user matches ALL groups or roles listed as the principal. For example, if a list of principals contains two roles, the user must be member of both roles for the policy to apply. PRINCIPAL_OR_SEMANTIC
defines a policy that applies to a user if the user matches AT LEAST one of the groups or roles listed as the principal. For example, if a list of principals contains two roles, the user can be a member of ONLY one of these roles for the policy to apply. A Policy specifies the access rights that specific principals have on specific resources. Basically, it consolidates all the pieces needed to create the access control - including, but not limited to, a PolicyRuleEntry
, a ResourceActionsEntry
, and a PrincipalEntry
.
A Policy is programmatically represented as a PolicyEntry
object. To create a PolicyEntry
object, obtain an instance of the PolicyManager
using the getPolicyManager()
method. Following that, use the createPolicy()
method to create the object. Example 2-7 creates a policy named myPolicy
.
Example 2-7 Using createPolicy() Example
domain
refers to the Policy Domain under which the policy is being created. The values of the createPolicy()
parameters are defined as:
PolicyEntry
. PolicyEntry
. PolicyEntry
. PolicyRuleEntry
object. PermissionSetEntry
- permSets is an ordered collection (list) of PermissionSetEntry
objects. See Section 2.3.4, "Defining Permission Sets" for more information. PrincipalEntry
objects defined as the subject of this policy. ResourceActionsEntry
- A list of ResourceActionsEntry
objects can also be defined. If the list of PermissionSetEntry
objects is null, this list should contain at least one valid element. ObligationEntry
objects may be used. See Section 2.3.6, "Adding Obligations" for more information. PolicyEntry.POLICY_SEMANTIC
enum defines the available constants as AND or OR. Section 2.2, "Executing A Simple Policy" documented how to create the minimum components needed to define a policy. The following sections contain information on how to add the advanced policy elements discussed in Section 1.3, "Adding Fine Grained Objects to a Simple Policy" to a simple policy.
An AppRoleEntry
object is associated with an ApplicationPolicy
to group access rights that can then be distributed to users who are granted the role. Once an AppRoleEntry
is defined, the grantAppRole
method can be used to assign the role to a subject statically or a Role Mapping Policy can be created to assign it to subjects dynamically. (An Authorization Policy is used to define the role's access rights.)
The following can be added as members to an AppRoleEntry
:
When an Application Role is specified as a principal for a particular policy, all users assigned to the role are governed by that policy. All ApplicationPolicy
containers have two implicit Application Roles:
To create an AppRoleEntry
, get an instance of AppRoleManager
from within the ApplicationPolicy
object where the Application Role will be created and use the createAppRole()
method. Example 2-8 shows the creation of an AppRoleEntry
named TraderRole.
Example 2-8 Creating an Application Role
bankApplication
defines the ApplicationPolicy
object for which we are retrieving the AppRoleManager
. The values of the createAppRole()
parameters are defined as:
AppRoleEntry
object. AppRoleEntry
object. AppRoleEntry
object. To assign a Principal to an AppRoleEntry
object, build a PrincipalEntry
list containing the appropriate users or groups. Use grantAppRole()
to assign the role to the principals in the list. Example 2-9 shows the creation and assignment of user JSMITH to the TraderRole.
Example 2-9 Assigning Principals to an Application Role
The values of the grantAppRole()
parameters are defined as:
AppRoleEntry
object to which the user is being assigned. Application Role hierarchies can be built by assigning Application Roles as members of other Application Roles. A policy that applies to an Application Role also applies to all Application Roles that have been assigned to it as members. Example 2-10 illustrates how the TraderManagers role is assigned as a member of the AllManagers role. Thus, all policies that apply to members of the AllManagers role also apply to all members of the TraderManagers role.
Example 2-10 Applying Application Role Hierarchies
A Role Mapping Policy is created at the ApplicationPolicy
level - the same level at which the Application Role is defined. A RolePolicyEntry
object represents a Role Mapping Policy. It provides the methods to define a policy that will determine if a user or group is granted or denied an Application Role.
Note: TheRolePolicyEntry object is represented in the Oracle Entitlements Server Administration Console as a Role Mapping Policy, organized within the Role Catalog. |
To create a RolePolicyEntry
object, obtain an instance of the RolePolicyManager
using the getRolePolicyManager()
method in the applicable ApplicationPolicy
. Following that, use the createRolePolicy()
method to create the object.
Example 2-11 Using the createRolePolicy() Method
TellerApp is the name of the ApplicationPolicy
object from which the RolePolicyManager
is being retrieved. The values of the createRolePolicyEntry()
parameters are defined as:
RolePolicyEntry
. RolePolicyEntry
. ResourceTypeEntry
. RolePolicyEntry
. PrincipalEntry
objects to map to the Application Roles. This value cannot be an ApplicationRole or an Administration Role, and the list cannot be empty. Note: Role Mapping Policies use only the OR semantic. See Section 2.2.7, "Specifying the Principal" for more information. |
PolicyRuleEntry
object that defines a Condition for the Role Mapping Policy. A value is required. Note: Conditions in Role Mapping Policies provide the same functionality as conditions in Authorization Policies. |
ResourceEntry
objects to associate with the Role Mapping Policy. It is an optional parameter for which you can supply null or an empty list. This parameter also allows scoping the Role Mapping Policy to a particular resource(s). An attribute or function definition is metadata that describes a specific attribute or function. Among other information, it defines the name of the attribute or function, the type of data the attribute takes, or the function returns, as a value and whether said value is single or multiple. The metadata informs Oracle Entitlements Server how to deal with the particular attribute or function that is being defined.Attribute and function definitions can be used in a Condition or an Obligation. In regards to a Condition, attribute and function definitions can be used to make an optional expression that can be added to a policy to further restrict access to the protected resource. In regards to an Obligation, this optional set of name-value pairs returns additional information, with a policy decision, to the Policy Enforcement Point (PEP). There are two ways to define an Obligation:
Note: See Section 1.3.3, "Adding a Condition" and Section 1.3.5, "Building an Obligation" for more general information. Section 2.3.5, "Defining a Condition" and Section 2.3.6, "Adding Obligations" contain additional coding information. |
Attribute and function definitions are managed at the ApplicationPolicy
level. Pre-defined definitions can be used (RuleExpressionEntry.BuiltInAttributes
and RuleExpressionEntry.BuiltInFunctions
) or you can define new ones to suit your requirements using the ExtensionManager
. More information can be found in the following sections.
An AttributeEntry
object can be a value dynamically defined at runtime (for example, the locality of the user) or a value based on the type of protected resource (for example, creation date of a text file). During policy evaluation, attribute values can be passed in by the application or Oracle Entitlements Server can retrieve it using a custom attribute retriever.
Note: Dynamic attribute definitions are managed as a child object of theApplicationPolicy so that they may be used in policies within different Policy Domains. See Chapter 5, "Delegating Policy Administration" for information on Policy Domains. |
To create an attribute definition, get an instance of the ExtensionManager
and use the createAttribute()
method. Example 2-12 creates an attribute definition named myAttr.
Example 2-12 Creating a Dynamic Attribute Definition
bankApplication
refers to the ApplicationPolicy
object under which the extension is being created. The values of the createAttribute()
parameters are defined as:
oracle.security.jps.service.policystore.info.DataType
class. Note: attr.setValue(new OpssString("John")) is a line of code that would set the value of the string as John. |
A Custom Function represents some externally implemented logic that is used to generate an output which is then returned to the PDP; the value is then used in a Condition. Example 2-13 illustrates how to create a custom function by retrieving the ApplicationPolicy
under which the function will be created and getting an instance of the ExtensionManager
.
Example 2-13 Creating a Custom Function Definition
MyAppPolicy is the identifier for the ApplicationPolicy
object under which the function is being created. The values of the createFunction()
method parameters are defined as:
FunctionEntry
. FunctionEntry
. oracle.security.jps.service.policystore.info.DataType
class which is a super class comprised of all data types supported by the policy store (OpssBoolean
, OpssDate
, OpssInteger
, OpssString
, OpssTime
). For more information, see Section 2.3.5, "Defining a Condition" and Section 7.2, "Developing Custom Functions."
As documented in Section 1.2, "Composing A Simple Policy," a PermissionSetEntry
object is used to aggregate one or more ResourceActionsEntry
objects. A ResourceActionsEntry
object is a pairing of the resource being secured with the action(s) that the policy will allow or deny on it. (See Section 2.2.5, "Associating Actions with the Resource" for more information on ResourceActionsEntry
objects.) With the PermissionSetEntry
, you can bundle ResourceActionsEntry
objects as needed. This is a construct that can be used instead of the standard RBAC role aggregations.
Note: ThePermissionSetEntry object is represented in the Oracle Entitlements Server Administration Console as an Entitlement. |
Example 2-14 illustrates how to create a PermissionSetEntry
object. It includes the code for creating a ResourceEntry
and ResourceActionsEntry
. domain is the name of the Policy Domain from which the instance of the PermissionSetManager
is retrieved.
Example 2-14 Building a PermissionSetEntry
The values of the createPermissionSet()
parameters are defined as:
PermissionSetEntry
object. PermissionSetEntry
object. PermissionSetEntry
object. ResourceActionsEntry
being associated with this PermissionSetEntry
object. An optional Condition in a policy rule can be used to set additional requirements on a decision returned in response to a request for access. For example, a Condition can be used to grant access to a resource only on the condition that the request was issued from a specific location or at a specific time. A Condition is written in the form of an expression that resolves to either true or false. If the expression resolves to true, the condition is satisfied and the policy is applicable. If the expression does not resolve to true, the policy is not applicable.
Note: Conditions in Role Mapping Policies provide the same functionality, and take the same format, as Conditions in Authorization Policies. |
A Condition is defined in a PolicyRuleEntry
as discussed in Section 2.2.6, "Specifying a Policy Rule." It is an expression built using attributes or functions that can (optionally) be added to the policy rule to further restrict it. The expression is evaluated using dynamic or resource attribute values, or values returned from component functions.
A Condition must return true or false so the expression can only return true or false; thus, it must be defined in a BooleanExpressionEntry
. The BooleanExpressionEntry
may:
ExpressionComponent
objects. An expression object has a function and one or more arguments of the type ExpressionComponent
. The ExpressionComponent
interface represents any entity that can appear as part of the expression.
Note: the order in which components are added to an expression must be the same order in which the parameters appear in the input parameter list. For example, if a function needs(OpssString, OpssTime, OpssInteger) , the expression must be constructed as: ex.addExpressionComponent(<string param>); ex.addExpressionComponent(<time param>); ex.addExpressionComponent(<integer param>); |
The following objects are of the type ExpressionComponent
:
ExpressionComponent
objects. ExpressionComponent
) that is of any currently supported data type: Boolean, Date, Integer, String and Time. Example 2-15 illustrates how to define a Condition using the BooleanExpressionEntry
class to specify the expression and (optional) parameters.
Example 2-15 Defining a BooleanExpressionEntry
The BooleanExpressionEntry
parameter has:
FunctionEntry
for a built-in function, or a custom function obtained using the ExtensionManager
. ExpressionComponent
objects. An ExpressionComponent
is an interface implemented by Class<? extends DataType>
, ValueCollection
, AttributeEntry
and Expression
. The following objects can be used to build an Expression
: OpssBoolean, OpssDate, OpssInteger, OpssString, OpssTime, ValueCollection, all classes that implement the AttributeEntry
interface, or an Expression
itself (nesting). It represents a simple condition such as string1 = string2
or a more complex condition such as (((checking_balance + savings_balance) > 10000) AND (customFunc_checkCustomerType(user_name, “GOLD”))
. From a high level, a developer must take the following steps to define a Condition as a BooleanExpressionEntry
. This procedure assumes the logic detailing the process has been defined; in this example, assume a banking policy is applicable only to users who are GOLD members with a combined savings and checking balance of $10,000.
AttributeEntry
objects will be defined; in this example, an attribute that defines a combined savings and checking balance (to compare with $10,000) and one that defines the type of customer (to compare with GOLD). FunctionEntry
objects will be defined; in this example, there is one function that creates a combined balance (saving_balance + checking_balance > 10000) and one that checks for the customer type (customFunc_checkCustomerType(username, “GOLD”)). ExpressionComponent
objects one by one, identifying them as functions and parameters; in this example, expressions are nested and use the AND operator. integer_add(saving_balance, check_balance)
integer_greater_than(integer_add
(saving_balance, check_balance), 10000)
customFunc_checkCustomerType(username, “GOLD”)
and(integer_greater_than(integer_add
(saving_balance, check_balance), 10000,
customFunc_checkCustomerType(username, “GOLD”))
BooleanExpressionEntry
using the ExpressionComponent
objects. The preferred way to generate a boolean expression is illustrated in Example 2-16. Example 2-16 Building a BooleanExpressionEntry
The expression constructor is provided with the function entry, and each function argument is added as an expression component from left to right.
Note: To add allExpressionComponent objects at once, use the setExpressionComponent(List<ExpressionComponent>) interface. The list of components must be built in order of the arguments passed to the function; for example, the first component in the list is the first argument passed to the function, the second component is the second argument and so on. |
BooleanExpressionEntry
. Oracle Entitlements Server supports many predefined functions to be used in conditions (AND/OR, boolean functions, or string functions). The following sections contain information on the kinds of expressions that can be used.
A boolean expression can evaluate an outcome based on the comparison between two boolean results. The outcome of the comparison would be true or false. A boolean expression allows a policy condition to be based on the results of two or more basic expressions of different value types.
The following code contains two basic expressions and a boolean expression. The integer expression (comparing two integers) and the string expression (comparing two stings) are basic expressions. The boolean expression compares the results returned by the basic expressions.
The values of the parameters are defined as:
FunctionEntry
obtained by using the enum (ExtensionManager.getFunctionEntry(BuiltInFunctions.INTEGER_LESS_THAN)
FunctionEntry
obtained by using the enum (ExtensionManager.getFunctionEntry(BuiltInFunctions.STRING_EQUAL)
FunctionEntry
obtained by using the enum (ExtensionManager.getFunctionEntry(BuiltInFunctions.AND)
Note: AND returns true only if the results of the basic expressions were also true. The other supported operations for a boolean expression are NOT (takes a single true/false value and negates it) and OR (takes two true/false values and produces one true result if either operand is true). |
A custom function expression invokes a custom function and returns true or false based on the outcome. The custom function expression can also include one or more parameters. Once the function is called and any parameter(s) are defined, construct a RuleExpressionEntry
object to invoke the function using the parameter(s) as input. The following code determines whether the client from which the request is being made would be considered low risk. The function analyzes the client type and returns the string Low Risk if it is.
This second example shows how to build a custom function expression that takes parameters of different expression value types.
Note: Custom function expressions do not use comparison operators. |
An Obligation specifies optional information that is taken into account during policy enforcement. This information is returned to the entity calling for an authorization decision with the resolved effect (GRANT or DENY) and imposes an additional requirement on the policy outcome; for example, if a certain amount of money is withdrawn from a checking account, send a text message to the account holder's registered mobile phone.
An Obligation is managed as a named object that contains a set of name-value pairs. The object is always managed in the context of a policy. There are two ways to define an Obligation:
If a policy contains an Obligation, the information is returned to the application as a named ObligationEntry
object containing a set of attributes. To specify an Obligation, build an ObligationEntry
object that contains the data to return. The following procedure constructs an ObligationEntry
that provides the string message Trader managers may run reports.
AttributeAssignment
class and add it to an attribute array list named traderRptList
. The values of the parameters are defined as:
traderRptObl
Obligation and traderRptOblList
array using the ObligationEntry
interface. The values of the parameters are defined as:
The values of the parameters are defined as:
PolicyRuleEntry
object. PermissionSetEntry
objects. PrincipalEntry
objects. ObligationEntry
objects. Note: If an application uses an Obligation, it must be requested in theisAccessAllowed() authorization request. |
Many of the application programming interfaces (API) documented in Chapter 2, "Constructing A Policy Programmatically" contain methods that allow for managing policy objects programmatically. This chapter contains information on how to use those methods. It contains the following sections:
The policy store contains three scoping levels under which policies are managed: the top-level Policy Store itself, the Application (Application Policy), and the Policy Domain.
PolicyStore
object represents the entire policy store. Application policies and system administration policies are managed at this scope. Any policy management activity must be preceded by retrieving an instance of the PolicyStore
object as documented in Section 2.2.1, "Accessing the Policy Store." The policy store location, the account and the account password used to access it are defined in the jps-config.xml
configuration file. Example 3-1 illustrates how this information is defined in jps-config.xml
during installation. Example 3-1 Definition of a Policy Store in jps-config.xml
Note: See the Oracle Fusion Middleware Security Guide for more information on thejps-config.xml configuration file. Parameters specific to Oracle Entitlements Server are documented in the Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server. |
ApplicationPolicy
object represents an application being secured by Oracle Entitlements Server. Within an ApplicationPolicy
, programmatic objects used to define policies (Resource Types, Functions, Attributes, Application Roles and Role Policies) are managed. Note: Optionally, these programmatic objects can also be managed by creating one (or multiple)PolicyDomainEntry objects within the ApplicationPolicy as described in Chapter 5, "Delegating Policy Administration." |
PolicyDomainEntry
object can be created to partition, and serve as a management point for, Resources, Permission Sets and completed policy definitions. One PolicyDomainEntry
can be used to maintain all policies securing an application or multiples can be used to organize policy components as needed. Policies are defined using objects created in its parent ApplicationPolicy
object. Policy Domains are invisible to each other, even those in a parent-child relationships. Thus, the Resources, Permission Sets and Policies managed in a Policy Domain can only be used in that Policy Domain. More information on the Policy Domain can be found in Chapter 5, "Delegating Policy Administration." Note: Administration Roles are managed at all scope levels depending on where they were created. For information on creating and managing Administration Roles, see Chapter 5, "Delegating Policy Administration." |
Within the PolicyStore
object, policy components securing different applications are organized within one or more second level ApplicationPolicy
objects. Section 2.2.2, "Creating an Application Policy" documented how to create an ApplicationPolicy
object. You can also delete and retrieve ApplicationPolicy
objects with the methods found in the PolicyStore
interface.
Note: TheApplicationPolicy object is represented in the Oracle Entitlements Server Administration Console as an Application. |
Example 3-2 illustrates how to delete an ApplicationPolicy
object named Trading using the deleteApplicationPolicy()
method.
Example 3-2 Using deleteApplicationPolicy() Method
The value of the deleteApplicationPolicy()
parameter is Trading, the unique identifier defined as the Name when the object was initially created. The getApplicationPolicy()
method will retrieve the ApplicationPolicy
object using the same Name value. Additionally, you can retrieve many ApplicationPolicy
objects by calling the getApplicationPolicies()
method and passing search criteria to it using the ApplicationPolicySearchQuery
class.
Caution: Deleting anApplicationPolicy object deletes all child objects created within it. |
Within the ApplicationPolicy
object, policy components are organized within one or more PolicyDomainEntry
objects. Other components managed at the ApplicationPolicy
level include Resource Types, Application Roles, Role Policies and Extensions (Functions and Attributes). The following sections have more information.
Section 5.7, "Delegating with a Policy Domain" documents how to create an optional PolicyDomainEntry
object that can be used to help partition policy definition components. You can also delete and retrieve PolicyDomainEntry
objects with the methods found in the ApplicationPolicy
interface. To manage a Policy Domain, obtain an instance of the PolicyDomainManager
and call the appropriate method. Example 3-3 illustrates how to delete a PolicyDomainEntry
created within the Trading ApplicationPolicy
. mydomain
is the unique identifier defined as the Name when the object was initially created.
Example 3-3 Using deletePolicyDomain() Method
Example 3-4 illustrates how to modify the Display Name and Description of the PolicyDomainEntry
using the setDescription()
and setDisplayName()
methods available through that interface.
Example 3-4 Using modifyPolicyDomain() Method
Example 3-5 illustrates how to retrieve a PolicyDomainEntry
using mydomain
, the unique identifier defined as the Name when the object was initially created.
Example 3-5 Using getPolicyDomain() Method
Additionally, you can retrieve many PolicyDomainEntry
objects by calling the getPolicyDomains()
method and passing search criteria to it using the PolicyDomainSearchQuery
class.
Section 2.2.3, "Defining Resource Types" documented how to create a ResourceTypeEntry
object. You can also delete, modify and retrieve ResourceTypeEntry
objects by getting an instance of the ResourceTypeManager
(using getResourceTypeManager()
in the ApplicationPolicy
interface) and calling the appropriate method.
Note: TheResourceTypeEntry object is represented in the Oracle Entitlements Server Administration Console as a Resource Type. |
Example 3-6 deletes a ResourceTypeEntry
named TradingResType within the Trading ApplicationPolicy
object.
Example 3-6 Using the deleteResourceType() Method
Trading is the name of the ApplicationPolicy
under which the ResourceType
object was created. TradingResType is the name of the ResourceType
object being deleted. The values of the deleteResourceType()
parameters are defined as:
ResourceType
and related objects would be removed. If true, the ResourceType
and all instantiated ResourceEntry
objects are deleted. If false, and any ResourceEntry
instances exist, the operation fails and PolicyStoreOperationNotAllowedException
is thrown. The getResourceType()
method can be used to retrieve a ResourceTypeEntry
, also by Name. You can retrieve many ResourceTypeEntry
objects by calling the getResourceTypes()
method and passing search criteria to it using the ResourceTypeSearchQuery
class.
Section 2.3.1, "Creating Application Roles" documents how to create an AppRoleEntry
object and assign users to it. (When the AppRoleEntry
object is then specified as a principal for a particular policy, all users assigned to the role are governed by that policy.) You can also delete, modify and retrieve AppRoleEntry
objects by getting an instance of the AppRoleManager
(using getAppRoleManager()
in the ApplicationPolicy
interface) and calling the appropriate method.
Example 3-7 removes an AppRoleEntry
named TradingAppRole from the policy store. TradingApp is the name of the ApplicationPolicy
under which the AppRoleEntry
object was created.
Example 3-7 Using deleteAppRole() Method
The values of the deleteAppRole()
parameters are defined as:
AppRoleEntry
and related objects would be removed. If true, the AppRoleEntry
is deleted and removed from all policies referencing it. (If it is the only role referenced by a policy, the policy is also removed.) If false, and the role is referenced in any policy, the operation fails and a PolicyStoreOperationNotAllowedException
is thrown. The getAppRole()
method can be used to retrieve an AppRoleEntry
by passing to it the Name. You can retrieve many AppRoleEntry
objects by calling the getAppRoles()
method and passing search criteria to it using the AppRoleSearchQuery
class. Additionally, you can modify an AppRoleEntry
with the modifyAppRole()
method, retrieve members granted directly to an Application Role with the getDirectAppRoleMembers()
method, and retrieve Application Role hierarchies for a principal with the getDirectGrantedAppRoles()
method.
Granting of the AppRoleEntry
to one or more PrincipalEntry
objects can be achieved statically using the grantAppRole()
method or dynamically using a Role Mapping Policy.
Note: A Role Mapping Policy may define a grantee (User, Group), a target (resource, resource name expression), and an (optional) Condition. Authorization Policies are used to map Application Roles to access rights. An Authorization Policy may define a principal (User, Group, Application Role), a target (resource, entitlement set, resource name expression), a condition, and an obligation. See Section 3.3.4, "Managing Role Mapping Policy (RolePolicyEntry) Objects" for more information. |
Revocation of the AppRoleEntry
can be done using the revokeAppRole()
method.
Application Roles also use inheritance and hierarchy. Roles can be created in a hierarchy such that a Principal assigned to a role (using a Role Mapping Policy) also inherits any child roles (as long as it is not prohibited by other configured policies). Users who are granted actions based on a child role inherit the actions from that role's parents. Users denied actions based on a parent role are also denied actions for that role's children.
Section 2.3.2, "Creating Role Mapping Policies" documents how to create a RolePolicyEntry
object. You can also delete, modify and retrieve RolePolicyEntry
objects by getting an instance of the RolePolicyManager
(using getRolePolicyManager()
in the ApplicationPolicy
interface) and calling the appropriate method. Example 3-8 illustrates how to remove a RolePolicyEntry
named TellerRoleMapping within the TellerApp ApplicationPolicy
object.
Example 3-8 Using the deleteRolePolicy() Method
Example 3-9 illustrates how to revise a RolePolicyEntry
by passing a revised instance of the object to the modifyRolePolicy()
method.
Example 3-9 Using the modifyRolePolicy() Method
The getRolePolicy()
method can be used to retrieve a RolePolicyEntry
by passing to it the Name. You can retrieve many RolePolicyEntry
objects by calling the getRolePolicies()
method and passing to it an array of search criteria using the RolePolicySearchQuery
class.
Section 2.3.3, "Creating Attribute and Function Definitions" documents how to create an AttributeEntry
definition and a FunctionEntry
definition for (optional) use in policy Conditions and Obligations. You can also delete, modify and retrieve these objects by calling the ExtensionManager
. The following sections contain more information.
Example 3-10 retrieves an AttributeEntry
object named Phone from the policy store. bankApplication refers to the ApplicationPolicy
object from which the ExtensionManager
is instantiated. Phone
refers to the unique identifier defined as the Name when the AttributeEntry
object was initially created.
Example 3-10 Using the getAttribute() Method
You can also retrieve many AttributeEntry
objects by calling the getAttributes()
method and passing search criteria to it using the AttributeSearchQuery
class. Example 3-11 deletes the AttributeEntry
object from the ApplicationPolicy
.
Example 3-11 Using the deleteAttribute() Method
Caution: Remove the applicableAttributeEntry from any policies in which it is referenced before running the deleteAttribute() method. If the attribute is in use, it will not be deleted and a PolicyStoreOperationNotAllowedException will be thrown. For this release, the cascadeDelete parameter must be false. |
To modify an AttributeEntry
object, pass to the ExtensionManager
the object with new, modified values using the modifyAttribute()
method. Use the methods available in the AttributeEntry
interface to set the new, modified values before passing the object.
Example 3-12 retrieves a FunctionEntry
object named ClientType from the policy store. bankApplication refers to the ApplicationPolicy
object from which the ExtensionManager
is instantiated. ClientType
refers to the unique identifier defined as the Name when the FunctionEntry
object was initially created.
Example 3-12 Using the getFunction() Method
You can also retrieve many FunctionEntry
objects by calling the getFunctions()
method and passing search criteria to it using the FunctionSearchQuery
class. Example 3-13 deletes the FunctionEntry
object from the ApplicationPolicy
.
Example 3-13 Using the deleteFunction() Method
To modify a FunctionEntry
object, pass to the ExtensionManager
the object with new, modified values using the modifyFunction()
method. Use the methods available in the FunctionEntry
interface to set the new, modified values before passing the object.
Section 2.2.4, "Instantiating a Resource" documents how to instantiate a ResourceEntry
object from a ResourceTypeEntry
object. You can also delete, modify and retrieve ResourceEntry
objects by getting an instance of the ResourceManager
(using getResourceManager()
in the ApplicationPolicy
interface, or in the PolicyDomainEntry
interface if using Policy Domains to delegate administration) and calling the appropriate method.
Note: TheResourceEntry object is represented in the Oracle Entitlements Server Administration Console as a Resource. |
Example 3-14 illustrates how to retrieve a ResourceEntry
object. The getResource()
method is defined in the ResourceFinder
interface which is extended by the ResourceManager
interface. By passing to the method the defined name of a resource type and the resource, a ResourceEntry
will be returned.
Example 3-14 Using the getResource() Method
Example 3-15 removes a checking account ResourceEntry
. domain
refers to the PolicyDomainEntry
object from which the ResourceManager
is being retrieved. By passing to the method the defined name of a resource type and the resource, a ResourceEntry
will be returned.
Example 3-15 Using deleteResource() Method
The values of the deleteResource()
parameters are defined as:
ResourceTypeEntry
was initially created. ResourceEntry
was initially created. ResourceEntry
and related objects would be removed. If true, the ResourceEntry
is removed from any policies that reference it. If it is the only object being referenced by a policy, the policy is also deleted. If false, and ResourceEntry
instances exist, the operation fails and PolicyStoreOperationNotAllowedException
is thrown. You can also modify a ResourceEntry
object by calling the modifyResource()
method and passing to it a handle to the object itself in the form of an EntryReference
and an array of modifications. Example 3-16 illustrates this.
Example 3-16 Using modifyResource() Method
Section 2.3.4, "Defining Permission Sets" documents how to organize one or more ResourceActionsEntry
objects in a PermissionSetEntry
object by calling the PermissionSetManager
and using the createPermissionSet()
method. You can also delete, modify and retrieve PermissionSetEntry
objects by getting an instance of the PermissionSetManager
(using getPermissionSetManager()
in the ApplicationPolicy
interface, or in the PolicyDomainEntry
interface if using Policy Domains to delegate administration) and calling the appropriate method.
Note: ThePermissionSetEntry object is represented in the Oracle Entitlements Server Administration Console as an Entitlement. |
Example 3-17 illustrates how to modify a PermissionSetEntry
by removing two ResourceActionsEntry
objects. domain
refers to the Policy Domain under which the policy was created, and from which the PermissionSetManager
is retrieved.
Example 3-17 Modifying a PermissionSetEntry
Example 3-18 illustrates how to remove a PermissionSetEntry
object.
Example 3-18 Using the deletePermissionSet() Method
The values of the deletePermissionSet()
parameters are defined as:
PermissionSetEntry
and related objects would be removed. If true, the PermissionSetEntry
is removed from any policies that reference it. If it is the only object being referenced by a policy, the policy is also deleted. If false, and PermissionSetEntry
instances are referenced, the operation fails and PolicyStoreOperationNotAllowedException
is thrown. The getPermissionSet()
method can be used to retrieve a PermissionSetEntry
, also by Name. You can retrieve many PermissionSetEntry
objects by calling the getPermissionSets()
method and passing search criteria to it using the PermissionSetSearchQuery
class. modifyPermissionSet()
will persist any changes defined in the PermissionSet
object used as input.
Section 2.2.8, "Defining the Policy" documents how to create a PolicyEntry
object by consolidating all the pieces needed to create the access control - including, but not limited to, a PolicyRuleEntry
, a ResourceActionsEntry
, and a PrincipalEntry
; after obtaining an instance of the PolicyManager
, use the createPolicy()
method. You can also delete, modify and retrieve PolicyEntry
objects by getting an instance of the PolicyManager
(using getPolicyManager()
in the ApplicationPolicy
interface, or in the PolicyDomainEntry
interface if using Policy Domains to delegate administration) and calling the appropriate method.
Example 3-19 illustrates how to modify the values of the Display Name and Description parameters of the PolicyEntry
. domain
refers to the Policy Domain under which the policy was created, and from which the PolicyManager
is retrieved.
Example 3-19 Using modifyPolicy() Method
Example 3-20 illustrates how to use the deletePolicy()
method. Bank Policy refers to the unique identifier defined as the value of the Name parameter when the PolicyEntry
was created.
Example 3-20 Using deletePolicy() Method
The getPolicy()
method can be used to retrieve a PolicyEntry
, also by the value of its Name parameter. You can retrieve many PolicyEntry
objects by calling the getPolicies()
method and passing search criteria to it using the PolicySearchQuery
class. modifyPolicy()
will persist any changes defined in the PolicyEntry
object used as input.
To search for PolicyEntry
objects, use the PolicySearchQuery
class. You can build a query to search based on the following:
For more information, see the Oracle Entitlements Server Java API Reference.
Components of policy definitions can be organized within one or more PolicyDomainEntry
objects if partitioning of policies is required. These components include Resources, Permission Sets and Policies.
Note: The creation of a PolicyDomainEntry is optional. If partitioning of policies is not required, manage policy definition components at theApplicationPolicy scope. |
The following sections document how components can be managed in the ApplicationPolicy
scope. These sames components can be managed at the PolicyDomainEntry
scope if a PolicyDomainEntry
has been created for further partitioning.
For information on using the PolicyDomainEntry
, see Section 5.7, "Delegating with a Policy Domain."
Policy distribution comprises the process used to make configured policies and policy data available to the Policy Decision Point (PDP) such that it can evaluate them and produce a grant or deny authorization decision. This chapter contains the following sections.
Managing policies and distributing them are distinct operations in Oracle Entitlements Server. Policy management operations are used to define, modify and delete policies in the policy store. The Policy Distribution Component then makes the policies available to a PDP endpoint (Security Module) where the data is used to grant or deny access to a protected resource. Policies are not enforced until they are distributed. Policy distribution may include any or all of the following actions:
Both the central Oracle Entitlements Server Administration Console and the locally-installed (to the protected application) Security Module contain the Policy Distribution Component. This architecture allows two deployment scenarios: the first involves a centralized Policy Distribution Component that can communicate with many Security Modules while the second involves a Policy Distribution Component that is local to, and communicates with, one Security Module. The following sections contain more information.
The centralized Policy Distribution Component scenario involves the use of the Policy Distribution Component (within the Administration Console) to act as a server communicating with the Security Module's Policy Distribution Component client. Figure 4-1 illustrates how, in this scenario, the Security Module's Policy Distribution Component client does not communicate with the policy store. The distribution of policies is initiated by the Oracle Entitlements Server administrator and pushed to the Policy Distribution Component client. Currently, data can only be pushed in a controlled manner as described in Section 4.2.1, "Controlled Distribution." This scenario allows for a central Policy Distribution Component that can communicate with many Security Modules.
The local (to the Security Module) scenario involves the Security Module's Policy Distribution Component communicating directly with the policy store. This scenario allows for a local Policy Distribution Component to communicate with one Security Module only. The application administers management operations and decides when the Security Module instance of the Policy Distribution Component will distribute policies or policy deltas. In this deployment, as illustrated in Figure 4-2, the Policy Distribution Component pulls data from the policy store (by periodically checking the policy store for data to be distributed) and sends policy data from the policy store, making it available to the PDP after administrator-initiated policy distribution.
Currently, data can be pulled in either a controlled manner as described in Section 4.2.1, "Controlled Distribution" or a non-controlled manner as described in Section 4.2.2, "Non-Controlled Distribution."
Oracle Entitlements Server handles the task of distributing policies to individual Security Modules that protect applications and services. Policy data is distributed in either a controlled manner or a non-controlled manner. The distribution mode is defined in the jps-config.xml
configuration file for each Security Module. The specified distribution mode is applicable for all ApplicationPolicy
objects bound to that Security Module. The following sections have more information on the distribution modes.
Controlled distribution is the default distribution mode. It is initiated by the Policy Distribution Component, ensuring that the PDP client (Security Module) receives policy data that has been created or modified since the last distribution. In this respect, distribution is controlled by the policy administrator who takes explicit action to distribute the new or updated policy data. (The Policy Distribution Component maintains a versioning mechanism to keep track of policy changes and distribution.) When controlled distribution is enabled, the Security Module can not request distribution of the Policy Distribution Component directly.
Note: The exception is when a Security Module starts and registers itself with the Policy Distribution Component with a Configuration ID. The policies are distributed to the Security Module based on this registration. |
With controlled distribution, the Policy Distribution Component distributes new and updated policy data to the Security Module where the data is stored in a local persistent cache, a file-based cache maintained by the PDP to store policy objects and provide independence from the policy store. The Policy Distribution Component does not maintain constant live connections to its Security Module clients; it will establish a connection before distributing policy to it. Thus, the Security Module is not dependent on the policy store for making policy decisions; it can use its own local cache if the policy store is offline. When the Security Module starts, it will check if the policy store is available. If it is not available, the Security Module will use policy data from the local persistent cache.
A flush distribution of all policy data can be enforced using the flush
parameter of the distributePolicy()
method. Flush distribution is when the Policy Distribution Component notifies the Security Module to cleanup its locally stored policies in preparation for a new, complete re-distribution of all policy objects in the policy store. See Section 4.4, "Initiating Policy Distribution" for more information.
Caution: Controlled distribution is supported only on database type policy stores - not on LDAP-based policy stores. If the distribution API is invoked for an LDAP policy store, it will be non-operable. |
With controlled distribution, if any policy distribution operation fails, the entire policy distribution fails. By default, controlled distribution is disabled.
When the PDP client (Security Module) periodically retrieves (or pulls) policies and policy modifications from a policy store, it is referred to as non-controlled distribution. Non-controlled distribution makes policy changes available as soon as they are saved to the policy store. Non-controlled distribution is initiated by the Security Module and may retrieve policies that are not yet complete. The policy store must be online and constantly available for non-controlled distribution. Non-controlled distribution is supported on any policy store type.
A Security Module acts as a Policy Decision Point (PDP), receiving a request for authorization, evaluating it based on applicable policies, reaching a decision and returning the decision to the Policy Enforcement Point (PEP), the entity which first made the authorization call. In order for this process to work, the Security Module must be able to retrieve the applicable policies. This is accomplished by binding an instance of a Security Module to the appropriate ApplicationPolicy
object. All Security Module instances bound to an ApplicationPolicy
object will receive policy data associated with that object (dependent on the mode of distribution) when policy distribution is initiated. Each Security Module instance deployed has its configuration information stored in the policy store. The SMEntry
object is a pointer to the configuration information of the instance.
Note: When a Security Module starts, it registers itself with Oracle Entitlements Server. This registration record is added to the Policy Store as aPDPInfoEntry object. Registration records include the Security Module endpoint and the unique identifier that names it. The PDPInfoEntry interface is located in the oracle.security.jps.service.policystore.info.distribution package. This package also contains interfaces used to get information regarding distribution status (DistributionStatusEntry) and regarding distribution status to a particular Security Module (PDPStatusEntry). |
To bind a Security Module with an ApplicationPolicy
object, create an SMEntry
object (representing the Security Module configuration) and bind it to the ApplicationPolicy
object. Example 4-1 illustrates how to create an SMEntry
object by retrieving an instance of the PolicyStore
and getting the ConfigurationManager
. This returns the SMEntry
object which can be used for binding one or more ApplicationPolicy
objects.
Example 4-1 Using the createSecurityModule() Method
The values of the createSecurityModule()
parameters are defined as:
SMEntry
object. The Security Module uses this value to connect to the policy store to get the configuration information. The SMEntry
object itself does not contain the configuration information; it only points to it. SMEntry
object. SMEntry
object. After creating it, bind the SMEntry
object to a specific ApplicationPolicy
object by calling the ConfigurationBindingManager
interface and using the bindSecurityModule()
method. Example 4-2 illustrates this step.
Example 4-2 Using the bindSecurityModule() Method
The values of the bindSecurityModule()
parameters are defined as:
SMEntry
object when it was created. ApplicationPolicy
object when it was created. The following sections contain information on the management methods for the Security Module configurations and bindings.
After getting an instance of the ConfigurationManager
, you can also delete, retrieve and modify SMEntry
objects. Example 4-3 illustrates how to get a specific Security Module configuration by passing the unique identifier of the SMEntry
object.
Example 4-3 Using the getSecurityModule() Method
MyDomainSM is the unique identifier defined for the SMEntry
object when it was created. Additionally, you can retrieve multiple SMEntry
objects by calling the getSecurityModules()
method and passing to it an array of search criteria using the SecurityModuleSearchQuery
class. Example 4-4 illustrates how to remove a Security Module configuration.
Example 4-4 Using the deleteSecurityModule() Method
Again, MyDomainSM is the unique identifier defined for the SMEntry
object when it was created.
After getting an instance of the ConfigurationBindingManager
, you can also retrieve the ApplicationPolicy
objects bound to a particular Security Module, or the Security Module bound to a particular ApplicationPolicy
. Example 4-5 illustrates how to use the getBoundSecurityModules()
method to retrieve the identifier for all SMEntry
objects bound to a particular ApplicationPolicy
object.
Example 4-5 Using the getBoundSecurityModules() Method
MyAppPolicy is the unique identifier defined for the ApplicationPolicy
object when it was created. The getBoundSecurityModules()
method returns a list of the unique identifiers for all SMEntry
objects bound to the ApplicationPolicy
. Example 4-6 illustrates the reverse: retrieving all ApplicationPolicy
objects bound to a particular Security Module.
Example 4-6 Using the getBoundApplications() Method
MyDomainSM is the unique identifier defined for the SMEntry
object when it was created. The getBoundApplications()
method returns a list of the unique identifiers for all ApplicationPolicy
objects bound to the SMEntry
. Example 4-7 illustrates how to unbind an SMEntry
object from its partner ApplicationPolicy
object.
Example 4-7 Using the unbindSM() Method
MyDomainSM is the unique identifier defined for the SMEntry
object when it was created. MyAppPolicy is the unique identifier defined for the ApplicationPolicy
object when it was created.
Programmatically, policy distribution is performed by calling the distributePolicy()
method. This method distributes the policies created for an ApplicationPolicy
object to the Security Module that is bound to it. A PDP endpoint receives only those policies which are bound to it. Example 4-8 illustrates how to call the PolicyDistributionManager
and use the distributePolicy()
method. It also includes code to check the status of the distribution and to wait until the operation is 100% complete.
Example 4-8 Using the distributePolicy() Method
Note the flush
parameter of distributePolicy()
is set to true. This indicates that the policies will be distributed in a flush manner. In other words, the Policy Distribution Component informs the Security Module to cleanup its locally stored policies in preparation for a new, complete re-distribution of all policy objects in the policy store. A value of false indicates an incremental distribution of policies when only deltas are distributed.
The distributePolicy()
method returns a distribution identifier string that can be passed to the application using the getDistributionStatus()
method to query the progress of the distribution.
Note: distributePolicy() is an asynchronous method; if the application is stopped before the distribution is complete, the distribution process will be interrupted. |
A second getDistributionStatus()
method takes as input a start time and an end time. It returns a list of DistributionStatusEntry
objects. A DistributionStatusEntry
object represents the distribution status (complete or in progess) and includes a start time, an end time, the distribution initiater, and whether the distribution is successful or not for each PDP.
System administrative rights and policy management permissions can be delegated from one administrator to another by creating Administration Roles with restricted rights, or by granting an existing Administration Role to a user. Administration Roles consist of a subject (the person to whom the role is granted), the resources (the objects to which the role pertains) and actions (view, manage). This chapter documents information on how to delegate policy and system administrative tasks. It contains the following sections:
Administration is when one or more authorized rights are granted to someone to do a certain job. Delegation is the ability for that someone to transfer the authorized right that has been granted them to another. In combination, we can define delegating administration as the transference of authorized rights from one to another. In Oracle Entitlements Server, administrators who are authorized to perform a task on policy objects and entities may transfer this right to others.
Delegated administration in Oracle Entitlements Server is modelled using the Role-Based Access Control (RBAC) approach. This approach allows users to transfer the administration of applications, domains, and other policy objects using roles. The core concept behind RBAC is that privileges (approvals to perform an action) are coupled with the objects on which the action can be performed and modelled as permissions. These permissions are then assigned to roles. When users are assigned the roles, the user is granted the appropriate permissions.
As illustrated in Figure 5-1, an Administration Role is created for a particular operation on a policy related object. The permissions to perform the operation specific to that job are defined in that role. Users are then assigned the role and through those assignments acquire the permissions to perform the job. As users are not directly assigned permissions, management of individual user privileges is a matter of assigning the appropriate roles to the appropriate users. Administration Roles are used to determine who may manage policy objects.
Delegated administration is all about transferring management of resources and policy objects from one person to another. The scope of the delegation (or range of objects covered by the delegation) is defined in levels. The granularity of administration defines the type of objects managed at each scope. A default Administration Role is automatically created when each scope is created; additional Administration Roles can be created later. From highest to lowest, the scopes and applicable granularity are as follows:
ApplicationPolicy
objects and global objects. Note: System Administrators have rights to the entire Policy Store, including allApplicationPolicy objects and child PolicyDomain objects but they are primarily intended to manage configurations, ApplicationPolicy objects, and the bindings between the two. |
ApplicationPolicy
object to which it is assigned. One Application Policy Administrator is generated for each Application Policy that is created. They are primarily intended to delegate the management of policy objects within the Application Policy (including the Policy Domain objects and its children, such as Functions, Attributes, Application Roles and Resource Types). Note: See Chapter 1, "Using the Policy Model" for more information on theApplicationPolicy objects and Section 5.7, "Delegating with a Policy Domain" for information on the PolicyDomain objects. |
Administration Roles can be assigned permissions with Manage or View actions. The privileges of these actions are:
get
methods in the assigned administrative scope including any child objects. For example, a Global administrator with View privileges may view all objects in all Application Policy objects and its Policy Domain objects. Administration Roles are used to delegate system administrative rights. An Administration Role can be created for purposes of managing data at different scopes. For example, Application Policy and Policy Domain administrators can be defined by creating an Administration Role at the appropriate level and assigning the role to a user or a group.
Note: Administration Roles delegate system privileges through scoping and are not hierarchical. See Section 5.2, "Managing Scope and Delegating Granularity" for more information. |
Creating administration roles involves a number of specifics. Use the following steps as a blueprint to grant View or Manage permissions on specific administration resources.
AdminManager
as documented in Section 5.4.1, "Creating An Administration Role." Section 5.4.4, "Retrieving a Principal's Administration Resources" contains information on how to retrieve the administration roles that a principal has been assigned.
To create an Administration Role, retrieve the object that comprises the desired management scope (Policy Store, Application Policy or Policy Domain), use the getAdminManager()
method to retrieve an instance of the AdminManager
, and then use the createAdminRole()
method to create the adminRole
role. The following code illustrates the creation of an administrator named AppAdmin for the TRADING Application Policy.
The values of the createAdminRole()
parameters are defined as follows:
Privileges are assigned to an Administration Role by creating an ArrayList
into which the resource(s) being managed and the permitted actions are added (using a BasicAdminResourceActionEntry
). In the following code, the previously created AppAdmin role is assigned Manage rights on Resource Types and Application Roles in the TRADING application.
To remove privileges from a role, use the revoke()
method rather than the grant()
method. The allowed resource name options for the Policy Store, Application Policy, and Policy Domain scopes are described in Table 5-1.
Table 5-1 Resource Name Options
Name | Description |
---|---|
ADMIN_POLICY | Allows management of Administration Role membership and permissions |
ADMIN_ROLE | Allows management of Administration Roles |
APPLICATION_ POLICY | Allows management of Application Policy objects |
APPLICATION_ ROLE | Allows management of Application Roles |
CONFIGURATION | Allows management of Security Modules |
DISTRIBUTE_ APPLICATION_ POLICY | Allows administrator to initiate policy distribution |
ENROLL | Allows administrator to enroll a Security Module instance |
EXTENSION | Allows management of Functions and Attributes |
PERMISSION_SET | Allows management of Permission Sets |
POLICY | Allows management of Policies |
RESOURCE_TYPE | Allows management of Resource Types |
RESOURCE | Allows management of Resources |
ROLE_CATEGORY | Allows management of Role Categories |
SUB_POLICY_DOMAIN | Allows management of child Policy Domain objects |
One or more principals are assigned to the Administration Role by creating a second ArrayList
with the appropriate user entries and passing the list to the grantAdminRole()
method. In the following code, the previously created adminRole
role is granted to the user SMITH.
To remove principals from a role, use the revokeAdminRole()
method.
To determine what resources an administrative user can access, get an instance of the AdminManager
at the appropriate scope (Policy Store, Application Policy, or Policy Domain) and use the getAdminRole()
method and name of the Administration Role to retrieve the administrator. Then by invoking the getGrantedAdminResources()
method, all AdminResourceActionEntry
objects applicable to the administrator will be returned. (A AdminResourceActionEntry object pairs an entity that can be managed by the administrator with the action that can be performed on it.)
Section 5.4, "Creating Administration Roles" documented how to create an AdminRoleEntry
object. Administration Roles can be created at all scope levels (including the PolicyStore
, ApplicationPolicy
and PolicyDomain
) by retrieving an instance of the AdminManager
from within the desired scope. You can also delete and retrieve AdminRoleEntry
objects from any of these scopes by getting an instance of the AdminManager
. Example 5-1 illustrates the delete action by getting the AdminManager
in an ApplicationPolicy
.
Example 5-1 Using deleteAdminRole() Method
TRADING is the name of the ApplicationPolicy
under which the AdminRoleEntry
object was created. AppAdmin is the unique identifier of the role being deleted.
The getAdminRole()
method can be used to retrieve an AdminRoleEntry
, also by Name. Example 5-2 illustrates this.
Example 5-2 Using getAdminRole() Method
You can retrieve many AdminRoleEntry
objects by calling the getAdminRoles()
method and passing search criteria to it using the ResourceTypeSearchQuery
class. Also available in the AdminManager
interface are methods that do the following:
PrincipalEntry
object as an administration role member. PrincipalEntry
objects granted the named administration role. AdminResourceActionEntry
) for the named administration role. AdminResourceActionEntry
) defined for the current administrator. After installing Oracle Entitlements Server, the Policy Store will contain a default Administration Role called SystemAdmin with full view and manage rights at the Policy Store level. This and other default administration roles are described in the following list. Only the members of these default Administration Roles can create and manage other Administration Roles. The default Administration Roles cannot be deleted and their rights cannot be changed.
A Policy Domain contains the components of completed policy definitions. It is the amalgamation of a target Resource (an instance of the Resource Type), a Permission Set (the actions that can be performed on the Resource), and a Policy (a rule that assembles the controls and the principals they affect). Policy Domains are created for purposes of delegating administration. One (or more) of these domains can be created to delegate policy management to different administrators.
Note: Because the creation of a Policy Domain is optional, anApplicationPolicy object can serve as a default Policy Domain under which a Resource, a Permission Set, and a Policy can be created. Creation of subsequent Policy Domains is dependent on the organization's plan for delegation. |
Administration of the policies securing one protected application may be delegated using one or more Policy Domains. The use of multiple Policy Domains allows policies to be partitioned according to defined logic, such as the architecture of the protected application or how administration of the policies will be delegated. For example, one Policy Domain can be used to maintain all policies securing a Resource or multiple Policy Domains can be used to reflect a particular characteristic of the Resource. Different administrators can then be placed in charge of different Policy Domains. If there is no need to delegate policy administration, there is no need to create any Policy Domains. In this case, all child objects associated with a Policy Domain can be created by calling the applicable child object manager using the ApplicationPolicy
interface.
The Policy Domain is programmatically represented as a PolicyDomainEntry
object. Within an ApplicationPolicy
object, one or more (optional) PolicyDomainEntry
objects can be created. A PolicyDomainEntry
object may contain one or more child objects. These objects need to be defined before creating the Policy Domain.
Caution: Deleting aPolicyDomainEntry object deletes all child objects created within it. |
To create a PolicyDomainEntry
, obtain an instance of the PolicyDomainManager
using getPolicyDomainManager()
. (You can invoke getPolicyDomainManager()
for an ApplicationPolicy
or for a PolicyDomainEntry
itself to create nested Policy Domains.) Use the createPolicyDomain()
method of the PolicyDomainManager
interface to create the object. Example 5-3 creates a PolicyDomainEntry
object named East_Trading by retrieving the PolicyDomainManager
from the Trading ApplicationPolicy
.
Example 5-3 Using createPolicyDomain() Method
The values of the createPolicyDomain()
parameters are defined as:
PolicyDomainEntry
. After creating a PolicyDomainEntry
object, the necessary child objects can be added to it thus allowing the administrator the control in creating policy definition components. The following list documents the child objects of a PolicyDomainEntry
with pointers to the appropriate descriptive section in Chapter 2, "Constructing A Policy Programmatically."
PermissionSetEntry
(one or more ResourceActionsEntry
objects that associate a specific resource with the actions that can be performed on it). See Section 2.3.4, "Defining Permission Sets" for more information. PolicyEntry
(includes one PolicyRuleEntry
, one PermissionSetEntry
, one PrincipalEntry
or AppRoleEntry
and, optionally, one ObligationEntry
). See Section 2.2.8, "Defining the Policy" for more information. AdminRoleEntry
(to define management of the domain). See Section 2.2.4, "Instantiating a Resource" for more information. Note: The same target Resource can not be shared between Policy Domains. |
Oracle Entitlements Server contains a set of different application programming interfaces (API) that allows the caller to request authorization for a particular subject and handle the returned decisions. This chapter contains the following sections.
The Oracle Entitlements Server Authorization API are used by components for authorization checks during runtime. The following comprise the authorization API options in this release.
checkPermission()
- This method uses Java Permission
objects to grant access to protected resources. See Section 6.4, "Making checkPermission() Calls" for more information. The AzAPI is a Java API developed by the OpenAZ project and designed to communicate requests for authorization decisions and responses to same. The communications are based on the authorization decision request and response standards defined in the XACML specifications and require that an authorization engine create request and response messages using these definitions. The AzAPI interfaces enable a Policy Decision Point (PDP) to supply and consume all the XACML information required when submitting an authorization resquest and receiving an authorization response.
Note: More information on the OpenAZ project can be found athttp://openliberty.org/wiki/index.php/OpenAz_Main_Page . |
The PEP API is a Java package built on top of the AzAPI. It contains utility classes for building a Policy Enforcement Point (PEP), and is designed to present a more simplified, scalable interface than the AzAPI, using native Java objects rather than XACML data objects. Figure 6-1 illustrates the relationship between the AzAPI, the PEP API and Oracle Entitlements Server.
Oracle Entitlements Server provides an implementation of the org.openliberty.openaz.azapi.pep
package. The PEP API provider is packaged in oracle.security.jps.openaz.pep
. For each PEP API request, the PEP API provider implementation is responsible for converting and mapping native Java objects to the underlying security platform. For each PepRequest
, the PEP API provider invokes the Oracle Entitlements Server Authorization Engine and returns a PepResponse
object. The provider also provides a default DecisionHandler
implementation. The following sections have more information.
This section contains sample code that illustrates ways in which the PEP API can be used. Example 6-1 shows how to authenticate the user with the login service and use the authentiated subject in a PEP API authorization request. This code is specific to a Java Standard Edition (JSE) container.
Example 6-1 Using Authenticated Subject in PEP API Request
Example 6-2 illustrates how, after Java Enterprise Edition (JEE) authentication, you can get the WebLogic Server subject to use with the PEP API.
Example 6-2 Using WebLogic Server with PEP API Request
Example 6-3 illustrates how, after Java Enterprise Edition (JEE) authentication, you can get the Websphere Application Server subject to use with the PEP API.
Example 6-3 Using Websphere Application Server with PEP API Request
Note: It is recommended to call thenewPepRequest() method with a Java Authentication and Authorization Service (JAAS) subject and not a string subject. A string subject will be converted to a JAAS subject. |
Example 6-4 illustrates the newQueryPepRequest()
method for creating an authorization request using subject and environment objects.
Example 6-4 newQueryPepRequest Method
This method contains a string to define the scope of the request. Within the scope string is defined a resource string. The following sections contain information on how to format these strings.
The scope input string is a PDP policy-specific resource representation that encapsulates resource, actions and search scope information. It is represented as:
actionString3
, searchscope = immediate/children";The following is true regarding this representation.
resource
is required and the resource string should appear first within the scope string. See Section 6.2.2.2, "Formatting the Resource String." actions
is optional. If present, it contains a comma separated list of requested actions. searchscope
is optional and takes a value of children (the default value) or immediate. children
, resourceString
may contain only the application identifier as documented in Section 6.2.2.2, "Formatting the Resource String." In this case, the PEP API provider will query the specified resource object and its children (if any). In the following example, Scope string defines a resource which contains a Resource string (with application identifier), no actions and no defined search scope; thus, the search scope is set to children
, by default. immediate
, resourceString
should be fully qualified as documented in Section 6.2.2.2, "Formatting the Resource String." In this case, the PEP API provider will query the specified resource object. For example: The following Scope string defines a hierarchical resource.
The string should be in the format appId + / + resourceType + / + resourceName. The forward slash (/) is the delimiter. The appId
and resourceType
cannot be empty but the resourceName
can be empty for a query request only.
When formatting the string, there is no need to escape the delimiter character if it is used in the resourceName
. For example, if there is a hierarchical resource with the name /res1/res2/res3
, the resource string passed to the PEP API will be appId/ResType//res1/res2/res3
.
It is necessary to escape the delimiter character if it is used in the appId
or resourceType
though. In these cases, a string with more than two delimiters is considered invalid. The special characters \
and /
must be escaped as in the following examples:
myapp/computer\/laptop/mybox
signifies a resource in the application myapp
with the resource type computer/laptop
and the resource name mybox
. myapp/computer\\laptop/mybox
signifies a resource in the application myapp
with the resource type computer\laptop
and the resource name mybox
. myapp/computer\laptop/mybox
is invalid because the character after \ is neither /
nor \
. Note: For strings in Java, the character\ itself needs to be escaped. Thus the three strings previously documented, in Java, are:
|
The code in this section are examples of a query against a particular resource. Example 6-5 is a query request against a particular resource. Note that the search scope is defined as immediate.
Example 6-5 Requesting Authorization Against a Resource
Example 6-6 is a query request against a particular resource and its children. Note that the search scope is defined as children.
Example 6-6 Requesting Authorization Against a Resource and Children
Example 6-7 is an example of code written for bulk authorization.
Example 6-7 Requesting Bulk Authorization
An Obligation specifies optional information that is returned to the calling application with the access decision. Each obligation in the PEP API response has a map in type Map<String, String>
. (There are no double quotes around the String
value.) Example 6-8 is an authorization request that also requests any Obligations.
Example 6-8 Getting Obligation with PEP API Authorization Request
Example 6-9 is an example of an Obligation output. Again, there are no double quotes around the string value.
To use the PEP API, the identity store, the policy store, the Policy Distribution Service, and the user assertion login module must be defined in jps-config.xml
. Example 6-10 is not a complete file but copied below for demonstration purposes.
Example 6-10 Sample jps-config.xml File
Oracle Entitlements Server allows external applications to ask authorization questions using the XACML 2.0 protocol. The Web Services Security Module contains a XACML gateway that allows it to receive XACML authorization requests and return XACML authorization responses. This capability is supported only when using the Multi-Protocol Security Module.
The Web Services Security Module XACML gateway acts as a remote PDP. It uses the standard XACML 2.0 context to convey authorization requests and responses between the PEP and the PDP. Here is the processing sequence for a XACML authorization request.
Example 6-11 Sample Code to Establish Session For XACML Gateway
Example 6-12 Creating a XACML Request
Example 6-13 is a sample XACML 2.0 authorization request. The SSM-SOAPWS.wsdl
file provides the operation interface definitions.
Example 6-13 XACML 2.0 Authorization Request
SSM-SOAPWS.wsdl
file provides the operation interface definitions. Example 6-14 XACML 2.0 Authorization Response
A Java Permission
object represents access to a resource. A Permission
object is constructed and assigned (access granted) based on the configured policy in effect. Java checkPermission()
authorization is based on these permissions.
Oracle Entitlements Server supports the use of the checkPermission()
method in the following standard classes:
java.lang.SecurityManager
java.security.AccessController
Note: The staticAccessController.checkPermission method uses the default access control context (the context inherited when the thread was created). To check permissions on some other context, call the instance checkPermission() method on a particular AccessControlContext instance. |
Additionally, Oracle Entitlements Server supports the use of the checkPermission()
method in the oracle.security.jps.util.JpsAuth
class.
Tip: Oracle recommends the use of thecheckPermission() method in the oracle.security.jps.util.JpsAuth class as it provides improved debugging support, better performance, and audit support. |
When invoking the checkPermission()
method (in a JavaSE application), make sure:
java.security.policy
system property has been set to the location of the Oracle Platform Security Services/Oracle WebLogic Server policy file. setPolicy()
method to explicitly set the policy provider. This is illustrated by the following sample code. oracle.security.jps.util.JpsAuth.checkPermission()
works exactly as the standard methods by accepting a Permission
object. If the requested access is allowed, checkPermission()
returns quietly; if denied, an AccessControlException
is thrown. The following sample illustrates how you might use checkPermission()
.
An extension class can be loaded by the Oracle Entitlements Server runtime environment to enhance core functionality. Extensions are bundled as Java Archive (JAR) files. This chapter contains the following sections on extensions that can be created.
The Policy Information Point (PIP) is a system entity that acts as a source for attribute values. During runtime evaluation of a policy, Oracle Entitlements Server relies on an Attribute Retriever plug-in to get attribute values from one or more PIP information stores. These attribute retrievers allow policies to be data-driven in that the value of the attribute can impact the access decision. For example, if access to transfer money from a bank account is based on how much money is currently in the account, an attribute retriever can be used to get a value for the current balance. This infrastructure is highly extensible, allowing users to develop their own PIP plug-ins to retrieve information from many places - for example, from a file, a USB driver, or the internet.
Note: See Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server for a detailed explanation of the PIP. |
The following sections have more information.
Oracle Entitlements Server uses predefined Attribute Retrievers to connect to Lightweight Directory Access Protocol (LDAP) data stores and relational database management systems (RDBMS). Custom attribute retrievers can be developed to get attribute values from other types of PIP data stores. A custom attribute retriever can return values for one or many attributes.
Configuration information for attribute retrievers is defined in the jps-config.xml
configuration file. Configuration of the attribute retriever within this file is dependent on whether it is predefined or custom.
A given attribute retriever can return a single value or multiple values attribute.
As described in Section 1.3.3, "Adding a Condition," a policy Condition is built using attributes or functions. If a dynamic attribute is used in a Condition, the attribute value can be passed in from the com.bea.security.AppContext
interface or retrieved with either a predefined or custom attribute retriever. The following procedure documents the steps to create a custom attribute retriever.
com.bea.security.providers.authorization.asi.AttributeRetrieverV2
interface. See Section 7.1.3, "Implementing Custom Attribute Retrievers" for more information.
It does not matter where the JAR is physically stored.
Make sure the configuration specifies the fully-qualified location of the custom attribute retriever. See the Security Module configuration appendix in the Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.
A custom attribute retriever must implement the AttributeRetrieverV2
interface. Table 7-1 explains the methods available for this purpose.
Table 7-1 Methods in AttributeRetrieverV2 Interface
Method | Description |
---|---|
| This method is called every time the value of a particular attribute is required. It returns the value of the named attribute and takes the following parameters:
|
| This method is called once, usually during loading of the attribute retriever. The method returns the list of attribute names for which the attribute retriever can return values. If the method returns a null or empty value, this attribute retriever object will be called when any dynamic attribute has to be resolved. |
In the simplest use case, an attribute retriever does not need additional information to get the value. For example, to get the time of day, getAttributeValue()
calls a system function and returns the information. Another use case might find the attribute retriever needs additional information before it can return an attribute value. For example, the attribute retriever would have to know the user's identifier in order to get the location of the user. For this purpose, the attribute retriever is provided a RequestHandle
interface to get the values for other attributes. In this example, the attribute retriever can use the RequestHandle
interface to get the value of the built-in SYS_USER
attribute which resolves to the identity of the current user.
Note: Names of system attributes must be placed between percentage (%) signs as in %sys_user% . |
The following sections contain more information on the attribute retrieval options.
An implementation of AttributeRetrieverV2
can use the getAttributeValue()
method to return the value of a named attribute. This method takes as input the name of the attribute whose value will be returned. Example 7-1 illustrates how getAttributeValue()
might be used.
Example 7-1 Implementing getAttributeValue() Method
MyAttributeRetrieverV2
is the implementation of AttributeRetrieverV2
. The getHandledAttributeNames()
method returns the names of attributes handled by this implementation. It may return at least one attribute name; an empty or null value indicates that the retriever will be called for any attribute. The values of the getAttributeValue()
parameters are defined as:
In some cases, the attribute retriever might need to get an attribute for information before retrieving the attribute value it wants. For example, in order to get the location of a user, the attribute retriever would need the identifier of the user. By invoking the getAttribute()
method in the RequestHandle
interface, the attribute retriever is able to get the identifier and with it access to all of the user's information. The getAttribute()
method returns the attribute name and value as a name-value pair in an AttributeElement
object.
RequestHandle
is the interface that allows you to retrieve values of other attributes if required. It also allows to share context – arbitrary Object - between different invocation of attribute retrievers and/or custom functions
Note: ThegetAttribute() method is used to retrieve values for user and resource attributes. It should not be used to get values for dynamic or extension attributes. |
Example 7-2 illustrates how getAttribute()
might be used.
Example 7-2 Using getAttribute() Method
The values of the getAttribute()
parameters are defined as:
A function can be used in a policy Condition to perform some advanced operation. The function may have a number of parameters and can return any of the supported data types. Oracle Entitlements Server provides a number of predefined functions and, additionally, allows you to declare your own.
A custom function can be implemented as a method in a class that may contain one or more custom functions. You can choose any method name as long as the name matches the corresponding name referenced in the policy. Custom functions can be passed as arguments consisting of constants or names of other attributes (including dynamic attributes) or names of other functions. Since all evaluation functions share a common namespace, two functions cannot have the same name. The following procedure details the steps to take when implementing a custom function in your policy.
Example 7-3 illustrates how you might create a custom function.
Example 7-3 Sample Code for a Custom Function
Example 7-4 illustrates how you might create a custom function that returns a DataType argument.
Example 7-4 Sample Code for a Custom Function Returning DataType Argument
For more information, see Section 2.3.3.2, "Creating Custom Function Definitions" and Section 2.3.5, "Defining a Condition."
The JavaServer Pages Standard Tag Library (JSTL) consists of custom JavaServer Pages (JSP) elements that encapsulate recurring tasks. Custom tags are reusable JSP components that contain the objects to implement the tasks. They are distributed in a tag library. Oracle Entitlements Server contains custom tags that will call the authorization API. Developers can use these tags in JSP to build a security-based web application. The sections in this chapter contain information on the custom Oracle Entitlements Server JSP tags.
Note: The tag library can only be run on WebLogic Server. |
These functional JSP tags capture the authorization features on Oracle Entitlements Server. The following sections contain information on these functional tags.
isAccessAllowed
checks if the user is authorized to access a specific resource. If access is allowed, display the body of the tag; if not, skip the body. This is a cooperative and a conditional tag. It will return true or false, and a variable to the body of the JSP which can be used to process obligations.
Note: If you want to show JSP content by tag body, thethen/else tag must be used. JSP content cannot be written in the tag body directly without using then/else . |
Table 8-1 documents the isAccessAllowed
tag definition.
Table 8-1 isAcessAllowed Tag Definition
Name | Details |
---|---|
resource | Description: The resource used when calling Mandatory Return Type: not applicable |
resourceType | Description: The type of resource used when calling Optional Return Type: not applicable |
action | Description: The action used when calling Optional Return Type: not applicable |
resultVar | Description: The name of the scripting variable used to tell if access is allowed. Optional Return Type: boolean |
resultVarScope | Description: The scope of the Optional Return Type: not applicable |
obligationVar | Description: The name of the variable used for returning obligations from the Optional Return Type: A map of obligations; the key is the obligation name and the value is a map of attributes with attribute names and values. |
obligationVarScope | Description: The scope of the variable containing obligations from Optional Return Type: not applicable |
Example 8-1 illustrates how isAccessAllowed
may be used.
Example 8-1 isAccessAllowed Tag Example
isAccessNotAllowed
checks if the user is not authorized to access a specific resource. If access is not allowed, display the body of the tag; if it is, skip the body. This is a cooperative and a conditional tag. It will return true or false, and a variable to the body of the JSP that can be used later to process obligations.
Note: If you want to show JSP content by tag body, thethen/else tag must be used. JSP content cannot be written in the tag body directly without using then/else . |
Table 8-2 documents the isAccessNotAllowed
tag definition.
Table 8-2 isAccessNotAllowed Tag Definition
Name | Details |
---|---|
resource | Description: The resource used when calling Mandatory Return Type: not applicable |
resourceType | Description: The type of resource used when calling Optional Return Type: not applicable |
action | Description: The action used when calling Optional Return Type: not applicable |
resultVar | Description: The name of the scripting variable used to tell if access is allowed. Optional Return Type: boolean |
resultVarScope | Description: The scope of the Optional Return Type: not applicable |
obligationVar | Description: The name of the variable used for returning obligations from the Optional Return Type: A map of obligations. The key is the obligation name and the value is a map of attributes with attribute names and values. |
obligationVarScope | Description: The scope of the variable containing obligations from isAccessAllowed (page, request, session, or application). The default scope is page. Optional Return Type: not applicable |
Example 8-2 illustrates how isAccessNotAllowed
may be used.
Example 8-2 isAccessNotAllowed Tag Example
getUserRoles
retrieves the roles assigned to the user for a particular resource and action. This is a cooperative tag that returns a variable to the JSP that can be used later for processing. Table 8-3 documents the getUserRoles
tag definition.
Table 8-3 getUserRoles Tag Definition
Name | Details |
---|---|
resource | Description: The resource used when calling Mandatory Return Type: not applicable |
resourceType | Description: The type of resource used when calling Optional Return Type: not applicable |
action | Description: The action used when calling Optional Return Type: not applicable |
resultVar | Description: The name of the variable to set that contains the list of user's roles. Mandatory Return Type: A list of strings of role names. |
resultVarScope | Description: The scope of the Optional Return Type: not applicable |
Example 8-3 illustrates how getUserRoles
may be used.
Example 8-3 getUserRoles Tag Example
isUserInRole
checks if the user has been assigned to the specified role for a particular resource and action. This is a cooperative and a conditional tag. It will return true (if the current user has a specific role) or false, and a result variable to the body of the JSP for later processing.
Note: If you want to show JSP content by tag body, thethen/else tag must be used. JSP content cannot be written in the tag body directly without using then/else . |
Table 8-4 documents the isUserInRole
tag definition.
Table 8-4 isUserInRole Tag Definition
Name | Details |
---|---|
role | Description: The name of the role to check against the user. Mandatory Return Type: not applicable |
resource | Description: The name of the resource against which to check the user's roles. Mandatory Return Type: not applicable |
resourceType | Description: The type of resource against which to check the user's roles. If it is not set, the global resource type set by Optional Return Type: not applicable |
action | Description: The resource's action against which the user's role will be checked. The default value will be view. Optional Return Type: not applicable |
resultVar | Description: A variable used to hold the result from Optional Return Type: boolean |
resultVarScope | Description: The scope of the Optional Return Type: not applicable |
Example 8-4 illustrates how isUserInRole
may be used.
Example 8-4 isUserInRole Tag Example
Assistant (also known as non-functional) tags are helper tags. The following sections contain information on these assistant tags.
setSecurityContext
is a cooperative tag that will set up data (including the application ID, resource type and the prefix of the resource name for other tags). The attributes that should be set globally in the application context can be set in the body of this tag using the attribute
tag (as described in Section 8.2.2, "attribute Tag"). The attributes set by setSecurityContext
will then be put into the application context as its authorization call elements. Table 8-5 documents the setSecurityContext
tag definition.
Table 8-5 setSecurityContext Tag Definition
Name | Details |
---|---|
appId | Description: The Mandatory Return Type: not applicable |
resourceType | Description: The global resource type which can be used by all other authorization tags. Optional Return Type: not applicable |
resourcePrefix | Description: The prefix of the resource name. If most of the resources on one JSP have the same prefix, this attribute can be used to shorten the resource name for each authorization tag. For example, if there are many images protected by the Authorization Policy under Optional Return Type: not applicable |
Example 8-5 illustrates how setSecurityContext
may be used.
attribute
is a tag that can be used to pass extra variables into the Oracle Entitlements Server application context by other Oracle Entitlements Server JSP tags. These variables will be used to write constraints against Authorization Policies. Table 8-6 documents the attribute
tag definition.
Table 8-6 attribute Tag Definition
Name | Details |
---|---|
name | Description: The name of the attribute to set in the application context. Mandatory Return Type: not applicable |
value | Description: The value of the attribute to set in the application context. Mandatory Return Type: not applicable |
Example 8-6 illustrates how attribute
may be used.
then
/else
is a tag used for displaying content for conditional tags (including isAccessAllowed
, isAccessNotAllowed
and isUserInRole
. If the result of the conditional tags is true, the content in the tag then
is displayed; otherwise the content in the tag else is displayed. These tags are simple tags with no additional defintion.
Oracle Entitlements Server provides logging to enhance the developer's environment.
Oracle Entitlements Server uses the standard Java package java.util.logging
for logging. The name of the logging setup file is logging.properties
. It is the standard configuration file for the Java Development Kit (JDK) and it is located (by default) in $JAVA_HOME/jre/lib/
.
Note: Configure the location oflogging.properties by running the following on the command line with the actual path based on your install. -Djava.util.logging.config.file=/path/filename |
Java logging defines log levels to control output ranging from FINEST (the lowest priority with the least amount of detail) to SEVERE (the highest priority intended for fatal program errors and the like). Enabling logging at a given level also enables logging at all higher levels. Table 9-1 contains the specific logger properties that can be set to FINE (details for debugging and diagnosing problems) to provide information for purposes of troubleshooting server issues.
Table 9-1 Logging Server Issues
To Troubleshoot... | Set These Properties To FINE |
---|---|
Policy management issues |
|
Basic authorization issues |
|
Policy distribution issues |
|
WebLogic Server, RMI or Web Services Security Module issues |
|
After modifying logging.properties
, ensure the java.util.logging.config.file
system property is set by running the following command:
Example 9-1 is the default Oracle Entitlements Server logging.properties
file.
Example 9-1 Default logging.properties Configuration File
 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. |