
Gadget Server
Version 1.1

Developer’s Guide

Document Revision Date: Jan. 27, 2011

FATWIRE CORPORATION PROVIDES THIS SOFTWARE AND DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. In no event shall FatWire be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages of any kind including loss of profits, loss of business, loss of use of data, interruption of business, however caused and on
any theory of liability, whether in contract, strict liability or tort (including negligence or otherwise) arising in any way out of the use of this
software or the documentation even if FatWire has been advised of the possibility of such damages arising from this publication. FatWire may
revise this publication from time to time without notice. Some states or jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions; therefore, this statement may not apply to you.

Copyright © 2010 FatWire Corporation. All rights reserved.

The release described in this document may be protected by one or more U.S. patents, foreign patents or pending applications.

FatWire, FatWire Content Server, FatWire Engage, FatWire Satellite Server, CS-Desktop, CS-DocLink, Content Server Explorer, Content Server
Direct, Content Server Direct Advantage, FatWire InSite, FatWire Analytics, FatWire TeamUp, FatWire Content Integration Platform, FatWire
Community Server and FatWire Gadget Server are trademarks or registered trademarks of FatWire, Inc. in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. AIX, AIX 5L, WebSphere, IBM, DB2, Tivoli and other IBM products
referenced herein are trademarks or registered trademarks of IBM Corporation. Microsoft, Windows, Windows Server, Active Directory, Internet
Explorer, SQL Server and other Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation. Red Hat,
Red Hat Enterprise Linux, and JBoss are registered trademarks of Red Hat, Inc. in the U.S. and other countries. Linux is a registered trademark of
Linus Torvalds. SUSE and openSUSE are registered trademarks of Novell, Inc., in the United States and other countries. XenServer and Xen are
trademarks or registered trademarks of Citrix in the United States and/or other countries. VMware is a registered trademark of VMware, Inc. in the
United States and/or various jurisdictions. Firefox is a registered trademark of the Mozilla Foundation. UNIX is a registered trademark of The
Open Group in the United States and other countries. Any other trademarks and product names used herein may be the trademarks of their
respective owners.

This product includes software developed by the Indiana University Extreme! Lab. For further information please visit
http://www.extreme.indiana.edu/.

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/).

The OpenSymphony Group license is derived and fully compatible with the Apache Software License; see http://www.apache.org/LICENSE.txt.

Copyright (c) 2001-2004 The OpenSymphony Group. All rights reserved.

You may not download or otherwise export or reexport this Program, its Documentation, or any underlying information or technology except in
full compliance with all United States and other applicable laws and regulations, including without limitations the United States Export
Administration Act, the Trading with the Enemy Act, the International Emergency Economic Powers Act and any regulations thereunder. Any
transfer of technical data outside the United States by any means, including the Internet, is an export control requirement under U.S. law. In
particular, but without limitation, none of the Program, its Documentation, or underlying information of technology may be downloaded or
otherwise exported or reexported (i) into (or to a national or resident, wherever located, of) any other country to which the U.S. prohibits exports of
goods or technical data; or (ii) to anyone on the U.S. Treasury Department's Specially Designated Nationals List or the Table of Denial Orders
issued by the Department of Commerce. By downloading or using the Program or its Documentation, you are agreeing to the foregoing and you
are representing and warranting that you are not located in, under the control of, or a national or resident of any such country or on any such list or
table. In addition, if the Program or Documentation is identified as Domestic Only or Not-for-Export (for example, on the box, media, in the
installation process, during the download process, or in the Documentation), then except for export to Canada for use in Canada by Canadian
citizens, the Program, Documentation, and any underlying information or technology may not be exported outside the United States or to any
foreign entity or “foreign person” as defined by U.S. Government regulations, including without limitation, anyone who is not a citizen, national,
or lawful permanent resident of the United States. By using this Program and Documentation, you are agreeing to the foregoing and you are
representing and warranting that you are not a “foreign person” or under the control of a “foreign person.”

FatWire Gadget Server Developer’s Guide
Document Revision Date: Jan. 27, 2011
Product Version: Version 1.1

FatWire Technical Support
www.fatwire.com/Support

FatWire Headquarters
FatWire Corporation
330 Old Country Road
Suite 207
Mineola, NY 11501

www.fatwire.com

http://www.fatwire.com/Support/index.html
www.fatwire.com

3

Table of

Contents
1 Introduction . 5
Before You Begin . 6
Gadget Specifications . 6

Asset Model and Templates . 7
Sample Assets . 7
Auxiliary Files. 8
OAuth Protocol . 9

Sample Gadgets .11
List Gadget . 11
ThumbList Gadget . 12
Slideshow Gadget . 13
RSS Feed Gadget . 14

Asset Structure. 14

2 Template Flow . 15
Template Flow for the List Gadget . 16
Differences in Template Flow . 18
Why Server Calls are Done Separately . 18

3 Creating Your Own Gadgets . 19
Creating Gadgets on Different CM Sites . 20
Custom Gadgets. 20

New Gadget, Content Server Generates Only XML. 20
New Gadget, Content Server Generates XML and Fields Additional Requests 20
Same Gadget Logic, Different Content. 21

Prerequisites for Registering Gadgets . 21
Sample RSSFeed Gadget . 24
Sample List Gadget . 26
Gadget Server 1.1 Developer’s Guide

Table of Contents
4

Gadget Server 1.1 Developer’s Guide

5

Chapter 1

Introduction
This guide introduces template developers to the process of creating gadgets based on
Content Server template code. Sample gadgets, which are included with Gadget Server,
are used throughout this guide to illustrate the development task. This set of fully
operational gadgets runs on the FirstSite II sample site. Their underlying asset model and
template framework provide the tools developers need to get started with creating their
own gadgets. One of the sample gadgets supports the OAuth protocol to provide an
example of how developers can configure their own gadgets with OAuth support.
This chapter contains the following sections:
• Before You Begin
• Gadget Specifications
• Sample Gadgets
• Asset Structure
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Before You Begin
6

Before You Begin
Users of this guide must have:
• A developer’s knowledge of Content Server’s basic and flex asset models and

templating.
• The Google Gadget API. Related resources are available at the following URLs:

- The API Reference is available at:
http://code.google.com/apis/gadgets/docs/reference/

- The API Developer's Guide is available at:
http://code.google.com/apis/gadgets/docs/dev_guide.html

• Familiarity with OpenSocial Standards, used to create the environment that enables
gadget users to set preferences. OpenSocial documentation is available at:
http://wiki.opensocial.org/

• Gadget Server sample gadgets installed on Content Server’s FirstSite II sample site.
Installation instructions are available in the Gadget Server Installation Guide.
Information about managing gadgets can be found in the Gadget Server User’s Guide.
The product guides are available on our e-docs site:

http://support.fatwire.com

Accounts with FatWire Technical Support can be opened from the home page.
• An understanding of the OAuth protocol, which is used by the sample List Gadget.

Information about OAuth is available at the following URLs:
- The Beginner’s Guide to OAuth is available at:

http://oauth.net/

- More information about the OAuth protocol is available at:
http://tools.etf.org/html/rfc5849

Gadget Specifications
Four sample gadgets were created by FatWire. They are enabled on the FirstSite II sample
site. You can develop your own gadgets, using the processes outlined in this guide. The
sample gadgets are:
• List Gadget, which presents a listing of headlines and article summaries, linking to

their respective full articles. This gadget supports OAuth, which means a visitor can
authorize the gadget to retrieve her personalized data (in this case, the visitor’s user
name and profile picture) from the gadget’s OAuth Service Provider (which is
Gadget Sever in this example).

• ThumbList Gadget, which presents a list of products, with a thumbnail
accompanying each product’s description.

• Slideshow Gadget, which renders a series of product images into a slideshow, where
the user can click on a thumbnail to view a larger image, then click the larger image to
open the page containing full details on the product.

• RSS Feed, which presents a list of headlines retrieved from an RSS feed. Each
headline links to a full article.
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Gadget Specifications
7

The rest of this chapter provides information about the gadgets’ major components and
describes the sample gadgets in detail. This chapter also describes the OAuth protocol, and
the functionality OAuth enables when it is integrated with Gadget Server and supported by
a gadget (List Gadget in this example).

Asset Model and Templates
Installing the sample gadgets on FirstSite II installs the basic components for creating and
rendering gadgets. The components are the data model, templates, and sample assets that
provide the gadgets’ content:
• FW_CSGadget asset type (its description is CS-Based Gadget). All sample gadgets

are of type FW_CSGadget.
• FW_RSS asset type (its description is RSS Feed). This asset type is used to specify a

URL as the source of content for the RSS Feed gadget.
• FW_CSGadget/GenerateGadgetXML template, which is accessed by Gadget Server.

This template is used to render the gadget descriptor XML (also referred to as gadget
specification XML).

• FW_CSGadget/ListSiteGadgets template, which provides a gadget descriptor
URL for each gadget on the current content management site.

Sample Assets
The sample assets either provide content for the gadgets or they render the gadgets. The
sample assets are referenced by the sample gadgets as described below:
• Gadget content is provided by:

- Content assets of type Content_C (with parent of type Content_P),
representing sports articles. These assets are used by the List Gadget.

- Product assets of type Product_C (with parent of type Product_P), representing
sports products. These assets are used by the ThumbList and Slideshow gadgets.

- Media assets of type Media_C (with parent of type Media_P), representing
images used by the Product assets. These assets are used by the ThumbList and
Slideshow gadgets.

- Recommendation (AdvCols) assets, encapsulating the Content and Product assets.
Recommendation assets are used by the List, ThumbList, and Slideshow sample
gadgets.

- Content of type FW_RSS, which specifies a URL as the source of content for the
RSS Feed gadget.

• Templates render the gadgets:
- The GenerateGadgetXML template is accessed by Gadget Server and calls the

templates listed below.
- An FW_CSGadget-typed template exists for each of the sample gadgets. Each of

these templates outputs the body of a gadget descriptor XML understandable by
Gadget Server. The templates are G_List, G_RSS, G_Slideshow, and
G_ThumbList.
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Gadget Specifications
8

gad

scrolle
arrow
- A typed template named G_JSON exists for each of the asset types referenced by
the sample gadgets: Content_C, Media_C, Product_C, and Recommendation
(AdvCols). These templates provide JSON-formatted output containing data
necessary to render the HTML for each asset that is displayed in the gadgets. The
templates are invoked via remote requests made in the gadget code.

Auxiliary Files
The following image files are used by the sample gadgets:
• Scroller arrow images used by the Slideshow gadget (Figure 1, on page 8). These

static images are located in the FirstSiteII/gadgets subdirectory under the
Content Server web application.

• Images used as icons, thumbnails, and previews to represent a gadget’s various
sections. The default images are located in the sample/GadgetImages directory in
the gadgetserver.zip installation package.

Figure 1: Images used by sample gadgets

get icon gadget thumbnails

r
s
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Gadget Specifications
9

gadge
previe
image

ce the visitor is
thenticated, the

Auth session starts
d the User Service
rves the requested
ta to Gadget Server.

ider)
OAuth Protocol
The sample List Gadget supports the OAuth protocol. Gadget Server includes OAuth
protocol support to enable visitors to personalize OAuth-enabled gadgets. The OAuth
protocol communicates in a secure manner to enable a visitor to authorize a gadget to
retrieve certain protected personal data from a third-party website by using Gadget Server
as a proxy. This is achieved with the help of visitor redirects, handshakes, and digital
signatures, as shown in Figure 2.

Figure 2: Personalized data retrieval as seen in the sample List Gadget

t
w

1. Visitor makes a request for
her personalized data by
clicking the “Login” link.

2. The gadget makes a request to the
User Service to authenticate the
visitor by invoking the User
Service’s API, using the
gadgets.io.makeRequest()
call.

3. Gadget Server proxies
the request to the User
Service.

4. The User Service displays the log
in form to the visitor in a pop-up
window. This form is submitted to
the User Service, which in turn
validates the visitor’s credentials.

5. On
au
O
an
se
da

6. Gadget Server exchanges
the OAuth session token in
return for the requested
data.

(OAuth Service Prov
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Gadget Specifications
10
OAuth enables the List Gadget to retrieve a visitor’s user name and profile picture from its
OAuth Service Provider (local Gadget Server installation in this example), which is
specified in the OAuth section of the gadget’s descriptor XML file. Any gadget that is
configured to support OAuth must define OAuth parameters in its descriptor XML file.
Gadgets with OAuth support:
• Can be configured to use either Gadget Server-based visitor authentication or third-

party based visitor authentication (such as Google, Twitter, and so on).
• Contain an OAuth section in their descriptor XML files. The OAuth section specifies

the gadget’s OAuth Service Provider, which is the website from which the gadget
requests visitor authentication.

• Use secure APIs to display a pop-up authentication window from the website the
gadget uses for visitor authentication. Once the visitor is authenticated, the gadget
securely retrieves that visitor’s personalized data from the website which hosts the
data by using Gadget Server as a proxy, without storing the visitor’s credentials on
Gadget Server.
All requests that Gadget Server transfers between the gadget and the gadget’s OAuth
Service Provider are secured with the following gadget-specific information:
- Consumer Key – Also known as an API key, this is a value used by the gadget to

identify itself to the OAuth Service Provider.
- Consumer Secret – A secret used by the gadget to establish ownership of the

consumer key to the OAuth Service Provider.
- Consumer Signature Method – The type of digital signature algorithm used to

sign requests secured with OAuth (HMAC-SHA1 or RSA-SHA1). The signature
process encodes the consumer key and secret into a verifiable value. This prevents
unauthorized parties from using the gadget-specific consumer key and secret to
access a visitor’s protected resources.

• Include “ouathpopup” as a required feature in the <ModulePrefs> tag of their
descriptor XMLs, which enables gadgets to access the Gadget Server OAuth library.
This library is provided to the gadget automatically by Gadget Server, and when used
together with the gadgets.io.makeRequest call, enables the gadget to make
visitor redirects, handshakes, and digital signatures to securely retrieve a visitor’s
personalized data, without storing any of the visitor’s credentials on the local Gadget
Server installation.

Developers can create their own gadgets with OAuth support by using JavaScript APIs.
For information about the parameters required to configure a gadget to use the OAuth
protocol, see Appendix A, “Analyzing Gadget Descriptor XML Files.”
Administrators have permissions to register CS-Based and/or third-party gadgets with
OAuth support to Gadget Server. For more information about registering OAuth-enabled
gadgets to Gadget Server, see the Gadget Server User’s Guide.

Note
Some gadgets with OAuth support store data on one website, but authenticate
visitors through another. In this case, the website that stores visitor credentials
provides the log in form to Gadget Server. Once the visitor is authenticated,
the website that hosts the data exchanges Gadget Server’s session token for the
visitor’s requested data.
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Sample Gadgets
11

n

rt
on
Sample Gadgets
This section outlines the FatWire sample gadgets and the assets they use. Each asset is
listed in the same order in which it is called by Gadget Server when Gadget Server
initiates the request. This guide uses the List Gadget in particular to illustrate various
concepts.

List Gadget
The List Gadget renders a Recommendation asset containing a list view of Content assets.
Each headline links to its full article.

The List Gadget asset references the Recommendation asset to be rendered in the gadget
and the template (G_List) that will render the gadget. The relevant assets are:
• The ListGadget asset of type FW_CSGadget, referencing the Recommendation

asset to be rendered.
• The G_List template, which produces the body of the gadget descriptor XML used

by Gadget Server to render the gadget. (This process is outlined in the Chapter 2,
“Template Flow.”)

• G_JSON templates, which render the Recommendation asset and its content:
AdvCols/G_JSON and Content_C/G_JSON

• The Recommendation (AdvCols) asset to be rendered in the gadget.
• Content assets included in the Recommendation.

Content Assets

Recommendatio
Asset

Link used to sta
an OAuth sessi
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Sample Gadgets
12

Recommendation
Asset
ThumbList Gadget
The ThumbList Gadget is similar to the List Gadget in that it also renders a
Recommendation asset. The gadget contains a list view of Product assets. Each headline
links to its product page. However, in this gadget, each product is accompanied by a
thumbnail image from a Media asset, which is associated with the Product assets via their
“Image” attribute.

The relevant assets are:
• The ThumbListGadget asset of type FW_CSGadget, referencing the

Recommendation to be rendered and the template (G_ThumbList) that will render the
gadget.

• The G_ThumbList template which produces the body of the gadget descriptor XML
used by Gadget Server to render the gadget.

• G_JSON templates, which render the Recommendation asset and its content:
AdvCols/G_JSON, Product_C/G_JSON, and Media_C/G_JSON

• The Recommendation (AdvCols) asset to be rendered in the gadget.
• Product assets included in the Recommendation asset.
• Media assets referenced by the “Image” attribute of each of the Product assets.

Content Assets
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Sample Gadgets
13
Slideshow Gadget
The Slideshow gadget uses the same content as the ThumbList gadget, but presents the
content in an entirely different manner. This gadget displays a thumbnail strip filled with
product images. Clicking on an image in the strip displays the image at the maximum size
allowed by the gadget area. Clicking the full-size image opens the product’s detail page.

The relevant assets are:
• The SlideshowGadget asset referencing the Recommendation asset to be rendered

and the template (G_Slideshow) that will render the gadget.
• The G_Slideshow template which produces the body of the gadget descriptor XML

used by Gadget Server to render the gadget.
• G_JSON templates which render the Recommendation asset and its content:

AdvCols/G_JSON, Product_C/G_JSON, and Media_C/G_JSON
• The Recommendation (AdvCols) asset to be rendered in the gadget.
• Product assets included in the Recommendation asset.
• Media assets referenced by the “Image” attribute of each Product asset.

Thumbnail Strip
Gadget Server 1.1 Developer’s Guide

Chapter 1. Introduction

Asset Structure
14
RSS Feed Gadget
The RSS Feed gadget displays the most recent items from an RSS feed, utilizing the
Google Gadget API for its built-in feed-reading functionality.

The relevant assets are:
• The RSSGadget asset of type FW_CSGadget referencing the feed (FW_RSS) to be

requested and the template (G_RSS) that will render the gadget.
• The G_RSS template which produces the body of the gadget descriptor XML used by

Gadget Server to render the gadget.
• An FW_RSS asset containing the feed URL to be requested in the gadget.

Asset Structure
The sample gadgets are based on a
new asset type, FW_CSGadget, which
is used to specify information required
for rendering the gadgets. It is a basic
asset type, containing the following
attributes:
• Name of descriptor

template is used to specify the
name of the FW_CSGadget
template that will be invoked to
generate the gadget’s descriptor
XML. For the List Gadget, the
template is FW_CSGadget/G_List (hence, G_List is specified in this field and later
resolved as a typed template).

• The DataAsset association is a single, any-type asset association. This association
references the asset that provides the main content of the gadget. For example, the
DataAsset association for the List Gadget references a Recommendation asset
containing a static list of Content assets to be rendered by the gadget.

The descriptor template attribute is read by the FW_CSGadget/GenerateGadgetXML
template. The DataAsset association is read by the descriptor template itself (for example,
G_List).
Gadget Server 1.1 Developer’s Guide

15
Chapter 2

Template Flow
This chapter describes the flow of template execution, using the List Gadget as an
example.
• Template Flow for the List Gadget
• Differences in Template Flow
• Why Server Calls are Done Separately
Gadget Server 1.1 Developer’s Guide

Chapter 2. Template Flow

Template Flow for the List Gadget
16
Template Flow for the List Gadget
By design, the only way to request a gadget’s descriptor XML is by invoking the
GenerateGadgetXML template on an FW_CSGadget asset. When the template is
invoked, the rendering process begins, as shown in Figure 3 and outlined below:

Figure 3: Gadget XML output

1. GenerateGadgetXML first outputs the XML declaration, a recommended feature for
all XML documents. Outputting the XML declaration at the beginning of the process
saves gadget developers from having to consider it in every gadget they write.

2. GenerateGadgetXML then loads the asset that corresponds to the passed c
(FW_CSGadget) and cid (id of ListGadget) and looks up its
descriptortemplate value.

3. GenerateGadgetXML invokes the template in the descriptortemplate field
(FW_CSTemplate/G_List in the case of the List Gadget), passing it the same c and
cid as in step 2.
Notice that the G_List template is in itself not externally callable (its SiteCatalog
entry’s pageletonly field is set to T). This setting prevents these templates from
being called directly (for example, in cases where they are not designed to be called).

Note
Together, the c and cid point to a specific asset in the Content Server system.
Parameter c is the type of asset and cid is the identifier of the asset. This
information is required whenever a template is invoked.
Gadget Server 1.1 Developer’s Guide

Chapter 2. Template Flow

Template Flow for the List Gadget
17
4. The called template, G_List, outputs the entire body of the gadget descriptor XML.
At this point, the gadget descriptor XML is complete.

Once the gadget is rendered based on its descriptor XML, the gadget retrieves its content.
Figure 4 illustrates how the List Gadget retrieves content. This process varies, depending
on the gadget. The List Gadget retrieves articles from Content Server via the following
JavaScript output by the G_List template (this line of code calls a Google Gadgets API
function):

gadgets.io.makeRequest(url, handleJson, params);

The G_List template crafts an additional Content Server URL, pointing to this gadget's
DataAsset (in this case a Recommendation), via the G_JSON template for that asset
type. That URL is eventually fed to the gadgets.io.makeRequest function, which can
be used to make additional remote server calls expecting various forms of data such as
XML, JSON, or even Atom/RSS. This request initiates the process of retrieving content.

Figure 4: Retrieving content

1. Gadget code in the XML body invokes the AdvCols/G_JSON template and prepares
the beginning of a JSON response. Since Recommendations contain lists of other
assets, the template simply begins the output of a JSON array, then loops through the
list of assets, expecting to call a respective G_JSON template on each.

2. In the case of the List Gadget, all of the children are Content assets, so Content_C/
G_JSON is invoked for each asset in the Recommendation. For each invocation, the
Content_C/G_JSON template outputs a complete JSON object representation
containing relevant fields of the asset.

Note
Appendix A, “Analyzing Gadget Descriptor XML Files provides information
about the features of the descriptor XML. The template code itself contains
comments illuminating important concepts. See “Before You Begin,” on
page 6 for links to additional resources regarding the authoring of gadget
descriptor XMLs.
Gadget Server 1.1 Developer’s Guide

Chapter 2. Template Flow

Differences in Template Flow
18
3. In between individual Content_C/G_JSON calls, AdvCols/G_JSON outputs a
comma to properly delimit objects in the array it is constructing. After the loop is
completed, the AdvCols/G_JSON template closes the array.

4. This array is received by the gadget code (gadgets.io.makeRequest, page 17),
which then executes the handleJson callback function as prescribed by the original
makeRequest call. The handleJson function wraps the content in HTML, which
renders that gadget’s view (a list view in this example).

Differences in Template Flow
The previous section illustrated template flow for the List Gadget. While template flows
for the other sample gadgets are very similar, differences in their Content Server template
logic are worth noting.

ThumbList and Slideshow
Gadget rendering follows a path in Content Server that is very similar to the path of the
List Gadget. The main difference is what is invoked by the AdvCols/G_JSON template.
While the List Gadget references a Recommendation filled with Content assets, the
ThumbList and Slideshow gadgets reference a Recommendation containing Product
assets. These gadgets also inspect attributes specific to the response of the Product_C/
G_JSON template (which includes data produced by the Media_C/G_JSON template).

RSS
The RSS Gadget’s second request is fired straight to the URL of the RSS feed, which may
or may not be on Content Server. The URL is read from the associated FW_RSS asset,
which is loaded within the G_RSS template.

Why Server Calls are Done Separately
You may be asking why an additional server call is always involved. For instance, why not
simply retrieve all of the articles for the List Gadget from the G_List template itself? The
answer to this is twofold:
1. Gadget descriptor XML may be expected to be cacheable by the gadget container.

This means that developers should avoid embedding volatile data in the XML.
2. An additional server call helps to separate presentation logic (for example, in G_List)

from the underlying model (in the asset types’ G_JSON templates).
Gadget Server 1.1 Developer’s Guide

19
Chapter 3

Creating Your Own Gadgets
• Creating Gadgets on Different CM Sites
• Custom Gadgets
• Prerequisites for Registering Gadgets
Gadget Server 1.1 Developer’s Guide

Chapter 3. Creating Your Own Gadgets

Creating Gadgets on Different CM Sites
20
Creating Gadgets on Different CM Sites
The sample gadgets must be enabled on FirstSite II. Developers will be interested in
creating gadgets on different CM sites. The following steps outline the steps for enabling
gadget support on additional CM sites:
1. Enable the FW_CSGadget asset type and its start menu items on the CM site. (By

default, the start menu items are accessible to users with the Designer, Site Admin, or
General Admin role.)

2. Share the following Template assets to the site:
FW_CSGadget/GenerateGadgetXML and FW_CSGadget/ListSiteGadgets
(If you are reusing the sample gadgets, share their templates from FirstSite II, enable
the relevant asset types, and if necessary share the assets. For example, if you are
reusing the RSS Feed Gadget, share the FW_CSGadget/G_RSS Template asset from
FirstSite II and enable the FW_RSS asset type.)

Custom Gadgets
In addition to having a knowledge of sample gadget architecture, it is helpful to see what
types of Content Server based gadgets can be created. This section outlines the
requirements for creating different types of gadgets.

New Gadget, Content Server Generates Only XML
You may want to create a new gadget where the only additional content is from another
website. The RSS Feed Gadget is an example of a gadget that functions in this way. See
“RSS Feed Gadget,” on page 14.
Requirements in this scenario are:
• A gadget of type FW_CSGadget referencing the template and asset listed below.
• FW_CSGadget template that generates the body of the gadget descriptor XML (for

example, FW_CSGadget/G_RSS).
• An asset that specifies the URL to be requested in the gadget.

New Gadget, Content Server Generates XML and Fields
Additional Requests

In this scenario, you will populate a gadget with content directly from one of Content
Server’s CM sites. The List, ThumbList, and Slideshow gadgets are examples of gadgets
that function in this way. See Figures 3 and 4.
Requirements in this scenario are:
• A gadget of type FW_CSGadget referencing the template and asset listed below.
• FW_CSGadget template (such as G_List) for rendering the body of the gadget

descriptor XML.
• Template(s) for rendering data to be returned in response to the additional requests

made by the gadget code (for example, the G_JSON templates included with the
sample gadgets).

• Assets to be referenced by the gadget (or its additional requests).
Gadget Server 1.1 Developer’s Guide

Chapter 3. Creating Your Own Gadgets

Prerequisites for Registering Gadgets
21
Same Gadget Logic, Different Content
You can create gadgets that have the same functionality but pull different sets of content.
Requirements in this scenario are:
• An FW_CSGadget asset that references a pre-existing FW_CSGadget template.
• Assets that provide the gadget with content.

Prerequisites for Registering Gadgets
For gadgets to be recognized by Gadget Server, they must be registered (typically by
administrators of the Gadget Server application). A gadget is accessed via the Content
Server URL that generates the gadget descriptor XML. This URL can be quickly obtained
for every FW_CSGadget asset on the content management site by querying the
FW_CSGadget/ListSiteGadgets template. The template can be easily accessed in one
of the following ways:
• In the Content Server Advanced interface, preview any FW_CSGadget on the site. In

the InSite window, select ListSiteGadgets from the “Template” drop-down menu.
- Or -
• Open a browser and navigate directly to http://<host>:<port>/<application

context>/wem/<sitename>/FW_CSGadget/ListSiteGadgets (where host,
port, and application context correspond to the Content Server installation,
and sitename is the name of the content management site where the gadget exists).

The list of sample gadgets and their corresponding URLs is shown in the following figure.
Gadget Server 1.1 Developer’s Guide

Chapter 3. Creating Your Own Gadgets

Prerequisites for Registering Gadgets
22
Gadget Server 1.1 Developer’s Guide

23
A p p e n d i x A

Analyzing Gadget Descriptor XML Files
Each gadget is defined by a descriptor XML. This appendix provides information about
the parameters defined in the descriptor XMLs of the sample CS-Based gadgets.
This appendix contains the following:
• Sample RSSFeed Gadget
• Sample List Gadget
Gadget Server 1.1 Developer’s Guide

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample RSSFeed Gadget
24
Sample RSSFeed Gadget
A gadget’s descriptor XML contains all the data defined for the gadget within the Module
tag. This tag holds information about the gadget’s dependencies, user preferences (if any),
appearance settings, functionality, and so on.
This section analyzes CS-Based gadget asset descriptor XML files, using code snippets
from the sample RSSFeed gadget as an example.

Analyzing the code of the RSSFeed Gadget’s Descriptor XML File

These lines specify the properties and dependencies of the gadget:
<ModulePrefs title="FatWire RSS" height="350">

screenshot="http://localhost:8100/cs/FirstSiteII/gadgets/RSS/
screenshot.png"

thumbnail="http://localhost:8100/cs/FirstSiteII/gadgets/RSS/
thumbnail.png">

<Require feature="dynamic-height"/>
</ModulePrefs>

The following lines define the gadget’s user preferences, which are values for the gadget
that visitor’s can modify. In this code snippet, visitors will be able to select the amount of
news feeds that the RSSFeed gadget displays at one time:
<UserPref name="max" display_name="Number of Items"

datatype="enum" default_value="5">
<EnumValue value="1" display_value="1"/>
<EnumValue value="3" display_value="3"/>
<EnumValue value="5" display_value="5"/>
<EnumValue value="10" display_value="10"/>

</UserPref>

The Content tag contains all of the content for the RSSFeed gadget’s descriptor XML
file, including the gadget’s CSS file, which defines the gadget’s appearance, and the
gadget’s JavaScript (contained within the <script> tag), which specifies the interactive
components and initialization functionality of the gadget.
For example, the CSS file defined within the RSSFeed gadget’s Content tag looks as
follows:
<style type="text/css">
/* === generic styles === */
body #container {

padding: 15px;
padding-bottom: 5px; /* 5 plus 10 from bottom-most entry */
margin: 0;

}
body #container * {

padding: 0;
margin: 0;
font-size: 11px;
font-family: Tahoma,Arial,Helvetica,sans-serif;
color: #666;

}
body #container a, body #container * a {

text-decoration: none;
Gadget Server 1.1 Developer’s Guide

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample RSSFeed Gadget
25
color: #555;
}
body #container a:hover, body #container * a:hover {

color: #3b9cce;
}
.error {

background-color: #fcc;
color: #c00;

}
/* === gadget-specific styles === */
#container .list {

padding-left: 1em; /* provide proper indentation space for
bullets */

}
#container .list li {

padding-bottom: 10px;
}
#container .headline {

font-weight: bold;
}
</style>
Gadget Server 1.1 Developer’s Guide

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample List Gadget
26
Sample List Gadget
The sample List Gadget supports the OAuth protocol. A gadget with OAuth support
contains an OAuth section within the ModulePrefs tag of its descriptor XML. This tag
specifies the following three endpoints related to OAuth operations:

Gadget Server sets pre-defined, system-level, gadget preferences in the List Gadget’s
descriptor XML. These preferences are only available to gadgets using Gadget Server’s
OAuth Service Provider:

The rest of this section analyzes code snippets from the sample List Gadget’s descriptor
XML that pertain to OAuth functionality.

Analyzing OAuth parameters within the sample List Gadget’s code snippets

The <ModulePrefs> tag includes “oauthpopup” as a required feature to demonstrate
OAuth support for this gadget:
<ModulePrefs title="Latest News" height="350">

<Require feature="dynamic-height"/>
<Require feature="oauthpopup"/>

These lines define the OAuth section, which is contained in the ModulePrefs tag:
<OAuth>

<Service name="gs">
<Request url="http://10.120.19.25:8480/user-service/

request_token"/>
<Access url="http://10.120.19.25:8480/user-service/

access_token"/>

Table 1: OAuth URL endpoints

URL Type Description

Request Token URL Initiates the authentication process by the gadget and issues
the request token. The request token is a temporary token
which is active only during the authentication phase. As soon
as the visitor’s credentials are validated and she is logged in,
the request token is exchanged for an access token.

Access Token URL Retrieves the access token in exchange for the request token.

Authorization URL The location that will be opened in a pop-up window to
display the authentication form.

Table 2: Pre-approved request tokens

Parameter Description

gs_request_token The pre-approved token that is passed to the gadget. The
gadget can use this to start an OAuth session. It is a short-
lived, single-use token with a 30 second lifespan.

gs_request_token_secret The secret for the pre-approved request token, which is also
needed to start the OAuth session.
Gadget Server 1.1 Developer’s Guide

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample List Gadget
27
<Authorization url="http://10.120.19.25:8480/user-service/
authorize?oauth_callback=
http%3A%2F%2F10.120.19.25%3A8480%2Fgas-
os%2Fgadgets%2Foauthcallback&gateway=false"/>

</Service>
</OAuth>

This line, located within the fetchData JavaScript function, specifies the URL to which
OAuth requests fire:
var url = userServiceUrl + "/echo?siteId=" +

prefs.getString("gs_site_id");

These lines specify information about the nature of the request. Gadget Server behaves
accordingly based on these values. The OAUTH_SERVICE_NAME parameter specifies the
service, defined in the <OAuth> section, from which data is requested:
var params = {};
params[gadgets.io.RequestParameters.CONTENT_TYPE] =

gadgets.io.ContentType.JSON;
params[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.AuthorizationType.OAUTH;
params[gadgets.io.RequestParameters.METHOD] =

gadgets.io.MethodType.GET;
params[gadgets.io.RequestParameters.OAUTH_SERVICE_NAME] = "gs";

This line loads the pre-approved request token. Pre-approved request tokens are valid only
once:
var requestToken = prefs.getString("gs_request_token");

These lines specify the pre-approved request token. For more information about the
request tokens, see Table 2:
params[gadgets.io.RequestParameters.OAUTH_REQUEST_TOKEN] =

requestToken;
params[gadgets.io.RequestParameters.OAUTH_REQUEST_TOKEN_SECRET] =

prefs.getString("gs_request_token_secret");
params[gadgets.io.RequestParameters.OAUTH_USE_TOKEN] = "always";

The remaining code in the fetchData function makes a request to the OAuth Service
Provider, and defines the callback function which will handle the response once it is
received:
gadgets.io.makeRequest(url, function (response){...},params)

The if conditions within the callback function define the three possible outcomes when a
request is made and the OAuth signature is enabled:
• If authentication is needed, the response object contains an oauthApprovalUrl

property, which can be used to open the authentication pop-up window containing the
login form.
if (response.oauthApprovalUrl) {
var onOpen = function () {
showOneSection('waiting');
};
var onClose = function () {
fetchData();
};
Gadget Server 1.1 Developer’s Guide

Appendix A. Analyzing Gadget Descriptor XML Files

 Sample List Gadget
28
var popup = new gadgets.oauth.Popup(response.oauthApprovalUrl,
null, onOpen, onClose);

$('personalize').onclick = popup.createOpenerOnClick();
$('approvaldone').onclick = popup.createApprovedOnClick();
showOneSection('approval');
}

• If the authentication is successful or the visitor has already been authenticated, the
response object contains the data property. The data property contains the server’s
response for the requested URL.
else if (response.data) {
var res = response.data;
$('main').innerHTML = "<div><div style='display:inline;'><img

height='50' src='" + userServiceUrl + res.userpicurl + "'/
></div><div style='margin-left:20px;display:inline;font-
size:14pt;font-weight:bold;'>Hello, " + res.displayname +
"</div></div>";

showOneSection('main');

This line clears the actual gadget’s content and (re-)issues the request for the gadget’s
data, now that the user is authorized:
$('container').innerHTML = "";
makeRequest();
}

• These lines specify the oauthError property which is populated if there is an OAuth
protocol error:
else {
var errmsg = document.createTextNode('OAuth error: ' +

response.oauthError);
$('main').appendChild(errmsg);
showOneSection('main');
}

Gadget Server 1.1 Developer’s Guide

	Gadget Server
	Developer’s Guide
	Contents
	Introduction
	Before You Begin
	Gadget Specifications
	Asset Model and Templates
	Sample Assets
	Auxiliary Files
	OAuth Protocol

	Sample Gadgets
	List Gadget
	ThumbList Gadget
	Slideshow Gadget
	RSS Feed Gadget

	Asset Structure

	Template Flow
	Template Flow for the List Gadget
	Differences in Template Flow
	Why Server Calls are Done Separately

	Creating Your Own Gadgets
	Creating Gadgets on Different CM Sites
	Custom Gadgets
	New Gadget, Content Server Generates Only XML
	New Gadget, Content Server Generates XML and Fields Additional Requests
	Same Gadget Logic, Different Content

	Prerequisites for Registering Gadgets

	Analyzing Gadget Descriptor XML Files
	Sample RSSFeed Gadget
	Sample List Gadget

