Endeca Content Assembler API

Developer's Guide for the RAD Toolkit for ASP.NET
Version 2.1.3 « March 2012

ORACLE
ENDECA

Contents

[(=] = To TP PP TTRTRPPPO 7
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 7
WHhO ShOUId USE thiS QUIAE.uueeiieiiie et e e e e e e s e s s r e e e e aee e e s e s s sberaeaeeeeaaeeeeesannnnns 7
Conventions USEd N thiS QUIE.........oi it e st e e st e e s aanneees 8
Contacting Oracle Endeca CUSIOMEr SUPPOIT......ciuuiueiiiiieeteaaeeee ettt et e e e e e e e s e s saibbbeeeeeeaaaaeeesasaaannsreeseees 8
Chapter 1: Introduction to the Content Assembler API.................cooo... 9
Overview of the Content ASSEMDIET APooiiiiiii e sn e 9
Content ASsembler AP COMPONENTS. ...ttt e et e e e e sbbe e e e e enenes 10
Overview of the Content Assembler reference application.............c.uuuviiiiiiiii e 11
About handling dYNAmMIC CONTENL..........ciiiiii i e e e e e s e s s e e e e e e e e s e e snenrrneeeees 11
The reference application model for dynamic CONLENT...........oocuuiiiiiiiiiiiieiie e 12
List of reference appliCation CartridgES.oovueiiiiiiiiiii et 13
Connecting to a different MDEX ENQINE.......cociiiiiiiiiiiieiiee et 15
About skinning the reference appliCation..............uveiiiiiiii e 15
Chapter 2: Working with the Content Assembler API..........ccccccooooeee. 17
Writing applications with the Content ASSEMDIEr AP i e 17
About using the Content Assembler with the RAD Toolkit for ASP.INETcccccviiiiiiieeeee e, 17
Creating a ContentNavigationDataSource CONIOlcooiiiiiiiiiiiiie e 17
About implementing custom trigger CONAItIONS.........coiiiiiar i 18
About content XML VAIOALION.ueiiiiiii ettt 21
Building cartridges to render template-based CONLENL...........oocuiiiiiiiiiiie e 21
About Working With CONtENT IIEIMS.......ooi e e e e e e e 21
Using the Content Assembler reference application CONtrolS...........ccuvvieiieieeeeii e 22
Writing user controls to render dynamiC CONENTocuuiiiiiiiiiiee et 22
About rendering customized navigation reflneMENTS..........ooi i 24
About rendering customized reSUItS lISES.........c.c.uuiiiiiiiiiie e 24
WY o To 10 Ao 1] (] g 174=To I =] L PP 25
AbOUL renNdering FECOI lISTS.ttt e nbeeeeeeas 26
Generating SEE-All IINKS.........uuuiiiiiiiiee s e s e nb et rrreaeaaaeaeas 27
About the DynamicContentPlaCeHOIAEN............coiiiiiiiiii e 28
Using the DynamicContentPlaceHolder to render PageS........cooiioiuiiiiiiiiiiiiee e 28
Using the DynamicContentPlaceHolder to render cartridge Content............ccccoeeveiiiviiiieeieeeee e, 29
About using the RAD Toolkit for ASP.NET server controls with the Content Assembler..............ccccoeeeneee 30
Using the Content Assembler API for programmatiC QUEIYINGeeeeieeeeaiiiiiiiiiiiiiie e e e e e e e e e 32
Chapter 3: Extending the Content Assembler with Tag Handlers........ 35
About tag handlers in the CoNtENt ASSEMDIET...........uuiiiiii e a e e e e 35
Scenarios for extending Experience Manager and the Content Assembler..........cccccvvvvevieeee e, 36
Life cycle of @ Content ASSEMDIET QUETY........iii ittt ettt e st e e e s annne s 37
ClASS OVEIVIBW. ...ttt ettt ettt sttt s et ee s et e e e st e e e e e b et e e e e s b e e e e e e sb et e e e e sn e e e e e ennes 38
Implementing the tag handler INTEITACE...........oo i 38
Resources managed by the ContentContext ODJECT...........uuiiii i 39
About invoking other tag NandIErS...........oooeeeiiiii e e e e 40
Integrating a tag handler into the Content ASSEMDIET..........ocuiiiii i 41
RegiStering @ tag NANAIET........couiiiii et e e 42
Standard tag handlers in the Content ASSEMDIE..........uuuriiiiieii e 42
About the sample tag NANGIET...........e i et e e st e e e s sbaeeeeeanes 43
Installing the sample tag NANGIET............iiii e 44
About extending the Content Assembler to validate custom XML............coooviiiiiiiiiiiiiiiire e 44

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Guided Search is the most effective way for your customers to dynamically explore
your storefront and find relevant and desired items quickly. An industry-leading faceted search and
Guided Navigation solution, Oracle Endeca Guided Search enables businesses to help guide and
influence customers in each step of their search experience. At the core of Oracle Endeca Guided
Search is the MDEX Engine,™ a hybrid search-analytical database specifically designed for
high-performance exploration and discovery. The Endeca Content Acquisition System provides a set
of extensible mechanisms to bring both structured data and unstructured content into the MDEX Engine
from a variety of source systems. Endeca Assembler dynamically assembles content from any resource
and seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes the major tasks involved in developing an Endeca application using the Content
Assembler API for the RAD Toolkit for ASP.NET.

This guide assumes that you have read the Oracle Endeca Experience Manager Getting Started Guide
and that you are familiar with Endeca’s terminology and basic concepts.

This guide covers only the features of the Content Assembler API for the RAD Toolkit for ASP.NET,
and is not a replacement for the available material documenting other Endeca products and features.
For a list of recommended reading, please refer to the section "Who should use this guide.”

Who should use this guide

This guide is intended for developers who are building Endeca applications using the Content Assembler
API for the RAD Toolkit for ASP.NET.

8 | Preface

If you are a new user of Oracle Endeca Guided Search or Oracle Endeca Experience Manager and
you are not familiar with developing Endeca applications, Oracle recommends reading the following
guides prior to this one:

1. Oracle Endeca Experience Manager Getting Started Guide
2. Endeca Basic Development Guide

3. Endeca Advanced Development Guide

4. Endeca RAD Toolkit for ASP.NET Developer's Guide

5. Oracle Endeca Experience Manager Developer's Guide

If you are an existing user of Oracle Endeca Guided Search or Oracle Endeca Experience Manager
and you are familiar with developing Endeca applications, Oracle recommends reading the following
guides prior to this one:

1. Oracle Endeca Experience Manager Getting Started Guide
2. Endeca RAD Toolkit for ASP.NET Developer's Guide
3. Oracle Endeca Experience Manager Developer's Guide

@J Remember: All documentation is available on the Oracle Technology Network (OTN).

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Endeca Customer Support

Oracle Endeca Customer Support provides registered users with important information regarding
Oracle Endeca software, implementation questions, product and solution help, as well as overall news
and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support
at https://support.oracle.com.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

https://support.oracle.com

Chapter 1
Introduction to the Content Assembler API

This section provides an overview of the Content Assembler API for the RAD Toolkit for ASP.NET and
the associated reference application.

Overview of the Content Assembler API

The Content Assembler API for the RAD Toolkit for ASP.NET extends the Endeca RAD Toolkit for
ASP.NET to enable access to dynamic page content and is used in conjunction with other Endeca
APIs to build configurable Web applications.

The Content Assembler APl is designed primarily for search and navigation queries and returns
dynamic content if any dynamic pages are triggered by those queries. The Content Assembler API
uses the RAD Toolkit for ASP.NET to query the MDEX Engine and provides convenient methods for
accessing the content tree that is returned as part of the query results. This content tree reflects the
page configuration created by a content administrator in Experience Manager. The tree may contain
results from additional queries executed by the Content Assembler that are used to populate page
sections based on the configuration returned for the initial query.

Because the Content Assembler uses classes from the RAD Toolkit for ASP.NET such as Naviga-
tionDataSource and NavigationCommand, all queries to the MDEX Engine can be sent through

10

Introduction to the Content Assembler API | Overview of the Content Assembler API

the Content Assembler API. You can use regular RAD Toolkit methods to access and process query
results. Note that only search or navigation queries that trigger a dynamic page return a content tree.

In addition, an Endeca application built with the Content Assembler API can also use the URL
Optimization API, available as part of the optional Search Engine Optimization Module. The URL
Optimization API also works with the RAD Toolkit for ASP.NET to enable developers to create
application links using directory-style URLs with embedded keyword metadata.

Applications built on top of the MDEX Engine version 6.1 or later can also leverage the MDEX API
through XQuery, available as part of the Advanced Query Module. There is no explicit support for
XQuery within the current version of the Content Assembler; that is, the Content Assembler does not
use the MDEX API through XQuery to process queries to the MDEX Engine. However, XQuery for
Endeca enables developers to extend MDEX Engine functionality through custom XQuery modules.

Content Assembler APl components

The Content Assembler API for the RAD Toolkit for ASP.NET provides some additional classes and
controls for accessing and rendering dynamic page content.

The Content Assembler API includes the following additions to the RAD Toolkit for ASP.NET:

Endeca.Data.Content namespace

Class or Interface Description

IContentltem Defines a content item that represents the dynamic page content
configured in Experience Manager. Content items contain a
collection of IProperty objects that may include child content

items.
IContentltenList A list of content items.
IProperty Represents a property defined in the template and configured

by the content administrator.

Endeca.Data.Content.Navigation namespace

Class or Interface Description

NavigationContentltemCreator | Generates content item objects from a RAD Toolkit for ASP.NET
NavigationCommand and NavigationResult.

INavigationRecords Used for rendering results lists from a NavigationRecords
property that has been configured in Experience Manager,
including custom sort, relevance ranking, and records-per-page
behavior.

IRecordListProperty Used for rendering results lists from a RecordList property
that has been configured in Experience Manager, including
information to create "see-all" links.

The ContentNavigationDataSource control

The Content Assembler APl includes a new server control. The ContentNavigationDataSource
extends the NavigationDataSource control to enable access to dynamic page content.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Introduction to the Content Assembler API | Overview of the Content Assembler reference application 11

Reference application controls

In addition, the following utility controls are included (along with full source code) in the Content
Assembler reference application:

« The DynamicContentPlaceHolder dynamically loads other user controls in order to render
template-based content.

« The IContentControl interface defines a content item-aware user control for rendering section
content.

Endeca.Data.Content.Assembler namespace

In addition to the components listed above, the classes in this namespace provide access to core
Content Assembler functionality that you can use to extend the Content Assembler. For more
information, see "Extending the Content Assembler with Tag Handlers" in this guide.

Overview of the Content Assembler reference application

The Content Assembler reference front-end application demonstrates best practices for using the
Content Assembler API to develop configurable applications.

The Content Assembler reference application and sample project is designed to show a typical approach
to building cartridges -- that is, templates and their associated rendering code -- and demonstrate how
the configuration specified by the content administrator in Experience Manager can affect the display
of content in the front-end application. The templates and application code are based on Ul best
practices developed by Endeca specifically for Guided Navigation applications.

Unlike other Endeca reference applications, the Content Assembler reference application is not intended
as a general-purpose data navigator. In order to show realistic examples of cartridge development,
the reference application is closely tied to the sample wine data project that is provided with the Content
Assembler. For this reason, it is not intended as a generic preview application for the Experience
Manager in Endeca Workbench.

The reference application may be used as a starting point for your own application code. You can
customize it to suit your data and business requirements and extend its functionality as needed.

About handling dynamic content

Your application should contain logic to iterate through the content tree returned by the Content
Assembler and pass the embedded content items to the appropriate code for rendering.

Recall that the structure of the templates you provide in Experience Manager determines the structure
of the content in the page configuration. Templates enable you to specify <Contentltem> or <Con-
tentltemList> elements that serve as place holders for the content configured by the content
administrator. The diagram below shows an example of a fully configured dynamic page.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

12

Introduction to the Content Assembler API | Overview of the Content Assembler reference application

ThreeColumnMavigationPage
Header LeftColumn CenterColumn Right Column Footer
?
Site Banner Search Bar Search Adjustments Results List Footer links
I @ © @
Breaderumbs Guided Mavigation Free Shipping Cava Image Cava Proma Highly Recommeandad

In this example, each orange dot represents a content item while the gray dots (such as Header and
LeftColumn) represent content item lists. You can use both content items and content item lists in your
templates, but generally only content items are actually rendered.

Because the template dictates the number and type of properties in a content item, you can write
rendering code that is closely tailored to handle the content items based on a particular template.
There are several ways that you can then match the content items in the content tree to the appropriate
rendering code, for example:

* inspecting the Templateld of the content item

* using a haming convention based on the template id

* using a string property in the template that specifies the name of the class to use for rendering
content items based on the template

Content Assembler reference application for the RAD Toolkit for ASP.NET uses a mapping between
the template id and the rendering code, specified in the site's Web . config file.

The reference application model for dynamic content

In the Content Assembler reference application for the RAD Toolkit for ASP.NET, the DynamicCon—
tentPlaceHolder manages the logic of finding the appropriate control to handle each content item.

The DynamicContentPlaceHolder is a data-bound control that automatically loads a user control
to handle nested cartridge content based on the template id and the mapping specified in the site's
Web.configfile.

The following example from Web . config shows the format of the mapping that is used by the Dy
namicContentPlaceHolder between the template id and the path to the class designed to render
cartridges based on that template.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASPNET Endeca Confidential

Introduction to the Content Assembler API | Overview of the Content Assembler reference application 13

The class specified here is the class that is initially loaded to handle the content item. In some cases,
the content is then passed to another class for the actual rendering. See GuidedNavigation.ascx
and ResultsList._ascx for examples

<configuration>
<configSections>
<!- additional elements not shown in this exanple -->
<sectionGroup name="content.config"
type=""ContentRef.Config.ContentConfigSectionGroup'>
<section name="templateHandlers"
type=""ContentRef.Config.TemplateHandlersSection'"/>
</sectionGroup>
</configSections>
<!- additional elements not shown in this exanple -->
<content.config>
<templateHandlers>
<add templateld="Breadcrumbs™ handlerPath="~/Resources/ContentCon-
trols/Navigation/Breadcrumbs.ascx™ />
<add templateld="GuidedNavigation" handlerPath="~/Resources/Content-
Controls/Navigation/GuidedNavigation.ascx" />
<add templateld=""ImageBox" handlerPath=""~/Resources/ContentControls/Ba-
sics/Image.ascx" />
<add templateld="ThreeRecordBox" handlerPath="~/Resources/ContentCon-
trols/Spotlights/ThreeRecordBox.ascx" />
<add templateld=""TextBox" handlerPath=""~/Resources/ContentControls/Ba-
sics/Text.ascx" />
<add templateld="SearchAdjustments" handlerPath="~/Resources/Content-
Controls/Search/SearchAdjustments.ascx" />
<add templateld=""DimensionSearchResults"™ handlerPath="~/Resources/Con-
tentControls/Search/DimensionSearchResults.ascx" />
<add templateld="ImageBanner"™ handlerPath="~/Resources/ContentCon-
trols/Basics/Image.ascx" />
<add templateld="0OneRecordBanner' handlerPath="~/Resources/Content-
Controls/Spotlights/OneRecordBanner.ascx" />
<add templateld="ResultsList™ handlerPath="~/Resources/ContentCon-
trols/Records/ResultsList._ascx™ />
<add templateld="TextBanner'"™ handlerPath="~/Resources/ContentCon-
trols/Basics/Text.ascx" />
<add templateld="ThreeRecordBanner' handlerPath="~/Resources/Content-
Controls/Spotlights/ThreeRecordBanner.ascx" />
<add templateld="ImageSiteBanner'™ handlerPath="~/Resources/Content-
Controls/Basics/Image.ascx' />
<add templateld="SearchBar" handlerPath="~/Resources/ContentCon-
trols/Search/SearchBar .ascx' />
<add templateld="ThreeColumnNavigationPage'" handlerPath="~/Re-
sources/ContentControls/Pages/ThreeColumnNavigationPage.ascx" />
</templateHandlers>
</content.config>
<!- additional elements not shown in this exanple -->
</configuration>

Note that the same code may be used to handle more than one template, if the properties defined in
the templates are sufficiently similar.

List of reference application cartridges

The reference application includes sample cartridges that enable configuration of a variety of front-end
features.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

14

Endeca Content Assembler API

Introduction to the Content Assembler API | Overview of the Content Assembler reference application

For implementation details, refer to the templates (located in your reference application deployment
at [appDir] \config\page builder_templates) and the rendering code (located in
C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for

ASP _NET\ver si on\reference\ContentAssemblerRefApp\Resources\ContentControls).

Template name

FullWidthContent-
ImageSiteBanner

FullWidthContent-
SearchBar

MainColumnContent-

DimensionSearchResults

MainColumnContent-
ImageBanner

MainColumnContent-
OneRecordBanner

MainColumnContent-
ResultsList

MainColumnContent-
SearchAdjustments

MainColumnContent-
TextBanner

MainColumnContent-
ThreeRecordBanner

Sidebarltem-
Breadcrumbs

Sidebarltem-
GuidedNavigation

Sidebarltem-ImageBox

Sidebarltem-TextBox

Sidebarltem-
ThreeRecordBox

Rendering code

Basics\Image.ascx

Search\SearchBar .ascx

Search\Dimension-
SearchResults.ascx

Basics\Image.ascx

Spotlights\OneRecord-

Banner.ascx

Records\Result-
sList.ascx

Search\SearchAdjust-

ments.ascx

Basics\Text.ascx

Spotlights\ThreeRe-
cordBanner.ascx

Navigation\Bread-
crumbs.ascx

Nsvigation\GuidedNav-

igation.ascx
Basics\Image.ascx

Basics\Text.ascx

Spotlights\ThreeRe-
cordBox.ascx

Description

Displays the site banner image with an
optional link

Displays the search bar.

Displays dimension search results. Content
administrators can configure whether or not
to display compound dimension search
results.

Displays an image banner with an optional
link.

Displays one record spotlight with an
image.

Displays search and navigation results in
a list view.

Displays search adjustment messaging
such as Did You Mean or spelling
correction.

Displays promotional text with a title and
an optional link.

Displays a three record spotlight banner.

Displays breadcrumbs appropriate to the
current refinement state.

Displays Endeca Guided Navigation with
configurable display of dimensions.

Displays an image with an optional link

Displays promotional text with a title and
an optional link.

Displays a three record spotlight box.

Note: Text.ascx in the reference application applies HTML escaping to the strings specified

by the content administrator in Experience Manager. If you want to allow content administrators
to enter HTML-formatted text in Experience Manager, create a separate cartridge with rendering
code that does not escape HTML strings.

The reference application also includes a page template named
PageTemplate-ThreeColumnNavigationPage, which controls the overall page content and
ThreeColumnNavigationPage.ascx (located in C:\Endeca\ContentAssemblerAPI1s\RAD

Developer's Guide for the RAD Toolkit for ASP.NET

Endeca Confidential

Introduction to the Content Assembler API | Overview of the Content Assembler reference application 15

Toolkit for
ASP .NET\2.0.0\reference\ContentAssemblerRefApp\Resources\ContentControls\Pages),
which controls the overall rendering of the page.

Connecting to a different MDEX Engine

By default the Content Assembler reference application attempts to connect to an MDEX Engine
running on localhost port 15000 (the default port in the sample wine deployment). If you are running
the MDEX Engine on a different host or port, you can update the configuration in the site's Web . config
file.

To specify a different MDEX Engine host or port:

1. Navigate to the location of the Content Assembler reference application. In a typical installation,
this is: C:\Endeca\ContentAssemblerAPIsS\RAD Toolkit for
ASP _NET\<version>\reference\ContentAssemblerRefApp.

2. Open the Web.config file and locate the following section:

<endeca>
<l - additional elenents not shown in this exanple -->
<servers>
<clear/>
<add name="Local" hostName=""localhost" port="15000" certificatePath="""/>

</servers>
</endeca>

To change the host name of the MDEX Engine server, update the value of the hostName parameter.
To change the port of the MDEX Engine server, update the value of the port parameter.

Save and close the file.

Restart IIS.

o oMW

About skinning the reference application

The styling of the reference application is implemented through external CSS style sheets, which can
be easily customized.

The style sheets are located in the reference/ContentAssemblerRefApp/css directory of your
Content Assembler API installation. In a typical installation, this is
C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for

ASP _NET\ver si on\reference\ContentAssemblerRefApp\css.

Each cartridge component (or type of component) in the reference application has a corresponding
style sheet that controls the appearance of that component.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

Chapter 2
Working with the Content Assembler API

This section provides information on working with the Endeca Content Assembler API classes and
server controls.

Writing applications with the Content Assembler API

This section describes how to use the Content Assembler API for the RAD Toolkit for ASP.NET to
query the MDEX Engine and access dynamic page content.

About using the Content Assembler with the RAD Toolkit for ASP.NET
The Content Assembler APl is used in conjunction with the RAD Toolkit for ASP.NET.

Use aContentNavigationDataSource in place of a NavigationDataSource to access content
results from the Content Assembler in addition to MDEX Engine record data.

If you are using the RAD API for programmatic querying, you can access content items from the results
of a NavigationCommand. The Content Assembler is not intended for use with records detail,
dimension search, or metadata queries.

Creating a ContentNavigationDataSource control

You create and configure a ContentNavigationDataSource control in order to provide dynamic page
content and MDEX Engine records to other controls in your Web site.

The ContentNavigationDataSource provides the same design time functionality to populate the other
controls (e.g. user interface controls) with Endeca record properties as a NavigationDataSource,
with the addition of the content items returned by the Content Assembler.

%
Note: For more information about configuring NavigationDataSource controls, see the Endeca
RAD Toolkit for ASP.NET Developer's Guide.

To create and configure an Endeca ContentNavigationDataSource control:

1. Open your Web site in Visual Studio.
2. In the Toolbox window, expand the Endeca RAD Toolkit tab.
3. Drag the ContentNavigationDataSource on to the Design tab of your Web page.

18 Working with the Content Assembler API | Writing applications with the Content Assembler API

4. From the smart tag, check Preview Endeca data to populate other controls you add later with
representative data from the MDEX Engine.

5. From the smart tag, select Configure Data Source....

6. On the Choose Endeca server screen, specify the host and port on which the MDEX Engine is
running.

7. At this point, you can either click Finish to finish configuring the data source, or you can click Next
to continue through the wizard and configure optional data source parameters and specify optional

Analytics query information. Adding data source parameters makes them available to other controls
on the page.

8. In the Properties window of Visual Studio, modify the properties for the data source control if
necessary. Many of the properties are set when you run the Configure Data Source... wizard.

a) Specify a value for the ContentRuleZone property. This property is required and corresponds
to the zone that is specified on the template for the dynamic pages that you want to access with
this data source.

In most cases you only need one zone for all your landing pages. Using multiple zones can
enable you to provide different perspectives on the same navigation state within your application.

The code generated on the Source tab is similar to the following:

<ccl:ContentNavigationDataSource
ID=""ContentNavigationDS1"
runat="'server"
MdexPort="7900"
MdexHostName=""smith-690"
ContentRuleZone="NavigationPageZone"
ContentValidation="false">
<PermanentRefinementConfigs>
<end:RefinementConfig DimensionValueld="3">
</end:RefinementConfig>
</PermanentRefinementConfigs>
</ccl:ContentNavigationDataSource>

About implementing custom trigger conditions

Because the Content Assembler API retrieves page content based on Endeca's dynamic business
rules functionality, pages can only be triggered on record-filtering dimension values, specific search
terms, a date range, or a single user profile identifier.

These limitations can make it difficult to handle certain scenarios such as the following:

« Search results pages. Dynamic pages are generally configured to display based on a navigation
trigger. This means however that the page for a particular location displays even if a user has
entered a search term on your Web site from that location. For example, you may have set up a
highly branded page to display as your site's home page (at location N=0) that does not include
any record results. This page displays even if a user has performed a search from the home page
location, unless a page has been configured specifically to trigger on that search term.

* Record offset pages. There is no simple way to explicitly trigger different content for the first page
of record results (at offset=0) and for subsequent pages, with different page configurations specified
by the content administrator in Experience Manager.

 Alternate views on the same navigation state. Use cases include A/B testing or toggling between
a product details view and a customer reviews view. By default, the Content Assembler API returns
a single content tree representing a dynamic page for any given navigation state or trigger condition.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Writing applications with the Content Assembler API 19

There are various approaches that can be used to handle these use cases:

« Filtering landing pages based on rule properties
« Using hidden dimensions

« Using multiple rule zones

« Using multiple user profiles

Any of these strategies can be applied to the scenarios listed above. They can also be used to
implement other custom trigger conditions that you may require. Which approach you use depends
on the scenario you are trying to address and the specifics of your application. For guidance on selecting
the appropriate option (or combination of options) and assistance with implementation, contact your
Endeca representative.

About filtering landing pages based on rule properties

If you specify custom rule properties in a page template, you can use those properties to exclude
certain landing pages from consideration by the MDEX Engine on a per-query basis.

Filtering based on rule properties can enable your application to implement more fine-grained trigger
functionality than is available in Experience Manager.

Because the rule properties for a dynamic page are set based on the properties specified within the
<Rulelnfo> element in the page template, the content administrator must have set up a page intended
for a particular trigger condition based on a template with the appropriate property. You can provide
information in the template id (for example, ThreeColumnPage-Search) or description to help
the content administrator select the appropriate template.

For the purposes of priority, pages based on templates with custom rule properties should be treated
as if they have more specific trigger conditions than the same page with no such properties. (In general,
pages with more specific triggering conditions should have higher priority than more generic pages.)

Because the Experience Manager preview functionality cannot replicate your custom logic for filtering
pages, the preview status messages may be misleading when you exclude certain pages from
consideration. However, if your preview application includes the appropriate logic, the correct page
displays in the preview pane even if the status messages indicate that a different page fired.

Use case: Search results

You can enable more robust handling of search results pages by creating a template that specifies a
custom rule property with a key such as search_results and a value of true. The content
administrator can then create search results pages based on this template. You can add logic to your
application to consider these pages only for search queries (that is, queries that include Ntt and Ntk
parameters). If there are no search parameters present, you can augment the query with a filter such
as Nmrf=not(search_results:true) before you pass it to the MDEX Engine via the Content
Assembler API.

For more information about working with rule properties, see "Promoting records with dynamic business
rules” in the Endeca MDEX Engine Advanced Development Guide.

About using hidden dimensions to trigger landing pages
You can create specialized dimensions in your application to expose additional trigger conditions.

This approach involves some additional work in your data pipeline to apply the dimension values to
the records. Once this is done, the content administrator can select the trigger condition in Experience
Manager using the same process as any navigation state.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

20 Working with the Content Assembler API | Writing applications with the Content Assembler API

Use case: Record offset

You can enable different landing pages based on record offset by creating a dimension such as Offset
with dimension values such as First Page and Next Pages. During the ITL process, apply both the
Offset > First Page and Offset > Next Pages dimension values to all records. The content administrator
can then set up pages for each trigger condition.

You can add logic to your application to augment the navigation filter (N parameter) based on the
record offset value (the No parameter).

For more information about working with dimensions, see the Endeca Platform Services Forge Guide,
Endeca MDEX Engine Basic Development Guide, and the Oracle Endeca Developer Studio Help.

About using multiple rule zones for landing pages

Using multiple zones can enable you to provide different perspectives on the same navigation state
within your application.

Because the zone for a page is set based on the zone attribute of the <RuleInfo> element in the
page template, the content administrator must have set up a page intended for a particular display
condition based on a template that uses the appropriate zone. You can provide information in the
template id or description to help the content administrator select the appropriate template for
each case.

Because the Experience Manager preview functionality does not limit the query to a single zone, the
preview status messages may be misleading when you use multiple zones. However, if your preview
application includes the appropriate logic, the correct page should display in the preview pane even
if the status messages indicate that more than one page fired.

Also note that although the Content Assembler API only retrieves the content tree from a specific zone,
the results from all zones with triggered content are returned as part of the query response, so excessive
use of multiple zones may lead to a noticeable increase in the size of the query response.

Use case: A/B testing

You can enable A/B testing scenarios by setting up different zones such as Control, VariableA,
VariableB, and so on. You then create different templates for each zone, and the content administrator
can create pages based on the different templates.

Your front-end application can set the zone for the content query based on various conditions for which
you want to expose different views on the data.

For more information about setting up rule zones for landing pages, see the Oracle Endeca Experience
Manager Developer's Guide.

About using multiple user profiles for custom trigger conditions
You can use the user profile functionality to provide different views on the same navigation states.

You can set up specialized user profiles to enable content administrators to set up different pages in
Experience Manager for different scenarios. However, if you are already using user profiles for other
purposes, this usage may interfere with other user profile triggers.

Use case: Different front-end sites backed by the same data

You can present different views on the same data by creating different user profiles in Developer
Studio such as SiteAUser and SiteBUser. In the Experience Manager, the content administrator can
set the user profile to use for each page.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 21

You can add logic to your application to add the appropriate user profile to the query by setting Navi-
gationCommand.UserProfiles in the query.

For more information about setting up user profiles, see the Oracle Endeca Developer Studio Help.
For more information about working with user profiles, see "Implementing User Profiles" in the Advanced
Development Guide.

About content XML validation

You can enable XML validation of page configurations by setting the ContentValidation property of
the ContentNavigationDataSource to true.

Validation can be useful in a testing environment for debugging purposes, particularly if templates are
changing often. Because of the performance impact of validating content XML, this option should never
be used in production. XML validation is disabled in the ContentNavigationDataSource by default.

Building cartridges to render template-based content

Cartridges consist of cartridge templates and their associated rendering code, allowing you to separate
the structure of dynamic page content from its presentation.

Building an ASP.NET application based on cartridges involves the following tasks:

« Writing user controls to render content items based on each template.

* For controls that render content items that contain nested content items, adding logic to load the
appropriate user control to render the nested content.

The examples in this section use the DynamicContentPlaceHolder and the IContentControl
that are included as part of the reference application. You can adapt the entire reference application,
or simply use these controls as a starting point for writing applications to render dynamic page content
and extend them with further functionality as needed.

About working with content items

You can access the 1Contentltem that contains dynamic page content from a ContentNaviga—
tionDataSource.

An IContentltem contains a KeyedCollection of IProperty objects. An IProperty can contain
any type of object returned by the MDEX Engine. The type of object depends on the property elements
specified in the template. Common object types include:

* bool

e string

e IContentltem

e IContentltemList

e INavigationRecords

e ReadOnlyCol lection<Record>

Because the properties are defined by the template on which a content item is based, you can access
the content properties directly based on the property name defined in the template. Typically, you
access a specific property value using Contentltem._Properties[''nane'].Value and castit to
the appropriate object type.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

22 Working with the Content Assembler API | Building cartridges to render template-based content

Using the Content Assembler reference application controls

The DynamicContentPlaceHolder and the 1ContentControl work together to allow you to
dynamically load user controls to render page content.

These controls are included as part of the reference application. You can use these controls as
components in your own custom applications and extend them with further functionality as needed.

To use the reference application controls in your application:

1. Open Windows explorer and navigate to the reference application directory. In a typical installation
this is C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP _NET\<ver si on>\reference\ContentAssemblerRefApp\

2. Navigate to the App_Code subdirectory.
3. Copy the following files to a directory of your choice within your Web site directory structure:
* ContentPathManager.cs
* DynamicContentPlaceHolder.cs
e IContentControl.cs
e Config\ContentConfigSectionGroup.cs
e Config\TemplateHandler.cs
e Config\TemplateHandlersSection.cs

When using a DynamicContentPlaceHolder, you must add the following line to your code:
<%@ Register TagPrefix="end" Namespace="'ContentRef" %>

If you modify the code and change the namespace of your custom DynamicContentPlaceHolder,
update this line accordingly.

Writing user controls to render dynamic content

User controls designed to render template-based content must implement the 1ContentControl
interface. This allows a DynamicContentPlaceHolder to load this control and pass a reference to
the content item it should render.

To create user control to render dynamic content:

1. Add the following includes at the top of your code:

using System._Web.Ul;
using Endeca.Data.Content;

2. Implement the 1ContentControl interface.
This example shows the code-behind for a basic implementation:

public partial class ContentUserControl : UserControl, IContentControl

{
public IContentltem Contentltem
{
get
{

return contentltem;

set

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 23

contentltem = value;

}

private IContentltem contentltem;

}

3. Inthe in-line code, access the properties of the content item for rendering.

For example, if you have the following properties defined in a cartridge template:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="'Sidebarltem" id=""TextBox">
<l-- additional elenents not shown in this exanple -->
<Contentltem>
<Name>New Text Box</Name>
<Property name="title">
<String/>
</Property>
<Property name="body"'>
<String/>
</Property>
<Property name="link_text'>
<String/>
</Property>
<Property name="link_href">
<String/>
</Property>
</Contentltem>
<l-- additional elenents not shown in this exanple -->
</ContentTemplate>

The code to render content items based on this template could look like the following:

<div class=""TextBanner'>
<div class="Title"><%# (string)Contentltem._Properties["title"]_Value
%></div>
<div class="Body'"><%# (string)Contentltem.Properties|["body']-Value
%></div>
<div class="Link">
<a href="<%# (string)Contentltem.Properties["link_href"]_Value %>">
<%# (string)Contentltem.Properties["link_text'"].Value %>

</div>
</div>

The following example shows a content item list property in a page template and how the corresponding
rendering code can display the results.

If the template (PageTemplate-ThreeColumnNavigationPage.xml) includes the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>
<!-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three-Column Navigation Page</Name>
<Property name=""left_column'>
<ContentltemList type="Sidebarltem" />
</Property>
<!-- additional elenents deleted fromthis exanple -->

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

24 Working with the Content Assembler API | Building cartridges to render template-based content

</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentTemplate>

The associated rendering code (ThreeColumnNavigationPage .ascx) may look similar to the
following:

<div id="LeftColumn">
<asp:Repeater runat="server" DataSource="<%#Contentltem.Proper-
ties["left_column'] .Value %>">
<ltemTemplate>
<I-- Dynamically include rendering code for each content item in the
list. -—>
<end:DynamicContentPlaceHolder runat="server' Contentltem="<%# Con-
tainer._Dataltem %>" />
</ltemTemplate>
</asp:Repeater>
</div>

About rendering customized navigation refinements

User controls designed to render customized navigation refinements must implement the 1Content-
Control interface to access the configured DimensionList values.

For example:

DimensionStatesResult refinements = (DimensionStatesResult)Contentltem.Prop—-
erties["refinements'].Value;

This code is equivalent to using the DimensionStatesResul t from a ContentNavigationData-
Source or a NavigationCommand, except that the dimensions returned reflect the content
administrator's configuration specified in Experience Manager.

4 Note: If you have precedence rules defined in your application, they still apply to the customized
DimensionList. This means that if the landing page definition specifies certain dimensions
for display that should not display for that navigation state (whether it is due to precedence rules
or because it is not a valid refinement), those invalid dimensions are not included in the Dimen-
sionList object.

The Content Assembler reference application provides a sample Endeca Guided Navigation cartridge
(including rendering code) that uses a navigation refinements property.

About rendering customized results lists

If you enable content administrators to customize the display of record results, the results object
returned by the Content Assembler API is different from the object returned by the RAD Toolkit for
ASP.NET.

Recall that you can specify a <NavigationRecords> property in a template with a <Navigation-
RecordsEditor> that enables a content administrator to specify sort order, relevance ranking, and
the number of records to display per page.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 25

To render the customized navigation results, retrieve the list of records from the navigation records
property, which is of type INavigationRecords. For example:
INavigationRecords navRecs =

(INavigationRecords) Contentltem.Properties['navigation_records'].Value;
ReadOnlyCollection<Record> recs = navRecs.RecordsResult.Records;

This code is equivalent to using the RecordsResult from a ContentNavigationDataSource or
a NavigationCommand, except that the records returned reflect the content administrator's
configuration specified in Experience Manager.

You can also use members of the INavigationRecords object as a data source. The Content
Assembler reference application provides a sample cartridge for rendering results lists, including
sample code for using members of INavigationRecords as a data source. Refer to the
MainColumnContent-ResultsList.xml template and the ResultsSet.ascx and
RecordsControl .ascx classes for more details.

The INavigationRecords object also exposes the following members with values based on the
modified query that is used to retrieve the customized results:

e ActiveSorts

« AggregateRecordsResult
e AggregationKey

« AggregationKeys

* RecordsResult

e SortKeys

When working with customized results lists, you must use the INavigationRecords members,
rather than the NavigationResults from the main ContentNavigationDataSource.

For example, when rendering a pager component for a customized record list, you should use
navRecs .RecordsResult.RecordsPerPage because the content administrator may have specified
a different number of records per page from the main query (which is reflected in NavigationRe-
sults_RecordsResult_RecordsPerPage).

For further details, refer to the Endeca API Reference for the Content Assembler API for the RAD
Toolkit for ASP.NET.

About customized results

The Content Assembler handles sort order, relevance ranking, and records-per-page customization
slightly differently than the RAD Toolkit for ASP.NET. See the sections below for details about how
the Content Assembler handles each configuration option.

The Content Assembler performs an additional query in order to retrieve the customized record results
from the MDEX Engine. If no custom behavior was specified in Experience Manager, no additional
query is made.

Sort order

The sort order specified by the content administrator in Experience Manager is used as a default. End
users of the Web application can override this setting if you enable a control for users to specify sort
order.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

26

Working with the Content Assembler API | Building cartridges to render template-based content

Relevance ranking

If the content administrator specifies both a sort order and a relevance ranking strategy for a single
landing page and the query that triggers the page contains a search, the Content Assembler passes
only the relevance ranking strategy on to the query to retrieve the customized navigation records. If
no search is present, both the sort order and the relevance ranking strategy are passed on to the
second query. In this case, the sort order overrides the relevance ranking.

The relevance ranking strategy specified by the content administrator for a landing page always
overrides any other relevance ranking setting (whether it is coded as default behavior in the application
or -- less typically -- specified by an end user).

Records per page

The NavigationRecordsEditor provides an optional interface for the content administrator to
specify the number of records to return per page for a given navigation state.

The case where a content administrator has configured a value for records per page and an end user
also specifies a value can lead to undefined and unexpected behaviors. For this reason, if you enable
configuration of records-per-page display in Experience Manager, it is not recommended that you
enable a control for end users to specify records per page in the application.

About rendering record lists

Record list properties represent the results of supplemental queries, for example, to populate promotions
or Content Spotlighting cartridges.

Properties containing record list values are returned as instances of IRecordListProperty, which
is a sub-interface of IProperty. Content administrators can designate either specific records or a
navigation query that returns records for spotlighting. An IRecordListProperty that is configured
to display specific featured records always returns a ReadOnlyCol lection<Record>.

%
Note: When a cartridge is configured to display specific featured records and any of the specified
record IDs are invalid, the Content Assembler API for the RAD Toolkit for ASP.NET returns only
the records that have valid IDs.

An IRecordListProperty thatis populated with a NavigationCommand returns either a ReadOn-—
lyCollection<Record>oraReadOnlyCol lection<AggregateRecord>, depending on whether
the NavigationCommand that triggered a landing page has the AggregationKey property set.

If you use rollup keys for aggregated records in your application, then you must check the type of list
being returned for any 1RecordListProperty in one of two ways:

« Check the type of the record list IProperty.Value to determine whether itis a ReadOnlyCol-
lection<AggregateRecord> or a ReadOnlyCol lection<Record>.

« Castthe IPropertytoan IRecordListProperty, and check the bool value of the Contain-
sAggregateRecords property.

Based on the type of list returned, your application must handle records or aggregated records as
appropriate.

If you prefer to render records rather than aggregated records for a Content Spotlighting cartridge on
a page with a rollup key, you can render a representative record from the list of constituent records.

For example, for each aggregated record, the application can retrieve the first constituent record in
the list as follows:

Record record = aggregateRecord.Records[0];

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 27

where aggregateRecord is the AggregateRecord object.

The Content Assembler reference application provides several sample spotlight cartridges that
demonstrate how to render a record list property.

Generating see-all links

You can provide front-end users with a "see-all" link to display the full results set of a navigation query
that was used to populate a spotlight cartridge.

The IRecordListProperty interface has additional public properties for the corresponding Navi-
gationCommand object that aids in creating see-all links.

%
Note: See-all links cannot be generated for record lists that are returned from record queries.
The NavigationCommand object is null when a record query is used to specify the record list.

In URL-based RAD.NET applications, the NavigationCommand object can be serialized using the
RAD.NET CommandSerial ization class that uses the application CommandSerialization-
Provider. The serialized command can then be used when forming the see-all link URL.

To create a see-all link:

1. Retrieve the record list IProperty object off an 1Contentltem.

IProperty property = contentltem.Properties|["products'];
NavigationCommand navigationCommand = null;
iT (property is IRecordListProperty) {

//Cast the Property to IRecordListProperty
IRecordListProperty recListProperty = (IRecordListProperty)property;

navigationCommand = recListProperty.NavCommand;

}

2. Check that the NavigationCommand is not null, then use the CommandSerialization class
to serialize the command.

//Check that the navigationCommand is not null:
it (navigationCommand !'= null) {

String serializedCommand = CommandSerialization.Serialize(navigation-
Command) ;

}

The serialized command can then be used to generate the link URL.

If you plan to construct URLs using the Ur IManager object from the RAD Toolkit for ASP.NET, please
refer to the RAD Toolkit for ASP.NET Developer's Guide for more information. To see an example
cartridge that uses a Ur IManager, refer to the ThreeRecordBannerSpotlightControl .ascx.cs
file located in the Resources\UserControls directory of your Content Assembler reference
application installation directory.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

28 Working with the Content Assembler API | Building cartridges to render template-based content

About the DynamicContentPlaceHolder

You use a DynamicContentPlaceHolder when rendering dynamic pages or any cartridges that
have nested content items within them.

The DynamicContentPlaceHolder is a data-bound control that automatically loads a user control
to handle nested cartridge content. Using the DynamicContentPlaceHolder class to render a
dynamic page, you would have a generic page that includes a ContentNavigationDataSource
and a single DynamicContentPlaceHolder to load the code that handles the actual rendering of
the page.

Related Links

Using the DynamicContentPlaceHolder to render pages on page 28
Because a content administrator chooses which template drives a page, you need to be able
to dynamically load the appropriate code to render them.

Using the DynamicContentPlaceHolder to render cartridge content on page 29
When working with content items that contain nested content items, you can use a Dynamic-
ContentPlaceHolder to load the appropriate user control to render the nested content.

Using the DynamicContentPlaceHolder to render pages

Because a content administrator chooses which template drives a page, you need to be able to
dynamically load the appropriate code to render them.

Typically, you will have a generic page that includes a ContentNavigationDataSource and a
single DynamicContentPlaceHolder to load the code that handles the actual rendering of the

page.
To render pages based on different templates:

1. Add and configure a ContentNavigationDataSource control.
2. Add a DynamicContentPlaceHolder and set the following properties:

Property Value
Dat aSour cel D The 1D of the ContentNavigationDataSource to use.
Dat aMenber The string ""Contentltem™.

The following example shows a simple ContentNavigationDataSource and a DynamicContent-
PlaceHolder that loads the appropriate code to render dynamic page content.

<%@ Register TagPrefix="end" Namespace="'ContentRef" %>

<end:DynamicContentPlaceHolder
ID=""content"
runat=""'server"
DataSourcelD=""dsNav""
DataMember="Contentltem" />

<end:ContentNavigationDataSource
ID=""dsNav"'
runat="'server"
MdexHostName="<%$ EndecaConfig:Servers.Servers['Local'].HostName %>"

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 29

MdexPort="<%$ EndecaConfig:Servers.Servers["Local"].Port %>"
ContentRuleZone="NavigationPageZone"
EnableExposeAl IRefinements=""true" />

Related Links

Using the DynamicContentPlaceHolder to render cartridge content on page 29
When working with content items that contain nested content items, you can use a Dynamic-
ContentPlaceHolder to load the appropriate user control to render the nested content.

About the DynamicContentPlaceHolder on page 28
You use a DynamicContentP laceHolder when rendering dynamic pages or any cartridges
that have nested content items within them.

Using the DynamicContentPlaceHolder to render cartridge content

When working with content items that contain nested content items, you can use a DynamicContent-
PlaceHolder to load the appropriate user control to render the nested content.

The DynamicContentPlaceHolder loads the control to render cartridges in the same way as it
loads the appropriate control to render dynamic pages. The only difference is that you do not need to
specify a DataSource ID or DataMember, as you are setting the data source via the Contentltem
property.

To use the DynamicContentPlaceHolder to render cartridge content:

1. Add a DynamicContentPlaceHolder and set the following property:

Property Value
Contentltem The Contentltem object that the loaded control should
render.

2. Repeat the previous step for each nested content item that the current content item can contain.
For example, if your template defines sections called LeftColumn, CenterColumn, and Right-
Column, you would add three DynamicContentPlaceHolder controls, one to handle each
nested content item.

The following example shows a page template and the corresponding user control that uses a Dynam-
icContentPlaceHolder to render cartridge content:

If the template (PageTemplate-ThreeColumnNavigationPage .xml) includes the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>

<I-- additional elements removed fromthis exanple -->
<Contentltem>

<Name>New Three-Column Navigation Page</Name>

<l-- additional properties renoved fromthis exanple -->

<Property name=""left_column’>
<ContentltemList type="Sidebarltem” />
</Property>
<Property name="'center_column'>
<ContentltemList type="MainColumnContent" />
</Property>
<Property name="right_column'>
<ContentltemList type="Sidebarltem” />

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

30 Working with the Content Assembler API | About using the RAD Toolkit for ASP.NET server controls
with the Content Assembler

</Property>
<I-- additional elements removed fromthis exanple -->
</ContentTemplate>

The code for the associated user control (ThreeColumnNavigationPage . ascx) may look similar
to the following:

<%@ Register TagPrefix="end" Namespace="'ContentRef" %>

<div class="LeftColumn®>
<asp:Repeater runat="'server" DataSource="<%#Contentltem.Proper-
ties["left_column'].Value %>">
<ltemTemplate>
<end:DynamicContentPlaceHolder runat="'server'" Contentltem="<%# Con-
tainer._Dataltem %>" />
</ltemTemplate>
</asp:Repeater>
</div>

<div id="CenterColumn'>
<div id="CenterContent'>
<asp:Repeater runat="server' DataSource="<%#Contentltem.Properties['cen-
ter_column™].Value %>">
<ltemTemplate>
<end:DynamicContentPlaceHolder runat="server' Contentltem="<%#
Container.Dataltem %>" />
</ltemTemplate>
</asp:Repeater>
</div>

<div id="RightColumn'>
<div id="CenterContent'>
<asp:Repeater runat="server" DataSource="<%#Contentltem.Proper-
ties["right_column'™].Value %>">
<ltemTemplate>
<end:DynamicContentPlaceHolder runat="server' Contentltem="<%#
Container._Dataltem %> />
</ltemTemplate>
</asp:Repeater>
</div>

Related Links

Using the DynamicContentPlaceHolder to render pages on page 28
Because a content administrator chooses which template drives a page, you need to be able
to dynamically load the appropriate code to render them.

About the DynamicContentPlaceHolder on page 28
You use a DynamicContentP laceHolder when rendering dynamic pages or any cartridges
that have nested content items within them.

About using the RAD Toolkit for ASP.NET server controls
with the Content Assembler

If you prefer not to use user controls similar to those in the Content Assembler reference application
to render certain Endeca features, you can use the RAD Toolkit for ASP.NET server controls. In this

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | About using the RAD Toolkit for ASP.NET server controls 31
with the Content Assembler

case, the way in which the data sources are passed to the server controls is slightly different from the
way it is normally done in the RAD Toolkit for ASP.NET.

To use server controls to render features on landing pages that may have customized navigation
refinements or results lists, you can use a content item member as a data source. The DataSource
is used to render the feature, while the NavigationDataSource D represents the overall navigation
state for the page to generate URLSs for any follow-on queries.

Guided Navigation

The following is a typical example in the RAD Toolkit for ASP.NET:

<ccl:GuidedNavigation
ID=""GuidedNavigationl™
runat="'server"
DataSourcelD=""dsNav'>

</ccl:GuidedNavigation>

The same example with the Content Assembler:

<ccl:GuidedNavigation

ID=""guidedNavigationServerControl"

runat="'server"

DataSource="<%# new object[] {Contentltem.Properties['refinements'].Value}
%>"

NavigationDataSourcelD=""dsNav'>

<DimensionStateGroupTemplate></DimensionStateGroupTemplate>
</ccl:GuidedNavigation>

4 Note: The default behavior of the server control renders dimensions arranged by dimension
groups. By specifying an empty DimensionStateGroupTemplate you suppress the display
of dimension group names in cases where a content administrator may have customized the
display of dimensions.

Breadcrumbs

Breadcrumbs server controls work with the Content Assembler without any changes, as in this example:

<ccl:Breadcrumbs
ID=""breadcrumbsServerControl" runat="server"
DataSourcelD=""dsNav"*
RemovelmageUr1="<%~/images/x.giftw>" />

Pager

The following is a typical example in the RAD Toolkit for ASP.NET:

<ccl:Pager
I1D=""topPagingl"
runat="'server"
DataSourcelD=""dsNav" />

The same example with the Content Assembler:

<ccl:Pager
ID=""topPagingl"
runat="'server"
ItemsType="<%# getPagerltemsType() %>"

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

32 Working with the Content Assembler API | Using the Content Assembler API for programmatic querying

DataSource="<%# getRecordsResult() %>"
NavigationDataSourcelD="'dsNav" />

In addition, the following two methods need to be defined in the code behind:
protected PagerltemsType getPagerltemsType()

INavigationRecords records =
(INavigationRecords)Contentltem.Properties[''navigation_records'].Value;
if (IString.IsNullOrEmpty(records.AggregationKey))

return PagerltemsType.AggregateRecords;

return PagerltemsType.Records;

}

protected object getRecordsResult()

INavigationRecords records = (INavigationRecords)Contentltem.Prop-
erties["navigation_records'].Value;

object result = records.RecordsResult;

if (IString.IsNullOrEmpty(records.AggregationKey))

{

result = records.AggregateRecordsResult;

}

return new object[] { result };

}

Tag cloud

The following is a typical example in the RAD Toolkit for ASP.NET:

<ccl:TagCloud
ID=""tagcloud"
runat="server"
DataSourcelD=""dsNav"*
Dimensionld="'8">

</ccl:TagCloud>

The same example with the Content Assembler:

<ccl:TagCloud

ID=""tagcloud"

runat="'server"

NavigationDataSourcelD=""dsNav"

DataSource="<%# new object[] {Contentltem.Properties[" ' refinements'].Value}
%>

Dimensionld="8">
</ccl:TagCloud>

Using the Content Assembler API for programmatic
querying

This example code connects to an MDEX Engine, creates and executes a NavigationCommand,
and retrieves the root content item for a query.

To retrieve content results from a NavigationCommand

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Using the Content Assembler API for programmatic querying 33

1. Add the following includes at the top of your code:

using System.Collections.ObjectModel ;

using System.Collections.Generic;

using Endeca.Data;

using Endeca.Data.Provider;

using Endeca.Data.Provider.PresentationApi;
using Endeca.Data.Content;

using Endeca.Data.Content.Navigation;

2. Create and execute a NavigationCommand.

// A PresentationApiConnection is an EndecaConnection that uses
// the Presentation APl as a transport.
// Future EndecaConnections can use XQuery or other transport mechanisms
PresentationApiConnection conn =
new PresentationApiConnection("'localhost', 8000);

// A NavigationCommand represents a query to the engine that requests
// everything except record/aggregate record details and single/compound
// dimension search

NavigationCommand cmd = new NavigationCommand(conn);

// ... additional code not shown to set Navigation Command values ...

// NavigationResult contains Records, AggregateRecords, Dimensions,
// Breadcrumbs, Analytics, BusinessRules, MetaData, and Supplemental
// Objects.

NavigationResult res = cmd.Execute();

3. Get the root content item.

IContentltem contentltem = NavigationContentltemCreator.Create(cmd,
res, '""NavigationPageZone', false)

In the Create () method, the third parameter is the content rule zone and the final parameter
controls content XML validation. Validation should never be enabled in a production environment.

For more details on using the RAD API for programmatic querying, see the Endeca RAD Toolkit for
ASP.NET Developer's Guide.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

Chapter 3

Extending the Content Assembler with Tag
Handlers

The Content Assembler uses tag handlers to transform content XML into an object representation of
a dynamic page. Tag handlers can be written by the Endeca community (including Endeca Professional
Services, partners, or customers) in order to customize or extend the Content Assembler to process
custom content XML and integrate with third-party systems.

About tag handlers in the Content Assembler

A tag handler enables you to define your own processing logic for the content that is configured by
content administrators in Experience Manager.

When your application queries the MDEX Engine using the Content Assembler API, the corresponding
landing page configuration is returned as part of the response in the form of content XML. The Content
Assembler processes this XML, executing additional queries as needed, and returns a tree of 1Con-
tentltem objects and their associated properties.

Each of the standard property types in Experience Manager is represented by an element in XML,
such as <String>, <RecordList>, or <Contentltem>. For each of the standard types, the Content
Assembler has a standard tag handler associated with that element that processes the element into
an object.

You can take advantage of the same mechanism to write a tag handler that processes a specific
element in the content XML and returns objects to the application. Community tag handlers process
elements outside of the Endeca content XML namespaces (that is, http://endeca.com/schema/con-
tent/2008 and http://endeca.com/schema/content-tags/2008). These elements may be
either pass-through XML defined in the template or custom XML generated by a community editor.
For more information on pass-through XML and community editors, refer to the Oracle Endeca
Experience Manager Developer's Guide.

The combination of custom XML and a community tag handler enables you to extend the query
processing logic in the Content Assembler — for example, by executing additional queries against the
MDEX Engine, or interfacing with a third-party system to return data — before returning the results to
the application. Use cases for community tag handlers include the following:

« Given some XML that specifies a rollup key for a navigation query or aggregated record query,
pass this key with the query to the MDEX Engine to return records for Content Spotlighting.

» Implement A/B testing for Content Spotlighting by executing different queries to the MDEX Engine
for identical requests. The results of the queries are then transparently passed on to the applicaton.

36

Extending the Content Assembler with Tag Handlers | Scenarios for extending Experience Manager

and the Content Assembler

* Query a third-party source for information to display on a product detail page. Examples include
RSS feeds, content stored in another repository (such as a CMS), inventory information, or a

recommendation engine.

It is not necessary to implement a tag handler to use custom XML. If no tag handler is registered to
handle a particular element, the Content Assembler passes the XML through to the application as a
string, which can then be parsed into XML and handled by your rendering logic. A tag handler
provides a mechanism to encapsulate any processing you need to do for a particular element and
abstract this processing from the rendering code.

Scenarios for extending Experience Manager and the
Content Assembler

Endeca Content Assembler API

You can use either community editors on their own, community tag handlers on their own, or both of
them in combination to extend the functionality of Experience Manager.

Following are some common scenarios and their implications for community editors or tag handlers:

Scenario

Include application-specific
information in the template as a
pass-through XML property.

Example: Information that the
application uses to render the
cartridge, but is of no interest to
the content administrator.

Include external configuration in
the template as a pass-through
XML property.

Example: Hard-coded
configuration for a third-party
system that applies to any page
that uses this template.

Provide a new interface for
content administrators to
configure existing Experience
Manager properties.

Example: A variation of the

record selector dialog box that
enables content administrators
to browse for featured records,
instead of entering a record ID.

Provide an interface to configure
functionality that is not supported

Use community editor?

No

If content administrators do not
need to modify the configuration
of a property on a per-page
basis, you do not need to write a
specialized editor.

No

If content administrators do not
need to modify the content of a
property on a per-page basis, you
do not need to write a specialized
editor.

Yes

This editor is bound to a standard
property. (In the example, the
editor modifies a <RecordList>

property.)

Yes

Developer's Guide for the RAD Toolkit for ASP.NET

Use community tag handler?

No

The Content Assembler returns
the XML to the rendering code
for your application.

Yes

The Content Assembler uses the
information contained in the XML
to query a third-party system, and
returns the results to the
rendering code.

No

The community editor outputs
standard Endeca content XML,
which is processed by the
standard tag handler for record
lists. No additional work is
necessary.

There are two options:
No

Endeca Confidential

Extending the Content Assembler with Tag Handlers | Life cycle of a Content Assembler query 37

Scenario Use community editor? Use community tag handler?
by Experience Manager The editor provides a specialized | The Content Assembler returns
out-of-the-box. interface for selecting data to the XML to the application's
Example: An editor that enables popqlate a ca_rtndge. The rendering co_de, which can then
. - configuration is saved as a fetch the reviews from the CMS
content administrators to specify
custom XML property. where they are stored.

reviews to display for a particular
navigation state, including Yes (preferred)
number of reviews, sort order,

and additional filtering options. The Content Assembler fetches

the reviews from the CMS before
returning the content results to
the rendering code for your
application.

Similarly, you can use a tag
handler and community editor to
send customized queries to an
MDEX Engine and return results
to the rendering code.

Life cycle of a Content Assembler query

This section describes the sequence of events that occur when the Content Assembler processes a
query.
The following sequence of events occurs when the query is executed:

1. The Content Assembler sends the query to the MDEX Engine and retrieves the ContentResource
from the query results.

This is the content XML that represents the landing page configuration created in Experience
Manager. The content XML is retrieved from the properties of the first rule returned in the zone that
you specified when you configured the ContentNavigationDataSource.

2. The Content Assembler calls ContentAssembler.Assemble().

This method creates an XmlReader that reads the ContentResource, then calls ContentAssem-
bler_Evaluate(), passing in a ContentContext that contains the relevant resources for the
current query and the XmIReader that provides access to the content XML.

3. ContentAssembler._Evaluate() calls the Evaluate () method of the appropriate tag handler
(in the case of the root element, this is Endeca .Data.Content.Assembler _TagHandlers.Con-
tentltemTagHandler).

This method takes two arguments: the current ContentContext, and an XmlReader positioned
at the element to be evaluated.

4. The tag handler marshals the XML element into an object.

As part of the Evaluate() method, the tag handler may execute additional queries against an
MDEX Engine or a third-party system. The Content Assembler also provides a mechanism for a
tag handler to invoke additional tag handlers.

For example, ContentltemTagHandler invokes PropertyTagHandler, which in turn invokes
tag handlers for specific property types to populate the property values.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

38 Extending the Content Assembler with Tag Handlers | Class overview

When the Content Assembler has finished processing the content XML, it has transformed the XML
tree into a tree of 1Contentltem objects with properties and nested I1Contentltem objects. This
object tree is then returned to the application for rendering.

Class overview

The Endeca.Data.Content.Assembler namespace contains the classes and interfaces that make
up the core Content Assembler implementation and enable extension of Content Assembler functionality
through tag handlers.

Class Description

ContentAssembler Used to transform an IContentResource into an object
model representation of its content item.

ContentContext Provides access to resources that are shared across tag
handlers.

IContentResource The byte representation of the content XML returned in the
MDEX query results.

The ContentAssembler creates an XmIReader to read
an IContentResource in order to enable tag handlers to
process the content XML.

IContentResourcelLocator Used internally to fetch an 1ContentResource object.
ITagHandler Transforms a specific element in the content XML into an
object.

The Content Assembler ships with several standard tag
handlers. You can implement your own tag handlers to
process custom XML elements.

Related Links

Resources managed by the ContentContext object on page 39
The ContentContext object provides access to resources that are shared across tag
handlers.

Implementing the tag handler interface

A tag handler takes an element in the content XML and transforms it into an object. In the typical use
case, you write a tag handler to return the value of a particular property.

Your tag handler can do as much or as little processing as desired during the course of marshaling
XML into objects, including executing one or more queries to an MDEX Engine or another third-party
system.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Extending the Content Assembler with Tag Handlers | Implementing the tag handler interface 39

Important:

All tag handlers are instantiated once, then reused for each element that the Content Assembler
processes. Because multiple invocations of a tag handler may be executed concurrently, tag
handlers must be reentrant.

For performance reasons, tag handlers should not contain large blocks of synchronized code.

To implement the tag handler interface:

1. Add the the following includes at the top of your code:

using System;

using System.Xml;

using Endeca.Data.Content;

using Endeca.Data.Content.Assembler;

2. Specify the element name and namespace that the tag handler is intended to process by defining
the appropriate properties. For example:

public string TagName { get { return "Integer”; } }
public string TagNamespace { get { return “http://endeca.com/sample-
schemas/2010"; } }

Note: To avoid conflicts between tag handlers, ensure that each tag handler processes an
element that has a unique qualified name.

3. Implement the Evaluate() method.

This method takes an XmIReader positioned at the XML element to process and a ContentCon-
text, and returns an Ob ject to the tag handler that invoked it (typically, a PropertyTagHandler).

Resources managed by the ContentContext object

The ContentContext object provides access to resources that are shared across tag handlers.

A new ContentContext is instantiated for each search or navigation query executed by a Content-
NavigationDataSource. The ContentContext class includes the following properties:

Property Description

ContentAssembler A reference to the active ContentAssembler.

You can use the ContentAssembler to invoke additional
tag handlers by calling its Evaluate () method.

LocalPropertyName Returns the name of the 1Property on which processing
has most recently begun.

This property is set by the PropertyTagHandler when it
begins to process a <Property> element.

Contentl tems A reference to the stack of IContentltem objects currently
being assembled.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

40 Extending the Content Assembler with Tag Handlers | Implementing the tag handler interface

Property Description

When the ContentltemTagHandler begins to process a
<Contentltem> element, it adds the 1Contentltem to
this stack. The tag handler pops the 1Contentltem from
the stack when it is done.

27" Note: Other tag handlers should not modify the content
item stack.

ContentResourcelLocator A reference to the active ContentResourcelLocator.

Typically, you do not need to use the ContentResource-
Locator unless you want to retrieve a ContentResource
from a zone other than the one that you specified on the
ContentNavigationDataSource. You can pass a Con-
tentResource to the ContentAssembler._Assemble()
method to transform the content XML into an 1Contentltem
object (which may contain other 1Contentltem objects).

Provides access to the ContentResource objects being

ContentResources or assembled.

ContentResourceStack Typically, there is only one ContentResource for any given

guery, and you do not need to access it directly. Rather, tag
handlers work on the XML that is passed through the Eval-
uate() method.

Related Links

Class overview on page 38
The Endeca.Data.Content.Assembler namespace contains the classes and interfaces
that make up the core Content Assembler implementation and enable extension of Content
Assembler functionality through tag handlers.

About invoking other tag handlers

You can write tag handlers that invoke other tag handlers (either standard tag handlers or other
community tag handlers).

You invoke another tag handler by calling ContentAssembler.Evaluate() and passing in an
XmIReader positioned at the element to be processed, along with a reference to the current Content-
Context.

return pContext.ContentAssembler._Evaluate(pContext, pReader);

The ContentAssembler .Evaluate() method identifies the appropriate tag handler for the element,
if one exists, and calls its Evaluate () method.

It is not necessary to invoke other tag handlers from within your own tag handler, even if you have
nested elements within your custom XML. There are two cases in which this may be especially useful.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Extending the Content Assembler with Tag Handlers | Integrating a tag handler into the Content 41
Assembler

Multiple combinations of valid child elements

You may have optional elements or different possible combinations of elements within your custom
XML. In such a case, rather than adding logic to check for each element that your tag handler may
have to process, you can write separate tag handlers for each possible child element. The parent tag
handler can simply iterate through the child elements and call ContentAssembler .Evaluate()
on each child.

For example, the standard RecordList element can contain either a RecordQuery (for featured
records) or a NavQuery (for dynamic records). The RecordListTagHandler invokes either the

RecordQueryTagHandler or the NavQueryTagHandler to perform a query against the MDEX
Engine that returns the records for a Content Spotlighting cartridge.

Same element nested under more than one parent

Your use of custom XML within your application may produce a structure similar the following:

<Property>
<TagA>
<TagC/>
</TagA>
</Property>
<Property>
<TagB>
<TagC/>
</TagB>
</Property>

In this case, you can write separate tag handlers for <TagA> and <TagB> that each invoke a third
handler for <TagC>. This ensures consistent handling of <TagC> regardless of its parent element.

Integrating a tag handler into the Content Assembler

The Content Assembler API provides a simple interface for registering tag handlers.

This procedure assumes that you have already written a tag handler class that implements Endeca.Da—~
ta.Content.Assembler. ITagHandler.

To integrate a tag handler with the Content Assembler for the RAD Toolkit for ASP.NET:

1. Register your tag handler by updating your application configuration. You can specify the
configuration in the app . config or Web.config file for your application.

2. Package the tag handler as an assembly (DLL).
3. Install the tag handler by copying the assembly into the \bin directory of your application.
4. Restart lIS.

In order for the Content Assembler to make use of the new tag handler, the content XML must contain
the element that the tag handler is intended to process. You can achieve this in one of the following
ways:

« Specify pass-through XML in a page template or cartridge template.
» Specify a custom property type in a template and bind it to an editor that generates custom XML.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

42 Extending the Content Assembler with Tag Handlers | Integrating a tag handler into the Content
Assembler

Registering a tag handler

You register a tag handler by specifying it in your application's app.config or Web.configfile.

To register a tag handler:

1. Open the app-.config or Web.confFig file for your application.
2. Define the tag handler configuration section as in the following example:

<configSections>
<sectionGroup name="endeca.content"
type=""Endeca.Data.Content.Configuration.EndecaContentSectionGroup,
Endeca.Data.Content, Version=2.1.0.0, Culture=neutral,
Publ ickeyToken=6d02be8724ca751c" >
<section name="‘tagHandlers"
type="Endeca.Data.Content.Configuration.TagHandlersSection,
Endeca.Data.Content, Version=2.1.0.0, Culture=neutral,
Publ icKeyToken=6d02be8724ca751c" />
</sectionGroup>
</configSections>

3. Specify the assembly-qualified type name for each tag handler as in the following example:

<endeca.content>
<tagHandlers>
<add handlerType="Endeca.Data.Content.Sample. IntegerTagHandler,
Endeca.Data.Content.Sample" />
</tagHandlers>
</endeca.content>

As the Content Assembler processes the content XML that represents a landing page, it invokes the
appropriate tag handler for each element. In the sample content XML excerpt below, the Content
Assembler would call the Evaluate() method of the Endeca.Data.Content.Sample. Inte-
gerTagHandler handler to process the <Integer> element. In this case, it returns an IProperty
object with an int value of 17.

<Contentltem type="PageTemplate'>
<Templateld>IntegerTagSample</Templateld>
<Name>Integer demo</Name>
<Property name="humbug">
<Integer xmlns="http://endeca.com/sample-schema/2010">17</Integer>
</Property>
</Contentltem>

Standard tag handlers in the Content Assembler

The Content Assembler API package includes several tag handlers associated with the standard
property types.

The following handlers are provided for the standard Experience Manager content types:

XML element Tag handler implementation
http://endeca.com/schema/con- Endeca.Data.Content.Assembler.TagHan—
tent/2008:Boolean dlers._BooleanTagHandler
http://endeca.com/schema/con- Endeca.Data.Content.Assembler.TagHan—
tent/2008:Contentltem dlers._ContentltemTagHandler

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Endeca Confidential

Extending the Content Assembler with Tag Handlers | About the sample tag handler 43

XML element

http://endeca.com/schema/con-
tent/2008:ContentltemList

http://endeca.com/schema/content-
tags/2008:DimensionList

http://endeca.com/schema/content-
tags/2008:NavigationRecords

http://endeca.com/schema/content-
tags/2008:NavigationRefinements

http://endeca.com/schema/content-
tags/2008:NavigationResult

http://endeca.com/schema/content-
tags/2008:NavQuery

http://endeca.com/schema/con—
tent/2008:Property

http://endeca.com/schema/con-
tent/2008:RecordList

http://endeca.com/schema/content-
tags/2008:RecordQuery

http://endeca.com/schema/content-
tags/2008:Sort

http://endeca.com/schema/con-
tent/2008:String

http://endeca.com/schema/content-
tags/2008:Supplement

About the sample tag handler

Tag handler implementation

Endeca.Data.Content.Assembler.TagHan—
dlers._ContentltemListTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers._DimensionListTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers_NavigationRecordsTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers_NavigationRefinementsTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers_NavigationResultTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers_NavQueryTagHandler

Endeca.Data.Content.Assembler.TagHan—
dlers_PropertyTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers_RecordListTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers._RecordQueryTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers._SortTagHandler

Endeca.Data.Content.Assembler.TagHan—
dlers._StringTagHandler

Endeca.Data.Content.Navigation.TagHan-
dlers._SupplementTagHandler

The Content Assembler API package includes a sample tag handler implementation.

The sample is located in ContentAssemblerAPI1s\RAD Toolkit for
ASP _NET\ver si on\reference\tag_handlers and includes the following:

File
Endeca.Data.Content.Sample.dll

IntegerTagHandler.cs

PageTemplate-IntegerTagSample.xml

Description

Contains a sample tag handler that transforms the
contents of an <Integer> element into an int.

The source code for the IntegerTagHandler.

A sample page template that contains an <Inte-
ger> property.

The sample package is intended to demonstrate the integration points between tag handlers and the
Content Assembler. It does not include any rendering code for the reference application to make use
of the integer property returned by the Content Assembler.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

44 Extending the Content Assembler with Tag Handlers | About extending the Content Assembler to
validate custom XML

Installing the sample tag handler

The sample tag handler is provided as an assembly along with a simple page template that defines
an <Integer> property with a default value.

To install the sample tag handler:

1. Register the tag handler by editing the app.config or Web.config file for your application.
a) Define the config section as follows:

<configSections>
<sectionGroup name="endeca.content"
type=""Endeca.Data.Content.Configuration.EndecaContentSectionGroup,

Endeca.Data.Content, Version=2.1.0.0, Culture=neutral,
Publ ickeyToken=6d02be8724ca751c™ >
<section name="‘tagHandlers"
type="Endeca.Data.Content.Configuration.TagHandlersSection,
Endeca.Data.Content, Version=2.1.0.0, Culture=neutral,
PublicKkeyToken=6d02be8724ca751c" />
</sectionGroup>
</configSections>

b) Specify the tag handler as follows:

<endeca.content>
<tagHandlers>
<add handlerType="Endeca.Data.Content.Sample. IntegerTagHandler,
Endeca.Data.Content.Sample* />
</tagHandlers>
</endeca.content>

2. Copy the assembly into the \bin directory of your application.
3. Restart IIS.

4. Copy the sample template to your local templates directory and upload it using the emgr_update
utility. For example:

emgr_update.bat --action set_templates --host localhost:8006
--app_name My _application --dir c:\endeca-app\templates\

The template does not define any editors associated with the integer property. The <Integer>
element is treated as pass-through XML.

About extending the Content Assembler to validate custom
XML

You can configure the Content Assembler to validate content XML, including custom XML.

Recall that you can enable XML validation in Content Assembler by setting the ContentVal idation
property of the ContentNavigationDataSource to true.

If validation is enabled, the Content Assembler performs schema validation as it processes the content
XML. By default, the Content Assembler validates any elements within the Endeca content XML
namespaces (http://endeca.com/schema/content/2008 and http://ende-
ca.com/schema/content-tags/2008) that are defined in the associated schemas.

Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Extending the Content Assembler with Tag Handlers | About extending the Content Assembler to 45
validate custom XML

You can specify additional schemas that the Content Assembler uses to validate content XML by
editing the application configuration. You can specify additional schemas in either the Web.config
or the app.config file, as in the following example:

<l--specify the config section as follows; the tagHandl ers section should
al ready have been added to specify the tag handl ers thensel ves-->
<configSections>
<sectionGroup name="endeca.content"
type="Endeca.Data.Content.Configuration.EndecaContentSectionGroup,
Endeca.Data.Content, Version=2.1.0.0, Culture=neutral,
Publ icKeyToken=6d02be8724ca751c™ >
<section name=""tagHandlers"
type="Endeca.Data.Content.Configuration.TagHandlersSection,
Endeca.Data.Content, Version=2.1.0.0, Culture=neutral,
Publ icKeyToken=6d02be8724ca751c™ />
<secti on nane="schemas"
t ype="Endeca. Dat a. Cont ent . Confi gur ati on. SchemasSecti on
Endeca. Dat a. Cont ent, Version=2.1.0.0, Culture=neutral
Publ i cKeyToken=6d02be8724ca751c" />
</sectionGroup>
</configSections>

<I-- additional elenents not included in this exanmple -->

<endeca.content>
<tagHandlers>
<add handlerType="Endeca.Data.Content.Sample. IntegerTagHandler,
Endeca.Data.Content.Sample" />
</tagHandlers>
<l-- specify additional schenas as in the follow ng exanple -->
<schemas>
<add nanespace="http://endeca. com sanpl e- scherma/ 2010"
uri ="Endeca. Dat a. Cont ent . Sanpl e. Resour ces. i nt eger _t ag_handl er. xsd"
assenbl y="Endeca. Dat a. Cont ent . Sanpl e"/ >
</schemas>
</endeca.content>

At runtime, the Content Assembler matches the namespace of each element in the content XML
against the namespaces defined in the configuration file. If the associated schema file defines the
element being processed, the Content Assembler validates that element against the schema.

4 Note: Validation can be useful in a testing environment for debugging purposes, particularly if
you are working with a community editor that generates custom XML. Because of the performance
impact of validating content XML, this option should never be used in production. XML validation
is disabled in the ContentNavigationDataSource by default.

Endeca Confidential Endeca Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

Index

C

cartridges
and user controls 22
building 21
rendering code 22
rendering custom navigation refinements 24
rendering custom results lists 24
class overview
com.endeca.content.assembler 38
ContentContext object 39
community editors
scenarios 36
community tag handlers
scenarios 36
Content Assembler API
and RAD API 32
components 10
Content Assembler API for the RAD Toolkit for ASP.NET
and the RAD Toolkit for ASP.NET 17
Content Assembler reference application controls, using
22
content items and Content Assembler APl 21
content properties, accessing 21
content query
and content XML validation 21
executing 32
results 32
ContentNavigationDataSource and content XML
validation 21
ContentNavigationDataSourceControl 17
custom navigation refinements, rendering 24
custom results lists
additional considerations 25
rendering 24
custom trigger conditions
filtering based on rule properties 19
overview 18
using hidden dimensions 19
with rule zones 20
with user profiles 20

D

dynamic content 11
DynamicContentPlaceHolder 22
introduced 28
using 28, 29

E

Endeca Content Assembler API
dynamic content 11
overview 9

Endeca Content Assembler reference application
cartridges 14
CSSs 15
host, changing 15
overview 11
port, changing 15
skinning 15
templates 14

IContentControl 22

R

RAD Toolkit for ASP.NET server controls 31

S

see-all links 27
server controls 31

T

tag handlers
about 35
implementing 38
in life cycle of Content Assembler query 37
integrating with Content Assembler 41
invoking from other tag handlers 40
list of standard tag handlers 42
registering 42
sample 43, 44

X

XML validation
extending 44

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Endeca Customer Support

	Introduction to the Content Assembler API
	Overview of the Content Assembler API
	Content Assembler API components

	Overview of the Content Assembler reference application
	About handling dynamic content
	The reference application model for dynamic content
	List of reference application cartridges
	Connecting to a different MDEX Engine
	About skinning the reference application

	Working with the Content Assembler API
	Writing applications with the Content Assembler API
	About using the Content Assembler with the RAD Toolkit for ASP.NET
	Creating a ContentNavigationDataSource control
	About implementing custom trigger conditions
	About filtering landing pages based on rule properties
	About using hidden dimensions to trigger landing pages
	About using multiple rule zones for landing pages
	About using multiple user profiles for custom trigger conditions

	About content XML validation

	Building cartridges to render template-based content
	About working with content items
	Using the Content Assembler reference application controls
	Writing user controls to render dynamic content
	About rendering customized navigation refinements
	About rendering customized results lists
	About customized results
	About rendering record lists
	Generating see-all links
	About the DynamicContentPlaceHolder
	Using the DynamicContentPlaceHolder to render pages
	Using the DynamicContentPlaceHolder to render cartridge content

	About using the RAD Toolkit for ASP.NET server controls with the Content Assembler
	Using the Content Assembler API for programmatic querying

	Extending the Content Assembler with Tag Handlers
	About tag handlers in the Content Assembler
	Scenarios for extending Experience Manager and the Content Assembler
	Life cycle of a Content Assembler query
	Class overview
	Implementing the tag handler interface
	Resources managed by the ContentContext object
	About invoking other tag handlers

	Integrating a tag handler into the Content Assembler
	Registering a tag handler
	Standard tag handlers in the Content Assembler

	About the sample tag handler
	Installing the sample tag handler

	About extending the Content Assembler to validate custom XML

	Index

