
��������	
�

��������

�������������	
������
���	�

��������	�	
���	��������	���	�������

���������	
���������
�	�����	�

FATWIRE CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any loss of
profits, loss of business, loss of use of data, interruption of business, or for indirect, special, incidental, or consequential
damages of any kind, even if FatWire has been advised of the possibility of such damages arising from this publication.
FatWire may revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions; therefore, this statement may not apply to you.

Copyright © 2009 FatWire Corporation. All rights reserved.

This product may be covered under one or more of the following U.S. patents: 4477698, 4540855, 4720853, 4742538,
4742539, 4782510, 4797911, 4894857, 5070525, RE36416, 5309505, 5511112, 5581602, 5594791, 5675637, 5708780,
5715314, 5724424, 5812776, 5828731, 5909492, 5924090, 5963635, 6012071, 6049785, 6055522, 6118763, 6195649,
6199051, 6205437, 6212634, 6279112 and 6314089. Additional patents pending.

FatWire, Content Server, Content Integration Platform, Content Server Bridge Enterprise, Content Server Bridge XML,
Content Server COM Interfaces, Content Server Desktop, Content Server Direct, Content Server Direct Advantage, Content
Server DocLink, Content Server Engage, Content Server InSite Editor, Content Server Satellite, and Transact are
trademarks or registered trademarks of FatWire Corporation in the United States and other countries.

Java, J2EE, Solaris, Sun, and other Sun products referenced herein are trademarks or registered trademarks of Sun
Microsystems, Inc. AIX, IBM, WebSphere, and other IBM products referenced herein are trademarks or registered
trademarks of IBM Corporation. WebLogic is a registered trademark of BEA Systems, Inc. Documentum is a registered
trademark of the EMC Corporation. Microsoft, Windows, SharePoint, Microsoft Visual C++ 2008 Redistributable Package
and other Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. Linux is a
trademark registered to Linus Torvalds. UNIX is a registered trademark of The Open Group. Any other trademarks and
product names used herein may be the trademarks of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/) and software
developed by Sun Microsystems, Inc. This product contains encryption technology from Phaos Technology Corporation.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or
technology except in full compliance with all United States and other applicable laws and regulations, including without
limitations the United States Export Administration Act, the Trading with the Enemy Act, the International Emergency
Economic Powers Act and any regulations thereunder. Any transfer of technical data outside the United States by any
means, including the Internet, is an export control requirement under U.S. law. In particular, but without limitation, none of
the Program, its Documentation, or underlying information of technology may be downloaded or otherwise exported or
reexported (i) into (or to a national or resident, wherever located, of) Cuba, Libya, North Korea, Iran, Iraq, Sudan, Syria, or
any other country to which the U.S. prohibits exports of goods or technical data; or (ii) to anyone on the U.S. Treasury
Department’s Specially Designated Nationals List or the Table of Denial Orders issued by the Department of Commerce. By
downloading or using the Program or its Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list
or table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the
box, media, in the installation process, during the download process, or in the Documentation), then except for export to
Canada for use in Canada by Canadian citizens, the Program, Documentation, and any underlying information or technology
may not be exported outside the United States or to any foreign entity or “foreign person” as defined by U.S. Government
regulations, including without limitation, anyone who is not a citizen, national, or lawful permanent resident of the United
States. By using this Program and Documentation, you are agreeing to the foregoing and you are representing and
warranting that you are not a “foreign person” or under the control of a “foreign person.”

FatWire Content Integration Platform: Creating a Java Connector and Plug-In
Publication Date: Jan. 12, 2010
Product Version 1.5

FatWire Technical Support
www.fatwire.com/Support

FatWire Headquarters
FatWire Corporation
330 Old Country Road
Suite 207
Mineola, NY 11501
www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

3

Table of

Contents
1 Integrating with Custom Source Systems . 5
Overview . 6
Customizing FatWire Content Integration Platform . 6
Content Integration Agent . 8

2 Creating Connectors and Plug-Ins . 9
Overview . 10
I. Creating a Java Source Connector . 11
II. Creating a Java Plug-In . 14
III. Enabling javafacility. 17
IV. Completing the Integration . 18
Troubleshooting and Debugging . 19
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Table of Contents
4

Content Integration Platform 1.5: Creating a Java Connector and Plug-In

5

Chapter 1

Integrating with Custom Source Systems
This chapter outlines how developers can extend FatWire Content Integration Platform to
support publishing from custom source systems to FatWire Content Server and FatWire
TeamUp.

This chapter contains the following sections:

• Overview

• Customizing FatWire Content Integration Platform

• Content Integration Agent
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 1. Integrating with Custom Source Systems

 Overview
6

ported only
tent Server
Overview
FatWire Content Integration Platform (CIP) brings content from various source systems to
FatWire Content Server and FatWire TeamUp. Publishing from the following systems is
supported out-of-the-box: Documentum Content Server, Microsoft SharePoint, and file
systems on Unix and Windows (Figure 1). Default integration solutions are listed in the
Supported Platform Document (at http://e-docs.fatwire.com).

While Content Integration Platform provides out-of-the box integration solutions for
commonly used source systems, its true value is its applicability to any source system.

Figure 1: CIP architecture

Customizing FatWire Content Integration Platform
Developers can extend Content Integration Platform to publish from systems of their own
choice (such as a database or custom content management system) by writing a Java-based
implementation: a source connector and plug-in(s), or just the plug-in(s). Both the
connector and the plug-ins are supported by the Content Integration Agent component
(Figure 2, on page 7. See also “Content Integration Agent,” on page 8).

A Java source connector must be written for each source system whose content will be
published to the target system (FatWire Content Server or TeamUp). The connector
queries the source system in order to retrieve its metadata and binary content. (The
connector must be registered within the Content Integration Agent by the addition of a
statement to the catalog.xml file.)

A plug-in is required only if items retrieved by the connector must be processed before
they are published to the target system. Processing an item could include for example,
extracting thumbnails from image files or performing a validation step while publishing.
Typically, plug-ins are written to support different file formats or to filter selected items
from the publishing process. Any number of plug-ins can be used with any connector. Like
the connector, a plug-in must be registered within the Content Integration Agent (in the
types.xml file).

*

*

* Publishing sup
 to FatWire Con
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 1. Integrating with Custom Source Systems

 Customizing FatWire Content Integration Platform
7

Figure 2: Content Integration Platform

A. Content Integration Agent

*

*

B. Source Connector and Plug-In

javaconnector library

javaplugin library
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 1. Integrating with Custom Source Systems

 Content Integration Agent
8

Content Integration Agent
Content Integration Agent is written in C++ and provides the following components to
support Java-based custom connectors and plug-ins:

• Solid runtime system.

• Pluggable interfaces, used to implement Java-based source connectors and plug-ins.

• XML files named catalog.xml and types.xml, both used to register the custom
source connector and plug-ins.

• Native source connector (javaconnector library) and native plug-in (javaplugin
library). Both are written in C++. They are used to make calls to Java code.

• Facilities, which are construction blocks providing some set of functionality to the
Agent runtime. Content Integration Agent hosts the Java Virtual Machine in its
process space in order to delegate calls from the C++ runtime environment to Java
code. The JVM is enabled by registering javafacility in facilities.xml.

Once the Java-based connector is created and the JVM is enabled, the C++ Agent runtime
system can use the JVM to call Java code via the native connector (similar process for
plug-ins). For system architecture, see Figure 2B, on page 7.

Procedures for creating Java-based connectors and plug-ins are given in chapter 2, along
with instructions for completing the integration.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

9

Chapter 2

Creating Connectors and Plug-Ins
This chapter provides instructions for creating a complete integration solution to support
publishing from custom source systems to FatWire Content Server and FatWire TeamUp.

This chapter contains the following sections:

• Overview

• I. Creating a Java Source Connector

• II. Creating a Java Plug-In

• III. Enabling javafacility

• IV. Completing the Integration

• Troubleshooting and Debugging
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 Overview
10
Overview
Creating a connector and plug-in involves the following steps:

1. Implementing the pluggable interfaces that are provided within Content Integration
Agent.

2. Registering the implementation(s) with the Content Integration Agent runtime system.

3. Registering javafacility in order to enable the Java Virtual Machine to delegate
calls from the C++ Agent runtime to Java code.

Before a custom connector (or plug-in) can be successfully used, the data model for the
publishable objects must exist on the target system and be mapped to the target system.
The following steps are required:

• If the target system is FatWire Content Server:

1. Reproduce the objects’ metadata in Content Server by creating a dedicated flex
family (or re-using an existing flex family) to store the object types, their
attributes, and the objects themselves.

2. Map object types and attributes to their respective flex family asset instances
(created in the previous step). The map can be created directly in the connector
implementation, or in the mappings.xml file.

• If the target system is FatWire TeamUp, map object types and attributes to their
respective TeamUp instances. The map can be created directly in the connector
implementation, or in the mappings.xml file.

Note

A custom plug-in can be used with any connector. You can implement and deploy
as many plug-ins as necessary.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 I. Creating a Java Source Connector
11
I. Creating a Java Source Connector
Publishing from an unsupported source system to Content Server (or TeamUp) requires
you to create a Java-based source connector. (A plug-in is not required unless objects
retrieved by the connector must be processed before they are published.) For the list of
currently supported source systems, see the Supported Platform Document for CIP 1.5
(available at http://e-docs.fatwire.com).

To create a Java source connector

1. Implement the connector:

Implement the IConnector, IProviderSession, IRepository, and IItem
interfaces. You can optionally implement the InputStream interface if items on your
source system have primary binary content.

Figure 3 shows the relationships among the interfaces. The entry point for the
connector’s code is a factory class: the IConnector interface implementation.

Figure 3: Connector and plug-in class diagram

Note

If you are using a relational database, implement custom views or custom queries in
order for the connector to work.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 I. Creating a Java Source Connector
12
There are different phases in a connector’s lifetime. Depending on the phase, different
methods are invoked. Figure 4 shows the sequence of calls during each phase.

Figure 4: Source connector calls sequence

Analyzing Figure 4

The ID, which is passed to the getRepositoryByID function, is taken from one of
the corresponding workspace elements in the catalog.xml file.

Depending on what you pass to the cipcommander, one of the following functions is
invoked:

- If -source_itemid is passed, then getItemByID is invoked passing the
itemid.

- If -source_itemid is omitted, and -source_path is specified, then the
getItemByPath function is invoked.

Note: “DC metadata” is “Dublin Core metadata” (http://en.wikipedia.org/wiki/Dublin_Core)
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 I. Creating a Java Source Connector
13
- If neither -source_itemid or -source_path is specified, then the
getTopFolder function is invoked. (In this case, the entire repository is
published.)

To ensure uniqueness, maintain a different versionid, itemid, and path for all
items inside the same repository, and keep the names different for all items inside the
same folder. The path must be in the form: <parent path>/<this item name>.

2. Register the connector:

a. Register the IConnector interface implementation with Content Integration
Agent by adding a ‘connector’ element to catalog.xml (located in
integration_agent/conf/):

<connector id="connector_id"
name="connector_descriptive_name">
<library>javaconnector</library>

<init-params>
<param name="className">connector_class_name</param>

connector-specific_parameters
</init-params>

</connector>

b. Enable publishing by adding a new ‘provider’ element to catalog.xml:

<provider id="provider_id" name="provider_descriptive_name">
<connector-ref refid="connector_id"/>

<init-params/>
provider-specific_parameters

</init-params>
</ provider >

Parameter Description

connector_id Any unique identifier.

connector_descriptive_name Any descriptive name (does not have to be
unique).

connector_class_name Name of the IConnector implementation
created.

connector-specific_parameters Set of parameters that will be passed to
IConnector.initialize during the call.

Parameter Description

provider_id Any unique identifier.

provider_descriptive_name Any descriptive name (doesn’t have to be
unique).

connector_id Connector’s unique identifier.

provider-specific_parameters Set of parameters that will be passed to
IConnector.login during the call.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 II. Creating a Java Plug-In
14
c. Deploy the connector:

Place the connector’s jar files into the folder <resource>/java/
<connector_id>/lib, and the class files into <resource>/java/
<connector_id>/classes.
The <resource> folder is located within Content Integration Agent.
On Windows: <resource> is <%INSTALLDIR%>
On Unix: <resource> is <$INSTALLDIR/shared/cipagent>

3. If you require a Java plug-in (to process items retrieved by the connector), continue to
section “II. Creating a Java Plug-In.” Otherwise, enable javafacility (to allow the
Java Virtual Machine to delegate calls to Java code from the C++ Agent runtime). For
instructions, see “III. Enabling javafacility,” on page 17.

II. Creating a Java Plug-In
A plug-in is not required unless objects retrieved by the connector must be processed
before they are published to the target system. The main purpose of a plug-in is to modify
the metadata of retrieved items, add metadata to retrieved items, and reject items.

Creating a plug-in is similar to creating a connector. The steps are as follows:

To create a Java plug-in

1. Implement the plug-in by implementing the IAssetHandler interface (in Content
Integration Agent).

The entry point for a plug-in is the IAssetHandler interface.
This is the only interface which is directly used by the runtime
system. In most cases ExtractMetadata is the only method
you need to implement. Figure 5 shows the calls sequence in a
plug-in’s lifetime.

Note

Connector classes are loaded by different class loaders to prevent collisions
with different implementations and loading/unloading features. We strongly
advise placing all connector jar and class files into the <connector_id>
folder, instead of including them into the CLASSPATH environment variable,
or the java.class.path property, or the jre/lib/ext folder.

Note

A custom plug-in can be used with any connector. You can create and deploy as
many plug-ins as necessary.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 II. Creating a Java Plug-In
15
Figure 5: Plug-in calls sequence

2. Register the plug-in with Content Integration Agent.

a. Add a new plug-in ‘handler’ element to the types.xml file (located in the
integration_agent/conf/ folder):

<handler id="handler_id">
<library>javaplugin</library>

<init-params/>
plugin-specific_parameters

</init-params>
</handler>

b. Enable the custom plug-in for selected object types by adding “asset-type”
elements to the types.xml file. Items for which this plug-in is invoked will be
filtered according to MIME type.

Parameter Description

handler_id Custom plug-in’s unique identifier.

plugin-specific
parameters

Plugin-specific parameters that are passed when the
plug-in is initialized.

Note

The asset-type element in the context of a plug-in is a MIME type
group.

C++ Native Code IAssetHandler

ExtractMetadata
Metadata replication phase

ctor

initialize

connect
Connection phase

disconnect
Disconnection phase
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 II. Creating a Java Plug-In
16
<asset-type type="MIME_type">
<extensions>

<ext>ext</ext>
 …
</extensions>
<handler-ref refid="handler_id" />

</asset-type>

c. Deploy the plug-in:

Place the plug-in’s jar files into the folder <resource>/java/<plugin_id>/
lib, and the class files into <resource>/java/<plugin_id>/classes.
The <resource> folder is located within Content Integration Agent.
On Windows: <resource> is <%INSTALLDIR%>
On Unix: <resource> is <$INSTALLDIR/shared/cipagent>

3. If you created a custom connector but have not enabled javafacility, continue to
the next section, “III. Enabling javafacility.”

Parameter Description

MIME type MIME type of the item for which this plug-in will be
invoked. MIMEtype must be of the form
<major_type/minor_type>, e.g., text/plain.

A wild-card symbol (*) can also be used. For example:

• To enable the plug-in for all text files, specify:
text/*

• To enable the plug-in for all items, specify:
/

ext File extension, e.g., .txt for text files. The file
extension does not directly affect the plug-in selection
process. However, it is used to “guess’ the MIME type
for those systems where MIME type is not directly
available (e.g., file system).

handler_id Custom plug-in’s unique identifier (specified in the
handler element, in the previous step).

Note

Plug-in classes are loaded by different class loaders to prevent collisions
with different implementations and loading/unloading features. We strongly
advise placing all plug-in jar and class files into the <plugin_id>
folder, instead of including them into the CLASSPATH environment variable,
or the java.class.path property, or the jre/lib/ext folder.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 III. Enabling javafacility
17
III. Enabling javafacility
Calling Java code from C++ Agent runtime requires a special facility named java to be
registered in facilities.xml.

To enable javafacility

1. Make sure facilities.xml is not commented (facilities.xml is located in the
integration_agent/conf/ folder).

2. Add the following lines:

<facility name="javafacility">
<library>java</library>

<init-params>
<param name="VMArgparam_id">Java_VM_argument
</param>

<param name="VMLibraryPath">VM_library_path</param>
</init-params>

</facility>

Parameter Description

param_id Parameter’s unique id (any unique value). In order to pass
multiple arguments to the JVM, construct multiple
parameters with different param_id’s.

Java_VM_argument Java VM argument to be passed to the Java VM created
within the Agent runtime process.

Example: <param name=”VMArg0”>-Xmx256m
</param>

VM_library_path Full path to the Java VM library (DLL or shared library)
within the JRE/JDK installation.

For example, for Sun JDK on Windows, VM_library_path
is either:

%JAVA_HOME%\jre\bin\server\jvm.dll

 - or -

%JAVA_HOME%\jre\bin\client\jvm.dll
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 IV. Completing the Integration
18
IV. Completing the Integration
Complete one of the following procedures, depending on whether you are integrating with
Content Server or TeamUp.

If you are integrating with Content Server

1. Reproduce the publishable objects’ data model in Content Server:

Create (or re-use) a flex family to store the object type definitions, the attributes, and
the objects, themselves. (Typically, the flex family is named after the source system.)

Examples of flex families are available in the Content Integration Platform
Administrator’s Guide (see “Flex Family Specifications” in any one of the
appendices). Instructions for creating flex families are available in the Content Server
Developer’s Guide.

2. Map the object types and attributes to their respective instances in the flex family.
Your options are to create the map directly in the connector implementation, or to
customize the mappings.xml file. Information about mapping is available in the
Content Integration Platform Administrator’s Guide.

3. Test your implementation. For instructions on publishing to FatWire Content Server,
refer to the Content Integration Platform Administrator’s Guide.

If you are integrating with TeamUp

1. Map the object types and attributes to their respective TeamUp instances. Your options
are to create the map directly in the connector implementation, or to customize the
mappings.xml file. Information about mapping is available in the Content
Integration Platform Administrator’s Guide.

2. Test your implementation. For instructions on publishing to FatWire Content Server,
refer to the Content Integration Platform Administrator’s Guide.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 Troubleshooting and Debugging
19
Troubleshooting and Debugging
When developing custom components for CIP, it is often helpful to see more than just the
default logging messages displayed in the production environment. Therefore, CIP Agent
supports five different logging levels:

• fatal

• error

• warning

• info

• debug

Use the instructions below to debug custom components in CIP.

• Escalating the logging level in CIP Agent

CIP is set to error by default. To increase the logging level, CIP Agent must run as a
console executable:

1. Stop the CIP Agent system service.

2. Run the cipagent -t debug command.

• Debugging Java custom components

To debug custom Java implementations hosted within the Agent runtime, enable
remote debugging in CIP Agent. For example, to start the remote debugger on port
7007 and suspend CIP Agent to wait until a debugger attaches, add the following lines
to javafacility:

<param name=”VMArg1”>-Xdebug</param>

<param name=”VMArg2”>-Xrunjdwp:transport=dt_socket,
address=7007,server=y,suspend=y</param>

• Escalating the logging level for CS Agent Services

To get more data about an error in the CS Agent Services application, set the DEBUG
level in the commons-logging.properties file for the
com.fatwire.logging.csagentservices category. We also recommend setting
the DEBUG logging level in the commons-logging.properties file for the
com.fatwire.logging.cs.db category.

Note

Do not use the settings shown below on a production system, as they can slow
down the system’s performance.
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

Chapter 2. Creating Connectors and Plug-Ins

 Troubleshooting and Debugging
20
Content Integration Platform 1.5: Creating a Java Connector and Plug-In

	Creating a Java Connector and Plug-In
	Contents
	Integrating with Custom Source Systems
	Overview
	Customizing FatWire Content Integration Platform
	Content Integration Agent

	Creating Connectors and Plug-Ins
	Overview
	I. Creating a Java Source Connector
	II. Creating a Java Plug-In
	III. Enabling javafacility
	IV. Completing the Integration
	Troubleshooting and Debugging

