
Web Experience
Management Framework

Version 1.0

Developer ’s Guide

Document Revision Date: Aug. 4, 2010

FATWIRE CORPORATION PROVIDES THIS SOFTWARE AND DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages of any kind including loss of profits, loss of business, loss of use of data, interruption of business, however caused and on
any theory of liability, whether in contract, strict liability or tort (including negligence or otherwise) arising in any way out of the use of this
software or the documentation even if FatWire has been advised of the possibility of such damages arising from this publication. FatWire may
revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions; therefore, this statement may not apply to you.

Copyright © 2010 FatWire Corporation. All rights reserved.

The release described in this document may be protected by one or more U.S. patents, foreign patents or pending applications.

FatWire, FatWire Content Server, FatWire Engage, FatWire Satellite Server, CS-Desktop, CS-DocLink, Content Server Explorer, Content Server
Direct, Content Server Direct Advantage, FatWire InSite, FatWire Analytics, FatWire TeamUp, FatWire Content Integration Platform, FatWire
Community Server and FatWire Gadget Server are trademarks or registered trademarks of FatWire, Inc. in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. AIX, AIX 5L, WebSphere, IBM, DB2, Tivoli and other IBM products
referenced herein are trademarks or registered trademarks of IBM Corporation. Microsoft, Windows, Windows Server, Active Directory, Internet
Explorer, SQL Server and other Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. Red Hat,
Red Hat Enterprise Linux, and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other countries. Linux is a registered trademark of
Linus Torvalds. SUSE and openSUSE are registered trademarks of Novell, Inc., in the United States and other countries. XenServer and Xen are
trademarks or registered trademarks of Citrix in the United States and/or other countries. VMware is a registered trademark of VMware, Inc. in the
United States and/or various jurisdictions. Firefox is a registered trademark of the Mozilla Foundation. UNIX is a registered trademark of The
Open Group in the United States and other countries. Any other trademarks and product names used herein may be the trademarks of their
respective owners.

This product includes software developed by the Indiana University Extreme! Lab. For further information please visit
http://www.extreme.indiana.edu/.

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/).

The OpenSymphony Group license is derived and fully compatible with the Apache Software License; see http://www.apache.org/LICENSE.txt.

Copyright (c) 2001-2004 The OpenSymphony Group. All rights reserved.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or technology except in
full compliance with all United States and other applicable laws and regulations, including without limitations the United States Export
Administration Act, the Trading with the Enemy Act, the International Emergency Economic Powers Act and any regulations thereunder. Any
transfer of technical data outside the United States by any means, including the Internet, is an export control requirement under U.S. law. In
particular, but without limitation, none of the Program, its Documentation, or underlying information of technology may be downloaded or
otherwise exported or reexported (i) into (or to a national or resident, wherever located, of) any other country to which the U.S. prohibits exports of
goods or technical data; or (ii) to anyone on the U.S. Treasury Department's Specially Designated Nationals List or the Table of Denial Orders
issued by the Department of Commerce. By downloading or using the Program or its Documentation, you are agreeing to the foregoing and you
are representing and warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list or
table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the box, media, in the
installation process, during the download process, or in the Documentation), then except for export to Canada for use in Canada by Canadian
citizens, the Program, Documentation, and any underlying information or technology may not be exported outside the United States or to any
foreign entity or “foreign person” as defined by U.S. Government regulations, including without limitation, anyone who is not a citizen, national,
or lawful permanent resident of the United States. By using this Program and Documentation, you are agreeing to the foregoing and you are
representing and warranting that you are not a “foreign person” or under the control of a “foreign person.”

FatWire Web Experience Management Framework
Document Revision Date: Aug. 4, 2010
Product Version: Version 1.0

FatWire Technical Support
www.fatwire.com/Support

FatWire Headquarters
FatWire Corporation
330 Old Country Road
Suite 207
Mineola, NY 11501

www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

3

Table of

Contents
1 Welcome to FatWire WEM Framework! . 7
Introduction . 8
Prerequisites for Application Development . 10
Getting Started. 13

2 Overview . 15
WEM Framework . 16
REST Services. 16
UI Container . 18

Registration . 18
WEM Context Object . 19

Single Sign-On . 20
Authorization Model . 21
Custom Applications . 23

3 ‘Articles’ Sample Application . 25
Overview . 26
Launching the ‘Articles’ Sample Application . 27

Building and Deploying the ‘Articles’ Application . 27
Registering the ‘Articles’ Sample Application . 28

Testing the ‘Articles’ Application . 30

4 Developing Applications . 31
Overview . 32
Application Structure. 32
Making REST Calls. 36

Making REST Calls from JavaScript . 36
Making REST Calls from Java . 38

Constructing URLs to Serve Binary Data . 38
WEM Framework 1.0 Developer’s Guide

Table of Contents
4

Context Object: Accessing Parameters from the WEM Framework. 39
Same Domain Implementations . 39
Cross-Domain Implementations . 40
Methods Available in Context Object. 42

Registration Code . 43
Registering Applications with an iframe View. 43
Registering Applications with JavaScript and HTML Views. 44

5 Developing Custom REST Resources . 47
‘Recommendations’ Sample Application . 48

Overview. 48
Building and Deploying the Application . 48
Testing the Application. 48

Creating REST Resources . 49
Application Structure . 49
Steps for Implementing Custom REST Resources . 50

6 Single Sign-On for Production Sites . 51
‘SSO-Sample’ . 52
Deploying ‘SSO-Sample’ . 52
Application Structure. 53
Implementing Single Sign-On. 54
Implementing Single Sign-Out . 55

7 Security . 57
Authentication and SSO . 58

Acquiring Tickets from Java Code . 58
Acquiring Tickets from Other Programming Languages (Over HTTP). 59
SSO Configuration for Standalone Applications . 61

Configuring CAS. 65
Configuring CAS with LDAP Providers . 65

REST Authorization . 66
Security Model . 66
Using the Security Model to Access REST Resources. 67
Configuring REST Security . 67
Privilege Resolution Algorithm . 67

8 Buffering . 69
Introduction . 70
Architecture . 70
Using Buffering . 71
WEM Framework 1.0 Developer’s Guide

Table of Contents
5

Appendix A. Registering Applications Manually .73
Registration Steps . 74
Reference: Registration Asset Types . 78

FW_View Asset Type. 78
FW_Application Asset Type. 79
WEM Framework 1.0 Developer’s Guide

Table of Contents
6

WEM Framework 1.0 Developer’s Guide

7

Chapter 1

Welcome to FatWire WEM Framework!
• Introduction
• Prerequisites for Application Development
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Introduction
8

Applicat
List
Introduction
FatWire Web Experience Management (WEM) Framework provides the technology for
developing applications to run on the FatWire product suite. A single default
administrative interface, WEM Admin, supports centralized application management and
user authorization. Single sign-on enables users to log in once and gain access to all
applications allowed to them during the session.
The WEM Framework requires a content management platform. In this release, the WEM
Framework runs on FatWire Content Server and ships with the Representational State
Transfer (REST) API. Objects in Content Server’s database, such as sites, users, and data
model map to REST resources in WEM.

When implemented on the WEM
Framework, applications communicate with
Content Server’s database through REST
services. The applications appear in WEM
Admin as list items on the Apps page
(Figure 1). Administrators authorize users,
which involves configuring access to the
applications and their resources. To this
end, the WEM Admin interface exposes
authorization items (along with
applications) through links on the
menu bar.

Figure 1: Apps Page, WEM Admin

ions
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Introduction
9

Coupling the items as shown in Figure 2 enables applications for users.

Figure 2: Authorization Model

Once the coupling is complete, users are authorized at the database, REST, and application
levels.

Experienced Content Server developers will recognize that the WEM Framework extends
the use of sites and roles to control access to applications. However, unlike Content
Server, the WEM Admin interface does not expose the data model. The REST API does.
In this respect, WEM Admin can be thought of as strictly an authorization interface,
supported by Content Server Advanced (for configuring ACLs and groups).
Although WEM Admin is seldom used by developers, the concepts behind user
authorization can come into play in application development. The rest of this guide
describes the WEM Framework as it relates to application development and provides
examples of application code.

• Applications and users are assigned to sites via roles.
• Sharing a role to a user and an application on the same site grants the user

access to the application on that site.
• Users are assigned to groups, which control access to applications’ resources

(REST resources).
• ACLs are assigned to users, providing them with access to the system.
Using WEM Admin, general administrators can create and otherwise manage
sites, applications, users, and roles. Groups and ACLs must be configured in
Content Server Advanced. They are exposed in WEM Admin, in user accounts.

ACLs control access to the system

Groups in Content Server
control access to REST
(applications’ resources)

Roles control access
to sites and
applications
on the sites
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Prerequisites for Application Development
10
Prerequisites for Application Development
Developing an application involves coding the application’s logic, deploying the
application, and registering the application to expose it in WEM Admin for administrators
to manage and make available to other users. This guide is not intended to be a tutorial on
application development, but a reference to orient experienced application developers to
the WEM Framework. Users of this guide must be expert Content Server developers with
a working knowledge of the technologies listed in this section. Required resources are also
listed below.

Technologies
• Representational State Transfer (REST), used to communicate with the Content

Server platform
• Central Authentication Service (CAS), which is deployed during Content Server

installation to support single sign-on for WEM
• Java Server Pages Standard Tag Library (JSTL), Java, JavaScript, and the Spring

MVC framework, in order to follow the code of the “Articles” sample application
provided with WEM

Content Server Interfaces, Objects, and APIs
Developers must have a working knowledge of:
• CS Advanced (Content Server’s administrative interface)
• Content Server’s basic and flex asset models
• Asset API
• ACLs, which protect database tables and define the types of operations that can be

performed on the tables
• Concept of sites and roles

Documentation
To follow this guide you will need the following documentation:
• REST API Resource Reference
• REST API Bean Reference
Information about Content Server’s data model and Asset API is available in the Content
Server Developer’s Guide. Information about ACLs, sites, and roles, and their usage in
Content Server is available in the Content Server Administrator’s Guide.

Note
Product documentation and specifications are available on the FatWire e-docs site at:

http://support.fatwire.com
Accounts can be opened from the home page.
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Prerequisites for Application Development
11
Sample Applications and Files
• The following sample applications are used in this guide:

- Articles, a lightweight content management application
- SSO-sample, a small authentication application for production sites
- Recommendations, which demonstrates the process of creating REST resources

• To illustrate cross-domain implementations, WEM ships with the sample files
wemxdm.js, json2.js, hash.html, and sample.html.

All sample applications and files are located in the /Samples/ folder under your Content
Server installation directory.

Application Access
When using this guide, or developing and testing, you will access some or all of the
applications listed below:
• CAS web application. You will specify its URL in the “Articles” sample application

to enable single sign-on:
http://<server>:<port>/<cas_application_context>/login

where <server> is the host name or IP address of the machine running CAS and
<cas_application_context> is the context path of the CAS web application.
(During the Content Server installation process, CAS was deployed on one of the
following servers: primary Content Server cluster member, an application server
cluster member marked as primary, or a separate application server.)

• Content Server Advanced interface, if you decide to register applications manually:
http://<server>:<port>/<cs_application_context>/Xcelerate/

LoginPage.html

Log in with the credentials of the general administrator that was used during the
Content Server installation process (or an equivalent general admin). The default login
credentials are fwadmin/xceladmin (same for logging in to WEM Admin).

Note
General administrators on Content Server systems running the WEM
Framework are specially configured. During the installation process,
fwadmin was automatically added to the RestAdmin group for unrestricted
access to REST services, and enabled on AdminSite where the WEM Admin
interface runs. More information about WEM-related changes to Content
Server is available in the CS 7.5 patch 3 rollup installation guide.
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Prerequisites for Application Development
12
• WEM Admin, to test the results of your application registration process:
http://<server>:<port>/<cs_application_context>/login

Log in as fwadmin (or an equivalent user). The sequence of screens is the following:
1. Login Screen:

2. Transition screen (if you are logging in for the first time or in to a site that you
have never accessed before). Select AdminSite and the first icon, Admin:

3. WEM Admin Sites page. Registered applications are listed on the Apps page.
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Getting Started
13
Getting Started
The chapters of this guide can be read in any order:
• For information about the WEM Framework, see Chapter 2, “Overview.”
• For a demonstration of the “Articles” application, see Chapter 3, “‘Articles’ Sample

Application.”
• For information about the “Articles” application code, programmatic application

registration, and cross-domain implementations, see Chapter 4, “Developing
Applications.” (An example of manual application registration is available in
Appendix A.)

• For a demonstration of the “SSO-sample” application, see Chapter 6, “Single Sign-On
for Production Sites.”

• For information about system security, see Chapter 7, “Security.”
• For information about buffering, see Chapter 8, “Buffering.”
• For information about creating REST resources, see Chapter 5, “Developing Custom

REST Resources.”
WEM Framework 1.0 Developer’s Guide

Chapter 1. Welcome to FatWire WEM Framework!

 Getting Started
14
WEM Framework 1.0 Developer’s Guide

15
Chapter 2

Overview
• WEM Framework
• REST Services
• UI Container
• Single Sign-On
• Authorization Model
• Custom Applications
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 WEM Framework
16
WEM Framework
The application developer’s environment consists of the WEM Framework running on
Content Server via REST services. Applications can be written in any language to make
REST calls to Content Server. Custom-built applications can be deployed to an application
server other than the platform’s, and therefore written independently of the platform’s
deployment infrastructure.
Support for application development is in the following components (which are also
described in their own sections in this chapter):
• REST services, a set of programmatic interfaces that provide access to Content

Server’s objects.
• UI container, which exposes registered applications. Registration enables rendering

of the applications’ interfaces. The UI container also supports the WEM Context
object, used by applications to get details from the WEM Framework about the
logged-in user and current site.

• Single sign-on (SSO), which enables authenticated WEM users to log in only once to
access all applications allowed to them during the session. (The Content Server
installation process installs the Central Authentication Service web application to
support single sign-on in WEM.)

• REST authorization model, which provides fine-grained access control over REST
resources, based on group membership. Application development does not directly
involve authorization (which is configured graphically in WEM Admin and Content
Server Advanced), except when a predefined user is specified in the code.

WEM Admin is also part of the WEM Framework, but seldom used in application
development, mainly to test the results of the application registration process, or to obtain
administrative information about sites, users, groups, and roles. Information about WEM
Admin is available in the WEM Framework Administrator’s Guide

REST Services
The REST API exposes Content Server’s data model:
• Basic asset types and basic assets (read-write)
• Flex asset types and definitions (read only)
• Flex children and parents (read-write)
• Indexing to support asset searches
The following objects are also exposed by the REST API. They are used mainly by
administrators in the authorization process (the objects are displayed in the WEM Admin
interface):
• Sites (read-write)
• Users (read-write)
• Roles (read-write)
• ACLs (read only)
• Groups (read only), introduced in this release to control access to the REST layer.
• Auxiliary services: user locale and server time zone
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 REST Services
17
(Sites, roles, and users can be configured in WEM Admin. ACLs and groups are exposed
in WEM Admin (under Users) as read-only items; they must be configured in Content
Server Advanced.)
Objects in Content Server map to REST resources in WEM. All other features, such as
publishing, workflow, database management tools, and page caching must be accessed
from Content Server’s Advanced interface or via JSP and XML tags.
Among the authorization objects that general administrators manage, sites and roles are
the most likely candidates for application development, depending on your requirements.
You can also specify “predefined” users to simplify administrators’ authorization tasks.
• Sites: Using sites in application code is a requirement when the application’s asset

types and assets must be programmatically installed. The code must specify at least
one site on which to enable the asset types (site-specific access to assets requires their
asset types to be enabled on at least one site). Otherwise, you can install just the asset
types (without naming any sites). Administrators will follow up by using Content
Server’s Advanced interface to enable the asset types and assets on sites of their own
choice.

• Roles in WEM are used to manage access to applications. Sharing a role to a user and
an application on the same site grants the user access to the application on that site.
Roles can be used in application code to protect interface functions, such as “Edit.”
Content Server Advanced exemplifies an application with role-protected interface
functions.

• Users: The only user you are likely to specify in your application code is the
“predefined” user, to simplify administrators’ authorization processes. Specifying the
user involves coding a user name and password. Instead of authorizing all application
users individually at the REST level, an administrator will authorize your predefined
user. Permissions granted to the predefined user will be passed to the logged-in users
when they access the application. More information about predefined users and the
authorization model can be found on page 21.

Keeping track of how sites and roles are used across the system is an administrators task
that requires support from application developers. Tracking becomes especially important
when the Content Server platform also functions as a staging system, only because the
WEM Framework uses Content Server’s database. For example, sites created in WEM
Admin are stored in the database. They might not be used in Content Server for staging,
but they are exposed in the Content Server Advanced interface, along with its dedicated
CM sites. Conversely, sites that are created in Content Server Advanced for CM purposes
are exposed in WEM Admin, where other applications can be assigned to those sites. For
users to be properly authorized, developers must communicate to administrators the nature
of the custom-built applications: the resources they use, role-protected interface functions,
and predefined users, if any.
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 UI Container
18

Applicatio
available t
user on th
site

Selected
applicatio

Registere
applicatio
UI Container
The UI container exposes registered applications and supports the Context object, used by
applications to get information from the WEM Framework.

Registration
The purpose of registering an application is to expose the application in WEM Admin for
administrators to manage and make available to other users. Registration allows the
system to recognize the application as an asset, which in turn allows the system to
• list the application on the Apps page in WEM Admin,
• locate the icon you have chosen to represent the application,
• display the icon on the WEM login page, and in the applications banner on each site to

which the application is assigned (Figure 3), and
• render the application’s interface when the application’s icon is selected.

Figure 3: Registered Applications in UI Container

ns
o
is

n

Applications banner
Which applications are
exposed depends on
the site and the user’s
permissions on the site.

d
ns

Current site

UI container

Current user
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 UI Container
19
Registering an application includes registering its views. While multiple and shared views
are supported, applications with a single, unshared view are typical (and used in this
guide). Views can be of type iframe, HTML, and JavaScript.
To support registration, WEM ships with the basic asset types FW_Application and
FW_View. Both are created when the WEM option is selected during the Content Server
installation process. They are enabled by default on AdminSite (also created during the
Content Server installation process).
Registering an application (once it is deployed) requires creating an instance of
FW_Application, creating an instance of FW_View for each view, and associating the
FW_View instances with the FW_Application instance. Applications must be registered
on AdminSite, even if they will be used on other sites. Registration allows applications to
be assigned to other sites.
Applications can be registered either programmatically via the REST API’s
applications service, or manually from Content Server’s Advanced interface.
Programmatic registration is preferred. For an example, see “Registering the ‘Articles’
Sample Application,” on page 28. For general instructions, see “Registration Code,” on
page 43. (An example of manual registration is available in Appendix A.)

WEM Context Object
The UI container provides a JavaScript Context object (WemContext) to all applications
inside the container. The Context object is used by the applications to get details from the
WEM Framework about the logged-in user and site (for example, the current site’s name
from the UI container). The Context object also provides various utility methods that
applications will use to share data. The Context Object can be used by applications
running in the same domain as Content Server or in different domains. For more
information, see “Context Object: Accessing Parameters from the WEM Framework,” on
page 39.
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 Single Sign-On
20
Single Sign-On
Single sign-on in the WEM Framework is implemented using Central Authentication
Service (http://www.jasig.org/cas). As shown in the sample “Articles” example,
the servlet filter that ships with WEM can be used out-of-the-box for any application that
is deployed as a Java web application. If your application is developed using a different
technology, refer to CAS clients specific to your choice of technology, at the following
URL:

http://www.ja-sig.org/wiki/display/CASC/Official+Clients

When a user tries to access an application protected by CAS, the authentication system
responds with the steps below.
1. Initial Access

a. When the user first attempts to access an application protected by CAS,
b. the user is redirected to the CAS login page. Upon successful login,
c. the user is redirected back to the application with a ticket. The cookie for the CAS

login page is saved.
d. The application verifies the user’s identity by verifying the ticket against CAS.

(On content management systems, CAS authenticates by default against Content
Server’s database.)

2. Subsequent Access
a. When the user attempts to access another application protected by CAS, the user

is redirected to the CAS login page.
b. The cookie is retrieved from the request, implicit login is performed, and the login

page is bypassed.
c. The user is redirected back to the application with a ticket.
d. The application verifies the user’s identity by verifying the ticket against CAS.
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 Authorization Model
21
Authorization Model
Authorization is the process of granting users access to applications. General
administrators are responsible for authorization by using WEM Admin to couple objects
as shown in Figure 4. Developers can simplify the administrator’s task by coding a
predefined user in their applications. How the user fits into the authorization model is
explained below.

Figure 4: Authorization Model

In Figure 4, Site, Application, User, and Role each have a counterpart menu option in
WEM Admin. ACLs and groups are exposed on each user’s page.

Sites, applications, users, and roles are
configurable in WEM Admin.

Groups and ACLs must be configured in
CS Advanced. They are exposed in WEM Admin

WEM Admin Menu bar
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 Authorization Model
22
Authorization is managed at three levels: application, REST, and database.
• Application-level authorization requires sharing a role to a user and an application on

the same site, which grants the user access to the application on that site. If interface
functions are role-protected, their roles as well must be shared to the application users.

• REST-level authorization regulates the user’s permission to operate on the
application’s resources – assuming ACLs are correctly assigned. REST-level
authorization requires configuring groups with privileges to operate on objects that
map to REST resources. Users who are assigned to a group gain the group’s
privileges.
Developers can define a user in their applications (by user name and password) to act
as a proxy for logged-in users, which eliminates the need for administrators to
configure REST security for each logged-in user. Once an application is deployed and
registered, a general administrator authorizes its predefined user by: 1) configuring the
predefined user in WEM Admin for application access, 2) configuring a group (in
CS Advanced) with privileges to operate on the applications’ resources, and
3) assigning the predefined user to the group (by using either the WEM Admin or
CS Advanced interface). The group’s privileges are passed to the predefined user and
then to logged-in users when they access the application. Supported security
configurations are described and listed in “REST Authorization,” on page 66. (The
“Articles” sample application provided with WEM specifies a predefined user.)

• At the database level, ACLs determine the individual user’s access to the system, i.e.,
permission to log in and operate on the database, regardless of the user’s membership
in any groups. If a user lacks the appropriate ACLs and therefore permissions to the
database tables, then membership in a group does not grant those permissions.
Default ACLs give users almost unrestricted permissions – but not the means – to
operate on objects in many of the database tables. Those permissions are modulated at
the REST level: Either directly by the user’s membership in groups (in the absence of
a predefined user), or indirectly by the application’s predefined user and his
membership in groups. Modifying a group’s privileges to operate on objects modifies
the group member’s privileges to operate on resources. The same user on the Content
Server side remains unaffected by group memberships. Permissions to content are still
regulated by ACLs and actuated by sites and roles.
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 Custom Applications
23
Custom Applications
Custom applications developed in WEM are often implemented in a loosely coupled
manner to the content management platform. Because custom applications utilize the
REST API Web services and SSO mechanism enabled by WEM, they are often deployed
to an application server other than the platform’s application server. Developers can
therefore write custom applications completely independently of the platform’s
deployment infrastructure. Most custom applications are deployed remotely (Figure 5).

Figure 5: Remote Application Deployment

Custom applications can be implemented as content management or delivery applications.
We recommend getting started with the content management side, as it typically does not
require much performance tuning effort.
WEM ships with two lightweight sample applications called “Articles” and
“SSO-sample,” which you can launch and analyze as models for developing your own
applications. “Articles” illustrates a content management application, whereas “SSO-
sample” is for authentication on live sites. Chapter 3 contains instructions for launching
“Articles.” Source code is available, specifications can be found in chapter 4, and other
supporting information is provided in the REST API resource and Bean references.
WEM Framework 1.0 Developer’s Guide

Chapter 2. Overview

 Custom Applications
24
WEM Framework 1.0 Developer’s Guide

25
Chapter 3

‘Articles’ Sample Application
• Overview
• Launching the ‘Articles’ Sample Application
• Testing the ‘Articles’ Application
WEM Framework 1.0 Developer’s Guide

Chapter 3. ‘Articles’ Sample Application

 Overview
26
Overview
“Articles” is a simple content management application with richly documented source
code and a self-installation process to help you quickly master information that is most
important to developing applications. As the name implies, “Articles” enables the
management of article assets. The application’s home page looks like this:

The “Articles” home page displays two articles that can be edited directly in WEM, from
the custom interface that you see in the figure above. The application demonstrates usage
of Content Server’s REST API to perform a search query from Java code and an asset
modification query from JavaScript code. The “Articles” application and REST services
can be run on different application servers. Cross-domain restrictions in JavaScript
prevent AJAX calls directly from the “Articles” application to the REST services. This is
why a simple ProxyController is introduced. It redirects calls from JavaScript to WEM
REST Web Services. Custom implementations may reuse this controller implementation.
The “Articles” application is based on the Spring MVC framework. “Articles” includes a
predefined administrative user named fwadmin with password xceladmin, who is
assigned to the REST group named RestAdmin. The application’s self-installer contains
specifications for registering the “Articles” application and installing its asset model and
sample articles. The application does not have internally configured sites or role-protected
functions. It has a single, iframe view. Additional specifications are available in Chapter 4,
“Developing Applications.”
WEM Framework 1.0 Developer’s Guide

Chapter 3. ‘Articles’ Sample Application

 Launching the ‘Articles’ Sample Application
27
Launching the ‘Articles’ Sample Application
In this section, you will first build and deploy the “Articles” application, then run the
installer.

Building and Deploying the ‘Articles’ Application
1. Determine or create the site to which you will assign the sample articles application.

The default site is FirstSite II (a sample Content Server site). It is possible that
FirstSite II is not installed on your system.
To select or create a site, log in to WEM Admin at the URL
http://<server>:<port>/<cs_application_context>/login
using the credentials of a general administrator (fwadmin / xceladmin are the
default values).

2. Download and install SUN JDK (1.5 or later) from the following URL:
http://java.sun.com/

3. Download the latest Apache Ant from http://ant.apache.org/ and place the
Ant bin directory into the system PATH.

4. Copy servlet-api.jar to the “Articles” application lib folder. The jar file can
be taken from your application server’s home directory (for example, Tomcat’s
servlet-api.jar is located in the home lib directory).

5. Set the following parameters in the applicationContext.xml file (in
src\articles\src\main\webapp\WEB-INF\):
- casUrl: Specify the URL of the CAS application:

http://<server>:<port>/<context_path>
- csSiteName: Specify the name of the site that you selected in step 1.
- csUrl: Specify the URL where the Content Server platform is running:

http://<server>:<port>/<context>

- csUserName: The default value is fwadmin. This is the application’s predefined
user, a general administrator with membership in the RestAdmin group which has
unrestricted permissions to REST services. If you specify a different user, you
must name a user equivalent to fwadmin. Instructions for creating a general
administrator can be found in the WEM Framework Administrator’s Guide.

- csPassword: Specify the predefined user’s password.
- articlesUrl: Point to the URL where the sample application will be accessed.

6. Run the Ant build with the default target (enter ant on the command line).
7. Deploy the resulting target/articles-1.0.war to an application server.

On deployment, the following content is copied from source to target: The contents of
the lib folder are copied to /WEB-INF/lib. The contents of the resources folder

Note
In step 5, you will specify the site you have chosen here, which will allow
the installer to enable the application’s asset model and assets on that site.
WEM Framework 1.0 Developer’s Guide

Chapter 3. ‘Articles’ Sample Application

 Launching the ‘Articles’ Sample Application
28
are copied to /WEB-INF/classes/. For information about the structure of the source
application, see Chapter 4, “Developing Applications.”

Registering the ‘Articles’ Sample Application
The “Articles” application has a self-installer, which starts running when you log in to the
install.app page. The installer registers the sample application (including the view)
and creates its data model and assets in Content Server’s database.

To run the ‘Articles’ installer

1. Navigate to the install.app page:
http://<hostname>:<portnumber>/<context_path>/install.app

For example:
http://localhost:9080/articles-1.0/install.app

2. Use any credentials to log in (the application’s predefined user, specified by
csUserName and csPassword on page 27, provides you with permissions to the
application. The sample application does not perform authorization checks as it does
not use roles.)

3. The self-installation process invokes InstallController.java, which first
registers the application (including the view, in an application Bean), then writes the
sample asset type and assets to the database.
a. InstallController.java registers the “Articles” application with the WEM

Framework:
- InstallController.java creates an application asset named Articles

(asset type FW_Application) in Content Server’s database.
The iconurl attribute points to the URL where the icon representing the
application is located.
The layouturl attribute specifies the URL of the layout.app page
(implemented by LayoutController.java). The layout.app page
defines the application layout.
The layouttype attribute takes the default (and only) value:
layoutrenderer. Using the layoutrenderer value, the UI container is
responsible for rendering the application’s associated views by using the
layout.app page, specified by layouturl.

- InstallController.java creates a view asset named ArticlesView
(asset type FW_View) in Content Server’s database. The association between
the view asset and the application asset is made through the views attribute in
the FW_Application asset type.

Note
Specifications for the registration asset types FW_View and FW_Application
can be found in the REST API Bean Reference (and in Appendix A).
WEM Framework 1.0 Developer’s Guide

Chapter 3. ‘Articles’ Sample Application

 Launching the ‘Articles’ Sample Application
29
b. InstallController.java installs the application’s asset model and sample
assets:
- Creates the application’s FW_Article asset type in Content Server’s

database. (FW_Article is a basic asset type defined in
InstallController.java.)

- Enables the FW_Article asset type on the site that was specified in the
csSiteName parameter in applicationContext.xml (step 5 on page 27).

- Writes the two sample article assets to the FW_Article asset type tables.
(The articles’ text and images are stored in:
 /sample app/articles/src/main/resources/install)

c. InstallController.java creates an asset type-based index to support
searches on assets of type FW_Article. (The controller specifies index
configuration data.)

4. When the installation process completes successfully, InstallController.java
displays the following page (at http://<server>:<port>/articles/
install.app, where Home is home.app):
WEM Framework 1.0 Developer’s Guide

Chapter 3. ‘Articles’ Sample Application

 Testing the ‘Articles’ Application
30
Testing the ‘Articles’ Application
1. Navigate to the home.app page:

http://<hostname>:<portnumber>/<context_path>/home.app

For example:
http://localhost:8080/articles-1.0/home.app

2. Use any credentials to log in (the application’s predefined user, specified by
csUserName and csPassword on page 27, provides you with permissions to the
application. The sample application does not perform authorization checks as it does
not use roles.)
WEM displays the application’s home page:

3. If you wish to experiment with this application (for example assign it to other sites and
add users), use WEM Admin. For more information, refer to the WEM Framework
Administrator’s Guide.
WEM Framework 1.0 Developer’s Guide

31
Chapter 4

Developing Applications
• Overview
• Application Structure
• Making REST Calls
• Constructing URLs to Serve Binary Data
• Context Object: Accessing Parameters from the WEM Framework
• Registration Code
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Overview
32
Overview
The “Articles” sample application is used throughout this chapter to illustrate the basic
architecture of an application that makes REST calls.

Application Structure
Figure 6 shows the source structure of the “Articles” sample application. On deployment,
the following directories are copied from source to target: The contents of the lib
directory are copied to /WEB-INF/lib/. The contents of the resources directory are
copied to /WEB-INF/classes/.

Figure 6: ‘Articles’ Sample Application Source Structure

source files

installer
resources

 views

 scripts
 styles

 TLD

 home page
files

logger file

 configuration
files
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Application Structure
33
“Articles” is a Java Web application developed on Spring MVC. The following pages are
available:
• /install.app is the “Articles” installation page, which also displays a confirmation

message when the application is successfully installed
• /home.app is the home page of the “Articles” application (page 26).

Configuration Files
• applicationContext.xml (in /WEB-INF/) holds SSO and application-specific

configurations (such as a predefined user and the site on which to enable the data
model and assets).

• spring-servlet.xml (in /WEB-INF/) is the default Spring configuration file. This
file stores the Spring configuration and references the following controllers (described
in “Source Files”):
- HomeController

- InstallController

- LayoutController

- ProxyController

• log4j.properties (in /resources/) is the logging configuration file. On
application deployment, it is copied from /resources/ to /WEB-INF/classes/.

Source Files: /sample app/articles/src/main/java/
The /sample/ folder contains the source files listed below:
• Configuration.java is populated (by the Spring framework) from the

applicationContext.xml file (described in “Configuration Files”).
• HomeController.java is the home page controller, which renders a single home

page. This controller reads the list of sample articles from the Content Server platform
using the REST API and displays them on the home page.
The sample articles consist of images and text, stored in /sample app/articles/
src/main/resources/install. The sample articles are installed in Content
Server’s database by InstallController.java.

• InstallController.java registers the “Articles” application, and writes the
application’s asset model and sample assets to the database

• LayoutController.java displays the application’s layout page (layout.app)
used by the WEM UI framework. LayoutController.java is also used during the
application registration procedure.

• ProxyController.java delegates AJAX requests to the Content Server REST
servlet.

• TldUtil.java utility class contains TLD function implementations.

Installer Resources: /sample app/articles/src/main/resources/install
The /install/ folder contains the following resources, used by the
InstallController to construct the home page (Figure 8, on page 35):
• strategies.png

• strategies.txt
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Application Structure
34
• tips.png

• tips.txt

Home Page Files: /sample app/articles/src/main/webapp/images
The /images/ folder contains:
• articles.png icon (Figure 7), which represents the ‘Articles” application in the

banner of the WEM interface
• In Figure 8:

- edit.png is the icon for the Edit function
- save.png is the icon for the Save function
- cancel.png is the icon for the Cancel function

Scripts: /sample app/articles/src/main/webapp/scripts
The /scripts/ folder contains the json2.js utility script, used to convert strings to
and from JSON objects.

Styles: /sample app/articles/src/main/webapp/styles
The /styles/ folder contains main.css, which specifies CSS styles used by this Web
application.

Views: /sample app/articles/src/main/WEB-INF/jsp
The /jsp/ folder contains:
• home.jsp, which is used to render the home page view of the “Articles” application

(Figure 8)
• layout.jsp, which defines the application layout

WEB-INF: /sample app/articles/src/main/WEB-INF
The /WEB-INF/ folder contains:
• articles.tld, the TLD declaration file
• spring-servlet.xml, the Spring configuration file
• web.xml, the Web application deployment descriptor
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Application Structure
35

article

WEM A

st

cel.png

e.png

st

t.png

face
tions:
Figure 7: ‘Articles’ Icon (articles.png)

Figure 8: ‘Articles’ Home Page

s.png

dmin

current site

rategies.png

tip.png

tip.txt

can

sav

rategies.txt

home.jsp

edi

Inter
func
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Making REST Calls
36
Making REST Calls
Content Server REST resources support two types of input and output formats: XML and
JSON. To get the desired return formats, you will need to set HTTP headers that specify
the MIME type application/xml or application/json.
For example, when specifying input format to be XML, set Content-Type to
application/xml. When specifying the output format, set Accept (the expected
format) to application/xml. If other output formats are specified, they will be ignored.
The default is XML, if not specified in Content-Type or Accept (for sample code, see
lines 64 and 66 on page 38).
For more detailed information about REST calls, see the following topics in this section:
• Making REST Calls from JavaScript
• Making REST Calls from Java

Making REST Calls from JavaScript
The following code (in home.jsp) performs AJAX calls to the asset REST services to
save asset data. Note that the request is actually performed to the proxy controller which
redirects the request to the destination REST service.

1 // Form the URL pointing to the asset service
2 // to the proxy controller, which will redirect this request to

the CS REST servlet.
3 var idarr = assetId.split(":");
4 var assetUrl = "${pageContext.request.contextPath}/REST/sites/

${config.csSiteName}/types/" + idarr[0] + "/assets/" +
idarr[1];

5
6 // For the data object to be posted.
7 var data =
8 {
9 "attribute" :
10 [
11 {
12 "name" : "source",
13 "data" :
14 {
15 "stringValue" : document.getElementById("source_e_" +

assetId).value
16 }
17 },
18 {

Note
We use the JSON stringify library (http://json.org/js.html) to serialize a
JavaScript object as a string. It is much more convenient to write JSON objects
instead of strings.
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Making REST Calls
37
19 "name" : "cat",
20 "data" :
21 {
22 "stringValue" : document.getElementById("cat_e_" +

assetId).value
23 }
24 }
25],
26 "name" : document.getElementById("name_e_" + assetId).value,
27 "description" : document.getElementById("desc_e_" +

assetId).value,
28 // TODO: this should be removed.
29 "publist" : "${config.csSiteName}"
30 };
31 // Convert JSON data to string.
32 var strdata = JSON.stringify(data);
33
34 // Perform AJAX request.
35 var req = getXmlHttpObject();
36 req.onreadystatechange = function ()
37 {
38 if (req.readyState == 4)
39 {
40 if (req.status == 200)
41 {
42 // On successful result
43 // update the view controls with new values and switch the

mode to 'view'.
44 for (c in controls)
45 {
46 document.getElementById(controls[c] + "_v_" +

assetId).innerHTML =
47 document.getElementById(controls[c] + "_e_" +

assetId).value;
48 }
49 switchMode(assetId, false);
50 }
51 else
52 {
53 // Error happened or the session timed out,
54 // reload the current page to re-acquire the session.
55 alert("Failed to call " + assetUrl + ", " + req.status + " "

+ req.statusText);
56 window.location.reload(false);
57 }
58 }
59 };
60 // We put Content-Type and Accept headers
61 // to tell CS REST API which format we are posting
62 // and which one we are expecting to get.
63 req.open("POST", assetUrl, true);
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Constructing URLs to Serve Binary Data
38
64 req.setRequestHeader("Content-Type", "application/
json;charset=utf-8");

65 req.setRequestHeader("Content-Length", strdata.length);
66 req.setRequestHeader("Accept", "application/json");
67 req.send(strdata);
68 }

Making REST Calls from Java
The code below (in HomeController.java) calls the assets search service to list all
assets of type FW_Article. The code uses the Jersey Client library passing objects from
the rest-api-xxx.jar library provided by WEM. This way we leverage strong typing
in Java.
It is important to note that a token must be acquired from Java code by calling the
SSOAssertion.get().createToken() method. It is unnecessary to do so in
JavaScript as that side is already authenticated against WEM SSO.

// Use Jersey client to query CS assets.
Client client = Client.create();
String url = config.getRestUrl() + "/types/FW_Article/search";
WebResource res = client.resource(url);

// Construct URL and add token (for authentication purposes)
// and fields (specify which fields to retrieve back) parameters.
res = res.queryParam("fields",

URLEncoder.encode("name,description,content,cat,source", "UTF-
8"));

res = res.queryParam("ticket",
SSO.getSSOSession().getTicket(res.getURI().toString(),
config.getCsUsername(), config.getCsPassword()));

// Put Pragma: auth-redirect=false to avoid redirects to the CAS
login page.

Builder bld = res.header("Pragma", "auth-redirect=false");

// Make a network call.
AssetsBean assets = bld.get(AssetsBean.class);

Constructing URLs to Serve Binary Data
The “Articles” application leverages the Blob server in Content Server to serve BLOB
data. The following utility function could be used to construct the URL pointing to the

Note
The custom Pragma: auth-redirect=false header instructs the CAS SSO
filter not to redirect to the CAS sign-in page, but to return a 403 error instead,
when no ticket is supplied or the supplied ticket is invalid.
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
39
binary data for a given attribute in a given asset, where blobUrl points to the Blob server
(http://localhost:8080/cs/BlobServer by default).
public String getBlobUrl(String assetType, String assetId, String

attrName, String contentType)
throws Exception

{
String contentTypeEnc = URLEncoder.encode(contentType,
"UTF-8");

return blobUrl + "?" +

"blobkey=id" +
"&blobnocache=true" +
"&blobcol=thumbnail" +
"&blobwhere=" + assetId +
"&blobtable=" + assetType +
"&blobheader=" + contentTypeEnc +
"&blobheadername1=content-type" +
"&blobheadervalue1=" + contentTypeEnc;

 }

An alternative way to get binary data is to load an asset using the resource /sites/
{sitename}/types/{assettype}/assets/{id}. When loaded, the asset will
contain the URL pointing to the BLOB server.

Context Object: Accessing Parameters from the
WEM Framework

The UI container provides a JavaScript Context object (WemContext) to all applications
inside the container. The Context object is used by the applications to get details from the
WEM Framework about the logged-in user and site (typically, to get the current site’s
name from the UI container). The Context object also provides various utility methods
that the applications will use to share data. The Context Object can be used by applications
running in the same domain as Content Server or in different domains.

Same Domain Implementations
To initialize and use Context Object for applications in Content Server’s domain:
1. Include wemcontext.js (line 1 in the sample code below; wemcontext.js is

located in <cs webapp path>/wemresources/js/WemContext.js).
2. Retrieve an instance of the WemContext object (line 3).
3. Use the methods of WemContext (lines 4 and 5).

Note
The wemcontext.html file lists the exposed methods, summarized on page 42.
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
40
Sample Code for Same-Domain Implementations
1 <script src='http://<csinstalldomain>/<contextpath>/

wemresources/js/WemContext.js'></script>
2 <script type="text/javascript">
3 var wemContext = WemContext.getInstance(); // Instantiate

Context Object
4 var siteName = wemContext.getSiteName(); // Get Site Name
5 var userName = wemContext.getUserName(); // Get UserName
6 </script>

Cross-Domain Implementations
To initialize and use Context Object for cross-domain applications:
1. Copy wemxdm.js, json2.js, and hash.html (from the /Samples folder) to

your application.
2. Open the sample.html file and make the following changes to perform cross-

domain calls:
a. Change the paths of wemxdm.js and json.js and hash.html to their paths in

the application (see lines 1 – 4 in the code below).
b. Change the path of wemcontext.html to its location in Content Server

(wemcontext.html is located under /wemresources/wemcontext.html.
Use the Content Server host name and context path. See line 14.)

c. In the interface declaration, specify methods that will be used in the framework
(line 15).

d. Implement those methods in the local scope and invoke the remote method
(line 30).

sample.html for Cross-Domain Calls
1 <script type="text/javascript" src="../js/wemxdm.js">

</script>
2 <script type="text/javascript">
3 // Request the use of the JSON object
4 WemXDM.ImportJSON("../js/json2.js");
5 var remote;
6
7 window.onload = function() {
8 // When the window is finished loading start setting up

the interface
9 remote = WemXDM.Interface(/** The channel configuration */
10 {
11 // Register the url to hash.html.
12 local: "../hash.html",
13 // Register the url to the remote interface
14 remote: "http://localhost:8080/cs/wemresources/

wemcontext.html"
15 }, /** The interface configuration */
16 {
17 remote: {
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
41
18 getSiteName :{},
19 ...
20
21 }
22 },/**The onReady handler*/ function(){
23 // This function will be loaded as soon as the page is

loaded
24 populateAttributes();
25 });
26 }
27 </script>
28
29 <script type="text/javascript">
30 /** Define local methods for accessing remote methods

*/
31 function getSiteName(){
32 remote.getSiteName(function(result){
33 alert("result = " + result);
34 });
35 }
36 ...
37 </script>
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Context Object: Accessing Parameters from the WEM Framework
42
Methods Available in Context Object

Return Type Method Name and Description

Object getAttribute(attributename)

Returns attribute value for the given attribute name.

Object getAttributeNames()

Returns all the attribute names.

Object getCookie(name)

Returns cookie value for the given name. Has all restrictions of the
normal browser cookie.

Object getCookies()

Returns all the cookies.

Object getLocale()

Returns locale.

Object getSiteId()

Returns the site id.

Object getSiteName()

Returns the site name.

Object getUser()

Returns user object.

Object getUserName()

Returns user name.

void removeCookie(name, properties)

Removes cookie.

void setAttribute(attributename, attributevalue)

Sets attribute. These attributes can be accessed in other applications.

void setCookie(name,value,expiredays,properties)

Sets the cookie.
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Registration Code
43
Registration Code
Registration exposes applications in WEM, as explained on page 18. Registering an
application creates an asset of type FW_Application and an asset of type FW_View for
each view associated with the application. The asset types are enabled on AdminSite.
Their attributes are defined in the REST API Bean Reference. Programmatic registration is
the preferred method. (For an example of manual registration, see Appendix A.)
This section contains the following topics:
• Registering Applications with an iframe View
• Registering Applications with JavaScript and HTML Views

Registering Applications with an iframe View
The section uses code from the “Articles” sample application to illustrate the registration
process. “Articles” has a single view of type iframe. The same steps apply to JavaScript
and HTML views.

To register an application

1. Create or get an icon to represent your application. (The icon will be displayed in the
applications banner.)
(The “Articles” sample application uses the articles.png image file located in:
/sample app/articles/src/main/webapp/images/)

2. Create a file that specifies the layout of the application in HTML, i.e., for each view,
create a placeholder element to hold the content rendered by the view. Applications
and views are related as shown in Figure 9, on page 44.
For example, layout.jsp for the “Articles” sample application contains the
following line:

<div id="articles" style="float:left;height:100%;width:100%"
class="wemholder"></div>

The view’s content will be rendered within the placeholder element when the
application is displayed (layout.app renders the application’s layout; home.app
renders the view).

Note
When creating the layout file, specify a unique id for the placeholder
element. You will specify the same id for the parentnode attribute
when coding the view object. Use class=”wemholder” for the
placeholder elements.
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Registration Code
44
Figure 9: Applications and Views

The relationship between applications and views is many-to-many (Figure 9). One
application can have multiple views and each view can be used by many applications.
Only registered views can be shared (through their asset IDs). If the asset ID is
omitted, the view will be created within the context of its application. In the basic
case, an application has only one view associated with it.

3. Invoke the PUT wem/applications/{applicationid} REST service and specify
your application bean. Populate the bean with the view asset and application asset.
For an iframe view, use the code of the “Articles” sample application, i.e.,
InstallController.java (locate the comment lines // Create a new view
object and // Create a new application object). Set the layouturl
attribute to specify the URL of the application’s layout page.
In the “Articles” application, the layouturl attribute points to the URL of
layout.app (implemented by LayoutController.java):

app.setLayouturl(config.getArticlesUrl() + "/layout.app");

You can test the results of your registration process by logging in to the WEM Admin
interface as a general administrator and selecting Apps on the menu bar. Your application
should be listed on that page.

Registering Applications with JavaScript and HTML Views
For applications that use HTML and JavaScript views, follow the steps in the previous
section, but use the sample code and attributes listed below:
• JavaScript View
• HTML View

Application 1 Application 2

View A View B
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Registration Code
45
JavaScript View

Sample code:
 window.onload = function () {
 if (GBrowserIsCompatible()) {
 var map = new

GMap2(document.getElementById("map_canvas"));
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 map.setUIToDefault();
 }
 }

• Rendering the JavaScript view from a source URL
Set the following attributes:
- name: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 43)
- viewtype: fw.wem.framework.ScriptRenderer, which renders JavaScript

into the placeholder element.
- sourceurl: Path of the .js file, which provides content for the view. For

example: http://myhost.com:8080/js/drawTree.js
• Rendering the JavaScript view from source code

Set the following attributes:
- name: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 43)
- viewtype: fw.wem.framework.ScriptRenderer, which renders JavaScript

into the placeholder element
- javascriptcontent: JavaScript code (sample provided above. The code must

not contain <script> tags.)

Note
JavaScript specified in the view will be rendered (executed) when the application
is rendered. Make sure that the JavaScript does not conflict with other views.
WEM Framework 1.0 Developer’s Guide

Chapter 4. Developing Applications

 Registration Code
46
HTML View

Sample code:
<object width="480" height="385">
 <param name="movie" value="http://www.localhost:8080/jspx/

flash_slider_main.swf"></param>
 <param name="allowFullScreen" value="true"></param>
 <embed src=" http://www.localhost:8080/jspx/

flash_slider_main.swf"
 type="application/x-shockwave-flash"

allowscriptaccess="always" allowfullscreen="true"
 width="480" height="385">
 </embed>
</object>

• Rendering the HTML view from a source URL
Set the following attributes:
- name: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 43)
- viewtype: fw.wem.framework.IncludeRenderer, which renders

JavaScript into the placeholder element
- sourceurl: Path to the HTML file that provides content for the view. For

example: http://myhost.com:8080/js/drawTree.jsp
• Rendering the HTML view from source code

Set the following attributes:
- view: Name of the view
- parentnode: ID of the placeholder element (from step 2 on page 43)
- viewtype: fw.wem.framework.IncludeRenderer, which renders

JavaScript into the placeholder element
- includecontent: HTML content (sample provided above. The code must not

contain <html> or <body> tags.)

Note
HTML specified in the view will be rendered (executed) when the application is
rendered.
WEM Framework 1.0 Developer’s Guide

47
Chapter 5

Developing Custom REST Resources
• ‘Recommendations’ Sample Application
• Creating REST Resources
WEM Framework 1.0 Developer’s Guide

Chapter 5. Developing Custom REST Resources

 ‘Recommendations’ Sample Application
48
‘Recommendations’ Sample Application
• Overview
• Building and Deploying the Application
• Testing the Application

Overview
The “Recommendations” sample application demonstrates how to create REST resources
for Content Server and Satellite Server. The application registers a new REST resource
sample/recommendations/<id> with GET and POST operations, which allow for
retrieval and modification of static list recommendations. The application also
demonstrates how it is possible to leverage the Satellite Server caching system.

Building and Deploying the Application
1. The “Recommendations” sample application is located in the Samples folder under

your Content Server installation directory. Navigate to recommendations and edit
the build.properties file. Specify the correct paths for cs.webapp.dir and
ss.webapp.dir properties.

2. Run Apache ant while in the recommendations folder. This will build and deploy
your sample application.

3. Launch the catalogmover application. Use the Server > Connect menu to connect
to Content Server. Go to Catalog > Auto Import Catalog(s) and select
src\main\schema\elements.zip file. Append xceladmin, xceleditor when
specifying the list of ACLs.

4. Go to the Content Server web application folder. Edit the WEB-INF/classes/
custom/RestResource.xml file. Uncomment recommendationService,
recommendationConfig and resourceConfigs beans.

5. Go to the Satellite Server web application folder. Edit WEB-INF/classes/custom/
RestResource.xml file. Uncomment recommendationService,
recommendationConfig, and resourceConfigs beans.

6. Restart both Content Server and Satellite Server.

Testing the Application
Use the existing static list recommendation id (or create a new recommendation) for the
URL http://<hostname>:<port>/<contextpath>/REST/sample/
recommendations/<recommendationid>. Use the same URL for both Content
Server and Satellite Server installations. For example, use http://localhost:8080/
cs/REST/sample/recommendations/1266874492697. See the XML response for
both Content Server and Satellite Server.
WEM Framework 1.0 Developer’s Guide

Chapter 5. Developing Custom REST Resources

 Creating REST Resources
49
Creating REST Resources
• Application Structure
• Steps for Implementing Custom REST Resources

Application Structure
The “Recommendations” sample application was created to guide you through the process
of creating your own REST resources.

Figure 10: “Recommendations” Sample Application

• Schema files: src/main/schema
- elements.zip contains a sample element, which is used by Satellite Server for

caching purposes.
- jaxb.binding is a customization for the default JAXB bindings used during

the bean generation process.
- recommendation.xsd is an XML schema for the RecommendationService

beans.
• Java source files: src/main/java/ ... /sample

- RecommendationResource contains the REST resource implementation. It is
used on both Content Server and Satellite Server.

- RecommendationService is an interface that provides the functionality for the
RecommendationResource class. It is implemented differently, depending on
where the resource is hosted: locally (on Content Server) or remotely (on Satellite
Server).

- beans/* classes are generated using Java xjc compiler. They are pre-packaged
with the application. If you want to regenerate beans (i.e., when changing the
WEM Framework 1.0 Developer’s Guide

Chapter 5. Developing Custom REST Resources

 Creating REST Resources
50
recommendation.xsd file) you can run “generate” ant’s task from
build.xml.

- LocalRecommendationService is a local (Content Server) implementation for
the RecommendationService interface.

- RemoteRecommendationService is a remote (Satellite Server)
implementation for the RecommendationService interface.

Steps for Implementing Custom REST Resources
1. Write your XSD file describing your REST service (recommendations.xsd file).
2. Generate beans using the JAXB xjc utility (“generate” ant’s task).
3. Create your REST interface, which will be implemented differently for Content

Server and Satellite Server.
4. Implement the REST interface by extending the following classes:

com.fatwire.rest.BaseLocalService
com.fatwire.rest.BaseRemoteService

5. This step is optional in case you decide to leverage Satellite Server caching:
Create elements on the Content Server side, which load the same assets as the local
implementation does.

6. Create your REST resource class by extending the com.fatwire.rest.
BaseResource class.

7. Register your REST service and configuration in WEB-INF/classes/custom/
RestResources.xml file on both Content Server and Satellite Server sides.
The custom/RestResources.xml file contains the following components:
- The only mandatory bean is the bean with resourceConfigs id. The

resourceConfigs property contains references to all REST configurations
used.

- Resource configurations must be of type
com.fatwire.rest.ResourceConfig. Typically only one instance of this
class is registered (multiple services can be registered per configuration).

- The resourceClasses property contains the list of all resources used.
- beanPackage contains the Java package name specified for the output beans

when running the xjc utility.
- schemaLocation is the xsi:schemaLocation attribute to be put in all output

XML files produced by your REST service.

Note
If custom resourceConfigs is uncommented, then embeddedConfig
bean should be referenced. Otherwise, the default REST resource, which
is provided with the WEM installation will not be registered.

Note
For multiple services, create a new configuration for each disjoint group
of your REST services, usually identified by separate XSD files.
WEM Framework 1.0 Developer’s Guide

51
Chapter 6

Single Sign-On for Production Sites
• ‘SSO-Sample’
• Deploying ‘SSO-Sample’
• Application Structure
• Implementing Single Sign-On
• Implementing Single Sign-Out
WEM Framework 1.0 Developer’s Guide

Chapter 6. Single Sign-On for Production Sites

 ‘SSO-Sample’
52

sing
links
‘SSO-Sample’
Our “SSO-sample” application is driven by a delivery use case. Given that out-of-the-box
CAS cannot be used to secure applications on production sites, we provide a simple
example of how to enable single sign-on and sign-out for applications on live sites.

Deploying ‘SSO-Sample’
1. Unpack the sso-sample.war file.
2. Modify the applicationContext.xml file in the WEB-INF folder by setting the

following properties:
- casUrl: Point to the CAS server base path:

http://localhost:8080/cas

- casLoginPath: Include the login form template hosted by the SSO sample
application:
/login?wemLoginTemplate=http%3A%2F%2Flocalhost%3A9080%2Fsso-

cas-sample%2Ftemplate.html

3. Deploy the modified “SSO-sample” application to your application server.
4. Access the application.
The “SSO-sample” application consists of the following pages:
• Protected area – a page that is protected by the WEM SSO filter. This page contains

two single sign-out links (Figure 11).

Figure 11: Protected page with single sign-out links

The first link (single sign-out with redirect) is an HTML link that performs single
sign-out on the CAS side and redirects the user back to the home page. The second
link (single sign-out without redirect) is also an HTML link that performs single sign-
out on the CAS side, but without leaving or reloading the current page.

• Public area – a page that is excluded from the protection filter.
• Public area with login form – this page is excluded from the protection filter, but has

a login form, which allows performing a sign-in operation without leaving or
reloading the current page.

le sign-out
WEM Framework 1.0 Developer’s Guide

Chapter 6. Single Sign-On for Production Sites

 Application Structure
53
Figure 12: Public area with “Sign in” link

Application Structure
The “SSO-sample” application provides you with the basic code for utilizing single sign-
on and sign-out functionality to protect applications on production sites. The following
components provide access to the “SSO-sample” application:
• index.jsp – starting page. This page contains links to the pages described as

Protected area, Public area, and Public area with login form pages (see
“Deploying ‘SSO-Sample’,” on page 52).

• template.html – used to provide a custom sign-in form for CAS. Its path is
referenced in the wemLoginTemplate parameter in casLoginPath in the
applicationContext.xml file.

Configuration Files: /sso-sample/WEB-INF
WEB-INF contains the following configuration files:
• applicationContext.xml – Spring web application configuration file, which

configures the SSO subsystem.
• web.xml – web application deployment descriptor.

Protected Files: /sso-sample/protected/jsp
Files in this area are protected by the SSO filter. By default, the following files are
included in this folder:
• protected.jsp – A page protected by the SSO filter. This page hosts two links for

performing single sign-out. The first link leads to the CAS sign-out page with a
redirect to the application’s home page when sign-out is complete. The second link
embeds an iframe into this page, which calls the CAS sign-out page with a redirect to
WEM Framework 1.0 Developer’s Guide

Chapter 6. Single Sign-On for Production Sites

 Implementing Single Sign-On
54
the signoutCallback.jsp page. The protected.jsp page also prints out all
attributes from the Assertion object, which describes the current logged in user.

• protected/jsp/protectedSection.jsp – Page that is referenced from the
public.jsp page, when the Sign in link is clicked in an embedded iframe. As this
page is protected, a login screen is presented in the embedded iframe.

Public Files: /sso-sample/public/jsp
Files in this area are not protected by the SSO filter. By default, the following sample files
are included in the /public/jsp/ folder:
• public.jsp – this page not protected by the CAS filter
• publicWithAuth.jsp – this page displays the Sign in link. Clicking the link

embeds an iframe into the publicWithAuth.jsp with the iframe pointing to the
protectedSection.jsp page. As the page is protected, a login screen is presented
in the embedded iframe.

• signoutCallback.jsp – this page is called from the protected.jsp page upon
sign-out completion when using iframe.

Implementing Single Sign-On
Implementing single sign-on on a web site amounts to implementing a sign-in form. The
sign-in form can be presented to site visitors in one of two ways:
• The sign-in form is presented when the visitor tries to access a protected page. This is

the default sign-in implementation. This sign in form could be either a default sign-in
form shipped with CAS or a custom form provided by an application.

• The sign-in form is embedded into a public page, and the sign-in function is
performed without the user leaving the current page. This behavior can be
implemented by embedding the iframe that points to a protected page. As the page is
being protected, the sign-in form is presented to the visitor.
WEM Framework 1.0 Developer’s Guide

Chapter 6. Single Sign-On for Production Sites

 Implementing Single Sign-Out
55
Implementing Single Sign-Out
When implementing single sign-out on a web page, you can do one of the following:
• Retrieve the “single sign-out” URL by invoking the following method:

getSignoutUrl() or getSignoutUrl(String callbackUrl) method of
com.fatwire.wem.sso.SSO.getSSOSession() object.
After performing single sign-out, CAS can optionally redirect to the visitor-supplied
URL, which is set in the callbackUrl parameter.

• Use an iframe-embedding technique if the sign-out is to be performed without leaving
the current page. This technique involves embedding an iframe with the single sign-
out URL as source. When the iframe is loaded, the sign-out URL is called (this is done
primarily to avoid cross-domain restrictions in browsers).
WEM Framework 1.0 Developer’s Guide

Chapter 6. Single Sign-On for Production Sites

 Implementing Single Sign-Out
56
WEM Framework 1.0 Developer’s Guide

57
Chapter 7

Security
• Authentication and SSO
• REST Authorization
• Configuring CAS
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
58
Authentication and SSO
FatWire WEM Framework uses the SSO mechanism built on top of CAS
(http://www.jasig.org/cas) for authentication purposes. The system behaves
differently when the REST API is used from a browser or programmatically.
When accessing the REST API from a browser, the user is redirected to the CAS login
page and, upon successful login, back to the original location with the ticket parameter,
which is validated to establish the user’s identity. When accessing the REST API
programmatically, the developer must supply either the ticket or multiticket
parameter.
Both the ticket and multiticket parameters could be acquired by using either the
FatWire SSO API if making calls from Java, or simply by using the HTTP protocol if
making calls from any other language. The difference between ticket and multicket
is that a ticket is acquired per each REST resource and can be used only once (as the name
implies, think of a train or a theater ticket, which is valid for one ride or one play), while a
multiticket could be used multiple times for any resource. Both the ticket and
multiticket parameters are limited in time, but the typical usage pattern differs. As a
ticket is acquired per each call, there is no need to worry about its expiration time.
However, reusing the same multiticket will eventually lead to its expiration and getting an
HTTP 403 error. The application must be able to recognize such behavior and fall back to
the multiticket re-acquisition procedure in such a case. The decision to use either ticket
or multiticket is up to the application developer.

Acquiring Tickets from Java Code
The FatWire SSO API is implemented in an authentication provider-independent manner.
Users will not be able to register their own SSO authentication providers. Support for a
new authentication provider can be implemented only by FatWire. Switching between
providers involves only changing the SSO configuration files.
All SSO calls originate at the SSO front-end class SSO. It is used to get the SSOSession
object. SSOSession is acquired per each SSO configuration. It is a single configuration
in the web application case, which is loaded using the Spring Web application loader or a
configuration loaded from a configuration file in the case of a standalone application.

Web Application
SSO.getSession().getTicket(String service, String username, String

password)
SSO.getSession().getMultiTicket(String username, String password)

Standalone Application
SSO.getSession(String configName).getTicket(String service, String

username, String password)
SSO.getSession(String configName).getMultiTicket(String username,

String password)
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
59
Acquiring Tickets from Other Programming Languages (Over
HTTP)

The CAS REST API is used to acquire a ticket and/or multiticket in the delivery
environment. Two HTTP POST calls should be performed to acquire either ticket or
multiticket. The difference between ticket and multiticket is that the service parameter
is “ * “ for multiticket, while it is an actual REST resource you are trying to access for the
ticket parameter.
The example below demonstrates the calls to be made to the CAS server to get a ticket to
the http://localhost:8080/cs/REST/sites service with fwadmin/xceladmin
credentials:
1. Call to get Ticket Granting Ticket

Request
POST /cas/v1/tickets HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 35

username=fwadmin&password=xceladmin

Response
HTTP/1.1 201 Created
Location: http://localhost:8080/cas/v1/tickets/TGT-1-

ej2biTUFoCNBwA5X4lJn4PjYLRcLtLYg2QhLHclInfQqUk3au0-cas
Content-Length: 441
...

2. Call to get a Service ticket
Request
POST /cas/v1/tickets/TGT-1-

ej2biTUFoCNBwA5X4lJn4PjYLRcLtLYg2QhLHclInfQqUk3au0-cas
HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: 57

service=http%3A%2F%2Flocalhost%3A8080%2Fcs%2FREST%2Fsites

Response
HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 29

ST-1-7xsHEMYR9ZmKdyNuBz6W-cas

The protocol is fairly straightforward. First a call to get Ticket Granting Ticket (TGT) is
made by passing the username and password parameter in application/x-www-form-
urlencoded POST request. The Response will contain the Location HTTP header,
which should be used to issue a second application/x-www-form-urlencoded
POST request with service parameter. The response body will contain the actual ticket.
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
60
Using Tickets and Multitickets
To use the generated ticket/multiticket, supply the ticket/multiticket URL query
parameter. For example:

http://localhost:8080/cs/REST/sites?ticket=ST-1-
7xsHEMYR9ZmKdyNuBz6W-cas

http://localhost:8080/cs/REST/sites?multiticket=ST-2-
Bhen7VnZBERxXcepJZaV-cas

1. The application performs a call to get the ticket/multiticket.
- Input: service, username, password
- Output: ticket /multiticket

2. The application performs call to Remote Satellite Server to get the resource.
- Input: ticket, resource input data
- Output: resource output data

3. Remote Satellite Server performs a call to validate the resulting ‘assertion’. The
assertion contains user information. Satellite Server also maintains a time-based cache
of multitickets, so that subsequent calls do not incur the cost of validation.
- Input: ticket/multiticket
- Output: assertion

4. This step is optional. If the proxyTickets parameter in the SSOConfig.xml file
parameter is set to true on the Satellite Server side, it also proxies the ticket.
- Input: ticket
- Output: proxied ticket

5. Remote Satellite Server performs a call to Content Server.
- Input: assertion (in serialized form), resource input data
- Output: resource output data
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
61
6. This step is optional. If security is enabled on the Content Server side, it performs a
call to validate the ticket.
- Input: ticket/multiticket
- Output: assertion

By default the communication channel between Content Server and Remote Satellite
Server is not trusted. The proxyTickets parameter in the SSOConfig.xml file on
Remote Satellite Server is set to true, which forces Remote Satellite Server to proxy the
ticket supplied by the application that is being accessed.
For optimal performance, the system can be configured for authentication by Satellite
Server alone. The security check should be disabled on the Content Server side by
excluding the REST and Content Server elements used by the REST API from the SSO
filter; the proxyTickets parameter in the SSOConfig.xml file on Remote Satellite
Server should be set to false. In this mode it is possible to leverage multitickets. Note
that the Content Server installation should be hosted inside a private network in this mode,
and the communication channel between Content Server and Remote Satellite Server
should be trusted.

SSO Configuration for Standalone Applications
The single sign-on module relies on the Spring configuration. The only required bean is
ssoprovider, which references the ssoconfig bean.

Beans and Properties

id=”ssolistener”,
class=”com.fatwire.wem.sso.cas.listener.CASListener”

Property Description

No properties for this bean.

id=”ssofilter”,
class=”com.fatwire.wem.sso.cas.filter.CASFilter”

Property Description

config Required. SSO configuration reference.

Sample value: ssoconfig

provider Required. SSO provider reference.

Sample value: ssoprovider
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
62

id=”provider”,
class=”com.fatwire.wem.sso.cas.CASProvider”

Property Description

config SSO configuration reference.

Sample value: ssoconfig

id=”config”,
class=”com.fatwire.wem.sso.cas.conf.CASConfig”

Property Description

applicationProxy
CallbackPath

Proxy callback path, relative to casUrl.
Default value: /proxycallback

authRedirect Use this property to specify the default behavior on unauthenticated
access to protected pages. true redirects the user to the CAS login
page; false displays a 403 error if users are not unauthenticated. This
setting could be overridden by the Pragma: auth-redirect HTTP
header.

Default value: true

casLoginPath Login page path, relative to casUrl.

Can accept additional query parameters:
• wemLoginTemplate, points to the page containing the HTML

login template to be used instead of the default template. The
template must have two input fields: username and password.
Note, that the HTML <form> tag should not be used in the
template.

• wemLoginCss, points to the CSS page containing style
declarations used on the login form.

Default value: /login

casRESTPath CAS REST servlet path, relative to casUrl.
Default value: /v1

casSignoutPath Logout page path, relative to casUrl.

Default value: /logout

casUrl Required property. CAS URL prefix.

Example: http://localhost:8080/cas

gateway If true, the request to protected pages will be redirected to CAS. If a
ticket-granting cookie is present, then the user will be implicitly
authenticated; if not, the user will be redirected back to the original
location. This is used primarily to allow implicit authentication if the
user is already logged in to another application.
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
63
gateway (continued) Be careful when enabling the redirect behavior to occur by default.
Make sure that the clients are able to follow the redirects. Otherwise,
gateway=false URL query parameter should be used to override the
default behavior. For example, while processing wemLoginTemplate
and wemLoginCss parameters, CAS does not follow redirects; you
will have to prepend gateway=false to URLs when turning this
setting on.

Default value: false

multiticketTimeout Multiticket timeout in msecs.
Default value: 600000

protectedMapping
Excludes

List of mappings that should be excluded. Regular expressions are
allowed.
Allowed value: See protectedMappingIncludes

protectedMapping
Includes

List of protected mappings. Regular expressions are allowed.

Allowed value: path?[name=value,#]

path is a URL path part. It may contain asterisks (* and **). The
single asterisk * symbolizes any character sequence up to the forward
slash character (/), while ** applies to the entire path.

Example

/folder1/folder2 matches against /folder1/*, while /
folder1/folder2/folder3 does not.

/folder1/folder2 matches against /folder1/**, as well as /
folder1/folder2/folder3.

?[..] block is optional. Query parameters can be specified inside the
block. Parameters are comma separated. The special character # means
that the specified parameters are a subset of those from the request;
omitting # requires the request parameters to exactly match the
specified parameters.

Parameters may contain only name. The match will be done against
name only, or against name=value (i.e., both name and value). A
parameter can take multiple values. In this case, the match test will
pass if any of the specified parameter values match the corresponding
parameter value from the request.

Example

/file1[size=1|2] matches against /file1?size=2,
 but not against /file1?size=2&author=admin

/file1[size=1|2,name=file1,#] matches against
/file1?size=2 and /file1?size=2&author=admin,
 but not against /file1?size=3

id=”config”,
class=”com.fatwire.wem.sso.cas.conf.CASConfig” (continued)

Property Description
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Authentication and SSO
64
Query Parameters Processed by SSO Filter

protectedMapping
Includes (continued)

To make custom REST resources in an application available via
remote Satellite Server, specify the following value:
/ContentServer?[pagename=rest/<path toCSElement>,#]

Example
/ContentServer?[pagename=rest/sample/

recommendation,#] for custom REST resources in the
“Recommendation” sample application (Chapter 5).

proxyTickets Specifies whether to proxy tickets.
Set this property to false for the last server in the call chain for
optimal performance.

Set this property to true if you need to call another CAS-protected
application from this application on behalf of the currently logged-in
user. This results in the ability to call the following method:
SSO.getSSOSession().getTicket(String service, String

username, String password)

Default value: true

useMultiTickets Specifies whether to use multitickets.
Default value: true

Query Parameters Processed by SSO Filter

Property Name Description

ticket Used to verify user identity. Can be used only during some limited period
of time for one resource and only once.

Type: <query parameter>

Value: <random string>

multiticket Used to verify user identity. Can be used only during some limited period,
multiple times for any resource.

Type: <query parameter>

Value: <random string>

id=”config”,
class=”com.fatwire.wem.sso.cas.conf.CASConfig” (continued)

Property Description
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 Configuring CAS
65
Configuring CAS
The following CAS deployment scenarios are supported: CAS on a primary Content
Server cluster member, an application server cluster member marked as primary, or a
separate application server. Use the following link to get started with CAS architecture:

http://www.jasig.org/cas/about

Configuring CAS with LDAP Providers
CAS authenticates against Content Server’s database by default. On production systems
only, CAS can be set up to authenticate against LDAP providers; however, in this
configuration CAS cannot populate the cs.timeout property (in futuretense.ini).
To register an LDAP provider, change the deployerConfigContext.xml file located
in the /WEB-INF folder of the CAS application. The sample configuration file can be
found in the same folder. The following URL provides more information:

http://www.ja-sig.org/wiki/display/CASUM/Attributes

The following URL provides information about writing custom authentication handlers:
http://www.jasig.org/cas/server-deployment/authentication-handler

gateway If this property is set to true, the request for public pages will be
redirected to CAS. If the ticket granting cookie is present, then the user will
be implicitly authenticated; if not, the user will be redirected back to the
original location. This is primarily to allow implicit authentication if the
user is already logged in to another application.

Type: <query parameter>

Value: true | false

auth-redirect Used to specify the default behavior on unauthenticated access to protected
pages. If this property is set to true, the user will be redirected to the CAS
login page; if false, a 403 error will be presented.

Type: <Pragma HTTP header>

Value: true | false

Query Parameters Processed by SSO Filter (continued)

Property Name Description
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 REST Authorization
66
REST Authorization
This section is for developers who are interested in administrators’ authorization
processes. REST authorization is the process of granting privileges to perform REST
operations on applications’ resources (which map to objects in Content Server). REST
authorization uses the “deny everything by default” model. If a privilege is not explicitly
granted to a particular group, that privilege is denied.

Security Model
The WEM security model is based on objects, groups, and actions. Security must be
configured per object type in Content Server’s Advanced interface:

• Object is a generic term that refers to any entity in WEM such as a site, a user, or an
asset. Protected objects are of the following types:

• Security groups are used to gather users for the purpose of managing their
permissions (to operate on objects) simultaneously.

• An action is a security privilege: LIST,READ, UPDATE, CREATE, DELETE.
LIST provides GET permission on services that list objects (such as /types), whereas
READ provides GET permission on services that retrieve individual objects in full
detail (such as /types/{assettype}).
Privileges are assigned to groups to operate on allowed objects. Some objects, such as
ACLs, are read-only (they can be created directly in Content Server, but not over
REST).

A security configuration is an array, such as shown above, which specifies:
• The protected object type and object(s)

- Asset Type - Site - User Locale
- Asset - Role - ACL
- Index - User - Application

Objects of a given type
are accessible to a user
only if the user
belongs to at least one group
with privileges to
perform specified actions
on objects of the
given type.

The Security Configuration
node is accessible from the
Admin tab in CS Advanced.
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 REST Authorization
67
• Groups that are able to access the objects
• Actions that groups (and their members) can perform on the objects
Possible security configurations are summarized in Table 1, on page 68.

Using the Security Model to Access REST Resources
Object types and objects in Content Server map to REST resources in WEM. For example,
the Asset Type object maps to:
• <BaseURI>/types/ resource (which lists all asset types in the system)
• <BaseURI>/types/<assettype> resource (which displays information about the

selected asset type), and so on.
Actions in Content Server map to REST methods in WEM. For example, granting the
READ privilege to group Editor to operate on asset type Content_C gives users in the
Editor group permission to use GET and HEAD methods on the REST resource
/types/Content_C.
• The LIST action allows group members to use GET methods on REST resources.
• The READ action allows group members to use GET and HEAD methods on REST

resources.
• The UPDATE action allows group members to use POST methods on REST resources.
• The CREATE action allows group members to use PUT methods on REST resources.
• The DELETE action allows group members to use DELETE methods on REST

resources.
For comprehensive information, see the REST API Resource Reference.

Configuring REST Security
Procedures for configuring REST security are available in the WEM Framework
Administrator’s Guide.

Privilege Resolution Algorithm
When configuring a security privilege, you can specify that the privilege applies to all
objects of a certain type or a single object of a certain type. For example, granting the
privilege to UPDATE (POST) any site allows users in the group to modify the details of all
sites in WEM. Granting the privilege to UPDATE (POST) the FirstSiteII sample site allows
users in the group to modify this site’s details in WEM.
The Asset object type requires you to specify the site to which the security setting
applies, as assets are always accessed from a particular site. The AssetType object can be
extended by specifying a subtype, which is used to make the security configuration more
granular. For example, setting the DELETE privilege on asset type Content_C in allows a
DELETE request to be performed on the REST resource /types/Content_C (i.e., to
delete the Content_C asset type from the system).
Because privileges can be granted only to groups, a user’s total privileges are not obvious
until they are computed across all of the user’s groups. WEM provides a privilege
resolution algorithm. Its basic steps are listed below:
WEM Framework 1.0 Developer’s Guide

Chapter 7. Security

 REST Authorization
68
1. REST finds the groups in which the user has membership.
2. REST determines which groups can perform which REST operations on which REST

resources. If site or subtype is specified, each is taken into account.
3. REST compares the results of steps 1 and 2. If at least one of the groups from step 1 is

in the list of groups from step 2, then access is granted. Otherwise, access is denied.

Table 1: Possible Security Configurations

Object Type Name Subtype Site Action

AssetType Any C, D, L, R*

* C=Create. D=Delete. L=List. R=Read. U=Update.

<AssetType> D, R

<AssetType> Any L

<AssetType> <Subtype> R

Asset Any Any C, D, L, R, U

Any <SiteName> C, D, L, R, U

<AssetType> <SiteName> C, D, L, R, U

<AssetType> and
<AssetName>

<SiteName> R, U, D

ACLs Any L

Application Any C, D, U

<AppName> D, U

Group Any L

<GroupName> R

Index Any C, D, L, R, U

<IndexName> D, R, U

Role Any C, D, L, R, U

<Role> D, R, U

Site Any C, D, L, R, U

<SiteName> D, R, U

User Any C, D, L, R, U

<UserName> D, R, U

UserDef Any L

UserLocales Any L
WEM Framework 1.0 Developer’s Guide

69
Chapter 8

Buffering
• Introduction
• Architecture
• Using Buffering
WEM Framework 1.0 Developer’s Guide

Chapter 8. Buffering

 Introduction
70
Introduction
Asset create, update, and delete operations are much slower than the read operation.
Sometimes, it is acceptable to delay these operations to occur at a future time with the
guarantee of eventual consistency. That is, if a delayed (buffered) operation was
performed, it is guaranteed that the Content Server platform will receive the change at
some finite, undetermined period of time. Although buffering operations are extremely
fast, they do not speed up the total time that is needed to create, update, and delete assets
in the platform.

Architecture
The current implementation of buffering subsystem relies on Java Messaging Service
(JMS) technology.

Buffering consists of the following components:
• Buffering Producer, which produces messages and puts them into the Messaging

Queue (MQ).
• Buffering Consumer, which picks messages from MQ and persists them in the

platform.
The buffering producer can be used on both Content Server and Remote Satellite Server,
where the asset REST service <BaseURI>/sites/<sitename>/types/
WEM Framework 1.0 Developer’s Guide

Chapter 8. Buffering

 Using Buffering
71
<assettype>/assets/<id> is available. When used on Remote Satellite Server, the
buffering producer does not communicate with Content Server, which ensures linear
scalability of the entire system.

Using Buffering
1. Install the JMS provider if one is not already available. (For supported providers, see

the Supported Platform Document, available at: http://support.fatwire.com)
2. Configure BufferingConfig.xml on Content Server and optionally on Remote

Satellite Server.

3. Specify buffer=true when invoking the REST asset service <BaseURI>/sites/
<sitename>/types/<assettype>/assets/<id>.

The default BufferingConfig.xml file, provided with Content Server, contains the
sample configuration for Apache ActiveMQ. The BufferingConfig.xml file is similar
for both Content Server and Remote Satellite Server, except that the list of message
consumers for Remote Satellite Server is empty.

Note
The buffering consumer is available only on Content Server. We recommend
enabling the buffering consumer only on the primary cluster member. Enabling on
multiple cluster members cannot guarantee that the sequence of CRUD operations
will be preserved.

id="bufferingManager"
class="com.fatwire.cs.core.buffering.jms.JmsBufferingManager"

Property name Description

jmsConnectionFactory Required. Instance of
javax.jms.ConnectionFactory

jmsDestination Required. Instance of javax.jms.Destination

messageConsumers List of com.fatwire.cs.core.buffering.
IMessageConsumer implementations.

Note
Buffering does not return the result of PUT and POST operations in the
response. Instead, an empty payload is sent. Developers should be aware of
this behavior when coding the client application.
WEM Framework 1.0 Developer’s Guide

Chapter 8. Buffering

 Using Buffering
72
WEM Framework 1.0 Developer’s Guide

73
A p p e n d i x A

Registering Applications Manually
• Registration Steps
• Reference: Registration Asset Types
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Registration Steps
74
Registration Steps
Registration exposes applications in WEM, as described on page 18. Registering an
application manually requires using Content Server’s Advanced interface to create an
asset for the application, create an asset for each of its views, and associate the view assets
with the application asset. The registration asset types FW_Application and FW_View
are enabled on AdminSite.

To manually register an application and view

The section uses code from the “Articles” sample application to illustrate the registration
process. “Articles” has a single view of type iframe. The same steps apply to JavaScript
and HTML views.
1. Create or get an icon to represent your application. (The icon will be displayed in the

WEM banner.)
(The “Articles” sample application uses the articles.png image file located in:
/sample app/articles/src/main/webapp/images/)

2. Create a file that specifies the layout of the application in HTML, i.e., for each view,
create a placeholder element to hold the content rendered by the view. Applications
and views are related as shown in Figure 9, on page 44.
For example, layout.jsp (for the “Articles” sample application) contains the
following line:

<div id="articles" style="float:left;height:100%;width:100%"
class="wemholder"></div>

The view’s content will be rendered within the placeholder element when the
application is displayed (layout.app renders the application’s layout; home.app
renders the view).

3. Register the view and application.
a. Log in to Content Server’s Advanced interface as a general administrator,

navigate to the AdminSite and click the Admin tab, where the FW_View and
FW_Application asset types are enabled.
(We assume you will create the view and application assets in the same session, in
which case both assets will be listed on the History tab. When creating the
application asset, you will select the view asset from the History tab and associate
it with the application asset. The History tab is volatile; it is cleared at the end of
the user’s session. Assets can be permanently placed on the Active List tab. For
instructions, see the Content Server Administrator’s Guide.)

Note
When creating the layout file, specify a unique id for the placeholder
element. You will specify the same id for the Parent Node attribute
when creating the view asset. Use class=”wemholder” for the
placeholder elements.
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Registration Steps
75
b. Create an instance of the FW_View asset type:
Click New, select New FW_View, and set attributes as shown below this figure.
(This figure displays attribute values for the view asset of the “Articles” sample
application.)

Name: Enter a short descriptive name for this view asset.

Parent Node: Enter the id of the placeholder element (defined in step 2 on
page 74) that will hold the content rendered by the view.

View Type: Select one of the following options to specify how the view’s content
should be rendered in the placeholder:
- Iframe – renders the view in an iframe into the placeholder element
- IncludeHTML – renders HTML into the placeholder element
- IncludeJavaScript – renders JavaScript into the placeholder element

Source URL: Enter the URL that provides content for the view. For example,
Source URL for the “Articles” sample application takes the following value:
http://localhost:9080/articles-1.0/home.app
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Registration Steps
76
c. Create an instance of the FW_Application asset type:
Click New, select New FW_Application, and set attributes as shown below this
figure. (This figure displays attribute values for the application asset of the
“Articles” sample application.)

Name: Enter a short descriptive name for this application asset.

ToolTip: Enter the text that will be displayed over the application’s icon when
users mouse over the icon.

Icon URL: Enter the URL of the icon that represents the application. The icon
will be displayed on the login page and at the top of the WEM interface. For
example, the Icon URL for the “Articles” sample application takes the following
value: http://localhost:9080/articles-1.0/images/articles.png
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Registration Steps
77
Hover Icon: Enter the URL of the icon that represents the application when users
mouse over the icon.

Click Icon: Enter the URL of the icon that represents the application when users
click on the icon.

Active Icon: Enter the URL of the icon that represents the application when it is
in use.

Layout Type: LayoutRenderer (the default and only value). Layout Type is
used by the UI container to render the application’s views by using the
application’s layout page (specified below in the Layout URL attribute).

Layout URL: Enter the URL of the page that displays the application’s layout.
The layout page has only HTML placeholder elements (such as div) for placing
the view(s).

For example, Layout URL for the “Articles” sample application takes the
following value: http://localhost:9080/articles-1.0/layout.app
(rather than http:/.../layout.jsp, given the Spring MVC framework.)

Related: Associated FW_View: views: Select the view asset created on page 75
(click the History tab, select the view asset, and click Add Selected Items).
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Reference: Registration Asset Types
78
Reference: Registration Asset Types
• FW_View Asset Type
• FW_Application Asset Type

FW_View Asset Type
This asset type is used to register the views of an application. For each view, create an
instance of FW_View. Attributes of FW_View are listed below as they appear in the
Content Server Advanced interface and in the REST API Bean Reference. Shading
indicates a required attribute. This asset type is enabled on the site named ‘AdminSite.’

Table A-1: FW_View Asset Type Attributes

Attribute:

DescriptionCS Interface REST API

Name name Short descriptive name for this view asset.

Description description Description of this view asset.

Parent Node parentnode ID of the placeholder element in the application’s layout file. The
placeholder element will hold the content rendered by the view.
The layout file has only HTML placeholder elements (such as div)
for placing the views.

View Type viewtype How the view should be rendered. The following view types are
available:
• Iframe – renders the view in an iframe into the placeholder

element
• IncludeHTML – renders HTML into the placeholder element
• IncludeJavaScript – renders JavaScript into the placeholder

element

Source URL sourceurl URL that provides content for the view.

JavaScript javascriptcontent Required if IncludeJavaScript is the view type and Source
URL is not specified.
The content specified by this attribute is included in a script tag if
IncludeJavaScript is specified as the view type.
If IncludeJavaScript is specified, either Source URL must be
specified, or code must be provided for the JavaScript attribute.

Content includecontent Required if IncludeHTML is the view type and Source URL is not
specified. The content specified by this attribute is included in the
placeholder element tag if IncludeHTML is specified as the view
type. If IncludeHTML is specified, either the Source URL must be
specified or code must be provided for the Content attribute.
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Reference: Registration Asset Types
79
FW_Application Asset Type
This asset type is used to register the application. The asset type is enabled on AdminSite.
Attributes of FW_Application are listed below as they appear in the Content Server
Advanced interface and in the REST API Bean Reference. Shading indicates a required
attribute.

Table A-2: FW_Application Asset Type Attributes

Attribute:

DescriptionCS Interface REST API

Name name Short descriptive name for this application asset.

Description description Description of this application asset.

Tooltip tooltip Text that will be displayed on the application’s icon when users
mouse over the icon.

Icon URL iconurl URL of the icon that represents the application in WEM.

Hover Icon URL iconurlhover URL of the icon that represents the application when users mouse
over the icon.

Click Icon URL clickiconurl URL of the icon that represents the application when users click on
the icon.

Active Icon
URL

iconurlactive URL of the icon that represents the application while it is in use.

Layout Type layouttype Type of layout. The value is LayoutRenderer.
Layout Type is responsible for rendering the application’s views by
using the application’s layout page (specified in the Layout URL
attribute, below).

Layout URL layouturl URL of the page where the application’s layout is displayed. This
page has only HTML placeholder elements (such as div) for placing
the views.

Related:
Associated
FW_Applicati
on: extends

parentnode Parent application which the current application extends.

Related:
Associated
FW_View:
views

views List of view assets used in this application.
WEM Framework 1.0 Developer’s Guide

Appendix A. Registering Applications Manually

 Reference: Registration Asset Types
80
WEM Framework 1.0 Developer’s Guide

	Web Experience Management Framework
	Contents
	Welcome to FatWire WEM Framework!
	Introduction
	Prerequisites for Application Development
	Getting Started

	Overview
	WEM Framework
	REST Services
	UI Container
	Registration
	WEM Context Object

	Single Sign-On
	Authorization Model
	Custom Applications

	‘Articles’ Sample Application
	Overview
	Launching the ‘Articles’ Sample Application
	Building and Deploying the ‘Articles’ Application
	Registering the ‘Articles’ Sample Application

	Testing the ‘Articles’ Application

	Developing Applications
	Overview
	Application Structure
	Making REST Calls
	Making REST Calls from JavaScript
	Making REST Calls from Java

	Constructing URLs to Serve Binary Data
	Context Object: Accessing Parameters from the WEM Framework
	Same Domain Implementations
	Cross-Domain Implementations
	Methods Available in Context Object

	Registration Code
	Registering Applications with an iframe View
	Registering Applications with JavaScript and HTML Views

	Developing Custom REST Resources
	‘Recommendations’ Sample Application
	Overview
	Building and Deploying the Application
	Testing the Application

	Creating REST Resources
	Application Structure
	Steps for Implementing Custom REST Resources

	Single Sign-On for Production Sites
	‘SSO-Sample’
	Deploying ‘SSO-Sample’
	Application Structure
	Implementing Single Sign-On
	Implementing Single Sign-Out

	Security
	Authentication and SSO
	Acquiring Tickets from Java Code
	Acquiring Tickets from Other Programming Languages (Over HTTP)
	SSO Configuration for Standalone Applications

	Configuring CAS
	Configuring CAS with LDAP Providers

	REST Authorization
	Security Model
	Using the Security Model to Access REST Resources
	Configuring REST Security
	Privilege Resolution Algorithm

	Buffering
	Introduction
	Architecture
	Using Buffering

	Registering Applications Manually
	Registration Steps
	Reference: Registration Asset Types
	FW_View Asset Type
	FW_Application Asset Type

