INQJUIRA.

Customers » Answers » Impact™

Client Library APl Implementation Guide

Using the Client Library API to implement custom integrations with InQuira products

InQuira Version 8.2
Document Number CLAPI182-1G-00
February 17, 2010

InQuira, Inc.

900 Cherry Ave., 61 Floor
San Bruno, CA 94066

COPYRIGHT INFORMATION

Copyright © 2002 - 2010 Inquira, Inc.
Product Documentation Copyright © 2003 - 2010 Inquira, Inc.

RESTRICTED RIGHTS

This document is incorporated by reference into the applicable license agreement between your organization and InQuira, Inc. This software
and documentation is subject to and made available only pursuant to the terms of such license agreement and may be used or copied only in
accordance with the terms of that agreement. It is against the law to copy, modify, disassemble or reverse engineer the software and
documentation, except as specifically allowed in the license agreement and InQuira will take all necessary steps to protect its interests in the
software and documentation. To the extent certain third party programs may be embedded into the InQuira software, you agree that the
licensors for such third party programs retain all ownership and intellectual property rights to such programs, such third party programs may
only be used in conjunction with the InQuira software, and such third party licensors shall be third party beneficiaries under the applicable
license agreement in connection with your use of such third party programs.

This document may not, in whole or in part, be photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form without written prior consent from InQuira, Inc., which may be withheld in its sole and absolute discretion.

The information in this document is subject to change without notice and does not represent a commitment on the part of InQuira, Inc. The
documentation is provided “AS IS” without warranty of any kind including without limitation, any warranty of merchantability or fitness for a
particular purpose. Further, InQuira, Inc. does not warrant, guarantee, or make any representations regarding the use, or the results thereof.
Although reasonable measures have been taken to ensure validity, the information in this document is not guaranteed to be accurate or error
free.

TRADEMARKS AND SERVICE MARKS

InQuira, Inc., InQuira 8, InQuira 7, InQuira 6, InQuira 5, InQuira Natural Interaction Engine, Information Manager, Call Center Advisor, and
iConnect are trademarks or registered trademarks of InQuira, Inc.

Sentry Spelling-Checker Engine Copyright © 2000 Wintertree Software, Inc.

All other trademarks and registered trademarks contained herein are the property of their respective owners.

Contents

Preface: About This Guide e 1
INThiSGUIE 1
Contacting INQUIra 2
InQuira Product Documentation i 2
Screen and Text Representations, 4
References to World Wide Web Resourcesc. ... 4

Chapter 1: Installing the Client Library API 5
Information Manager Server Side Installation 5
Intelligent Search Server Side Installation 6
Client Side Installation 6

Java Client Installation 6
C#/ Net Client Installation 7

Chapter 2: Client Library Introduction 8
Native Data TYPeSo 8
Cross Platform SUPpOrto e 9
REeMOtE ACCESS . ..o 10
Expose Commonly Used Functionality 10
Consistent Interface Across Products 11

Chapter 3: Architecture OVerview 12
Service Locator Pattern 12
Session Fagade Design Pattern 14
Data Transfer Design Pattern 15
ErrorHandling 17
Senalization 18

InQuira iConnect Developers Guide iii

Chapter 4: Information Manager APl Overview

IQREPOSIIOrYREQUESE
Related ITOSo e
getRepositoryxxxByReferenceKey()
getRepositoryxxxByID() e
getRepositoryXXXforRepositoryKey() L.

IQCategoryRequest
Related ITOS . .. e e
getCategory%MODE%ForCategoryKey (FULL, DATA)
getCategory%MODE%ForID (FULL, DATA,KEY)
getCategory%MODE%ByReferenceKey (FULL, DATA, KEY)
category%MODE%ITOCHhildrenForParent (FULL, DATA, KEY)
getCategory%MODE%ListAssignedToView (FULL, DATA, KEY)
getRequiredCategory%MODE%ListForChannel (FULL, DATA, KEY)
getCategory%MODE%ListForChannel (FULL, DATA, KEY)
addCategory
deleteCategoryt e
updateCategorieso

IQContentChannelRequest
Related ITOS . .. e e
getContentChannel%MODE%ForContentChannelKey (FULL, DATA)
getContentChannel%MODE%ByReferenceKey (FULL, DATA, KEY)
Miscellaneous ContentChannel Service Methods

IQContentRecordRequest
Related ITOS . .. e e e
Methods to Retrieve Latest Versions of Documents
Methods to Retrieve Published Versions of Documents

IQLOcaleRequUeSt
Related ITOS e

IQSecurityRoleRequest
Related ITOS . .. e e e

IQUsSerGroupRequest
Related ITOS e

IQUSEIREQUEST
Related ITOS e

IQVIieWReqUESE
Related ITOS . .. e e

IQWoOrkTeamReqUESTt
Related ITOS e

IQContentRecommendationRequest
Related ITOS e

IQRatingRequest
Related ITOS . .. e e

InQuira iConnect Developers Guide

Chapter 5: Intelligent Search APl Overview 0o, 44
IQServiceClient 44
SessionID, TransactionID 45

CCAINTO . . .o 45

CleNntInfo 46

Searchinfo 46

USerinfoo 47
IQSearchReqUESTE 48

GIML . 48

Question AnsweringMethods oL 50

Call Center Advisor Methods e 51

Process Wizard Methods 51

Appendix A: Error Code Constants 53
AppendiX B: GIML XSD 65
Appendix C: GIML RESPONSEottt e e e 78

InQuira iConnect Developers Guide \Y

ABOUT THIS GUIDE IN THIS GUIDE

PREFACE

About This Guide

This guide provides instructions and supporting information for implementing the InQuira Client Library API for
use with an InQuira 8.2 application. This guide is intended for application developers and systems
administrators to provide an understanding of the design and architecture of the InQuira client library to
facilitate custom development and integration with InQuira technologies.

This preface includes information on:

» The general organization of this guide

» The InQuira contact information

» The available product documentation

In This Guide

The InQuira Client Library APl Implementation Guide is divided into the following sections:

Chapter 1, “Installing the
Client Library API”

Chapter 2, “Client Library
Introduction”

Chapter 3, “Architecture
Overview”

Chapter 4, “Information
Manager APl Overview”

Chapter 5, “Intelligent
Search API Overview”

Appendix A, “Error Code
Constants”

Appendix B, “GIML XSD”

Appendix C, “GIML
Response”

This chapter describes the client library installation for Information Manager and
Intelligent Search, as well as the Client-side installation.

This chapter describes the underlying architecture of the InQuira client library API
including how the remote interface works, the ITO structure and, the error handling
strategy .

This chapter provides an overview of how to integrate the client library into various
client side technologies like java apps, jsp apps, .Net apps. and explains the perfor-
mance implications of various designs.

This chapter describes the services that are exposed from Information Manager
and provides sample code.

This chapter describes the services and methods exposed from Intelligent Search
and provides sample code.

This appendix provides a list of error code constants used by the client library. The
InQuira client library API uses the error code constants to create localized error
messages for each type of error that can be thrown.

This appendix provides a sample GIML.xsd used by Information Manager to parse
and interact with GIML returned and processed by the Information Manager JSP
tag library and the Information Manager Management Console.

This appendix provides a sample GIML response to a search request.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 1

INQUIRA.M

ABOUT THIS GUIDE

CONTACTING INQUIRA

Contacting InQuira

You can contact InQuira by mail, telephone, fax, and email.

Address: 851 Traeger Ave.
Suite 125
San Bruno, CA 94066
Telephone: (650) 246-5000
Fax: (650) 246-5036
Email: For sales information, send email to sales@inquira.com.

For product support, send email to support@inquira.com.

World Wide Web:

Learn more about InQuira products, solutions, services, and support on the world wide web
at: www.inquira.com.

InQuira Product Documentation

InQuira documentation is available only to licensed users of our software products and may not be
redistributed in any form without express permission from InQuira, Inc.

The InQuira documentation is available in PDF format. Customers can download the PDF files from:

http://documentation. inquira.com/

Note: You need a PDF reader application installed on each processor on which you plan to view the
InQuira product documentation. The Adobe Acrobat reader is available from Adobe Systems at: http://

www . adobe . com.

If you encounter a problem, need help using the documentation, or want to report an error in the content,
please contact InQuira Customer Support.

If you need help obtaining InQuira product documentation, or want to obtain permission to redistribute a
portion of the contents, please contact your InQuira account representative.

Detailed information about each product document set is available in:

* “InQuira Analytics Documentation” on page 2

 “InQuira iConnect for CRM Integration Documentation” on page 3

 “InQuira Information Manager Documentation” on page 3

 “InQuira Intelligent Search Documentation” on page 3

InQuira Analytics Documentation

InQuira Analytics is distributed with the following documentation.

Document

Number Description

InQuira Analytics
Installation Guide

IA80-1G-00 | This guide is intended for technical staff who are responsible for installing
InQuira Analytics. It provides detailed information on installing and config-
uring the InQuira Analytics product for use with an InQuira 8.1 application.

Analytics User Guide

IA80-CA-00 | This guide is intended for systems and application administrators who need
to configure the Intelligent Search and Information Manager Analytics com-
ponents to report on InQuira 8.1 application performance.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 2 INQUIRA.M

ABOUT THIS GUIDE INQUIRA PRODUCT DOCUMENTATION

InQuira iConnect for CRM Integration Documentation

The InQuira 8.2 Client Library API products are distributed with the following documentation.

Document Number Description

iConnect Developers |CA80-1G-01 This guide is intended for application developers and systems adminis-

Guide trators who need to plan for and integrate the InQuira iConnect with an
InQuira application and a supported CRM application.

iConnect for Siebel CA80-1G-00 This guide is intended for application developers and systems adminis-

Contact Center trators who need to plan for and integrate the InQuira iConnect with an

Integration Guide InQuira application and a supported Siebel application.

InQuira Information Manager Documentation

InQuira Information Manager is distributed with the following documentation.

Document Number Description

Information Manager |IM80-1G-00 This guide is intended for technical staff who are responsible for installing
Installation Guide InQuira Information Manager. It provides detailed information on install-
ing and configuring the Information Manager product.

Information Manager |IM80-CA-00 | This guide is intended for systems and application administrators who
Administration Guide need to configure and administer an InQuira Information Manager appli-
cation, and integrate it with an InQuira 8.1 application. It also contains
information for general business users who need to use the Information
Manager to create and manage content.

Information Manager |IM80-AG-00 | This guide is intended for technical staff who are responsible for author-
Content Authoring ing content in InQuira Information Manager. It provides detailed informa-
Guide tion on creating content and managing workflow tasks in the Information
Manager console.

Information Manager |IM80-WSR-00 | This guide is intended for application developers who need to integrate
Developer’'s Guide Information Manager content, content category, and user and security
functions with external applications. It contains reference information and
examples for all packages, classes, methods, and interfaces of the Infor-
mation Manager Web Services API.

InQuira Intelligent Search Documentation

Intelligent Search is distributed with the following documentation.

Document Number Description
Intelligent Search IS80-IG-00 | This guide is intended for technical staff who are responsible for installing
Installation Guide InQuira 8.1. It provides detailed information on installing InQuira 8.1 and

configuring the application on a single processor using the Installation
Configuration Environment facility.

Intelligent Search IS80-CA-00 | This guide is intended for system and application administrators who need
Administration Guide to configure an InQuira 8.1 application in an enterprise environment. It
describes InQuira 8.1 integration, development, configuration, and mainte-
nance processes and tasks.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 3 INQUIRAN

ABOUT THIS GUIDE SCREEN AND TEXT REPRESENTATIONS

Document (continued) |Number Description (continued)

Intelligent Search IS80-LA-00 | This guide is intended for business users and subject matter experts who
Language need to create and maintain the language processing elements of a
Administration Guide InQuira 8.1 application using the System Manager. This book provides

usage information about the System Manager, conceptual information
about the InQuira 8.1 language objects, and task information about the
process of managing the user experience provided by the InQuira 8.1

application.
Intelligent Search IS80-LD-00 | This guide is intended for application developers who need to create and
Language Tuning maintain advanced InQuira 8.1 language-processing elements using the
Guide Dictionary and other InQuira Language Workbench applications.
Intelligent Search IS80-AG-00 | This guide is intended for application developers who need to implement
Optimization Guide InQuira 8.1 advanced features, including Personalized Navigation and
Process Wizards.
Intelligent Search IS80-API-00 | This guide provides information about integrating and customizing the
Application InQuira 8.1 Personalized Response User Interface.
Development Guide
Intelligent Search IS80-LRG- | This guide is for language developers implementing InQuira 8.1 applica-
Language Reference 00 tions that utilize the intent libraries and advanced language processing

functions. These guides are published as separate documents that pro-
vide reference information for each industry-specific intent library. Each
reference also contains complete descriptions of InQuira Match Language
and Variable Instantiation Language.

Intelligent Search IS80-UI-00 | This guide is intended for application developers who need to customize
User Interface Guide the InQuira 8.1 Personalized Response User Interface, and integrate it
with a production web application. It contains information about the ele-
ments and features of the User Interface, and provides guidelines for inte-
grating it into an enterprise web architecture, customizing its appearance
and functionality, and implementing various special features.

Screen and Text Representations

The product screens, screen text, and file contents depicted in the documentation are examples. We attempt
to convey the product's appearance and functionality as accurately as possible; however, the actual product
contents and displays may differ from the published examples.

References to World Wide Web Resources

For your convenience, we refer to Uniform Resource Locators (URLS) for resources published on the World
Wide Web when appropriate. We attempt to provide accurate information; however, these resources are
controlled by their respective owners and are therefore subject to change at any time.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 4 INQUIRAN

INFORMATION MANAGER SERVER SIDE INSTALLATION

CHAPTER 1

Installing the Client Library API

The InQuira client library is composed of two primary components for both the Intelligent Search and
Information Manager products. The server side component is responsible for processing the incoming
requests from the various client side client library based applications.

This chapter discusses:
* Information Manager Server Side Installation
* Intelligent Search Server Side Installation

e Client Side Installation

Information Manager Server Side Installation

The server side portion of the Information Manager client library software is installed automatically when the
IMWS.WAR file is installed on to an application server. The IMWS.WAR is a self contained J2EE based web
application that is deployed in the $INQUIRA_ ROOT/instances/<instancename>/appserverim/webapps
folder. During the start up IMWS.WAR an environment variable $IM_HOME is passed into the JVM specifying
the location of the Information Manager configuration information. By default the value of $IM_HOME is set to
$INQUIRA_ROOT/InfoManager.

When the IM server starts up the following actions occur:
1 The IMWS.WAR file is expanded by the J2EE server into the webapps folder

2 The WEB-INF/repository.properties file is read. The value of the property domain.name is used to
lookup the correct configuration information in the $IM_HOME/config directory. By default the value of
domain.name for the IMWS.WAR is set to IMWEBSERVICES

3 Using the value of the domain.name property in the repository.properties file, the $IM_HOME/config/
<domain.name value>/application.properties file is located and read. This file contains the settings for
the JDBC connection that will be used to connect to the IM database schema

4 The configuration settings from the $IM_HOME/config/SYSTEM/config.properties are read and
cached. These settings are the default settings for all repositories configured in the IM database
schema.

5 When a user is authenticated any overridden settings from the $IM_HOME/config/<domain.name
value>/config.properties are read and used in place of the default SYSTEM settings if they exist.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 5 INQUIRA.M

INTELLIGENT SEARCH SERVER SIDE INSTALLATION

Intelligent Search Server Side Installation

The Intelligent Search server side of the client library is installed as part of the Search SOAP gateway
deployed as part of the inquiragw.war. Configuration of the inquiragw.war is documented as part of the
standard InQuira Intelligent Search installation guide.

Client Side Installation

The client side connector to the IM client library server is available in 2 platform specific binary deliverables.
InQuira provides support for C# on the .Net platform from Microsoft and a Java JAR file for Java based
applications.

Java Client Installation

The files for Java based applications are available in the $IM_HOME/clientLibrary/Java folder. The JAR files
in this folder are all required to be available on the runtime classpath of an application that will be using the
InQuira client library. There are no client side debug settings available currently. The server side debug is
enabled using Log4J root logger. The following property needs to be set in the $IM_HOME/config/
<repository_reference key>/log4j.properties file:

log4j . logger.com. inquira=DEBUG,EVENTLOGGER

Specific levels of logging can be configured by using a more specific class path in the logger parameter. For
example:

log4j .logger.com.inquira.im.services=DEBUG,EVENTLOGGER

Note: For the third party JARS such as commons-xxx.jar or log4j it may be possible to use a newer version
of the JAR if the vendor has maintained backward compatibility. However, InQuira tests only the versions of
the Jar files deployed with the client library and does not recommend changing the supplied versions. Any
other version than the supplied versions may introduce unforeseen issues that can be difficult to detect or
troubleshoot. The JARs supplied with the current build may not have the version number as part of the JAR
name. The listed versions below are the actual versions deployed by InQuira.

THIRD PARTY JARS REQUIRED

« activation-1.0.2.jar e commons-discovery-0.2.jar e saaj-1.1.jar

* axis-ant-1.4.jar e commons-io-1.4.jar » wsdl4j-1.5.1.jar

e axis-1.4.jar e commons-lang-2.3.jar * xalan-2.7.0.jar

« commons-beanutils-1.8.jar e commons-logging-1.0.4.jar « xercesImpl-2.0.2.jar
e commons-codec-1.3.jar * jaxrpc-1.1.jar

« commons-collections-3.1.jar * mail-1.3.jar

INQUIRA PROVIDED JARS
* inquira-infra-1.1.jar
* jtoobjects.jar (from the current build)
« javaServiceClient.jar (from the current build)

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 6 INQUIRA.M

CLIENT SIDE INSTALLATION

C#/.Net Client Installation

The C#/.Net client library is available as a dynamic linked library (DLL) in both standard and debug builds.
These DLLs and files need to be available on the runtime PATH for the client application. The files are
available in the $IM_HOME!/clientLibrary/MSFT/ folder.

INQUIRA PROVIDED FILES:

* 1QServiceClientCS.dll
* 1QServiceClientCS.dll.config
* 1QServiceClientCS.XmlSerializers.dll

CONFIGURATION

The C#/.Net DLL is configured by adjusting the settings in the IQServiceClientCS.dll.config file. The primary
property to adjust is the configuration/applicationSettings/IQServiceClientCS.Properties.Settings/setting
[name="IQServiceClientCS_com_inquira_imdb_RequestProcessor"]. This value should be configured to
point to the installation URL of the IM request processor. This is usually in the format:

http://<host>:8226/imws/WebObjects/imws.woa/ws/RequestProcessor

To turn on DEBUG mode for the C# DLL, you must modify the 1QServiceClientCS.dll.config file. Add or modify
the following XML node to set the <value> to True:

<IQServiceClientCS._.Properties.Settings>
<setting name=""1QServiceClientCS_com_inquira_imdb_RequestProcessor"
serializeAs="String">
<value>http://imdb.inquira.com:8226/IMWebServicesNG/WebObjects/ IMWebServicesNG.woa/
ws/RequestProcessor</value>
</setting>
<setting name="'DEBUG_MODE" serializeAs="String">
<value>True</value>
</setting>
</1QServiceClientCS_Properties.Settings>

You must restart the web application for the setting to take effect. The output should be directed to the same
location as your system output.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 7 INQUIRA.M

NATIVE DATA TYPES

CHAPTER 2

Client Library Introduction

The InQuira client library API was introduced in version 8.x to make it easier for developers to integrate
InQuira products into existing applications of all types running on a multitude of client platforms. The design
goals of the InQuira API are:

» Provide native platform data types

Cross platform support
 Hide the complexity of connecting to remote services

Provide API access to commonly used functionality
» Provide a consistent interface to access all InQuira products

Prior to the introduction of the Client Library API — InQuira supported a variety of mechanisms to integrate
external products including SOAP interfaces, WSDL interfaces, and web interfaces. These interfaces all
worked in slightly different manners and required different skill sets from developers to learn and use. The
client library API was designed to streamline the learning required to integrate with InQuira products and to
provide a foundation for exposing additional value added services to our customers, partners, and
professional services personnel.

Native Data Types

One of the primary design goals of the InQuira client library APl is to provide support for native datatypes on
each supported platform. A typical web services based platform tends to rely on XML strings and numeric
fields to represent complex data structures. This requires the developer to provide their own abstraction layer
between the InQuira data structures and the data structures the developer wants to interact with.

The InQuira client library API operates on the Java platform and .Net. The architecture of the client library
provides the ability to generate native interfaces for other platforms moving forward as customer needs
require.

Providing native data types with the client library allows for better coding practices such as type safety, and
better integration with native IDE tools like Eclipse and Visual Studio to take advantage of built in code
assistants.

Native data types are also easier for developers to interact with by avoiding having to marshall strings into
and out of data structures for use in client applications. Less code is better code. The InQuira client library
API is mostly generated from data definitions providing us the ability to provide native data type support in a
well-tested and validated fashion.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 8 INQUIRA.M

CROSS PLATFORM SUPPORT

Cross Platform Support

The InQuira client library provides cross platform support with a common API. Using InQuira service
definitions, the client library provides native support for Windows .Net, and Java. .Net developers will feel just
as comfortable using the InQuira client library API in Visual Studio as a Java developer will within Eclipse.

The InQuira client library provides specific deployment mechanisms that are appropriate for each target
platform. Java versions of the API are provided as JAR files; .Net versions of the API are distributed as DLL
files (in both debug and non-debug versions).

The native data types used in each of the platform specific distributions utilize data types specific to the
environment. The following table shows a sampling of the datatypes used in each environment.

Java Datatype .Net/C# Datatype

« java.lang.String ¢ System.string

« java.lang.Boolean, boolean ¢ System.bool

« java.util.ArrayList « System.Collections.Generic.List
« java.lang.Float, float « System.Single

« java.lang.Integer, int ¢ System.Int32

« java.lang.Long, long « System.Int64

« java.lang.Double, double ¢ System.Double

« java.util.Date « System.DateTime

The method for using enumerations in C# is slightly different than in Java. The enumerations in C# are stored
in classes in the IQServiceClientCS.com.inquira.im.enums namespace. Inside the C# classes there are
enumerations matching the Java enumeration classes. Here is the list of classes that contain the
enumerations for C#:

» ContentRecordDateRangeFilterMode
» ContentRecordRelationship

» ContentRecordSortField

* EnumAliases

* PriorityEnum

* RoleTypeEnum

» SchemaAttributeTypeEnum

* SchemaTypeEnum

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 9 INQUIRAN

REMOTE ACCESS

Remote Access

Information

Manager

- Server B
Custom Code

Server A Intelligent

Search

Server C
Figure 1: Remote access using the client library

The InQuira client library API is designed to be used with a typical InQuira software installation across
multiple servers in a networked environment. The client library utilizes a configurable transport mechanism
between servers (a web service based transport by default) and takes care of the connectivity and data
marshalling activities automatically. The developer using the InQuira client library can write their code without
regard to the physical location of the services providing the data—greatly simplifying the tasks relating to final
deployment of the customized solution.

Expose Commonly Used Functionality

The InQuira client library exposes the most commonly utilized methods that interact with Information Manager
and Intelligent Search. The methods are designed to use the simplest datatypes possible for the functions
being accessed. There is a rich set of InQuira specific data types available to provide type safe access to
complex data structures representing InQuira business objects such as a Content Record.

The services are organized into logical groups based on the general category of usage. The list below
represents some of the services available:

* Repository Services
e Security Services

» Content Services

» Category Services

» Search Services

Every attempt is made to replicate the functionality of existing public interfaces such as the Information
Manager custom JSP tag library and Search SOAP gateway as much as possible to provide more flexibility
for the developer to chose the platform best suited to their needs. The current InQuira client library APl is a
subset of the functionality exposed in the underlying existing product interfaces. Over time, the client library
will become a superset of the functionality.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 10 INQUIRAN

CONSISTENT INTERFACE ACROSS PRODUCTS

Consistent Interface Across Products

Another guiding principle for the InQuira client library is to provide a standardized method for accessing all
publicly exposed features. This standardization includes authentication and error handling. This allows the
developer to create re-usable logic to enable much quicker and robust integrations with legacy technologies.

The method for calling all of the InQuira client library functions is consistent and standardized. The same type
of connection object used for authenticating Information Manager access is used in making Search based
procedure calls. The common ErrorWarningResponse object provides a standardized mechanism for
encapsulating errors across products, remote servers, and processes.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 11 INQUIRA.M

http://<host>:8223/inquiragw/services/RequestProcessor

SERVICE LOCATOR PATTERN

CHAPTER 3

Architecture Overview

The InQuira client library utilizes a number of J2EE design patterns to access and present data through the
InQuira client library.

Service Locator Pattern

The InQuira client library utilizes a modified version of the J2EE service locator design pattern documented at
http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServicelLocator._html

This pattern is used to locate services and establish initial contexts that the subsequent requests will utilize.
The InQuira client library does not utilize JNDI for service location or EJBs for data access, the InQuira client
library utilizes components that perform similar operations.

The service locator pattern is used under the following conditions:

» Lookup and creation of service components could be complex and may be used repeatedly in multiple
clients in the application.

« Initial context creation and service object lookups, if frequently required, can be resource-intensive and
may impact application performance. This is especially true if the clients and the services are located in
different tiers.

» Use a Service Locator object to abstract all INDI usage and to hide the complexities of initial context
creation, EJB home object lookup, and EJB object re-creation. Multiple clients can reuse the Service
Locator object to reduce code complexity, provide a single point of control, and improve performance by
providing a caching facility.

» This pattern reduces the client complexity that results from the client's dependency on and need to
perform lookup and creation processes, which are resource-intensive. To eliminate these problems, this
pattern provides a mechanism to abstract all dependencies and network details into the Service Locator.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 12 INQUIRA.M

http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html

SERVICE LOCATOR PATTERN

1QServiceClient 1QServiceClient 1@ Connector IQConnector Authentication
Manag er ServiceLocator ResponselTO
i i]
connect() : |

i getlQConnector() .

-

processRequest()

I
i
i
i
|
I
I
i
i
i
]
k8
=
I

getAuthenticationToken()

|
i
i
i
|
|
i
i
i
i
i
|
|
i
i
| -
i

i

2
T

Figure 2: Service locator class diagram
The InQuira client library provides 2 classes to facilitate establishing a connection with the back end services
and providing access to the business method services exposed in the InQuira client library.

» IQServiceClientManager — The 1QServiceClientManager is the primary entry point used to obtain a
reference to the 1QServiceClient. The IQServiceClientManager coordinates the authentication of the
user and sets up the 1QServiceClient for usage.

» IQServiceClient — The IQServiceClient object encapsulates the authenticated user credentials and is
used to forward requests to the specific client library business service..

A typical usage pattern of these classes is shown below:

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos,
imUrl, searchUrl, throw ExceptionOnError);

All parameters are required unless specified.
Parameter Description

User” The userid of the user connecting to the service. This should be a valid IM management console
user (not a web user) to perform content management activities such as creating users, content,
etc. This userid can be from the IM repository or a remote authenticated service.

Passwd* The password for the user as stored in the IM repository in the UserIinformation database table or
as stored in a remote authentication store such as SSO or LDAP.

Domain* The search domain that the search requests utilize. Currently this parameter is not used and any
string can be passed for this parameter.

Repos* The reference key for the IM repository that the service will be connecting to.

imUrl* The URL to the InfoManager client library endpoint. Typically it will be a URL similar to:

http://<host>:8226/imws/WebObjects/imws.woa/ws/
RequestProcessor

SearchUrl The URL to the Search client library endpoint. Typically this will be a URL similar to:
http://<host>:8223/inquiragw/services/RequestProcessor

*. Required parameter.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 13 INQUIRAN

SESSION FACADE DESIGN PATTERN

The returned IQServiceClient object can be reused until the session has been terminated. The
IQServiceClient provides a number of “factory” type of methods to obtain the IQxxRequest objects that
provide access to the underlying business methods.

Session Facade Design Pattern

The Session facade design pattern is documented in detail athttp://java.sun.com/blueprints/
patterns/SessionFacade.html. The session facade design pattern is useful under the following
conditions:

* Many business processes involve complex manipulations of business classes. Business classes often
participate in multiple business processes or workflows. Complex processes that involve multiple
business objects can lead to tight coupling between those classes, with a resulting decrease in flexibility
and design clarity. Complex relationships between low-level business components make clients difficult
to write.

» The Session Facade pattern defines a higher-level business component that contains and centralizes
complex interactions between lower-level business components. A Session Facade is implemented as a
session enterprise bean. It provides clients with a single interface for the functionality of an application or
application subset. It also decouples lower-level business components from one another, making
designs more flexible and comprehensible.

» Fine-grained access through remote interfaces is inadvisable because it increases network traffic and
latency. The "before” diagram in Figure 1 below shows a sequence diagram of a client accessing fine-
grained business objects through a remote interface. The multiple fine-grained calls create a great deal
of network traffic, and performance suffers because of the high latency of the remote calls.

IQServiceClient 1QxxxRequest xxxITO Database
Classes Access
T
getxxxRequest() =

getXXXITO()

/

‘-.

fetchDataf)

. A

convertTolTO()

-
)

-
—

Figure 3: Sequence diagram applying the session facade pattern

In Figure 3 the 1QServiceClient provides a reference to a IQxxxRequest object. The IQxxxRequest object is
designed to aggregate a number of low level ITO methods into a higher level business service such as
creating content. A typical client library transaction makes use of many embedded ITO and database access
calls to perform the requested operation. The Session Facade object maps to the various IQxxxRequest
objects. The Entity Beans map to the ITO objects provided in the client library. The InQuira client library
provides a number of Session Facade type interfaces that are broken down into a number of request objects
that are used to group methods that come from the same functional area. The current list of Session Facade
objects is:

» IQCategoryRequest — Contains methods to work with Information Manager categories assigned to
repositories, views, and documents.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 14 INQUIRAN

DATA TRANSFER DESIGN PATTERN

* IQContentChannelRequest — Contains methods to work with the definition of Information Manager
content channels.

* IQContentRecommendationRequest — Contains methods to work with content recommendations
made for a content channel.

» IQContentRecordRequest — Contains methods to create, modify, and retrieve content records from the
Information Manager repository.

» IQLocaleRequest — Contains methods to work with locales assigned to a repository.

» IQRatingRequest — Contains methods to rate content records and to retrieve results of the ratings.
* IQRepositoryRequest — Contains methods to retrieve meta data about an IM repository.

» IQSearchRequest — Contains methods to submit search requests.

» IQSecurityRoleRequest — Contains methods to retrieve meta data about security roles assigned to
repositories and users.

» IQUserGroupRequest — Contains methods to retrieve information about user groups assigned to
channels and views.

» IQViewRequest — Contains methods to manage users assigned to views and to retrieve information
about users assigned to views and views assigned o channels and repositories.

* IQWorkTeamRequest — Contains methods to retrieve information of workteams assigned to a
repository.

These requests all contain a number of methods that are used to interact with the underlying InQuira services
at a high level. All of the methods in the Session Facade interfaces use standard data types or specialized
InQuira data types called ITOs as parameters (see “Data Transfer Design Pattern” on page 15).

Data Transfer Design Pattern

The data transfer design pattern is used to abstract the retrieval of data from the database for use in the client
library. The returned ValueObjects are stateless and completely self-contained, requiring no additional
network access in order to provide the requested data.

The J2EE data transfer design pattern can be found at http://java.sun.com/blueprints/
corej2eepatterns/Patterns/TransferObject.html. Here is a synopsis of the reasons for the
use of the data transfer design pattern:

All access to an enterprise bean is performed via remote interfaces to the bean. Every call to an enterprise
bean is potentially a remote method call with network overhead.

Typically, applications have a greater frequency of read transactions than update transactions. The client
requires the data from the business tier for presentation, display, and other read-only types of processing.
The client updates the data in the business tier much less frequently than it reads the data.

The client usually requires values for more than one attribute or dependent object from an enterprise bean.
Thus, the client may invoke multiple remote calls to obtain the required data.

The number of calls made by the client to the enterprise bean impacts network performance. Chattier
applications, those with increased traffic between client and server tiers, often degrade network performance.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 15 INQUIRA.M

DATA TRANSFER DESIGN PATTERN

IQxxxRequest xxxITO Database Data store
Classes Access

i i I i

] getData() i i i

fetchData() ! Stateful
! I = fetchData() i

! ! | il

| : convertTolTO() | ! Stateless
e : : i

Figure 4: J2EE Data transfer design pattern

The ValueObjects for the InQuira client library are called ITOs - InQuira Transfer Objects. The InQuira client
library provides a number of services that retrieve and format the data into ITOs that are returned to the
calling process. The ITO objects are completely stateless and contain all of the required data. An ITO does
not need to make additional network calls to retrieve its data.

The InQuira ITO structure used by Information Manager provides 3 levels of data based on an increasing
level of data.

AxxKeylTO
recordid
raferencekeay

xxxDatalTO
dateadded
datemodified
attrib1
attrib2
attrib3

xxxITO
relationship1
relationship2

Figure 5: ITO hierarchy

The xxxKeyITO objects typically contain only the recordid and perhaps a referencekey value. A
referencekey is a non-localized string variable that can be used to uniquely identify an object in the some IM
database tables that contain localizable information. The KeylTO objects are very small and can be used in
most API calls as a proxy object. KeylTO objects are typically returned in results that return an array of
objects.

xxxDatalTO objects extend the xxxKeylTO objects and add the DATEADDED and DATEMODIFIED values
from the IM entities. In addition the xxxDatalTO objects also include all of the attributes of the corresponding
entity that are NOT relationships to other entities. In most cases (but not all) the xxxDatalTO corresponds

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 16 INQUIRAN

ERROR HANDLING

directly to the underlying database access entity. There are some custom ITO objects that combine one or
more database entities into a single xxxDatalTO (for example ContentRecordITO) to provide a more
convenient mechanism for accessing the properties.

The xxxITO objects are sometimes referred to as “full” ITO’s. These ITOs extend the xxxDatalTO objects but
also include the relationships to other ITO objects. Including the relationships to other ITO objects can result
in very large ITO objects being fetched. The full ITO contains arrays of KeylTO objects for all objects in the
relationship. For example suppose a RepositorylTO (a full ITO) is retrieved using a method such as
getRepositoryForID(). This full ITO will also return an array of KeylTO objects for every User and Content
record in the system. Use of the full ITO is discouraged in most cases. It is much more efficient to use the
KeyITO and DatalTO methods where possible.

Error Handling

All of the InQuira client library methods provide access to a built in ErrorWarningResponse (EWR) object.
This object is populated after every call to a client library service request. This object contains a list of all of
the errors and warnings that occurred in the scope of the last service method call. It is important to check the
EWR object after each call to ensure that the call was successful. If a service method makes multiple client
library calls in the scope of a single invocation - all of the errors and warnings from the embedded client library
calls are collected and presented in the EWR object returned from the service call.

The EWR contains both errors and warnings. Errors are typically fatal errors indicating that the underlying
exception prevented the service call from returning the expected results. Validation and SQL errors are
examples of fatal errors that can occur. Warnings are typically non-fatal exceptions that can occur if a method
does not perform as expected. An example of a warning could be a retrieve method that does not return any
data. This could be a result of invalid parameters or simply no records were found that matched the specified
criteria.

The following code sample shows a strategy for checking the EWR object for fatal errors that could be raised
in the scope of a service client invocation.

public static boolean checkEWR (ErrorWarningResponse ewr) {
boolean result = true;
if (ewr != null && ewr.hasErrorsOrWarnings()) ({
// EWR reported a problem, check to see if it is an error
if (ewr.hasErrors())
// error was reported
result = true;
// output the errors
List<ErrorRecord> errors = ewr.getErrors() ;
System.out.println(">>>> Error occurred: >>>>>>>>\n");
for (Iterator<ErrorRecord> iter = errors.iterator ()
iter.hasNext () ;) {
ErrorRecord rec = iter.next();
System.out.println(rec) ;

}

} else {
// warning must have been reported, assume it is safe to go on
result = false;
}
} else {
result = false;

}

return result;

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 17 INQUIRAN

SERIALIZATION

Every 1QxxxRequest object provides a mechanism to retrieve the EWR object through a call to getEWR(). Itis
possible to interrogate the EWR to provide code for specific types of errors by checking the
ErrorRecord.getType() method. The list of error types is defined in the com.inquira.util.ewr.ErrorTypeEnum
class. Each error type reported in the EWR can have many different specific types of error messages
depending on the nature of the exception. For example:

deleteContent() in the 1QContentRecordRequest can throw an APPLICATION_ERROR (ErrorTypeEnum)
and one of the following specific messages:

CONTENT SERVICE IO DELETE EXCEPTION, CONTENT SERVICE CONTENT NOT FOUND, or
CONTENT SERVICE INVALID CONTENTID

It is necessary to review each of the specific messages in order to provide the most flexble error handling
subsystem.

Serialization

The InQuira client library provides a library of cross platform serialization methods in every ITO to serialize the
ITO to an XML format or a JSON format. Developers using the InQuira client library can call these
serialization methods at any time. These methods are also called automatically by the InQuira client library
framework to marshall/unmarshall the parameters and results between the local client application and the
remote InQuira service.

Client application InQuira Services

serialize /
deserialize

serialize /
deserialize
request

InQuira Service

- Method()

IQServiceClient getoaxDatalTOY) |-

IQxxRequest ‘---

Figure 6: InQuira client library serialization

The InQuira client library serializes the request parameters in the scope of the IQServiceClient request
invocation. The serialized data is transmitted to the InQuira service provider via a single WSDL based web
service call. The WSDL end point is deployed in both the Information Manager web services deployable
(imws.war) and the Intelligent Search runtime gateway (inquiragw.war). The URLSs to the web service
endpoints are the following (default installations):

InfoManager —http://<host>:8226/imws/WebObjects/imws.woa/ws/
RequestProcessor

Search - http://<host>:8223/inquiragw/services/RequestProcessor

The connect() method of the 1QServiceManager object utilizes the URLS for the IM and Search services to
connect to the remote services and caches the connection information for the duration of the session.

The RequestProcessor web service provides a single WSDL method called processRequest() that takes in an
XML formatted string and returns an XML formatted string. The client library serialization/deserialization
mechanism on both sides of the web service call performs the necessary work to hide the complexity of the
web service invocation. To both the client calling code and the InQuira services code the calls all appear to be
localized to the current process. It is not recommended to use the WSDL based interface without the InQuira
supplied serialization mechanism to avoid unpredictable behavior.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 18 INQUIRAN

CHAPTER 4

Information Manager APl Overview

The InQuira client library provides a number of services that expose functionality from Information Manager.
The services are broken into groups to simplify the organization of the service methods. The list of available
services and the methods available in each service will expand over time with each new release.

|IQRepositoryRequest

The IQRepositoryRequest object is obtained from the 1QServiceClient by executing the following code to
obtain a reference to the 1QServiceClient from the IQServiceClientManager. The IQServiceClientManager is a
static class that can be accessed with the connect method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQRepositoryRequest object. This same pattern is used
to obtain an IQxxxRequest in general for all requests.

IQServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQRepositoryRequest request = client.getRepositoryRequest();

Related ITOs

The IQRepositoryRequest utilizes the RepositoryXXXITO classes as both parameters and return types.
Choosing the correct method is important to ensure that a performance penalty is not unnecessarily incurred.

The RepositoryKeyITO is the lightest weight object available. It provides the recordid and reference key of the
repository. It can be used as a parameter or returned by one of the get() methods. This object does NOT
contain any other data or relationships. Where possible use methods that utilize the KeyITO.

The RepositoryDatalTO inherits from RepositoryKeyITO. It adds the additional properties from the SITE table
as data with get/set methods for each property. This is also a lightweight object that only requires a single
database fetch to populate.

The RepositoryITO (a full ITO) is a VERY HEAVYWEIGHT object and methods that use or return it should be
avoided as much as possible. It extends the RepositoryDatalTO but also adds data from all of the
relationships associated with a repository. This object can be very large!! The relationships to other objects
are arrays of xxxKeyITO objects.

getRepositoryxxxByReferenceKey()
This family of methods provides access to a RepositorylTO, RepositoryDatalTO, and a RepositoryKeyITO

depending on the specific method called. The typical usage of these methods is to resolve a repository
reference key so that the metadata of a repository can be used in other calls.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 19 INQUIRA.“

IQREPOSITORYREQUEST

Important! If the RepositorylTO version of this method is used — the results should be cached and
reused. This method should only be called once.

There is a possibility that the metadata of a repository could become out of date if the structure of a repository
changes in any way—i.e. new channels, new security role, etc.

These methods DO NOT resolve Views — those methods are available in the IQViewRequest.
IQRepositoryRequest Methods:

getRepositoryByReferenceKey() returns RepositorylTO
getRepositoryDataByReferenceKey() returns RepositoryDatalTO
getRepositoryKeyByReferenceKey() returns RepositoryKeylITO

getRepositoryxxxBylD()

This family of methods uses the GUID of the repository to retrieve Repository ITOs. The GUID is from the IM
database schema in the SITE table from the RECORDID column. These methods are typically used when it is
necessary to interact with the database directly where the primary keys have been used or retrieved. The

GUID is a VARCHAR key the table containing a globally unique identifier generated by Information Manager.

Important! Avoid using methods that use or return RepositorylTO objects (full ITO) as much as possible.
IQRepositoryRequest Methods:

public RepositorylTO getRepositoryForlID(String referencekey);
public RepositoryDatalTO getRepositoryDataForID(String referencekey);
public RepositoryKeylTO getRepositoryKeyForID(String referencekey);

getRepositoryXXXforRepositoryKey()

This family of methods takes a RepositoryKeyITO as a parameter and returns either a RepositoryDatalTO or
a full RepositorylTO object. These methods are typically used as part of an object resolution algorithm. This

usually would occur if a RepositoryKeylTO had been retrieved in a previous method and additional data is
needed about the repository.

Important! Avoid using methods that use or return RepositorylTO objects (full ITO) as much as possible.
IQRepositoryRequest Methods:

public RepositoryKeylTO getRepositoryForRepositoryKey(RepositoryKeylTO keyito);
public RepositoryDatalTO getRepositoryDataForRepositoryKey(RepositoryKeylTO keyito);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 20 INQUIRAN

IQCATEGORYREQUEST

|QCategoryRequest

The IQCategoryRequest object is obtained from the IQServiceClient by executing the following code to obtain
a reference to the 1QServiceClient from the IQServiceClientManager. The IQServiceClientManager is a static
class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQCategoryRequest object. This same pattern is used
to obtain an 1QxxxRequest in general for all requests.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);

IQCategoryRequest request = client.getCategoryRequest();

The IQCategoryRequest is the primary service that allows a programmer to work with the IM category tree.
An IM category is similar to a search facet and during the indexing process all of the IM categories can be
converted to facets. Categories can be used for a number of different tasks within an IM repository.
Categories can be used to categorize content records with products, versions, colors, sizes, business units,
etc.

When a category is assigned to a content record, the category applies to all translated versions of that
document.

When a category is assigned to a user, it represents the skills that the user has. These skills can be used to
influence workflow and task assignments to help automate the process more efficiently.

Related ITOs

The IQCategoryRequest utilizes the CateogryXXXITO classes as both parameters and return types.
Choosing the correct method is important to ensure that a performance penalty is not unnecessarily incurred.

The CategoryKeyITO is the lightest weight object available. It provides the recordid and reference key of the
category. It can be used as a parameter or returned by one of the get() methods. This object does NOT
contain any other data or relationships. Where possible use methods that utilize the KeyITO.

The CategoryDatalTO inherits from CategoryKeyITO. It adds the additional properties from the TAG table
(dateadded, date modified, description, sort order, name, object_id) as data with get/set methods for each
property. This is also a lightweight object that only requires a single database fetch to populate.

The CategorylTO (a full ITO) can be a VERY HEAVYWEIGHT object and methods that use or return it should
be avoided as much as possible. It extends the CategoryDatalTO but also adds data from all of the
relationships to the TAG table as well. This object can become very large in repositories with large category
trees. Returning a CategoryITO that represents the root of the tree could require a large amount of data to be
fetched and formatted. Use this object and methods that create or return it with care.

getCategory%MODE%ForCategoryKey (FULL, DATA)

This family of methods return either CategoryDatalTO, or CategorylTO objects when passing in a
CategoryKeyITO. These are convenience methods used to obtain more information for a specific
CategoryKeyITO. The typical use case for this family of methods would occur after fetching an array of
CategoryKeyITO objects and then needing to display the details of each record as the list is being iterated.

public CategorylTO getCategorylTOForCategoryKey(CategoryKeylTO ito);
public CategoryDatalTO getCategoryDatal TOForCategoryKey(CategoryKeylITO ito);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 21 INQUIRA.M

IQCATEGORYREQUEST

getCategory%MODE%ForID (FULL, DATA, KEY)

This family of methods is used to resolve a RECORDID from the TAG table into a CategoryxxxITO. In general
it is better to use the lightest weight object type possible (i.e. a Key or Data object is lighter than a full ITO
object). The typical case for this family of methods would be when directly interacting with the database or a
legacy system that has stored the primary key of the categories.

public CategoryKeylTO getCategoryKeylTOForID(String guid);

public CategoryDatalTO getCategoryDatal TOForlID(String guid);

public CategorylTO getCategorylTOForID(String guid);

getCategory%MODE%ByReferenceKey (FULL, DATA, KEY)

This family of methods is used to resolve category reference keys. The typical use case for these methods is
when a string representing the reference key of the category is passed via a URL parameter in a HTML or
JSP page to be processed.

public CategoryKeylTO getCategoryKeylTOByReferenceKey(String refkey);

public CategoryDatalTO getCategoryDatal TOByReferenceKey(String refkey);

public CategorylTO getCategorylTOByReferenceKey(String refkey);

category%MODE%ITOChildrenForParent (FULL, DATA, KEY)

This family of methods is used to return the child categories of a parent category branch. If the parent
Category can't be found or does not have any child categories the returned list will be NULL.

public List<CategorylTO> categorylTOChildrenForParent(String parentrefkey);
public List<CategoryDatalTO> categoryDatalTOChildrenForParent(String parentrefkey);
public List<CategoryKeylTO> categoryKeylTOChildrenForParent(String parentrefkey);

getCategory%eMODE%ListAssignedToView (FULL, DATA, KEY)

This family of methods returns the category ITOs assigned to a repository view. If the view does not exist or
have any categories assigned to it, NULL is returned. The resultset can be limited by setting the fetchlimit to a
non-zero number.

public List<CategorylTO>
getCategorylTOListAssignedToView(String viewrefkey, int fetchlimit);

public List<CategoryDatalTO>
getCategoryDatal TOListAssignedToView(String viewrefkey, int fetchlimit);

public List<CategoryKeylTO>
getCategoryKeylTOListAssignedToView(String viewrefkey, int fetchlimit);

getRequiredCategory%MODE%ListForChannel (FULL, DATA, KEY)

This family of methods is used to return the list of category branches that have been assigned to a channel
that require at least one category to be specified when creating a document in that channel. The typical use
case for this method is when creating a custom data entry form that will be used to create content for a
channel. A channel may require that the user select one category from a list of choices to assign to the
content record. To limit the number of records being returned, pass in a non-zero fetch limit. If the channel
does not exist or does not have any categories assigned to it a NULL will be returned.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 22 INQUIRA.M

IQCATEGORYREQUEST

public List<CategorylTO>
getRequiredCategorylTOListForChannel (String channelrefkey, int fetchlimit);

public List<CategoryDatalTO>
getRequiredCategoryDatal TOListForChannel (String channelrefkey, int fetchlimit);

public List<CategoryKeyITO>
getRequiredCategoryKeyl TOListForChannel (String channelrefkey, int fetchlimit);

getCategory%MODE%ListForChannel (FULL, DATA, KEY)

This family of methods is used to return the list of categories assigned to a channel. These methods are
typically used when creating a custom data entry for a content channel to allow the user to choose from a list
of categories that have been assigned to the channel from the IM management console. To limit the number
of records returned from the call, pass in a non-zero fetch limit. If the channel does not exist or does not have
any categories assigned to it, a NULL will be returned.

public List<CategorylTO> getCategorylTOListForChannel(String channelrefkey, int
fetchlimit);

public List<CategoryDatalTO> getCategoryDatalTOListForChannel (String channelrefkey, iInt
fetchlimit);

public List<CategoryKeylTO> getCategoryKeylTOListForChannel(String channelrefkey, int
fetchlimit);

addCategory

This method is used to create categories. If a category is added without a parent category, it is considered a
root branch category. If a category is created with a parent category, it will be represented as a sub category
in the IM management console. The locale provided is used to localize the category name. It is not possible to
translate a category using the addCategory() or updateCategory() methods

pubilc CategorylTO addCategory(CategorylTO category, String locale);

deleteCategory

This method is used to delete a category branch or a single category. If the category being deleted is a branch
- all of the children of the branch will also be deleted. If the method returns TRUE the deletion was

successful. If the method returns false, the deletion failed and the EWR should be checked to determine the
root cause of the problem. Only authorized IM management console users are allowed to delete categories.

public boolean deleteCategory(CategoryKeylTO ito);

updateCategories

This family of methods is used to update either a single category or multiple categories. When updating a
category, it is necessary to pass in the category that is being updated with the newly updated information in
the ITO. The locale provided is used to update the specific localized version of the category. If the category
doesn't exist, an exception is thrown. When updating multiple categories for multiple locales, it is necessary to
have a one to one mapping between the number of categories passed in to the number of locales passed in.
The returned CategorylTO objects reflect the newly saved changes to the categories that were submitted.

public List<CategorylTO> updateCategories(List<CategorylTO>, List<String> localecodes);
public List<CategorylTO> updateCategories(List<CategorylTO>, String localecode);
public CategorylTO updateCategory(CategorylTO category, String locale);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 23 INQUIRA.M

IQCONTENTCHANNELREQUEST

|QContentChannelRequest

The IQContentChannelRequest object is obtained from the 1QServiceClient by executing the following code
to obtain a reference to the IQServiceClient from the 1QServiceClientManager. The IQServiceClientManager
is a static class that can be accessed with the connect() method. The result of a successful connection is a
valid IQServiceClient object that can be used to retrieve an IQContentChannelRequest object. This same
pattern is used to obtain an IQxxxRequest in general for all requests.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
1QContentChannelRequest request = client.getContentChannelRequest();

The IQContentChannelRequest is the primary gateway to access methods that provide information about IM
content channels. Currently this service request only provides some basic meta data about the channel and
to resolve content channel reference keys.

Related ITOs

The IQContentChannelRequest utilizes the ContentChannel%MODE%ITO classes as both parameters and
return types. Choosing the correct method is important to ensure that a performance penalty is not
unnecessarily incurred.

The ContentChannelKeyITO is the lightest weight object available. It provides the recordid and reference key
of the content channel. It can be used as a parameter or returned by one of the get() methods. This object
does NOT contain any other data or relationships. Where possible use methods that utilize the KeylTO object.

The ContentChannelDatalTO inherits from ContentChannelKeyITO . It adds the additional properties from the
CONTENTCHANNEL table as data with get/set methods for each property. This is also a lightweight object
that only requires a single database fetch to populate.

The ContentChannellTO (a full ITO) can be a VERY HEAVYWEIGHT object and methods that use or return it
should be avoided as much as possible. It extends the ContentChannelDatalTO and adds data from all of the
relationships to the CONTENTCHANNEL table as well. This object can become very large in repositories with
large amounts of content.

The XMLSchemaAttributelTO (a full ITO) contains all of the attributes defined for a content channel. These
attributes are mapped from the SCHEMAATTRIBUTE and SCHEMAATTRIBUTERESOURCE tables in the
IM database. THE XMLSCHEMA table represents the collection of XMLSCHEMAATTRIBUTES that make up
a content channel.

getContentChannel%MODE%ForContentChannelKey (FULL, DATA)

This family of methods is used to resolve ContentChannelKeylTO objects in order to obtain more information
about the associated ContentChannel.

public ContentChannelITO getContentChannel ITOForContentChannelKey(
ContentChannelKeyITO ito);

public ContentChannelDatalTO getContentChannelDatal TOForContentChannelKey(
ContentChannelKeyITO ito);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 24 INQUIRA.M

IQCONTENTRECORDREQUEST

getContentChannel%MODE%ByReferenceKey (FULL, DATA, KEY)

This family of methods is used to resolve Content Channel reference keys into ITO objects.

public ContentChannelITO getContentChannel ITOByReferenceKey(String refkey);
public ContentChannelDatalTO getContentChannelDatal TOByReferenceKey(String refkey);
public ContentChannelKeylTO getContentChannelKeylTOByReferenceKey(String refkey);

Miscellaneous ContentChannel Service Methods

In addition to the standard services provided by the IQContentChannelRequest there are some additional
methods that provide access to specific information about a content channel

* public ContentChannel ITO getContentChannelByReferenceKeyAndLocale (String refkey,
String localeito) - This method returns the localized information for the specified content channel. If
the channel has not been translated to the requested locale, the reference keys for the non-translated
resources will be returned instead. This method could return a NULL object if no channel matches the
requested reference key.

* public List<ContentChannelITO> getContentChannelsByLocale(String localecode) -This
method returns all of the channels in the repository using the specified locale code. This array can be
NULL if there are no channels available in the repository.

* public boolean hasFiles(String channelrefkey) - This method is used to determine if the content
channel definition associated with the reference key has any attributes that are of type FILE.

e public List<XMLSchemaAttributelTO> getChannelSchema (String channelrefkey) - This
method returns all of the attributes defined for the specified content channel. The
XMLSchemaAttributelTO contains the properties for a single attribute of the channel.

|IQContentRecordRequest

The IQContentRecordRequest object is obtained from the IQServiceClient by executing the following code to
obtain a reference to the IQServiceClient from the IQServiceClientManager. The IQServiceClientManager is a
static class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQContentRecordRequest object. This same pattern is
used to obtain an IQxxxRequest in general for all requests.

1QServiceClient client = 1QServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQContentRecordRequest request = client.getContentRecordRequest();

The IQContentRecordRequest is the primary gateway for working with content records from the IM repository.
An IM content record has a number of relationships to other data that capture the categories, user groups,
and other important attributes of the document. The ContentRecordITO objects are a denormalized view of all
of the relationships embedded in the business logic of an IM content record. In general an IM content record
can exist in one of two states: in development or published. The content channel definition will determine the
behavior of its children documents.

A document that is under development may be made available to users through the InQuira Search engine if
the latest version or draft states of the document are crawled and indexed. The IM JSP tag library also
provides a mechanism to allow the display of non-published versions of a document. By default only the
published versions of the document are available to consumers of the content.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 25 INQUIRA.M

IQCONTENTRECORDREQUEST

If a content channel has a workflow assigned to it, then each change to the document will potentially move the
document through a workflow and increment the minor version number. Initially the document would be
created as version 0.1. Once the document has completed the workflow it's major version will be incremented
to the next highest integer and its minor version set to 0. The first published version of a document will be
version 1.0. It is possible for a document to complete the workflow but not be published. There are properties
available in the channel definition to determine if/when a change will affect workflow.

For content channels without a workflow defined the initial version of the document is 1.0. Each version of a
document in a channel without workflow only increments the major version number each time the document is
saved.

Content records can be secured from non-authenticated users by setting the user group on either a document
or an attribute within the document. Once a user group has been assigned to a document only authenticated
users will be able to view the document. If no user groups have been assigned to the document, all users will
be able to view the document.

Related ITOs

The IQContentRecordRequest utilizes the ContentRecord%MODE%ITO classes as both parameters and
return types. Choosing the correct method is important to ensure that a performance penalty is not
unnecessarily incurred.

The ContentRecordKeyITO is the lightest weight object available. It provides the recordid of the content
record. It can be used as a parameter or returned by one of the get() methods. This object does NOT contain
any other data or relationships. Where possible use methods that utilize the KeyITO object.

The ContentRecordDatalTO inherits from ContentRecordKeyITO . It adds the additional properties from the
CONTENTTEXT table as data with get/set methods for each property. This is also a lightweight object that
only requires a single database fetch to populate.

The ContentRecordExtendedITO inherits from ContentRecordDatalTO . It adds the to-one relationships of a
CONTENTTEXT database table to the ContentRecordDatalTO. An example of a to-one relationship is the
XML for the content record (stored in the CONTENTDATA table). This ITO requires multiple fetches or joins to
return the related data.

The ContentRecordITO (a full ITO) can be a VERY HEAVYWEIGHT object and methods that use or return it
should be avoided as much as possible. It extends the ContentRecordExtendedITO but also adds data from
all of the relationships to the CONTENTTEXT (or CONTENTTEXTPUB for published documents) table as
well. This object can become very large in repositories with large amounts of content.

Methods that require a CONTENTID need either the RECORDID from the CONTENT table or the
CONTENTID from the CONTENTTEXT or CONTENTTEXTPUB tables. This value is a GUID formatted
string. Methods that need a DOCID can use the numeric value of the document prefaced by the channel-
defined prefix - i.e. SOL1234. The locale code values are in the form en_US (language code_location code).
Methods that specify a locale code will return the localized version of the content record. If the content record
has not been translated to the requested locale a NO_DATA FOUND exception will be raised in the EWR.

The master document is typically the original locale that the document was created in. All of the translated
documents are based off of the master document. If the master document is changed, it can trigger
notifications to the translated document owners to update their version of the document.

Unless specified in the method name, the default behavior for these methods does NOT increment the view
count of a document. Typically only methods that return a single document will be able to increment the view
count for the document and to affect the underlying user reputation model.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 26 INQUIRA.M

IQCONTENTRECORDREQUEST

There are methods that return single objects or lists. The single objects or lists can be of one of the defined
types: ContentRecordKeylTO, ContentRecordDatalTO, ContentRecordExtendedITO, or ContentRecordITO.
Typically the methods that return lists of objects return lists of ContentRecordDatalTO objects.

The methods that return lists of records typically take a number of parameters most of which are optional. The
more parameters that are provided, the more the result set is filtered. In general, the channel reference key is
the only required parameter. If no localecode is specified, the default repository locale is used. The getXXX
methods do not make any security evaluations on the fetch other than the parameters provided. If a user does
not have the correct security roles or user groups associated with their user account, the user will not be able
to view the returned documents.

Note: Some methods provide a maxrecords parameter. If the maxrecords parameter is NOT specified, the
default value of 100 records will be used to limit the result set.

Note: Some methods provide an activityType parameter for fetching single documents. The activityType is
a string that is passed to IM analytics and must be set if the IM Popular Content and Accessed Content
reports are going to be used. Failure to set the activityType will result in reports that do not provide any
detailed usage scenarios.

The methods that use dates as parameters typically use java.util.Date typed objects (or their platform specific
equivalents). The time portion of the datatype is typically not used when fetching content based on date.

The com.inquira.im.enums.ContentRecordDateRangeFilterMode class provides 2 enumerations:

e VALIDATE_DISPLAY_START_DATE_IN_RANGE - This filter mode ensures that the content record display
start date (only) is valid.

» VALIDATE_DISPLAY_DATES_IN_RANGE - This filter mode ensures that both the start and end dates are in
range based on the current date.

The com.inquira.im.enums.ContentRecordSortField class is used to specify how the list of returned records is
sorted. The methods that use the ContentRecordSortField enumeration are sorted according to the boolean
ascending parameter. If ascending is set to TRUE, all of the items in the ContentRecordSortField list are
sorted in ascending order. The same sort direction is applied to all sort fields specified in the list of sort
criteria. For example, if ascending is set to TRUE using INDEXMASTERIDENTIFIERS and PRIORITY then
the SQL clause will be generated similarly to

6§5ER BY INDEXMASTERIDENTIFIERS ASCENDING, PRIORITY ASCENDING

The order of the sort fields in the list will be used to generate the SQL ORDER BY clause. The valid choices
for the ContentRecordSortField enumeration are:

e INDEXMASTERIDENTIFIERS
* PRIORITY

* PUBLISHEDDATE

* DATEADDED

e DATEMODIFIED

* CREATEDATE

* DISPLAYENDDATE

* DISPLAYSTARTDATE
* EVENTENDDATE

e EVENTSTARTDATE

* DOCUMENTID

* MOSTPOPULAR

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 27 INQUIRA.M

IQCONTENTRECORDREQUEST

Methods to Retrieve Latest Versions of Documents

This family of methods provides convenience methods to retrieve one or more IM documents from the IM
repository. The latest version of an IM document may be newer than the version that is currently published.
The latest version may not be published yet (still in workflow). The latest version of the document may not
have the same category or user groups assigned to it as compared to the currently published version.

Methods that Return Single Objects

public ContentRecordKeylTO
getlLatestMasterContentRecordKeyByContentlD(String contentid);

public ContentRecordKeylTO
getLatestMasterContentRecordKeyByDocumentID(String docid);

public ContentRecordKeylTO
getLatestContentRecordKeyByContentlDAndLocale(String contentid,
String localecode);

public ContentRecordKeylTO
getLatestContentRecordKeyByDocumentlDAndLocale(String docid, String localecode);

public ContentRecordITO
getLatestContentRecordByContentlDAndLocale(String contentid, String localecode);

public ContentRecordITO getLatestContentRecordByContentlDAndLocaleAndIncrementView-
Count(String contentid, String locale);

public ContentRecordITO
getLatestContentRecordByContentlDAndLocaleAndIncrementViewCount(String contentid,
String locale, String activityType);

public ContentRecordITO
getLatestContentRecordByDocumentlDAndLocale(String docid, String localecode);

public ContentRecordITO
getLatestContentRecordByDocumentlDAndLocaleAndIncrementViewCount(String docid, String
localecode);

public ContentRecordITO
getLatestContentRecordByDocumentlDAndLocaleAndIncrementViewCount(String docid, String
localecode, String activityType);

Methods that Return Lists of Objects

public List<ContentRecordDatalTO> getLatestContentRecordDatalTOs (
String channelrefkey,

String localecode,

boolean displayDatesValidNow,

Date startDate,

Date endDate,
ContentRecordDateRangeFi lterMode mode,
List<String> viewrefkey,

Boolean useHierarchicalCategories,
List<String> categoryrefkey,
List<String> usergrouprefkey,
List<String> caselLinkCaseValues,

int maxrecords);

public List<ContentRecordDatalTO> getLatestContentRecordDatal TOsByContentlDs
(List<String> contentids, String localecode, int maxrecords);

public List<ContentRecordDatalTO> getLatestSortedContentRecordDatalTOs(
String channelrefkey,

String String localecode,

boolean displayDatesValidNow,

Date startDate,

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 28 INQUIRA.M

IQCONTENTRECORDREQUEST

Date endDate,
ContentRecordDateRangeFi lterMode mode,
Date updateSinceDate,

List<String> viewrefkey,

Boolean useHierarchicalCategories,
List<String> categoryrefkey,
List<String> usergrouprefkey,
List<String> caseLinkCaseValues,
boolean ascending,
List<ContentRecordSortField> orderings,
int maxrecords);

public List<ContentRecordData>
getLatestSortedContentRecordDatal TOsByContentlDs(List<String> contentids, String
localecode, int maxrecords, boolean ascending, List<ContentRecordSortField> orderings);

public List<ContentRecordDatalTO>
getLatestContentRecordDatal TOsByDocumentlDs (List<String> docids, String localecode, iInt
maxrecords);

public List<ContentRecordDatalTO>

getlLatestSortedContentRecordDatal TOsByDocumentIDs(List<String> docids, String
localecode, int maxrecords, boolean ascending,

List<ContentRecordSortField> orderings);

Methods to Retrieve Published Versions of Documents

This family of methods is used to return only published documents. When a document is published the
current set of categories and user groups is captured and stored with the published document. It is possible to
have a master document published but none or some of the translated versions of the document. Currently
there can only be a single version of a published document published, i.e. If version 3.0 is published, version
2.0 is removed.

A published document may not be the latest version of the document. The latest version could still be in
workflow or it may not yet be published. A document can be published but still may not be viewable by a user
who has permission to view the specific document if the start and end dates of a document are being
enforced (the default behavior). If a document is published but the start or end dates of the document fall
outside of the current date - the user will not be able to view the details of the document.

Methods that Return Single Objects

public ContentRecordKeylTO
getPublishedContentRecordKeyByContentlDAndLocale(String contentid, String localeid);

public ContentRecordKeylTO
getPublishedContentRecordKeyByDocumentiDAndLocale(String docid, String localecode);

public ContentRecordKeylTO
getPublishedContentRecordKeyByDocumentIDAndLocale(String docid, String localecode,
String activityType);

public ContentRecordITO getPublishedContentRecordByContentIDAndLocale(String contentid,
String localecode);

public ContentRecordITO
getPublishedContentRecordByContentlDAndLocaleAndIncrementViewCount(String contentid,
String localecode, String activitytype);

public ContentRecordITO
getPublishedContentRecordByDocumentIDAndLocale(String docid, String localecode);

public ContentRecordITO
getPublishedContentRecordByDocumentiDAndLocaleAndIncrementViewCount(String docid,
String localecode, String activitytype);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 29 INQUIRA.M

IQCONTENTRECORDREQUEST

Methods that Return Lists of Objects

public List<ContentRecordDatalTO> getPublishedContentRecordDatal TOs(
String channelrefkey,

String localecode,

boolean displayDatesValidNow,

Date startDate,

Date endDate,
ContentRecordDateRangeFi lterMode mode,
Date, updateSinceDate,

List<String> viewrefkey,

Boolean useHierarchicalCategories,
List<String> categoryrefkey,
List<String> usergrouprefkey,
List<String> caselLinkCaseValues,

int maxrecords);

public List<ContentRecordDatatlTO>
getPublishedContentRecordDatal TOsByContentlDs (List<String> contentids,
String localecode, Int maxrecords);

public List<ContentRecordDatalTO>
getPublishedSortedContentRecordDatalTOs (
String channelrefkey,

String String localecode,

boolean displayDatesValidNow,

Date startDate,

Date endDate,
ContentRecordDateRangeFi lterMode mode,
Date updateSinceDate,

List<String> viewrefkey,

Boolean useHierarchicalCategories,
List<String> categoryrefkey,
List<String> usergrouprefkey,
List<String> caselLinkCaseValues,
boolean ascending,
List<ContentRecordSortField> orderings,
int maxrecords);

public List<ContentRecordDatalTO>
getPublishedSortedContentRecordDatal TOsForFilterTerm(
String channelrefkey,

String String localecode,

boolean displayDatesValidNow,

Date startDate,

Date endDate,
ContentRecordDateRangeFi lterMode mode,
Date updateSinceDate,

List<String> viewrefkey,

Boolean useHierarchicalCategories,
List<String> categoryrefkey,
List<String> usergrouprefkey,
List<String> caselLinkCaseValues,
boolean ascending,
List<ContentRecordSortField> orderings,
int maxrecords);

public List<ContentRecordDatalTO>
getPublishedSortedContentRecordDatal TOsByContentIDs(List<String> contentids, String
localecode, int maxrecords, boolean ascending, List<ContentRecordSortField> orderings);

public List<ContentRecordDatalTO>
getPublishedContentRecordDatal TOsByDocumentlIDs(List<String> docids, String localecode,
int maxrecords);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 30 INQUIRA.M

IQCONTENTRECORDREQUEST

public List<ContentRecordDatalT0)>
getPublishedSortedContentRecordDatal TOsByDocumentIDs(List<String> docids, String
localecode, int maxrecords, boolean ascending, List<ContentRecordSortField> orderings);

Content Record Case Link Methods

This family of methods returns lists of CaseLinkxxxITO objects. The FULL mode returns CaseLinkITO
objects, the DATA mode returns CaseLinkDatalTO objects, and the KEY mode returns CaselLinkKeyITO
objects. These methods are used to get more information about the case links associated with a content
record.

public CaseLinklTO getCaseLinklTOList(ContentRecordKeylTO content, int maxrows);
public CaseLinkDatalTO getCaselLinkDatal TOList(ContentRecordKeylTO content, int maxrows);
public CaseLinkKeylTO getCaseLinkKeylTOList(ContentRecordKeylTO content, int maxrows);

Content Record Methods that Create or Modify Data

This family of methods performs some type of action on a content record. These actions are checked for
security based on the security roles assigned to the user executing the methods. These methods can cause
inbox tasks to be generated and notifications to be sent.

WORKFLOW METHODS

The following methods are used to push content records through the workflow process defined for the content
channel. The approve and reject methods can only approve or reject to the next sequential step in the
workflow (i.e. these methods can't skip steps either forward or backward). There is no feedback from the
approve or reject methods that indicates whether the workflow has been completed. Adding a comment to a
document in workflow does not advance the workflow step. There currently is no provision to specify which
step the workflow is being approved to or rejected back to. The next step or previous step will be set based on
any defined workflow step conditions (if any). If none are defined, then the next sequential step defined in the
workflow is used.

public boolean approve(ContentRecordKeylTO contentito, String comments);
public boolean reject(ContentRecordKeylTO contentito, String comments);

public boolean addComment(ContentRecordKeylTO contentito, String comments);

CONTENT METHODS

These methods are used to create or modify content in the IM repository. The input parameter
(ContentRecordITO) contains the raw data that will be used to create or modify the content records. A
ContentRecordITO has numerous values such as dateadded, datemodifed, documentid, contentid, etc. that
are ignored if they are provided while creating content. In a similar manner, changing attributes such as
documentid and locale is not permitted while modifying content. In most cases the methods will simply ignore
values that are provided and should not be changed; no warnings or errors will be raised by the methods.

The ContentRecordITO is a very heavy weight object that could contain a large amount of data (case links,
categories, user groups, etc). The returned ContentRecordITO object from createContent(), modifyContent(),
translateContent() methods represent the changed data after the change has occurred.

Note: Methods that create, modify, or delete content are executed atomically. If deleteContent() is called on
a document, all localized versions and point releases of that document are deleted—including any of the
attached resources for that document.

The owner of a content record is the user to whom notifications are sent for workflow events.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 31 INQUIRA.M

IQLOCALEREQUEST

public ContentRecordITO createContent(ContentRecordITO contentito, boolean publish);
public ContentRecordITO modifyContent(ContentRecordITO content, boolean publish);
public boolean deleteContent(String contentid);

public ContentRecordlTO translateContent(ContentTranslationlTO translationlTO, Boolean
publish);

public boolean changeOwnerForDocumentID(String docid, UserKeylTO owner);

public boolean changeOwnerForContentRecord(ContentRecordKeylTO contentito, UserKeylTO
owner);

CASE LINKING METHODS

These methods are used to add and remove case links from content records. A case link is a reference to a
CRM case where the underlying IM document was linked to a CRM case. This is usually done from the CRM
Ul where InQuira products are integrated into the Ul. The typical workflow is that the CRM agent creates a
new support case while talking to a customer. While searching the knowledgebase to resolve a customer
issue, the CRM agent has the ability to link a specific knowledgebase article to the CRM case. This linkage is
important in understanding the value of a knowledgebase article—the more links an article accrues, the more
relevant and valuable the article becomes.

public boolean addCaseLinkList (ContentRecordKeylTO contentito, List<CaseLinkDatalTO>
links, List<Integer> incidents);

public CaseLinklTO createCaseLink(CaseLinklTO caselink, CaselLinkContentlTO
caselinkcontent, ContentRecordKeylTO contentito);

public CaseLinklTO deleteCaseLink(CaseLinklTO caselink, ContentRecordKeylTO
contentrecord);

|IQLocaleRequest

The IQLocaleRequest object is obtained from the 1QServiceClient by executing the following code to obtain a
reference to the IQServiceClient from the 1QServiceClientManager. The IQServiceClientManager is a static
class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQContentRecordRequest object. This same pattern is
used to obtain an IQxxxRequest in general for all requests.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQLocaleRecordRequest request = client.getLocaleRecordRequest();

An IM repository has a default locale assigned to it. If a locale is not provided as part of a method call, in many
cases the default locale for the repository is used. A repository can support multiple locales concurrently,
allowing users to create content in any supported locale.

Each IM locale includes information about the locale including the time and date format used to display
information, the required character encoding, and a flag that indicates which locale would be used as the
default locale if there is more than one locale defined for a given language (i.e. en_US, en_GB the group
default might be set as en_US for U.S customers).

Related ITOs

The IQLocaleRequest utilizes the LocaleKeylTO and LocalelTO classes as return types.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 32 INQUIRA.M

IQSECURITYROLEREQUEST

The LocaleKeyITO is the lightest weight object available. It provides the recordid of the LOCALE table record.
It can be used as a parameter or returned by one of the get() methods. This object does NOT contain any
other data or relationships. Where possible use methods that utilize the KeylTO object.

The LocalelTO inherits from LocaleKeyITO . It adds the additional properties from the LOCALE table as data
with get/set methods for each property. This is also a lightweight object that only requires a single database
fetch to populate. There are no embedded relationships included with this ITO.

public LocaleKeylTO getLocaleKeyBylLocaleCode(String localecode);

public LocaleKeylTO availableLocaleListForRepository(String repositoryrefkey);
public LocalelTO getLocaleByLocaleCode(String localecode);

public LocalelTO getRepositoryDefaultLocale(String repositoryrefkey);

public LocalelTO getSystemDefaultLocale();

public LocalelTO availableLocaleListForRepository(String repositoryrefkey);

|QSecurityRoleRequest

The 1QSecurityRoleRequest object is obtained from the 1QServiceClient by executing the following code to
obtain a reference to the IQServiceClient from the IQServiceClientManager. The IQServiceClientManager is a
static class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQSecurityRoleRequest object. This same pattern is
used to obtain an IQxxxRequest in general for all requests.

I1QServiceClient client = 1QServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
1QSecurityRoleRequest request = client.getSecurityRoleRequest();

The security roles in an IM repository are broadly split into 2 groups: Console roles and Web roles. Console
roles should only be assigned to users that need to access the IM management console for creating or
managing content or to administrators that are responsible for overall system maintenance activities.

Console based security roles are composed of a number of different components:
A list of permissions that enable access to the various menus within the IM management console
» A list of privileges assigned to the role for each content channel (add, edit, delete, translate, etc)
A list of data form results that the security role can access
« A list of workflow steps that the security role can approve
A list of user groups that the security role can access

Web-based security roles are composed only of the user groups to which the security role is allowed access.

A user can be assigned one or more security roles. The net security realm for a user is the sum total
collection of all permissions and privileges associated with all of the security roles assigned to the user.

Related ITOs

The 1QSecurityRoleRequest utilizes the SecurityRoleKeylTO, SecurityRoleDatalTO, and SecurityRolelTO
classes as return types. Some of the methods in this request also use UserKeylITO objects as input
parameters.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 33 INQUIRA.M

IQUSERGROUPREQUEST

The SecurityRoleKeyITO is the lightest weight object available. It provides the recordid and reference key
from the SECURITYROLE table.

The SecurityRoleDatalTO inherits from SecurityRoleKeyITO . It adds the additional properties from the
SECURITYROLE table as data and has get/set methods for each property. This is also a lightweight object
that only requires a single database fetch to populate. There are no embedded relationships included with
this ITO.

The SecurityRolelTO inherits from SecurityRoleDatalTO . It adds the additional properties and relationships
from the SECURITYROLE table as data with get/set methods for each property. This ITO can return a large
amount of data if there are a lot of users in the system assigned to a specific security role , such as when all
users in a system are assigned to the 'guest' user role.

The UserKeyITO contains the recordid from the USERINFORMATION table. This is a very lightweight object
representing a user in the IM repository. This user can be either a console user or a web user.

public List<SecurityRoleKeylTO>
getSecurityRoleKeysForRepository(String repositoryrefkey, int fetchlimit);

public List<SecurityRoleKeylTO>
getSecurityRoleKeysForUser(UserkKeylITO user);

public List<SecurityRoleDatalTO>
getSecurityRoleDatasForRepository(String repositoryrefkey, int fetchlimit);

public List<SecurityRoleDatalTO>
getSecurityRoleDatasForUser(UserKeylITO user);

public List<SecurityRolelTO>
getSecurityRolesForRepository(String repositoryrefkey, int fetchlimit);

public List<SecurityRolelTO>
getSecurityRolesForUser(UserKeylITO user);

|QUserGroupRequest

The IQUserGroupRequest object is obtained from the IQServiceClient by executing the following code to
obtain a reference to the IQServiceClient from the IQServiceClientManager. The 1QServiceClientManager is a
static class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQUserGroupRequest object. This same pattern is
used to obtain an IQxxxRequest in general for all requests.

1QServiceClient client = 1QServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQUserGroupRequest request = client._getUserGroupRequest();

By default, user groups are defined at the Repository level. User groups can be assigned to one or more
Repository Views. Assigning a user group to a view is typically done when Views represent a department or
business unit and the content authors need to create content targeted for a specific group of users to utilize.
The list of User Groups assigned to a View is used to filter the choices available to the content author when
creating or editing a record.

User groups can be assigned to channels. Assigning a user group to a channel is used to filter the list of user
groups that can be assigned to a content record. When user groups are assigned to both channels and views,
the list of available user groups that can be assigned to a content record is filtered first by list assigned to the
View and then by the list of user groups assigned to the Channel.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 34 INQUIRA.M

IQUSERREQUEST

Related ITOs

The IQUserGroupRequest utilizes the UserGroupKeyITO, UserGroupDatalTO, and UserGroupITO classes
as return types.

The UserGroupKeyITO is the lightest weight object available. It provides the recordid and reference key from
the TAG table. The TAG table contains both categories and user group information. The UserGroupxxx
objects represent the security required to access the document in the runtime environment.

The UserGroupDatalTO inherits from UserGroupKeyITO. It adds the additional properties from the TAG table
as data with get/set methods for each property. This is also a lightweight object that only requires a single
database fetch to populate. There are no embedded relationships included with this ITO.

The UserGrouplITO inherits from UserGroupDatalTO. It adds the additional properties and relationships from
the TAG table as data with get/set methods for each property. This ITO can return a large amount of data if
there are a lot of user groups in the system.

The primary difference between the available methods is the type of objects they return. Where possible it is
usually a better choice to utilize the xxxKeylTO objects.

public List<UserGroupKeyIlTO>
getUserGroupKeyListForView(String viewrefkey, int fetchlimit);

public List<UserGroupKeyIlTO>
getAl lowedUserGroupKeyListForChannel (String channelrefkey, int fetchlimit);

public List<UserGroupDatalTO>
getAllowedUserGroupDatalL istForChannel (String channelrefkey, int fetchlimit);

public List<UserGroupDatalTO>
getUserGroupDataListForView(String viewrefkey, int fetchlimit);

public List<UserGrouplTO>
getUserGroupListForView(String viewrefkey, int fetchlimit);

|QUserRequest

The IQUserRequest object is obtained from the IQServiceClient by executing the following code to obtain a
reference to the 1QServiceClient from the 1QServiceClientManager. The IQServiceClientManager is a static
class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQUserRequest object. This same pattern is used to
obtain an IQxxxRequest in general for all requests.

1QServiceClient client = 1QServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQUserRequest request = client._getUserRequest();

The IQUserRequest is the primary interface to methods that allow access to the IM user records. Users in IM
are divided into two broad categories: Console users and Web Users. Console users are users that have
permission to access the IM management console. Console users typically include content authors,
administrators, and system support personnel. Web users can access content created in the IM repository but
do not have any permissions to access the IM management console or to maintain the IM repository. Web
users are typically customers, employees, or partners that access the knowledge base.

Console users can be assigned one or more IM security roles.

Console users can be grouped into workteams. Workteams are used to simplify task assignment.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 35 INQUIRA.M

IQUSERREQUEST

An IM repository can be configured to support a user reputation model. The reputation model is used to
reward console users for performing activities that are beneficial to the company, such as creating knowledge
articles that are highly rated by users or used to resolve customer support cases.

Related ITOs

The IQUserRequest utilizes the UserKeyITO, UserDatalTO, and UserITO classes as return types. This
request also utilizes a number of other ITO objects as input parameters for some of its methods.

The UserKeyITO is the lightest weight object available. It provides the RECORDID from the
USERINFORMATION table. The USERINFORMATION table contains all of the relevant user information and
demographic data that IM collects.

The UserDatalTO inherits from UserKeyITO. It adds the additional properties from the USERINFORMATION
table as data and has get/set methods for each property. This is also a lightweight object that only requires a
single database fetch to populate. There are no embedded relationships included with this ITO.

The UserlTO inherits from UserDatalTO. It adds the additional properties and relationships from the
USERINFORMATION table as data with get/set methods for each property. This ITO can return a large
amount of data if there is a lot of user related data in the system.

Additional ITOs used as input parameters:

SecurityRoleKeyITO - This ITO represents the security role assigned to a user.

ViewKeyITO - This ITO represents the view to which the user is assigned
» WorkTeamKeyITO - This ITO represents the workteam the user is assigned to

» ReputationLevellTO, ReputationLevelDatalTO, ReputationLevelKeylTO - This family of ITO objects
represents the reputation level information for the specified user.

Methods that Change User Information

This family of methods can be used to redefine a user or to manage a user. Methods that use a UserlTO as
an input parameter (createUser() and updateUser()) will take the values passed in and either create or modify
the existing attributes of the user with the new data. The returned UserlTO object should reflect the new
changes to the user.

public UserlITO createUser(UserlTO user);

public UserlITO updateUser(UserlTO user);

public boolean deleteUser(String login);

public boolean lockUser(String login);

public boolean unlockUser(String login);

public boolean addUserReputationPoints(String login, int points);

public boolean addUsersToRole(SecurityRoleKeylTO role, List<UserKeylTO> users);
public boolean addUsersToView(ViewKeylTO view, List<UserKeylT0>);

public boolean addUsersToWorkTeam(WorkTeamKeylTO workteam, List<UserKeylTO0>);

public boolean removeUsersFromRole(SecurityRoleKeylTO role, List<UserKeylTO> users);

public boolean removeUsersFromWorkTeam(WorkTeamlTO workteam, List<UserKeylTO> users);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 36 INQUIRA.M

IQVIEWREQUEST

Methods that Return Information about Users

This family of methods is used to return information about one or more users. These methods are typically
used when searching for a specific user or a group of users matching a set of criteria.

public boolean isEmailDuplicate(String email, String repositoryrefkey);
public boolean isUserlDTaken(String login, String repositoryrefkey);
public UserKeylTO getUserKeyByLogin(String login);

public UserKeylTO getUserKeyByID(String guid);

public UserDatalTO getUserDataByLogin(Stringlogin);

public UserDatalTO getUserDataForlID(String guid);

public UserlITO getUserByLogin(String login);

public UserlITO getUserForID(String guid);

public UserlTO getUserForLoginAndPassword(String login, String password);
public ReputationLevellITO getUserReputation(String login);

public ReputationLevelDatalTO getUserReputationData(String login);

public ReputationLevelKeylTO getUserReputationKey(String login);

public List<UserKeylTO> userKeyListByEmail(String email, int fetchlimit);

public List<UserKeylTO> userKeyListBySkills(List<String> categoryrefkey, int
fetchlimit);

public List<UserKeylTO> userListKeyBylLoginArray(List<String> logins);
public List<UserDatalTO> userListDataByLoginArray(List<String> logins);
public List<UserDatalTO> userDataListByEmail(String email, int fetchlimit);

public List<UserDatalTO> userDatalListBySkills(List<String> categoryrefkey, int
fetchlimit);

public List<UserlITO> userListByEmail(String email, int fetchlimit);
public List<UserlITO> userListByLoginArray(List<String> logins);
public List<UserlITO> userListBySkills(List<String> categoryrefkeys, int fetchlimit);

public List<UserlITO> usersForRole(String repositoryrefkey, String rolerefkey, int
fetchlimit);

public List<UserITO> usersForView(String viewrefkey, int fetchlimit);

public List<UserlITO> usersForWorkTeam(String workteamrefkey, int fetchlimit);

|IQViewRequest

The IQViewRequest object is obtained from the 1QServiceClient by executing the following code to obtain a
reference to the IQServiceClient from the 1QServiceClientManager. The IQServiceClientManager is a static
class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQViewRequest object. This same pattern is used to
obtain an 1QxxxRequest in general for all requests.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQViewRequest request = client._getViewRequest();

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 37 INQUIRA.M

IQVIEWREQUEST

The IQViewRequest is the primary service entry point for programmers to work with IM repository views. A
repository view is a subset of an IM repository. The data for a View is stored in the SITE table in the IM
database schema. The primary difference between a repository and a view in the SITE table is that a view
has a parent whereas a repository object does not.

Related ITOs

The IQViewRequest utilizes the ViewKeyITO, ViewDatalTO, and ViewlITO classes as return types. This
request also utilizes a number of other ITO objects as input parameters to some of its methods.

The ViewKeyITO is the lightest weight object available. It provides the RECORDID and REFERENCEKEY
from the SITE table.

The ViewDatalTO inherits from ViewKeyITO. It adds the additional properties from the SITE table as data and
has get/set methods for each property. This is also a lightweight object that only requires a single database
fetch to populate. There are no embedded relationships included with this ITO.

The ViewlTO inherits from ViewDatalTO. It adds the additional properties and relationships from the SITE
table as data and has get/set methods for each property. This ITO can return a large amount of data if there is
a lot of user or content related data in the system for the specified view.

Additional ITOs used as input parameters:

» UserKeylTO, UserlITO - These objects represent the users associated with the specified ViewlITO,

Methods that Change View Information

This family of methods is used to modify information contained in a view or relationships associated with a
view. If a view is removed from a repository, all of the content that was assigned to the view will be re-
assigned to the root repository.

public boolean addUsersToView(ViewKeylTO view, List<UserlITO> users);
public boolean addViewsToParent(ViewKeylTO parentview, List<ViewlTO> views);
public boolean removeUsersFromView(ViewKeylTO view, List<UserKeylTO> users);

public boolean removeViewsFromParent(ViewKeylTO parentview, List<ViewKeylITO> views);

Methods that Return Information about Views

This family of methods is used to return information about a view or a list of views based on filter criteria.
public ViewKeylTO getViewKeyByReferenceKey(String viewrefkey);
public ViewDatalTO getViewDataByReferenceKey(String viewrefkey);
public ViewlTO getViewByReferenceKey(String viewrefkey);

public List<ViewKeylTO> getViewKeysForParentView(String parentviewrefkey, int
fetchlimit);

public List<ViewKeylTO> getViewKeysForRepository(String repositoryrefkey, int
fetchlimit);

public List<ViewKeylTO> getViewKeysForUser(UserKeylTO user, int fetchlimit);

public List<ViewDatalTO> getViewDatasForParentView(String parentviewrefkey, int
fetchlimit);

public List<ViewDatalTO> getViewDatasForRepository(String repositoryrefkey, int
fetchlimit);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 38 INQUIRA.M

IQWORKTEAMREQUEST

public List<ViewDatalTO> getViewDatasForUser(UserKeylTO user, int fetchlimit);
public List<ViewlTO> getViewsForParentView(String parentviewrefkey, int fetchlimit);
public List<ViewlTO> getViewsForRepository(String repositoryrefkey, int fetchlimit);
public List<ViewlTO> getViewsForUser(UserKeylTO user, int fetchlimit);

IQWorkTeamRequest

The IQWorkTeamRequest object is obtained from the IQServiceClient by executing the following code to
obtain a reference to the IQServiceClient from the IQServiceClientManager. The IQServiceClientManager is a
static class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQWorkTeamRequest object. This same pattern is used
to obtain an 1QxxxRequest in general for all requests.

1QServiceClient client = 1QServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQWorkTeamRequest request = client.getWorkTeamRequest();

Workteams are used when there are multiple content authors that can share similar responsibilities in terms
of completing tasks in the inbox of the IM management console. If workteams are used, the assignment of
tasks can be greatly simplified and reduce the amount of manual intervention required to assign tasks to
users.

Workteams can be used as part of the conditional workflow evaluation process. Users can be part of zero or
more workteams.

Related ITOs

The IQWorkTeamRequest utilizes the WorkTeamKeyITO, WorkTeamDatalTO, and WorkTeamITO classes as
return types.

The WorkTeamKeyITO is the lightest weight object available. It provides the RECORDID and
REFERENCEKEY from the WORKTEAM table.

The WorkTeamDatalTO inherits from WorkTeamKeyITO. It adds the additional properties from the
WORKTEAM table as data and has get/set methods for each property. This is also a lightweight object that
only requires a single database fetch to populate. There are no embedded relationships included with this
ITO.

The WorkTeamITO inherits from WorkTeamDatalTO. It adds the additional properties and relationships from
the WORKTEAM table as data and has get/set methods for each property. This ITO can return a large
amount of data if there is a lot of user or content related data in the system for the specified workteam.

public List<WorkTeamKeylTO> workTeamListKeyForRepository(String repositoryrefkey, int
fetchlimit);

public List<WorkTeamDatalTO> workTeamListDataForRepository(String repositoryrefkey, int
fetchlimit);

public List<WorkTeamlTO> workTeamListForRepository(String repositoryrefkey, int
fetchlimit);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 39 INQUIRA.M

IQCONTENTRECOMMENDATIONREQUEST

|QContentRecommendationRequest

The IQContentRecommendationRequest object is obtained from the IQServiceClient by executing the
following code to obtain a reference to the IQServiceClient from the IQServiceClientManager. The
IQServiceClientManager is a static class that can be accessed with the connect() method. The result of a
successful connection is a valid IQServiceClient object that can be used to retrieve an
IQContentRecommendationRequest object. This same pattern is used to obtain an IQxxxRequest in general
for all requests.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
1QContentRecommendationRequest request = client.getContentRecommendationRequest();

IM allows users to submit a recommendation to improve gaps in existing content articles or to suggest new
topics for inclusion in the knowledgebase. Once a content recommendation is submitted, workflow tasks are
generated and placed into the queue for someone to address. A content recommendation can be accepted,
and a new article can be generated (or an existing article can be updated) based on the recommendation.

The current client library service request only allows the retrieval of submitted recommendations.

Related ITOs

The IQContentRecommendationRequest utilizes the ContentRecommendationKeyITO,
ContentRecommendationDatalTO, and ContentRecommendationITO classes as return types.

The ContentRecommendationKeyITO is the lightest weight object available. It provides the RECORDID from
the CONTENTRECOMMENDATION table.

The ContentRecommendationDatalTO inherits from ContentRecommendationKeyITO. It adds the additional
properties from the CONTENTRECOMMENDATION table as data and has get/set methods for each property.
This is also a lightweight object that only requires a single database fetch to populate. There are no
embedded relationships included with this ITO.

The ContentRecommendationlTO inherits from ContentRecommendationDatalTO. It adds the additional
properties and relationships from the CONTENTRECOMMENDATION table as data and has get/set methods
for each property.
This service utilizes additional ITO objects as input parameters to several methods:

» CategoryKeyITO - This object represents a category associated with the content recommendation.

* RepositoryKeylITO - This object represents the repository associated with the content recommendation.

» ContentChannelKeylTO - This object represents the channel associated with the content
recommendation.

public List<ContentRecommendationKeylTO>
getContentRecommendationKeyListForChannel (String channelrefkey, int fetchlimit);

public List<ContentRecommendationDatalTO>
getContentRecommendationDatalListForChannel (String channelrefkey, int fetchlimit);

public List<ContentRecommendationlTO> getContentRecommendationListForChannel (String
channelrefkey, int fetchlimit);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 40 INQUIRA.M

IQRATINGREQUEST

|QRatingRequest

The IQRatingRequest object is obtained from the 1QServiceClient by executing the following code to obtain a
reference to the IQServiceClient from the 1QServiceClientManager. The IQServiceClientManager is a static
class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQRatingRequest object. This same pattern is used to
obtain an 1QxxxRequest in general for all requests.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos, imurl,
searchUrl, throwExceptionOnError);
IQRatingRequest request = client.getRatingRequest();

IM provides the ability to rate content and discussion forums. Each rating can be composed of one or more
questions. Each question can have one or more answers (i.e. a multi-select listbox, checkboxes, radio
buttons, textboxes) associated with each question. The definition of the survey/rating is stored in the
SURVEY, SURVEYQUESTION, and SURVEYANSWER tables in the IM database schema.

When a user submits a rating against a discussion topic or a content record, the results are stored in the
SURVEYRESULTS and SURVEYRESULTSDETAIL tables. Each question that is answered is recorded in the
SURVEYRESULTSDETAIL table. The SURVEYRESULT table captures who submitted the survey and when.

Most implementations try to avoid allowing users to submit a survey response more than time. There is a
method available to validate whether the user has already submitted a response.

In some Ul implementations, there may be a link provided to the user to see the average rating or number of
ratings submitted. This information is aggregated and can be returned in the AggregateFormResultsITO
object. The list of individual responses can also be returned in the FormResultsITO object.

Note: Itis quite possible for a busy site to have a large number of ratings submitted for a specific
document. Where possible use the fetchlimit argument to limit the amount of data being returned from the

query.

Related ITOs

The IQRatingRequest utilizes the RatinglTO, FormResultsITO, and AggregateFormResultsITO classes as
return types.

The RatingITO represents the definition of a rating. This information is stored in the SURVEY table in the IM
database schema.

The FormResultsITO represents an answer submitted for a specific rating/survey by a single user. The
FormResultsITO contains references to the answers for each question in the survey.

The AggregateFormResultsITO represents a summarized view of the submitted responses for a specific
survey or rating.

public boolean hasUserRatedContent(String docid, String userlogin);

public boolean rateContent(String docid, FormResultslITO rating);

public RatinglTO getRatingDefinition(String surveyrefkey);

public RatinglTO getRatingDefinition(String surveyrefkey, String localecode);

public RatinglTO getContentRatingDefinition(String docid);

public List<FormResultsITO> getDetai lContentRatingResults(String docid, int fetchlimit);

public AggregateFormResultsITO getAggregateContentRatingResults(String docid);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 41 INQUIRA.M

IQSERVICECLIENT

CHAPTER 5

Intelligent Search API Overview

The InQuira Intelligent Search client library provides a wrapper around the existing SOAP based interfaces
deployed as part of the Search runtime software. The Search client library has been designed to abstract the
remote procedure calls necessary to use the SOAP interfaces and to simplify the management of state based
data between calls to the services.

At a high level the Search APl is broken into 3 broad categories of methods: Question answering/processing
methods, Contact Center interaction methods, and Process Wizard interactions.

Most of the Search API methods return a GIML object. The GIML (Graphical Interface XML) object describes
the result set that is returned. The contents of the GIML will vary based on the APl method being called.

The first method that needs to be called after the login() call is the initialScreen(). This method initializes the
search session and provides a context for subsequent calls to the Search runtime.

In order to maintain the correct order of events within a session a transaction ID is generated with each
response GIML. It is necessary to pass the transaction ID from the previous method call as a parameter
(priorTransactionid) to subsequent method calls to ensure that the correct order of activity is properly
recorded for the Analytic reports.

|QServiceClient

The IQServiceClient object has several methods available in it that pertain to the Search APl and are ignored
with the Information Manager API calls. These xxxInfo objects are used to set parameters that can be
accessed by the search runtime engine while evaluating the search behavior and language rules configured
for a customer's implementation.

» getCCAlInfo() - com.inquira.search.CCAInfo

* getClientinfo() - com.inquira.search.Clientinfo

» getSearchinfo() - com.inquira.search.Searchinfo
» getUserinfo() - com.inquira.search.UserInfo

To use the specific xxxInfo classes to set parameters that can added to the search request the following code
snippet illustrates the general procedure

I1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos,
imUrl, searchUrl, throw ExceptionOnError);
client_getSearchinfo().setResultLanguages(''en-US,de-DE,fr-FR');
client_getSearchinfo().setLanguage(''en-US™);

After setting the required parameters using the IQServiceClient - subsequent calls to the IQSearchRequest
service will utilize those parameters during the Search session to process each incoming request. The values
are persistent for the life of the 1QServiceClient or until they are reset.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 44 INQUIRA.M

IQSERVICECLIENT

SessionlD, Transactionl|D

The Search client library was designed to simplify the management of the search session and transaction
IDs. Prior to the client library framework, it was necessary to pass the transaction and session information as
part of the request. The Search Library framework stores this information in the Searchinfo object and passes
it along with each request without requiring any additional interaction.

The IQServiceClient provides a convenience method that can be used to retrieve the transaction ID from the
GIML after the response has been received.

The following code sample shows how to access the transaction ID and pass it to other search API calls:

IQSearchRequest iqSR = client.getSearchRequest();
//submit query
String query = "How do I play the piano?";
GIML answers = iqSR.askQuestion(query, true);
System.out.printIn(answers.toString());
int transactionlD = answers.transactionld;
//Define input variables for feedback - would normally get from the Ul
//transactionlD gets put into the URL as the priorTransactionlD
int priorTransactionlD= transactionlD;

Note: There are some differences between the Information Manager and Search API in terms of passing
parameters into the methods. IM typically uses arrays to pass in multiple values of the same parameter while
the Search API typically uses a comma separated string such as "en-US,de-DE,fr-FR". In addition, the
locale codes are formatted slightly differently between Search and Information Manager. Search uses a
format such as en-US, while Information Manager uses a format en_US.

CCAInfo
The CCAlnfo object contains parameters relating to the Call Center Adaptor functionality.
Parameter Description
Name Request type name, which defines the chain of handlers, used to process the specified

request. The value should be one of the request types specified in the #.xml.
For example: getCCAInfo() -setTypes('CCAGetPage™);

Connected This property is no longer in use as of 8.1.3.

Case Description Case summary description of the CRM case being linked. By default this is the question
used to return answers for the case.

ExtSolutionList Not used since 8.1.3. Kept for backward compatibility.

SRKey Service request case number.

System Configurable property that specifies the type of CRM system. This is configured in System
Manager.

Content IDs List of IM document IDs that would be linked to IM side for case links.

Answer solution list Used to replace ExtSolutionLlIst after 8.1.3. Each solution ID is in the format of

"answerid:docid" that identifies a specific answer document (answer id or docid are both
search terms) . The list of solution ids is separated by comma.

Types This property is no longer in use as of 8.1.3

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 45 INQUIRA.M

IQSERVICECLIENT

ClientInfo

The Clientinfo object contains parameters passed in from the client that include HTTP header information.
These values are initialized with each request via a helper class on the client library (not the server side).

They are not typically overridden. Context parameters that are passed into the search runtime are usually
sent via the request parameter map.

Parameter Description

agentAddress This is the original request URL as returned from HTTPRequest.getRequestURL()
method.

processorAddress This is the URL to the search runtime answering the search request. This is typically

extSessionID
referrer

cookies

address

host

request header map

request parameter map

request attribute map

passed in during the initial connect() call. This is the address of the inquiragw process.
This parameter contains the external session identifier - i.e. the JSESSIONID.

The HTTP request header field that allows the client to specify the address of the
resource from which the URI was obtained.

The map of the available cookies for the current HTTP request.
The remote address from which the request originated.
- The remote host name from which the request originated.

A map containing all of the request header values that were present in the original HTTP
request.

A map containing all of the available URI parameters passed in the HTTP request. This
parameter map can include security restrictions such as
agent.parameters.restriction.level .fooO=COLLECTIONS. inquira_web
or

agent.parameters.restriction.level .foo1=DOC_TYPES_HTML.

These parameters are passed along to the search runtime for processing.
A map containing all of the available HTTP request attributes.

The Clientinfo object can be used to pass along information that can be used with custom security plugins to
enforce IM user group restrictions. For example, the following code snippet sets some custom parameters,
IM.Restrict.View, IM.RestrictUserGroup, myCustomAttribute) in the Clientinfo object. The Clientinfo object is
automatically passed along with each search request (askQuestion) by the client library framework.

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos,
imUrl, searchUrl, throwExceptionOnError);

Map myMap = new Map(Q);

myMap .put(*"IM_Restrict.View", "SAMPLE._MYCOMPANY.ALL_OTHER™);
myMap.put("'IM_Restrict._UserGroup', "MYCOMPANY.EXTERNAL'™);
myMap .put(*'myCustomAttribute™, "A B _C");
client._getClientInfo().setRequestParameterMap(myMap);

client_getSearchRequest() -.askQuestion(*"How do I configure my router?", false);

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 46 INQUIRA.M

IQSERVICECLIENT

Searchinfo

The Searchinfo object contains parameters that are used by search runtime. The following values are
available:

Parameter Description

baseURL This parameter is used to replace the base URL on a per request basis. This parameter
is rarely overridden using the Searchlinfo class.

language This parameter is used to specify the language the question is being asked in. This

resultLanguages

domainGroup

navigationApplicationld

segment
querySource
uiMode
requestSource

subject

Session

transactionld

parameter can be changed for each request by resetting the Searchinfo.setLanguage().

This parameter is used to specify which languages are valid to return results in for the
specified question.

This parameter allows the domain group to be specified per Search request. A domain
group is a set of rules and concepts that are logically grouped together in the Dictionary.
If not specified a predefined domain group resolution protocol is used to determine the
correct domain group to use.

This parameter specifies the collection of facets that will be used for this request.

This parameter is passed thru to the analytics log. This parameter is only used to specify
the user segment that the request should be associated with.

This parameter is only used in analytics. If is used to group activities in the analytics
reports. This string usually represents some action the user took. i.e. SearchClickthru.

The Ul mode is not typically set by programmers. This parameter indicates whether this
is an initial request response or a search within a previous result set.

This parameter is not typically used or changed by programmers. Represents the URL
where the request came from.

If the domaingroup is not specified then the subject and language are looked up in a map
that helps resolve the required domain group to use for the search request. If there is not
a current mapping the default domain group is used instead.

Contains the session information. This parameter is not typically set manually—the client
library framework manages it automatically.

Contains the transaction ID for the last request. This parameter is not typically set
manually—the client library framework maintains it automatically.

Userinfo
The UserInfo object contains parameters that contain user specific related parameters. These parameters are
typically set after the IQServiceClient.connect() is called and the user has been authenticated.

Parameter Description

displayName

id The GUID from the USERINFORMATION table if the user has been authenticated from
Information Manager.

The display name (combination of first and last name).

login The user login ID.

repositoryRefKey The Information Manager repository reference key the user is associated with.

The default Information Manager repository view the user is associated with. If the user is
not assigned to a view the root repository is assumed.

defaultViewRefKey

This is the default locale the user is associated with. If the user does not have a default
locale assigned, the default locale of the repository is assumed.

defaultLocale

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 47 INQUIRAN

IQSEARCHREQUEST

Parameter (continued) Description (continued)

Principal This parameter represents the internal search user that has been authenticated. This is a
Java security principal class. Information Manager does not use it.

Domain This is the authentication realm that is being used to handle the user authentication tasks.
This is defined in System Manager currently.

Email This is the user's email address as provided by the user information data store. In the
case of an IM managed user this information is stored in the USERINFORMATION table
of the IM schema. For remote authentication schemes this information must be provided
by the remote data store.

attributeMap This map contains a listing of additional properties defined for a user. These can be user
preference variables or any other name value pairs.

SSOFieldMap This map contains a listing of the single sign on parameters returned from the SSO
authenticated page.

|IQSearchRequest

The IQSearchRequest object is obtained from the IQServiceClient by executing the following code to obtain a
reference to the 1QServiceClient from the 1QServiceClientManager. The IQServiceClientManager is a static
class that can be accessed with the connect() method. The result of a successful connection is a valid
IQServiceClient object that can be used to retrieve an IQSearchRequest object. This same pattern is used to
obtain an 1QxxxRequest in general for all requests.

The searchURL parameter is the location of where a Search runtime client SOAP gateway is deployed. This
is typically in the format:

http://<host>:8223/inquiragw/services/RequestProcessor

1QServiceClient client = IQServiceClientManager.connect(user, passwd, domain, repos,
imUrl, searchUrl, throwExceptionOnError);
IQSearchRequest request = client.getSearchRequest();

The IQSearchRequest is the primary entry point for accessing the search client library methods. The
IQSearchRequest provides a thin wrapper over the existing Search SOAP gateway methods. Currently, not
all of the methods available in the SOAP gateway are available through the Search client library.

GIML

The GIML object that is returned from the Search client library calls contains the same information as the
SOAP response from a Search query using tools like the IM JSP tag library or the default ui.jsp page supplied
with the Search runtime.

The GIML is an XML formatted string that contains nodes that represent the various portions of the result set
broken into the Search components defined in the Dictionary. Appendix 10 contains the XML schema used by
Information Manager to parse the GIML returned by the various search requests. The search results returned
from a search request are broken into sections called <PURPOSE> that indicate where the answer should be
displayed in the Ul. Answer purposes are categories to which you assign answer actions within Dictionary
rules. Answer purposes correspond to display characteristics defined in the user interface, enabling you to
establish consistent, focused, and targeted presentation for various types of application content, such as
general site information, online glossaries, promotional material, and site features, such as calculators and
other tools. The list of available PURPOSE types is configured in the #.xml file. Additional PURPOSE types
can be added if required.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 48 INQUIRA.M

IQSEARCHREQUEST

Default Answer Purposes

- Default Response :
Purpose Description Template Default Presentation
Answer Displays responses that directly address | Answer template In the Answer area of the
the user's question. response page
Act Displays links that provide actions that the |Act template In the Act Now portlet
user can take on the web site
Promote Displays cross-sell or up-sell Promote template In the Promotion template
advertisements for products related to the
intent of the question
Related Topic | Displays links to major topic categories Link To Category template | In the Related Topics
defined for the web site portlet
Define Displays links to terms used in the question | n/a
as well as similar content
Jump to Page | Displays content configured in the n/a
Dictionary for use with the direct page
display feature
Converse Displays conversational response intended | Converse template
for use with a virtual representative on the
response page
Feature Displays specific featured content from the | Feature Content template |In the Featured Content
Content web site that supplements the answers area of the page
Contact For use with the Contact Deflection feature | n/a

The InQuira Ul documentation refers to these regions on the page as portlets (not to be confused with JSR-
168 portlets). The following table describes the default answer portlets/templates provided with the initial
installation of InQuira Search.

Portlets Description

Promotion Use this portlet to display promotional information, such as cross-sell or up-sell
advertisements for products related to the intent of the question. You can configure
responses to include graphics as links to pages that contain more detailed information.

Act Now Use this portlet to display information about relevant activities that users can perform
immediately on the site. This portlet favors concise, imperative messages that compel
users to access beneficial features.

Learn More Use this portlet to display brief summaries of content areas that are relevant to the user's
question, such as tools and calculators.

Definition Use this portlet to display definitions of terms related to the user's question. This portal is
ideal for displaying existing glossary information adapted from various formats.

Feature Content Use this portlet to display more detailed information about relevant content areas and site
features, such as tools and calculators. The Feature Content portlet displays responses in
the lower portion of the answer area and not in a segregated box, which provides space for
more detailed information, such as graphical tools.

The general structure of the GIML response includes the list of request parameters listed at the top in the
<params> node. The <params> node is followed by a <responses> node which contains a <purpose> node
for each returned section of the search result page. The <responses> node is followed by a <facets> node
that contains the list of each facet identified for the search results.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 49 INQUIRAN

IQSEARCHREQUEST

There is a <purpose> node for each configured portlet that will be displayed in the Ul. Each <purpose> has
one or more <answer> nodes that contain each specific answer returned along with some meta data about
the answer (how to display it, highlighting info, URLS, etc) .

Appendix C shows a sample GIML response to a search request. The GIML response will vary based on the
type of search request being made, the parameters passed in, and the portlets configured in the search
configuration.

Question Answering Methods

This family of methods is used to answer questions and to process subsequent actions within the search
session. Each session MUST start with initialScreen() to initialize the Search session.

Methods that require a priorTransactionID field should obtain the transaction from the 1QServiceClient after
each call so it can be passed along to Analytics. This is important to be able to track the order of things that
each user does in a single search session.

e public boolean login(Map<String, String> loginFieldMap)
This request is typically only used by the Search admin tools. It should not be used by the non-InQuira
tools or programs. Use the IQServiceClient.connect() to authenticate.

* public GIML initialScreen()
This method should be called before any other search method to initialize the Search session.

e public GIML askQuestion(String question, boolean startOver)
This method is used to ask a question to the Search runtime. If the startOver parameter is set to TRUE
then the previous Search results are ignored and not used as a filter within the scope of the subsequent
question results.

e public GIML askWithinDocument(int priorTransactionlD, String question, int
SearchWithinDocid, String searchWithinDocEncoding, String searchWithinDocUrl)
This method is used to search for a question within a specific document. The INT value representing the
searchWithinDocid and priorTransactionID are obtained from the previous GIML response. The
searchWithinDocEncoding is used to limit the request set to a specified language. The
searchWithinDocUTrl string should use the URL where the document is located from the previous GIML.

e public void clickThru(int priorTransactionlD, int answered, String trackedURL, int
searchWithinDocid, boolean isUnstructured)
This method is used to record a clickThru event if a user selects a link in the search results to view more
information on. The clickThru() action is recorded and becomes an important component of the user
activity analytics reports.

e public GIML echo(Q)
This method is used to perform a PING type of test against the Search runtime. It does not return any
search results.

* public String getSessionState()
This method is used to return a string containing the session ID and other session information recorded
for the current session.

e public String highlightAnswer(int priorTransactionlD, int answerlD, String
trackedURL, int searchWithinDoclD, boolean isPDF, boolean trackClickthru, String
highlightinfo)

This method is used to highlight the snippet of an answer that is most relevant to the question being
asked. This method should be called after the askQuestion(). The answerlID is the available from the
response GIML. This method can also be used to highlight answers in a PDF document.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 50 INQUIRA.M

IQSEARCHREQUEST

e public GIML navigate(int priorTransactionlD, String facet, boolean facetShowAll)
This method is used when navigating the facets displayed in a Ul. The default Ul provided by InQuira
contains the facet list on the left hand side. The returned GIML should reflect the filtered result set of
answers.

* public GIML pageResults(int priorTransactionlD, String purposeName, PageDirectionEnum
direction, int newPageSize, int pageNumber)
This method is used when the initial number of search results for a particular <PURPOSE> exceed the
space available to display the answers. The returned GIML object contains the answers that should be
displayed passed on the specified page number.

* public void recordFeedback(int priorTransactionlD, String userFeedback, int rating)
This method is used to rate a page of search results. This is usually displayed in the Ratings portlet. This
method is different that the rateContent() provided by the Information Manager IQRatingRequest. This
feedback is rates the overall quality of the search results - not the specific document. This information is
used to help tune the Search results.

* public GIML showSimilarAnswers(int priorTransactionlD, int answerlD, String
trackedURL, string relatedlIDs)
This method is used to show results that are similar to a result in the current result set. The answerlD
parameter should be retrieved from the current GIML response (same as the priorTransactionID).

Call Center Advisor Methods

The family of Call Center Advisor methods is used to support contact deflection and to provide the ability to
link/unlink CRM system cases with a search result.

* public GIML addCCASolutions(int priorTransactioniD)
This method is used to add a link from a CRM system service request to a document listed in the InQuira
search results. This method would effectively add all of the solutions found in the current GIML as a
solution to the CRM case. This action is primarily used for analytic tracking and is not recorded in
Information Manager.

* public GIML removeCCASolutions(int priorTransactionlD)
This method is used to remove a previously linked CRM solution from a search result. This action is
primarily used for analytic tracking and is not recorded in Information Manager.

* public GIML refreshCCA(int priorTransactionlD)
This method is used to refresh the CRM data prior to either linking or unlinking a request.

e public void contactDeflectionResponse(int priorTransactionlD, boolean deflected)
This method should be called if a contact has been successfully deflected by an action in the Ul. This
information is primarily logged for analytics purposes.

Process Wizard Methods

This family of methods is used to interact with the Search Process Wizard functionality. A Process Wizard is
basically a conditional branching algorithm that is defined in the Dictionary and can be assigned to an intent
response. Depending on the option the user selects the Process Wizard will route the user down a list of
choices.

* public void startWizard(int priorTransactionlD, int answerlD, String trackedURL,
string wizardID)
This method should be called prior to starting the first step of a process wizard. The answerID represents
the answer that is actually a process wizard reference in the search results screen.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 51 INQUIRA.M

IQSEARCHREQUEST

e public void updateWizard(int priorTransactionlD, String wizardID, String stepUUID,
String nextSteplD, String nextStepUUID, Map<String, String> stepFieldValueMap,
boolean back)

This method should be called after performing each step of the process wizard. This information is
primarily used for analytics purposes.

* public GIML askWizardQuestion(int priorTransactionlD, String question, int wizardID,
String steplD, String stepUUID, Map <String, String> stepFieldvalueMap, Map<String,
String> parameterValueMap)

This method is used to ask a question as part of a process wizard. This method needs to know where in
the process wizard the question was asked. The stepFieldValueMap contains a list of key value pairs
that represent the choices presented to the user for them to select an option from. The
parameterValueMap is used to pass along any search parameters in addition to those in the Clientinfo
and Searchinfo data structures.

e public void finishWizard(int priorTransactionlD, String wizardID, String steplD,
String stepUUID, Map<String, String> fieldValueMap, boolean complete)
This method should be called when the final step of the process wizard is complete. This information is
primarily used by analytics for tracking purposes.

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 52 INQUIRA.M

Appendix A Error Code Constants

The InQuira client library API uses the error code constants to create localized error messages for each type
of error that can be thrown. The constants are stored in the com.inquira.im.util.ErrorCodeConstants class in
the imservices.jar that is deployed with Information Manager. The string values for each constant below are
the keys in the localized error message file that is used to return localized error messages. These property
files are stored in the imservices.jar (errormessages.properties). InQuira provides localized messages in the
following languages: English (default), German, Spanish, French, Italian, Japanese, Korean, Dutch,
Portugese, Russian, Ukranian, Slovak, and Chinese.

Note: In most cases, the InQuira provided error messages should not be displayed to end users, a more
specific, user-friendly error message should be provided instead.

public class ErrorCodeConstants {

/** Error Property for resource = Unable to find answer */
public final static String ANSWER _NOT_FOUND = "answer.not.found";

/** Error Property for resource = {0} is null or has 0 elements */
public final static String ARRAY_NOT_NULL = "array.not.null';

/** Error Property for resource = Authentication Failed */
public final static String AUTHENTICATION_FAILED = "authentication.failed";

/** Error Property for resource = Authentication Token has expired */
public Ffinal static String AUTHENTICATION_TOKEN_EXPIRED = "authentication.to-
ken._expired";

/** Error Property for resource = Authentication Token not found */
public final static String AUTHENTICATION_TOKEN_NOT_FOUND = "authentication.to-
ken._.not.found";

/** Error Property for resource = Authentication Token is not valid */
public final static String AUTHENTICATION_TOKEN_NOT_VALID = "authentication.to-
ken_not.valid";

/** Error Property for resource = Could not authenticate user with the supplied
information. Information supplied may be incorrect or user account may be locked
or inactive */

public final static String AUTHENTICATION_USER_NOT_AUTHENTICATED = "authenti-
cation.user.not.authenticated";

/** Error Property for resource = Unable to find Case Link */
public final static String CASELINK_NOT_FOUND = "caselink.not.found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 53 INQUIRA.M

/** Error Property for resource = Contentld not found */
public final static String CASELINK NOT_FOUND_CONTENTID =
""caselink.not.found.contentid";

/** Error Property for resource = Error adding caselink data */
public final static String CASELINK_SERVICE_ADD_ERROR = "caselink.ser-
vice.add.error';

/** Error Property for resource = Error deleting caselink data */
public final static String CASELINK_SERVICE_DELETE_ERROR = "‘caselink.ser-
vice.delete.error™;

/** Error Property for resource = Case Number not found */
public final static String CASELINK SERVICE_INVALID_ CASENUMBER = "caselink.ser-
vice.invalid.caseNumber';

/** Error Property for resource = Neither a Content Id or a Document Id has
been passed into service */

public final static String CASELINK SERVICE_INVALID_ ID = "caselink.service.in-
valid.id";

/** Error Property for resource = Incident Value is not valid */
public final static String CASELINK_SERVICE_INVALID_ INCIDENT = "caselink.ser-
vice.invalid.incident";

/** Error Property for resource = Error updating user reputation points */
public final static String CASELINK SERVICE_REPUTATION_ERROR = "caselink.ser-
vice.reputation.error';

/** Error Property for resource = Error constructing response */
public final static String CASELINK_SERVICE_RESPONSE_ERROR = "‘caselink.ser-
vice.response.error';

/** Error Property for resource = Unable to find Case Link Content */
public final static String CASELINKCONTENT_NOT_FOUND = "caselinkcon-
tent._not.found";

/** Error Property for resource = Input not valid. Make sure you are passing a
guid, objectid or reference key. */

public final static String CATEGORY_CATEGORY_I1S_INVALID = "category.catego-
ry.is.invalid”;

/** Error Property for resource = No content channel found for reference key =
{0} */

public final static String CATEGORY_CHANNEL_NOT_FOUND = "category.chan-
nel .not.found";

/** Error Property for resource = Duplicate Reference Key - Reference Keys must
be unique within the repository. Value = {0} */

public final static String CATEGORY_DUPLICATE_REFKEY = "‘category.dupli-
cate.refkey";

/** Error Property for resource = Locale not found for code = {0} */
public final static String CATEGORY_LOCALE_NOT_FOUND = "category.lo-
cale._not.found™;

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 54 INQUIRA.M

/** Error Property for resource = No category display name has been passed into
service */

public final static String CATEGORY_NO DISPLAY NAME = '‘category.no.dis-
play.name";

/** Error Property for resource = No category reference key has been passed
into service */

public final static String CATEGORY_NO_REFKEY_PASSED IN = "catego-
ry.no.refkey.passed.in";

/** Error Property for resource = Category not found */
public final static String CATEGORY_NOT_FOUND = *‘category.not.found";

/** Error Property for resource = Parent Category not found for parent reference
key = {0} */
public Ffinal static String CATEGORY_PARENT_REFERENCEKEY_NOT_FOUND = "‘catego-
ry.parent._referencekey._not.found";

/** Error Property for resource = Invalid category reference key */
public final static String CATEGORY_ REFERENCEKEY_NOT_FOUND = "category.refer-
encekey.not.found";

/** Error Property for resource = Content Channel not found for reference key */
public final static String CHANNEL_NOT_FOUND_REFKEY = *‘chan-
nel .not.found.refkey";

/** Error Property for resource = Active locale is null */
public final static String CONTENT_SERVICE_ACTIVE_LOCALE_VALIDATION_EXCEPTION
= "content.service.active.locale.validation.exception';

/** Error Property for resource = Active user is null */
public final static String CONTENT_SERVICE_ACTIVE_USER_VALIDATION_EXCEPTION =
"content.service.active.user.validation.exception™;

/** Error Property for resource = An error has occurred trying to change the
owner of a document. ID = {0} */

public final static String CONTENT_SERVICE_CHANGE OWNER_ERROR = *‘content.ser-
vice.change.owner.error";

/** Error Property for resource = Content Channel is null or is invalid */
public final static String CONTENT_SERVICE_CHANNEL_VALIDATION_EXCEPTION = "‘con-
tent._service.channel .validation._.exception';

/** Error Property for resource = A class cast exception has occurred */
public final static String CONTENT_SERVICE_CLASSCAST EXCEPTION = "content.ser-
vice.classcast.exception";

/** Error Property for resource = Locale for content record is null */
public final static String CONTENT_SERVICE_CONTENT_LOCALE_VALIDATION_EXCEPTION
= "content.service.content.locale.validation.exception';

/** Error Property for resource = Unable to find {0} content record for supplied
parameters */

public final static String CONTENT_SERVICE_CONTENT_NOT_FOUND = "content.ser-
vice.content_not.found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 55 INQUIRA.M

/** Error Property for resource = Attempt to edit a non master record. Non
master records can be edited using the translateContent service only. Content id =
"{0}" Master locale = "{1}" Intended locale = "{2}" */

public final static String CONTENT_SERVICE_EDIT_NON_MASTER_RECORD = "con-
tent.service.edit.non.master.record";

/** Error Property for resource = A jdbc error has occurred */
public final static String CONTENT_SERVICE_ERROR_CREATING_JDBC_CONNECTION =
""content.service.error.creating. jdbc.connection™;

/** Error Property for resource = A database exception has occurred */
public final static String CONTENT_SERVICE_GENERAL_DATABASE_EXCEPTION = '‘con-
tent.service.general .database.exception';

/** Error Property for resource = A general exception has occurred */
public Ffinal static String CONTENT_SERVICE_GENERAL_EXCEPTION = "‘content.ser-
vice.general _exception™;

/** Error Property for resource = Case Link object not found */
public final static String CONTENT_SERVICE_INVALID_ CASEVALUE = "content.ser-
vice.invalid.casevalue";

/** Error Property for resource = Category not found with reference key {0} */
public final static String CONTENT_SERVICE_INVALID_CATEGORY_REF_KEY = 'con-
tent.service.invalid.category ref _key";

/** Error Property for resource = Invalid content channel supplied "{0}" */
public final static String CONTENT_SERVICE_INVALID_CHANNEL_EXT = *‘content.ser-
vice.invalid.channel ext';

/** Error Property for resource = Invalid content channel reference key supplied
{0} */
public final static String CONTENT_SERVICE_INVALID_ CHANNEL_REF KEY = "con-
tent.service.invalid.channel_ref_key";

/** Error Property for resource = Invalid contentlD supplied *"{0}" */
public final static String CONTENT_SERVICE_INVALID_CONTENTID = "‘content.ser-
vice.invalid.contentid";

/** Error Property for resource = No valid contentlDs supplied */
public final static String CONTENT_SERVICE_INVALID_CONTENTIDS = "content.ser-
vice.invalid.contentids";

/** Error Property for resource = Invalid documentlD supplied *“{0}" */
public final static String CONTENT_SERVICE_INVALID DOCUMENTID = "content.ser-
vice.invalid.documentid";

/** Error Property for resource = Invalid documentlID and version combination
supplied. DocumentID = *{0}" Version ="{1}.{2}" */

public final static String CONTENT_SERVICE_INVALID_DOCUMENTID_AND_VERSION =
"content.service.invalid.documentid.and.version';

/** Error Property for resource = No valid documentlDs supplied */
public final static String CONTENT_SERVICE_INVALID_DOCUMENTIDS = "content.ser-
vice.invalid.documentids™;

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 56 INQUIRA.M

/** Error Property for resource = Invalid locale supplied {0} */
public final static String CONTENT_SERVICE_INVALID_ LOCALE = "content.ser-
vice.invalid.locale";

/** Error Property for resource = Invalid locale code supplied “{0}" */
public final static String CONTENT_SERVICE_INVALID_ LOCALE_CODE = "content.ser-
vice.invalid.locale_code™;

/** Error Property for resource = Invalid locale supplied "{0}" */
public Ffinal static String CONTENT_SERVICE_INVALID LOCALE_EXT = "content.ser-
vice.invalid.locale ext";

/** Error Property for resource = Null ordering supplied */
public final static String CONTENT_SERVICE_INVALID_ORDERING = "content.ser-
vice.invalid.ordering";

/** Error Property for resource = No valid orderings supplied */
public final static String CONTENT_SERVICE_INVALID_ORDERINGS = "content.ser-
vice.invalid.orderings';

/** Error Property for resource = Invalid repository supplied */
public Ffinal static String CONTENT_SERVICE_INVALID REPOSITORY = "content.ser-
vice.invalid.repository";

/** Error Property for resource = Invalid repository supplied “{0}" */
public final static String CONTENT_SERVICE_INVALID_ REPOSITORY_EXT = "con-
tent.service.invalid.repository ext";

/** Error Property for resource = Invalid repository reference key supplied
I{O}I */

public final static String CONTENT_SERVICE_INVALID_REPOSITORY_REF_KEY = *‘con-
tent.service.invalid.repository ref key";

/** Error Property for resource = Invalid User or Locale */
public final static String CONTENT_SERVICE_INVALID USER_OR_LOCALE = "con-
tent.service.invalid.user.or.locale';

/** Error Property for resource = Invalid user group reference key suppplied
I{O}I */

public final static String CONTENT_SERVICE_INVALID_ USERGROUP_REF_KEY = '‘con-
tent.service.invalid.usergroup_ref _key";

/** Error Property for resource = Could not delete content resource folder */
public final static String CONTENT_SERVICE_ 10 _DELETE_EXCEPTION = **content.ser-
vice.io.delete.exception';

/** Error Property for resource = Unable to find latest content record for
supplied parameters */

public final static String CONTENT_SERVICE_LATEST_CONTENT_NOT_FOUND = '‘con-
tent.service.latest_content_not_found™;

/** Error Property for resource = Unable to find any latest content records for
supplied parameters */

public final static String CONTENT_SERVICE_LATEST_CONTENTS_NOT_FOUND = '‘con-
tent.service.latest _contents_not_found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 57 INQUIRA.M

/** Error Property for resource = Unable to find master content record for
supplied parameters */

public final static String CONTENT_SERVICE_MASTER_CONTENT_NOT_FOUND = "‘con-
tent.service.master_content_not_found";

/** Error Property for resource = At least one filter parameter must be set */
public final static String CONTENT_SERVICE _NO _FILTER_SUPPLIED = *content.ser-
vice.no_Filter_supplied”;

/** Error Property for resource = Unable to find published content record for
supplied parameters */

public final static String CONTENT_SERVICE_PUBLISHED_CONTENT_NOT_FOUND = 'con-
tent.service.published_content_not_found";

/** Error Property for resource = Unable to find any published content records
for supplied parameters */

public final static String CONTENT_SERVICE_PUBLISHED_CONTENTS_NOT_FOUND = "con-
tent._service.published_contents_not_found";

/** Error Property for resource = Content Channel must belong to the passed in
repository */

public final static String
CONTENT_SERVICE_REPOSITORY_CHANNEL_VALIDATION_EXCEPTION = *content.service.repos-
itory.channel .validation.exception™;

/** Error Property for resource = Repository is null */
public final static String CONTENT_SERVICE_REPOSITORY_VALIDATION_EXCEPTION =
""content.service.repository.validation.exception';

/** Error Property for resource = Attempt to translate a content record using
the record"s master locale. Please provide a different locale. Master locale for
record = {0} */

public final static String CONTENT_SERVICE_SAME_LOCALE_TRANSLATION_ERROR =
"'content.service.same.locale._translation.error™;

/** Error Property for resource = Content Channel not found */
public final static String CONTENTCHANNEL_ NOT_FOUND = *‘contentchan-
nel .not.found";

/** Error Property for resource = Content Channel Privileges not found */
public final static String CONTENTCHANNELPRIVILEGE_NOT_FOUND = "‘contentchan-
nelprivilege.not.found";

/** Error Property for resource = Content History Record Found */
public final static String CONTENTHISTORY_NOT_FOUND = "‘contenthisto-
ry.not.found";

/** Error Property for resource = Content Locale Request Not found */
public final static String CONTENTLOCALEREQUEST NOT_FOUND = *contentlocalere-
quest.not.found";

/** Error Property for resource = Content Metrics not found */
public final static String CONTENTMETRICS _NOT_FOUND = "‘contentmet-
rics.not.found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 58 INQUIRA.M

/** Error Property for resource = Content Preview Url not found */
public final static String CONTENTPREVIEWURL_NOT_FOUND = "‘contentpre-
viewurl _not.found";

/** Error Property for resource = Content Recommendation not Found */
public final static String CONTENTRECOMMENDATION_NOT_FOUND = "‘contentrecommen-
dation.not.found";

/** Error Property for resource = Can"t find content record with the supplied
document id */

public final static String CONTENTRECORD NOT_FOUND = *"‘contentrecord.not.found";

/** Error Property for resource = Content User Visit not found */
public final static String CONTENTUSERVISIT_NOT_FOUND = "contentuservis-
it.not.found";

/** Error Property for resource = Locale is not allowed to be null in context */
public final static String CONTEXT_LOCALE NULL = "‘context.locale_null";
/** Error Property for resource = Context is not allowed to be null */
public final static String CONTEXT_NULL = "context.null™;

/** Error Property for resource = Repository is not allowed to be null in context
*/

public final static String CONTEXT_REPOSITORY_NULL = *context.repository.null’;
/** Error Property for resource = User is not allowed to be null in context */
public final static String CONTEXT_USER_NULL = "context.user._null';

/** Error Property for resource = Data Form not found */

public final static String DATAFORM_NOT_FOUND = "dataform.not.found™;
/** Error Property for resource = Data Form Privilege not found */
public final static String DATAFORMPRIVILEGE_NOT_FOUND = “‘dataformprivi-

lege_not.found";

/** Error Property for resource = Data List not found */

public final static String DATALIST _NOT_FOUND = "datalist.not.found";
/** Error Property for resource = Data List filter not found */
public final static String DATALISTFILTER_NOT_FOUND = "datalistfil-

ter._not.found";

/** Error Property for resource = Data List Item not Found */

public final static String DATALISTITEM_NOT_FOUND = "datalistitem.not.found";
/** Error Property for resource = Discussion Board Abuse Item not found */
public final static String DBABUSE_NOT_FOUND = "dbabuse.not.found";

/** Error Property for resource = Discussion Board Forum not found */
public final static String DBFORUM_NOT_FOUND = "dbforum.not.found";
/** Error Property for resource = Discussion Board Forum Metrics not found */
public final static String DBFORUMMETRICS_NOT_FOUND = "‘dbforummet-
rics.not.found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 59 INQUIRA.M

/** Error Property for resource = Discussion Board Message not found */
public final static String DBMESSAGE NOT_FOUND = "‘dbmessage.not.found";
/** Error Property for resource = Discussion Board Message Filter not found */

public final static String DBMESSAGEFILTER_NOT_FOUND = "dbmessagefil-
ter.not.found";

/** Error Property for resource = Discussion Board Metrics not found */
public final static String DBMETRICS NOT_FOUND = "‘dbmetrics.not.found";
/** Error Property for resource = Discussion Board Privilege not Found */

public final static String DBPRIVILEGE NOT_FOUND = "dbprivilege.not.found";

/** Error Property for resource = Discussion Board Privilege Value not found */

public final static String DBPRIVILEGEVALUE _NOT_FOUND = "dbprivilegeval-
ue.not.found";

/** Error Property for resource = Discussion Board Topic not found */
public final static String DBTOPIC_NOT_FOUND = *dbtopic.not.found";

/** Error Property for resource = Discussion Board Topic Log not found */
public final static String DBTOPICLOG_NOT_FOUND = "dbtopiclog.not.found";

/** Error Property for resource = Discussion Board Topic Metrics not found */

public final static String DBTOPICMETRICS _NOT_FOUND = *‘dbtopicmet-
rics.not. found";

/** Error Property for resource = Discussion Board User Visit not found */
public final static String DBUSERVISIT_NOT_FOUND = "dbuservisit.not.found";
/** Error Property for resource = Discussion Board not found */

public final static String DISCUSSIONBOARD NOT_FOUND = "discussion-
board.not.found";

/** Error Property for resource = Editor Group not Found */
public final static String EDITORGROUP_NOT_FOUND = "editorgroup.not.found";
/** Error Property for resource = Extended View Attributes not found */

public final static String EXTENDEDVIEWATTRIBUTES NOT_FOUND = "extendedviewat-
tributes.not.found";

/** Error Property for resource = {0} is not allowed to be empty */
public final static String FIELD_NOT_NULL = "field.not.null";

/** Error Property for resource = Data Form Result not found */
public final static String FORMRESULTS_NOT_FOUND = *formresults.not.found";

/** Error Property for resource = Illegal Argument Exception */

public final static String ILLEGAL ARGUMENT_EXCEPTION = "illegal.argument.ex-
ception;

/** Error Property for resource = Internal service call response is invalid */

public final static String INTERNAL_CALL_ RESPONSE_INVALID = "internal.call._re-
sponse.invalid”;

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 60 INQUIRA.M

/** Error Property for resource = The List objects passed in are not of the
same size */
public final static String LISTS NOT_SAME _SIZE = "lists.not.same.size";

/** Error Property for resource = Could not find a matching locale */
public final static String LOCALE _NOT_FOUND = *"locale.not.found";

/** Error Property for resource = Locale not found for code = {0} */
public final static String LOCALE NOT_FOUND WITH _CODE = "lo-
cale._not.found.with.code";

/** Error Property for resource = Localized Token not found */
public final static String LOCALIZEDTOKENS NOT_FOUND = *localizedto-
kens.not.found";

/** Error Property for resource = There is no default locale set to the repos-
itory */

public final static String NO_DEFAULT_LOCALE_FOR_REPOSITORY = "no.default.lo-
cale.for.repository;

/** Error Property for resource = The Content Channel does not have a rating
assigned to it */
public final static String NO_RATING_FOR_CHANNEL = "no.rating.for.channel™;

/** Error Property for resource = Authentication Token is not valid */
public final static String NO_ XML REQUEST FOUND = "no.xml.request.found";

/** Error Property for resource = XML Request parameters are not valid */
public final static String NO_XML_REQUEST_PARAMETERS_NOT_VALID = "no.xml.re-
quest._parameters._not.valid";

/** Error Property for resource = The system could not find an object with
supplied information : {0} */
public final static String OBJECT _NOT_FOUND ERROR = "object.not.found.error";

/** Error Property for resource = Privilege not found */
public final static String PRIVILEGE NOT_FOUND = *privilege.not.found";

/** Error Property for resource = Question not Found */
public final static String QUESTION_NOT_FOUND = 'question.not.found";

/** Error Property for resource = Rating not found */
public final static String RATING_NOT_FOUND = "rating.not.found";

/** Error Property for resource = The supplied rating is out of sync with its
rating definition */
public final static String RATING _OUT_OF SYNC = "rating.out.of.sync";

/** Error Property for resource = Replacement Token not found */
public final static String REPLACEMENTTOKENS NOT_FOUND = *replacementto-
kens._not.found";

/** Error Property for resource = Repository not found with the supplied in-
formation */
public final static String REPOSITORY_NOT_FOUND = "repository.not.found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 61 INQUIRA.M

/** Error Property for resource = Repository not found with id = {0} */
public final static String REPOSITORY_NOT_FOUND _WITH ID = "reposito-
ry.not.found.with.id";

/** Error Property for resource = Repository not found with reference key = {0}
*/

public final static String REPOSITORY_NOT_FOUND WITH_REFKEY = "reposito-
ry.not.found.with.refkey";

/** Error Property for resource = Reputation Configuration not found */
public final static String REPUTATIONCONFIG_NOT_FOUND = "‘reputationcon-
fig.-not.found";

/** Error Property for resource = Reputation Level not found */
public final static String REPUTATIONLEVEL _NOT_FOUND = "reputationlev-
el _not.found";

/** Error Property for resource = Reputation Reward not found */
public final static String REPUTATIONREWARD NOT_FOUND = "‘reputationre-
ward.not. found";

/** Error Property for resource = Request XML is invalid; XML = {0} */
public final static String REQUEST_XML_ERROR = "request.xml_error’;

/** Error Property for resource = Role not found with the supplied information */
public final static String ROLE_NOT_FOUND = "role.not.found";

/** Error Property for resource = Validation failed for saving object */
public final static String SAVE_VALIDATION_FAILED = "'save.validation.failed";

/** Error Property for resource = Secured Activity not found */
public final static String SECUREDACTIVITY_NOT_FOUND = "securedactivi-
ty.not.found";

/** Error Property for resource = Secured Application ltem not found */
public final static String SECUREDAPPITEM_NOT_FOUND = 'securedap-
pitem.not.found";

/** Error Property for resource = Security Role not found */
public final static String SECURITYROLE _NOT_FOUND = "'securityrole.not.found";

/** Error Property for resource = Skill not found with the supplied information
*/
public final static String SKILL _NOT_FOUND = *skill.not.found";

/** Error Property for resource = Stylesheet not found */
public final static String STYLESHEET NOT_FOUND = "'stylesheet.not.found";

/** Error Property for resource = Subscription not found */
public final static String SUBSCRIPTION_NOT_FOUND = "subscription.not.found";

/** Error Property for resource = Task Status not found */
public final static String TASKSTATUS NOT_FOUND = 'taskstatus.not.found";

/** Error Property for resource = An unexpected error has occurred that prevented
this operation from completing */
public final static String UNEXPECTED ERROR = "unexpected.error";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 62 INQUIRA.M

/** Error Property for resource = An unknown error has occurred that prevented
this operation from completing */
public final static String UNKNOWN_ERROR = "unknown.error';

/** Error Property for resource = Email is already used by another user */
public final static String USER_EMAIL_DUPLICATE = "user.email._duplicate;

/** Error Property for resource = Email is invalid */
public final static String USER_INVALID EMAIL = "user.invalid.email";

/** Error Property for resource = First Name is invalid */
public final static String USER_INVALID_FIRST_NAME = "user.invalid.first_name";

/** Error Property for resource = Last Name is invalid */
public final static String USER_INVALID LAST NAME = "user.invalid.last.name";

/** Error Property for resource = Locale is invalid */
public final static String USER_INVALID LOCALE = "user.invalid.locale";

/** Error Property for resource = Login is invalid */
public final static String USER_INVALID LOGIN = "user.invalid.login";

/** Error Property for resource = Password is invalid */
public final static String USER_INVALID PASSWORD = "user.invalid.password";

/** Error Property for resource = User type is invalid (ADMIN/WEB) */
public final static String USER_INVALID USERTYPE = "user.invalid.usertype";

/** Error Property for resource = User is not authorized to perform : {0} */
public final static String USER_NOT_AUTHORIZED = "user.not.authorized";

/** Error Property for resource = User not found with the supplied information */
public final static String USER_NOT_FOUND = "user.not.found";

/** Error Property for resource = User not found with id = {0} */
public final static String USER_NOT_FOUND WITH_ID = "user.not.found.with.id";

/** Error Property for resource = Reputation Level not found for user */
public final static String USER_REPUTATION_NOT_FOUND = "user.reputa-
tion.not.found";

/** Error Property for resource = Invalid email format. */
public final static String USER_VALIDATION_INVALID_EMAIL_FORMAT = “user.vali-
dation.invalid.email.format";

/** Error Property for resource = User Login can"t be the same as the password */
public final static String USER_VALIDATION_LOGIN_PASSWORD_SAME = "‘user.valida-
tion.login.password.same';

/** Error Property for resource = User Group not found */
public final static String USERGROUP_NOT_FOUND = "usergroup.not.found";

/** Error Property for resource = User login is already used by another user */
public final static String USERID DUPLICATE = "userid.duplicate;

/** Error Property for resource = User Key Value not found */
public final static String USERKEYVALUES NOT_FOUND = "userkeyvalues.not.found";

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 63 INQUIRA.M

/** Error Property for resource = View not found with the supplied information */
public final static String VIEW_NOT_FOUND = "view.not.found";
/** Error Property for resource = Workflow not found */

public final static String WORKFLOW_NOT_FOUND = "‘workflow.not.found";

/** Error Property for resource = Workflow Condition not found */

public final static String WORKFLOWCONDITION_NOT_FOUND = "workflowcondi-
tion.not.found";

/** Error Property for resource = Workflow Step not found */

public final static String WORKFLOWSTEP_NOT_FOUND = "workflowstep.not.found;
/** Error Property for resource = Work Team not found */

public final static String WORKTEAM_NOT_FOUND = "workteam.not.found";

/** Error Property for resource = XML request type is not valid */
public final static String XML _REQUEST_TYPE_NOT_VALID = "xml.re-
quest.type.not.valid";

/** Error Property for resource = XML response type is not valid */
public final static String XML_RESPONSE_TYPE_NOT_VALID = "xml.re-
sponse.type.not.valid";

/** Error Property for resource = XML Attribute User Group not found */
public final static String XMLATTRIBUTEUSERGROUP_NOT_FOUND = "'xmlattributeuser-
group.not.found";

/** Error Property for resource = XML Schema not found */
public final static String XMLSCHEMA NOT_FOUND = *xmlschema.not.found";
/** Error Property for resource = XML Schema Attribute not found */
public Ffinal static String XMLSCHEMAATTRIBUTE_NOT_FOUND = "xmlschemaattrib-
ute._.not.found";

}

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 64 INQUIRA.M

Appendix B GIML XSD

The GIML that can be returned from a Search request will vary based on the type of request being made and the
configuration of the rules and Dictionary configured for the specific customer installation. The GIML.xsd below is
used by Information Manager to parse and interact with GIML returned and processed by the IM JSP tag library
and IM management console.

<?xml version="1.0"?>
<xsd:schema xmIns:xsd="http://www.w3.0rg/2001/XMLSchema'">
<xsd:element name="message'>
<xsd:complexType>
<xsd:all>
<xsd:element
<xsd:element

ref="params" minOccurs="0"/>
ref="responses'" minOccurs="0" maxOccurs="1"/>

<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

ref="facets" minOccurs="0" maxOccurs="1"/>
ref=""query" minOccurs="0"/>

ref="config" minOccurs="0"/>
ref=""constraint” minOccurs="0"/>
ref="find" minOccurs="0" maxOccurs="1"/>
ref=""session" minOccurs="0"/>
ref="Message' minOccurs="0"/>
ref=""MessageCode" minOccurs="0"/>
ref=""StackTrace" minOccurs="0"/>
ref=""satisfied" minOccurs="0"/>
ref=""Redirect” minOccurs="0"/>

<xsd:element ref="ListOfInquiraSrLinkedAnswerslo’” minOc-
curs="0"/>
</xsd:all>
<xsd:attribute name=""type" use="required" type="'xsd:string"/>
<xsd:attribute name=""XSL_MODE" use="optional" type='"'xsd:string'/>
<xsd:attribute name="language' use="optional" type='xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘Message' type="'xsd:string"/>
<xsd:element name="MessageCode" type="xsd:string"/>
<xsd:element name='StackTrace" type=''xsd:string'/>
<xsd:element name="'satisfied” type="'xsd:string'/>
<!--responses-->
<xsd:element name="Redirect''>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name="type' use="optional' type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element> <l--responses-->
<xsd:element name="‘responses''>

65

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE INQUIRA.M

<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element ref="primaryAnswer" maxOccurs=""unbounded'™ minOccurs="0"/>
<xsd:element ref="purpose" maxOccurs="unbounded'" minOccurs="0"/>
</xsd:choice>
<xsd:attribute name="type" use="‘required"” type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<l--params-->
<xsd:element name="'params''>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="param”™ minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘param'>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name="name" use="'required" type="'xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<l--session-->
<xsd:element name="'session'>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="'xsd:string">
<xsd:attribute name="binary" use="required"” type='xsd:string"/>
<xsd:attribute name="id" use="optional" type="'xsd:string'/>
<xsd:attribute name="extld" use="optional™ type='xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<l--constaint-->
<xsd:element name="constraint'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded'>
<xsd:element ref=""user'/>
<xsd:element ref="host"/>
<xsd:element ref="address'"/>
<xsd:element ref=""application"/>
<xsd:element ref="version'/>
<xsd:element ref="language"/>
<xsd:element ref=""domainGroup'/>
<xsd:element ref="QuestionType"/>
<xsd:element ref="result_language'/>
<xsd:element name="'segment” maxOccurs=""unbounded” minOccurs="0" type=
"'xsd:string"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘user">
<xsd:complexType mixed=""true">

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 66 INQUIRA.M

<xsd:choice minOccurs="0" maxOccurs=""unbounded'>
<xsd:element name=""name" type=''xsd:string"/>
<xsd:element ref="principal’/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="principal’>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="'xsd:string">
<xsd:attribute name="binary" use="required" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="host" type="'xsd:string"/>
<xsd:element name="‘address' type=''xsd:string"/>
<xsd:element name="‘application’” type="xsd:string'/>
<xsd:element name="version"™ type="xsd:string'/>
<xsd:element name=""language' type=""xsd:string"'/>
<xsd:element name="'domainGroup" type="xsd:string'/>
<xsd:element name="QuestionType" type='xsd:string'/>
<xsd:element name="'result_language' type=''xsd:string"/>
<l--query-->
<xsd:element name="'query">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=""question" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘question'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="3">
<xsd:element ref="original"/>
<xsd:element ref="paraphrase"/>
<xsd:element ref="spellchecked"/>
</xsd:choice>
<xsd:attribute name="transactionld"” use="required"” type='xsd:string'/>
<xsd:attribute name=""language" use="optional' type="'xsd:string'/>
<xsd:attribute name=""type'" use="optional' type='"'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="original™ type="xsd:string'/>
<xsd:element name="‘paraphrase" type="'xsd:string"/>
<xsd:element name="'spellchecked">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="'unbounded'>
<xsd:element ref="correction"/>
<xsd:element ref="original™/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="'correction'>
<xsd:complexType mixed=""true">
<xsd:choice minOccurs="0" maxOccurs=""unbounded'>
<xsd:element ref=""suggestion"/>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 67 INQUIRA.M

</xsd:choice>
<xsd:attribute name="word" use="required" type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="'suggestion'>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name=""confidence" use="required" type=''xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<I--config-->
<xsd:element name="'config'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="param' minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<l--facets-->
<xsd:element name=""facets''>
<xsd:complexType>
<xsd:choice>
<xsd:element ref="result-facet"” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="facet" minOccurs="0" maxOccurs="unbounded"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘result-facet>
<xsd:complexType>
<xsd:all>
<xsd:element ref="1id"/>
<xsd:element ref=""description'/>
<xsd:element ref=""data" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="count™ minOccurs="0" maxOccurs="1"/>
<xsd:element ref="result-facet"” minOccurs="0" maxOccurs="unbounded"/>
</xsd:all>
<xsd:attribute name="inEffect" use="optional’ type="'xsd:string'/>
<xsd:attribute name="incomplete™ use="optional" type="xsd:string"/>
<xsd:attribute name="showlink"™ use="optional" type=''xsd:string"/>
<xsd:attribute name="tempSelect” use="optional’ type="xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="id" type="xsd:string"/>
<xsd:element name="‘description” type='xsd:string'/>
<xsd:element name="'data' type=''xsd:string"/>
<xsd:element name="facet'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="i1tem"” minOccurs="0" maxOccurs="unbounded'/>
</xsd:sequence>
<xsd:attribute name="hidden" use="optional" type="'xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘count'>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 68 INQUIRA.M

<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name="atLeast" use="optional' type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

</xsd:element>

<xsd:element name=""primaryAnswer"'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="answer"™ minOccurs="0" maxOccurs=""unbounded'/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="'purpose''>

<xsd:complexType>
<xsd:all minOccurs="0">

<xsd:element ref="wizard" maxOccurs=""unbounded'™ minOccurs="0"/>

<xsd:element ref="answer"™ maxOccurs=""unbounded™ minOccurs="0"/>

</xsd:all>

<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

</xsd:complexType>

</xsd:element>

name="'page_more" use="‘optional' type="'xsd:string'/>
name="'page_number' use="optional" type="xsd:string"/>
name="'page_start" use="optional" type='xsd:string"/>
name="page_size" use="optional™ type="xsd:string'/>
name=""total results" use="optional" type="'xsd:string"/>
name=""unshown_results" use="optional" type="'xsd:string"/>
name="'score" use="required" type='xsd:string'/>
name=""name" use="‘required" type="xsd:string'/>

<xsd:element name="answer">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

element
element
element
element
element
element

ref="1link" minOccurs="0" maxOccurs="unbounded'/>
ref=""sentence’" minOccurs="0" maxOccurs="1"/>
ref="title" minOccurs="0" maxOccurs="1"/>
ref="section” minOccurs="0" maxOccurs=""1"/>
ref="highlighted link" minOccurs="0" maxOccurs="1"/>
ref="click _through_link" minOccurs="0" maxOccurs="1"/>

<xsd:element ref="similar_response_link" minOccurs="0" maxOccurs="1"/>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

element
element
element
element
element
element
element
element
element
element
element
element
element

</xsd:choice>
<xsd:attribute name="type" use="required" type='xsd:string"” />
<xsd:attribute name="answer_id" use="optional" type="'xsd:string"'/>

ref="summary" minOccurs="0" maxOccurs=""1"/>
ref=""chart"” minOccurs="0" maxOccurs="1"/>
ref=""chartTypes"™ minOccurs="0" maxOccurs=""1"/>
ref="unavailable_fields" minOccurs="0" maxOccurs="1"/>
ref=""changed_fields" minOccurs="0" maxOccurs="1"/>
ref="sortCol"™ minOccurs="0" maxOccurs="1"/>
ref="table" minOccurs="0" maxOccurs="1"/>
ref=""timestamp’™ minOccurs=""0" maxOccurs="1"/>
ref="facets" minOccurs="0" maxOccurs="1"/>
ref="cca" minOccurs="0" maxOccurs="1"/>

name=""name" minOccurs=""0" maxOccurs="1" />
ref="element" minOccurs="0" maxOccurs=""unbounded'/>
ref=""text" minOccurs="'0"" maxOccurs="1"/>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 69 INQUIRA.M

<xsd:attribute name="score" use="optional’ type="'xsd:string"/>
<xsd:attribute name="'docType" use="optional" type="xsd:string'/>
<xsd:attribute name="collectionld" use="optional" type="'xsd:string"/>
<xsd:attribute name="docld" use="optional" type=''xsd:string"/>
<xsd:attribute name="collectionName' use="optional" type="xsd:string"/>
<xsd:attribute name="charset" use="optional" type="xsd:string'/>
<xsd:attribute name="highlight_version' use="optional™ type="xsd:string"/>
<xsd:attribute name="language" use="optional" type=''xsd:string'/>
<xsd:attribute name="table_summary_rows' use="optional" type="'xsd:string"/>
<xsd:attribute name="'similar_count'” use="optional" type="xsd:string"/>
<xsd:attribute name="rule" use="optional" type="'xsd:string'/>
<xsd:attribute name="imDocld"™ use="optional" type=
“xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="sortCol" type='xsd:string"'/>

<xsd:element name="‘element">
<xsd:complexType >
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name=""type" use="‘optional’ type=''xsd:string" />
<xsd:attribute name="1id" use="optional" type="xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

<xsd:element name="'sentence'>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name=""type" use="required" type="'xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="title">
<xsd:complexType mixed=""true">
<xsd:choice minOccurs="0" maxOccurs="'unbounded''>
<xsd:element ref=""snippet" maxOccurs="unbounded"/>
</xsd:choice>
<xsd:attribute name="idx" use="optional’ type="'xsd:string"/>
<xsd:attribute name="url" use="optional’™ type="'xsd:string"/>
<xsd:attribute name=""type" use="optional" type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="link">
<xsd:complexType mixed=""true">
<xsd:all minOccurs="0" maxOccurs=""1">
<xsd:element ref="protocol"/>
<xsd:element ref="host"/>
<xsd:element ref="port'/>
<xsd:element ref="path"/>
<xsd:element ref="file"/>
<xsd:element ref="params"/>
<xsd:element ref="anchor' minOccurs="0"/>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 70 INQUIRA.M

</xsd:all>
<xsd:attribute name=""type" use="required"” type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘protocol™ type="'xsd:string"'/>
<xsd:element name="'port" type=''xsd:string"/>
<xsd:element name="path" type="xsd:string'/>
<xsd:element name="file" type=''xsd:string"/>
<xsd:element name="‘anchor" type="'xsd:string'/>
<xsd:element name="'summary"'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="'unbounded'>
<xsd:element ref="title"/>
<xsd:element ref="link"/>
<xsd:element ref="highlighted_ link"/>
<xsd:element ref="click_through_link"/>
<xsd:element ref=""timestamp'/>
<xsd:element ref="similar_response_link"/>
<xsd:element ref="excerpt'/>
<xsd:element ref=""description"/>
<xsd:element ref="paraphrase"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="excerpt">
<xsd:complexType mixed=""true">
<xsd:sequence>
<xsd:element ref="'snippet’ minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="type" use="required"” type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="'snippet'>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="'xsd:string">
<xsd:attribute name="name' use="optional’ type='xsd:string"/>
<xsd:attribute name="'score' use="optional’™ type=''xsd:string'/>
<xsd:attribute name="IvIl" use="optional" type='xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘chart'>
<xsd:complexType mixed=""true">
<xsd:choice minOccurs="0" maxOccurs="unbounded'>
<xsd:element ref="headers"/>
<xsd:element ref=""item"/>
</xsd:choice>
<xsd:attribute name="description™ use="required” type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="headers'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs=""unbounded'>
<xsd:element name="header"™ type="xsd:string'/>
</xsd:choice>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 71 INQUIRA.M

</xsd:complexType>
</xsd:element>
<xsd:element name=""item">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded'>
<xsd:element ref="field"/>
<xsd:element ref="description'/>
<xsd:element ref="data'/>
</xsd:choice>
<xsd:attribute name="'shape'" use="optional" type=''xsd:string"/>
<xsd:attribute name="coords" use="optional" type="xsd:string"/>
<xsd:attribute name="id" use="optional" type="xsd:string'/>
<xsd:attribute name="selected” use="optional’ type="xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="field">
<xsd:complexType mixed=""true">
<xsd:choice minOccurs="0" maxOccurs="unbounded'>
<xsd:element ref="option"/>
<xsd:element ref="map"/>
</xsd:choice>
<xsd:attribute name="id" use="optional" type='xsd:string'/>
<xsd:attribute name="type" use="optional" type="'xsd:string'/>
<xsd:attribute name="isSharedType"™ use="optional’ type=''xsd:string"/>
<xsd:attribute name="description™ use="optional™ type="xsd:string"/>
<xsd:attribute name="orig" use="optional" type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘option'>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base='"'xsd:string">
<xsd:attribute name="value' use="optional™ type='xsd:string'/>
<xsd:attribute name="id" use="optional" type="xsd:string"/>
<xsd:attribute name="selected" use="optional" type='"xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="map'>
<xsd:complexType>
<xsd:attribute name="field" use="optional™ type='xsd:string"/>
<xsd:attribute name="variable”™ use="optional’ type="xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="transition'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="'unbounded'>
<xsd:element ref="condition"/>
</xsd:choice>
<xsd:attribute name="'step" use="optional" type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="condition">
<xsd:complexType>
<xsd:attribute name="field" use="optional’”™ type="'xsd:string"/>
<xsd:attribute name="op" use="optional" type="Xxsd:string'/>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 72 INQUIRA.M

<xsd:attribute name="value"™ use="optional’ type="'xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="'chartTypes'">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs=""unbounded"'>
<xsd:element ref="chart"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name=""table">
<xsd:complexType>
<xsd:all>
<xsd:element ref="header"/>
<xsd:element ref="row" minOccurs="0" maxOccurs="‘unbounded"/>
</xsd:all>
<xsd:attribute name="total_possible_results' use="required" type=
'xsd:string''/>
<xsd:attribute name="total_results™ use="required” type="xsd:string"/>
<xsd:attribute name="complete" use="required" type=''xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="header'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Ffield" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="row"'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded'>
<xsd:element ref="field"/>
<xsd:element ref="facets"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name=""unavailable_ fields">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=""field" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="changed_ fields">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="'unbounded''>
<xsd:element ref="old_field"/>
<xsd:element ref="new_field"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="old_Ffield" type="xsd:string'/>
<xsd:element name="new_Ffield" type=''xsd:string"/>
<xsd:element name="highlighted_link">
<xsd:complexType>
<xsd:simpleContent>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 73 INQUIRA.M

<xsd:extension base="xsd:string'>
<xsd:attribute name=""type" use="optional' type="'xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="click _through_link">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="'xsd:string">
<xsd:attribute name="type" use="optional’ type="'xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="similar_response_link">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string'>
<xsd:attribute name=""type" use="optional' type="'xsd:string'/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name=""timestamp">
<xsd:complexType>
<xsd:all>
<xsd:element ref="date'/>
<xsd:element ref="month"/>
<xsd:element ref="year'"/>
<xsd:element ref="hour"/>
<xsd:element ref="minute"/>
<xsd:element ref="second"/>
<xsd:element ref="millisecond"/>
</xsd:all>
</xsd:complexType>
</xsd:element>
<xsd:element name="'year" type=''xsd:string"/>
<xsd:element name="'date" type=''xsd:string"/>
<xsd:element name=""month" type="'xsd:string'/>
<xsd:element name="'second" type="'xsd:string"/>
<xsd:element name="minute" type='"xsd:string'/>
<xsd:element name="hour"™ type="xsd:string'/>
<xsd:element name="millisecond”™ type="xsd:string"/>
<xsd:element name="'section'>
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded'>
<xsd:element ref="'section"/>
<xsd:element ref="title"/>
<xsd:element ref=""text"/>
<xsd:element ref="field"/>
<xsd:element ref=""transition"/>
</xsd:choice>
<xsd:attribute name="type" use="optional" type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name=""text">

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 74 INQUIRA.M

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="snippet’ minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="idx" use="optional' type=''xsd:string"/>
<xsd:attribute name="url" use="optional' type=''xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="wizard">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="step” minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" use="optional" type="xsd:string'/>
<xsd:attribute name="version" use="optional" type="Xxsd:string'/>
<xsd:attribute name=""label" use="optional" type=''xsd:string"/>
<xsd:attribute name="description’ use="optional' type="'xsd:string"/>
<xsd:attribute name="first_step" use="optional" type="xsd:string'/>
<xsd:attribute name="default_step'"™ use="optional"” type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="'step">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="section”™ minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" use="optional" type="Xxsd:string'/>
<xsd:attribute name=""label" use="optional" type="'xsd:string"/>
<xsd:attribute name="uuid" use="optional" type="'xsd:string'/>
</xsd:complexType>
</xsd:element>
<xsd:element name="'cca'>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="'solution"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="'solution" type="'xsd:string"/>
<xsd:element name="find">
<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs=""unbounded" ref=""documentDe-

tail” />

</xsd:sequence>
<xsd:attribute name="total" type="'xsd:int" default=

"0"/>

<xsd:attribute name="size" use="optional’ type=

"xsd:int" default="0" />

<xsd:attribute name="startlndex'™ use="optional"
type=""xsd:int" default="0"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="‘documentDetail'>
<xsd:complexType mixed=""true">
<xsd:all maxOccurs="1">

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 75 INQUIRA.M

<xsd:element name=""title"” minOccurs="0"
type="'xsd:string" />
<xsd:element name="facet" minOccurs="0"
type='"xsd:string" />
<xsd:element name="excerpt"” minOccurs="0"
type=''xsd:string"” />
<xsd:element name="url™ minOccurs=""0" type=
""xsd:string" />
<xsd:element name="fmdt" minOccurs="0"
type='"xsd:string" />
</xsd:all>
<xsd:attribute name="colld" use="optional™
type="'xsd:string" />
<xsd:attribute name="colName"™ use="optional”
type=""xsd:NCName" />
<xsd:attribute name="docld" use="optional"
type="'xsd:string"” />
<xsd:attribute name="enc" use="optional™ type="xsd:NC-
Name' />
<xsd:attribute name="extld" type='"xsd:NCName" />
<xsd:attribute name="'guid" type="'xsd:NMTOKEN" />
<xsd:attribute name="lang" use="optional' type=
"'xsd:NCName" />
<xsd:attribute name="mdt" use="optional' type=
"xsd:long™ default="0"/>
<xsd:attribute name="'status" type="'xsd:NCName" />
<xsd:attribute name="uniqueld"” use="optional™
type=""xsd:string" />
</xsd:complexType>
</xsd:element>

<l-- ccalLinkedAnswers -->
<xsd:element name="ListOfInquiraSrLinkedAnswerslo">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="ServiceRequest"” minOccurs="0"
maxOccurs=""1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="'ServiceRequest'>
<xsd:complexType>
<xsd:all>
<xsd:element ref="SRNumber"™ minOccurs="0" maxOc-
curs="1"/>
<xsd:element ref="ListOfInquiraAnswersEai" minOccurs="0" maxOccurs="1"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<xsd:element name="'SRNumber" type=''xsd:string"/>

<xsd:element name="ListOfInquiraAnswersEai'>
<xsd:complexType>
<xsd:choice>
<xsd:element ref="InquiraAnswersEai' minOccurs="0" maxOccurs=""unbound-

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 76 INQUIRA.M

ed"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name=""InquiraAnswersEai"'>
<xsd:complexType mixed=""true">
<xsd:all minOccurs="0" maxOccurs="1">
<xsd:element ref="Key"/>

<xsd:element
<xsd:element
<xsd:element
<xsd:element

<xsd:element ref="Title"/>

<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

ref=""URL"/>
ref=""CaseLinkKey"/>
ref="Excerpt"/>
ref=""DocumentType" />

ref="UserName"/>
ref="VersionNumber"/>
ref=""Documentld"/>
ref="EntityType"/>
ref=""Comments"' />
ref="LinkedDate"/>
ref="Status"/>
ref="LinkStatus'/>

</xsd:all>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

name="'Key" type="'xsd:string"/>
name="URL" type="'xsd:string"/>
name=""CaseLinkKey" type="xsd:string'/>
name="Excerpt" type=''xsd:string"/>
name=""DocumentType" type='xsd:string'/>
name="Title" type="xsd:string"'/>
name=""UserName" type="'xsd:string"/>
name=""VersionNumber" type="'xsd:string"/>
name=""Documentld" type='xsd:string"/>
name="EntityType" type='"'xsd:string"/>
name=""Comments" type="'xsd:string"/>
name=""LinkedDate" type=""xsd:string'/>
name=""Status'" type="'xsd:string"/>
name="LinkStatus" type=''xsd:string"/>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE

77 INQUIRA.M

Appendix C GIML Response

The following GIML.xml shows a sample GIML response to a search request. The GIML response will vary based
on the type of search request being made, the parameters passed in, and the portlets configured in the search
configuration.

- <message type="‘response’''>
- <params>
<param name=""type''>Navigate</param>
<param name='charset''>UTF-8</param>
<param name="Question' />
<param name=''structured_chart" />
<param name="Transactionld'>583954092</param>
<param name="ui_mode''>navigate</param>
<param name="'Facet'">CMS-CATEGORY .CAT1</param>
<param name='SearchWithin' />
<param name="FacetShowAll" />
<param name="PriorTransactionld''>583954091</param>
<param name="FacetPriorTransactionld">583954091</param>
<param name="user-agent.parameters.debug'>true</param>
<param name="‘user-agent.parameters.facet' >CMS%2dCATEGORY%2eCAT1</param>
<param name='‘user-agent.parameters.charset''>UTF-8</param>
<param name="‘user-agent.parameters.facetCollectionID" />
<param name="‘user-agent.parameters. language'>en-US</param>
<param name="‘user-agent.parameters.rated'>false</param>
<param name="‘user-agent.parameters.prior_transaction_id">583954091</param>
<param name="‘user-agent.parameters.result_language'>en-US</param>
<param name='‘user-agent.parameters.question_box" />
<param name="‘user-agent.parameters.ui_mode'>navigate</param>
<param name=''user-agent.parameters.structured_chart" />
<param name="‘user-agent.headers.host''’>whoiam:8223</param>
<param name="‘user-agent.headers.user-agent'”>Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7</param>
<param name="'user-agent.headers.accept'>text/xml,application/xml,application/
xhtml+xml, text/html ;g=0.9, text/plain;q=0.8, image/png,*/*;q=0.5</param>
<param name="‘user-agent.headers.accept-language''>en, it;q=0.5</param>
<param name="‘user-agent.headers.accept-encoding'>gzip,deflate</param>
<param name="‘user-agent.headers.accept-charset'>150-8859-1,utf-8;9=0.7,*;q= 0.7</
param>
<param name="‘user-agent.headers._keep-alive'>300</param>
<param name="‘user-agent.headers.connection'>keep-alive</param>
<param name="‘user-agent.headers.referer">http://whoiam:8223/inquiragw/ui . jsp</param>
<param name="user-agent.headers.cookie">JSESSIONID=
81C6E5DAB05224BC2CB1371FB805DOFA</param>
<param name="agentAddress''>http://whoiam:8223/inquiragw/ui . jsp</param>
<param name="‘processorAddress'>transport: local</param>
<param name="baseURL">http://whoiam:8223/inquiragw/ui . jsp</param>
<param name="ExternalSessionld'>81C6E5DAB05224BC2CB1371FB805DOFA</param>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 78 INQUIRA.M

<param name="‘processorVersion">8.2.2(6)</param>
</params>
- <responses type='response'>
- <purpose page_number="0" page_more="0" page_start="0" score=
""0.9778846056057693" page_size="2" unshown_results="0" total_results="2"
name=""ANSWER"'">
- <answer type="'unstructured"” score="0.9778846056057693" docType=""CMS-XML"
language=""en-US" charset="UTF-8" collectionld="2" collectionName=
"IM_GLEN_GLEN" answer_id="16777216" docld=""4194305" imDocld="GL1"
highlight_version="true">
- <section>
- <title url="http://whoiam:8226/{instanceContext}/index?page=
content& id=GL1&actp=search&viewlocale=en_US">
<snippet IvI="0">this document is in category 1 test</snippet>
</title>
- <text url="http://whoiam:8226/{instanceContext}/index?page=
content& id=GL1&actp=search&viewlocale=en_US">
<snippet IvI="1">this document is in category 1</snippet>
<snippet IvI="3">test</snippet>

</text>
</section>
<highlighted_link type="text">http://whoiam:8223/inquiragw/
ul . jsp?ui_mode=answer&prior_transaction_id= 583954092& iq_action=
5&answer_id= 16777216&highlight_info=4194305,7,13& turl=

http%3A%2F%2Fwho iam%3A8226%2F%7BinstanceContext%7D%2F index%3Fpage%3 Dcon
tent%261d%3DGL1%26actp%3Dsearch%26viewlocale®%3Den_US#__highligh t</
highlighted_link>
- <link type="highlight'>
<protocol>http</protocol>
<host>whoiam</host>
<port>8223</port>
<path>/inquiragw/</path>
<file>ui.jsp</Tile>
- <params>
<param name="'ui_mode">answer</param>
<param name="‘prior_transaction_id">583954092</param>
<param name="ig_action'>5</param>
<param name="answer_id">16777216</param>
<param name="highlight_info'">4194305,7,13</param>
<param name="turl>http://whoiam:8226/{instanceContext}/
index?page=content& id=GL1&actp=search&viewlocale=
en_US</param>
</params>
<anchor>__highlight</anchor>
</link>
<click_through_link type="text">http://whoiam:8223/inquiragw/
ui . Jsp?ui_mode=answer&prior_transaction_id=
583954092& iq_action=4&answer_id=16777216&turl=
http%3A%2F%2Fwho 1am%3A8226%2F%7B instanceContext%7D%2F i ndex%3Fpage% 3Dc
ontent%261d%3DGL1%26actp%3Dsearch%26viewlocale%3Den_US</
click_through_link>
- <link type="click'>
<protocol>http</protocol>
<host>whoiam</host>
<port>8223</port>
<path>/inquiragw/</path>
<fFile>ui.jsp</fTile>
- <params>
<param name="ui_mode">answer</param>
<param name="prior_transaction_id">583954092</param>
<param name="ig_action'>4</param>
<param name="answer_id'>16777216</param>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 79 INQUIRA.M

<param name="turl>http://whoiam:8226/{instanceContext}/
index?page=content& id=GL1&actp=search&viewlocale=
en_US</param>
</params>
</link>
<similar_response_link type=""text'">http://whoiam:8223/inquiragw/
ul . jJsp?ui_mode=answer&prior_transaction_id= 583954092& iq_action=
12&answer_id=16777216& ; debug= true&related_ids=</
similar_response_link>
- <link type="similar">
<protocol>http</protocol>
<host>whoiam</host>
<port>8223</port>
<path>/inquiragw/</path>
<File>ui.jsp</file>
- <params>
<param name="‘ui_mode">answer</param>
<param name="prior_transaction_id">583954092</param>
<param name="ig_action">12</param>
<param name="‘answer_id'">16777216</param>
<param name="‘debug''>true</param>
<param name="‘related_ids" />
</params>
</link>
- <timestamp>
<date>18</date>
<month>11</month>
<year>2009</year>
<hour>4</hour>
<minute>17</minute>
<second>26</second>
<mi llisecond>0</millisecond>
</timestamp>
- <facets>
- <facet hidden=""true'>
- <item i1d=""CMS-SOURCE-TYPE" selected=""false">
<description>Content Source Type</description>
</item>
- <item 1d="CMS-SOURCE-TYPE.IM" selected="false">
<description>IM</description>
</item>
</facet>
</facets>
</answer>
- <answer type="'unstructured" score="0.9682692210865386" docType="CMS-XML"
language=""en-US" charset=""UTF-8" collectionld="2" collectionName=
"IM_GLEN_GLEN"™ answer_id="16777217" docld=""4194307" imDocld=""GL3"
highlight_version="true">
- <section>
- <title url="http://whoiam:8226/{instanceContext}/index?page=
content& 1d=GL3&actp=search&viewlocale=en_US">
<snippet IvI="0">this document is in category 1 and 2</snippet>
</title>
- <text>
<snippet IvI="0">To display a list of all available content records
click List</snippet>
</text>
- <text url="http://whoiam:8226/{instanceContext}/index?page=
content& 1d=GL3&actp=search&viewlocale=en_US">
<snippet IvI="1">_</snippet>
<snippet IvI="3">test</snippet>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 80 INQUIRA.M

</text>
- <text>
<snippet IvI="0">Note:</snippet>
</text>
</section>
<highlighted_link type="text">http://whoiam:8223/inquiragw/
ui . Jsp?ui_mode=answer&prior_transaction_id=

583954092& iq_action=5&answer_id= 16777217&highlight_info=
4194307 ,54 ,55& turl=

http%3A%2F%2Fwho 1am%3A8226%2F%7B instanceContext%7D%2F i ndex%3Fpage% 3Dc
ontent%261d%3DGL3%26actp%3Dsearch%26viewlocale®%3Den_US# highli ght</

highlighted_link>
- <link type="highlight">
<protocol>http</protocol>
<host>whoiam</host>
<port>8223</port>
<path>/inquiragw/</path>
<File>ui.jsp</File>
- <params>
<param name="'ui_mode"'>answer</param>
<param name="‘prior_transaction_id">583954092</param>
<param name='"ig_action'>5</param>
<param name="answer_id">16777217</param>
<param name="highlight _info''>4194307,54,55</param>
<param name=""turl'>http://whoiam:8226/{instanceContext}/
index?page=content& id=GL3&actp=search&viewlocale=
en_US</param>

</params>
<anchor>__highlight</anchor>
</link>
<click_through_link type=""text'">http://whoiam:8223/inquiragw/
uil . Jsp?ui_mode=answer&prior_transaction_id= 583954092& iq_action=

4&answer_id=16777217&turl=
http%3A%2F%2Fwho iam%3A8226%2F%7BinstanceContext%7D%2F index%3Fpage%3 Dcon
tent%261d%3DGL3%26actp%3Dsearch®%26viewlocale%3Den_US</ click_through_link>
- <link type="click'>
<protocol>http</protocol>
<host>whoiam</host>
<port>8223</port>
<path>/inquiragw/</path>
<fFile>ui.jsp</file>
- <params>
<param name="'ui_mode">answer</param>
<param name="prior_transaction_id">583954092</param>
<param name=""ig_action'>4</param>
<param name="answer_id"'>16777217</param>
<param name="turl'>http://whoiam:8226/{instanceContext}/index?page=
content& 1d=GL3&actp=search&viewlocale=en_US</param>
</params>
</link>
<similar_response_link type="text">http://whoiam:8223/inquiragw/
uil . Jsp?ui_mode=answer&prior_transaction_id= 583954092& iq_action=
12&answer_id=16777217& ;debug= true&related_ids=</
similar_response_link>
- <link type="similar'">
<protocol>http</protocol>
<host>whoiam</host>
<port>8223</port>
<path>/inquiragw/</path>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 81 INQUIRA.M

<file>ui.jsp</Tile>
- <params>
<param name="'ui_mode"'>answer</param>
<param name="‘prior_transaction_id">583954092</param>
<param name="ig_action'>12</param>
<param name="answer_id">16777217</param>
<param name="‘debug''>true</param>
<param name="'related_ids" />
</params>
</link>
- <timestamp>
<date>18</date>
<month>11</month>
<year>2009</year>
<hour>4</hour>
<minute>18</minute>
<second>22</second>
<mi llisecond>0</millisecond>
</timestamp>
- <facets>
- <facet hidden="true">
- <item id=""CMS-SOURCE-TYPE" selected="false">
<description>Content Source Type</description>
</item>
- <item id="CMS-SOURCE-TYPE.IM" selected="false'>
<description>IM</description>
</item>
</facet>
</facets>
</answer>
</purpose>
</responses>
- <facets>
- <result-facet>
<id>DOC_TYPES</id>
<description>DocTypes</description>
<count>2</count>
- <result-facet>
<i1d>DOC_TYPES%2eCMS%2dXML</id>
<description>CMS-XML</description>
<count>2</count>
</result-facet>
</result-facet>
- <result-facet>
<id>COLLECTIONS</1id>
<description>Collections</description>
<count>2</count>
- <result-facet>
<id>COLLECTIONS%2eIM_GLEN_GLEN</id>
<description>IM_GLEN_GLEN</description>
<count>2</count>
</result-facet>
</result-facet>
- <result-facet>
<id>CMS%2dVIEW</id>
<description>Information Manager View</description>
<count>2</count>
- <result-facet>
<id>CMS%2dV IEW%2eGLEN</id>
<description>glen</description>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 82

IN(QUIRAW

<count>2</count>
</result-facet>
</result-facet>
- <result-facet>
<id>CMS%2dCATEGORY</id>
<description>Information Manager Category</description>
<count>2</count>
- <result-facet inEffect=""true">
<id>CMS%2dCATEGORY%2eCAT1</id>
<description>catl</description>
<count>2</count>
</result-facet>
</result-facet>
- <result-facet>
<id>CMS%2dCHANNEL</i1d>
<description>Information Manager Channel</description>
<count>2</count>
- <result-facet>
<id>CMS%2dCHANNEL%2eGLEN</1d>
<description>glen</description>
<count>2</count>
</result-facet>
</result-facet>
</facets>
- <constraint>
<language>en-US</language>
<result_language>en-US</result_language>
<host>10.0.9.48</host>
<address>10.0.9.48</address>
</constraint>
- <query>
- <question referenceld="583954091" language="en-US" transactionld="583954092">
<original>test</original>
<paraphrase>test</paraphrase>
</question>
- <question language="en-US" transactionld="583954091">
<original>test</original>
<paraphrase>test</paraphrase>
</question>
- <question language="en-US" transactionld="583954089">
<original>test</original>
<paraphrase>test</paraphrase>
</question>
</query>
- <config>
<param name="'searchWithin'>false</param>
</config>
</message>

INQUIRA CLIENT LIBRARY API IMPLEMENTATION GUIDE 83 INQUIRA.M

	Preface: About This Guide
	In This Guide
	Contacting InQuira
	InQuira Product Documentation
	InQuira Analytics Documentation
	InQuira iConnect for CRM Integration Documentation
	InQuira Information Manager Documentation
	InQuira Intelligent Search Documentation

	Screen and Text Representations
	References to World Wide Web Resources

	Chapter 1: Installing the Client Library API
	Information Manager Server Side Installation
	Intelligent Search Server Side Installation
	Client Side Installation
	Java Client Installation
	Third Party Jars Required
	InQuira Provided Jars

	C#/.Net Client Installation
	InQuira Provided Files:
	Configuration

	Chapter 2: Client Library Introduction
	Native Data Types
	Cross Platform Support
	Remote Access
	Expose Commonly Used Functionality
	Consistent Interface Across Products

	Chapter 3: Architecture Overview
	Service Locator Pattern
	Session Façade Design Pattern
	Data Transfer Design Pattern
	Error Handling
	Serialization

	Chapter 4:Information Manager API Overview
	IQRepositoryRequest
	Related ITOs
	getRepositoryxxxByReferenceKey()
	getRepositoryxxxByID()
	getRepositoryXXXforRepositoryKey()

	IQCategoryRequest
	Related ITOs
	getCategory%MODE%ForCategoryKey (FULL, DATA)
	getCategory%MODE%ForID (FULL, DATA, KEY)
	getCategory%MODE%ByReferenceKey (FULL, DATA, KEY)
	category%MODE%ITOChildrenForParent (FULL, DATA, KEY)
	getCategory%MODE%ListAssignedToView (FULL, DATA, KEY)
	getRequiredCategory%MODE%ListForChannel (FULL, DATA, KEY)
	getCategory%MODE%ListForChannel (FULL, DATA, KEY)
	addCategory
	deleteCategory
	updateCategories

	IQContentChannelRequest
	Related ITOs
	getContentChannel%MODE%ForContentChannelKey (FULL, DATA)
	getContentChannel%MODE%ByReferenceKey (FULL, DATA, KEY)
	Miscellaneous ContentChannel Service Methods

	IQContentRecordRequest
	Related ITOs
	Methods to Retrieve Latest Versions of Documents
	Methods that Return Single Objects
	Methods that Return Lists of Objects

	Methods to Retrieve Published Versions of Documents
	Methods that Return Single Objects
	Methods that Return Lists of Objects
	Content Record Case Link Methods
	Content Record Methods that Create or Modify Data
	Workflow Methods
	Content Methods
	Case Linking Methods

	IQLocaleRequest
	Related ITOs

	IQSecurityRoleRequest
	Related ITOs

	IQUserGroupRequest
	Related ITOs

	IQUserRequest
	Related ITOs
	Methods that Change User Information
	Methods that Return Information about Users

	IQViewRequest
	Related ITOs
	Methods that Change View Information
	Methods that Return Information about Views

	IQWorkTeamRequest
	Related ITOs

	IQContentRecommendationRequest
	Related ITOs

	IQRatingRequest
	Related ITOs

	Chapter 5: Intelligent Search API Overview
	IQServiceClient
	SessionID, TransactionID
	CCAInfo
	ClientInfo
	SearchInfo
	UserInfo

	IQSearchRequest
	GIML
	Question Answering Methods
	Call Center Advisor Methods
	Process Wizard Methods

	Appendix A: Error Code Constants
	Appendix B: GIML XSD
	Appendix C: GIML Response

