
Intelligent Search Application
Development Guide
A Guide to Customizing and Extending InQuira

InQuira Version 8.2
Document Number IS82-API-00

March 3, 2010

InQuira, Inc.
900 Cherry Ave., 6th Floor

San Bruno, CA 94066

COPYRIGHT INFORMATION
Copyright © 2002 - 2010 Inquira, Inc.
Product Documentation Copyright © 2003 - 2010 Inquira, Inc.

RESTRICTED RIGHTS
This document is incorporated by reference into the applicable license agreement between your organization and InQuira, Inc. This software
and documentation is subject to and made available only pursuant to the terms of such license agreement and may be used or copied only in
accordance with the terms of that agreement. It is against the law to copy, modify, disassemble or reverse engineer the software and
documentation, except as specifically allowed in the license agreement and InQuira will take all necessary steps to protect its interests in the
software and documentation. To the extent certain third party programs may be embedded into the InQuira software, you agree that the
licensors for such third party programs retain all ownership and intellectual property rights to such programs, such third party programs may
only be used in conjunction with the InQuira software, and such third party licensors shall be third party beneficiaries under the applicable
license agreement in connection with your use of such third party programs.
This document may not, in whole or in part, be photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form without written prior consent from InQuira, Inc., which may be withheld in its sole and absolute discretion.
The information in this document is subject to change without notice and does not represent a commitment on the part of InQuira, Inc. The
documentation is provided “AS IS” without warranty of any kind including without limitation, any warranty of merchantability or fitness for a
particular purpose. Further, InQuira, Inc. does not warrant, guarantee, or make any representations regarding the use, or the results thereof.
Although reasonable measures have been taken to ensure validity, the information in this document is not guaranteed to be accurate or error
free.

TRADEMARKS AND SERVICE MARKS
InQuira, Inc., InQuira 8, InQuira 7, InQuira 6, InQuira 5, InQuira Natural Interaction Engine, Information Manager, Call Center Advisor,
and iConnect are trademarks or registered trademarks of InQuira, Inc.
Sentry Spelling-Checker Engine Copyright © 2000 Wintertree Software, Inc.
All other trademarks and registered trademarks contained herein are the property of their respective owners.

Contents
Preface: About This Guide . 1
In This Guide . 2
Contacting InQuira . 3
InQuira Product Documentation . 4

Intelligent Search Documentation . 4
InQuira Analytics Documentation . 6
Information Manager Documentation . 6
Contact Center Documentation . 7
Screen and Text Representations . 7
References to World Wide Web Resources . 7

Chapter 1 The InQuira User Interface . 9
The Personalized Response User Interface . 9
User Interface Processing . 10

Application Response Format . 10
The Parameters Section . 10
The Answers Section . 11
The Query Section . 12

Chapter 2 User Interface Components . 13
The Main Template . 13

Main Template File Example . 14
The Global Layout Style Templates . 15

Basic Search Layout Display Example . 16
Request and Response Element Templates . 17

Global Configuration Parameters Template . 17
Intelligent Search Language Tuning Guide iii

Contents
Sample Configuration Parameters File . 17
Request Element Templates . 18
Request Area Example . 19
Dialog Request Area Example . 20
Response Element Templates . 20

Global Elements and Utilities . 21

Chapter 3 User Interface Elements . 23
Request Elements . 23
Response Elements . 24
Answer Display Features . 25
Answer Purposes . 26

Default Answer Purposes . 27
Answer Portlets . 28

Default Answer Portlets . 29
Promotions Portlet Example . 30
Act Now Portlet Example . 31
Learn More Portlet Example . 32
Definition Portlet Example . 33
Feature Content Portlet Example . 34

Chapter 4 Customizing the User Interface . 35
Specifying the User Interface Layout . 35
Integrating the User Interface . 36
Customizing Style Elements . 36

Customizing General Style Elements . 36
Customizing Question Area Definitions . 38
Customizing Answer Area Definitions . 39
Customizing Sidebar Area Definitions . 41

Customizing Request Elements . 43
Customizing the Request Heading . 44
Customizing the Example Question . 44
Customizing the Question Box . 45
Customizing the Tips Link . 45
Customizing the Submit Button . 45

Customizing Response Elements . 46
Customizing the Question Echo . 46
Customizing the Answer Introduction . 47
Customizing Answer Headings . 47
Customizing the Answer Body Text . 47
Customizing the Answer Document Link . 48

Configuring Answer Purposes . 48
iv Intelligent Search Language Tuning Guide

Contents
Adding Answer Purposes to the Application . 49
Customizing Answer Portlets . 52
Specifying Portlet Display Position . 52
Customizing Portlet Headings . 52
Customizing Portlet Answer Headings . 53
Customizing Portlet Answer Text . 53
Customizing Portlet Document Links . 53

Chapter 5 Implementing Optional Features . 55
The Process Wizard User Interface . 56

The Process Wizard Answer . 56
The Step Display Area . 57
Modifying the Process Wizard User Interface . 57

Activating the Personalized Navigation User Interface Layout 59
The Personalized Navigation User Interface Elements 59
Personalized Navigation XSL Style Sheet Elements 60
Personalized Navigation CSS Style Sheet Elements 60
Personalized Navigation-Related XML Elements . 61

Implementing Direct Page Display . 61
Direct Page Display Example . 62

Implementing a Virtual Representative . 63
Implementing User Feedback Collection . 63

The User Feedback Portlet . 64
The User Feedback Comment Form . 65
The User Feedback Process . 66
Customizing the User Feedback Area Heading . 67
Customizing the User Feedback Rating Labels . 68
Customizing the User Feedback Comment Form . 69
Disabling the User Feedback Feature . 69

Implementing Click-Through Logging . 70
Highlighting Answers Within Documents . 71

Enabling Highlighting within Answer Documents 72
Specifying HTML Highlighting Style Attributes . 73

Managing Multiple Languages in the User Interface . 75

Chapter 6 Creating a Custom Content Crawler . 77
Example: Creating a Database Web Crawler . 77
Example: Configuring the Database Web Crawler . 81
Configuring a Custom Crawler . 83

Example Crawler Settings . 84
Intelligent Search Language Tuning Guide v

Contents
Chapter 7 Creating a Custom Document Preprocessor . 85
Example: Creating a Document Preprocessor . 85
Configuring a Custom Document Preprocessor . 89

Supporting Multiple Naviagtion Applications . 90

Chapter 8 Creating a Custom Task . 91
Example: Creating a Simple Custom Task . 92
Example: Handling Argument Parsing . 94
Example: Handling Document Count and Progress Updates 98
Example: Handling User Task Interruptions . 101
Configuring a Custom Task . 103

Chapter 9 Creating a Custom Authentication Interface. 105
Example: Creating a Simple Custom Authenticator . 106
Example: Simple Unit Testing of a Custom Authenticator 108
Example: Configuration-based Test for IAuthenticator Objects 110
Configuring a Custom Authenticator . 111

Chapter 10 Integrating an External Authentication Application . 113
Example: Integrating a Delegation Authenticator . 114
Example: Integrating a Delegation Detector . 116
Configuring a Delegation Authenticator or Detector . 118

Chapter 11 Creating an Action Plugin. 119
Example: Creating an Action Plugin . 119
Configuring an Action Plugin . 121

Chapter 12 Creating a Custom Preference Handler . 123
Example: Creating a Preference Handler . 123
Configuring a Preference Handler . 124

Chapter 13 Rendering Web Pages Using a Custom Agent . 125
Example: Rendering a Web Page Using a Custom Agent 125
vi Intelligent Search Language Tuning Guide

Preface About This Guide
This guide provides information about integrating and customizing the InQuira 8.1
Personalized Response User Interface. It describes the components and elements that
make up the User Interface, and includes guidelines for:

• Incorporating the User Interface into your web architecture

• Customizing User Interface appearance and functionality

• Implementing special features

This guide also provides information for application developers who want to customize or
extend InQuira 8.1 through its API. For information on configuration-based changes or
changes to InQuira 8.1 that are not accomplished through its API, refer to the Intelligent
Search Optimization Guide.

For a full discussion of the InQuira 8.1 architecture, components, and instances refer to the
Intelligent Search Administration Guide. For information about setting up the
development environment and deploying customizations and code changes to the
production environment also refer to the Intelligent Search Administration Guide.
Intelligent Search Application Development Guide 1

This preface includes information on:

• The general organization of this guide

• The support services available from InQuira Customer Support

• The available product documentation

In This Guide

The Intelligent Search Application Developer's Guide is divided into the following
sections:
 Chapter 1, The InQuira
User Interface

This section describes the basic functions of the User Interface and
input format of the application responses.

Chapter 2, User Interface
Components

This section describes the templates that define the User Interface
functionality and presentation.

Chapter 3, User Interface
Elements

This section describes the various request and response elements
within the User Interface.

Chapter 4, Customizing
the User Interface

This section describes the process of specifying User Interface
layout, individual element styles, and implementing Personalized
Response features.

Chapter 5, Implementing
Optional Features

This section describes optional User Interface features that you
can use within your application.

Chapter 6, Creating a
Custom Content Crawler

This section shows you how to implement a custom DB Web
crawler.

Chapter 7, Creating a
Custom Document
Preprocessor

This section discusses common preprocessing tasks and provides
an example based on which you can develop your own
preprocessing routines.

Chapter 8, Creating a
Custom Task

This section shows you how to create a custom task.

Chapter 9, Creating a
Custom Authentication
Interface

This section shows you how to create a custom authentication
interface.

Chapter 10, Integrating
an External
Authentication
Application

This section shows you how to integrate InQuira 8.1's
authentication with an external application.

Chapter 11, Creating an
Action Plugin

This section shows you how to create and integrate an action
plugin that executes when a rule is invoked.

 Chapter 12, Creating a
Custom Preference
Handler

This section provides a template for developing preference
handlers.
2 Intelligent Search Application Development Guide

Contacting InQuira

You can contact InQuira by mail, telephone, fax, and email.

 Chapter 13, Rendering
Web Pages Using a
Custom Agent

This section provides an example of how to integrate a custom
agent bypassing the web page rendering functionality built into
InQuira 8.1.

Address: InQuira, Inc.
900 Cherry Ave., 6th Floor
San Bruno, CA 94066

Telephone: (650) 246-5000
Fax: (650) 264-5036
Email: For sales information, send email to sales@inquira.com.

For product support, send email to support@inquira.com.
World Wide Web: Learn more about InQuira products, solutions, services, and support

on the world wide web at: www.inquira.com.
Intelligent Search Application Development Guide 3

InQuira Product Documentation

InQuira documentation is available only to licensed users of our software products and
may not be redistributed in any form without express permission from InQuira, Inc.

The InQuira documentation is available in PDF format.Customers can download the
PDF files from:

http://documentation.inquira.com/

NOTE: You need a PDF reader application installed on each processor on which you plan
to view the InQuira product documentation. The Adobe Acrobat reader is available
from Adobe Systems at: http://www.adobe.com.

Detailed information about each product document set is available in:

• Intelligent Search Documentation on page 4

• InQuira Analytics Documentation on page 6

• Information Manager Documentation on page 6

• Contact Center Documentation on page 7

If you encounter a problem, need help using the documentation, or want to report an error
in the content, please contact InQuira Customer Support.

If you need help obtaining InQuira product documentation, or want to obtain permission
to redistribute a portion of the contents, please contact your InQuira account
representative.

Intelligent Search Documentation

Intelligent Search is distributed with the following documentation.

Document Number Description
Intelligent Search
Installation Guide

IS80-IG-00 This guide is intended for technical staff who are
responsible for installing InQuira 8.1. It provides
detailed information on installing InQuira 8.1 and
configuring the application on a single processor
using the Installation Configuration Environment
facility.

Intelligent Search
Administration Guide

IS80-CA-00 This guide is intended for system and application
administrators who need to configure an InQuira
8.1 application in an enterprise environment. It
describes InQuira 8.1 integration, development,
configuration, and maintenance processes and
tasks.
4 Intelligent Search Application Development Guide

Intelligent Search
Language Administration
Guide

IS80-LA-00 This guide is intended for business users and
subject matter experts who need to create and
maintain the language processing elements of an
InQuira 8.1 application using the System Manager.
This book provides usage information about the
System Manager, conceptual information about
the InQuira 8.1 language objects, and task
information about the process of managing the
user experience provided by the InQuira 8.1
application.

Intelligent Search
Language Tuning Guide

IS80-LD-00 This guide is intended for application developers
who need to create and maintain advanced
InQuira 8.1 language-processing elements using
the Dictionary and other InQuira Language
Workbench applications.

Intelligent Search
Optimization Guide

IS80-AG-00 This guide is intended for application developers
who need to implement InQuira 8.1 advanced
features, including Personalized Navigation and
Process Wizards.

Intelligent Search
Application Development
Guide

IS80-API-00 This guide provides information about integrating
and customizing the InQuira 8.1 Personalized
Response User Interface.

Intelligent Search
Language Reference

IS80-LRG-00 This guide is for language developers
implementing InQuira 8.1 applications that utilize
the intent libraries and advanced language
processing functions. These guides are published
as separate documents that provide reference
information for each industry-specific intent library.
Each reference also contains complete
descriptions of InQuira Match Language and
Variable Instantiation Language.

Intelligent Search User
Interface Guide

IS80-UI-00 This guide is intended for application developers
who need to customize the InQuira 8.1
Personalized Response User Interface, and
integrate it with a production web application. It
contains information about the elements and
features of the User Interface, and provides
guidelines for integrating it into an enterprise web
architecture, customizing its appearance and
functionality, and implementing various special
features.
Intelligent Search Application Development Guide 5

InQuira Analytics Documentation

InQuira Analytics is distributed with the following documentation.

Information Manager Documentation

InQuira Information Manager is distributed with the following documentation.

Document Number Description
InQuira Analytics
Installation Guide

IA80-IG-00 This guide is intended for technical staff who are
responsible for installing InQuira Analytics. It
provides detailed information on installing and
configuring the InQuira Analytics product for use
with an InQuira 8.1 application.

Analytics User Guide IA80-CA-00 This guide is intended for systems and application
administrators who need to configure the Intelligent
Search and Information Manager Analytics
components to report on InQuira 8.1 application
performance.

Document Number Description
Information Manager
Installation Guide

IM80-IG-00 This guide is intended for technical staff who are
responsible for installing InQuira Information
Manager. It provides detailed information on
installing and configuring the Information Manager
product.

Information Manager
Administration Guide

IM80-CA-00 This guide is intended for systems and application
administrators who need to configure and
administer an InQuira Information Manager
application, and integrate it with an InQuira 8.1
application. It also contains information for general
business users who need to use the Information
Manager to create and manage content.

Information Manager
Content Authoring
Guide

IM80-AG-00 This guide is intended for technical staff who are
responsible for authoring content in InQuira
Information Manager. It provides detailed
information on creating content and managing
workflow tasks in the Information Manager console.

Information Manager
Developer’s Guide

IM80-WSR-00 This guide is intended for application developers
who need to integrate Information Manager content,
content category, and user and security functions
with external applications. It contains reference
information and examples for all packages, classes,
methods, and interfaces of the Information Manager
Web Services API.
6 Intelligent Search Application Development Guide

Contact Center Documentation

The InQuira 8.1 contact center products are distributed with the following documentation.

Screen and Text Representations

The product screens, screen text, and file contents depicted in the documentation are
examples. We attempt to convey the product's appearance and functionality as accurately
as possible; however, the actual product contents and displays may differ from the
published examples.

References to World Wide Web Resources

For your convenience, we refer to Uniform Resource Locators (URLs) for resources
published on the World Wide Web when appropriate. We attempt to provide accurate
information; however, these resources are controlled by their respective owners and are
therefore subject to change at any time.

Document Number Description
Contact Center Advisor
Integration Guide

CA80-IG-00 This guide is intended for application developers
and systems administrators who need to plan for
and integrate the InQuira Contact Center Advisor
with an InQuira application and a supported CRM
application.

Intelligent Search Siebel
Integration Guide

CAS80-IG-00 This guide is intended for application developers
and systems administrators who need to plan for
and integrate InQuira 8.1 with Siebel 7 Enterprise
Applications using the Siebel Adapter for InQuira
8.1.
Intelligent Search Application Development Guide 7

8 Intelligent Search Application Development Guide

Chapter 1 The InQuira User Interface

The InQuira 8.1 Personalized Response User Interface is a full-featured graphical user
interface designed to integrate easily with your existing production web site. The User
Interface provides the elements required for processing requests and presenting responses,
and supports additional optional features that you can implement as desired.

To use the User Interface in a production web environment, you must:

• Integrate it into your web site's navigation and presentation scheme

• Customize it to conform to your organization's functional and presentation
requirements

• Implement any desired optional features as described in Chapter 5, Implementing
Optional Features

The User Interface is installed as part of the standard product installation.

NOTE: The User Interface is available only as an HTML-based user interface for use with
a configured InQuira 8.1 web application. For information about implementing
InQuira 8.1 using other technologies, contact your InQuira account representative.

The Personalized Response User Interface

The InQuira 8.1 User Interface incorporates InQuira's Personalized Response concept,
which presents direct answers to user requests in its main answer area, and categorized
related information in that you configure within the Dictionary.

The Personalized Response User Interface organizes various types of related responses
into separate graphical areas, or portals, enabling you to establish consistent, focused, and
targeted presentation for various types of application content, such as general site
information, online glossaries, promotional material, and site features, such as calculators
and other tools.
Intelligent Search Application Development Guide 9

User Interface Processing

The User Interface contains all of the elements required to solicit user questions and
present categorized application responses. During request processing, the User Interface:

• Passes user input to the application for processing. See Chapter 1, Dictionary
Manager Advanced Features in the Intelligent Search Optimization Guide for an
overview of application request and response processing.

• Receives formatted responses from the application. See Application Response Format
on page 10 for information about the response format.

• performs final formatting and displays responses to the end user, as specified by the
configured presentation elements as described in Chapter 4, Customizing the User
Interface.

Application Response Format

The application passes responses to the User Interface as a file that conforms to an internal
Extensible Markup Language (XML) document type definition (DTD). The User Interface
templates are stylesheets that transform the XML into formatted HTML for presentation
within a browser.

The response file is divided into sections:

• The Parameters Section on page 10

• The Answers Section on page 11

• The Query Section on page 12

The Parameters Section

The parameters section provides meta-information about the response, such as context
information and other configuration parameters. The User Interface uses this information
to retrieve page parameters, server URLs, and other required information.

The following example is an excerpt from a typical parameters section.
<params>
<param name="type">AnswerQuestion</param>
<param name="Question">how much can I contribute to a Roth ira in?
<param name="baseURL">http://lcdemo2:8222/htmlagent/ui.jsp</param>
</params>
10 Intelligent Search Application Development Guide

The Answers Section

The answers section contains the various content responses (answers) to the request
(question). Factors that determine the number of answers passed to the User Interface
include:

• The number of content matches (answers) located in the application content

• The scores associated with the located answers

The results file groups answers according to answer purposes, which are specified in the
Dictionary. The User Interface displays answers associated with each purpose in a specific
section, or portlet of the response page. The maximum number of answers within each
portlet is determined by display thresholds. See Configuring Answer Purposes on
page 48 for more information about answer purposes and how they are displayed by the
User Interface.

The following example includes a general answer and an answer assigned to the purpose
link to category.

<answer score="1.0">
 <answer type="unstructured" score="0.6691748880962431"
 <section>
 <title idx="0"
 <snippet lvl="0">Financial
 </title>
 <text idx="1"
 <snippet lvl="1">Only married couples with
 <snippet lvl="3"> $ 150 </snippet>
 <snippet lvl="1"> , 000 or less and singles
 .
 .
 .
 </text>
 </section>
 <highlighted_link
 <similar_response_link
 </answer>
</answer>
<link_to_category score="1.0">
<answer type="custom" score="1.0">
 <sentence type="code"><a
 <title type="code">Roth IRA</title>
</answer>
Intelligent Search Application Development Guide 11

The Query Section

The query section contains history information associated with the session, such as
previously asked questions. The User Interface uses this information to present session
information with results.

The following example is an excerpt from a typical query section.
<query>
<question transactionId="1">
<original>how much can I contribute to a Roth ira in
<paraphrase>how much can I contribute to a Roth ira in
</question>
</query>
12 Intelligent Search Application Development Guide

Chapter 2 User Interface Components

The User Interface consists of a set of templates that use Extensible Stylesheet Language
Transformation (XSLT) and HTML Cascading Style Sheets (CSS) to define presentation
characteristics.

The set of templates includes the main template, called main.xsl, and subordinate
templates that contain the elements required for User Interface implementation.

The templates contain presentation and navigation design elements, such as:

• Page layouts

• Functional elements, such as user input elements and response presentation elements

• Global elements, such as color schemes and font families

The templates are pre-configured with default values for required elements.

In addition to the required User Interface elements, the templates contain elements that
support optional features, such as Personalized Navigation, direct page display, and
dialog-style user interaction.

See Chapter 3, User Interface Elements for more information about the elements of the
User Interface.

The Main Template

The main template specifies the set of subordinate templates that determine the layout,
functional elements, and style of the User Interface. The main template also specifies
additional utilities and directories that provide basic functional or graphical elements.

You need to modify the main template to integrate the User Interface with your site's
navigation structure. The main template is located in:

<InQuira_home>/inquira/int/xsl/search
Intelligent Search Application Development Guide 13

The main template specifies subordinate templates as include statements. Main Template
File Example on page 14 contains a sample section of the main template showing its
structure.

See Chapter 4, Customizing the User Interface for more information on using the main
template.

Main Template File Example

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<!-- General -->
<xsl:import href="config.xsl"/>
<xsl:import href="globals.xsl"/>
<xsl:import href="includes.xsl"/>
<xsl:import href="../common/util.xsl"/>
<!-- Options for Search UI Main Screens -->
<xsl:import href="ui_search_basic.xsl"/>
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<!--xsl:import href="ui_search_vrep.xsl"/-->
<!-- Other search UI pages -->
<xsl:import href="instant_answer_page.xsl"/>
<xsl:import href="user_comments_page.xsl"/>
<!-- Search UI Main Areas -->
<xsl:import href="results.xsl"/>
<xsl:import href="sidebar.xsl"/>
<xsl:import href="structured_details.xsl"/>
<xsl:import href="tips.xsl"/>
<xsl:import href="error.xsl"/>
<!-- End of Imports -->
<xsl:output method="html" indent="yes"/>
<xsl:strip-space elements="*" />

<!-- Override the default, empty resource file with our own for the search UI -->
<xsl:variable name="resource-file" select="document('resource.xml')" />

<xsl:template match="/">
 <xsl:choose>
 <xsl:when test="$error-message">
 <xsl:call-template name="error-page" />
 </xsl:when>
 <xsl:when test="$show-user-comments-page">

 <xsl:call-template name="user-comments-page" />
 </xsl:when>
 <xsl:when test="$show-instant-answer-frame">
 <xsl:call-template name="instant-answer-frame" />
 </xsl:when>
 <xsl:when test="$instant-answer and not($no-jump or $show-definition-detail-page or
14 Intelligent Search Application Development Guide

$show-structured-detail-page)">
 <xsl:call-template name="instant-answer-page" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:call-template name="question-and-results-page" />
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>

The Global Layout Style Templates

The layout style templates determine the basic format of the User Interface request and
response pages. You specify the following layout templates using an include statement in
the main template file.

• The standard response page format (ui_search_basic.xsl)

• The Personalized Navigation layout (ui_search_and_browse.xsl)

• The Virtual Representative layout for (ui_search_vrep.xsl)

The standard response page template is enabled by default, as shown in the following example:
<!-- Options for Search UI Main Screens -->
<xsl:import href="ui_search_basic.xsl"/>
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<!--xsl:import href="ui_search_vrep.xsl"/-->

See Chapter 5, Implementing Optional Features for more information on enabling the
alternate global layout styles.
Intelligent Search Application Development Guide 15

Basic Search Layout Display Example

The basic search layout provides a large left-column answer area, and the question input
area and related information portlets arrayed in the right column. Answer Display
Features on page 25 describes features of the answer displays.
16 Intelligent Search Application Development Guide

Request and Response Element Templates

The request and response element templates determine the basic format and content of the
request and response elements within the specified layout.

• Sample Configuration Parameters File on page 17

• Request Element Templates on page 18

• Response Element Templates on page 20

Global Configuration Parameters Template

The configuration parameters template specifies global settings for both request and
response elements. The config.xsl template contains User Interface configuration
parameters, such as section headers and feature switches. Sample Configuration
Parameters File on page 17 provides a sample of the file contents.

Sample Configuration Parameters File

The following is a sample of the configuration parameters file, config.xsl.
<?xml version="1.0" ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<!--
 - Configurable variables
 -->

<!--
 - Score Thresholds
 -
 - best-answers-min-score: Minimum score required to be considered one of the best answers
 - best-answers-min-diff: Minimum difference between scores required before being cut off from
the best answers
 - best-answers-max-display: Maximum # of best answers to display
 -->
<xsl:variable name="best-answers-min-score" select="0.90" />
<xsl:variable name="best-answers-min-diff" select="0.01" />
<xsl:variable name="best-answers-max-display" select="3" />

<!--
 - The spellchecker returns suggestions with scores between 0 and 100.
 - This sets the minimum score required before a suggestion is made to the user.
 -->
Intelligent Search Application Development Guide 17

<xsl:variable name="spellcheck-min-suggest-score" select="90" />
<!--
 - User Interface Options
 -->
<xsl:variable name="default-charset" select="'UTF-8'" />
<xsl:variable name="get-user-feedback" select="true()" />
<xsl:variable name="show-search-running-indicator" select="true()" />
<xsl:variable name="debug-full-excerpt" select="false()" />

</xsl:stylesheet>

Request Element Templates

The request element templates determine the basic format and contents of the request
elements within a specified layout.

Request elements

question.xsl

This template specifies standard question interaction using the question boxes, example
questions, and other user input elements. You must specify this template or the alternative
dialog-style elements. This template is the default. Request Area Example on page 19
provides a sample request area display.

Dialog-style elements

question_vrep.xsl

This template specifies dialog-style question interaction for use with virtual
representatives (VREPs) or similar implementations, as described in Implementing a
Virtual Representative.Dialog Request Area Example on page 20 provides a sample
dialog-style request area display.
18 Intelligent Search Application Development Guide

Request Area Example

The default request area provides the functional and presentation elements required for
integrating a request area into pages within your web site. The request area elements are
described in more detail in Request Elements on page 23.
Intelligent Search Application Development Guide 19

Dialog Request Area Example

The dialog-style request area provides the functional and presentation elements required
for integrating a dialog-style request area into pages within your web site. The request area
elements are described in more detail in Request Elements on page 23. See Implementing
a Virtual Representative for more information about using the dialog style template to
support user interaction with a virtual representative.

Response Element Templates

The response element templates determine the basic form and content of the response
elements.

Standard answer elements

results.xsl

This template contains elements for presenting standard answers, and also contains the
basic building blocks for answers used by all answer purposes.
20 Intelligent Search Application Development Guide

Portlet answer elements

sidebar.xsl

This template contains elements that generate the portlet display area of the response page.
The portlet display area displays all answer purposes except standard, dialog, and direct
page display.

See Default Answer Purposes on page 27 for information on default answer purpose
presentation.

User Interface error messages

error.xsl

This template specifies the format for displaying error messages. This template is
required.

Global Elements and Utilities

The global element templates specify basic colors, fonts, and section headings and other
variables used throughout the User Interface. The utilities files include graphics
directories and basic usability functions. You can specify elements within these templates
for either the two- or three-column layout style.

Common elements

includes.xsl

This template contains the elements that support inclusion of basic style sheets and utilities,
such as CSS and JavaScript.

Global Javascript file

qna_common.js

This is the main JavaScript file, located in <InQuira_home>/inquira/int/js. It
contains basic JavaScript functions used on the request and response pages.

Common element style sheet

qna_style.css

This is the style sheet, located in <InQuira_home>/inquira/int/js, that defines the
basic common elements, such as fonts and colors, for the request and response page
elements. See Customizing General Style Elements on page 36 for more information on
the style elements.
Intelligent Search Application Development Guide 21

Common image directory

images/*.gif

This directory contains various images used throughout the User Interface. It also stores
custom images, such as character images for dialog-style interaction, as described in
Implementing a Virtual Representative.
22 Intelligent Search Application Development Guide

Chapter 3 User Interface Elements

The various templates and style sheets within the User Interface define the elements that
process user requests and display application responses. Request elements and response
elements include both functional elements, such as the question input box, and
presentation elements, such as color schemes and heading text, that organize the
application functions into a meaningful visual display.

Request Elements

The functional and presentation elements of the user request area appear on the initial
request page and on the response page. Request elements include the question box for user
input and other functional and graphic elements.

Element Description
Request Area Defines the request area elements.
Request Heading Specifies the text that appears at the top of the request area. See

Customizing the Request Heading on page 44.
Example Question Specifies the example question text that appears below the request

heading. See Customizing the Example Question on page 44.
Question Box Defines the text input box. See Customizing the Question Box on

page 45.
Tips Link Specifies the link to the User Interface help page. See Customizing

the Tips Link on page 45.
Submit Button Specifies the request submittal mechanism. See Customizing the

Submit Button on page 45.
Intelligent Search Application Development Guide 23

Response Elements

The User Interface displays answers and related information on the response page. The
response page is divided into several functional areas:

• The request area, which provides the means for users to ask additional questions

• The answer area, which presents the application responses that directly the user's
question

• The related information area, which presents related responses, grouped into separate
portlets by answer purpose

NOTE: You can also use the direct page display feature to display the document that
contains the answer to a specified request directly on the response page. Direct
page displays supersede the standard answers. See Implementing Direct Page
Display for more information on configuring the direct page display feature.

Response elements include answers, which are composed of various configurable sub-
elements, and other functional and graphic elements.

Element Description
Answer Area Defines the answer display area on the response page. See

Customizing Response Elements on page 46.
Question Echo Specifies the display of the user's question on the response page.

See Customizing the Question Echo on page 46.
Answer Introduction Specifies text that introduces the answer. See Customizing the

Answer Introduction on page 47.
Answer Heading Specifies the format of the document titles displayed as answer

headings. See Customizing Answer Headings on page 47.
Answer Body Text Specifies the display font for answers on the response page. See

Customizing the Answer Body Text on page 47.
Answer Document Link Specifies the format of the link text within answers. See Customizing

the Answer Document Link on page 48.
Related Information Specifies the format of the elements that make up the answer

portlets. See Customizing Response Elements on page 46.
24 Intelligent Search Application Development Guide

Answer Display Features

The User Interface contains features that display a variety of visual cues that accompany
answers. These features include:

Answer source icons

Answer source icons indicate the type of document or information source in which the
answer is located. They are passed in the XML response format in a standard attribute
called docType. The User Interface displays icons for the following answer sources:

• Answers from structured information (database) sources:

• Answers from HTML, newsgroups, Microsoft PowerPoint, and ASCII text
documents:

• Answers from PDF documents:

• Answers from Microsoft Word documents:

• Answers from Microsoft Excel documents:

• Images:

Answer highlighting and question-word emphasis

The stylesheet qna_style.css contains settings to emphasize words and phrases in the
answer excerpt. Various levels of emphasis are defined in the User Interface, and these
levels correspond to values defined for primary and secondary word-matching and
proximity to words occurring in the user's question. Matching words are determined by the
language analysis process, which takes into account word-form va. The default setting
applies a bold style (bold) and a blue background to matching words.

Similar answer link

The similar answer link provides access to answers derived from other pages on the site
having similar content that were found in the search. This feature enables the User
Interface to consolidate duplicate pages, or pages that re-use a substantial amount of
content, in the initial response. Users can click on the link to display the full answer page
including the similar answers.riations, synonyms, and other semantic relationships, as
described in the Intelligent Search Language Tuning Guide.
Intelligent Search Application Development Guide 25

Answer Purposes

Answer purposes are categories to which you assign answer actions within Dictionary
rules. Answer purposes correspond to display characteristics defined in the User Interface,
enabling you to establish consistent, focused, and targeted presentation for various types
of application content, such as general site information, online glossaries, promotional
material, and site features, such as calculators and other tools.

InQuira 8.1 is installed and configured with a standard set of answer purposes, described
in Default Answer Purposes on page 27, which are designed for use with the
Personalized Response User Interface. The default answer purposes associate each
purpose with a defined response category area, or portlet, of the answer page.

You use answer purposes by:

• Assigning answer purposes to actions within Rules, as described in Rules in the
Intelligent Search Language Tuning Guide.

• Configuring presentation characteristics for User Interface portlets, as described in
Configuring Answer Purposes on page 48.

NOTE: In contrast with answer purposes, answer methods correspond to type of data or
method used to supply the answer. Examples of answer methods include querying
structured data, searching the indexed unstructured content, and displaying custom
content. See Answer Action Methods for Rules in the Intelligent Search
Optimization Guide for more information on answer methods.
26 Intelligent Search Application Development Guide

Default Answer Purposes

The standard set of answer purposes described below are designed for use with the
Personalized Response User Interface.

Purpose Description Default
Response
Template

Default
Presentation

Answer Displays responses that
directly address the user’s
question.

Answer Template In the Answer area of
the response page

Act Displays links that provide
actions that the user can
take on the web site.

Act Template In the Act Now portlet

Promote Displays cross-sell or up-
sell advertisements for
products related to the
intent of the question.

Promote Template In the Promotion
portlet

Related Topic Displays links to major
topic categories defined for
the web site.

Link To Category
Template

In the Related Topics
portlet

Define Displays links to terms
used in the question as
well as similar content.

n/a In the Definition
portlet

Jump to Page Displays content
configured in the
Dictionary for use with the
direct page display feature.

n/a See Implementing
Direct Page Display
on page 61.

Converse Displays conversational
response intended for use
with a virtual
representative on the
response page.

Converse Template See Implementing a
Virtual Representative
on page 63.

Feature Content Displays specific featured
content from the web site
that supplements the
answers.

Feature Content
Template

In the Featured
Content area of the
response page

Contact For use with the Contact
Deflection feature.

n/a See the section on
Implementing Contact
Deflection for Web-
based Email.
Intelligent Search Application Development Guide 27

Answer Portlets

User Interface portlets are defined regions of the answer page. Portlets enable you to
categorize responses displayed on the answer page according to purpose; some desirable
responses are direct answers to user questions, while others might be information about
related promotions, services, tools, and terms.

The User Interface is installed with a set of default portlets that correspond to the purposes
that you can specify specific responses within the application Dictionary.

In general, the User Interface portlets are designed to accept and present information
associated with any type of answer action that can be specified within a Rule; however,
this section does describe limitations and suggested applications where appropriate.

See the Intelligent Search Language Tuning Guide and Intelligent Search Optimization
Guide for more information on the Dictionary, Rules, actions and answer purposes and
methods.
28 Intelligent Search Application Development Guide

Default Answer Portlets

The User Interface is installed with several pre-defined portlets. Each portlet is designed
to present answers with a specific purpose, as described in Answer Purposes on page 26

The following table describes the available default portlets. The default answer page
displays the portlets in a single column to the right of the answer area. The portlets are
listed here in the order in which they are displayed in the default User Interface.

Portlet Usage
Promotions Use this portlet to display promotional information, such as cross-sell or up-

sell advertisements for products related to the intent of the question. You
can configure responses to include graphics as links to pages that contain
more detailed information. See Promotions Portlet Example on page 30 for
more information.

Act Now Use this portlet to display information about relevant activities that users can
perform immediately on the site. This portlet favors concise, imperative
messages that compel users to access beneficial features. See e Act Now
Portlet Example on page 31 for more information.

Learn More Use this portlet to display brief summaries of content areas that are relevant
to the user's question, such as tools and calculators. See Learn More
Portlet Example on page 32 for more information.

Definition Use this portlet to display definitions of terms related to the user's question.
This portal is ideal for displaying existing glossary information adapted from
various formats. See Definition Portlet Example on page 33 for more
information.

Feature Content Use this portlet to display more detailed information about relevant content
areas and site features, such as tools and calculators. The Feature Content
portlet displays responses in the lower portion of the answer area and not in
a segregated box, which provides space for more detailed information, such
as graphical tools. See Feature Content Portlet Example on page 34 for
more information.
Intelligent Search Application Development Guide 29

Promotions Portlet Example

The Promotions portlet is intended to display relevant promotions and special offers. The
Promotions portlet provides an opportunity to create effective context-sensitive marketing
by configuring Promotional responses based on products or services mentioned the user's
question.

The Promotions portlet can display responses generated by any of the available answer
methods; however, it is well-suited to present custom content answers. You can configure
a custom content response to include a graphic as in the following example:

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language
Tuning Guide for more information on configuring custom content responses.
30 Intelligent Search Application Development Guide

Act Now Portlet Example

The Act Now portlet is intended to provide quick access to relevant activities that users
can perform on your site. Opening an account, registering for a service, and checking the
status of an order are examples of actions that you can configure as Act Now responses.

The Act Now portlet can display responses generated by any of the available answer
methods; however, it is well-suited to present custom content answers that specify a title
as a link to the desired location, as in the following example:

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language
Tuning Guide for more information on configuring custom content responses.
Intelligent Search Application Development Guide 31

Learn More Portlet Example

The Learn More portlet is intended to provide access to related topic areas and site
features. You can use the Learn More portlet to direct users to FAQ pages, process
overview pages, tools and calculators, and other site resources.

The Learn More portlet can display responses generated by any of the available answer
methods. It is well-suited to present:

• Custom content answers that specify a title as a link to the desired location

• Custom content responses that include additional descriptive text, as in the following
example:

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language
Tuning Guide for more information on configuring custom content responses.
32 Intelligent Search Application Development Guide

Definition Portlet Example

The Definitions portlet is intended to present glossary information that may or may not be
accessible on the site. InQuira 8.1 uses a special Dictionary component called an alias list
to store glossary information for use by the application. The application then generates a
Definitions response whenever a configured glossary term occurs in a question.

The default Definitions portlet displays the glossary term as a link that users can click to
display the associated definition on a separate answer page.

The Definitions portlet is recommended for use with the Glossary answer purpose as in the
following example:

See Glossary Answer Action Method in the Intelligent Search Optimization Guide for
more information on accessing glossary information.
Intelligent Search Application Development Guide 33

Feature Content Portlet Example

The Feature Content portlet is intended to direct users to site features and resources. The
Feature Content portlet is similar in intent to the Learn More portlet; however, the default
User Interface displays Feature Content responses inline with the standard answers,
enabling more information to be displayed for each response.

The Feature Content portlet can display responses generated by any of the available
answer methods; however, it is well-suited to present custom content answers that include
HTML-based functionality, as in the following example:
34 Intelligent Search Application Development Guide

Chapter 4 Customizing the User Interface

The basic customization tasks for integrating the User Interface include:

• Specifying the layout style within the main template

• Customizing common elements, such as fonts, background colors, and graphic images,
as described in Customizing Style Elements on page 36

• Customizing request and response elements, as described in Customizing Request
Elements on page 43 and Customizing Response Elements on page 46

• Implementing optional features, as described in Implementing Optional Features on
page 55.

Specifying the User Interface Layout

You specify the layout of the User Interface by specifying one of the global templates
available in the extensible style language (xsl) file main.xsl, located in:

int/xsl/search/main.xsl

The main.xsl file contains include statements for the basic search layout and the
additional personalized navigation and virtual representative features. Each include
statement refers to one of the available global templates:

Layout Style Description
ui_search_basic.xsl Specifies the basic User Interface layout. This statement is

enabled by default.
ui_search_and_browse.xsl Specifies to display the Personalized Navigation user interface

elements as described in Activating the Personalized
Navigation User Interface Layout on page 59.

ui_search_vrep.xsl Specifies to display the virtual representative user interface
elements as described in Implementing a Virtual Representative
on page 63.
Intelligent Search Application Development Guide 35

IMPORTANT: You can enable only one of the include statements for your application.

The following example shows the default implementation, which enables the basic search
layout, ui_search_basic.xsl:

<!-- Options for Search UI Main Screens -->
<xsl:import href="ui_search_basic.xsl"/>
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<!--xsl:import href="ui_search_vrep.xsl"/-->

Integrating the User Interface

To integrate the InQuira 8.1 User Interface with your web site, you need to

• Integrate standard elements from your site, such as navigation and graphics, into the
selected layout template

• Reference the URL of the installed and customized User Interface layout template
from the appropriate locations within your site pages, such as search boxes and
relevant navigation links

Customizing Style Elements

You can customize style elements of the User Interface, such as fonts, background colors,
and margins, by modifying the values contained in the User Interface stylesheet,
qna_style.css. The stylesheet defines presentation for general elements used in
multiple locations, and sets of related elements, as described in:

• Customizing General Style Elements on page 36

• Customizing Question Area Definitions on page 38

• Customizing Answer Area Definitions on page 39

• Customizing Sidebar Area Definitions on page 41

Customizing General Style Elements

The general style elements determine style and formatting of various elements used
throughout the user interface.

Element Name Description
36 Intelligent Search Application Development Guide

qna-page-body This element defines the properties for the HTML <body> element
of the page. It establishes general settings for relative font size, font
type, page color, and page margins by default.

qna-normal-text This element defines generic properties for a variety of text on the
page. It establishes font type and relative font size.

qna-small-text This element defines generic properties for a variety of text on the
page, similar to <qna-normal-text>. It establishes font type and
relative font size for text elements intended to be a little smaller than
normal, such as the text just above the question box.

qna-input-textarea This element defines properties for the HTML <textarea> object
used for the question box. It establishes font type, relative font size,
and scrolling properties.

qna-input-button This element defines properties for HTML form buttons on the page.
By default, it sets the font type, size and color as well as the button
color.

qna-header This element defines properties for the question box and top ten
questions header bars on the main search page. It sets the font type,
weight, and color, as well as the background color of the header bar.

qna-header-side This element defines properties for headers in the left sidebar when
using the question_and_results_side.xsl template, similar
to the <qna-header> element.

qna-field-label This element defines properties for the label next to the question box.
By default, it sets the alignment to the top-right of its table cell.

qna-help-link This element defines properties for the link to the help (Tips) page
located near the question box. It sets the font type, size, color and
alignment within its area.

qna-radio-link This element defines properties for the links around the user
feedback options. It sets the font type and color, alignment within its
area, and underline properties to distinguish the options from
hyperlinks.

qna-similar-link This element defines properties for the link text to similar answers. It
sets the font type and color by default.

qna-link This element defines properties for general purpose link objects such
as the paging links. It sets the font type, color, and alignment.

qna-area-separator This element defines properties for any lines used to separate major
sections of the User Interface. By default, it is used to draw the line
between the results and the site navigation. It is primarily used in the
main User Interface integration files such as
question_and_results.xsl and only defines a background
color by default.

qna-area-separator-dark Same as <qna-area-separator>, but used for a second level of
separation in some cases, such as between results and the sidebar.

qna-header-separator This element defines properties for the lines around header bars
such as the question box on the main search page. It only defines the
color of those lines by default.
Intelligent Search Application Development Guide 37

Customizing Question Area Definitions

The question area elements determine style and formatting of various elements used
within the User Interface question area.

qna-footer-separator This element defines properties for the separator line at the bottom of
a results page. It only defines the color of that line by default.

Element Name Description
qna-question-header This element defines properties for the question box header bar that

is used when shown at the top of the results list. It sets the font type,
relative size and color.

qna-question-sidebar-
header

This element defines properties for the question box header bar that
is used when shown in the left sidebar. Similar to <qna-
question-header>.

qna-question-label This element defines properties for the label next to the repeated
question on the page. It specifies the font type, weight, relative size,
color and alignment. The default label text is: You Asked.

qna-question-text This element defines properties for the repeated question on the
page. It sets the font type, weight, relative size and color.

qna-question-sidebar-
label

This element defines properties for the label next to the repeated
question when shown in the left sidebar (using
question_and_results_side.xsl). Similar to <qna-
question-label>.

qna-question-sidebar-
text

This element defines properties for the repeated question when
shown in the left sidebar area (using
question_and_results_side.xsl). Same as <qna-
question-text>.

qna-question-sidebar-
block

This element defines properties for the area where the question is
repeated when using the three column layout
(question_and_results_side.xsl). By default, it sets the
background color for the area.

qna-dialog-text-question-
label

This element defines properties for the label identifying the user’s
question when using the virtual representative interaction. By
default, it sets the font family, size, weight, alignment and color for
the label.

qna-dialog-text-question This element defines properties for the user’s question when using
the virtual representative interaction. By default, it sets the font
family, size, alignment and color for the text.

qna-dialog-text-answer-
label

This element defines properties for the label identifying a virtual
representative’s response to the user. By default, it sets the font
family, size, and weight.
38 Intelligent Search Application Development Guide

Customizing Answer Area Definitions

The answer area elements determine style and formatting of various elements used within
the User Interface answer area.

qna-dialog-text-answer This element defines properties for a virtual representative’s
response to the user. By default, it sets the font family, size,
alignment and color for the text.

qna-dialog-sidebar-
answer-label

This element defines properties for the label identifying a virtual
representative’s response to the user for answer labels displayed in
the sidebar when using the three-column layout. Similar to <qna-
dialog-text-answer-label>.

qna-dialog-sidebar-
answer-text

This element defines properties for a virtual representative’s
response to the user for answers displayed in the sidebar area when
using the three-column layout. Similar to <qna-dialog-text-
answer>.

qna-dialog-image-border This element defines properties for the border around a virtual
representative’s image on the screen. By default, it defines the color
of the border.

qna-dialog-border This element defines properties for the border around the text dialog
between the virtual representative and the user on the screen. By
default, it defines the color of the border.

qna-dialog-block This element defines properties for the area containing the text
dialog between the virtual representative and the user on the
screen. By default, it defines the background color and padding for
the area.

qna-example-label This element defines properties for the label next to the question
example text. By default, it defines the font family, size, color and
alignment.

qna-example-label-above This element defines properties for the label next to the question
example text when it appears above the example text. By default, it
defines the font family, size, color and alignment.

qna-example-text This element defines properties for the question example text. By
default, it defines the font family, size, and color.

Element Name Description
qna-result-section-
header

This element defines properties for the header of each section of
results (best answers, possible answers, featured content). By
default, it defines the font family, weight, size, color, and alignment.

qna-result-text This element defines high level properties for “best” answers. By
default, it defines the font family, size, and alignment.

qna-result-text-small This element defines high level properties for regular answers. By
default, it defines the font family, size, and alignment.
Intelligent Search Application Development Guide 39

qna-result-bar This element defines properties for the area of the results list
containing general headers and other controls. By default, it defines
the font family, weight, size, and alignment.

qna-result-bar-disabled This element defines properties for the area of the results list
containing disabled controls. By default, it defines the font color.

qna-result-marker This element defines properties for the marker identifying the
beginning of an answer. By default, the marker is a document icon,
but the style defines the font type, weight, size and alignment in
case text elements are to be used.

qna-more-result-marker This element defines properties for the marker identifying the more
results link when shown between best and possible answers. By
default, it defines the font type, weight, size, color and alignment.

qna-standard-subject This element defines properties for the answer title. By default, it
defines the font type, weight and color.

qna-standard-more-link This element defines properties for the more link to the answer (if
used in the design). By default, it defines the font type, weight, size,
and color.

qna-standard-excerpt-
block

This element defines general properties for the answer excerpt. By
default, it defines the font type, size, and color, as well as spacing
for the block.

qna-snippet-sentence-
text

This element defines properties for the sentence in the answer
excerpt that matched the user’s question. By default, it defines the
font size, weight, color, and background color.

qna-secondary-snippet-
text

This element defines properties for the secondary word matches in
the answer excerpt. By default, it defines the font size, weight, color,
and background color.

qna-snippet-text This element defines properties for the primary word matches in the
answer excerpt. By default, it defines the font size, weight, color,
and background color.

qna-standard-table-block This element defines properties for the structured table display area.
By default, it defines the font type, size, and color, as well as
margins for the area.

qna-standard-source-
block

This element is intended to define properties for text displaying the
source URL of the answer. By default, the source is not shown. This
definition sets a font type, size, style, and color as well as margins
for the display block.

qna-standard-link-block This element is used to define properties for useful links following
the answer excerpt such as “similar answers”. By default, the source
is not shown. This definition sets a font type, size, and color as well
as margins for the block.

qna-standard-sentence-
block

This element defines properties for simple sentence answers such
as managed answers that display custom content. By default, it
defines the font type, size, and color, as well as margins for the
block.
40 Intelligent Search Application Development Guide

Customizing Sidebar Area Definitions

The answer area elements determine style and formatting of various elements used within
the User Interface answer area.

qna-exact-excerpt-block This element defines properties for specially identified “exact”
excerpts. In a default implementation, this is only applicable to exact
answer definitions. By default, it defines the font type, size, and
color as well as margins, padding and borders for the block.

qna-result-table This element defines properties for the main table definition of a
structured answer. By default, it defines the border style and color.

qna-result-table-header This element defines properties for the column headers of a
structured answer. By default, it defines the font type, weight, size,
and color in addition to the border style and color.

qna-result-table-text This element defines properties for a data cell of a structured
answer table. By default, it defines the font type, weight, size, and
color in addition to the border style and color.

qna-result-table-more This element defines properties for the link to the entire table of a
structured answer when displaying as a summary (usually in an
answer list). By default, it defines the font type, weight, size,
alignment, and color in addition to the border style and color.

Element Name Description
qna-sidebar-block This element defines general properties for the area of the screen

where the sidebar is to be displayed. By default, it defines the
background color.

 qna-sidebar-section-
border

This element defines properties for the border around the sidebar
area and/or individual components. By default, it defines the
background color.

qna-sidebar-section-title This element defines properties for the title area of a sidebar
component. By default, it defines the font type, weight, size, and
color as well as the background color for the title area.

qna-sidebar-section This element generally defines properties for the content area of a
sidebar component. By default, it defines the font type, size,
alignment and color as well as the background color for the area.

qna-sidebar-section-
center

This element defines properties for the content area of a sidebar
component, similar to <qna-sidebar-section>, except that
the content area is centered. By default, this is only used by the user
feedback module.

qna-sidebar-subject This element defines properties for answer titles within a sidebar
component. By default, it defines the font type, weight and color.
Similar to <qna-standard-subject>.
Intelligent Search Application Development Guide 41

qna-sidebar-more-link This element defines properties for the more link to the answer in a
regular sidebar component (if used in the design). By default, it
defines the font type, weight, size, and color. Similar to <qna-
standard-more-link>.

qna-sidebar-excerpt-
block

This element defines general properties for answer excerpts
displayed in a regular sidebar component. By default, it defines the
font type, size, and color, as well as spacing for the block. Similar to
<qna-standard-excerpt-block>.

qna-sidebar-table-block This element defines properties for structured table display areas
within sidebar components. By default, it defines the font type, size,
and color, as well as margins for the area. Similar to <qna-
standard-table-block>.

qna-sidebar-source-
block

This element is defines properties for text displaying the source URL
of answers within sidebar components. By default, the source is not
shown. This definition sets a font type, size, style, and color, as well
as margins for the display block. Similar to <qna-standard-
source-block>.

qna-sidebar-sentence-
block

This element defines properties for simple sentence answers, such
as managed answers that display custom content, within sidebar
component. By default, it defines the font type, size, and color, as
well as margins for the block. Similar to <qna-standard-
sentence-block>.

qna-strong-sidebar-
section-border

This element defines properties for a highlighted border around the
sidebar area and/or individual components. Similar to <qna-
sidebar-section-border>.

qna-strong-sidebar-
section-title

This element defines properties for a highlighted title area of a
sidebar component. Similar to <qna-sidebar-section-
title>.

qna-strong-sidebar-
section

This element defines properties for a highlighted content area of a
sidebar component. Similar to <qna-sidebar-section>.

 qna-strong-sidebar-
section-center

This element defines properties for a highlighted content area of a
sidebar component, similar to <qna-sidebar-section>,
except that the content area is centered.

qna-strong-sidebar-
subject

This element defines properties for highlighted answer titles within a
sidebar component. Similar to <qna-sidebar-subject>.

qna-strong-sidebar-
more-link

This element defines properties for a highlighted more link within a
sidebar component. Similar to <qna-sidebar-more-link>.

qna-strong-sidebar-
excerpt-block

This element defines general properties for highlighted answer
excerpts displayed in a sidebar component.Similar to <qna-
sidebar-excerpt-block>.

qna-strong-sidebar-
table-block

This element defines properties for highlighted structured table
display areas within sidebar components. Similar to <qna-
sidebar-table-block>.
42 Intelligent Search Application Development Guide

Customizing Request Elements

The User Interface request area contains the following elements, each of which has one or
more configurable properties, as described in the following sections:

• Customizing the Request Heading on page 44

• Customizing the Question Box on page 45

• Customizing the Tips Link on page 45

• Customizing the Submit Button on page 45

qna-strong-sidebar-
source-block

This element is defines properties for text displaying highlighted
answer source URLs within sidebar components. Similar to <qna-
sidebar-source-block>.

qna-strong-sidebar-
sentence-block

This element defines properties for highlighted simple sentence
answers, such as managed answers that display custom content,
within sidebar components. Similar to <qna-sidebar-
sentence-block>.
Intelligent Search Application Development Guide 43

Customizing the Request Heading

The request heading contains the following configurable properties:

Customizing the Example Question

The example question contains the following configurable properties:

Property Template Element Name Default Value
question area
header

config.xsl question-area-label

question-sidebar-
area-header

Ask a Question

Ask Another Question

text to display above
the question box

config.xsl question-box-header Have a question?
Type it below to find an
answer now.

font characteristics qna_style.css qna-question-* See Customizing Question
Area Definitions on
page 38

Property Template Element Name Default Value
text to display below
the request heading

config.xsl question-example "Does Product X have
Feature Y?"

font characteristics qna_style.css qna-question-* See Customizing Question
Area Definitions on
page 38
44 Intelligent Search Application Development Guide

Customizing the Question Box

The question box has the following configurable properties:

Customizing the Tips Link

The Tips link has the following configurable properties:

Customizing the Submit Button

The Submit button has the following configurable properties:

Property Template Element Name
box size question.xsl

question_side.xsl

question-top

question-side

question-sidebar
boundary characteristics question.xsl

question_side.xsl

question-top

question-side

question-sidebar

Property Template Element Name Default Value
text to display question.xsl tips-link Tips

font characteristics qna_style.css qna-help-link See Customizing
Question Area Definitions
on page 38

Property Template
Location

Element Name Default Value

text to display question.xsl

question_side.
xsl

question-top

question-side

question-sidebar

Ask

font characteristics qna_style.css qna-input-button See Customizing
Question Area
Definitions on page 38
Intelligent Search Application Development Guide 45

Customizing Response Elements

The User Interface response page contains the answer area and the related information
(portlet) area. The answer area contains the following elements, each of which has one or
more configurable properties, as described in the following sections:

• Customizing the Question Echo on page 46

• Customizing the Answer Introduction on page 47

• Customizing Answer Headings on page 47

• Customizing the Answer Body Text on page 47

• Customizing the Answer Document Link on page 48

See for information on customizing elements in the related information area.

Customizing the Question Echo

The question echo contains the following configurable properties:

Property Template Element Name Default Value
echo prefix config.xsl question-paraphrase-

label
You Asked:

font characteristics qna_style.css qna-question-label

qna-question-text

See Customizing
Question Area
Definitions on page 38
46 Intelligent Search Application Development Guide

Customizing the Answer Introduction

The answer introduction contains the following configurable properties:

Customizing Answer Headings

The headings or titles for standard answer displays contain the following configurable
properties:

Customizing the Answer Body Text

The text of standard answer displays contain the following configurable properties:

Property Template Element Name Default Value
text to display as
heading for highest
scoring answers

config.xsl best-answers-header Best Answers

text to display as
heading for
additional good
answers

config.xsl good-answers-header Answers

font characteristics qna-style.css qna-result-section-header See Customizing
Question Area
Definitions on page 38

Property Template Element Name Default Value
font characteristics qna_style.css qna-result-section-header See Customizing

Question Area
Definitions on page 38

Property Template Element Name Default Value
font characteristics qna_style.css qna-result-text See Customizing

Question Area
Definitions on page 38
Intelligent Search Application Development Guide 47

Customizing the Answer Document Link

The link to the document that contains the answer for standard answers has the following
configurable properties:

Configuring Answer Purposes

The InQuira 8.1 Personalized Response User Interface is installed with a defined set of
answer purposes, which are mapped to a default set of portlets, as described in Default
Answer Purposes on page 27. You can also add custom answer purposes to meet specific
implementation requirements.

You configure answer purposes by:

• Customizing portlet presentation, as described in Customizing Answer Portlets on
page 52

• (Optional) Adding answer purposes to the application, as described in Adding Answer
Purposes to the Application on page 49

NOTE: Your application may include additional industry- or domain-specific answer
purposes. For more information about domain-specific answer purposes, contact
your InQuira account representative.

Property Template Element Name Default Value
document icon results.xsl answer-marker document type-

dependent, as
described in Answer
Display Features on
page 25

display or not results.xsl answer-block Display

display text results.xsl answer-block more

font characteristics qna_style.css qna-*-more-link See Customizing
Question Area
Definitions on page 38
48 Intelligent Search Application Development Guide

Adding Answer Purposes to the Application

You can add and modify answer purposes in the application configuration on the
Dictionary Service page of the Instances section of the Advanced Configuration Facility.

When you configure a new answer purpose, the new purpose is available to Dictionary
Manager users in the Purpose drop-down menu of the Rule window.

To define or modify an answer purpose:

1. Select Dictionary from the Advanced Configuration Facility main menu.

The Answer Purpose section of the Dictionary Service page displays the currently
defined answer purposes:

2. Click Edit.
3. Click Add New Item below the Answer Purpose list.

The Answer Purpose selection list displays.
Intelligent Search Application Development Guide 49

4. Select Edit List

The Answer Purpose list displays.

5. Click an existing purpose to edit properties, or click Add New Item below the Answer
Purpose list to create a new purpose.

The Answer Purpose page displays. The following example shows the default settings
for the Answer purpose:
50 Intelligent Search Application Development Guide

6. Specify the following answer purpose parameters:

7. Click OK to save the new or modified answer purpose.

Parameter Description
Description Specify the name of the answer purpose. The name can be any

alphanumeric string. Spaces and punctuation are not allowed. When
the purpose is defined and enabled, this name displays in the
Purpose drop-down menu of the Rule window.

Label Specify the text to display as the portlet heading in the User Interface.
Enabled Select On to enable this purpose. Only enabled purposes is available

in the Dictionary Manager and processed by the Rules Engine and
User Interface components. The default value is On.

NOTE: Existing rules that specify purposes that are not
enabled are processed using the Answer purpose.

Maximum Answers Specify the maximum number of answers having this purpose to
display on the response page for a given question.

Page Size Specify the maximum number of answers having this purpose to
display on the initial response page.

Minimum Score Specify the minimum score that answers having this purpose must
obtain to display on the response page for a given question. See the
*Intelligent Search Language Developers' Guide for more
information on response scoring.

Ignore Navigation
Candidates

Specify whether answers having this purpose contribute to the
answer totals maintained by the Personalized Navigation feature.

display-area Specify the area of the page where the response should appear.
display-position Specify the display position within the area. Enter a numeric value of

1-10.
Answer Template Select an answer template from the drop-down menu to use when

creating a new response.
matched-channel Optionally, specify a channel to associate with this purpose.
Overriden By Specify any answer purposes such that answers returned for the

specified purposes are not repeated in the display for this purpose.
Intelligent Search Application Development Guide 51

Customizing Answer Portlets

Each answer purpose that you define for your application is displayed in a separate portlet
that has the following configurable elements:

• Portlet display position as described in Specifying Portlet Display Position on
page 52.

• Portlet headings as described in Customizing Portlet Headings on page 52

• portlet answers as described in Customizing Portlet Answer Text on page 53

• portlet document links as described in Customizing Portlet Document Links on
page 53

Specifying Portlet Display Position

To specify the order in which the portlets appear on the response page, arrange the order
of the portlet definition sections in the sidebar.xsl template. Each definition section
corresponds to a defined portlet. Portlets that are disabled, or for which there are no
defined Rules in the Dictionary, do not display on the response page.

Sample Portlet Display Area Template provides a sample of the contents of the portlet
definitions.

Customizing Portlet Headings

The answer portlet headings have the following configurable properties:

Property Template Element Name Default Value
heading text config.xsl *-answers-header See Default Answer

Purposes on page 27
font characteristics qna_style.css qna-(strong-)sidebar-* See Customizing

Sidebar Area
Definitions on page 41

background color qna_style.css qna-(strong-)sidebar-* See Customizing
Sidebar Area
Definitions on page 41
52 Intelligent Search Application Development Guide

Customizing Portlet Answer Headings

The answer headings within portlets contain the following configurable properties:

Customizing Portlet Answer Text

The answer text within portlets contain the following configurable properties:

Customizing Portlet Document Links

The link to the document that contains the answer for portlet answers has the following
configurable properties:

Property Template Element Name Default Value
font characteristics qna_style.css qna-(strong-)sidebar-* See Customizing

Sidebar Area
Definitions on page 41

Property Template Element Name Default Value
font characteristics qna_style.css qna-(strong-)sidebar-

excerpt-block
See Customizing
Sidebar Area
Definitions on page 41

Property Template Element Name Default Value
display or not results.xsl answer-block Display

display text results.xsl answer-block More

font characteristics qna_style.css qna-*-more-link See Customizing
Sidebar Area
Definitions on page 41
Intelligent Search Application Development Guide 53

54 Intelligent Search Application Development Guide

Chapter 5 Implementing Optional Features

The User Interface default configuration implements the standard request and response
features. You can configure the User Interface to implement the following optional
features:

• Process Wizards as described in The Process Wizard User Interface on page 56

• Personalized Navigation as described in Activating the Personalized Navigation User
Interface Layout on page 59

• Direct page display for specified answers as described in Implementing Direct Page
Display on page 61

• Virtual representative (VREP) dialog support as described Implementing a Virtual
Representative on page 63

• Answer quality user feedback collection as described in Implementing User Feedback
Collection on page 63

• Click-through logging as described in Implementing Click-Through Logging on
page 70

• Answer highlighting within answer documents as described in Highlighting Answers
Within Documents on page 71

• Non-English text elements as described in Managing Multiple Languages in the User
Interface on page 75

NOTE: You can also configure the User Interface to display answers from configured
Siebel 7 applications. For more information on integrating Siebel 7 applications
with InQuira 8.1, see the *Intelligent Search Siebel Integration Guide, or contact
your InQuira account representative.
Intelligent Search Application Development Guide 55

The Process Wizard User Interface

The Process Wizard User Interface is a set of specific pages designed for use with Process
Wizards. When users select an Process Wizard answer from the standard answer page, the
User Interface invokes the Process Wizard User Interface pages to display the selected
Process Wizard.

NOTE: The Process Wizard User Interface is automatically configured for use within the
standard User Interface.

The Process Wizard User Interface consists of the following major elements:

• The Process Wizard answer, which displays on the answer page as described in The
Process Wizard Answer on page 56

• The step display area, which contains the steps defined for the process, as well as the
navigation buttons (Back, Next, Finish) as described in The Step Display Area on
page 57

• The process summary column, which displays information about the previous steps
that the user has taken to progress through the wizard as described in The Step Display
Area on page 57

The Process Wizard Answer

When an end-user submits a request to the application that matches a process wizard rule,
the User Interface displays a special Process Wizard answer in the standard answer area,
for example:

If users select the link in the process wizard answer, the User Interface displays the initial
step of the process wizard.
56 Intelligent Search Application Development Guide

The Step Display Area

When users select a Process Wizard answer, the application displays the initial step in the
Process Wizard User Interface step display area.

The Process Wizard User Interface displays a summary of the user's previous responses to
the left of the step display area. The summary displays below the heading Your
Responses.

Each response is displayed as a link that navigates back to the process step.

Modifying the Process Wizard User Interface

You can modify Process Wizard User Interface elements to suit the needs of your
application by editing the Process Wizard User Interface files, located in one of the
following locations:

<InQuira_root>/inquira/int/<subdirectory>

where:

<subdirectory> is one of the following:

• css

• js

• xsl/search

CSS Files Description
qna_wizard_style
.css

This is the style sheet that specifies the style and formatting for the
elements that are specific to the Process Wizard User Interface and
are not part of the standard search.
Intelligent Search Application Development Guide 57

NOTE: The file int/xsl/process_wizard/step.xsl is used only for previewing
steps in the Process Wizard Editor, and is not used in the Process Wizard User
Interface.

Java Script Files Description
qna_wizard.js This is a JavaScript library that contains Process Wizard

User Interface-specific functionality.

XSL Files Description
wizard.xsl This is the main Process Wizard User Interface file that contains the

basic page definition (similar to the ui_search*.xsl files) and
utilities for the wizard pages.

wizard_fields.xsl This file contains all of the templates used to render any defined
wizard fields such as radio buttons, text boxes, select boxes, HTML
areas, etc. on the UI.

wizard_history
.xsl

This file contains the templates for displaying the user's choice
history as well as the support templates for any actions generated by
the history information such as links back to previous pages.
58 Intelligent Search Application Development Guide

Activating the Personalized Navigation User Interface
Layout

To implement the Personalized Navigation User Interface elements, you activate the
Personalized Navigation User Interface layout, ui_search_and_browse.xsl, located
in:

int/xsl/search/main.xsl

The main.xsl file contains an include statement for the Personalized Navigation User
Interface layout.

The following is an example of the include statements within the main.xsl file, showing
the Personalized Navigation layout enabled:

<!-- Options for Search UI Main Screens -->
<!--xsl:import href="ui_search_basic.xsl"/-->
<xsl:import href="ui_search_and_browse.xsl"/>
<!--xsl:import href="ui_search_vrep.xsl"/-->

IMPORTANT: You can enable only one of the include statements for your application.

The Personalized Navigation User Interface Elements

The User Interface uses various elements to display Personalized Navigation content
categories:

• Style elements, as described in Personalized Navigation XSL Style Sheet Elements on
page 60 and Personalized Navigation CSS Style Sheet Elements on page 60

• Resource elements as described in Personalized Navigation-Related XML Elements
on page 61.
Intelligent Search Application Development Guide 59

Personalized Navigation XSL Style Sheet Elements

The User Interface XSL style sheets are located in:
<InQuira_home>/int/xsl/search

Personalized Navigation CSS Style Sheet Elements

The User Interface CSS style sheet is located in:
<InQuira_home>/int/css

XSL Style Sheet Description
ui_search_and_
browse.xsl

This file is one of the main templates that determine the layout of
the User Interface elements, including the question box, browse
bar, answers, and sidebar. It is one of three main templates that
you choose among as part of the basic User Interface
implementation process as described in Specifying the User
Interface Layout on page 35.

browse_bar.xsl This file contains the templates that render the contents of the facet
navigation browse bar.

facet_table.xsl This file contains the templates for displaying an entire table of
values in response to selecting the More... link in the browse bar
for categories that contain a large number of items. The More link
displays a page containing all of the items.

question_browse
.xsl

This file contains the definition for the question-top template used
with Personalized Navigation, which differs from the standard User
Interface question area.

results.xsl This file contains updates to the standard answer block template to
support facet label display within the answer section.

CSS Style Sheet Description
qna_style.css This is the standard CSS for the User Interface. It contains

new elements to support Personalized Navigation,
primarily in the section labeled Browse Area
Definitions. Additional Personalized Navigation-
related definitions can be found by searching for facet
in this file.
60 Intelligent Search Application Development Guide

Personalized Navigation-Related XML Elements

The User Interface-related XML resources are located in:
<InQuira_home>/int/search

Implementing Direct Page Display

The direct page display feature specifies direct display of the document that contains the
best answer within a modified version of the response page.

The direct page display template defines an alternate response page that displays the
relevant document contents in the area that the answer section would normally occupy.

The components of direct page display include:

• The Jump to Page answer purpose

• The direct page display template

You implement the direct page display feature by assigning the Jump to Page answer
purpose to the appropriate Rule in the Dictionary as described in Rules in the Intelligent
Search Language Tuning Guide.

XML File Description
resource.xml This is the standard XML resource file, which contains new text

elements and definitions. Personalized Navigation-related
definitions begin with the term facet-.
Intelligent Search Application Development Guide 61

Direct Page Display Example

The direct page display layout provides direct access to the best answer for a specified
question in lieu of the standard answer display. The following example shows direct page
display within a three-column layout style.
62 Intelligent Search Application Development Guide

Implementing a Virtual Representative

You can configure InQuira 8.1 for virtual representative (VREP) applications. To
configure an InQuira 8.1 application for use with a VREP, you need to:

• Make an image library for your VREP available to the application

• Create appropriate Dictionary rules using the Dialog answer purpose, as described in
the Rules in the Intelligent Search Language Tuning Guide.

• Associate appropriate images from the library with the configured Dialog answers

• Enable the virtual representative user interface layout

The User Interface contains a dialog-style layout template, ui_search_vrep.xsl,
located in:

inquira/int/xsl/search/

The main.xsl file contains an include statement for the virtual representative user
interface layout. To enable the virtual representative user interface layout, activate the xsl
import statement. The following is an example of the layout include statements showing
the virtual representative layout enabled:

<!-- Options for Search UI Main Screens -->
<!--xsl:import href="ui_search_basic.xsl"/-->
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<xsl:import href="ui_search_vrep.xsl"/>

IMPORTANT: You can enable only one of the include statements for your application.

Implementing User Feedback Collection

You can collect information from customers about their satisfaction with the answers
provided by the application through the user feedback feature of the response page. The
user feedback mechanism consists of two components:

• The user feedback portlet as described in The User Feedback Portlet on page 64

• The user feedback comment page as described in The User Feedback Comment Form
on page 65

The user feedback feature is configured by default to display in the related information
area of the response page. You can disable the user feedback mechanism as described in
Disabling the User Feedback Feature on page 69.
Intelligent Search Application Development Guide 63

The User Feedback Portlet

The user feedback portlet displays by default in the related information area of the
response page.

It contains the following elements that you can customize for your application:

• The user feedback heading, as described in Customizing the User Feedback Area
Heading on page 67

• The rating labels, as described in Customizing the User Feedback Rating Labels on
page 68
64 Intelligent Search Application Development Guide

The User Feedback Comment Form

The user feedback comment form displays by default in when users submit feedback to the
application.

The comment form provides space for users to enter additional comments. User-supplied
comments are maintained in the application logs, and are available to the optional InQuira
Analytics application's User Feedback report.

See Using InQuira Analytics for more information on the User Feedback report.

IMPORTANT: The default user feedback form contains sample content that is intended to
be customized for your application.
Intelligent Search Application Development Guide 65

The User Feedback Process

The user feedback process begins on the standard results page. The user feedback portlet
solicits optional input from users. Users enter feedback by selecting from a list of radio
buttons that correspond to the rating levels described in Customizing the User Feedback
Rating Labels on page 68.

When users submit the rating selection, the application displays the user feedback form,
which must be customized for your application as described in Customizing the User
Feedback Comment Form on page 69. Users can enter additional feedback as text, or
choose to close the feedback form.
66 Intelligent Search Application Development Guide

The application logs both the rating level and any optional text as a message having the
identifier ANALYTICS_USER_FEEDBACK. The optional InQuira Analytics application
uses these messages to populate the User Feedback report.

Customizing the User Feedback Area Heading

You can customize the user feedback heading by editing the value specified in the User
Interface resource file, <InQuira_home>/inquira/int/xsl/search/
resource.xml.

The resource.xml file is divided into sections that correspond to functional areas within
the User Interface.

To modify the user feedback heading:

• Locate the user feedback section, which is indicated by the label:
User feedback modules / screens

• Locate the parameter user-feedback-header
<term id="user-feedback-header">
 <entry lang="en">Are we answering your questions?</entry>
 <entry lang="de">Beantworten wir Ihre Fragen?</entry>
 <entry lang="es">?stamos contestando a sus preguntas?</entry>
 <entry lang="fr">Repondons-nous a vos questions?</entry>
 <entry lang="it">Trovi le nostre risposte soddisfacenti?</entry>
 <entry lang="ja"><see original file for correct characters></entry>
 </term>

• Edit the appropriate entry for the language of your application. For example, the
default entry for English applications is:

<entry lang="en">Are we answering your questions?</entry>
Intelligent Search Application Development Guide 67

Customizing the User Feedback Rating Labels

You can customize the text associated with the user feedback rating levels by by editing
the value specified in the User Interface resource file, <InQuira_home>/inquira/
int/xsl/search/resource.xml.

To modify the user feedback labels:

• Locate the user feedback section, which is indicated by the label:
User feedback modules / screens

• Locate the parameter user-feedback-rating-n

where:

n is the feedback rating level. For example:
</term>
 <term id="user-feedback-rating-5">
 <entry lang="en">Absolutely!</entry>
 <entry lang="de">Absolut!</entry>
 <entry lang="es">?bsolutamente!</entry>
 <entry lang="fr">Absolument!</entry>
 <entry lang="it">Si, assolutamente</entry>
 <entry lang="ja"><see original file for correct characters</entry>
 </term>

• Edit the appropriate entry for the language of your application. For example, the
default English rating labels are:

Rating Level Default Value
5 Absolutely!

4 Usually

3 Sure

2 Hardly

1 Not even close!
68 Intelligent Search Application Development Guide

Customizing the User Feedback Comment Form

You customize the user feedback comment form by editing the elements that control the
layout and contents of the form in the user comments form style sheet,
<InQuira_home>/inquira/int/xsl/search/user_comments_page.xsl.

The user comments form style sheet is divided into sections that correspond to supported
languages. For example, the section in English contains the following:

Thanks for your feedback

 To date, we have added 100 new pages of content based on feedback like yours.

 We are currently working on providing more content in the following areas:

 Area 1
 Area 2
 Area 3
 Area 4

 If you would like to send us more detailed comments, please type them in below:

To modify the content and layout of the user feedback comment form:

• Locate the appropriate section for your language

• Edit the layout and content to suit the needs of your application

Disabling the User Feedback Feature

You can disable the user feedback feature by editing the User Interface configuration file,
<InQuira_home>/inquira/int/xsl/search/config.xsl

To disable the user feedback feature:

• Locate the following statement in the config.xsl file:
<xsl:variable name="get-user-feedback"...select="true()" />

• Change the value of the select parameter to false:
<xsl:variable name="get-user-feedback"...select="false()" />
Intelligent Search Application Development Guide 69

Implementing Click-Through Logging

You can configure the User Interface to log information about the answer links selected by
InQuira 8.1 users. Answer links are links to the page or document from which the
application derived the answer.

When click-through logging is on, InQuira 8.1 logs a message with the identifier
ANALYTICS_CLICK_THROUGH.

To specify click-through logging:

• Select Click-through from the System section of the Advanced Configuration Facility

The Click-through page displays:

• Select the On radio button in the Perform Click-through Tracking field

• Select OK to save your configuration
70 Intelligent Search Application Development Guide

Highlighting Answers Within Documents

The User Interface displays links within answers that users can select to display the actual
answer documents. You can configure the application to highlight the answer text within
HTML and PDF documents.

You can implement document highlighting by:

• Enabling the highlighting feature

• Optionally specifying style attributes for highlighted titles and sentences within
HTML documents

• Optionally specifying text string matching processes for HTML documents

IMPORTANT: The text matching algorithm and highlighting display for PDF documents is
determined by the Adobe API, and is not configurable in InQuira 8.1.
Intelligent Search Application Development Guide 71

Enabling Highlighting within Answer Documents

To enable highlighting for HTML and PDF documents:

• Select Click-through from the System section of the Advanced Configuration
Facility:

The Click-through page displays:

• Select the On radio button in the Perform HTML Highlighting field

• Select the On radio button in the Perform PDF Highlighting field

• Select OK to save your configuration
72 Intelligent Search Application Development Guide

Specifying HTML Highlighting Style Attributes

You can specify HTML highlighting style attributes to apply to relevant titles and text
within answer documents. You can specify any HTML statements that are valid within
 tags.

To specify highlighting attributes:

• Select Click-through from the System section of the Advanced Configuration Facility

The Click-through page displays:
Intelligent Search Application Development Guide 73

,

d
.

• Enter valid style attributes in the desired fields:

Field Description
Highlight Title Style Specifies the style for titles within the document that match the answer

text. The default style is color:#000000; background:#E8F5FF,
which displays in standard browsers as black text on a light blue
background.

Highlight Sentence Style Specifies the style for text within the document that matches the answer
text. The default style is color:#000000; background:#00FF00
which displays in standard browsers as black text on a bright green
background.

Honor Document Anchor Specifies that the application use existing anchors within documents to
determine highlighted regions when opening the answer document in
response to click-through.

Check for Location
Replace

Specify this setting to check for this parameter, and display the re-directe
location without performing highlighting if it is present in the answer URL
Location replace is a JavaScript mechanism used to redirect users from
one page to another; however, the HTML highlighting feature cannot
process the JavaScript properly.
74 Intelligent Search Application Development Guide

Managing Multiple Languages in the User Interface

The User Interface is installed and configured with multi-lingual text that is stored in a
resource file (int/common/resource.xml). The User Interface uses the language
parameter to determine the appropriate text to display.

Since the default language parameter setting for the InQuira 8.1 application is English, the
User Interface displays English text by default; however, setting the language parameter to
another language automatically overrides the User Interface language setting.

For example, if the web server configuration or a selection mechanism on the question
input page sets the language parameter to FR (French), then the User Interface displays the
User Interface text element in French.

The following larger User Interface content components are also automatically translated
based on the value of the language parameter

There is no additional configuration required to implement the multi-lingual User
Interface features; however, you can tailor the User Interface elements and other content
to the needs of your organization by editing the referenced User Interface files.

Page Location
Tips int/xsl/tips.xsl

User Comments int/xsl/core/user_feedback.xsl (locate “template
name="user-comments-page"”)

Contact deflection Thank
You

int/xsl/contact/thank_you.xsl
Intelligent Search Application Development Guide 75

76 Intelligent Search Application Development Guide

Chapter 6 Creating a Custom Content Crawler

InQuira 8.1 includes a content acquisition framework containing base classes that support
the creation of custom crawlers. The framework includes three classes:
CustomCrawlerConfig, CustomCrawlerConfigController, and
CustomCrawlerState that set up and instantiate a custom crawler.

Using the framework you can create custom content crawlers to access data from non-
standard data sources and integrate it with InQuira 8.1. The example on Example:
Creating a Database Web Crawler on page 77, shows you how to crawl a database that
tracks content on a website not otherwise crawled and consequently not available in the
Content Store.

The example includes two classes: DBWebCrawler and DBWebCrawlerConfig. The
DBWebCrawler class extends Crawler, the standard InQuira 8.1 class used or extended
by all crawlers that do content acquisition within the content service framework. The
second class, DBWebCrawlerConfig, shown in Example: Configuring the Database
Web Crawler on page 81, sets up objects used by DBWebCrawler and extends
CustomCrawlerConfig.

After developing your custom crawler, continue by configuring it within the InQuira 8.1
environment as explained in the section, Configuring a Custom Crawler on page 83.

Example: Creating a Database Web Crawler

The example below can be found in the file DBWebCrawler.java
package samples.content.dbwebcrawler;

import java.io.*;
import java.util.*;
import java.sql.*;
import java.net.*;

import com.inquira.infra.*;
Intelligent Search Application Development Guide 77

import com.inquira.content.*;
import com.inquira.content.custom.*;
import com.inquira.scheduler.job.*;
import com.inquira.util.sql.*;

/* The DBWebCrawler class implements a custom crawler that accesses
 * a database containing URLs of documents to crawl
 */
public class DBWebCrawler
 extends Crawler
{
 protected Connection conn;
 protected Statement st;
 protected ResultSet rs;

 /* Called by the content acquisition framework prior to
 * call starting the crawl
 */
 public void connect(CrawlerConfig configuration)
 throws CrawlerException
 {
 DBWebCrawlerConfig rcc = (DBWebCrawlerConfig)configuration;

 try {
 conn = Datasource.forName(rcc.getDatasourceName()).getConnection(
);CrawlerException
 st = conn.createStatement();
 rs = st.executeQuery(rcc.getQuery());

 } catch(Throwable t) {
 throw new CrawlerException(t);
 }
 }

 /* Called by the content acquisition framework after
 * the crawl is completed
 */
 public void rundown()
 throws CrawlerException
 {
 try {
 if(rs != null) {
 rs.close();
 }
 if(st != null) {
 st.close();
 }
 if(conn != null) {
 conn.close();
 }
 } catch(Throwable t) {
78 Intelligent Search Application Development Guide

 throw new CrawlerException(t);
 }
 }

 /* Called by the content acquisition framework prior to call starting
 * the crawl after calling connect
 */
 public void start()
 {
 }

 /* Indicates that a single call to the findContent method discovers
 * a current document
 */
 public boolean findComplete()
 {
 return true;
 }

 /* Indicates that this is a custom crawler */
 public ContentSourceType getType()
 {
 return ContentSourceType.HTTP;
 }

 /* Returns all currently known document objects that are found
 * in the data source
 */
 public Collection findContent(Collection priorContent,
 CrawlerConfig conf,
 CrawlerState state,
 TaskStatus status)
 throws CrawlerException
 {

 Collection rc = new ArrayList();

 try {
 String temp = null;

 while(rs.next()) {
 String url = rs.getString(1);

 if(!rs.wasNull() && !url.equals(temp)) {
 System.out.println("Getting URL: " + url);
 Timestamp time = rs.getTimestamp(2);

 Document d = new Document();

 d.setCollection(conf.getCollection());
 d.setFetchURL(url);
Intelligent Search Application Development Guide 79

 d.setDisplayURL(url);

 d.setCSType(ContentSourceType.CUSTOM);
 d.setLastModificationTime(time);
 d.setIndexingAllowed(true);
 d.setStatusCode(Document.STATUS_OK);

 rc.add(d);

 temp = url;
 } else {
 System.out.println("NULL or Dupe!");
 }
 }
 } catch(Throwable t) {
 throw new CrawlerException(t);
 }

 return rc;
 }

 /* Returns the raw content for the given document */
 public byte[] getContent(CrawlerConfig conf, Document doc)
 throws
 CrawlerException
 {
 byte[] rc = null;

 URL url = null;
 URLConnection urlconn = null;
 InputStream is = null;
 ByteArrayOutputStream baos = null;

 try {
 url= new URL(doc.getFetchURL());
 System.out.println("In getContent, getting URL: " + url);
 urlconn = url.openConnection();
 is = new BufferedInputStream(urlconn.getInputStream());
 baos = new ByteArrayOutputStream();

 byte[] buf = new byte[8192];
 int count = 0;
 while((count = is.read(buf, 0, buf.length)) > 0) {
 baos.write(buf, 0, count);
 }
 rc = baos.toByteArray();

 doc.setContent(DataComponent.RAW, rc);
 doc.setDocSize(rc.length);

 } catch(ContentStoreException t) {
80 Intelligent Search Application Development Guide

 throw new CrawlerException(t);
 } catch(IOException t) {
 throw new CrawlerException(t);
 } finally {
 if(is != null) {
 try {
 is.close();
 } catch(IOException ex) {
 // ignore on close
 }
 }
 }

 return rc;
 }
}

Example: Configuring the Database Web Crawler

This supporting class, containing configuration objects for the DBWebCrawler example,
can be found in the file DBWebCrawlerConfig.java

package samples.content.dbwebcrawler;

import java.util.*;

import com.inquira.content.*;
import com.inquira.content.custom.*;

/* The CustomCrawlerConfig class implements a custom crawler configuration
 * object that knows about two non-standard configuration items:
 *
 * datasourceName - defines the name of the data source that
 * contains the document information
 * query - defines the query string used to find the document information
 */
public class DBWebCrawlerConfig
 extends CustomCrawlerConfig
{
 private static final String __ident = "$Revision: 1.1.2.2 $";

 /* Compares the last modification dates of the two documents passed,
 * to determine if the document has changed
 */
 public boolean isModifiedDocument(Document currentDocument, Document newDocument)
 {
 return newDocument.getLastModificationTime().after(
currentDocument.getLastModificationTime());
Intelligent Search Application Development Guide 81

 }

 /* Returns the data source name */
 public String getDatasourceName()
 throws CrawlerException
 {
 String dataSourceName = configValues.getProperty("datasourceName");
 if(dataSourceName == null || dataSourceName.length() == 0) {
 throw new CrawlerException("CUSTOM_DBWEB_CRAWLER_NO_DATASOURCE",
new Object[]{ getCollectionName() });
 }

 return dataSourceName;
 }

 /* Returns the query string */
 public String getQuery()
 throws CrawlerException
 {
 String query = configValues.getProperty("query");
 if(query == null || query.length() == 0) {
 throw new CrawlerException("CUSTOM_DBWEB_CRAWLER_NO_QUERY", new
Object[]{ getCollectionName() });
 }

 return query;
 }

 /* Returns a new DBWebCrawler object */
 public Crawler getCrawler()
 throws CrawlerException
 {
 return new DBWebCrawler();
 }

 /* Indicates that this crawler compares existing documents in the
 * content store with documents it discovers to identify content changes
 */
 public boolean fetchExistingContent()
 {
 return true;
 }
}

82 Intelligent Search Application Development Guide

d

ed
Configuring a Custom Crawler

The custom crawler in this example assumes that the customer has developed an in-house
content publishing system that uses a database table called "content" containing a record
for every document that has been published to their website. This table contains two
columns:

Configuration for custom crawlers is done through the Advanced Config settings in the
System Manager. In the example below, you can see that the url and modtime fields
appear as part of the query defined in the Configuration settings in the System Manager.

To configure the custom crawler:

• Open the System Manager and choose Advanced Config from the Tools menu.

• Select Crawler Settings and choose Edit.

• Under Custom Crawlers, select Add New Item.

• Enter the Item Name, Class Name, and add the Configuration fields for the data source
and query following the example below.

Column
Name

Description

url This column contains the URL at which the document can be accesse
on the website

modtime This column contains the last date and time the document was publish
Intelligent Search Application Development Guide 83

Example Crawler Settings
84 Intelligent Search Application Development Guide

Chapter 7 Creating a Custom Document Preprocessor

This section shows how you can customize the way in which raw document content is
processed for both text and binary files. In the example, we extend the
ProcessingFilterAdapter class which implements the PreprocessingFilter interface.

The PreprocessingFilter interface defines the preprocessDocument method (text
files) and postprocessDocument methods (text and binary files) called by Preprocessor
when it processes content. By extending the ProcessingFilterAdapter class, which
implements the PreprocessingFilter interface, we can introduce our own
preprocessing and post-processing routines as part of InQuira's standard processing of text
and binary files.

In the example, described in Example: Creating a Document Preprocessor on page 85,
we include two common preprocessing and post-processing customizations: removing
footers from HTML files, and removing the table of contents from PDF files.

After developing your custom document preprocessor, continue by configuring it within
the InQuira 8.1 environment as explained in the section, Configuring a Custom
Document Preprocessor on page 89.

Example: Creating a Document Preprocessor

The example below can be found in the file SamplePreprocessingFilter.java

First, we import the referenced packages.
package samples.prep;

import java.io.*;
import java.util.*;
import java.util.regex.*;

import com.inquira.content.*;
import com.inquira.prep.*;
import com.inquira.util.xml.*;
Intelligent Search Application Development Guide 85

Next, we set up a new custom preprocessor class by extending
PreprocessingFilterAdapter, a class that implements the PreprocessingFilter interface. The
PreprocessingFilterAdapter class adds the getStringContent method, which we use to get
the document content for HTML files.

/* Implements a pre- and post-processing filter used during document conversion */
public class SamplePreprocessingFilter
 extends PreprocessingFilterAdapter
{
 /* Defines the regular expression that marks a table of contents page */
 protected Pattern tocPattern;

 /* Defines the maximum number of pages to check for table of contents */
 protected int endPage;

 /* Defines the regular expression that marks an HTML footer */
 protected Pattern footerPattern;

 /* Creates a new PreprocessingFilter instance, while configuration
 * parameters are passed in to configProperties
 */
 public SamplePreprocessingFilter(Map configProperties)
 {
 /* Assuming the configuration looks like this:
 * <preprocessingFilter name="sample">
 * <class>samples.prep.SamplePreprocessingFilter</class>
 * <config>
 * <values name="hello">def</values>
 * <values name="xyz">zyx</values>
 * </config>
 * </preprocessingFilter>
 *
 * The Map contains entries for keys "hello" and "xyz",
 * with values "def" and "zyx" respectively.
 */
 tocPattern = Pattern.compile("(?i)Table of Contents", Pattern.MULTILINE);
 endPage = 10;
 footerPattern = Pattern.compile("(?i)((\u00A9|©|©)[]*)?Copyright [0-9]+ Acme,
Inc.", Pattern.MULTILINE);
 }

We first check to see if it's an HTML file, and if it is, we grab the raw file contents. We
then search the contents for footerPattern to see if it contains footers, and if it does,
we strip them out and save the contents using setContent.

 /* Removes footer from HTML documents based on a regular expression */
 public void preprocessDocument(Document document, CollectionConfig collection)
 throws PreprocessingException
 {
 System.out.println("preprocessDocument called for " + document.getFetchURL());

86 Intelligent Search Application Development Guide

 if(document.getDocType().equals(DocumentType.HTML) == true) {
 try {
 StringBuffer rawContent = getStringContent(document);

 Matcher m = footerPattern.matcher(rawContent);
 if(m.find() == true) {
 String newContent = m.replaceAll("");
 document.setContent(DataComponent.RAW, newContent);
 }
 } catch(ContentStoreException ex) {
 throw new PreprocessingException("CUSTOM_PREP_PRE_FILTER_FAILER",
 new Object[]{ document.getFetchURL(), new Integer(document.getDocId(
)) }, ex);
 }
 }
 }

For the TOC, we first check to see if it's a PDF file, and if it is, we grab the contents. We
then search the contents for tocPattern to see if it contains a TOC while the page
number is less than endPage. If we find a TOC, we strip it out and return the updated
string representation of the iqxmlNode.

 /* Remove Table of Contents pages from PDF documents */
 public String postprocessDocument(Document document, CollectionConfig collection, Node
iqxmlNode)
 throws PreprocessingException
 {
 String rc = null;

 System.out.println("postprocessDocument called for " + document.getFetchURL());

 if(document.getDocType().equals(DocumentType.PDF) == true) {
 // Since we are modifying the XML Node that represents the
 // IQXML, we need to be careful not to modify the original Node
 // unless we intentionally want to modify the XML. To signal
 // that a modification was made we need to return the string
 // representation of the new XML node that represents the IQXML
 // after post processing.
 if(removeTOC(iqxmlNode, endPage) == true) {
 rc = iqxmlNode.toString();
 }
 }

 return rc;
 }

 protected boolean removeTOC(Node n, int lastPage)
 {
 return removeTOC(n, new HashSet(), lastPage);
 }

Intelligent Search Application Development Guide 87

 protected boolean removeTOC(Node n, HashSet skipPages, int lastPage)
 {
 boolean rc = false;
 boolean afterTOC = false;

 List children = n.getChildren();
 if(children != null) {
 ListIterator it = children.listIterator();
 while(it.hasNext()) {
 Object o = it.next();
 if(o instanceof Node) {
 Node cn = (Node)o;

 String text = cn.getText();
 if(text != null && text.length() > 0) {
 int pageNumber = getPageNumber(cn);
 if(pageNumber >= 0) {
 if(pageNumber >= lastPage) {
 afterTOC = true;
 break;
 }
 Integer nPageNumber = new Integer(pageNumber);
 if(skipPages.contains(nPageNumber) == true) {
 rc = true;
 it.remove();
 } else {
 if(tocPattern.matcher(text).find() == true) {
 rc = true;
 it.remove();
 skipPages.add(nPageNumber);
 }
 }
 }
 } else if(afterTOC == false) {
 rc |= removeTOC(cn, skipPages, lastPage);
 }
 }
 }
 }

 return rc;
 }

We use the getPageNumber method in the postprocessDocument method to check
where we are in the document.

 protected int getPageNumber(Node n)
 {
 int rc = -1;
 String auxAttr = n.getAttribute("aux");
 if(auxAttr != null) {
88 Intelligent Search Application Development Guide

 int start = auxAttr.indexOf(" pg=");
 if(start >= 0) {
 start += 4;
 int end = auxAttr.indexOf(" ", start);
 if(end > 0) {
 rc = Integer.parseInt(auxAttr.substring(start, end));
 }
 }
 }

 return rc;
 }
}

Configuring a Custom Document Preprocessor

You can define configuration information for your custom document preprocessor by
adding the name of the class and configuration information to the ICE custom.xml file
as shown below. Note that you don't need to do his unless you need to pass parameters to
your custom preprocessor class.

• Locate the custom.xml configuration file in the instance folder:
<IS installation folder>\instances\<instance name>\custom.xml

• Add a preprocessor node to the file as shown below substituting the class name for
samples.prep.SamplePreprocessingFilter, and adding key value pairs as
appropriate in the <config> section.

<preprocessor>
 <preprocessingFilter>
 <class>samples.prep.SamplePreprocessingFilter</class>
 <config>
 <values name="hello">def</values>
 <values name="xyz">zyx</values>
 </config>
 </preprocessingFilter>
</preprocessing>
Intelligent Search Application Development Guide 89

Supporting Multiple Naviagtion Applications

To support multiple naviagtion applications, an entry similar to the following needs to be
added to the custom.xml file:

<task-definition index="16">
<name>Classification</name>
<shortName>Navigation</shortName>
<description>Classifies the navigation facets </description>
<taskClass>com.inquira.navigate.ClassifyTask</taskClass>
<parameters index="0">-p</parameters> <!-- enable progress tracking -->
<parameters index="1">-f</parameters> <!-- applitcaion 1 name follows -->
<parameters index="2">Default</parameters> <!-- applitcaion 1 name -->
<parameters index="3">-f</parameters> <!-- applitcaion 2 name follows -->
<parameters index="4">Maven</parameters> <!-- applitcaion 2 name -->
<parameters index="5">-f</parameters> <!-- applitcaion 3 name follows -->
<parameters index="6">Quantum</parameters> <!-- applitcaion 3 name -->
<distribute>false</distribute>
<needsCollection>false</needsCollection>
<subcollection>false</subcollection>
</task-definition>

This overrides the default entry for the Classification task, adding the additional
applications ‘Maven’ and ‘Quantum.’
90 Intelligent Search Application Development Guide

Chapter 8 Creating a Custom Task

This section shows you how to implement custom tasks to work within InQuira's system
framework. The examples included here show you how to set up a simple custom task,
how to handle parameters, how to display document count and progress information on
the System Manager status screen, and how to set up a task so that users can interrupt it, if
necessary, from the job status screen.

The following examples are provided:

• Example: Creating a Simple Custom Task on page 92
This example provides the basic template for crating a custom task.

• Example: Handling Argument Parsing on page 94
This example provides a basic template, but adds the ability to handle arguments as
parameters.

• Example: Handling Document Count and Progress Updates on page 98
This example shows you how to update the document count and progress bar as
documents are processed by the task.

• Example: Handling User Task Interruptions on page 101
This example shows you how to test for a request from the user to interrupt processing.
Note that although we provide an example, we do not encourage you to use it unless
you really need to and are able to support the consequences of interrupting a task.

After creating your custom task, continue by configuring it within the InQuira 8.1
environment as explained in the section, Configuring a Custom Task on page 103.
Intelligent Search Application Development Guide 91

Example: Creating a Simple Custom Task

The example below can be found in the file CustomTaskTemplate.java.

First, we import the referenced packages.
package com.inquira.scheduler.job;

import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;

import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and
ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {

 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;

 try {

Add the code for whatever task it is that you need to set up here
 /*
 * Do the actual custom task work here
 */

 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task
defaults to setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
92 Intelligent Search Application Development Guide

 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }

 public Options getTaskOptions()
 {
 Options options;

 options = new Options();

 return options;

 }
}

Intelligent Search Application Development Guide 93

Example: Handling Argument Parsing

The example below can be found in the file CustomTaskTemplate_Args.java.

In the first part of this custom task example, we import the referenced packages.
/*
 * In this custom task example, we modify it to take arguments as
 * parameters. We use the getTaskOptions() method inherited from the
 * ITaskRunner interface to handle argument parsing.
 */

package com.inquira.scheduler.job;

import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;

import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and
ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {

 /* Example local variables set by argument parsing */

boolean fOption = false;
boolean pOption = false;
boolean rOption = false;
String collectionName = null;

Here we process the args array and define task processing accordingly. Substitute your
own switch values and parameters and processing options for ones appropriate to your
task. Refer to Configuring a Custom Task on page 103 for a discussion of how to handle
arguments as parameters.

 /*
 * Use a method like the one below to process the arguments
 * and set the local variables
 */
 private boolean processArgs(String[] args) {
 CommandLineParser parser;
 CommandLine commandLine;
94 Intelligent Search Application Development Guide

 Options optionDefinitions;
 Option[] options;
 boolean success = true;

 parser = new BasicParser();
 try {
 optionDefinitions = getTaskOptions();
 commandLine = parser.parse(optionDefinitions, args);
 options = commandLine.getOptions();

 for(int i = 0; i < options.length; i++) {
 List values;
 String mode;

 mode = options[i].getOpt();

 if(mode.equals("f") || mode.equals("fexample")) {
 values = options[i].getValuesList();
 fOption = Boolean.valueOf((String)values.get(0)).booleanValue();
 }
 else if(mode.equals("p") || mode.equals("pexample")) {
 values = options[i].getValuesList();
 pOption = Boolean.valueOf((String)values.get(0)).booleanValue();
 }
 else if(mode.equals("r") || mode.equals("rexample")) {
 rOption = true;
 }
 else if(mode.equals("c") || mode.equals("collection")) {
 values = options[i].getValuesList();
 collectionName = (String)values.get(0);
 }
 }
 }
 catch(Exception ex) {
 //Do any appropriate logging
 Execution.context().log().event(ERROR_MSG, "CUSTOM_TASK_ERROR", ex);

 success = false;
 }

 return success;
 }

 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;

 try {

if(processArguments(args) == false) {
success = false;
Intelligent Search Application Development Guide 95

return;
}

 /*
 * Do the actual custom task work here
 */

 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task
defaults to setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }

In this section we look at how to define the parameters used when the task is run.
/* The getTaskOptions example below shows how to define argument
 * parsing for "-p true -f false -r -c <collectionname>"
 *
 * This example uses the Apache CLI interface. Their documentation
 * can be found on their website by searching for org.apache.commons.cli
 * for their Javadoc.
 */
 public Options getTaskOptions()
 {
 Options options;
 Option collectionOption;
 Option pOption;
 Option fOption;
 Option rOption;

 options = new Options();

 pOption = new Option("p", "pexample", true, "Example for an option called 'p'");
 pOption.setArgName("true | false ");
96 Intelligent Search Application Development Guide

 pOption.setOptionalArg(false);
 pOption.setRequired(false);
 pOption.setArgs(1);

 fOption = new Option("f", "fexample", true, "Example for an option called 'f'");
 fOption.setArgName("true | false");
 fOption.setOptionalArg(false);
 fOption.setRequired(false);
 fOption.setArgs(1);

 rOption = new Option("r", "rexample", true, "Example for an option called 'r'");
 rOption.setOptionalArg(true);
 rOption.setRequired(false);
 rOption.setArgs(0);

 collectionOption = new Option("c", "collection", true, "Option for the collection name.");
 collectionOption.setArgName("collection name");
 collectionOption.setOptionalArg(false);
 collectionOption.setRequired(true);
 collectionOption.setArgs(1);

 options.addOption(pOption);
 options.addOption(fOption);
 options.addOption(rOption);
 options.addOption(collectionOption);

 return options;

 }
}

Intelligent Search Application Development Guide 97

Example: Handling Document Count and Progress
Updates

The example below can be found in the file CustomTaskTemplate_Prog.java.

In the first part of this example, we import the referenced packages.
/*
 * This custom task template provides examples for
 * updating progress bar and document count information.
 */

package com.inquira.scheduler.job;

import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;

import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and
ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {

 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;

 try {

Add the code for your task here calling the appropriate method to update the document
count and progress bar as indicated in the comments below. Note that the method should
only be called by tasks that use a looping structure to process data so that a counter or
progress indicator can be updated for each iteration of the loop.

 /*
 * Do the actual custom task work here.
 */

 /*
98 Intelligent Search Application Development Guide

 * The examples below show how to handle progress bar updates
 * and document count updates for the task status screens in
 * System Manager. They should be called from within tasks
 * that use a looping structure, updating the doc count or
 * progress bar as a loop iteration is completed.
 *
 * Option 1 for updating progress
 * status.setProgress(value);
 * This can be called periodically if
 * a value of 1 - 100 is known and it
 * makes sense to update progress with
 * a specific value
 *
 * Option 2 for updating progress
 * status.incrementProgress(incrementalvalue);
 * This can be called periodically
 * to increment the progress
 * by some incremental value. If the
 * progress was 35 and the value passed
 * to this method is 4, the new progress
 * will be 39.
 *
 * Option 3 for updating progress and doc count
 * (used only if the task iterates over
 * a set of documents once). This option can also only
 * be used if the total number of documents to be processed
 * is known at the beginning of the task.
 *
 * status.setTotalDocCount(total);
 * This should be called at the beginning
 * of the task, not inside the loop
 *
 * status.incrementDocProgress();
 * This should be called from inside the loop, once
 * for each document that was processed. Internally
 * it will increment the counter for how many documents
 * were processed, and also calculate the progress
 * percentage based on the processed documents divided
 * by the totalDocCount() value.
 *
 * Option 4 for updating doc count but not progress
 * status.incrementDocCount();
 * Increments the current doc count processed by 1,
 * it starts at 0 at the beginning of every task.
 */

 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }
Intelligent Search Application Development Guide 99

Be sure to set status here to setSuccess if the task completes successfully, or the task
defaults to setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }

 public Options getTaskOptions()
 {
 Options options;

 options = new Options();

 return options;

 }
}

100 Intelligent Search Application Development Guide

Example: Handling User Task Interruptions

The example below can be found in the file CustomTaskTemplate_Prog.java.

In the first part of this example, we import the referenced packages.
/*
 * In this custom task example we add a method you can call from
 * within a task loop to periodically check if a user has used the
 * job-status screen to request that the current task stop
 * processing and exit.
 *
 * It is up to the custom task code to do any necessary data
 * cleanup. If it cannot do this properly, it should not attempt to
 * support task interruption.
 */

package com.inquira.scheduler.job;

import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;

import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and
ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {

 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;

 try {

Add the code for your task here calling the isInterrupted method from within a loop
to check whether the user has requested that the task be interrupted. Note that for the
isInterrupted method to be useful it must be called from inside a loop as documents
or other data are processed, so that it can poll for a change in status at each loop iteration.

 /*
 * Do the actual custom task work here
Intelligent Search Application Development Guide 101

 */

 /*
 * Handling user-interrupted task requests is only viable if
 * the task is structured in some form of loop where it can
 * periodically check if there is an outstanding request for
 * the task to interrupt itself. This should only
 * be done if if the custom task code can cleanly
 * interrupt its work without corrupting any data.
 */
 status.isInterrupted();
 //Check this method periodically in a loop. If it returns
 //true, then a user has used the job-status screen to request
 //that the current job/tasks stop processing and exit.

 //An interrupted task should be treated as a failed
 // task, so be sure to set success to false or
 // otherwise ensure that status.setFailed() is called
 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task
defaults to setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }

 public Options getTaskOptions()
 {
 Options options;

 options = new Options();

 return options;

 }

}

102 Intelligent Search Application Development Guide

Configuring a Custom Task

To configure a custom task:

• Use one of the example templates to develop your custom task class.

• Save the file and class using the appropriate local naming conventions.

• Configure the placeholders for custom tasks in the <number>.xml file. You'll need to
do this by hand as they cannot be configured through the System Manager. The
supported placeholders can be found by searching for "PlaceholderTask" in
<number>.xml, based on your particular task. The list of supported custom task
placeholders include:

- Pre content update

- Pre document conversion

- Pre indexing

- Pre propagation

- Pre synchronization

- Post propagation/synchronization

- Pre log loading

- Post analytics processing (both Search and IM)

• Select the correct placeholder task and replace the taskClass configuration node
(which is set by default to "com.inquira.scheduler.job.PlaceholderTask") with the
name of the newly defined class. An example is shown below:

<task-definition index="4">
<name>Pre-Document Conversion</name>
<description>Custom task to be run before document conversion.</description>
<taskClass>com.customer.services.custom.NewTask</taskClass>
<distribute>false</distribute>
<needsCollection>false</needsCollection>
<subcollection>false</subcollection>
</task-definition>

Other than taskClass, no other configuration nodes should be modified unless
parameters are required.

• Compile the custom class and store it in the appropriate services.jar file so that
ICE can add it to the classpath. This ensures that when the scheduler runs the task,
the custom code is invoked rather than the PlaceholderTask class.

• To add parameters to the task definition, add parameter nodes as shown in the example
below. For example, to add "-p true", "-f false", and "-r" as parameters you
would add the following parameter nodes:
Intelligent Search Application Development Guide 103

<parameters index="0">-p</parameters>
<parameters index="1">true</parameters>
<parameters index="2">-f</parameters>
<parameters index="3">false</parameters>
<parameters index="4">-r</parameters>

• If the collection name is a required parameter, set the <needsCollection> node to
"true" and the last parameter specified to "-c". If you follow this convention the
scheduler automatically adds the collection name to the arguments passed into the
task. A sample result is shown below. Note that -c is the last parameter and that
needsCollection is set to true. The args[] array would include the following data
based on the task definition below when the task is run:

args[0] = "-p"
args[1] = "true"
args[2] = "-f"
args[3] = "false"
args[4] = "-r"
args[5] = "-c"
args[6] = "<collectionname>"

<task-definition index="4">
<name>Pre-Document Conversion</name>
<description>Custom task to be run before document conversion.</description>
<taskClass>com.customer.services.custom.NewTask</taskClass>
<parameters index="0">-p</parameters>
<parameters index="1">true</parameters>
<parameters index="2">-f</parameters>
<parameters index="3">false</parameters>
<parameters index="4">-r</parameters>
<parameters index="5">-c</parameters>
<distribute>false</distribute>
<needsCollection>true</needsCollection>
<subcollection>false</subcollection>
</task-definition>

NOTE: When you set <needsCollection>true</needsCollection> thereby
requiring a collection, it also dictates that the task runs once for each collection
defined in the job definition. Therefore, the last parameter is a new collection
name each time the task is run.
104 Intelligent Search Application Development Guide

Chapter 9 Creating a Custom Authentication Interface

The default InQuira 8.1 authentication interface uses Lightweight Directory Access
Protocol (LDAP) to verify user access to InQuira 8.1 modules. In some cases, you may
want to bypass the default authentication implementation to, for example, access user
information stored in a database.

The following examples provide instructions for:

• Example: Creating a Simple Custom Authenticator on page 106

Creating a basic custom authenticator built on the IAuthenticator interface.

• Example: Simple Unit Testing of a Custom Authenticator on page 108

Unit-testing a custom authenticator.

• Example: Configuration-based Test for IAuthenticator Objects on page 110

Testing the configured security service (IAAS).

For the code to compile, you need to download both the file for the specific authenticator
and the file TestBase.java, which contains some of the classes called by the
authenticators.

After creating your custom authenticator, continue by configuring it within the InQuira 8.1
environment as explained in the section, Configuring a Custom Authenticator on
page 111.
Intelligent Search Application Development Guide 105

Example: Creating a Simple Custom Authenticator

The example below can be found in the file TestAuthenticator.java, and the shared
authenticator classes can be found in TestBase.java.

We import the referenced packages, including TestBase.java, which contains the
shared classes referenced by the authenticator examples.

package samples.security.authentication;

import java.util.*;
import java.security.*;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.util.security.*;

We implement TestAuthenticator and get the user ID and password
/* This is a sample implementation of an authenticator */
public class TestAuthenticator
 extends TestBase
 implements IAuthenticator
{
 private static final String __ident = "$Revision: 1.1.2.1 $";

 protected String domain = "Test";

 protected Field[] authenticationFields = new Field[] {InputField
 new InputField(IFieldNames.FIELD_USER_ID),
 new InputField(IFieldNames.FIELD_PASSWORD, true) };

 public IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap, long timestamp)
 throws InquiraAuthenticationException
 {
 IUser rc = null;

 System.out.println("TestAuthenticator.authenticate: called");

 String userId = getFieldValue(IFieldNames.FIELD_USER_ID, userInfo);

 System.out.println("TestAuthenticator.authenticate: userId: " + userId);

 if(userId != null) {
 String password = getFieldValue(IFieldNames.FIELD_PASSWORD, userInfo);

 System.out.println("TestAuthenticator.authenticate: password: " + password);
106 Intelligent Search Application Development Guide

If the password is correct, we set up the user permissions to return using buildUser
(defined in TestBase.java), and print them for test purposes. If the password is
incorrect or null, we handle the exception by calling
InquiraAuthenticationException.

 if(password != null && password.equals(userId) == true) {
 rc = buildUser(userId, domain, userInfo, roles2PermissionsMap, timestamp);
 }
 }

 if(rc == null) {
 throw new InquiraAuthenticationException("LOGIN_FAILED", new Object[]{ getDomain(
), userId });
 }

 System.out.println("TestAuthenticator.authenticate: returns: " + rc);

 return rc;
 }

Get and return the domain (should return "Test" for the example)
 public String getDomain()
 {
 return domain;
 }

 public Field[] getAuthenticationFields()
 throws InquiraAuthenticationException
 {
 return authenticationFields;
 }

We get and print the values of authenticator, get the user's ID and password, and
authenticate the user based on the ID and password. We then print out the user
permissions.

 public static void main(String[] args)
 throws Exception
 {
 IAuthenticator authenticator = new TestAuthenticator();

 System.out.println(authenticator);

 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID,
args[0]),
 new FieldValue(IFieldNames.FIELD_PASSWORD, args[1]) };

 IUser user = (IUser)authenticator.authenticate(userInfo, getRole2PermissionsMap(),
System.currentTimeMillis());
 user.dump();
Intelligent Search Application Development Guide 107

 System.out.println("security keys: " + user.getSecurityKeys());
 for(int i = 2; i < args.length; i++) {
 System.out.println("has access to " + args[i] + ": " + user.hasAccess(new
com.inquira.infra.security.ContentPermission(args[i])));
 }
 }
}

Example: Simple Unit Testing of a Custom
Authenticator

The example below can be found in the file AuthenticatorTest.java, and the shared
authenticator classes can be found in TestBase.java

We import the referenced packages, including TestBase.java, which contains the
shared classes referenced by the authenticator examples.

package samples.security.authentication;

import java.util.*;
import java.security.Permission;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.config.*;

public class AuthenticatorTest
{
 private static final String __ident = "$Revision: 1.1.2.1 $";

 public static final String ROLE_LANG_DEV = "LanguageDevelopment";
 public static final String ROLE_LANG_ADMIN = "LanguageAdministrator";
 public static final String ROLE_ANALYTICS_ADMIN = "AnalyticsAdministrator";
 public static final String ROLE_ADMIN = "Administrator";

 protected static final Set USABLE_PERMISSIONS;
 public static final Map DEFAULT_ROLE_PERMISSIONS;
 static {
 HashSet tmp = new HashSet();
 String[] allPermissions = InquiraPermissions.PERMISSIONS;
 for(int i = 0; i < allPermissions.length; i++) {
 Permission p = new StandardPermission(allPermissions[i]);
 if(p.equals(new StandardPermission(InquiraPermissions.USERS)) == false) {
 tmp.add(p);
 }
 }

108 Intelligent Search Application Development Guide

 USABLE_PERMISSIONS = Collections.unmodifiableSet(tmp);

 DEFAULT_ROLE_PERMISSIONS = new HashMap();
 HashSet langDevPerm = new HashSet();
 langDevPerm.add(new StandardPermission(InquiraPermissions.DICTIONARY));
 langDevPerm.add(new StandardPermission(InquiraPermissions.TESTING));
 langDevPerm.add(new StandardPermission(InquiraPermissions.QUALITY_MONITOR));
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_LANG_DEV, langDevPerm);

 HashSet langAdminPerm = new HashSet(langDevPerm);
 langAdminPerm.add(new StandardPermission(InquiraPermissions.TOP_LAYERS));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.DOMAIN_GROUPS));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.DOMAINS));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.ONT_BUILDER));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.NAVIGATION_SETUP
));
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_LANG_ADMIN, langAdminPerm);

 HashSet analyticsAdminPerm = new HashSet();
 analyticsAdminPerm.add(new StandardPermission(
InquiraPermissions.ANALYTICS_ADMIN));
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_ANALYTICS_ADMIN, analyticsAdminPerm
);

 DEFAULT_ROLE_PERMISSIONS.put(ROLE_ADMIN, USABLE_PERMISSIONS);
 }

 public static void main(String[] args)
 throws Exception
 {
 ArrayList l = new ArrayList();
 IAuthenticator auth = (IAuthenticator)Execution.context().config().get(new Key(args[0]));
 System.out.println(auth);
 l.add(auth);

 IAAS aas = new AASImpl(l, DEFAULT_ROLE_PERMISSIONS);
 System.out.println(aas);

 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID,
args[1]),
 new FieldValue(IFieldNames.FIELD_PASSWORD, args[2]),
 new FieldValue(IFieldNames.FIELD_DOMAIN, args[3]) };

 RoleBasedUser user = (RoleBasedUser) aas.login(userInfo);
 user.dump();
 }
}

Intelligent Search Application Development Guide 109

Example: Configuration-based Test for IAuthenticator
Objects

The example below can be found in the file AASTest.java, and the shared
authenticator classes can be found in TestBase.java.

We import the referenced packages, including TestBase.java, which contains the
shared classes referenced by the authenticator examples.

package samples.security.authentication;

import java.util.*;
import java.security.Permission;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;

/* Tests the currently configured AAS */
public class AASTest
{
 private static final String __ident = "$Revision: 1.1.2.1 $";

 public static void main(String[] args)
 throws Exception
 {
 IAAS aas = (IAAS)Execution.context().aas();
 System.out.println(aas);

 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID,
args[0]),
 new FieldValue(IFieldNames.FIELD_PASSWORD, args[1]),
 new FieldValue(IFieldNames.FIELD_DOMAIN, args[2]) };

 IUser user = (IUser) aas.login(userInfo);
 user.dump();

 if(args.length > 3) {
 System.out.println(aas.getPermission(args[3]));
 }
 }
}

110 Intelligent Search Application Development Guide

Configuring a Custom Authenticator

After creating your custom authenticator, add the name of the class to the InQuira
configuration file as shown below:

• Locate the latest <number>.xml configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\<number>.xml

• Open the file and search for "<choices>".

• Add the customAuthenticator element under <choices> as shown in the
example. For the <class> element, replace "customAuthenticator" with the name of
your custom class and add an index element that identifies the specific version.

<choices>
<customAuthenticator index="0">
<class>com.inquira.infra.security.impl.TestAuthenticator</class>
</customAuthenticator>

• Next, define the customAuthenticator as the configured securityService by specifying
the keyref as shown below. Replace "choices.customAuthenticator[0]" with the
name of your custom class and index.

<securityService>
<authenticator index="1" keyref="choices.customAuthenticator[0]" />
</securityService>

• Your edited file should look similar to the one shown below:
<serviceConfiguration name="default">
<securityService>
<authenticator index="1" keyref="choices.customAuthenticator[0]" />
</securityService>
<choices>
<customAuthenticator index="0">
<class>com.inquira.infra.security.impl.TestAuthenticator</class>
</customAuthenticator>
Intelligent Search Application Development Guide 111

112 Intelligent Search Application Development Guide

Chapter 10 Integrating an External Authentication
Application

If you're using a single-sign-on application you may want to bypass the default InQuira
8.1 authentication interface to intercept the qualified user data it passes, and use that to set
up user access to InQuira 8.1.

Use the examples provided in:

• Example: Integrating a Delegation Authenticator on page 114

This example shows you how to integrate an external authentication application using
the IDelegationAuthenticator interface, which extends regular authenticating
modules that integrate with single-sign-on solutions.

• Example: Integrating a Delegation Detector on page 116

This example shows you how to integrate an external authentication application using
the IDelegationDetector interface. The IDelegationDetector interface, in
turn, is used by the request processor to extract the user information from single-sign-
on solutions.

NOTE: For the code to compile, download both the file for the specific authenticator and
the file TestBase.java, which contains some of the classes called by the
examples.

After creating your custom delegation authenticator or delegation detector, continue by
configuring it within the InQuira 8.1 environment as explained in the section, Configuring
a Delegation Authenticator or Detector on page 118.
Intelligent Search Application Development Guide 113

Example: Integrating a Delegation Authenticator

The example below can be found in the file DelegationAuthenticator.java
package samples.security.delegation;

import java.util.*;
import java.security.*;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.request.*;

import samples.security.authentication.*;

/* This class supports simple delegation authorization functionality */
public class TestDelegationAuthenticator
 extends TestBase
 implements IDelegationAuthenticator
{
 private static final String __ident = "$Revision: 1.1.2.2 $";

 protected String domain = "Delegation";
 protected Field[] authenticationFields = new Field[0];
 //Indicates that it cannot be used to display a login screen

 public IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap, long timestamp)
 throws InquiraAuthenticationException
 {
 // Since we only want to test delegation, we provide
 // no mechanism to authenticate a user
 // through a login screen.
 return null;
 }

 public IUser delegate(FieldValue[] userInfo, Principal principal, Map roles2PermissionsMap,
long timestamp)
 throws InquiraAuthenticationException
 {
 IUser rc = null;

 System.out.println("TestDelegationAuthenticator.delegate: called");

 String userId = getFieldValue(IFieldNames.FIELD_USER_ID, userInfo);
 System.out.println("TestDelegationAuthenticator.delegate: userId: " + userId);

 if(userId != null) {
 rc = buildUser(userId, domain, userInfo, roles2PermissionsMap, timestamp);
114 Intelligent Search Application Development Guide

 }

 System.out.println("TestDelegationAuthenticator.delegate: returns: " + rc);

 return rc;
 }

 public String getDomain()
 {
 return domain;
 }

 public Field[] getAuthenticationFields()
 throws InquiraAuthenticationException
 {
 return authenticationFields;
 }

 public static void main(String[] args)
 throws Exception
 {
 IDelegationAuthenticator authenticator = new TestDelegationAuthenticator();

 System.out.println(authenticator);

 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID,
args[0]),
 new FieldValue(IFieldNames.FIELD_DOMAIN,
authenticator.getDomain()) };

 IUser user = (IUser)authenticator.delegate(userInfo, null, getRole2PermissionsMap(),
System.currentTimeMillis());
 if(user != null) {
 user.dump();
 } else {
 System.out.println("Delegation for " + args[0] + " failed");
 }
 }
}
Intelligent Search Application Development Guide 115

Example: Integrating a Delegation Detector

The example below can be found in the file DelegationDetector.java
package com.inquira.infra.security.impl;

import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.request.*;

/* This class implements a simple delegation detector */
public class TestDelegationDetector
 implements IDelegationDetector
{
 private static final String __ident = "$Revision: 1.4.4.1 $";

 protected String domain;

 public TestDelegationDetector()
 {
 }
 public FieldValue[] detectDelegation(Request request)
 {
 return new FieldValue[]{
 new FieldValue(IFieldNames.FIELD_USER_ID,
System.getProperty("user.name")),
 new FieldValue(IFieldNames.FIELD_DOMAIN, "INQUIRA")
};
 }

 public FieldValue[] detectDelegation(Request request)
 {
 FieldValue[] rc = null;
 String userId = null;

 System.out.println(
"TestDelegationAuthenticator.detectDelegation: called");

 try {
 userId = request.getUserName();
 } catch(Exception ex) {
 //ignore since we don't have a valid user then
 }

 System.out.println(
"TestDelegationAuthenticator.detectDelegation: userId: " +
userId);
116 Intelligent Search Application Development Guide

 if(userId != null && (userId = userId.trim()).length(
) > 0) {
 rc = new FieldValue[] {
 new FieldValue(IFieldNames.FIELD_USER_ID,
userId),
 new FieldValue(IFieldNames.FIELD_DOMAIN,
domain) };
 }

 System.out.println(
"TestDelegationAuthenticator.detectDelegation: returns: " + rc
);

 return rc;
 }

 public static void main(String[] args)
 throws Exception
 {
 IDelegationAuthenticator authenticator = new
TestDelegationAuthenticator();
 TestDelegationDetector detector = new
TestDelegationDetector();
 detector.domain = authenticator.getDomain();

 System.out.println(detector);
 System.out.println(authenticator);

 Request request = new Request();
 request.setUserName(args[0]);

 FieldValue[] userInfo = detector.detectDelegation(
request);

 IUser user = (IUser)authenticator.delegate(userInfo,
null, TestDelegationAuthenticator.getRole2PermissionsMap(),
System.currentTimeMillis());
 if(user != null) {
 user.dump();
 } else {
 System.out.println("delegation for " + args[0] + "
failed");
 }
 }
}

Intelligent Search Application Development Guide 117

Configuring a Delegation Authenticator or Detector

After creating your new delegation detector, add the name of the class to the InQuira
configuration file as shown below:

• Locate the latest <number>.xml configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\<number>.xml

• Open the file and search for "<choices>".

• Add the <delegationDetector> element under <choices> as shown below.
Replace "TestDelegationDetector" with the name of your custom class and add a name
element that identifies the specific version.

<choices>
<delegationDetector name="test">
<class>com.inquira.infra.security.impl.TestDelegationDetector</class>
</delegationDetector>

• Define the delegationDetector in as the configured securityService by specifying the
keyref as shown below. Replace "delegationDetector[test]" with the name of your
custom class and version name.

<securityService>
<delegationDetector keyref="choices.delegationDetector[test]" />
</securityService>

• Your edited file should look similar to the one below:
<serviceConfiguration name="default">
<securityService>
<delegationDetector keyref="choices.delegationDetector[test]" />
</securityService>
<choices>
<delegationDetector name="test">
<class>com.inquira.infra.security.impl.TestDelegationDetector</class>
</delegationDetector>
118 Intelligent Search Application Development Guide

Chapter 11 Creating an Action Plugin

This section deals with how to create a plugin for use within dictionary rules. The
example, Example: Creating an Action Plugin on page 119, implements a class that can
be used to trigger an action in a rule that calls the plugin. You can have the rule be called
for every question, and then implement your own custom condition.

After creating your custom plugin, continue by configuring it within the InQuira 8.1
environment as explained in the section, Configuring an Action Plugin on page 121.

Example: Creating an Action Plugin

The example below can be found in the file ActionGeneratorPlugin.java.

In the first part of this example, we import the referenced packages and display the
copyright notices.

package com.CLIENT_NAME.inquira.action;

import com.inquira.dictionary.rules.userdata.AnswerPart
import com.inquira.dictionary.DictionaryObjectTypes;
import com.inquira.dictionary.answerlayout.AnswerPart;
import com.inquira.dictionary.answerlayout.FacetRestriction;
import com.inquira.dictionary.dictobjs.ActionRule;
import com.inquira.evaluator.Action;
import com.inquira.evaluator.ActionGenerator;
import com.inquira.evaluator.SetFacetRestrictionAction;
import com.inquira.infra.Execution;
import com.inquira.infra.InquiraException;
import com.inquira.intents.*;
import com.inquira.match.Matcher;
import com.inquira.match.SentenceMatcher;
import com.inquira.match.VariableInstantiation;
import com.inquira.match.expression.IMLExpression;
import com.inquira.nlp.Sentence;
import com.inquira.request.RequestContext;

Intelligent Search Application Development Guide 119

/*
 * This class can be used to trigger an action in a rule that calls
 * this plugin. You can have the rule be called for every question, and
 * then implement your own custom condition below.
 */

Next, we implement the action plugin based on the ActionGenerator interface.
public class MyPluginActionGenerator
 implements ActionGenerator {

 /* This method is triggered when the plugin fires based on rules */
 public Action[] generate(RequestContext requestContext, AnswerPart answerPart,
 Sentence sentence,
 VariableInstantiation variableInstantiation, Map map) throws
 InquiraException {

 IntentService is = Execution.context().intents();
 Action[] actions = new Action[0];

 //Test for condition to trigger the action you want

 actions = new Action[1];

In this example, we set up a facet restriction as our rule-based action. By setting up and
defining your own action as actions[0] below, you can use this example to trigger
other actions.

 /* Example
 * FacetRestriction fr = new FacetRestriction("\"CRID." +
 * contentRecordID.toUpperCase() + "\"", true);
 * actions[0] = new PluginExactSearchAction(answerPart, fr, "FACET" +
 * facetIML);
 */

 return actions;
 }
}

120 Intelligent Search Application Development Guide

Configuring an Action Plugin

After creating your action plugin, add the name of the class to the InQuira configuration
file as shown below:

• Locate the latest <number>.xml configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\<number>.xml

• Open the file and search for "<PluggableConsequences>".

• Under <PluggableConsequences> add a new section like the one shown below:
<Consequence name="Followup">
 <description>Module for recreating followup questions</description>
 <class> com.inquira.analysis.followup.FollowupActionGenerator </class>
 <parameter index="0"> type </parameter>
</Consequence>

• Enter the plugin name, description, class name, and parameter for the new plugin.The
parameter ("type" in this case), appears as text in a text box in the Workbench when
you choose the plugin.

• Once the plugin has been added to the configuration file, it appears as a selection in the
Plugin drop-down list when you set up a rule in the Dictionary Manager. For
information on how to set up plugins as answer actions for rules, refer to Advanced
Features of Rules in the Intelligent Search Optimization Guide.
Intelligent Search Application Development Guide 121

122 Intelligent Search Application Development Guide

Chapter 12 Creating a Custom Preference Handler

This section describes how to set up a custom preference handler by creating a new Java
class that extends NamedHandler (see the example in Example: Creating a Preference
Handler on page 123).

After creating your custom preference handler, continue by configuring it within the
InQuira 8.1 environment as explained in the section, Configuring a Preference Handler
on page 124.

Example: Creating a Preference Handler

The example below can be found in the file PreferenceHandler.java

In the first part of this example, we import the referenced packages.
package samples.preferencehandler;

import com.inquira.request.*;
import com.inquira.infra.Execution;
import com.inquira.preference.*;

import java.util.regex.*;
import java.util.*;

Next, we set up the custom preference handler class by implementing the NamedHandler
interface.

public class SamplePreferenceHandler implements NamedHandler
{

 public RequestContext handle(RequestContext rc) throws HandlerException
 {
 // Get parameters
 Properties prop = rc.getUserAgentRequestParameters();

 try {
Intelligent Search Application Development Guide 123

 PreferenceService prefs = Execution.context().preferences();
 System.out.println("*** Got Preference ***");

 //Loop through the property names
 Enumeration e = prop.propertyNames();
 while (e.hasMoreElements()) {
 String propName = (String)e.nextElement();
 System.out.println("*** Got prop: " + propName);
 System.out.println("*** " + propName + " has a value of: " +
prop.getProperty(propName));

 //Assign a property value referenced by a context variable of the property name
 PreferenceValue pv = prefs.setPreferenceValue(propName,
prop.getProperty(propName));
 }
 }
 catch(Exception ex) {
 System.err.println("!!! Error getting preferences! " + ex);
 }

 return rc;
 }

 public String getHandlerName()
 {
 return "Sample Preference";
 }
}

Configuring a Preference Handler

After creating the custom preference handler, add the name of the class to the InQuira
configuration file as shown below:

• Locate the latest <number.xml> configuration file in the configuration folder:
%APROOT%\development\content\data\config\default\<number>.xml

• Open the file and search for <requests name="AnswerQuestion">.

• In the list of classes named <handlers>, add your preference handler class as index=1
renaming all the subsequent ones.
124 Intelligent Search Application Development Guide

Chapter 13 Rendering Web Pages Using a Custom Agent

This section presents an example of how to render web pages using a custom
transformation tool. The example is generic, in that it does not assume anything about the
type of output you may want to produce. It simply sets up the gateway, retrieves the data,
and does a standard XSL transformation.

In the example (Example: Rendering a Web Page Using a Custom Agent on page 125),
we set up a client (IClient) and initialize a connection through a SOAP gateway with the
InQuira 8.1 backend. Using a subclass (XMLAgent) of the class (Agent) used by InQuira
8.1, the example gets the request parameter that defines how the retrieved data is presented
in the InQuira 8.1 user interface, and continues by retrieving the data. Since XMLAgent
does not carry out the transformation included in Agent, the example continues by
transforming the returned XML (GIML) using the standard XSL transformation.

Prior to doing the transformation, the example sets up access to a DOM node. Using the
DOM node to access the returned XML data, you can substitute your own rendering
algorithms to produce output other than the standard HTML produced by InQuira 8.1.

Example: Rendering a Web Page Using a Custom
Agent

The source for the example below can be found in the file xmlui.jsp

In the first part of the example server page we set up error handling, display the copyright
notice, and import the referenced packages.

<%@ page errorPage="error.jsp" %>
<%--
/*
 * I n Q u i r a Copyright (c) 2002 - 2006 Inquira, Inc. All rights
 * reserved. Use or distribution without the express written consent of
 * Inquira, Inc. is not permitted and is prohibited by law.
 */
Intelligent Search Application Development Guide 125

--%>
<%@ page import="java.io.*,java.util.*" %>
<%@ page
import="javax.xml.transform.*,javax.xml.transform.stream.*,javax.xml.transform.dom.*,org.w3c.d
om.*" %>
<%@ page import="com.inquira.infra.gateway.html13.*,com.inquira.infra.client.*" %>

Next, we set up a client object using the IClient interface and initialize a connection
through a SOAP gateway.

<%!

 private static IClient client;
 private static Object lockObject = new Object();

 static {
 client = null;
 }

%>
<% //Create an IClient object to communicate with the search back end
 synchronized (lockObject) {
 if (client == null) {
 System.out.println("Initializing Connection with InQuira Gateway");
 IClient configuredClient = null;
 Properties props = new Properties();

 // Modify the values below to adjust for your environment
 String soapurl = "http://hostname:port/inquiragw/servlet/rpcrouter;
 String soapurn = "urn:inquira";
 String timeout = null;

 // Create, configure, and connect the SOAP client
 configuredClient = new Client();
 props.setProperty(Client.URN, soapurn);
 props.setProperty(Client.URL, soapurl);
 if(timeout != null) {
 props.setProperty(Client.TIMEOUT, timeout);
 }

 try {
 configuredClient.setConnectionProperties(props);
 configuredClient.connect();
 }
 catch(ClientException ex) {
 ex.printStackTrace();
 RuntimeException rex = new RuntimeException("Unable to connect to client.\nReason:
" + ex.toString());
 throw rex;
 }
 }
126 Intelligent Search Application Development Guide

 client = configuredClient;
 }
 }
%>

Using the XMLAgent subclass of Agent, we get the request parameter that defines how
the retrieved data is presented in the user interface, and retrieve the data. Refer to the
comments for the switches below to find out what each parameter does.

<%
 // Create the XMLAgent that takes the HTTP request parameters
 // and headers and create an Inquira request, call the
 // IClient.process method, and return the Inquira
 // response in a DOM node.
 Agent agent = new XMLAgent(client, request, response, config, request.getSession(true));

 // Get the mode we are in from the HTTP request parameter
 // called "ui_mode"
 String mode = request.getParameter(Agent.HTTP_PARAM_MODE);
 Object node = null;
 if(mode == null || (mode = mode.trim()).length() == 0 || mode.equals(
Agent.HTTP_PARAM_MODE_INITIAL_SCREEN)) {
 // If there was no mode set or it was set to "initial_screen",
 // then we want to display the entry point
 // to the search application
 node = agent.processInitialScreen();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_QUESTION)) {
 // If mode is set to "question", then we are answering a
 // user's question
 node = agent.processQuestionMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_NAVIGATE)) {
 // If mode is set to "navigate", then we are processing a
 // user changing navigation parameters -
 // by clicking on the facet links
 node = agent.processNavigateMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_ANSWER)) {
 // If mode is set to "answer", then we are processing an
 // answer-based request, such as highlighting
 // or click-through tracking
 node = agent.processAnswerMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_FEEDBACK)) {
 // If mode is set to "feedback", then we are handling the
 // user rating the answers
 node = agent.processFeedbackMode();
 response.setStatus(204); // No Content response
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_PAGING)) {
 // If mode is set to "paging", then we are displaying the
 // prior, current, or next page of answers
 // depending on the direction
Intelligent Search Application Development Guide 127

 node = agent.processPagingMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_GETPAGE)) {
 // If mode is set to "get_page", then we get a static
 // page such as the search tips
 node = agent.processGetPage();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_LOGIN)) {
 // If mode is set to "login", then we process a login request
 node = agent.processLoginMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_SEARCH_WITHIN)) {
 // If mode is set to "search_within", then we process a
 // search within a given document
 node = agent.processSearchWithin();
 } else {
 // We encountered an unsupported mode
 node = agent.processInvalidMode(mode);
 }

If we managed to retrieve some data, we continue by setting up a DOM node and doing
the standard transformation normally done in InQuira. Use the DOM node to access the
returned XML and substitute your own transformation algorithms to generate output other
than HTML.

 if(node != null) {
 // If we got a response, we try to apply the standard XSL
 // transformation to generate HTML
 DOMSource xslIn = new DOMSource((Node)node);
 StreamResult xslOut = new StreamResult(out);
 agent.assureTemplates();
 Transformer transformer = agent.getTemplate("QUESTION_ANSWER"
).newTransformer();
 transformer.setOutputProperty(OutputKeys.ENCODING, "UTF-8");
 transformer.transform(xslIn, xslOut);
 }
%>
128 Intelligent Search Application Development Guide

	Preface About This Guide
	In This Guide
	Contacting InQuira
	InQuira Product Documentation
	Intelligent Search Documentation
	InQuira Analytics Documentation
	Information Manager Documentation
	Contact Center Documentation
	Screen and Text Representations
	References to World Wide Web Resources

	Chapter 1 The InQuira User Interface
	The Personalized Response User Interface
	User Interface Processing
	Application Response Format
	The Parameters Section
	The Answers Section
	The Query Section

	Chapter 2 User Interface Components
	The Main Template
	Main Template File Example

	The Global Layout Style Templates
	Basic Search Layout Display Example

	Request and Response Element Templates
	Global Configuration Parameters Template
	Sample Configuration Parameters File
	Request Element Templates
	Request Area Example
	Dialog Request Area Example
	Response Element Templates

	Global Elements and Utilities

	Chapter 3 User Interface Elements
	Request Elements
	Response Elements
	Answer Display Features
	Answer Purposes
	Default Answer Purposes

	Answer Portlets
	Default Answer Portlets
	Promotions Portlet Example
	Act Now Portlet Example
	Learn More Portlet Example
	Definition Portlet Example
	Feature Content Portlet Example

	Chapter 4 Customizing the User Interface
	Specifying the User Interface Layout
	Integrating the User Interface
	Customizing Style Elements
	Customizing General Style Elements
	Customizing Question Area Definitions
	Customizing Answer Area Definitions
	Customizing Sidebar Area Definitions

	Customizing Request Elements
	Customizing the Request Heading
	Customizing the Example Question
	Customizing the Question Box
	Customizing the Tips Link
	Customizing the Submit Button

	Customizing Response Elements
	Customizing the Question Echo
	Customizing the Answer Introduction
	Customizing Answer Headings
	Customizing the Answer Body Text
	Customizing the Answer Document Link

	Configuring Answer Purposes
	Adding Answer Purposes to the Application
	Customizing Answer Portlets
	Specifying Portlet Display Position
	Customizing Portlet Headings
	Customizing Portlet Answer Headings
	Customizing Portlet Answer Text
	Customizing Portlet Document Links

	Chapter 5 Implementing Optional Features
	The Process Wizard User Interface
	The Process Wizard Answer
	The Step Display Area
	Modifying the Process Wizard User Interface

	Activating the Personalized Navigation User Interface Layout
	The Personalized Navigation User Interface Elements
	Personalized Navigation XSL Style Sheet Elements
	Personalized Navigation CSS Style Sheet Elements
	Personalized Navigation-Related XML Elements

	Implementing Direct Page Display
	Direct Page Display Example

	Implementing a Virtual Representative
	Implementing User Feedback Collection
	The User Feedback Portlet
	The User Feedback Comment Form
	The User Feedback Process
	Customizing the User Feedback Area Heading
	Customizing the User Feedback Rating Labels
	Customizing the User Feedback Comment Form
	Disabling the User Feedback Feature

	Implementing Click-Through Logging
	Highlighting Answers Within Documents
	Enabling Highlighting within Answer Documents
	Specifying HTML Highlighting Style Attributes

	Managing Multiple Languages in the User Interface

	Chapter 6 Creating a Custom Content Crawler
	Example: Creating a Database Web Crawler
	Example: Configuring the Database Web Crawler
	Configuring a Custom Crawler
	Example Crawler Settings

	Chapter 7 Creating a Custom Document Preprocessor
	Example: Creating a Document Preprocessor
	Configuring a Custom Document Preprocessor
	Supporting Multiple Naviagtion Applications

	Chapter 8 Creating a Custom Task
	Example: Creating a Simple Custom Task
	Example: Handling Argument Parsing
	Example: Handling Document Count and Progress Updates
	Example: Handling User Task Interruptions
	Configuring a Custom Task

	Chapter 9 Creating a Custom Authentication Interface
	Example: Creating a Simple Custom Authenticator
	Example: Simple Unit Testing of a Custom Authenticator
	Example: Configuration-based Test for IAuthenticator Objects
	Configuring a Custom Authenticator

	Chapter 10 Integrating an External Authentication Application
	Example: Integrating a Delegation Authenticator
	Example: Integrating a Delegation Detector
	Configuring a Delegation Authenticator or Detector

	Chapter 11 Creating an Action Plugin
	Example: Creating an Action Plugin
	Configuring an Action Plugin

	Chapter 12 Creating a Custom Preference Handler
	Example: Creating a Preference Handler
	Configuring a Preference Handler

	Chapter 13 Rendering Web Pages Using a Custom Agent
	Example: Rendering a Web Page Using a Custom Agent

