Installation and Reference Guide
Release 3.1.1
E28925-01
April 2012
Oracle Real-Time Decisions Base Application Installation and Reference Guide, Release 3.1.1
E28925-01
Copyright © 2011, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Oracle Corporation
Contributors: Oracle Real-Time Decisions development, product management, and quality assurance teams.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document describes the features of the Oracle Real-Time Decisions (Oracle RTD) Base Application.
This document is intended for the following Oracle RTD users:
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Real-Time Decisions platform version 3.0 documentation set and the Oracle Real-Time Decisions Base Application Release 3.1.1 documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
Part 1 helps you get started with Oracle RTD Base Application, and contains the following chapters:	
The Oracle RTD Base Application consists of two types of application module, that together make up Oracle RTD best practices to apply on the Oracle RTD platform:	
Base Inline Services	
Base Inline Services are complete Inline Services that each address a general workflow. They can be customized to support an integration of Oracle RTD into a customer's own specific workflow, for example, E-Commerce Workflow, Contact Center Workflow, and so on.	
Unlike specialized solutions, such as Siebel Intelligent Offer Generation with Oracle RTD, the Base Inline Services do not rely on any specific front end application or data schema. Instead, it is up to customers to configure the components of the Inline Services to align with their own front end user interfaces and customer data sources. This allows customers the full flexibility of applying the Oracle RTD best practices to their unique applications.	
With the Base Inline Services, multiple use cases for Oracle RTD are pre-configured for customers to choose from, for decisioning and prediction as well as for real time analysis. Ultimately, customers may choose to use only a subset of a Base Inline Service to begin their Oracle RTD implementation, and utilize additional components in a later phase.	
The Base Inline Service modules available with Oracle RTD Base Application are the following:	
For more information, see Part II, "Base Inline Services".	
Reference Library Inline Services	
Reference Library Inline Services are fully implementable Inline Services that demonstrate how to enable a desired piece of functionality within Oracle RTD.	
Unlike the Base Inline Services that are in the Base Application, these examples do not support an end to end customer workflow and but rather demonstrate only one specific piece of functionality. However, these examples are aligned with components of the Base Inline Services to draw analogies as to how the components can be applied in an implemented solution.	
Examples of Reference Library functionality supported by the Oracle RTD Base Application include numeric predictions in Oracle RTD and Oracle RTD batch implementation.	
The Reference Library modules available with Oracle RTD Base Application are the following:	
For more information, see Part III, "Reference Library"	
This chapter describes how to install an Oracle RTD Base Application module.	
As prerequisites, you must have installed one of the Oracle RTD supported J2EE application servers, and you must have successfully deployed the Oracle RTD server on to this application server. Before starting the installation, verify that Oracle RTD is running and that the server logs do not contain any errors.	
For information on installing the Oracle RTD Server, please refer to Oracle Real-Time Decisions Installation and Administration Guide, which is available with the Oracle RTD platform software.	
Setting up an Oracle RTD Base Application module involves importing the Inline Service for the module into Oracle RTD Studio, and then configuring it to align with the customer's data sources and business applications.	
To set up the module Inline Service, you must import the module Inline Service project into Oracle RTD Studio, as follows:	
C:\RTD_ILS.	
This directory will be referred to as RTD_ILS_HOME in this documentation.	
The zip file is located in one of the following directories:	
\software\Oracle Real-Time Decisions Base Application\Base Inline Services\	
<module_directory_name>	
\software\Oracle Real-Time Decisions Base Application\Reference Library\	
<module_directory_name>	
depending on whether the Inline Service for the module is a Base Inline Service or a Reference Library Inline Service. For more details, see Chapter 1, "Overview of Base Application Modules."	
RTD_Base_ECommerce.zip	
, Into RTD_ILS_HOME. Unzipping the file creates a directory under RTD_ILS_HOME.	
This sub-directory is referred to from now on as MODULE_ILS_FOLDER.	
C:\RTD_ILS\RTD_Base_ECommerce	
. The Base Application module project appears in the Inline Service Explorer view of Oracle RTD Studio.	
Depending on how you want to use the modules, you may decide to configure the associated Inline Service or Inline Services according to your business process requirements. For more information, see Chapter 6, "Configuring the Base Inline Services."	
Oracle Real-Time Decisions (Oracle RTD) enables you to develop adaptive enterprise software solutions. These solutions are adaptive because they use rules and predictive models to continuously learn from business process transactions as those transactions are executing. By continuously learning in real time, the adaptive solutions that you develop can optimize the outcome of each transaction and of the associated business process.	
This chapter presents an overview of Oracle RTD, and of the Oracle RTD features that are used when Oracle RTD is integrated with external applications.	
For more detailed information about Oracle RTD, see Related Documents in the Preface chapter.	
This chapter consists of the following topics:	
The heart of Oracle RTD is a "decision engine" that helps users make decisions, by recommending the best options when they make their choices.	
To illustrate the principles of the decision process and how these are incorporated in the Oracle RTD "decision engine", consider a common real-world decision: whether or not to accept a job offer from one of several companies that you have been investigating?	
The data involved in the decision making process can be extensive. For example, a small subsection of job-related data to collect and evaluate could be:	
Company	Job
---	---
VeriLeaf	Quality Manager
PlentiSol	Research Director
FaunaFlex	Project Manager
As well as gathering as much specific information as possible about the job, there are a number of key general questions that you as a prospective job hunter should address:	
As a simplification, assume that the choices in this example are to accept a single job offer, from one of the companies.	
You may have one or more goals that need to be compared and evaluated, for example:	
In the real-life job-hunting situation, you typically have your own personal evaluation criteria, based on your requirements and past experiences. The process of evaluating your choices is often intuitive. However, the evaluation process can include satisfying more formal, numeric conditions, such as the requirement for a particular minimum salary.	
In the Oracle RTD decision process, evaluation criteria are implemented by an ordering algorithm that prioritizes choices by assigning scores to them.	
The scores for each Oracle RTD choice are computed using one or more of the following scoring methods:	
When there are several performance goals for a decision, you can weight the goals. For example:	
Performance Goal	Weighting
---	---
Minimize your daily travel time	30
Maximize your financial compensation	50
Improve your quality of life	20
Oracle RTD can score each choice against each performance goal or weighted combination of goals.	
The net effect is that Oracle RTD provides a numeric score for each choice, such as in the following table:	
Company	Job
---	---
VeriLeaf	Quality Manager
PlentiSol	Research Director
FaunaFlex	Project Manager
Oracle RTD Decision Making Features Overview	
The overall principles and underlying elements described in the job hunting example are incorporated as basic features of Oracle RTD, as shown in the following table:	
Questions in the Decision Making Process	Oracle RTD Features
---	---
What are your choices?	Choices
What are your goals?	Performance Goals
What are your criteria for evaluating those goals?	Rules and Models
The following diagram shows a high-level overview of how these features interact to fulfill the basic objective of Oracle RTD, namely to provide recommendations from a number of alternatives or choices.	
For more information on these features and how to use them in Oracle RTD, see the following sections:	
In general, Oracle RTD connects with other applications, and passes its recommendations to these external applications. See the next section for more information about how Oracle RTD integrates with external applications.	
Applications that you develop to interact with Oracle RTD are referred to as external applications. Typically external applications consist of many processing steps and stages. The points at which external applications communicate with Oracle RTD are generically known as Integration Points.	
There are two main types of Integration Point:	
Advisors are the main method by which an external application requests and receives recommendations from Oracle RTD.	
Each external application can have many Informants and Advisors.	
Many applications are based on a dialog with a user, which leads to the application presenting alternative strategies or choices to the user.	
Typically, the dialog between the application and the user proceeds as follows:	
To determine which choices to present to a user, external applications can use various factors, such as:	
Oracle RTD provides a set of tools that can analyze all these factors, and recommend the best choices to the external applications. Through these recommendations, Oracle RTD enables the companies that run the external applications to make better business decisions.	
Figure 3-1 shows, in outline form, how a typical application interfaces with Oracle RTD.	
Figure 3-1 shows one Advisor and four Informants, the Informants corresponding to the following key stages in the application:	
This section shows the general Oracle RTD decision process flow. For details about the Oracle RTD features and elements used in the process flow, see Section 3.5, "More About the Oracle RTD Decision Process Elements."	
The Oracle RTD decision process is based on a framework that takes into account the following factors:	
Decisions are called by Advisors to score Choices, and return one or more Choices from a Choice Group. The set up of a Decision must include at least one Choice Group from which Choices are selected, and a function or rule to score the Choices. At run time, the Decision collects all the eligible Choices that exist in each of the Choice Groups. Then, the Choices are scored to finally determine the ranked order to send back through the Advisor.	
Figure 3-2 shows the basic Oracle RTD processes, which include session start and finish, as well as the Oracle RTD decision process steps.	
The steps represent the different stages in the overall process of acquiring the necessary data and processing a decision, as follows:	
When a user log on, and the external application connects to Oracle RTD, Oracle RTD establishes a session.	
The external application generally acquires as much information about the user as possible, and passes it to Oracle RTD using one or more Informants.	
Oracle RTD may also retrieve further information from Data Sources and Entities defined in the Inline Service associated with the external application.	
A request through an Advisor call initiates the decision process. The set of choices to evaluate for the decision is then determined for each of the associated Choice groups.	
The eligibility rules for the Choices are invoked, to determine which Choices pass on to the next stage of the decision process.	
Filtering rules, if created, are then used to segment the user population. Based on the segment, the designated weightings for each of the Performance Goals is used in scoring each eligible Choice.	
All eligible Choices are scored for each associated Performance Goal.	
Based on the segment, different weights are applied to the Performance Goal scores.	
Oracle RTD returns one or more Choices to the external application, passing Choice names and any designated Choice attribute that the external application needs. The requesting application then displays the Choices or processes the information accordingly.	
This step can take place at any stage of the decision process. Its main effect is to update the Oracle RTD server with any new available information about the given session.	
In addition, Models can be updated from the session information either at specified integration points or at the end of the session.	
The active Oracle RTD session is closed and any wrap up logic is executed, including learning on any Models defined to learn at session close.	
This section provides more details about the following Oracle RTD elements used in the decision processing framework:	
Designers creating a decision process for an organization must consider the overall Performance Goals of the organization. Performance Goals consist of the specific metrics with which the organization has chosen to measure its success. These goals are then associated with choice groups and decisions to identify how each choice will be scored against those them. Some common performance metrics are revenue, costs, number of products per customer, and customer satisfaction.	
If you set more than one Performance Goal in an Inline Service, you must specify the relative importance of each one by assigning normalization factors for each Performance Goal.	
Decisions score eligible Choices and rank them based on the weightings given for associated Performance Goals.	
Oracle RTD supports the following types of Decisions:	
Rule-driven Decisions are defined in business related terms expressed by business users. An example could be the business rule not to sell credit cards to customers when their credit rating is low.	
Model-driven Decisions are driven by scores calculated and determined by Models formed from empirical data. An example could be the decision to present an Overdraft Protection offer to a call center user who lives in California, whose occupation is graphical artist, and who has called to change his address. Based on its previous learnings, the model has determined that similar users are 61% likely to accept the Overdraft Protection offer.	
Hybrid Decisions use the scoring methods of both the Rule-driven and the Model-driven decisions.	
In general, each Decision may be associated with:	
Choice Groups and Choices are the Inline Service elements from which Decisions draw their possible Choices, and which become targets of analysis for Choice and Choice Event Models.	
Choice Groups and Choices form a hierarchy, where:	
Choices exist only at the lowest level of a Choice Group hierarchy branch.	
Choices can be used by a Decision, so that they can be returned by Advisors, and can be registered to either Choice or Choice Event models through Informants.	
Choice Group and Choice Attributes	
Choice Groups and Choices have attributes, that is, data used in the processing and presentation of Choices.	
Typically, you define the attributes of Choices at a higher Choice Group level, where you can also specify default values for the attributes. The Choice Group attributes are inherited by lower level Choice Groups and Choices. You can override default values at the lower levels.	
Static and Dynamic Choices	
Choices can either be static or dynamic.	
Static Choices are explicitly defined in the Inline Service.	
Dynamic Choices are Choices that are stored and maintained in an external application, such as promotions stored in a separate marketing application. When required for the decision process, Dynamic Choices are retrieved from the external application. The mechanisms for retrieving and using Dynamic Choices are defined in the Inline Service, but the actual Dynamic Choice values may vary for each user session.	
For more information about Dynamic Choices, see the topic Dynamic Choices in the Externalized Objects Management chapter in Oracle Real-Time Decisions Platform Developer's Guide.	
Choices and choice groups have rules that determine their eligibility to participate in a decision.	
You can define eligibility rules at the Choice Group and Choice levels.	
Choices inherit rules from higher levels, and may also have their own rules. At each level, a logical AND is performed between the higher-level rules and the current-level rule, with the result placed in the current-level element.	
Choices and Choice Groups can use filtering rules as another form of eligibility. In addition, a filtering rule can also be used to segment the user population for which Decisions are being made, and controls the effect of each Performance Goal associated with the Decision.	
Scoring rules are similar in setup to eligibility rules, but rather than evaluate the rule to a TRUE/FALSE outcome, a numeric score is returned instead. A score can be computed for a given Performance Goal tied to a Choice, and can affect the rank of the Choices in the decision process.	
There are two standard types of model in Oracle RTD:	
Each Choice Model or Choice Event Model is always associated with a single Choice Group.	
Both types of model can be used for prediction and for generating analysis reports.	
Input	
The main objective of any model is to show, for each choice of the associated choice group, what factors influenced a particular choice.	
Models are updated with, and "learn" from the following data:	
In addition, Choice Event Models also require event-related details. For more information, see Section 3.5.7.3, "Choice Event Models."	
The update and learning process happens in a transaction either at session close or at any integration point.	
Outputs	
Both types of model can be used for prediction and for generating analysis reports.	
The outputs generated directly and indirectly from a model are as follows:	
The main objective of a Choice Model is, for each choice, to derive meaningful information from the data associated simply with the choice itself. A Choice Model does not need the extra dimension of base and positive outcome events, which are required for Choice Event Models.	
For instance, in a call center application, one of the key data elements is the reason for a call. After collecting more information about the call and the caller, you can provide this information to a Call Reason Choice Model, and then use this in Oracle RTD Decision Center to analyze and compare the driving attributes of different call reasons.	
Another example of a Choice Model is an Abandonment Model, with two choices, Abandoned and Not Abandoned. For both choices, the model stores data associated with the user and the transaction, and whether the user abandoned the transaction before completion. You can use the model not only to analyze potential abandonment factors, but also to predict the likelihood of whether subsequent users will abandon their transactions.	
For each Oracle RTD Choice Event Model, in addition to specifying a Choice Group, you must also specify one Base event and one or more Positive Outcome events.	
In the simplest case, there are two significant events in a transaction, the presentation of a choice and the acceptance of the choice.	
In Oracle RTD, events are defined at the Choice Group level, and selected within the Model to describe "base" and "success" parameters.	
For each Choice Event Model, you must define:	
Typically, this is the event associated with the presentation of the choice.	
Typically, the standard positive outcome event is the event associated with the acceptance of the choice.	
Some Oracle RTD objects have a general usage within and across Oracle RTD processes. This section describes the following general Oracle RTD elements and features:	
A Data Source is configured in an Inline Service to access data from an outside source. The structure and format of Data Sources can vary, as follows:	
A Data Source can be configured to retrieve either a single record or multiple rows.	
Each Data Source contains Input and Output columns:	
An Entity is a logical representation of data, that can be populated from one or more Data Sources, through data retrieved by an Integration Point, or through functional derivations. Entities are the data objects that can be used by the other Oracle RTD elements, and form a logical level of abstraction from Data Sources and Integration Points.	
An Entity is a set of named attributes and methods to access the attributes. One attribute per Entity is usually designated as the Entity key.	
An attribute of an Entity is analogous to a column of a database table, with one important distinction: an Oracle RTD attribute may consist either of one value or many values. The type of attribute that can have multiple values is called an Array attribute.	
The integration of Entities and their component attributes to the appropriate data is implemented by mapping. You can explicitly map Entity attributes to Data Source columns, or you can implicitly map them through the use of Java functions that populate the Entity attributes.	
An Entity, while it contains its own attributes, may also be an attribute of another Entity. For example, a customer can have many orders. In Oracle RTD, you can define Customers and Orders as separate Entities, mapped from corresponding Data Sources. You can then specify the Orders Entity to be an attribute of the Customers Entity.	
Session Entities	
The Session is the fundamental Oracle RTD unit of runtime data. Data is kept in memory for the duration of the Session. Every Inline Service contains one Session Entity.	
For a Model to be able to learn from the attributes of a non-Session Entity, that Entity must be defined as an attribute of the Session Entity.	
For example, in an Inline Service, you can define Customer, Call, and Product as logical Entities, and then add these as attributes to the Session Entity, so that the Oracle RTD server can use these Entities as inputs to the Models.	
Functions, written in Java, provide extra processing capabilities to many Oracle RTD elements. For example, selection functions can be used by decisions as a custom way to make a choice.	
Functions can also serve as general-purpose code, for example, to determine date differences, or to convert data into different data types.	
Other users of functions include:	
Functions may also call other functions.	
An Oracle RTD Inline Service consists of all the Oracle RTD elements necessary to interface with an external application and model the desired business process.	
The main elements of an Inline Service are the following:	
Not all Inline Services have all of these elements. The specific requirements of each external application determine which elements are needed in the associated Inline Service.	
For more information on how to configure an Inline Service, see the Related Documents in the Preface chapter, in particular the Oracle Real-Time Decisions Decision Studio Reference Guide.	
In Oracle RTD, you define the Inline Service elements in the Oracle RTD Decision Studio. You must first configure, then deploy an Inline Service to the Oracle RTD server before the Inline Service can be used by an application.	
Figure 3-3 shows some of the elements of an Inline Service, called Cross Sell, as displayed in the Decision Studio.	
For more information about how to define and deploy Inline Services, see Oracle Real-Time Decisions Decision Studio Reference Guide.	
Oracle RTD Decision Center is a client tool for business users to explore, analyze, examine, and even modify the structure and data gathered by a deployed Inline Service.	
The Oracle RTD Decision Center provides a variety of analytic reports, both for performance analysis and model analysis.	
For example, there are several reports at the choice group and choice level, such as the following examples from a Cross Sell application:	
The Choice Group Performance Counts shows the total counts for each choice or choice event occurrence in a choice group.	
The Choice Analysis Drivers report identifies the attributes that are influential as drivers of predictiveness for each of the choices.	
Predictiveness is a measure of the relationship strength between entity attributes, that are the model input, and choice and choice events, that are the model output.	
A drilldown on any of the attribute hyperlinks will reveal additional reports about the attribute values themselves.	
The Choice Analysis Trends report shows the change of predictiveness for each of the attributes for a choice over two selected model time windows.	
The Choice Analysis Best Fit report shows all the attributes and values that are most likely to predict the specified event outcome.	
Oracle RTD also provides a variety reports that show the effectiveness of entities and entity attributes for predicting choices.	
For more information about how to view, analyze, and modify the structure and data of Inline Services in the Decision Center, see Oracle Real-Time Decisions Decision Center User's Guide.	
Oracle RTD Batch Framework is a set of components that can be used to provide batch facilities in an Inline Service. This enables the Inline Service to be used not just for processing interactive Integration Point requests, but also for running a batch of operations of any kind. Typically, a batch will read a set of input rows from a database table, flat file, or spreadsheet, process each input row in turn, and optionally write one or more rows to an output table for each input row.	
For general information on how the Batch Framework is used with Inline Services, see the Oracle RTD Batch Framework chapter in Oracle Real-Time Decisions Platform Developer's Guide.	
The Oracle RTD Base Application includes two examples of the use of the batch framework in Oracle RTD Inline Services:	
For more details, see Section 5.10, "Batch Use of the Base Customer Service Module."	
For more details, see Chapter 8, "Batch Processing."	
Part 2 describes the component elements of the Base Inline Services and provides general guidelines for how to configure the Base Inline Services to fulfill an organization's business requirements.	
Part 2 contains the following chapters:	
This chapter describes the elements in the Inline Service RTD_Base_ECommerce. It contains the following topics:	
The following diagram shows an overview of the stages of a typical ECommerce application and its possible interactions with the Inline Service RTD_Base_ECommerce.	
The RTD_Base_ECommerce Inline Service serves as a general ECommerce framework for customers to adapt to their business processes.	
The RTD_Base_ECommerce Inline Service provides pre-defined entities, choices, decisions, models, and integration points.	
From an end user perspective, the RTD_Base_ECommerce Inline Service is designed on the assumption that customers will perform additional configuration and further customization to fulfill their business requirements.	
Additional tasks involve mapping the logical entity attributes to a customer's physical data sources and to develop the front-end environment for the presentation of any Oracle RTD recommendations.	
For more information, see Chapter 6, "Configuring the Base Inline Services."	
This section presents an overview of the choice groups and choices, and their usage in the integration points.	
This section contains the following topics:	
For more information about how the choices and choice groups are used, see Section 4.5, "Advisors and Associated Decisions, Choice Groups, and Models."	
Choices for offer-oriented use cases are structured as follows:	
Offers and all other choice groups under it are comprised of dynamic choices. The choice data is either supplied as an advisor's incoming parameter value (see Section 4.5, "Advisors and Associated Decisions, Choice Groups, and Models") or retrieved by Oracle RTD from external data sources.	
Advisors for Offer-Oriented Choices	
The offer-oriented choices are returned when invoking the following advisors:	
For more specific information about the advisors, see Section 4.5, "Advisors and Associated Decisions, Choice Groups, and Models."	
Choice groups and choices for interaction-oriented usages are structured as follows. Note that the choices under each choice group can be reconfigured to suit the end users needs and serve as a template.	
Abandonment choice can be obtained by invoking the advisor Get Abandonment Propensity, and its prediction model is updated by invoking the advisor Close Session.	
Web Actions choice can be obtained by invoking the advisor Get Likely Web Action, and its prediction model is updated by invoking the informant Customer Action.	
This section describes the following usages of the RTD_Base_ECommerce Inline Service informants:	
For more specific information about the informants, see Section 4.4, "Informants."	
The following diagram illustrates the overall general logical entity object model of the RTD_Base_ECommerce Inline Service.	
The following diagram shows the entities and the relationships between the entities defined in the RTD_Base_ECommerce Inline Service.	
Notation	
The diagram shows the standard notation used in UML class diagrams, with each directed line representing a relationship from element A to element B, as follows:	
The multiplicity of a relationship restricts how many element B instances the relationship may have. The restriction denotes either a precise limit, such as 1 or 0..1, or an open-ended upper limit, such as "zero or more" or "one or more."	
For example:	
System-Oriented Entities	
The Session entity is a built-in Oracle RTD entity for maintaining session attribute values.	
The following entities are used for dynamic choice retrieval from external data sources: Ad List, Promotion List, Cross Sell Product List, and Up Sell Product List.	
Entities Outline	
The Current Web Interaction entity is a session attribute that keeps track of the current user interaction with the client system.	
The Current Web Interaction entity references the Web Interaction entity, that itself keeps track of the following data:	
The Customer entity is a session attribute that contains details of the customer profile as well as past customer interaction behavior.	
A customer can be a Person or an Organization.	
The Customer may have historical information, in the entities Purchase History, Campaign History, and Interaction History. Past customer interactions could be either or both of the following:	
After a Customer Id has been identified and supplied to Oracle RTD by the Identify Customer informant, Oracle RTD retrieves data from external data sources for the Customer entity and for its associated entity attributes.	
In addition to the entity attributes that are normally mapped to a data source directly, derived attributes are also included, which obtain their values via Java functions that utilize the applicable raw data extracted from data sources as inputs.	
This section describes the following entities:	
(Key = Web Session Id)	
Table 4-1 Session Entity	
Attribute	Array
---	---
Customer	No
Current Web Interaction	No
Rank Offers	No
Supplied Product Id	No
The Ad entity is used in conjunction with the Ad List entity and is used for the dynamic choice associated with the Ad Choice group.	
The Ad List entity is used in conjunction with the Ad entity and is used for the dynamic choice associated with the Ad Choice group.	
The Agent Interaction entity contains attributes related to agent interactions that have taken place with a customer. This entity is used to create an array of agent interactions within the Interaction History entity, which in turn is associated with the Customer entity.	
Table 4-4 Agent Interaction Entity	
Attribute	Array
---	---
Interaction Id	No
Agent Id	No
Agent Location	No
Customer Location	No
Interaction Channel	No
Interaction Date	No
Interaction Duration	No
Interaction Reason	No
Interaction Status	No
Interaction Type	No
Time Of Day	No
The Campaign entity contains attributes related to campaigns that have been associated with a customer. This entity is associated with the customer via the Campaign Item and Campaign History entities.	
The Campaign History entity contains attributes related to campaigns that have been associated with a customer. This entity is associated with the Customer entity and also contains the Campaign Items entity.	
Table 4-6 Campaign History Entity	
Attribute	Array
---	---
Last Campaign Category	No
Last Campaign Date	No
Last Campaign Delivery Method	No
Last Campaign Name	No
Last Campaign Type	No
Days Since Last Campaign	No
Campaign Items	Yes
The Campaign Item entity contains attributes related to campaigns that have been associated with a customer. This entity is associated with the customer via the Campaign History entity and contains the Campaign entity.	
The Cart Item entity contains attributes related to the products that a customer has put in their shopping cart in their web session. The Cart Item entity contains the Product entity, and is itself embedded in the Web Interaction entity.	
The Clicked Ad entity contains attributes related to the ads which a customer may have clicked during their web session. The Clicked Ad entity contains the Ad entity, and is itself embedded in the Web Interaction entity.	
The Clicked Promotion entity contains attributes related to the ads which a customer may have clicked during their web session. The Clicked Promotion entity contains the Promotion entity, and is itself embedded in the Web Interaction entity.	
The Cross Sell Product List entity is used in conjunction with the Products entity (instantiated as Cross Sell Products), and is used for the dynamic choice associated with the Cross Sell Offers Choice group.	
Table 4-11 Cross Sell Product List Entity	
Attribute	Array
---	---
Product Id	No
Cross Sell Products	Yes
Cross Sell Products - Product Id	No
The Current Web Interaction entity contains attributes related to what a customer is doing during their current web session. The Current Web Interaction entity contains its own attributes as well as attributes from the Web Interaction entity.	
See Section 4.3.27.1, "Derivation of Web Interaction Attributes in Referencing Entities" for details of how the Web Interaction attributes Interaction Date, Start Time, and Total Duration in Minutes are derived.	
Table 4-12 Current Web Interaction Entity	
Attribute	Array
---	---
Interaction Id	No
Current Page	No
Current Page Type	No
Current Viewed Product Id	No
Last Added Product Id	No
Previous Page	No
Previous Page Type	No
Time Spent on Previous Page	No
Web Interaction	No
The Customer entity contains attributes related to the profile of the customer. The Customer entity contains its own attributes and links in the Campaign History, Interaction History, Organization, Person, and Purchase History entities.	
Table 4-13 Customer Entity	
Attribute	Array
---	---
Customer Id	No
Address City	No
Address Country	No
Address Postal Code	No
Address Region	No
Address State Province	No
Credit Hold	No
Life Time Value Score	No
Offline Churn Propensity	No
Phone Area Code	No
Preferred Language	No
Start Date	No
Status	No
Target Market Segment	No
Tenure	No
Total Credit Limit	No
Type	No
Campaign History	No
Interaction History	No
Organization	No
Person	No
Purchase History	No
The Interaction History entity contains attributes that record what a customer has done in the past regarding previous interactions. The Interaction History entity contains derived attributes from both previous Agent Interactions and previous Web Interactions.	
See Section 4.3.27.1, "Derivation of Web Interaction Attributes in Referencing Entities" for details of how the Past Web Interactions attributes Interaction Date, Start Time, and Total Duration in Minutes are derived.	
Table 4-14 Interaction History Entity	
Attribute	Array
---	---
Agent Interaction Reasons In Past 30 Days	Yes
Agent Interaction Types in Past 30 Days	Yes
Days Since Last Agent Interaction	No
Days Since Last Interaction	No
Days Since Last Web Interaction	No
Interaction Types In Past 30 Days	No
Last Agent Interaction Status	No
Last Agent Interaction Type	No
Last Interaction Type	No
Number of Agent Interactions In Past 30 Days	No
Number of Agent Interactions In Past 90 Days	No
Number of Agent Interactions In Past Year	No
Number of Web Interactions In Past 30 Days	No
Number of Web Interactions In Past 90 Days	No
Number of Web Interactions In Past Year	No
Performed Web Actions In Past 30 Days	Yes
Past Agent Interactions	Yes
Past Web Interactions	Yes
The Organization entity contains attributes related to the profile of an Organization. The Organization entity is linked to the session through the Customer entity.	
Table 4-15 Organization Entity	
Attribute	Array
---	---
Annual Gross Profit	No
Annual Revenue	No
Business Partner Flag	No
Established Service	No
Line Of Business	No
Number of Employees	No
Number Of Years Established	No
Size	No
Type	No
The Person entity contains attributes related to the profile of a Person. The Person entity is linked to the session through the Customer entity.	
Table 4-16 Person Entity	
Attribute	Array
---	---
Age	No
Annual Income	No
Credit Score	No
Education Level	No
Ethnicity	No
Gender	No
Marital Status	No
Net Worth	No
Number Of Children	No
Profession	No
The Product entity contains attributes related to a generic Product. The Product entity is used as a reference entity under the Cart Item, Cross Sell Product List, Promoted Item, Purchased Item, and Up Sell Product entities.	
Table 4-17 Product Entity	
Attribute	Array
---	---
Product Id	No
Category	No
Name	No
Popularity Rank	No
Product Line	No
Type	No
Unit Price	No
The Promoted Item entity contains attributes related to a Promoted Item. The Promoted Item entity is used in conjunction with the Promotion entity, which can contain multiple promoted Items.	
The Promotion entity is used in conjunction with the Promotion List entity, and is used for the dynamic choice associated with the Promotions Choice group.	
Table 4-19 Promotion Entity	
Attribute	Array
---	---
Promotion Id	No
Category	No
Days Left	No
Duration In Days	No
Effective Date	No
Expiry Date	No
Name	No
Period	No
Type	No
Promoted Items	Yes
The Promotion List entity is used in conjunction with the Promotion entity, and is used for the dynamic choice associated with the Promotions Choice group.	
The Purchased Item entity contains attributes related to a purchased item. This entity is associated with the Customer entity through the Purchase History entity.	
The Purchased History entity contains attributes related to a customer's past purchases. This entity is associated with the session via the Customer entity.	
Table 4-22 Purchase History Entity	
Attribute	Array
---	---
Days Since Last Purchase	No
Last Purchase Amount	No
Last Purchased Product	No
Last Purchased Product Line	No
Product Lines Owned	Yes
Total Amount Spent	No
Total Amount Spent in Last 90 Days	No
Purchased Items	Yes
The Rank Offers entity is used to store arrays of different offer types that are passed to the Inline Service via an advisor. After it is filled by the advisor input, the entity is then used to populate the corresponding dynamic choice.	
The Search entity is used to store attributes related to search strings performed by a customer. This entity is used by the Web Interaction entity as an array attribute.	
The Up Sell Product List entity is used in conjunction with the Products entity (instantiated as Up Sell Products), and is used for the dynamic choice associated with the Up Sell Offers Choice group.	
The Web Action entity is used to store attributes related to actions performed by a customer while on the web. This entity is used by the Web Interaction entity as an array attribute.	
The Web Interaction entity contains attributes related to a generic Web Interaction. This entity is used as a reference entity under for the Current Web Interaction entity as well as an array attribute (Past Web Interactions) under the Interaction History entity.	
See Section 4.3.27.1, "Derivation of Web Interaction Attributes in Referencing Entities" for details of how the Interaction Date, Start Time, and Total Duration in Minutes attributes are used in the Current Web Interaction entity and the Interaction History entity.	
Table 4-27 Web Interaction Entity	
Attribute	Array
---	---
Interaction Id	No
Clicked Ads	Yes
Clicked Promotions	Yes
Interaction Date	No
Origin To Website	No
Performed Actions	Yes
Performed Searches	Yes
Shopping Cart Items	Yes
Start Time	No
Time Of Day	No
Total Duration in Minutes	No
Visited Pages	Yes
Web User Location	No
When the Current Web Interaction and the Interaction History reference the Web Interaction entity, special considerations apply to the derivation of certain attributes, as follows:	
Table 4-28 Derivation of Web Interaction Attributes in Referencing Entities	
Web Interaction Attribute	As used in the Current Web Interaction Entity attribute Web Interaction
---	---
Interaction Date	NA
Start Date	Initialized by informant Initiate Session with the Current Time
Total Duration in Minutes	Computed as the difference between Web Interaction-Start Time and Current Time
The Web Page entity is used to store attributes related to the attributes of a web page that a customer has visited while on the web. This entity is used by the Web Interaction entity as an array attribute.	
This section describes the following Informants:	
The informant Initiate Session creates the session for the interaction and updates current web interaction attributes for the session.	
Table 4-30 describes the parameters for the informant Initiate Session.	
Table 4-30 Informant Initiate Session	
Parameter	Description
---	---
Informant Name	Initiate Session
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Origin To Website => Session / Current Web Interaction / Web Interaction / Origin To Website Time Of Day => Session / Current Web Interaction / Web Interaction / Time Of Day User Location => Session / Current Web Interaction / Web Interaction / Web User Location
External System	Web E-Commerce
Order	0
Force session close	No
Logic	None
Pre-condition	None
The informant Identify Customer updates and triggers loading of the following customer related attributes for the session:	
The caller provides Oracle RTD with the Customer Id after a customer is identified while on the web site. In most cases, identification can be made upon user logon or by previously set cookies on the caller's web browser.	
Table 4-31 describes the parameters for the informant Identify Customer.	
Table 4-31 Informant Identify Customer	
Parameter	Description
---	---
Informant Name	Identify Customer
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Customer Id => Customer / Customer Id
External System	Web E-Commerce
Order	0
Force session close	No
Logic	None
Pre-condition	None
The informant Page Turn updates current web interaction attributes (Web Pages) for the session. Identifies any given page a customer navigates to that needs to be tracked	
Table 4-32 describes the parameters for the informant Page Turn.	
Table 4-32 Informant Page Turn	
Parameter	Description
---	---
Informant Name	Page Turn
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Current Page => Session / Current Web Interaction / Current Page Current Page Type => Session / Current Web Interaction / Current Page Type Previous Page => Session / Current Web Interaction / Previous Page Previous Page Type => Session / Current Web Interaction / Previous Page Type Time Spent on Previous Page => Session / Current Web Interaction / Time Spent on Previous Page Current Viewed Product Id => Session / Current Web Interaction / Current Viewed Product Id
External System	Web E-Commerce
Order	0
Force session close	No
Logic	(Asynchronous) Update the nested Web Pages session attributes
Pre-condition	None
Supplied Current Viewed Product Id can be used later as the base product id in making cross sell or up sell decision.	
The informant Performed Search updates current web interaction attributes (Search Keywords) for the session. It identifies search words used by a user or customer.	
Table 4-33 describes the parameters for the informant Performed Search.	
Table 4-33 Informant Performed Search	
Parameter	Description
---	---
Informant Name	Performed Search
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Search Keyword
External System	Web E-Commerce
Order	0
Force session close	No
Logic	(Asynchronous) Update the nested Searches session attributes
Pre-condition	None
The informant Customer Action updates current web interaction attributes (Web Action) for the session. It identifies key actions performed by a customer that can later be applied to models, for example, Update Customer Profile, Register, Un-register, Chat request.	
Table 4-34 describes the parameters for the informant Customer Action.	
Table 4-34 Informant Customer Action	
Parameter	Description
---	---
Informant Name	Customer Action
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Action Name
External System	Web E-Commerce
Order	0
Force session close	No
Logic	Update Web Action Model (choice model) Create or Update Web Action session variable of current interaction
Pre-condition	None
Set Action Name as a choice name into the Web Action Model.	
The informant Added To Cart updates current web interaction attributes (Cart Item) for the session. It registers a shopping cart item along with its quantity added during the session.	
Table 4-35 describes the parameters for the informant Added To Cart.	
Table 4-35 Informant Added to Cart	
Parameter	Description
---	---
Informant Name	Customer Action
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Product Id Quantity
External System	Web E-Commerce
Order	0
Force session close	No
Logic	Update Web Action Model (choice model) Create or Update Shopping Cart Item session variable of current interaction
Pre-condition	None
The informant Offer Response creates prediction model entries and also captures shopping cart addition events. It identifies if an offer (Up Sell, Cross Sell, Promotion, Ad) is clicked, added to cart, or purchased by a web user or customer.	
Table 4-36 describes the parameters for the informant Offer Response.	
Table 4-36 Informant Offer Response	
Parameter	Description
---	---
Informant Name	Offer Response
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Offer Id {choice id} Offer Type {Up Sell, Cross Sell, Promotion, Ad} Event {Interested, Added To Cart, Purchased}
External System	Web E-Commerce
Order	0
Force session close	No
Logic	If event = Interested then if offer type = Promotion then create/update Clicked Promotion (increase count if previously exist) if offer type = Ad then create/update Clicked Ad (increase count if previously exist) Record the event into the appropriate model for the choice (determined by choice id / offer id)
Pre-condition	None
The informant Web Support Feedback updates the Web Support prediction model.	
Table 4-37 describes the parameters for the informant Web Support Feedback.	
Table 4-37 Informant Web Support Feedback	
Parameter	Description
---	---
Informant Name	Web Support Feedback
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Choice Name Choice Event
External System	Web E-Commerce
Order	0
Force session close	No
Logic	If Choice Event = Used then record the event into the Web Support Usage Model
Pre-condition	None
Dependencies:	
The informant Close Session creates analytical prediction model entries, triggers learning, and formally closes out the Oracle RTD session.	
Table 4-38 describes the parameters for the informant Close Session.	
Table 4-38 Informant Close Session	
Parameter	Description
---	---
Informant Name	Close Session
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Abandonment Flag Interaction Duration
External System	Web E-Commerce
Order	0
Force session close	No
Logic	Update Abandonment Model. Possible values for Abandonment Flag are: "Abandoned" "Not Abandoned" Update Web Site Duration Model. Possible values for Interaction Duration are: "00 to 05 Minutes" "05 to 10 Minutes" "10 to 15 Minutes" "15 to 20 Minutes" "20 Minutes or Greater"
Pre-condition	None
Dependencies:	
For each advisor listed in this section, a detailed breakdown is provided for the Integration Point, followed by:	
This section consists of the following topics:	
This section describes the following advisors:	
The advisor Get Upsell Offers determines the likelihood for a customer to accept an upsell offer.	
Table 4-39 describes the parameters for the advisor Get Upsell Offers.	
Table 4-39 Advisor Get Upsell Offers	
Parameter	Description
---	---
Advisor Name	Get Upsell Offers
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Product Id (optional) Number of Offers Rank Offers (array, optional, to be ranked, as source for dynamic choice)
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Upsell Offers
Group Decision	Select Upsell Offers
Default Choices	None
Logic	The supplied product id is assigned to Session / Supplied Product Id. This will be used by function: Select Product Id (for Cross Sell / Up Sell). If supplied, override the default number of choices returned by decision using the Number of Offers incoming parameter. If Rank Offer (string array) is supplied, set these into session as dynamic choice objects to be used by decision later.
Pre-condition	Base Product Id for Cross sell / Up sell must exist. Function: Select Product Id tries to find this Product Id from the following variables: 1 - Session / Supplied Product Id 2 - Session / Current Web Interaction / Current Viewed Product Id 3 - Session / Current Web Interaction / Last Added (into shopping cart) Product Id
Table 4-40 describes the parameters for the decision for the advisor Get Upsell Offers.	
Table 4-40 Decision for Advisor Get Upsell Offers	
Parameter	Description
---	---
Decision Name	Select Upsell Offers
Select Choices From	Upsell Offers
Number of Choices to Select	5
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Acceptance Likelihood 33% Maximize Revenue 33% Popularity 33%
Pre Selection Logic	None
Post Selection Logic	Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");}
Table 4-41 describes the parameters for the choice group for the advisor Get Upsell Offers.	
Table 4-41 Choice Group for Advisor Get Upsell Offers	
Parameter	Description
---	---
Choice Group Name	Upsell Offers
Choice Attributes	Product Id Product Name Product Line Product Type Product Category Offer Type = "Up Sell" Likelihood
Scores	Maximize Acceptance Likelihood = Predicted by Upsell Purchase Model: Purchased Maximize Revenue = Dynamic Choice / Unit Price Popularity = Dynamic Choice / Popularity Rank
Choice Events	Presented (inherited from Offers) Interested (inherited from Offers) Added To Cart Purchased
Choice Eligibility	None
Group Attributes	Upsell Products – Type=Product (Array) – Loading: Get Up Sell Product List (Select Product Id())
Group Eligibility	None
Dynamic Choices	Choice Id is Product Id
Table 4-42 describes the parameters for the model for the advisor Get Upsell Offers.	
Table 4-42 Model for the Advisor Get Upsell Offers	
Parameter	Description
---	---
Model Name	Upsell Purchase Model (choice event model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Upsell Offers
Base Event	Presented
Positive Events	Purchased
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	Offer Response Get Upsell Offers Get Offers
Temporary Data Storage	None
Dependencies:	
The advisor Get Cross Sell Offers determines the likelihood for a customer to accept a cross sell offer.	
Table 4-43 describes the parameters for the advisor Get Cross Sell Offers.	
Table 4-43 Advisor Get Cross Sell Offers	
Parameter	Description
---	---
Advisor Name	Get Cross Sell Offers
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Product Id (optional) Number of Offers Rank Offers (array, optional, to be ranked, as source for dynamic choice)
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Cross Sell Offers
Group Decision	Select Cross Sell Offers
Default Choices	None
Logic	The supplied product id is assigned to Session / Supplied Product Id. This will be used by function: Select Product Id (for Cross Sell / Up Sell). If supplied, override the default number of choices returned by decision using the Number of Offers incoming parameter. If Rank Offer (string array) is supplied, set these into session as dynamic choice objects to be used by decision later.
Pre-condition	Base Product Id for Cross sell / Up sell must exist. Function: Select Product Id tries to find this Product Id from the following variables: 1 - Session / Supplied Product Id 2 - Session / Current Web Interaction / Current Viewed Product Id 3 - Session / Current Web Interaction / Last Added (into shopping cart) Product Id
Table 4-44 describes the parameters for the decision for the advisor Get Cross Sell Offers.	
Table 4-44 Decision for Advisor Get Cross Sell Offers	
Parameter	Description
---	---
Decision Name	Select Cross Sell Offers
Select Choices From	Cross Sell Offers
Number of Choices to Select	5
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Acceptance Likelihood 33% Maximize Revenue 33% Popularity 33%
Pre Selection Logic	None
Post Selection Logic	Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");}
Table 4-45 describes the parameters for the choice group for the advisor Get Cross Sell Offers.	
Table 4-45 Choice Group for Advisor Get Cross Sell Offers	
Parameter	Description
---	---
Choice Group Name	Cross Sell Offers
Choice Attributes	Product Id Product Name Product Line Product Type Product Category Offer Type = "Cross Sell" Likelihood
Scores	Maximize Acceptance Likelihood = Predicted by Cross Sell Purchase Model: Purchased Maximize Revenue = Dynamic Choice / Unit Price Popularity = Dynamic Choice / Popularity Rank
Choice Events	Presented (inherited from Offers) Interested (inherited from Offers) Added To Cart Purchased
Choice Eligibility	None
Group Attributes	Cross Sell Products - Type=Product (Array) - Loading: Get Cross Sell Product List (Select Product Id())
Group Eligibility	None
Dynamic Choices	Choice Id is Product Id
Table 4-46 describes the parameters for the model for the advisor Get Cross Sell Offers.	
Table 4-46 Model for Advisor Get Cross Sell Offers	
Parameter	Description
---	---
Model Name	Cross Sell Purchase Model (choice event model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Cross Sell Offers
Base Event	Presented
Positive Events	Purchased
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	Offer Response Get Cross Sell Offers Get Offers
Temporary Data Storage	None
Dependencies:	
The advisor Get Promotions determines the likelihood for a customer to have an interest on a presented promotion.	
Table 4-47 describes the parameters for the advisor Get Promotions.	
Table 4-47 Advisor Get Promotions	
Parameter	Description
---	---
Advisor Name	Get Promotions
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Number of Offers Rank Offers (array, optional, to be ranked, as source for dynamic choice)
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Promotions
Group Decision	Select Promotions
Default Choices	None
Logic	If supplied, override the default number of choices returned by decision using the Number of Offers incoming parameter. If Rank Offer (string array) is supplied, set these into session as dynamic choice objects to be used by decision later.
Pre-condition	None
Table 4-48 describes the parameters for the decision for the advisor Get Promotions.	
Table 4-48 Decision for Advisor Promotions	
Parameter	Description
---	---
Decision Name	Select Promotions
Select Choices From	Promotions
Number of Choices to Select	5
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Acceptance Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");}
Table 4-49 describes the parameters for the choice group for the advisor Get Promotions.	
Table 4-49 Choice Group for Advisor Promotions	
Parameter	Description
---	---
Choice Group Name	Promotions
Choice Attributes	Promotion Id Promotion Name Promotion Type Promotion Period Offer Type = "Promotion" Likelihood
Scores	Maximize Acceptance Likelihood = Predicted by Promotion Interest Model: Interested
Choice Events	Presented (inherited from Offers) Interested (inherited from Offers)
Choice Eligibility	None
Group Attributes	Promotion List - Type=Promotion (Array) - Data loading function: Get Promotion List ()
Group Eligibility	None
Dynamic Choices	Choice Id is Promotion Id
Table 4-50 describes the parameters for the model for the advisor Get Promotions.	
Table 4-50 Model for Advisor Get Promotions	
Parameter	Description
---	---
Model Name	Promotion Interest Model (choice event model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Promotions
Base Event	Presented
Positive Events	Interested
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	Offer Response Get Promotions Get Offers
Temporary Data Storage	None
Dependencies:	
The advisor Get Advertisements determines the likelihood for a customer to have an interest on a presented advertisement.	
Table 4-51 describes the parameters for the advisor Get Advertisements.	
Table 4-51 Advisor Get Advertisements	
Parameter	Description
---	---
Advisor Name	Get Advertisements
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Number of Offers Rank Offers (array, optional, to be ranked, as source for dynamic choice)
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Advertisements
Group Decision	Select Advertisements
Default Choices	None
Logic	If supplied, override the default number of choices returned by decision using the Number of Offers incoming parameter. If Rank Offer (string array) is supplied, set these into session as dynamic choice objects to be used by decision later.
Pre-condition	None
Table 4-52 describes the parameters for the decision for the advisor Get Advertisements.	
Table 4-52 Decision for Advisor Get Advertisements	
Parameter	Description
---	---
Decision Name	Select Advertisements
Select Choices From	Advertisements
Number of Choices to Select	5
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Acceptance Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");}
Table 4-53 describes the parameters for the choice group for the advisor Get Advertisements.	
Table 4-53 Choice Group for Advisor Get Advertisements	
Parameter	Description
---	---
Choice Group Name	Advertisements
Choice Attributes	Ad Id Ad Name Ad Type Ad Category Offer Type = "Ad" Likelihood
Scores	Maximize Acceptance Likelihood = Predicted by Advertisement Interest Model: Interested
Choice Events	Presented (inherited from Offers) Interested (inherited from Offers)
Choice Eligibility	None
Group Attributes	Ad List - Type=Ad (Array) - Data loading function: Get Ad List ()
Group Eligibility	None
Dynamic Choices	Choice Id is Ad Id
Table 4-54 describes the parameters for the model for the advisor Get Advertisements.	
Table 4-54 Model for Advisor Get Advertisements	
Parameter	Description
---	---
Model Name	Advertisement Interest Model (choice event model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Promotions
Base Event	Presented
Positive Events	Interested
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	Offer Response Get Advertisements Get Offers
Temporary Data Storage	None
Dependencies:	
The advisor Get Offers determines the likelihood for a customer to accept an offer.	
The advisor Get Offers returns a mix of offers:	
Table 4-55 describes the parameters for the advisor Get Offers.	
Table 4-55 Advisor Get Offers	
Parameter	Description
---	---
Advisor Name	Get Offers
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	Product Id (optional) Number of Offers Rank Offers (array, optional, to be ranked, as source for dynamic choice)
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Offers
Group Decision	Select Offers
Default Choices	None
Logic	The supplied product id is assigned to Session / Supplied Product Id. This will be used by function: Select Product Id (for Cross Sell / Up Sell). If supplied, override the default number of choices returned by decision using the Number of Offers incoming parameter. If Rank Offer (string array) is supplied, set these into session as dynamic choice objects to be used by decision later.
Pre-condition	Base Product Id for Cross sell / Up sell must exist. Function: Select Product Id tries to find this Product Id from the following variables: 1 - Session / Supplied Product Id 2 - Session / Current Web Interaction / Current Viewed Product Id 3 - Session / Current Web Interaction / Last Added (into shopping cart) Product Id
Table 4-56 describes the parameters for the decision for the advisor Get Offers.	
Table 4-56 Decision for Advisor Get Offers	
Parameter	Description
---	---
Decision Name	Select Offers
Select Choices From	Offers
Number of Choices to Select	5
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Acceptance Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("presented");}
Table 4-57 describes the parameters for the choice group for the advisor Get Offers.	
Table 4-57 Choice Group for Advisor Get Offers	
Parameter	Description
---	---
Choice Group Name	Offers
Choice Attributes	Offer Type Likelihood
Scores	Maximize Acceptance Likelihood
Choice Events	Presented Interested
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Dependencies:	
This section describes the following advisors:	
The advisor Get Abandonment Propensity returns the likelihood of abandonment for a customer.	
Table 4-58 describes the parameters for the advisor Get Abandonment Propensity.	
Table 4-58 Advisor Get Abandonment Propensity	
Parameter	Description
---	---
Advisor Name	Get Abandonment Propensity
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	None
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Abandonment Propensity
Group Decision	Select Abandonment Propensity
Default Choices	None
Logic	None
Pre-condition	None
Table 4-59 describes the parameters for the decision for the advisor Get Abandonment Propensity.	
Table 4-59 Decision for Advisor Get Abandonment Propensity	
Parameter	Description
---	---
Decision Name	Select Abandonment Propensity
Select Choices From	Abandonment
Number of Choices to Select	1
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	None
Table 4-60 describes the parameters for the choice group for the advisor Get Abandonment Propensity.	
Table 4-60 Choice Group for Advisor Get Abandonment Propensity	
Parameter	Description
---	---
Choice Group Name	Abandonment
Choice Attributes	Name Likelihood = Get Choice Likelihood ("AbandonmentModel", this)
Scores	Maximize Likelihood = Likelihood
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 4-61 describes the parameters for the model for the advisor Get Abandonment Propensity.	
Table 4-61 Model for Advisor Get Abandonment Propensity	
Parameter	Description
---	---
Model Name	Abandonment Model (choice model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Abandonment
Mutually Exclusive	Yes
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	On session close
Temporary Data Storage	None
Model Name	Abandonment Model (choice model)
Dependencies:	
The advisor Get Likely Web Action predicts the most likely Web Action that a particular customer will perform next.	
Table 4-62 describes the parameters for the advisor Get Likely Web Action.	
Table 4-62 Advisor Get Likely Web Action	
Parameter	Description
---	---
Advisor Name	Get Likely Web Action
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	None
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Likely Web Action
Group Decision	Select Likely Web Action
Default Choices	None
Logic	None
Pre-condition	None
Table 4-63 describes the parameters for the decision for the advisor Get Likely Web Action.	
Table 4-63 Decision for Advisor Get Likely Web Action	
Parameter	Description
---	---
Decision Name	Select Likely Web Action
Select Choices From	Web Actions
Number of Choices to Select	1
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	None
Table 4-64 describes the parameters for the choice group for the advisor Get Likely Web Action.	
Table 4-64 Choice Group for Advisor Get Likely Web Action	
Parameter	Description
---	---
Choice Group Name	Web Actions
Choice Attributes	Name Likelihood = Get Choice Likelihood ("WebActionModel", this)
Scores	Maximize Likelihood = Likelihood
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 4-65 describes the parameters for the model for the advisor Get Likely Web Action.	
Table 4-65 Model for Advisor Get Likely Web Action	
Parameter	Description
---	---
Model Name	Web Action Model (choice model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Web Actions
Mutually Exclusive	No
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	Customer Action
Temporary Data Storage	None
Model Name	Web Action Model (choice model)
Dependencies:	
The advisor Get Likely Web Duration predicts the length of time that a particular customer will spend on the site.	
Table 4-66 describes the parameters for the advisor Get Likely Web Duration.	
Table 4-66 Advisor Get Likely Web Duration	
Parameter	Description
---	---
Advisor Name	Get Likely Web Duration
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	None
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Likely Web Duration
Group Decision	Select Likely Web Duration
Default Choices	None
Logic	None
Pre-condition	None
Table 4-67 describes the parameters for the decision for the advisor Get Likely Web Duration.	
Table 4-67 Decision for Advisor Get Likely Web Duration	
Parameter	Description
---	---
Decision Name	Select Likely Web Duration
Select Choices From	Web Site Duration
Number of Choices to Select	1
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	None
Table 4-68 describes the parameters for the choice group for the advisor Get Likely Web Duration.	
Table 4-68 Choice Group for Advisor Get Likely Web Duration	
Parameter	Description
---	---
Choice Group Name	Web Site Duration
Choice Attributes	Name Likelihood = Get Choice Likelihood ("WebSiteDurationModel", this)
Scores	Maximize Likelihood = Likelihood
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 4-69 describes the parameters for the model for the advisor Get Likely Web Duration.	
Table 4-69 Model for Advisor Get Likely Web Duration	
Parameter	Description
---	---
Model Name	Web Site Duration Model (choice model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Web Site Duration
Mutually Exclusive	Yes
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	On session close
Temporary Data Storage	None
Model Name	Web Site Duration Model (choice model)
Dependencies:	
The advisor Get Web Support Types returns the likelihood for a customer to accept a chat request or email support if offered.	
Table 4-70 describes the parameters for the advisor Get Web Support Types.	
Table 4-70 Advisor Get Web Support Types	
Parameter	Description
---	---
Advisor Name	Get Web Support Types
Session Keys	Session / Current Web Interaction / Interaction Id
Request Data	None
External System	Web E-Commerce
Order	0
Force session close	No
Decision	Select Web Supports
Group Decision	Select Web Supports
Default Choices	None
Logic	None
Pre-condition	None
Table 4-71 describes the parameters for the decision for the advisor Get Web Support Types.	
Table 4-71 Decision for Advisor Get Web Support Types	
Parameter	Description
---	---
Decision Name	Select Web Support Types
Select Choices From	Web Support Types
Number of Choices to Select	2
Select at Random	No
Target Segments	Default
Priorities for Default Segment	Maximize Likelihood 100%
Pre Selection Logic	None
Post Selection Logic	Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("presented");}
Table 4-72 describes the parameters for the choice group for the advisor Get Web Support Types.	
Table 4-72 Choice Group for Advisor Get Web Support Types	
Parameter	Description
---	---
Choice Group Name	Web Support Types
Choice Attributes	Name Likelihood of Usage = Predicted by Web Support Usage Model: Used Threshold = 0.5
Scores	Maximize Likelihood = Likelihood of Usage
Choice Events	Presented Used
Choice Eligibility	Choice / Likelihood of Usage > choice / Threshold
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 4-73 describes the parameters for the model for the advisor Get Web Support Types.	
Table 4-73 Model for Advisor Get Web Support Types	
Parameter	Description
---	---
Model Name	Web Support Usage Model (choice event model)
Model Setting	Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian
Choice Group	Web Support Types
Base Event	Presented
Positive Events	Used
Partitioning Attributes	None
Excluded Attributes	None
Learn Location	On session close
Temporary Data Storage	None
Dependencies:	
This section describes the functions used in the RTD_Base_ECommerce Inline Service.	
Table 4-74 RTD_Base_ECommerce Functions	
Function	Inputs
---	---
Get Ad List	None
Get Agent Interaction Reasons In Past Days	Past Agent Interactions (Array of Agent Interaction), Days (Integer)
Get Agent Interaction Types In Past Days	Past Agent Interactions (Array of Agent Interaction), Days (Integer)
Get Campaign Names In Past Days	Campaign Items (Array of Campaign Item), Days (Integer)
Get Choice Likelihood	Model Name (String), Choice (Choice)
Get Cross Sell Product List	Product Id (String) to be used as base product for cross sell
Get Customer Type	Person (Person), Organization (Organization)
Get Days Left	Expiration Date (Date)
Get Days Since Last Agent Interaction	Past Agent Interactions (Array of Agent Interaction)
Get Days Since Last Campaign	Campaign Items (Array of Campaign Item)
Get Days Since Last Purchase	Purchased Items (Array of Purchased Item)
Get Days Since Last Web Interaction	Past Web Interactions (Array of Web Interaction)
Get Duration In Days	Start Date (Date), End Date (Date)
Get Duration In Minutes	Start Time (Date), End Time (Date)
Get Gender	Male (Boolean)
Get Interaction Types In Past Days	Past Agent Interactions (Array of Agent Interaction), Past Web Interactions (Array of Web Interaction), Days (Integer)
Get Last Agent Interaction Status	Past Agent Interactions (Array of Agent Interaction)
Get Last Agent Interaction Type	Past Agent Interactions (Array of Agent Interaction)
Get Last Campaign Category	Campaign Items (Array of Campaign Item)
Get Last Campaign Delivery Method	Campaign Items (Array of Campaign Item)
Get Last Campaign Name	Campaign Items (Array of Campaign Item)
Get Last Campaign Type	Campaign Items (Array of Campaign Item)
Get Last Interaction Type	Days Since Last Agent Interaction (Integer), Days Since Last Web Interaction (Integer)
Get Last Purchase Amount	Purchased Items (Array of Purchased Item)
Get Last Purchased Product	Purchased Items (Array of Purchased Item)
Get Last Purchased Product Line	Purchased Items (Array of Purchased Item)
Get Number Of Agent Interaction In Past Days	Past Agent Interactions (Array of Agent Interaction), Days (Integer)
Get Number Of Web Interaction In Past Days	Past Web Interactions (Array of Web Interaction), Days (Integer)
Get Performed Web Action Names In Past Days	Past Web Interactions (Array of Web Interaction), Days (Integer)
Get Product Lines Owned	Purchased Items (Array of Purchased Item)
Get Promotion List	None
Get Specific Choice Likelihood	Model Name (String), Choice Name (String)
Get Total Amount Spent	Purchased Items (Array of Purchased Item)
Get Total Amount Spent in Last 90 Days	Purchased Items (Array of Purchased Item)
Get Total Duration In Minutes	Start Time (Date)
Get Up Sell Product List	Product Id (String) to be used as base product for up sell
Get Year	Date (Date)
Is Web Support Type Eligible	Web Support Types Choice (Web Support Types Choice)
Maximum	X (Integer), Y (Integer)
Minutes To Now	Start Time (Date)
Multiply	a (Double, b (Double)
Property Reflect	NA
Select Product Id	None
Set Choice Event Model	Choice Event Model Name (String), Choice Name (String), Choice Event (String)
Set Choice Model	Choice Model Name (String), Choice Name (String)
Set Session Rank Offers	Offers (Array of String)
Years To Now	Start Time (Date)
This chapter describes the elements in the Inline Service RTD_Base_Customer_Service. It contains the following topics:	
This chapter describes the configuration of the Inline Service, RTD_Base_Customer_Service. This Inline Service is independent of any specific front-end application or back-end data schema. As a standalone solution, users will adapt this solution by integrating it into their current environment, and selecting the components of the Inline Service that apply to their own workflow.	
This Base Inline Service contains an extensive entity model that can be used to model customer profile attributes as well as current interaction data related to their service interactions. Combining data about the customer and what the customer is doing allows Oracle RTD to perform real time analysis of the interaction and provide predictions on "next best actions" within the context of the current set of actions. These predictions are based on a combination of user-defined rules and likelihood scores determined by Oracle RTD's modeling.	
The next best actions include predicting the best offer or promotion to present to the customer, or in some cases basic messaging, where an offer presentation is deemed to be inappropriate, for example, in escalation or complaint calls.	
RTD_Base_Customer_Service contains a variety of integration points to allow users to incorporate Oracle RTD directly into their workflow. As a result of letting Oracle RTD learn on current interaction data passed to it through these integration points, Oracle RTD can model not only the results of next best actions, for example, offers, promotions, messaging, but also the interaction itself. This allows users of this Inline Service to model and ultimately predict interaction based attributes such as Interaction Duration, Interaction Reason, and Customer Attrition. As a result, customers can better understand the driving factors behind the metrics that matter to them.	
The workflow described in this chapter applies to a generic customer service interaction and supports the following scenarios:	
By integrating directly with a customer driven application, Oracle RTD can be fed a variety of interaction attributes to develop real-time predictive models. Using Decision Center, users can then navigate through the many reports to help identify drivers of areas such as interaction duration, customer attrition, or offer response.	
RTD_Base_Customer_Service contains the preconfigured choice groups to model these attributes against both the current interaction data and the customer profile data that it has access to. All of the modeling done by Oracle RTD can then be used for future predictions as in the cases mentioned in the following scenarios.	
By learning on attributes of an interaction as they occur, Oracle RTD can model them against both current interaction data as well as customer profile data. Using these models, Oracle RTD has the capability to proactively assess a customer to create an interaction profile.	
This information can then be used ahead of time to determine how best to handle a customer. Knowing this information allows agents, for example, to better prepare and handle live interactions with customers prior to taking a call.	
Customers can interact with businesses for many reasons. A natural consequence of the variety of these interactions is the complexity of determining what the next best action should be when dealing with a customer.	
At times, it may make sense to suggest a cross-sell or upsell offer if the interaction is about a currently owned product.	
There are other times, however, as in interactions resulting in a complaint, where presenting on offer may not be the best use of the agent's and customer's time. Instead, in situations like this, perhaps a promotional one-time discount or a recommended escalation to a VIP service queue may be a better option.	
With Oracle RTD as a central decisioning engine, users of Oracle RTD have the capability to arbitrate between the catalog of actions and offers a business may have to determine which is most likely to have a favorable response. With RTD_Base_Customer_Service, as current interaction data is fed to the platform, these decisions are made using not only customer profile data, but also real time data about the interaction to help optimize the decision.	
As a general decisioning platform, Oracle RTD can rank and predict a variety of different choice types. For RTD_Base_Customer_Service, configuration is included where Oracle RTD can help rank multiple solution offerings to determine the best solution to present to a customer. As with offers and actions, ranked solutions can be determined by using either Oracle RTD's models, or a customer's own priorities through the use of scoring and eligibility rules.	
This section describes a general service workflow with the integration points supported by RTD_Base_Customer_Service, followed by an example of a Contact Center interaction flow that has been enhanced by RTD_Base_Customer_Service.	
This section consists of the following topics:	
The Inline Service RTD_Base_Customer_Service contains a variety of Oracle RTD Informant and Advisor integration points that users can implement into their workflow process. As depicted in the diagram that follows, these integration points can be arranged in any fashion to support the workflow where Oracle RTD is to be integrated to. Not all integration points need to be utilized for the Inline Service to function correctly. Users can configure and customize each integration point according to their own specific requirements.	
The following diagram shows an overview of the stages of a typical service application and several of its possible interactions with the RTD_Base_Customer_Service Inline Service.	
Note: The description in the long box in the middle of the workflow is intentionally generic, to represent a general customer application. Exact details will be provided by the customer's own specific interaction workflow.	
The flow chart that follows depicts a sample service interaction flow that has been enabled by the Oracle RTD Inline Service RTD_Base_Customer_Service.	
Shaded process boxes indicate touch points for Oracle RTD Integration Points, as follows:	
These touch points indicate which integration points from the base solution have been integrated. The diagram is as an example of how a user can design the integration points to use and sequence them in the order that makes the most sense.	
In this example, the user has chosen to use the Inline Service RTD_Base_Customer_Service to provide multiple predictions for the interaction workflow. The Oracle RTD Advisors and Informants enable the user application to achieve the following objectives:	
In order for Oracle RTD to provide the best predictions for each customer interaction, it is critical that the Inline Service is configured to have access to both historical and profile data about the customer as well as the current interaction data.	
Information from both the front-end application as well as existing data sources allows Oracle RTD to build models that ultimately predict unique scores for each customer and for each individual interaction. For example, if Oracle RTD was not informed of the real time interaction, similar offers could be recommended for complaint calls as well as support request calls.	
Therefore, it is important for users to consider how they would pass data to the RTD server for each interaction (Informants) and what data can be made readily available from existing sources (Data Sources).	
Considering the service interaction workflow that appears in this section, the user has chosen to implement the following operations:	
Ultimately, by applying from this Inline Service the components that are most useful for their workflow, users will be able to reduce their application design and configuration time.	
The performance goals included with this Inline Service are:	
Each performance goal is scored according to the scoring parameters for the specific choice group that uses them. In some cases, not all of the performance goals are used at the same time for any given decision. See Section 5.4, "Choice Groups" for further details. The scoring methods tied to each performance goal can be completely reconfigured to support customer requirements.	
This section consists of the following topics:	
For the business flows described in Section 5.2, "Business Process Flows," the following analysis-oriented choice groups have been configured in this Inline Service. Most of these choice groups are tied to dynamic choices, while choice groups with "Yes/No" values as choices are tied to static choices.	
This section contains descriptions of the following choice groups:	
This choice group contains choices associated with Call Product. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-1 describes the configuration parameters for the Call Product choice group, including a list of the choice attributes.	
Table 5-2 describes the choice attributes in more detail.	
Table 5-3 describes the dynamic choice parameters for this choice group.	
Table 5-1 Configuration Parameters for Call Product Choice Group	
Parameter	Description
---	---
Choice Group Name	Call Product
Choice Attributes	Dynamic Choice Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-2.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	Product List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-3.
Table 5-2 Choice Attribute Details for Call Product Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Analysis Value
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
Table 5-3 Dynamic Choice Details for Call Product Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Product List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Customer Attrition. Its choices are static and configured in the Inline Service. The configured choices are:	
Table 5-4 describes the configuration parameters for the Customer Attrition choice group, including a list of the choice attributes.	
Table 5-5 describes the choice attributes in more detail.	
Table 5-4 Configuration Parameters for Customer Attrition Choice Group	
Parameter	Description
---	---
Choice Group Name	Customer Attrition
Choice Attributes	Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-5.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 5-5 Choice Attribute Details for Customer Attrition Choice Group	
Choice Attribute	Type
---	---
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
This choice group contains choices associated with Customer Satisfaction. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-6 describes the configuration parameters for the Customer Satisfaction choice group, including a list of the choice attributes.	
Table 5-7 describes the choice attributes in more detail.	
Table 5-8 describes the dynamic choice parameters for this choice group.	
Table 5-6 Configuration Parameters for Customer Satisfaction Choice Group	
Parameter	Description
---	---
Choice Group Name	Customer Satisfaction
Choice Attributes	Dynamic Choice Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-7.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	Satisfaction Values List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-8.
Table 5-7 Choice Attribute Details for Customer Satisfaction Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Analysis Value
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
Table 5-8 Dynamic Choice Details for Customer Satisfaction Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Satisfaction Values List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with First Call Resolution. Its choices are static and configured in the Inline Service. The configured choices are:	
Table 5-9 describes the configuration parameters for the First Call Resolution choice group, including a list of the choice attributes.	
Table 5-10 describes the choice attributes in more detail.	
Table 5-9 Configuration Parameters for First Call Resolution Choice Group	
Parameter	Description
---	---
Choice Group Name	First Call Resolution
Choice Attributes	Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-10.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 5-10 Choice Attribute Details for First Call Resolution Choice Group	
Choice Attribute	Type
---	---
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
This choice group contains choices associated with Interaction Abandonment. Its choices are static and configured in the Inline Service. The configured choices are:	
Table 5-11 describes the configuration parameters for the Interaction Abandonment choice group, including a list of the choice attributes.	
Table 5-12 describes the choice attributes in more detail.	
Table 5-11 Configuration Parameters for Interaction Abandonment Choice Group	
Parameter	Description
---	---
Choice Group Name	Interaction Abandonment
Choice Attributes	Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-12.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 5-12 Choice Attribute Details for Interaction Abandonment Choice Group	
Choice Attribute	Type
---	---
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
This choice group contains choices associated with Interaction Duration. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-13 describes the configuration parameters for the Interaction Duration choice group, including a list of the choice attributes.	
Table 5-14 describes the choice attributes in more detail.	
Table 5-15 describes the dynamic choice parameters for this choice group.	
Table 5-13 Configuration Parameters for Interaction Duration Choice Group	
Parameter	Description
---	---
Choice Group Name	Interaction Duration
Choice Attributes	Dynamic Choice Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-14.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	Interaction Duration List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-15.
Table 5-14 Choice Attribute Details for Interaction Duration Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Analysis Value
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
Table 5-15 Dynamic Choice Details for Interaction Duration Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Interaction Duration List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Interaction Escalation. Its choices are static and configured in the Inline Service. The configured choices are:	
Table 5-16 describes the configuration parameters for the Interaction Escalation choice group, including a list of the choice attributes.	
Table 5-17 describes the choice attributes in more detail.	
Table 5-16 Configuration Parameters for Interaction Escalation Choice Group	
Parameter	Description
---	---
Choice Group Name	Interaction Escalation
Choice Attributes	Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-17.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 5-17 Choice Attribute Details for Interaction Escalation Choice Group	
Choice Attribute	Type
---	---
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
This choice group contains choices associated with Interaction Outcome. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-18 describes the configuration parameters for the Interaction Outcome choice group, including a list of the choice attributes.	
Table 5-19 describes the choice attributes in more detail.	
Table 5-20 describes the dynamic choice parameters for this choice group.	
Table 5-18 Configuration Parameters for Interaction Outcome Choice Group	
Parameter	Description
---	---
Choice Group Name	Interaction Outcome
Choice Attributes	Dynamic Choice Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-19.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	Interaction Outcome List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-20.
Table 5-19 Choice Attribute Details for Interaction Outcome Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Analysis Value
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
Table 5-20 Dynamic Choice Details for Interaction Outcome Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Interaction Outcome List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Interaction Reason. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-21 describes the configuration parameters for the Interaction Reason choice group, including a list of the choice attributes.	
Table 5-22 describes the choice attributes in more detail.	
Table 5-23 describes the dynamic choice parameters for this choice group.	
Table 5-21 Configuration Parameters for Interaction Reason Choice Group	
Parameter	Description
---	---
Choice Group Name	Interaction Reason
Choice Attributes	Dynamic Choice Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-22.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	Interaction Reason List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-23.
Table 5-22 Choice Attribute Details for Interaction Reason Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Analysis Value
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
Table 5-23 Dynamic Choice Details for Interaction Reason Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Interaction Reason List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Interaction Transfer. Its choices are static and configured in the Inline Service. The configured choices are:	
Table 5-24 describes the configuration parameters for the Interaction Transfer choice group, including a list of the choice attributes.	
Table 5-25 describes the choice attributes in more detail.	
Table 5-24 Configuration Parameters for Interaction Transfer Choice Group	
Parameter	Description
---	---
Choice Group Name	Interaction Transfer
Choice Attributes	Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-25.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 5-25 Choice Attribute Details for Interaction Transfer Choice Group	
Choice Attribute	Type
---	---
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
This choice group contains choices associated with Service Level of the Interaction. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-26 describes the configuration parameters for the Service Level choice group, including a list of the choice attributes.	
Table 5-27 describes the choice attributes in more detail.	
Table 5-28 describes the dynamic choice parameters for this choice group.	
Table 5-26 Configuration Parameters for Service Level Choice Group	
Parameter	Description
---	---
Choice Group Name	Service Level
Choice Attributes	Dynamic Choice Category Choice Id Choice Likelihood Name Type For choice attribute details, see Table 5-27.
Scores	For the performance goal Maximize Likelihood, score is the choice attribute Choice Likelihood.
Choice Events	None
Choice Eligibility	None
Group Attributes	Service Level List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-28.
Table 5-27 Choice Attribute Details for Service Level Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Analysis Value
Category	String
Choice Id	String
Choice Likelihood	Double
Name	String
Type	String
Table 5-28 Dynamic Choice Details for Service Level Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Service Level List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
For the business flows described in Section 5.2, "Business Process Flows," the following decision-oriented choice groups have been configured in this Inline Service. All of these choice groups are tied to dynamic choices and a corresponding choice event model. See Section 5.8, "Models" for further details.	
This section contains descriptions of the following choice groups:	
This choice group contains choices associated with Follow Up Actions. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-29 describes the configuration parameters for the Follow Up Actions choice group, including a list of the choice attributes.	
Table 5-30 describes the choice attributes in more detail.	
Table 5-31 describes the dynamic choice parameters for this choice group.	
Table 5-29 Configuration Parameters for Follow Up Actions Choice Group	
Parameter	Description
---	---
Choice Group Name	Follow Up Actions
Choice Attributes	Dynamic Choice Action Id Category Description Text External Rule Marketing Priority Name Type For choice attribute details, see Table 5-30.
Scores	For the performance goal Maximize Expected Revenue, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Likelihood, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Marketing Priority, score is the choice attribute Marketing Priority.
Choice Events	Accepted Interested
Choice Eligibility	None
Group Attributes	Follow Up Action List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-31.
Table 5-30 Choice Attribute Details for Follow Up Actions Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Action
Action Id	String
Category	String
Description Text	String
External Rules	String
Marketing Priority	Double
Name	String
Type	String
Table 5-31 Dynamic Choice Details for Follow Up Actions Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Follow Up Action List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Retention Actions. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-32 describes the configuration parameters for the Retention Actions choice group, including a list of the choice attributes.	
Table 5-33 describes the choice attributes in more detail.	
Table 5-34 describes the dynamic choice parameters for this choice group.	
Table 5-32 Configuration Parameters for Retention Actions Choice Group	
Parameter	Description
---	---
Choice Group Name	Retention Actions
Choice Attributes	Dynamic Choice Action Id Category Description Text External Rule Marketing Priority Name Type For choice attribute details, see Table 5-33.
Scores	For the performance goal Maximize Expected Revenue, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Likelihood, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Marketing Priority, score is the choice attribute Marketing Priority.
Choice Events	Accepted Interested
Choice Eligibility	None
Group Attributes	Retention Action List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-34.
Table 5-33 Choice Attribute Details for Retention Actions Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Action
Action Id	String
Category	String
Description Text	String
External Rules	String
Marketing Priority	Double
Name	String
Type	String
Table 5-34 Dynamic Choice Details for Retention Actions Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Retention Action List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Name
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Cross Sell Offers. Its choices are configured dynamically and are determined by users based on their customer workflow. This choice group relies on either a provided product id (see Group attributes) in order to determine which dynamic choices should be populated dynamically according to the interaction product, or a list of cross sell offers provided as an attribute to the Get Offers or Get Cross Sell offers integration point.	
Table 5-35 describes the configuration parameters for the Cross Sell Offers choice group, including a list of the choice attributes.	
Table 5-36 describes the choice attributes in more detail.	
Table 5-37 describes the dynamic choice parameters for this choice group.	
Table 5-35 Configuration Parameters for Cross Sell Offers Choice Group	
Parameter	Description
---	---
Choice Group Name	Cross Sell Offers
Choice Attributes	Dynamic Choice Category Cost External Rule Marketing Priority Name Offer ID Offer Type Revenue For choice attribute details, see Table 5-36.
Scores	For the performance goal Maximize Expected Revenue, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Likelihood, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Marketing Priority, score is the choice attribute Marketing Priority.
Choice Events	Fulfilled Interested Presented
Choice Eligibility	None
Group Attributes	Cross Sell Products
Group Eligibility	None
Dynamic Choices	For details, see Table 5-37.
Table 5-36 Choice Attribute Details for Cross Sell Offers Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Action
Category	String
Cost	Double
External Rules	String
Marketing Priority	Double
Name	String
Offer Id	String
Offer Type	String
Revenue	Double
Table 5-37 Dynamic Choice Details for Cross Sell Offers Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Cross Sell Products
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Offer Id
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Promotions. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-38 describes the configuration parameters for the Promotions choice group, including a list of the choice attributes.	
Table 5-39 describes the choice attributes in more detail.	
Table 5-40 describes the dynamic choice parameters for this choice group.	
Table 5-38 Configuration Parameters for Promotions Choice Group	
Parameter	Description
---	---
Choice Group Name	Promotions
Choice Attributes	Dynamic Choice Category Cost External Rule Marketing Priority Name Offer ID Offer Type Revenue For choice attribute details, see Table 5-39.
Scores	For the performance goal Maximize Expected Revenue, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Likelihood, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Marketing Priority, score is the choice attribute Marketing Priority.
Choice Events	Fulfilled Interested Presented
Choice Eligibility	None
Group Attributes	Promotion List
Group Eligibility	None
Dynamic Choices	For details, see Table 5-40.
Table 5-39 Choice Attribute Details for Promotions Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Action
Category	String
Cost	Double
External Rules	String
Marketing Priority	Double
Name	String
Offer Id	String
Offer Type	String
Revenue	Double
Table 5-40 Dynamic Choice Details for Promotions Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Promotion List
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Offer Id
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
This choice group contains choices associated with Up Sell Offers. Its choices are configured dynamically and are determined by users based on their customer workflow. This choice group relies on either a provided product id (see Group attributes) in order to determine which dynamic choices should be populated dynamically according to the interaction product, or a list of up sell offers provided as an attribute to the Get Offers or Get Up Sell offers integration point.	
Table 5-41 describes the configuration parameters for the Up Sell Offers choice group, including a list of the choice attributes.	
Table 5-42 describes the choice attributes in more detail.	
Table 5-43 describes the dynamic choice parameters for this choice group.	
Table 5-41 Configuration Parameters for Up Sell Offers Choice Group	
Parameter	Description
---	---
Choice Group Name	Up Sell Offers
Choice Attributes	Dynamic Choice Category Cost External Rule Marketing Priority Name Offer ID Offer Type Revenue For choice attribute details, see Table 5-42.
Scores	For the performance goal Maximize Expected Revenue, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Likelihood, score is determined by likelihood from corresponding choice event model. For the performance goal Maximize Marketing Priority, score is the choice attribute Marketing Priority.
Choice Events	Fulfilled Interested Presented
Choice Eligibility	None
Group Attributes	Up Sell Products
Group Eligibility	None
Dynamic Choices	For details, see Table 5-43.
Table 5-42 Choice Attribute Details for Up Sell Offers Choice Group	
Choice Attribute	Type
---	---
Dynamic Choice	Action
Category	String
Cost	Double
External Rules	String
Marketing Priority	Double
Name	String
Offer Id	String
Offer Type	String
Revenue	Double
Table 5-43 Dynamic Choice Details for Up Sell Offers Choice Group	
Parameter	Value
---	---
Group attribute containing the list of entities for choices	Up Sell Products
Choice attribute to assign the entity data	Dynamic Choice
Entity attribute that contains the choices id	Offer Id
Distribution mode for choices over choice group folders	Spill
Maximum number of choices in one Decision Center folder	100
The Predictive Summary choice group contains the single static choice, Predictive Summary. It is used in conjunction with the Select Predictive Summary decision and returns a collective summary of call detail decisions related to the customer.	
Table 5-44 describes the configuration parameters for the Predictive Summary choice group, including a list of the choice attributes.	
Table 5-45 describes the choice attributes in more detail.	
Table 5-44 Configuration Parameters for Predictive Summary Choice Group	
Parameter	Description
---	---
Choice Group Name	Predictive Summary
Choice Attributes	Abandonment Likelihood Attrition Likelihood Escalation Likelihood First Call Resolution Likelihood Interaction Duration Likelihood Interaction Reason Likelihood Likely Interaction Duration Likely Interaction Reason Likely Product Product Likelihood Transfer Likelihood For choice attribute details, see Table 5-45.
Scores	None
Choice Events	None
Choice Eligibility	None
Group Attributes	None
Group Eligibility	None
Dynamic Choices	None
Table 5-45 Choice Attribute Details for Predictive Summary Choice Group	
Choice Attribute	Type
---	---
Abandonment Likelihood	Double
Attrition Likelihood	Double
Escalation Likelihood	Double
First Call Resolution Likelihood	Double
Interaction Duration Likelihoods	Double
Interaction Reason Likelihoods	Double
Likely Interaction Duration	String
Likely Interaction Reason	String
Likely Product	String
Product Likelihood	Double
Transfer Likelihood	Double
This choice group contains choices associated with Solutions. Its choices are configured dynamically and are determined by users based on their customer workflow.	
Table 5-46 describes the configuration parameters for the Solutions choice group, including a list of the choice attributes.	
Table 5-47 describes the choice attributes in more detail.	
Table 5-48 describes the dynamic choice parameters for this choice group.	
Table 5-46 Configuration Parameters for Solutions Choice Group	
Parameter	Description
---	---
Choice Group Name	Solutions
Choice Attributes	Description Text Dynamic Choice Name Product Name Solution ID For choice attribute details, see Table 5-47.
Scores	For the performance goal Maximize Likelihood, score is determined by likelihood from corresponding choice event model.
Choice Events	Accepted Presented
Choice Eligibility	None
Group Attributes	Solution List
Group Eligibility | None |
Dynamic Choices | For details, see Table 5-48. |
Table 5-47 Choice Attribute Details for Solutions Choice Group
Choice Attribute | Type | Value |
---|---|---|
Description Text | String | Dynamic Choice / Description Text |
Dynamic Choice | Solution | Used to store the singular entity value pulled from the Solution entity array group attribute. |
Name | String | Dynamic Choice / Name |
Product Name | String | |
Solution Id | String | Dynamic Choice / Solution Id |
Table 5-48 Dynamic Choice Details for Solutions Choice Group
Parameter | Value |
---|---|
Group attribute containing the list of entities for choices | Solution List |
Choice attribute to assign the entity data | Dynamic Choice |
Entity attribute that contains the choices id | Name |
Distribution mode for choices over choice group folders | Spill |
Maximum number of choices in one Decision Center folder | 100 |
There are two types of entity in the Inline Service RTD_Base_Customer_Service, namely session entities and entities used for dynamic choices.
This section consists of the following topics:
The Inline Service RTD_Base_Customer_Service contains a predefined session entity model that models attributes related to both the profile of the Oracle RTD current interaction and the customer's profile and history. In addition to these learning entities, all of the required entities for mapping a choice group to its dynamic choices are also defined.
As database table mappings are not defined in the base application, users must map their own data to the provided logical model. Each entity included in the Inline Service is fully extensible. This allows users to add or remove attributes that are available to their workflow.
The following diagram shows the entities, together with some of their attributes, and the relationships between the entities defined in RTD_Base_Customer_Service.
Notation
The diagram shows the standard notation used in UML class diagrams, with each directed line representing a relationship from element A to element B, as follows:
The multiplicity of a relationship restricts how many element B instances the relationship may have. The restriction denotes either a precise limit, such as 1 or 0..1, or an open-ended upper limit, such as "zero or more" or "one or more."
Session entities have a primary use for storing the attributes used for model learning.
This section describes the following entities:
(Key = Interaction Id)
The Account entity is associated with the session through the Customer entity.
The Agent entity contains attributes associated with the agent interacting with the customer.
The Campaign entity is a learning entity that is referenced by the Campaign History entity of the customer. It is initialized by the Identify Customer informant.
The Campaign History entity is a learning entity that contains campaign history of the customer. It is initialized by the Identify Customer informant.
Table 5-53 Campaign History Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Campaign Items | Campaign Item | Yes | None |
Campaigns In Past 30 Days | String | Yes | Calculated by the function Get Campaign Names In Past Days |
Days Since Last Campaign | Integer | No | Calculated by the function Get Days Since Last Campaign |
Last Campaign Category | String | No | Calculated by the function Get Last Campaign Category |
Last Campaign Delivery Method | String | No | Calculated by the function Get Last Campaign Delivery Method |
Last Campaign Name | String | No | Calculated by the function Get Last Campaign Name |
Last Campaign Type | String | No | Calculated by the function Get Last Campaign Type |
The Campaign Item entity is a learning entity that is referenced by the Campaign History entity of the customer. It is initialized by the Identify Customer informant.
The Current Interaction entity is a learning entity that contains all of the attributes tied to the session's current interaction.
Table 5-55 Current Interaction Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Abandonment Status | String | No | None |
Agent | Agent | No | None |
Agent Id | String | No | None |
Attrition Status | String | No | None |
Call Center Location | String | No | None |
Duration | String | No | None |
Escalation Status | String | No | None |
Final Solution | String | No | None |
Hold Time | Integer | No | None |
Interaction Date | Date | No | None |
Interaction Product Id | String | No | None |
Interaction Reason | String | No | None |
IVR Path | String | No | None |
Outcome | String | No | None |
Priority | String | No | None |
Product Name | String | No | None |
Resolution | String | No | None |
Satisfaction Rating | String | No | None |
Service Level | String | No | None |
Solutions Offered | String | Yes | None |
Status | String | No | None |
Transfer Status | String | No | None |
The Customer entity is a learning entity that contains all attributes tied to the customer identified in the session.
Table 5-56 Customer Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Customer Id | String | No | Not used for analysis |
Account | Account | No | None |
Account Id | String | No | Not used for analysis |
Address City | String | No | None |
Address Country | String | No | None |
Address Postal Code | String | No | None |
Address Region | String | No | None |
Address State Province | String | No | None |
Campaign History | Campaign History | No | None |
Credit Hold | String | No | None |
Household | Household | No | None |
Household Id | String | No | Not used for analysis |
Interaction History | Interaction History | No | None |
Lead Opportunity History | Lead Opportunity History | No | None |
Lifetime Value Score | Double | No | None |
Offline Churn Propensity | Double | No | None |
Person | Person | No | None |
Person Id | String | No | Not used for analysis |
Phone Area Code | String | No | None |
Purchase History | Purchase History | No | None |
Service Request History | Service Request History | No | None |
Status | String | No | None |
Target Market Segment | String | No | None |
Tenure | Double | Yes | None |
Total Credit Limit | Double | No | None |
Type | String | No | None |
The Household entity is a learning entity that contains all household related attributes.
The Interaction entity is a learning entity that contains interaction history details of the customer. It is initialized by the Identify Customer informant.
Table 5-58 Interaction Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Interaction Id | String | No | Key |
Abandonment Status | String | No | None |
Agent | Agent | No | None |
Agent Id | String | No | Not used for analysis |
Escalation Status | String | No | None |
Final Solution | String | No | None |
Hold Time | Integer | No | None |
Interaction Channel | String | No | None |
Interaction Date | Date | No | None |
Interaction Duration | Integer | No | None |
Interaction Reason | String | No | None |
Interaction Status | String | No | None |
Interaction Type | String | No | None |
Outcome | String | No | None |
Product Name | String | No | None |
Resolution | String | No | None |
Satisfaction Rating | String | No | None |
Transfer Status | String | No | None |
The Interaction History entity is a learning entity that contains interaction history of the customer. It is initialized by the Identify Customer informant.
Table 5-59 Interaction History Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Days Since Last Interaction | Integer | No | Calculated by the function Get Days Since Last Interaction |
Interaction Types In Past 30 Days | String | Yes | Calculated by the function Get Interaction Types In Past Days |
Last Interaction Status | String | No | Calculated by the function Get Last Interaction Status |
Last Interaction Type | String | No | Calculated by the function Get Last Interaction Type |
Number Of Interactions In Past 30 Days | Integer | No | Calculated by the function Get Number Of Interactions In Past Days |
Number Of Interactions In Past 90 Days | Integer | No | Calculated by the function Get Number Of Interactions In Past Days |
Number Of Interactions In Past Year | Integer | No | Calculated by the function Get Number Of Interactions In Past Days |
Past Interactions | Interaction | Yes | Not used for analysis |
The Lead entity is associated with the session through the Lead Opportunity History entity.
The Lead Opportunity History entity is a learning entity that contains lead opportunity history of the customer. It is initialized by the Identify Customer informant.
Table 5-61 Lead Opportunity History Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Days Since Last Opportunity | Integer | No | Calculated by the function Get Days Since Last Opportunity |
Last Opportunity Expected Revenue | String | No | Calculated by the function Get Last Opportunity Expected Revenue |
Last Opportunity Product | String | No | Calculated by the function Get Last Opportunity Product |
Last Opportunity Product Line | String | No | Calculated by the function Get Last Opportunity Product Line |
Last Opportunity Sales Stage | Integer | No | Calculated by the function Get Last Opportunity Sales Stage |
Number Of Opportunities In Past Year | Integer | No | Calculated by the function Get Number Of Opportunities In Past Days |
Opportunity Product Lines | String | Yes | Calculated by the function Get Opportunity Product Lines |
Past Leads | Lead | Yes | None |
Past Opportunities | Opportunity | Yes | None |
The Opportunity entity is associated with the session through the Lead Opportunity History entity.
The Person entity is associated with the session through the Customer entity.
The Purchased Item entity contains purchase instance data of a product used in the customer Purchase History entity.
The Purchase History entity is a learning entity that contains purchase history of the customer. It is initialized by the Identify Customer informant.
Table 5-65 Purchase History Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Average Purchase Amount | Double | No | None |
Days Since Last Purchase | Integer | No | Calculated by the function Get Days Since Last Purchase |
Last Purchased Amount | Double | No | Calculated by the function Get Last Last Purchased Amount |
Last Purchased Product | String | No | Calculated by the function Get Last Purchased Product |
Last Purchased Product Line | String | No | Calculated by the function Get Last Purchased Product Line |
Product Lines Owned | String | Yes | Calculated by the function Get Product Lines Owned |
Purchased Items | Purchased Item | Yes | None |
Total Amount Spent | Double | No | Calculated by the function Get Total Amount Spent |
Total Amount Spent In Last 90 Days | Double | No | Calculated by the function Get Total Amount Spent In Last 90 Days |
The Rank Offers entity is a transient attribute for holding an array of offer id's to be ranked supplied as incoming parameter of Get offer advisor calls.
The Service Request entity is a singular entity used in the Service Request History customer entity.
Table 5-67 Service Request Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Account Id | String | No | Key |
Agent | Agent | No | None |
Agent Id | String | No | Not used for analysis |
Closed Date | Date | No | None |
Create Date | Date | No | None |
Product | String | No | None |
Product Id | String | No | None |
Reason | String | No | None |
Solution Id | String | No | None |
Solution Name | String | No | None |
Status | String | No | None |
Type | String | No | None |
The Service Request History entity is a learning entity that contains the Service Request history of the customer. It is initialized by the Identify Customer informant.
Table 5-68 Service Request History Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Current Open SR | Boolean | None | |
Days Since Last Service Request | Integer | No | Calculated by the function Get Days Since Last Service Request |
Last Service Request Product | String | No | Calculated by the function Get Last Service Request Product |
Last Service Request Reason | String | No | Calculated by the function Get Last Service Request Reason |
Last Opportunity Sales Solution | Integer | No | Calculated by the function Get Last Service Request Solution |
Last Service Request Status | String | No | Calculated by the function Get Last Service Request Status |
Last Opportunity Sales Type | Integer | No | Calculated by the function Get Last Service Request Type |
Past Service Requests | Service Request | Yes | Not used for analysis |
Service Requests In Past 90 Days | Integer | No | Calculated by the function Get Number Of Service Requests In Past Days |
Service Requests In Past Year | Integer | No | Calculated by the function Get Number Of Service Requests In Past Days |
In addition to the entities created for session learning, Inline Service entities used for dynamic choices are also defined for this solution. These entities are used to populate the specific choices for each of the choice groups configured to used dynamic choices. Further details are available in Section 5.4, "Choice Groups."
The following diagram depicts the relations of the List entities specified with the Analysis Value entity:
The following diagram depicts the relations of the List entities specified with the Product entity:
As a general note, each dynamic choice group will have a corresponding set of entities - a "list" entity and an "individual" entity. For example, the Promotions dynamic choice group is associated with a Promotion entity and a Promotions List entity. The attributes of these entities are also the choice attributes for promotion.
This section describes the following entities:
The Action entity is the singular entity used in the dynamic list entities Follow Up Action List and Retention Action List.
The Analysis Value entity is the singular entity used in all of the Analysis List based entities including Interaction Duration List, Interaction Outcome List, and Interaction Reason List. The List entities are used for populating the dynamic choices for the choice groups of the same name.
The Analysis Value List entity is the List entity used to populate the dynamic choices for the Customer Satisfaction, Interaction Reason, Interaction Duration, Interaction Outcome, and Service Level choice groups. The choice group populated by this list is determined by the value for the key attribute, Category, for example, Category = Interaction Duration, and so on.
The Cross Sell Product List entity is a collection of cross sell products. It is used for data retrieval to populate the Cross Sell Dynamic Choice Group.
The Follow Up Action List entity is a List entity used to populate dynamic choices for the Follow Up Action choice group.
The Product entity is used for product descriptions for the Up Sell Offer, Cross Sell Offer, Purchase History, Leads, and Opportunity entities.
The Product List entity is a collection of products. It is used for data retrieval to populate the Call Product Choice Group.
The Promoted Item entity contains an instance of a promoted product used in the Promotion entity.
The Promotion entity is a singular entity of a Promotion used in the Promotion List entity.
Table 5-77 Promotion Entity
Attribute | Type | Array | Comments |
---|---|---|---|
Promotion Id | String | No | None |
Category | String | No | None |
Days Left | Integer | No | Calculated by the function Get Days Left |
Duration In Days | Integer | No | Calculated by the function Get Duration In Days |
Effective Date | Date | No | None |
Expiry Date | Date | No | None |
Marketing Priority | Double | No | None |
Name | String | No | None |
Period | String | No | None |
Promoted Items | Promoted Item | Yes | None |
Type | String | No | None |
The Promotion List entity is a collection of Promotions. It is used for data retrieval to populate the Promotions Dynamic Choice Group.
The Retention Action List entity is a List entity used to populate dynamic choices for the Retention Action choice group.
The Solution entity is a singular entity used in the Solution List entity.
The Solution List entity is a List entity used to populate dynamic choices for the Solutions choice group.
The Up Sell Product List entity is a collection of Up Sell products. It is used for data retrieval to populate the Up Sell Dynamic Choice Group.
The following informants are configured in the Inline Service RTD_Base_Customer_Service:
The Action Response informant can be called to record the results of actions recommended by Oracle RTD.
Table 5-83 describes the parameters for the Action Response informant.
Table 5-83 Informant Action Response
Parameter | Description |
---|---|
Informant Name | Action Response |
Session Keys | Session / Interaction Id |
Request Data | Action Id (String) Action Result (String) Action Type (String) |
External System | CRM System |
Order | 20 |
Force session close | No |
Logic | Logic is written to record the appropriate Event for the given action id. |
Pre-condition | None |
The Close Session informant records the final outcomes of the customer interaction and updates all analytical choice models at session close.
Table 5-84 describes the parameters for the Close Session informant.
Table 5-84 Informant Close Session
Parameter | Description |
---|---|
Informant Name | Close Session |
Session Keys | Session / Interaction Id |
Request Data | Abandonment Status (String) mapped to Current Interaction.Abandoment Status Attrition Status (String) mapped to Current Interaction.Attrition Status Customer Satisfaction (String) mapped to Current Interaction.Satisfaction Rating Escalation Status (String) mapped to Current Interaction.Escalation StatusFCR Resolved (String) mapped to Current Interaction.FCR Resolved Interaction Duration (String) mapped to Current Interaction.Duration Interaction Outcome (String) mapped to Current Interaction.Outcome Resolution (String) mapped to Current Interaction.Resolution Solutions Offered (String Array) mapped to Current Interaction.Solutions Offered Transfer Status (String) mapped to Current Interaction.Transfer Status |
External System | CRM System |
Order | 25 |
Force session close | Yes |
Logic | Logic is written to update all choice models based on incoming request data values for this integration point. |
Pre-condition | None |
The Identify Customer informant sends the id values for Account, Person, and Household to Oracle RTD.
Table 5-85 describes the parameters for the Identify Customer informant.
Table 5-85 Informant Identify Customer
Parameter | Description |
---|---|
Informant Name | Identify Customer |
Session Keys | Session / Interaction Id |
Request Data | Account Id (String) mapped to Customer.Account Id Household Id (String) mapped to Customer.Household Id Person Id (String) mapped to Customer.Person Id |
External System | CRM System |
Order | 5 |
Force session close | No |
Logic | Logic is written to fill the session().customer() entity. |
Pre-condition | None |
The Offer Response informant can be called to record the results of offers recommended by Oracle RTD.
Table 5-86 describes the parameters for the Offer Response informant.
Table 5-86 Informant Offer Response
Parameter | Description |
---|---|
Informant Name | Offer Response |
Session Keys | Session / Interaction Id |
Request Data | Offer Id (String) Event (String) Offer Type (String) |
External System | CRM System |
Order | 70 |
Force session close | No |
Logic | Logic is written to record the appropriate Event for the given offer id. |
Pre-condition | None |
The Solution Result informant can be called to record the results of solutions offered to the customer.
Table 5-87 describes the parameters for the Solution Result informant.
Table 5-87 Informant Solution Result
Parameter | Description |
---|---|
Informant Name | Solution Result |
Session Keys | Session / Interaction Id |
Request Data | Solution Id (String Array) Solution Result (String Array) |
External System | CRM System |
Order | 15 |
Force session close | No |
Logic | Logic is written to record the appropriate results for the given array of solution ids. |
Pre-condition | None |
The Start Session informant is called to initiate the Oracle RTD session and sends initial information regarding the customer interaction.
Table 5-88 describes the parameters for the Start Session informant.
Table 5-88 Informant Start Session
Parameter | Description |
---|---|
Informant Name | Start Session |
Session Keys | Session / Interaction Id |
Request Data | Agent Id (String) mapped to Current Interaction.Agent Id Customer Id (String) mapped to Customer.Customer Id Hold Type (String) mapped to Current Interaction.Hold Time IVR Path (String) mapped to Current Interaction.IVR Path |
External System | CRM System |
Order | 1 |
Force session close | No |
Logic | None |
Pre-condition | None |
The Update Customer Interaction informant is called to update attributes regarding the current interaction.
Table 5-89 describes the parameters for the Update Customer Interaction informant.
Table 5-89 Informant Update Customer Interaction
Parameter | Description |
---|---|
Informant Name | Update Customer Interaction |
Session Keys | Session / Interaction Id |
Request Data | Interaction Product Id (String) mapped to Current Interaction.Interaction Product Id Interaction Reason (String) mapped to Current Interaction.Interaction Reason Priority (String) mapped to Current Interaction.Priority Service Level (String) mapped to Current Interaction.Service Level Status (String) mapped to Current Interaction.Status |
External System | CRM System |
Order | 20 |
Force session close | No |
Logic | None |
Pre-condition | None |
For each advisor listed in this section, a detailed breakdown is provided for the advisor, followed by the decision called by the advisor.
This section contains descriptions of the following advisors (and their corresponding decisions):
The advisor Get Actions returns ranked Actions pulled from the choice group of the same name. It utilizes the Select Actions decision.
Table 5-90 describes the parameters for the advisor Get Actions.
Table 5-90 Advisor Get Actions
Parameter | Description |
---|---|
Advisor Name | Get Actions |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 11 |
Force session close | No |
Decision | Select Actions |
Group Decision | Select Actions |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-91 describes the parameters for the decision for the advisor Get Actions.
Table 5-91 Decision for Advisor Get Actions
Parameter | Description |
---|---|
Decision Name | Select Actions |
Select Choices From | Actions Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 33% Maximize Expected Revenue 33% Maximize Marketing Priority 33% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
This advisor returns ranked Cross Sell Offers to the front end application. It utilizes the Select Cross Sell Offers decision.
Table 5-92 describes the parameters for the advisor Get Cross Sell Offers.
Table 5-92 Advisor Get Cross Sell Offers
Parameter | Description |
---|---|
Advisor Name | Get Cross Sell Offers |
Session Keys | Session / Interaction Id |
Request Data | Number of Offers (Integer) - Optional for overriding the default number of offers returned by the advisor. Product Id (String) - Id is to be used as base product for determining which cross sell offers to rank. If not supplied through the Get Cross Sell Offers integration point, this value must be populated through the Update Customer Interaction integration point. Rank Offers (String Array) - Optional to let Oracle RTD rank the supplied array of offer ids instead of retrieving the offers from an external data source. |
External System | CRM System |
Order | 60 |
Force session close | No |
Decision | Select Cross Sell Offers |
Group Decision | Select Cross Sell Offers |
Default Choices | None |
Logic | Logic is included to populate the Rank Offers session entity with the incoming offer ids from the Rank Offers attribute if supplied. After this is done, the Select Cross Sell Offers decision is executed to rank either the supplied offer ids or read from the mapped dynamic choice data source. |
Pre-condition | None |
Table 5-93 describes the parameters for the decision for the advisor Get Cross Sell Offers.
Table 5-93 Decision for Advisor Get Cross Sell Offers
Parameter | Description |
---|---|
Decision Name | Select Cross Sell Offers |
Select Choices From | Cross Sell Offers Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 50% Maximize Expected Revenue 50% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
The advisor Get Follow Up Actions returns ranked Follow Up Actions pulled from the choice group of the same name. It utilizes the Select Follow Up Actions decision.
Table 5-94 describes the parameters for the advisor Get Follow Up Actions.
Table 5-94 Advisor Get Follow Up Actions
Parameter | Description |
---|---|
Advisor Name | Get Follow Up Actions |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 11 |
Force session close | No |
Decision | Select Follow Up Actions |
Group Decision | Select Follow Up Actions |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-95 describes the parameters for the decision for the advisor Get Follow Up Actions.
Table 5-95 Decision for Advisor Get Follow Up Actions
Parameter | Description |
---|---|
Decision Name | Select Follow Up Actions |
Select Choices From | Follow Up Actions Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 33% Maximize Expected Revenue 33% Maximize Marketing Priority 33% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
The advisor Get Likely Call Product returns ranked call products pulled from the choice group of the same name. It utilizes the Select Likely Call Product decision. This decision is also called in the function, Get Top Call Product, which is used to populate the corresponding attribute in the Predictive Summary choice.
Table 5-96 describes the parameters for the advisor Get Likely Call Product.
Table 5-96 Advisor Get Likely Call Product
Parameter | Description |
---|---|
Advisor Name | Get Likely Call Product |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 7 |
Force session close | No |
Decision | Select Likely Call Product |
Group Decision | Select Likely Call Product |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-97 describes the parameters for the decision for the advisor Get Likely Call Product.
Table 5-97 Decision for Advisor Get Likely Call Product
Parameter | Description |
---|---|
Decision Name | Select Likely Call Product |
Select Choices From | Call Product Choice Group |
Number of Choices to Select | 1 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Likelihood 100% |
Pre Selection Logic | None |
Post Selection Logic | None |
The advisor Get Likely Interaction Duration returns ranked duration values pulled from the choice group of the same name. It utilizes the Select Likely Interaction Duration decision. This decision is also called in the function, Get Top Interaction Duration, which is used to populate the corresponding attribute in the Predictive Summary choice.
Table 5-98 describes the parameters for the advisor Get Likely Interaction Duration.
Table 5-98 Advisor Get Likely Interaction Duration
Parameter | Description |
---|---|
Advisor Name | Get Likely Interaction Duration |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 7 |
Force session close | No |
Decision | Select Likely Interaction Duration |
Group Decision | Select Likely Interaction Duration |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-99 describes the parameters for the decision for the advisor Get Likely Interaction Duration.
Table 5-99 Decision for Advisor Get Likely Interaction Duration
Parameter | Description |
---|---|
Decision Name | Select Likely Interaction Duration |
Select Choices From | Interaction Duration Choice Group |
Number of Choices to Select | 1 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Likelihood 100% |
Pre Selection Logic | None |
Post Selection Logic | None |
The advisor Get Likely Interaction Reason returns ranked duration values pulled from the choice group of the same name. It utilizes the Select Likely Interaction Reason decision. This decision is also called in the function, Get Top Interaction Reason, which is used to populate the corresponding attribute in the Predictive Summary choice.
Table 5-100 describes the parameters for the advisor Get Likely Interaction Reason.
Table 5-100 Advisor Get Likely Interaction Reason
Parameter | Description |
---|---|
Advisor Name | Get Likely Interaction Reason |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 7 |
Force session close | No |
Decision | Select Likely Interaction Reason |
Group Decision | Select Likely Interaction Reason |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-101 describes the parameters for the decision for the advisor Get Likely Interaction Reason.
Table 5-101 Decision for Advisor Get Likely Interaction Reason
Parameter | Description |
---|---|
Decision Name | Select Likely Interaction Reason |
Select Choices From | Interaction Reason Choice Group |
Number of Choices to Select | 1 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Likelihood 100% |
Pre Selection Logic | None |
Post Selection Logic | None |
This advisor returns ranked offers to the front end application.
Table 5-102 describes the parameters for the advisor Get Offers.
Table 5-102 Advisor Get Offers
Parameter | Description |
---|---|
Advisor Name | Get Offers |
Session Keys | Session / Interaction Id |
Request Data | Number of Offers (Integer) - Optional for overriding the default number of offers returned by the advisor. Product Id (String) - Id is to be used as base product for determining which offers to rank. If not supplied through the Get Offers integration point, this value must be populated through the Update Customer Interaction integration point. Rank Offers (String Array) - Optional to let Oracle RTD rank the supplied array of offer ids instead of retrieving the offers from an external data source |
External System | CRM System |
Order | 60 |
Force session close | No |
Decision | Select Offers |
Group Decision | Select Offers |
Default Choices | None |
Logic | Logic is included to populate the Rank Offers session entity with the incoming offer ids from the Rank Offers attribute if supplied. After this is done, the Select Offers decision is executed to rank either the supplied offer ids or read from the mapped dynamic choice data source. |
Pre-condition | None |
Table 5-103 describes the parameters for the decision for the advisor Get Offers.
Table 5-103 Decision for Advisor Get Offers
Parameter | Description |
---|---|
Decision Name | Select Offers |
Select Choices From | Offers Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 50% Maximize Expected Likelihood 50% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
The advisor Get Predictive Summary returns the choice Predictive Summary from the choice group of the same name. It utilizes the Select Predictive Summary decision. The choice attributes tied to the predictive summary choice aggregate a combination of the top advisor predictions tied to the analytical choice group, for example, Interaction Reason, Interaction Duration, Attrition Likelihood, and so on.
Table 5-104 describes the parameters for the advisor Get Predictive Summary.
Table 5-104 Advisor Get Predictive Summary
Parameter | Description |
---|---|
Advisor Name | Get Predictive Summary |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 6 |
Force session close | No |
Decision | Select Predictive Summary |
Group Decision | Select Predictive Summary |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-105 describes the parameters for the decision for the advisor Get Predictive Summary.
Table 5-105 Decision for Advisor Get Predictive Summary
Parameter | Description |
---|---|
Decision Name | Select Predictive Summary |
Select Choices From | Predictive Summary Choice Group |
Number of Choices to Select | 1 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Likelihood 100% |
Pre Selection Logic | None |
Post Selection Logic | None |
This advisor returns ranked promotions to the front end application.
Table 5-106 describes the parameters for the advisor Get Promotions.
Table 5-106 Advisor Get Promotions
Parameter | Description |
---|---|
Advisor Name | Get Promotions |
Session Keys | Session / Interaction Id |
Request Data | Number of Offers (Integer) - Optional for overriding the default number of promotions returned by the advisor. Product Id (String) - Id is to be used as base product for determining which offers to rank. If not supplied through the Get Promotions integration point, this value must be populated through the Update Customer Interaction integration point. Rank Offers (String Array) - Optional to let Oracle RTD rank the supplied array of offer ids instead of retrieving the offers from an external data source |
External System | CRM System |
Order | 60 |
Force session close | No |
Decision | Select Promotions |
Group Decision | Select Promotions |
Default Choices | None |
Logic | Logic is included to populate the Rank Offers session entity with the incoming offer ids from the Rank Offers attribute if supplied. After this is done, the Select Promotions decision is executed to rank either the supplied offer ids or read from the mapped dynamic choice data source. |
Pre-condition | None |
Table 5-107 describes the parameters for the decision for the advisor Get Promotions.
Table 5-107 Decision for Advisor Get Promotions
Parameter | Description |
---|---|
Decision Name | Select Promotions |
Select Choices From | Promotions Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 50% Maximize Expected Likelihood 50% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
The advisor Get Ranked Solutions returns ranked duration values pulled from the choice group of the same name. It utilizes the Select Ranked Solutions decision.
Table 5-108 describes the parameters for the advisor Get Ranked Solutions.
Table 5-108 Advisor Get Ranked Solutions
Parameter | Description |
---|---|
Advisor Name | Get Ranked Solutions |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 11 |
Force session close | No |
Decision | Select Ranked Solutions |
Group Decision | Select Ranked Solutions |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-109 describes the parameters for the decision for the advisor Get Ranked Solutions.
Table 5-109 Decision for Advisor Get Ranked Solutions
Parameter | Description |
---|---|
Decision Name | Select Ranked Solutions |
Select Choices From | Solutions Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Likelihood 100% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
The advisor Get Retention Actions returns ranked Retention Actions pulled from the choice group of the same name. It utilizes the Select Retention Actions decision.
Table 5-110 describes the parameters for the advisor Get Retention Actions.
Table 5-110 Advisor Get Retention Actions
Parameter | Description |
---|---|
Advisor Name | Get Retention Actions |
Session Keys | Session / Interaction Id |
Request Data | None |
External System | CRM System |
Order | 11 |
Force session close | No |
Decision | Select Retention Actions |
Group Decision | Select Retention Actions |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 5-111 describes the parameters for the decision for the advisor Get Retention Actions.
Table 5-111 Decision for Advisor Get Retention Actions
Parameter | Description |
---|---|
Decision Name | Select Retention Actions |
Select Choices From | Retention Actions Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 33% Maximize Expected Revenue 33% Maximize Marketing Priority 33% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
This advisor returns ranked Up Sell Offers to the front end application.
Table 5-112 describes the parameters for the advisor Get Up Sell Offers.
Table 5-112 Advisor Get Up Sell Offers
Parameter | Description |
---|---|
Advisor Name | Get Up Sell Offers |
Session Keys | Session / Interaction Id |
Request Data | Number of Offers (Integer) - Optional for overriding the default number of Up Sell offers returned by the advisor. Product Id (String) - Id is to be used as base product for determining which Up Sell offers to rank. If not supplied through the Get Up Sell Offers integration point, this value must be populated through the Update Customer Interaction integration point. Rank Offers (String Array) - Optional to let Oracle RTD rank the supplied array of offer ids instead of retrieving the offers from an external data source. |
External System | CRM System |
Order | 60 |
Force session close | No |
Decision | Select Up Sell Offers |
Group Decision | Select Up Sell Offers |
Default Choices | None |
Logic | Logic is included to populate the Rank Offers session entity with the incoming offer ids from the Rank Offers attribute if supplied. After this is done, the Select Up Sell Offers decision is executed to rank either the supplied offer ids or read from the mapped dynamic choice data source. |
Pre-condition | None |
Table 5-113 describes the parameters for the decision for the advisor Get Up Sell Offers.
Table 5-113 Decision for Advisor Get Up Sell Offers
Parameter | Description |
---|---|
Decision Name | Select Up Sell Offers |
Select Choices From | Up Sell Offers Choice Group |
Number of Choices to Select | 5 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Acceptance Likelihood 50% Maximize Expected Revenue 50% |
Pre Selection Logic | None |
Post Selection Logic | Generate learning entries for (int i = 0; i < choices.size(); i++) {choices.get(i).recordEvent("Presented");} |
This section describes each of the models in the Inline Service RTD_Base_Customer_Service and their configuration parameters.
This section contains the following topics:
Choice models have been configured for each of the choice groups under the Analysis parent choice group.
This section describes the following choice models:
The Call Product model is a choice model associated with the Call Product choice group.
Table 5-114 Call Product Model
Parameter | Description |
---|---|
Model Name | Call Product Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Call Product |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Interaction Product Id Current Interaction - Product Name |
Learn Location | On session close |
Temporary Data Storage | None |
The Customer Attrition model is a choice model associated with the Customer Attrition choice group.
Table 5-115 Customer Attrition Model
Parameter | Description |
---|---|
Model Name | Customer Attrition Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Customer Attrition |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Attrition Status |
Learn Location | On session close |
Temporary Data Storage | None |
The Customer Satisfaction model is a choice model associated with the Customer Satisfaction choice group.
Table 5-116 Customer Satisfaction Model
Parameter | Description |
---|---|
Model Name | Customer Satisfaction Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Customer Satisfaction |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Satisfaction Rating |
Learn Location | On session close |
Temporary Data Storage | None |
The First Call Resolution model is a choice model associated with the First Call Resolution choice group.
Table 5-117 First Call Resolution Model
Parameter | Description |
---|---|
Model Name | First Call Resolution Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | First Call Resolution |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Interaction Abandonment model is a choice model associated with the Interaction Abandonment choice group.
Table 5-118 Interaction Abandonment Model
Parameter | Description |
---|---|
Model Name | Interaction Abandonment Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Interaction Abandonment |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Abandonment Status |
Learn Location | On session close |
Temporary Data Storage | None |
The Interaction Duration model is a choice model associated with the Interaction Duration choice group.
Table 5-119 Interaction Duration Model
Parameter | Description |
---|---|
Model Name | Interaction Duration Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Interaction Duration |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Duration |
Learn Location | On session close |
Temporary Data Storage | None |
The Interaction Escalation model is a choice model associated with the Interaction Escalation choice group.
Table 5-120 Interaction Escalation Model
Parameter | Description |
---|---|
Model Name | Interaction Escalation Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Interaction Escalation |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Escalation Status |
Learn Location | On session close |
Temporary Data Storage | None |
The Interaction Outcome model is a choice model associated with the Interaction Outcome choice group.
Table 5-121 Interaction Outcome Model
Parameter | Description |
---|---|
Model Name | Interaction Outcome Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Interaction Outcome |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Outcome |
Learn Location | On session close |
Temporary Data Storage | None |
The Interaction Reason model is a choice model associated with the Interaction Reason choice group.
Table 5-122 Interaction Reason Model
Parameter | Description |
---|---|
Model Name | Interaction Reason Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Interaction Reason |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Interaction Reason |
Learn Location | On session close |
Temporary Data Storage | None |
The Interaction Transfer model is a choice model associated with the Interaction Transfer choice group.
Table 5-123 Interaction Transfer Model
Parameter | Description |
---|---|
Model Name | Interaction Transfer Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Interaction Transfer |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Transfer Status |
Learn Location | On session close |
Temporary Data Storage | None |
The Service Level model is a choice model associated with the Service Level choice group.
Table 5-124 Service Level Model
Parameter | Description |
---|---|
Model Name | Service Level Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Service Level |
Mutually Exclusive | Yes |
Partitioning Attributes | None |
Excluded Attributes | Current Interaction - Service Level |
Learn Location | On session close |
Temporary Data Storage | None |
Choice Event models have been configured for each of the choice groups under the Decisioning parent choice group.
This section describes the following choice event models:
The Cross Sell Offers Event model is a choice model associated with the Cross Sell Offers choice group.
Table 5-125 Cross Sell Offers Event Model
Parameter | Description |
---|---|
Model Name | Cross Sell Offers Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Cross Sell Offers |
Base Event | Presented |
Positive Outcome Events | Interested Fulfilled |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Follow Up Action Event model is a choice model associated with the Follow Up Actions choice group.
Table 5-126 Cross Sell Offers Event Model
Parameter | Description |
---|---|
Model Name | Follow Up Action Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Follow Up Actions |
Base Event | Presented |
Positive Outcome Events | Accepted |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Offers Event model is a choice model associated with the Offers choice group.
Table 5-127 Offers Event Model
Parameter | Description |
---|---|
Model Name | Offers Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Offers |
Base Event | Presented |
Positive Outcome Events | Interested Fulfilled |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Promotions Event model is a choice model associated with the Promotions choice group.
Table 5-128 Promotions Event Model
Parameter | Description |
---|---|
Model Name | Promotions Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Promotions |
Base Event | Presented |
Positive Outcome Events | Interested Fulfilled |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Retention Action Event model is a choice model associated with the Retention Actions choice group.
Table 5-129 Retention Action Event Model
Parameter | Description |
---|---|
Model Name | Retention Action Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Retention Actions |
Base Event | Presented |
Positive Outcome Events | Accepted |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Solutions Event model is a choice model associated with the Ranked Solutions choice group.
Table 5-130 Solutions Event Model
Parameter | Description |
---|---|
Model Name | Solutions Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Ranked Solutions |
Base Event | Presented |
Positive Outcome Events | Accepted |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
The Up Sell Offers Event model is a choice model associated with the Up Sell Offers choice group.
Table 5-131 Up Sell Offers Event Model
Parameter | Description |
---|---|
Model Name | Up Sell Offers Event Model |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Up Sell Offers |
Base Event | Presented |
Positive Outcome Events | Interested Fulfilled |
Partitioning Attributes | None |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | None |
This section catalogs the list of predefined functions included in the Inline Service RTD_Base_Customer_Service.
Table 5-132 RTD_Base_Customer_Service Functions
Function | Inputs | Outputs | Area Utilized In | Comments |
---|---|---|---|---|
Get Analysis Values List | Category (String)) | Analysis Value Array | Groups Attributes for Choice Groups: - Customer Satisfaction - Interaction Outcome - Interaction Reason - Interaction Duration - Service Level | This function retrieves an array of Analysis choice values for various Analysis Choice Groups. It is used to populate the dynamic choices for Customer Satisfaction Choice Group, Interaction Outcome Choice Group, Interaction Reason Choice Group, Interaction Duration Choice Group, and Service Level Choice Group based on the value for the Category input. |
Get Campaign Names in Past Days | Campaign Items (Campaign Item Array) Days (Integer) | String Array | Campaign History Entity | This function loops through all campaign items associated with the customer and returns and unique list of campaign name values within the given number of days from the current date. |
Get Choice Likelihood | modelName (String) thisChoice (Choice) | Double | Choice attribute, Choice Likelihood. | For a given choice model name and choice, this function returns the RTD likelihood score. |
Get Cross Sell Product List | Product Id | Product Array | Cross Sell Product Choice Group, Group Attributes | This function is used to return an array of Products for the Cross Sell dynamic choice. The result is either a ranked products array supplied as incoming parameter of an advisor or an array of cross sell products loaded using data source mapping. |
Get Days Left | Expiry Date (Date) | Integer | Promotion Entity | This function calculates the number of days from now to expiryDate. |
Get Days Since Last Campaign | Campaign Items (Campaign Item Array) | Integer | Campaign History Entity | This function calculates the number of days from last campaign to now based on the Campaign Date. |
Get Days Since Last Interaction | Past Interactions (Interaction Array) | Integer | Interaction History Entity | This function calculates the number of days from last interaction to now based on the Interaction Date. |
Get Days Since Last Opportunity | Past Opportunities (Opportunity Array) | Integer | Opportunity History Entity | This function calculates the number of days from last customer opportunity to now based on the Opportunity create date. |
Get Days Since Last Purchase | Purchased Items (Purchased Item Array) | Integer | Purchase History Entity | This function calculates the number of days from the last purchase to now based on the purchase date. |
Get Days Since Last Service Request | Past Service Requests (Service Request Array) | Integer | Service Request History Entity | This function calculates the number of days from last service request to now based on the Service Request create date. |
Get Duration In Days | Start Date (Date) End Date (Date) | Integer | Multiple Objects | This function calculates the number of days from start date to end date. |
Get Follow Up Action List | Active (String)Category (String)) | Action Entity Array | Follow Up Actions Choice Group, Group Attributes | This function retrieves an array of follow up actions. Used with the Follow Up actions dynamic choice group. |
Get Interaction Types In Past Days | Past Interactions (Interaction Array) Days (Integer) | String Array | Interaction History Entity | This function returns array of interaction types within the past given days based on the Interaction create date. |
Get Last Campaign Category | Campaign Items (Campaign Item Array) | String | Campaign History Entity | This function returns the campaign category of the most recent campaign item based on campaign date. |
Get Last Campaign Delivery Method | Campaign Items (Campaign Item Array) | String | Campaign History Entity | This function returns the campaign delivery method of the most recent campaign item based on campaign date. |
Get Last Campaign Name | Campaign Items (Campaign Item Array) | String | Campaign History Entity | This function returns the campaign name of the most recent campaign item based on campaign date. |
Get Last Campaign Type | Campaign Items (Campaign Item Array) | String | Campaign History Entity | This function returns the campaign type of the most recent campaign item based on campaign date. |
Get Last Interaction Status | Past Interactions (Interaction Array) | String | Interaction History Entity | This function returns the status of the last associated interaction to the customer based on the interaction date. |
Get Last Interaction Type | Past Interactions (Interaction Array) | String | Interaction History Entity | This function returns the type of the last associated interaction to the customer based on the interaction date. |
Get Last Opportunity Expected Revenue | Past Opportunities (Opportunity Array) | Double | Opportunity History Entity | This function returns the expected revenue of the most recent opportunity associated with the customer. |
Get Last Opportunity Product | Past Opportunities (Opportunity Array) | String | Opportunity History Entity | This function returns the product of the most recent opportunity associated with the customer. |
Get Last Opportunity Product Line | Past Opportunities (Opportunity Array) | String | Opportunity History Entity | This function returns the product line of the most recent opportunity associated with the customer. |
Get Last Opportunity Sales Stage | Past Opportunities (Opportunity Array) | String | Opportunity History Entity | This function returns the current sales stage of the most recent opportunity associated with the customer. |
Get Last Purchased Amount | Purchase Items (Purchased Item Array) | Double | Purchase History Entity | This function returns the purchase amount of the most recent purchased product associated with the customer. |
Get Last Purchased Product | Purchase Items (Purchased Item Array) | String | Purchase History Entity | This function returns the product name of the most recent purchased product associated with the customer. |
Get Last Purchased Product Line | Purchase Items (Purchased Item Array) | String | Purchase History Entity | This function returns the product line of the most recent purchased product associated with the customer. |
Get Last Service Request Product | Past Service Requests (Service Request Array) | String | Service Request History Entity | This function returns the product associated with the last created Service Request tied to the customer. |
Get Last Service Request Reason | Past Service Requests (Service Request Array) | String | Service Request History Entity | This function returns the reason associated with the last created Service Request tied to the customer. |
Get Last Service Request Solution | Past Service Requests (Service Request Array) | String | Service Request History Entity | This function returns the solution name associated with the last created Service Request tied to the customer. |
Get Last Service Request Status | Past Service Requests (Service Request Array) | String | Service Request History Entity | This function returns the current status associated with the last created Service Request tied to the customer. |
Get Last Service Request Type | Past Service Requests (Service Request Array) | String | Service Request History Entity | This function returns the type associated with the last created Service Request tied to the customer. |
Get Number Of Interactions In Past Days | Past Interactions (Interaction Array), Days (Integer) | Integer | Interaction History Entity | This function counts the number of interactions in the past given days. |
Get Number Of Opportunities In Past Days | Past Opportunities (Opportunity Array), Days (Integer) | Integer | Opportunity History Entity | This function counts the number of opportunities in the past given days. |
Get Number Of Service Requests In Past Days | Past Service Requests (Service Requests Array) | Integer | Service Request History Entity | This function counts the number of service requests in the past given days. |
Get Opportunity Product Lines | Past Opportunities (Opportunity Array) | String Array | Opportunity History Entity | This function returns the product lines of all customer opportunities. |
Get Product Lines Owned | Purchased Items (Purchased Items Array) | String Array | Purchase History Entity | This function returns product lines of the purchased items associated with the customer. |
Get Product List | Active (String) | Product Entity Array | Call Product Choice Group, Group Attributes | This function retrieves an array of products. Used with the Call Product dynamic choice group. |
Get Promotion List | None | Promotion Entity Array | Promotions Choice Group, Group Attributes | This function is used to return array of Promotion entity for Promotion dynamic choice. The result is either ranked promotion array supplied as incoming parameter of advisors or array of promotions loaded using data source mapping. |
Get Retention Action List | Active (String)Category (String)) | Action Entity Array | Retention Actions Choice Group, Group Attributes | This function retrieves an array of retention actions. Used with the Retention actions dynamic choice group. |
Get Solution List | Active (String)Product Id (String)) | Solution Entity Array | Solutions Choice Group, Group Attributes | This function retrieves an array of Solutions. Used with the solutions dynamic choice group. |
Get Specific Choice Likelihood | modelName (String)thisChoiceName (string) | Double | Various Choice Attributes | This function returns likelihood for a given inputted choice that is part of a Choice Model (as opposed to a choice event model). As inputs, the user must pass in the value for the "Name" attribute assigned to the choice and the model name that choice is part of. |
Get Top Call Product | None | String | Predictive Summary Choice | This function calls the Select Likely Call Product decision and returns the top ranked call product according to it. |
Get Top Interaction Duration | None | String | Predictive Summary Choice | This function calls the Select Likely Interaction Duration decision and returns the top ranked call product according to it. |
Get Top Interaction Reason | None | String | Predictive Summary Choice | This function calls the Select Likely Interaction Reason decision and returns the top ranked call reason according to it. |
Get Total Amount Spent | Purchased Items (Purchase Items Array) | Double | Purchase History Entity | This function sums up the amount the customer spent so far based on purchase amount of products owned. |
Get Total Amount Spent in Last 90 Days | Purchased Items (Purchase Items Array) | Double | Purchase History Entity | This function sums up the amount the customer spent in past 90 days. |
Get Up Sell Product List | Product Id (String) | Product Entity Array | Up Sell Offers Choice Group, Group Attributes | This function is used to return array of Product entity for Up Sell dynamic choice. The result is either ranked products array supplied as incoming parameter of advisors or array of up sell products loaded using data source mapping. |
Multiply | A (Double)B (Double) | Double | Various objects | This function multiplies the given numbers. |
Set Choice Model | Choice Model Name (String)Choice Name (String) | None | Close Session integration point | This function is used to store all of the logic needed to set the Choice Models tied to the Choice Groups. |
Set Session Rank Offers | Offers (String array) | None | Various Advisor Integration Points | This procedure is used to parse and set the session Rank Offers attribute before decision selection. |
The batch examples provided in this base solution demonstrate a technical implementation of the Oracle RTD platform's batch framework. Logic has been included in this Inline Service to allow for the batch operation of this solution. The following scenarios for batch use are:
To facilitate this example, source customer data for this example should be provided in the form of a customer text file which contains data that allows for the analytical choice group models to be updated.
The batch Inline Service should provide batch recommendations and write to an output table where a customer would use the output records for external purposes.
Each of the above use cases is configured through .java files and adheres to the sequence of API's that the batch framework expects, namely:
init()
- Called once by the framework before starting the batch's processing loop. getNextInput()
- Returns the next input row to be processed by the batch. executeRow()
- The batch job implements this method to process the input row that was returned by getNextInput()
. flushOutputs()
- Called by the framework to allow the batch job to flush its output table buffers. cleanup()
- Called by the framework after the batch is finished or is being stopped. Cleans up any resources allocated by the batch job, such as the result set created by its init()
method. For full details of the methods of the BatchJob interface and execution of the batch framework, refer to the Oracle RTD Batch Framework chapter in Oracle Real-Time Decisions Platform Developer's Guide.
A separate .java file has been created for each of the batch use cases described in this section. These java files are located under the path, RTD_ILS_HOME
/RTD_Base_Customer_Service/src/batch
where RTD_ILS_HOME
is the directory into which the Inline Service RTD_Base_Customer_Service has been saved. The following are the .java files included:
Important: These java files should not be relocated as their path is referenced by the Inline Service when registering each of the batch process to the batch framework. |
This section contains the following topics:
The logic for registering each of the batch job .java files can be found in the Logic section of the Application object of the Inline Service. Both .java files are registered against the default path, RTD_Base_Customer_Service/src/batch
.
If users decide not to include batch functionality with their Inline Service, they must comment out the logic in this section.
The BatchLearn.java
file contains the logic to process a list of customers and offer responses, obtained through a SQL query, and calls the Inline Service informant to update its learning models.
init()
The init()
API loads all of the batch parameters defined for this batch job, such as the SQL statement that pulls customer interaction data to be processed by the job. Currently, the java file has a default SQL statement that pulls data from a table called BatchInteractions
. However, customers should replace this with their own table from which to learn.
getNextInput()
The getNextInput()
API processes the given result set of customer data and sets the data into the inputRow object to be processed by the executeRow()
API.
executeRow()
The executeRow()
API calls the Start Session informant to begin the Oracle RTD session, passing it the appropriate request parameters. It then calls the CloseSessionInformant()
API, which in turn calls the Close Session integration point. The Close Session integration point contains the logic that updates all of the learning models tied to the interaction.
flushOutputs()
The flushOutputs()
API is not used for this batch job.
cleanup()
The cleanup()
API closes out the result set built from the init()
API and closes the database connection.
The BatchRecommend.java
file contains the logic to process a list of customers obtained through a SQL query, and calls the Inline Service advisor Get Actions to retrieve the top ranked action for a given customer. This output is then written to an output table defined by the customer.
init()
The init()
API loads all of the batch parameters defined for this batch job, such as the SQL statement for pulling the list of customers for whom to retrieve the best action. In this example, the SQL is tied to a table BatchCustomers
. However, customers should replace this with their own table from which to predict.
getNextInput()
The getNextInput()
API processes the given result set of customer data and sets the data into the inputRow object to be processed by the executeRow()
API.
executeRow()
The executeRow()
API calls the Get Actions integration point, passing it the appropriate customer id from the inputRow object. The recommended action is then obtained from the response and passed to the insertOrUpdate()
API, which uses JDBC functionality and prepares the INSERT or UPDATE statement to be used after the flushOutputs()
API is called.
flushOutputs()
The flushOutputs()
API is called to execute all of the INSERT and UPDATE statements that have been collected and prepared by the insertOrUpdate()
API.
cleanup()
The cleanup()
API closes out the result set built from the init()
API and closes the database connection.
This chapter outlines the steps that you can take to configure the Base Inline Services.
As outlined in Part 2, each Base Inline Service contains a template of metadata. This template enables customers to tie their particular front end to a variety of Oracle RTD Integration Points. Oracle RTD can use these Integration Points both for Oracle RTD decisioning and for analysis of the customer web site.
While the Inline Service contains a variety of decisioning and data transformation logic, users must still take this Inline Service and identify what elements are necessary to support their business workflow and requirements.
To achieve this alignment, Oracle recommends the following high-level steps:
Oracle RTD platform documentation, which includes the Getting Started tutorial in Part 1 of the Oracle Real-Time Decisions Decision Studio Reference Guide
Your third party implementer documentation, if appropriate
Each Base Inline Service includes a collection of integration points that collects current interaction data about the front-end process (informants) and provides real time recommendations and scores (advisors).
In order to incorporate your own customer data into the Oracle RTD models, it is important to select and order how each applicable integration point can be used in your business process. For example, not all of the provided Advisors (such as Get Advertisements, Get Up Sell Offers, and so on) may be applicable in the intended workflow. Furthermore, it is critical to identify which data can be passed through the Oracle RTD integration points in real time in the context of the business workflow.
As an early design task, the Inline Service should be evaluated for what pieces are applicable and what data will be available for building the models, either as current interaction data or as data from data sources. See Section 6.3, "Mapping Entity Attributes to Customer Data Sources" for further discussions on data mapping.
Several methods for integrating your front end with Oracle RTD are available. These include the use of one of the following:.
Each of these methods is discussed in detail in Part II - Integration with Oracle RTD of the Oracle Real-Time Decisions Decision Studio Reference Guide, where you will find steps on completing the integration.
Each Base Inline Service contains a logical entity model that joins common customer and web attributes that a system may gather in the process of navigating through the business workflow.
As a design exercise, customers who use a Base Inline Service should review the entity structure and map the appropriate attributes to their own data schema. If there are useful data attributes or business objects that are not included in the Base Inline Service entities, customers should feel free to incorporate them into the entity model.
Data that captures the context of the customer interaction can be extremely useful in understanding customer behavior and offer acceptance. In addition to data captured from a back end data schema, users should also evaluate what information can be captured as current interaction data for the web interaction and be sent to Oracle RTD via the integration points.
Customers can refer to the Getting Started tutorial in Part 1 of the Oracle Real-Time Decisions Decision Studio Reference Guide for details on adding data sources and modifying or adding entity attributes.
While each Base Inline Service covers a wide variety of data inputs and touchpoints, it is important to recognize that it serves as a base point. Logic unique to a customer's own business processes may need to be added to basic Oracle RTD operations, such as the following:
Customers may also add custom logic to a Base Inline Service. Examples of customizations can include the following:
For more information on performing customizations to an Inline Service, refer to the following manual:
Part 3 describes the component elements of the Reference Library Inline Services and associated elements.
Part 3 contains the following chapters:
This chapter describes the elements in the Numeric_Prediction_ECommerce Inline Service. It contains the following topics:
When users configure models that are numerically based, users typically specify numeric ranges for each choice so that when the models are set, a discrete numeric value can fall into one of the numeric range choices. Examples of these choices include revenue, call duration, and interaction time, where example choice values are "0-10 Minutes", "10-20 Minutes", "0-100 Dollars", and so on. The creation of choices that group numbers into predefined numeric ranges allows users to develop models that are meaningful to the corresponding workflow for reporting.
Oracle RTD predictions against these ranges can be limiting, however, unless the ranges are small enough to make the predictions also meaningful. The use of numerical predictive techniques in Oracle RTD resolves this issue by allowing users the best of both worlds - that is, to configure both discrete ranges that are significant for reporting purposes as well as to configure choices that can be used to predict an explicit number as opposed to ranges.
The Numeric_Prediction_ECommerce Inline Service example demonstrates how to apply numerical predictive techniques in the Oracle RTD platform. While the method used is completely general and can be applied to any case where numeric prediction is required, the Numeric_Prediction_ECommerce Inline Service demonstrates specifically how web duration (minutes) can be modeled and predicted.
The example scenario is an application integrated with Oracle RTD which has a requirement to predict web duration. After each user session on the web site, an Oracle RTD model is built that analyzes the total time spent on a web site. As each new visitor connects to the site, at the beginning of the user session, Oracle RTD uses the model and the current user's profile and predicts how long that user will stay on the web site. This can help to determine which message to present to the user. For example, short stay users could be offered a special promotion, while longer stay users could be invited to take a survey.
For predicting numeric values, Oracle RTD utilizes a method based on quantile regression and overlapping threshold techniques. The key component consists of choices whose values are equally spaced, overlapping numeric ranges. Users can configure the ranges as dynamic choices by supplying application parameters. For more details of these parameters, see Section 7.2, "Application Object."
As an example, with the application parameter Min Output set to 0, Spacing set to 5, and Max Output set to 20, the following dynamic choices are configured:
For each web session, as the session closes, the value for the total duration is passed to Oracle RTD. The Inline Service is configured to update the model for each of the choices that the session duration falls into. So if the session duration is 17 minutes, the choices, "0 and greater", "5 and greater", "10 and greater", and "15 and greater" will all have their associated models updated. This learning pattern is repeated for each session.
When a duration prediction is requested, based on session attributes, Oracle RTD provides a likelihood of occurrence for each of the choices. Oracle RTD then determines how many choices have a likelihood greater than a given minimum value - this minimum value is supplied by users as an application parameter Choice Likelihood Threshold, whose default value is 0.5.
For each choice where the likelihood is above the minimum value, Oracle RTD then applies the formula:
Following the example, if four of the choices have a likelihood greater than the Choice Likelihood Threshold, the formula calculates the predicted value as:
From this, it should be clear that the more narrow the spacing, the more precise the numeric prediction can be, assuming that there is enough data to learn on.
Use of Dynamic Choices for Numeric Predictions
Unlike the conventional configuration of dynamic choices, the choice values are not stored in a separate data source and then retrieved when a decision is called for that choice group. Instead, the values for the dynamic choices in the Numeric_Prediction_ECommerce Inline Service are created at run time using predefined java logic with parameters based on user defined application settings. These application parameters are described in Section 7.2, "Application Object," and the functions that create and use these choices are described in Section 7.10, "Functions."
There are two sets of dynamic choices created in the Numeric_Prediction_ECommerce Inline Service, both of which have their parameters defined at the Inline Service Application Object level:
From a reporting standpoint, users should refer only to the discrete range choices under the Analysis parent choice group for reports. In fact, the choice group created for the overlapping thresholds, Web Site Duration Prediction, is hidden from the Decision Center by default to avoid this confusion to the user.
In the Numeric_Prediction_ECommerce Inline Service, there are two Decisioning choice groups, one dynamic and one static:
Using the Base E-Commerce solution as a foundation, the Numeric_Prediction_ECommerce Inline Service shows how the choice group Web Duration Choice has been reconfigured with the necessary java logic to implement explicit numeric predictions.
Further details can be found in Section 7.4, "Choice Groups and Choices." Also, Section 7.6, "Integration Point Workflows" provides information on how the choice groups are used in the Numeric_Prediction_ECommerce learning workflow.
At the Inline Service Application object level are the configurations parameters that a user must set to define the limits of the numeric range for the target choice groups, as well as the spacing of the range for both the analytics and predictive portions of the Inline Service. These parameters are referenced in the learning and decisioning code found in the Inline Service. Refer to Section 7.10, "Functions" for further details.
Note: Do not alter the names of the Application Parameters, as they are directly referenced by several functions in the Numeric_Prediction_ECommerce Inline Service example. |
Table 7-1 Application Parameters for Numeric Predictions E-Commerce Inline Service
Name | Type | Default Value | Description |
---|---|---|---|
Analysis Bucket Boundary Array | Integer Array | (0, 1, 5, 10, 20, 30) | When defined, the standard spacing indicated by the application parameter Spacing For Analysis will not be used to create the numeric range for each dynamic choice. Instead, the user can define the spacing used for analytics through this parameter. |
Choice Likelihood Threshold | Double | 0.5 | Defines the minimum likelihood value to determine if a choice is above the confidence threshold and is to be applied to the numeric predictions formula. See the Get Numeric Prediction function. |
Max Output | Integer | 30 | Defines the maximum numeric value for the target choice group used for prediction. |
Max Output for Analysis | Integer | Application/ Max Output | Defines the maximum numeric value for the target choice group used for analysis. |
Min Output | Integer | 0 | Defines the minimum numeric value for the target choice group used for prediction. |
Min Output for Analysis | Integer | Application/ Min Output | Defines the minimum numeric value for the target choice group used for analysis. |
Spacing | Integer | 2 | Defines the spacing for each dynamic choice created under the prediction choice group. Note: The smaller the spacing the larger the number of dynamic choices there will be. This will require more occurrences for the model to learn for each group but allows for a more refined prediction. Larger spacing may result in faster learning but less refined predictive outcomes. |
Spacing for Analysis | Integer | Application/ Spacing | Defines the spacing for each dynamic choice created under the analysis prediction choice group. |
Target Choice Base Name | String | "minutes" | Describes the numerics being modeled and will also be included in the name of the dynamic choice. |
Target Choice Group Name for Analysis | String | "WebSiteDurationCG" | Object name of the choice group where the dynamic choices used for analysis will be created. |
Target Choice Group Name for Prediction | String | "WebSiteDurationPrediction" | Object name of the choice group where the dynamic choices used for prediction will be created. |
One performance goal, Maximize Likelihood, is included in the Numeric_Prediction_ECommerce Inline Service, to be used by the loadgen script.
Analysis and Decisioning Based Choice Groups
Although the Numeric_Prediction_ECommerce Inline Service demonstrates numeric predictions for one subject area only, namely Web Duration, two types of choice group have been configured, one for analysis and one for prediction. Each is tied to a model which analyses web duration, but they differ in the way that the dynamic choices are created for each group.
For more useful analysis reports, numeric ranges represented in the dynamic choices should be bounded. For example, for a choice group where users want to model a numeric range of 0 to 100, with a spacing of 10 (see the parameters for the Application Object), the Inline Service creates dynamic choices for analysis as follows:
and so on up to 90-100. This allows for discrete reports to be seen in Decision Center, where users can go to one specific choice to look at the reports depending on the desired range.
For predictions, the quantile regression method relies on overlapping buckets of numeric ranges to be modeled, where a median number is determined based on the most likely buckets for any given prediction. For the same example range of 0-100, an overlapping scheme with a spacing of 10 results in dynamic choice groups with the following values:
up to "90 and above." So, if the session resulted in a number of 25 to be modeled, the choice groups, "0 and above," "10 and above," and "20 and above" will each be updated accordingly.
With these dynamic choices of overlapping buckets, a prediction algorithm can then be applied based on the most likely choices to determine the final numeric value. In the Numeric_Prediction_ECommerce Inline Service, this is achieved by the Get Numeric Prediction function.
While the resulting Decision Center reports still provide useful information, users may find it more useful to view the reports in bounded ranges as it provides simply one "location" to find the report they want.
The following choice groups are configured in the Inline Service Numeric_Prediction_ECommerce:
Note: For more information about how the choice groups are used in the Inline Service Numeric_Prediction_ECommerce, see Section 7.6, "Integration Point Workflows." |
Table 7-2 describes the configuration parameters for the Analysis - Web Site Duration choice group.
Table 7-3 provides details of the dynamic choice parameters for this choice group.
Table 7-2 Configuration Parameters for Analysis - Web Site Duration Choice Group
Parameter | Description |
---|---|
Choice Group Name | Analysis - Web Site Duration |
Choice Attributes | Numeric Prediction Choice Attr
Likelihood
|
Scores | For the performance goal Maximize Likelihood, score is determined by choice Likelihood attribute from the corresponding choice event model. |
Choice Events | None |
Choice Eligibility | None |
Group Attributes | Numeric Prediction Group Attr.
|
Group Eligibility | None |
Dynamic Choices | For details, see Table 7-3. |
Table 7-3 Dynamic Choice Details for Analysis - Web Site Duration Choice Group
Parameter | Value |
---|---|
Group attribute containing the list of entities for choices | Numeric Prediction Group Attr |
Choice attribute to assign the entity data | Numeric Prediction Choice Attr |
Entity attribute that contains the choices id | Choice id |
Distribution mode for choices over choice group folders | Spill |
Maximum number of choices in one Decision Center folder | 100 |
This choice group is configured to return the numeric predicted value for the Web Duration choice. Instead of a choice id being returned, the value of the Web duration attribute will be an entity of the choice Web Duration configured under this choice group.
Table 7-4 describes the configuration parameters for the Decisioning - Web Duration Choice choice group.
Table 7-4 Configuration Parameters for Decisioning - Web Duration Choice Choice Group
Parameter | Description |
---|---|
Choice Group Name | Decisioning - Web Duration Choice |
Choice Attributes | Web Duration
|
Scores | For the performance goal Maximize Likelihood, score is 0. |
Choice Events | None |
Choice Eligibility | None |
Group Attributes | None. |
Group Eligibility | None |
Dynamic Choices | None |
Table 7-5 describes the configuration parameters for the Decisioning - Web Site Duration Prediction choice group.
Table 7-6 provides details of the dynamic choice parameters for this choice group.
Table 7-5 Configuration Parameters for Decisioning - Web Site Duration Prediction Choice Group
Parameter | Description |
---|---|
Choice Group Name | Decisioning- Web Site Duration Prediction |
Choice Attributes | Numeric Prediction Choice Attr
Likelihood
|
Scores | For the performance goal Maximize Likelihood, score is determined by choice Likelihood attribute from the corresponding choice event model. |
Choice Events | None |
Choice Eligibility | None |
Group Attributes | Numeric Prediction Group Attr
|
Group Eligibility | None |
Dynamic Choices | For details, see Table 7-6. |
Table 7-6 Dynamic Choice Details for Decisioning - Web Site Duration Prediction Choice Group
Parameter | Value |
---|---|
Group attribute containing the list of entities for choices | Numeric Prediction Group Attr |
Choice attribute to assign the entity data | Numeric Prediction Choice Attr |
Entity attribute that contains the choices id | Choice id |
Distribution mode for choices over choice group folders | Spill |
Maximum number of choices in one Decision Center folder | 100 |
This section outlines the entity model used for the Numeric_Prediction_ECommerce Inline Service. It is a subset of the entity model used on the RTD_Base_ECommerce Inline Service with only the portions required to articulate the Web Site Duration use case.
Several session driven attributes are included in this example for simulation purposes, to be used in conjunction with the loadgen script included. These attributes do not reflect which attributes are to be used for numeric predictions, but are included so that users can see outputs in the Decision Center when running this example.
The following entities are configured in the Numeric_Prediction_ECommerce Inline Service:
The Customer entity is used to store customer data created during numeric prediction simulations through load generator.
This entity is used to store web interaction data created during numeric prediction simulations through load generator.
This is a placeholder entity used for creating dynamic choices against the web duration choice groups.
The Customer entity has the following attributes:
The Current Web Interaction entity has the following attributes:
The Numeric Prediction entity has no attributes configured.
This section shows the workflows for the Numeric_Prediction_ECommerce Inline Service integration points and the Inline Service elements used during the processing of the integration points.
Figure 7-1 shows the workflow and elements associated with each informant in the Numeric_Prediction_ECommerce Inline Service. Note that the "learning" logic is included as part of the Close Session informant processing, which updates the following models:
The processing for each informant shown in Figure 7-1 is as follows:
This passes the web duration to the Web Site Duration Prediction Model, which learns for numeric predictions against the Decisioning choice group Web Site Duration Prediction
This passes the web duration to the Web Site Duration Model, which learns for analysis against the Analysis choice group Web Site Duration
Figure 7-2 shows the workflow for the advisor Get Likely Web Duration in the Numeric_Prediction_ECommerce Inline Service.
The processing behind the Get Likely Web Duration advisor shown in Figure 7-2 is as follows:
The function Get Numeric Prediction calculates the numeric prediction against the Decisioning choice group Web Site Duration Prediction for the model Web Site Duration Prediction Model
The Decisioning choice group Web Site Duration Prediction has its dynamic choices populated by the function Get Group Attr Array
The following informants are configured in the Numeric_Prediction_ECommerce Inline Service:
In the Numeric_Prediction_ECommerce Inline Service, these informants together with the advisor Get Likely Web Duration form a subset of the integration points found in the Base E-Commerce solution. They are used by the included loadgen scripts to create the simulated learnings that demonstrate the numeric prediction capabilities.
Note: For more details about the Integration Point processing in the Numeric_Prediction_ECommerce Inline Service, see Section 7.6, "Integration Point Workflows." |
The Initiate Session informant is called to initiate the Oracle RTD session and sends initial information regarding the customer interaction.
Table 7-7 describes the parameters for the Initiate Session informant.
Table 7-7 Informant Initiate Session
Parameter | Description |
---|---|
Informant Name | Initiate Session |
Session Keys | Session / Current Web Interaction / Interaction Id |
Request Data | Time of Day (String) mapped to Current Web Interaction.Time Of Day User Location (String) mapped to Current Web Interaction.Web User Location Web Origin (String) mapped to Current Web Interaction.Origin To Website |
External System | Web ECommerce |
Order | 1 |
Force session close | No |
Logic | None |
Pre-condition | None |
The Identify Customer informant is called to send information regarding the customer interaction that is collected during the web interaction.
Table 7-8 describes the parameters for the Identify Customer informant.
Table 7-8 Informant Identify Customer
Parameter | Description |
---|---|
Informant Name | Identify Customer |
Session Keys | Session / Current Web Interaction / Interaction Id |
Request Data | Address State Province (String) mapped to Customer.AddressStateProvince Customer Id (String) mapped to Customer.Customer Id Gender (String) mapped to Customer.Gender Industry (String) mapped to Customer.Industry Marital Status (String) mapped to Customer.Marital Status |
External System | Web ECommerce |
Order | 5 |
Force session close | No |
Logic | None |
Pre-condition | None |
The Close Session informant is called to close out the session and send in the final web duration value. It also contains the logic which calls the functions that update the appropriate dynamic choice models for numeric prediction.
Table 7-9 describes the parameters for the Close Session informant.
Table 7-9 Informant Close Session
Parameter | Description |
---|---|
Informant Name | Close Session |
Session Keys | Session / Current Web Interaction / Interaction Id |
Request Data | Web Duration (Integer) |
External System | Web ECommerce |
Order | 100 |
Force session close | Yes |
Logic | Contains logic that calls the functions Learning By Thresholding and Learning By Bucketing. These functions update the choices groups for Web Duration in both the Analysis and Decisioning choice groups. |
Pre-condition | None |
The following advisor is configured in the Numeric_Prediction_ECommerce Inline Service:
In the Numeric_Prediction_ECommerce Inline Service, the advisor Get Likely Web Duration together with the three informants Initiate Session, Identify Customer, and Close Session, form a subset of the integration points found in the Base E-Commerce solution. They are used by the included loadgen scripts to create the simulated learnings that demonstrate the numeric prediction capabilities.
Note: For more details about the Integration Point processing in the Numeric_Prediction_ECommerce Inline Service, see Section 7.6, "Integration Point Workflows." |
The advisor Get Likely Web Duration returns a single choice, Web Duration, whose attribute Web Duration contains the predicted numeric value for web duration for the given session inputs.
Table 7-10 describes the parameters for the advisor Get Likely Web Duration.
Table 7-10 Advisor Get Likely Web Duration
Parameter | Description |
---|---|
Advisor Name | Get Likely Web Duration |
Session Keys | Session / Current Web Interaction / Interaction Id |
Request Data | Address State Province (String) mapped to Customer.AddressStateProvince Customer Id (String) mapped to Customer.Customer Id Gender (String) mapped to Customer.Gender Industry (String) mapped to Customer.Industry Marital Status (String) mapped to Customer.Marital Status |
External System | CRM System |
Order | 0 |
Force session close | No |
Decision | Select Likely Web Duration for Prediction |
Group Decision | Select Likely Web Duration for Prediction |
Default Choices | None |
Logic | None |
Pre-condition | None |
Table 7-11 describes the parameters for the decision for the advisor Get Likely Web Duration.
Table 7-11 Decision for Advisor Get Likely Web Duration
Parameter | Description |
---|---|
Decision Name | Select Likely Web Duration for Prediction |
Select Choices From | Web Duration Choice |
Number of Choices to Select | 1 |
Select at Random | No |
Target Segments | Default |
Priorities for Default Segment | Maximize Likelihood 100% |
Pre Selection Logic | None |
Post Selection Logic | None |
Two models are included in the Numeric_Prediction_ECommerce Inline Service. The first model, Web Site Duration Model, is used for the analysis-based choice group while the second model, Web Site Duration Prediction Model, is used for the prediction based model.
Note: For more information about how the models are used in the Numeric_Prediction_ECommerce Inline Service, see Section 7.6, "Integration Point Workflows." |
The functions included in Numeric_Prediction_ECommerce Inline Service are used for learning the dynamic choice buckets and for applying the scoring algorithm for predicting a number.
Table 7-12 Numeric_Prediction_ECommerce Functions
Function | Inputs | Outputs | Comments |
---|---|---|---|
Get Group Attr Arrays | Target Choice Base Name | Numeric Prediction Entity Array | Forms the dynamic choice ids for a given choice group name. It is called when dynamic choices are used for prediction. This function is used for the prediction (thresholding) dynamic choices in the Web Site Duration Prediction choice group which are used for numeric prediction. The dynamic choice id format must match the format used in the function Learning By Thresholding, which record choices in that choice group in the model Web Site Duration Prediction Model. |
Get Numeric Prediction | Choice Group Id Model Name | Double | This function is used to calculate numeric prediction against the Web Site Duration Prediction choice group for the model Web Site Duration Prediction Model. NOTE: The algorithm used to calculated the number is specifically tied to the use of the overlapping choice groups for the Web Site Duration Prediction choice group and should not be altered. |
Get Prediction | Choice Group Id | Double | This function is used to calculate numeric prediction against the Web Site Duration Prediction choice group. |
Learning By Bucketing | Target Number Model Name | None | This function generates the dynamic choices based on non- overlapping buckets for analysis corresponding to the given Target Number and records the dynamic choices to a choice model with the given Model Name. [The Target Number is the value of the numeric to be modeled. In this Inline Service, the Target Number is the value for the Web Duration as passed to the Close Session informant.] The value of the dynamic choice to update is determined by the application parameters and the incoming target number. This function is called by the Close Session informant to enable learning by bucketing, which aims at presenting easy-to-interpret results on decision center. If the application parameter Analysis Buckets Boundary Array has valid values, the buckets can have unequal widths, determined by an array of boundaries given by users. Otherwise, by default, the buckets have equal widths, determined by the min, max and spacing, given by users according to their prior knowledge set through Application parameters. |
Learning By Thresholding | Target Number Model Name | None | This function records dynamic choices corresponding to the given Target Number to a choice model with the given Model Name. [The Target Number is the value of the numeric to be modeled. In this Inline Service, the Target Number is the value for the Web Duration as passed to the Close Session informant.] The dynamic choices created and updated from this function involve overlapping buckets, and are determined by the application parameters. These overlapping bucket choices are then used to determine the numeric prediction by the Get Numeric Prediction function. This function is called by the Close Session informant to enable learning by thresholding, which aims at calculating numeric prediction. The min, max and spacing are given by users according to their prior knowledge through Application parameters. |
Note: For more information about how the functions are used in the Numeric_Prediction_ECommerce Inline Service, see Section 7.6, "Integration Point Workflows." |
To demonstrate the learning and prediction functions of this Inline Service, an XML script has been included with the Inline Service Numeric_Prediction_ECommerce, to be run using the Oracle RTD loadgen tool. This script, NumericP.xml
, can be found in the etc
folder of the main Inline Service project folder, for example, ORACLE_RTD_STUDIO_HOME
\Numeric_Prediction_ECommerce\etc\NumericP.xml
.In addition to this file, the etc\data
folder contains the necessary data simulation files that are used by the script.
After the XML script is opened in the loadgen tool, the path to the data files must be changed to point to the directory structure of where the data file is located:
clientHttpEndPoints.properties
. For each of the three integration points, modify the Input File URL to reflect the path to where the data text file is located, for example, C:/RTD_Studio/Numeric_Prediction_ECommerce/etc/data/NumericP.txt
.
After the simulation is completed, you can navigate to the Decision Center and review how the dynamic choices are set up.
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter describes the elements in and associated with the CrossSellBatch Inline Service. It contains the following topics:
The CrossSellBatch Inline Service is a technical example of the use of the batch framework that is released with the Oracle RTD platform. It is based on the Cross Sell example Inline Service that is released with Oracle RTD. Refer to Oracle Real-Time Decisions Installation and Administration Guide and Oracle Real-Time Decisions Platform Developer's Guide for additional information on both the original Cross Sell Inline Service and the batch frame work. The CrossSellBatch Inline Serviceshould be used as a reference for developers when adding batch functionality to their own Inline Services.
In this example, batch processes have been created to support a workflow process in which Oracle RTD is used first to recommend offers to customers, and then to learn on the customer response, as follows:
In addition to the batch process that recommends the best offer, the CrossSellBatch Inline Service also contains an example of scoring customers against a given offer that is specified by the user.
A sample data schema and test data to be used with this example is included with the CrossSellBatch Inline Service. Setup of this data is required in order to test any of the batch processes included in this Inline Service as the batch processes rely on the created data sources.
All files for creating the database tables and loading data can be found directly in the Inline Service project folder under the /etc
folder. To create the schema and populate the batch tables., you must execute the InitAppDB.cmd
that is appropriate to your database type through a command line.
For example, for SQL Server, the files can be found under the path, RTD_ILS_HOME
/CrossSellBatch/etc/data/SQLServer
, where RTD_ILS_HOME
is the directory into which the CrossSellBatch Inline Service was saved during installation.
Each InitAppDB
command has the following structure:
Table 8-1 describes the parameters for the InitAppDB
script.
Table 8-1 Parameters for InitAppDB Script
Parameter | Description |
---|---|
| The full path of the directory where the Oracle Real-Time Decisions files are installed. |
| The name of the computer hosting the database server. If you installed your Oracle RTD Database on a SQL Server named instance, specify |
| The database port number. |
| The name of the database, or for Oracle Database, the SID. |
| The user name of the run-time user for the system. |
| The name of a user that has rights to create tables and stored procedures on the database. |
| The password of the administrative user. |
Footnote 1 For Oracle Database, the runtimeUser
and adminUser
are the same user.
The CrossSellBatch Inline Service demonstrates a technical implementation of Oracle RTD Platform's batch framework, and provides coding for the following use case scenarios:
Each of these use cases is configured through java classes that implement the batch framework BatchJob interface, namely:
init()
- Called once by the framework before starting the batch's processing loop. getNextInput()
- Returns the next input row to be processed by the batch. executeRow()
- The batch job implements this method to process the input row that was returned by getNextInput()
. flushOutputs()
- Called by the framework to allow the batch job to flush its output table buffers. cleanup()
- Called by the framework after the batch is finished or is being stopped. Cleans up any resources allocated by the batch job, such as the result set created by its init()
method. For full details of the methods of the BatchJob interface and execution of the batch framework, refer to the Oracle RTD Batch Framework chapter in Oracle Real-Time Decisions Platform Developer's Guide.
A separate .java file has been created for each of the batch use cases described in this section. These java files are located under the path, <RTD Studio Workspace>
/CrossSellBatch/src/crosssell/batch
where <RTD Studio Workspace> is the directory into which the CrossSellBatch Inline Service has been saved. The following are the .java files included:
Important: These java files should not be relocated as their path is referenced by the Inline Service when registering each of the batch process to the batch framework. Refer to Section 8.4.1, "Application Object" for further information about registering each batch process. |
The LearningBatchJob.java
file contains the logic to process a list of customers and offer responses, obtained through a SQL query, and calls the Inline Service informant to update its learning models.
init()
The init()
API loads all of the batch parameters defined for this batch job, such as the SQL statement for pulling customer information from the CrossSellBatchLearnings
table.
getNextInput()
The getNextInput()
API processes the given result set of customer data and sets the data into the inputRow object to be processed by the executeRow()
API.
executeRow()
The executeRow()
API calls the Call Start informant to begin the Oracle RTD session, passing it the appropriate request parameters. It then calls the recordEvent()
API, which in turn calls the Record Events Integration point.
flushOutputs()
The flushOutputs()
API is not used for this batch job.
cleanup()
The cleanup()
API closes out the result set built from the init()
API and closes the database connection.
For this batch job, given a set customer and offer data, the logic updates event models directly via java code.
The LearningWithDirectEventRecordingBatchJob.java
file is an extension of LearningBatchJob.java
. All of the expected APIs for the batch framework are consumed from LearningBatchJob.java
with the exception of recordEvents()
, which is overridden here.
recordEvents()
Overrides the recordEvents()
API from LearningBatchJob.java
. The recordEvents()
API updates the choice event model for this Inline Service directly, instead of calling the Record Events Integration point.
This batch job demonstrates an example ETL process where customer offers are read from the CrossSellBatchBestOffer
table, and simulated responses are then recorded to the Oracle RTD table, CrossSellBatchLearnings
, for future learning using standard JDBC java functionality.
init()
The init()
API loads all of the batch parameters defined for this batch job, and prepares all of the SQL statements to be used for this job.
getNextInput()
The getNextInput()
API processes the given result set of customer data, and sets the data into the inputRow object to be processed by the executeRow()
API.
executeRow()
The executeRow()
API simulates customer responses to the offer contained in the Input Row object. The customer information, offer id, and response are then passed to an insert()
API to prepare an INSERT
statement for that data to be used when flushOutputs()
is called by the framework.
flushOutputs()
The flushOutputs()
API is called to execute all of the INSERT
statements that have been collected and prepared by the insert()
API.
cleanup()
The cleanup()
API closes out the result set built from the init()
API, and closes the database connection.
This batch job is functionally the same as OfferAcceptanceETLBatchJob, but instead of using JDBC java functionality to write the output to the CrossSellBatchLearnings
table, the Oracle RTD platform's TableInserter()
API methods are used instead.
This .java file extends OfferAcceptanceETLBatchJob.java
.
init()
Overrides the init()
API from OfferAcceptanceETLBatchJob.java
and instantiates the TableInserter()
API.
insert()
Overrides the insert()
API from OfferAcceptanceETLBatchJob.java
and sets the INSERT record using the tableInserter.put()
API.
flushOutputs()
Overrides the flushOutputs()
API from OfferAcceptanceETLBatchJob.java
and calls the tableInserter.flush()
method.
cleanup()
Overrides the cleanup()
API from OfferAcceptanceETLBatchJob.java
and closes out the job using the tableInserter
APIs.
For a given offer id, this batch job requests the offer score for a list of customers pulled from the CrossSellBatchCustomers
data source. The scores are then written to the output table, CrossSellBatchScores
.
init()
The init()
API loads all of the batch parameters defined for this batch job and prepares the required SQL statements. It also sets a choice object for the requested offer to be scored, set by the offerId batch job parameter.
getNextInput()
The getNextInput()
API processes the given result set of customer data, and sets the data into the inputRow object to be processed by the executeRow()
API.
executeRow()
Using the choice object set in the init()
API, the executeRow()
API sets the session() with customer Id from the inputRow object, and then retrieves the likelihood score for the Purchased event for the desired offer.
The likelihood score, along with the customer information is then passed to the insertOrUpdate()
API, which uses JDBC functionality and prepares the INSERT or UPDATE statement to be used after the flushOutputs()
API is called.
flushOutputs()
The flushOutputs()
API is called to execute all of the INSERT or UPDATE statements that have been collected and prepared by the insertOrUpdate()
API.
cleanup()
The cleanup()
API closes out the result set built from the init() API and closes the database connection.
The OfferScoringBatchJobReadahead batch job has the same scoring functionality as the OfferScoringBatchJob.java
file, in that it will request a likelihood score for a given offer id for each customer.
The difference is in how the customer data is fed to the RTD server. Instead of passing one customer id at a time to Oracle RTD and then retrieving its offer score, the OfferScoringBatchJobReadahead batch job passes a group of customer ids all together to Oracle RTD.
Using this strategy, Oracle RTD caches the session entities ahead of the scoring request. This enables faster processing cycles for users that are dealing with large volumes of customer data.
As with the OfferScoringBatchJob batch job, the scores retrieved are then written to the output table, CrossSellBatchScores
.
init()
The init()
API loads all of the batch parameters defined for this batch job and prepares the SQL statements required. It also sets a Choice object for the requested offer that is to be scored, set by the offerId batch job parameter.
getNextInput()
The getNextInput()
API processes the given result set of customer data and sets the data into the inputRow object to be processed by the executeRow()
API. Rather than process one customer id at a time, it will put together a group of customer id's, enabling Oracle RTD to cache the session entities for each id ahead of calling the executeRow
method. This is passed to Oracle RTD via the fillAndCache
method for the Customer entity.
executeRow()
Using the choice object set in the init()
API, the executeRow()
API sets the session()
with the customer Id from the inputRow object and then retrieves the likelihood score for the event Purchased for the desired offer. The likelihood score, along with the customer information is then passed to the insertOrUpdate()
API , which uses JDBC functionality and prepares the UPDATE
or INSERT
statement to be used once the flushOutputs()
API is called.
flushOutputs()
The flushOutputs()
API is called to execute all of the INSERT and UPDATE statements that have been collected and prepared by the insertOrUpdate()
API.
cleanup()
The cleanup()
API closes out the result set built from the init()
API and closes the database connection.
This batch job takes a given set of customer data and requests the best offers from Oracle RTD using the Offer Request advisor integration point. The results are then written to the output table, CrossSellBatchBestOffer
.
init()
The init()
API loads all of the batch parameters defined for this batch job, such as the SQL statement for pulling customer information from the CrossSellBatchCustomers
table.
getNextInput()
The getNextInput()
API processes the given result set of customer data and sets the data into the inputRow object to be processed by the executeRow()
API.
executeRow()
The executeRow()
API calls the Offer Request integration point, passing it the appropriate customer id from the inputRow object. The recommended offer is then obtained from the response and passed to the insertOrUpdate()
API, which uses JDBC functionality and prepares the INSERT or UPDATE statement to be used after the flushOutputs()
API is called.
flushOutputs()
The flushOutputs()
API is called to execute all of the INSERT and UPDATE statements that have been collected and prepared by the insertOrUpdate()
API.
cleanup()
The cleanup()
API closes out the result set built from the init()
API and closes the database connection.
This section describes the elements of the CrossSellBatch Inline Service. It contains the following topics:
At the Inline Service Application object level, in the Logic section, each of the batch jobs is registered with the batch framework. Registering each of the batch .java files is all that is required to "batch enable" an Inline Service.
The general java syntax for batch job registration is as follows:
For example, to register the Learning batch job and Offer Select batch job with the Batch Framework, the syntax is as follows:
For the purposes of this example, although some of the batch jobs have redundant functional purposes (for example, LearningBatchJob.java
and LearningWithDirectEventRecordingBatchJob.java
), all of the .java files are registered in this Inline Service.
Two performance goals, Customer Retention and Revenue, both maximized, are included in this Inline Service. Their associated scoring methods are configured at the Offers choice group level.
Two decisions are configured for the CrossSellBatch Inline Service:
These decisions are called through the Offer Request advisor integration point. Table 8-2 and Table 8-3 describe the parameters for these decisions.
Table 8-2 Decision OfferDecision
Parameter | Description |
---|---|
Decision Name | OfferDecision |
Select Choices From | Offers |
Number of Choices to Select | 1 |
Select at Random | No |
Target Segments | Segment To Retain (Customer Retention - 70%, Revenue - 30%) Default (Customer Retention - 30%, Revenue - 70%) |
Pre Selection Logic | None |
Post Selection Logic | Logic included to update the choice model for the Delivered event, and to add the presented offer to the session attribute, Presented Offers |
Table 8-3 Decision RandomDecision
Parameter | Description |
---|---|
Decision Name | RandomDecision |
Select Choices From | Offers |
Number of Choices to Select | 1 |
Select at Random | Yes |
Target Segments | None |
Pre Selection Logic | None |
Post Selection Logic | Logic included to update the choice model for the Delivered event, and to add the presented offer to the session attribute, Presented Offers |
The batch use cases for the CrossSellBatch Inline Service are demonstrated through a cross sell example. The choice groups configured represent a sample choice group hierarchy for cross selling credit card and loan offers for a fictitious financial institution. The resulting hierarchy of choice groups is depicted in the following diagram, where each of their attributes is inherited from the parent choice group, Offers.
Table 8-4 describes the configuration parameters for the Offers choice group, including a list of the choice attributes.
Table 8-5 describes the choice attributes in more detail.
Table 8-4 Configuration Parameters for Offers Choice Group
Parameter | Description |
---|---|
Choice Group Name | Offers |
Choice Attributes | Likelihood of Purchase Message Profit Margin Should Respond Positively For choice attribute details, see Table 8-5. |
Scores | For the performance goal Customer Retention, score is determined at the individual choice group level. For the performance goal Revenue, score is determined by the multiplication of the value for Profit Margin times the value predicted by OfferAcceptance model for the Purchased event. |
Choice Events | Delivered Interested Purchased |
Choice Eligibility | None |
Group Attributes | None |
Group Eligibility | None |
Dynamic Choices | None |
Table 8-5 Choice Attribute Details for Offers Choice Group
Choice Attribute | Type | Value |
---|---|---|
Likelihood of Purchase | Double | Predicted by OfferAcceptance model for the Purchased event |
Message | String | Defined at each individual choice |
Profit Margin | Double | 0.5 (value changed at the individual choice level) |
Should Respond Positively | Boolean | Determined through the ShouldRespondPositively function with the input "this" choice |
This section outlines the entity structure used for the CrossSellBatch Inline Service. As this covers a basic cross sell use case for a given set of customers, the session entity structure is kept at a minimum.
For this example the following entities have been configured:
The Session entity contains all of the additional entities and attributes to be used for learning and prediction by the Inline Service.
Table 8-6 Session Entity
Attribute | Type | Array | Mapping | Default Value | Comments |
---|---|---|---|---|---|
Channel Id | Integer | No | None | None | Session Key |
Channel | String | No | None | "Call" | None |
Customer | Customer | No | None | None | None |
Customer Preferences | String | Yes | CustomerPreferencesDataSource.Response | None | None |
Presented Offers | Choice | Yes | None | None | None |
The Customer entity is associated with the session through the Session entity.
Table 8-7 Customer Entity
Attribute | Type | Array | Mapping | Default Value | Comments |
---|---|---|---|---|---|
Customer Id | Integer | No | None | Session.CustomerID | None |
Age | Integer | No | CustomerDataSource.Age | 35 | None |
Amount of Pending Transactions | Double | No | CustomerDataSource.AmountOfPendingTransactions | 500 | None |
Available Credit As Percent of Credit Line | Double | No | CustomerDataSource.AvailableCreditAsPercentofCreditLine | 50 | None |
Call Reason | String | No | CustomerDataSource.CallReason | "Credit limit related questions" | None |
Calls Abandoned | Integer | No | CustomerDataSource.CallsAbandoned | 1 | None |
Calls Last 6 Months | Integer | No | CustomerDataSource.CallsLast6Months | 2 | None |
Card Type | String | No | CustomerDataSource.CardType | "Gold" | None |
Complaints Per Year | Integer | No | CustomerDataSource.ComplaintsPerYear | 1 | None |
Credit Line Amount | Integer | No | CustomerDataSource.CreditLineAmount | 1000 | None |
Day Of Week | String | No | CustomerDataSource.DayOfWeek | "Wednesday" | None |
Days To Due Date | Integer | No | CustomerDataSource.DaysToDueDate | 15 | None |
Has Credit Protection | String | No | CustomerDataSource.HasCreditProtection | "NO" | None |
Language | String | No | CustomerDataSource.Language | "English" | None |
Last Statement Balance | Double | No | CustomerDataSource.LastStatementBalance | 400 | None |
Marital Status | String | No | CustomerDataSource.MaritalStatus | "Single" | None |
Minimum Amount Due | Double | No | CustomerDataSource.MinimumAmountDue | 50 | None |
Number Of Children | Integer | No | CustomerDataSource.NumberOfChildren | 2 | None |
Occupation | String | No | CustomerDataSource.Occupation | "Managerial" | None |
Signed Up For EPay | String | No | CustomerDataSource.SignedUpForEPay | "No" | None |
Tenure | Double | No | CustomerDataSource.Tenure | 6 | None |
The included informants for this Inline Service are the same as found in the Cross Sell example Inline Service provided with the Oracle RTD platform. As with the Cross Sell Inline Service, they are used by the batch processes to simulate learnings and provide offer predictions and scores.
The following informants are configured in the CrossSellBatch Inline Service:
The Call Info informant provides Oracle RTD with additional information about the call.
The Call Resolution informant sends the final outcome of the customer call.
The Call Start informant initiates the Oracle RTD session for the customer call.
Table 8-10 Informant Call Start
Parameter | Description |
---|---|
Informant Name | Call Start |
Session Keys | Session / Customer Id |
Request Data | Channel (String) mapped to session.channel |
External System | IVR |
Order | 1 |
Force session close | No |
Logic | Logic is included to fill the customer entity given the provided customer Id. |
Pre-condition | None |
The Delete All Operational Data informant is created for this example to provide a method through the application to clear out the Oracle RTD learning models and choice history between each batch simulation. Typically, this informant would not be configured in a business workflow as Delete All Operational Data is also available as a method through the platform's JMX console.
Table 8-11 Informant Delete All Operational Data
Parameter | Description |
---|---|
Informant Name | Delete All Operational Data |
Session Keys | None |
Request Data | None |
External System | None |
Order | 0 |
Force session close | No |
Logic | Contains logic that removes the studies associated with this Inline Service, and deletes any data from the statistics and choice event history table. |
Pre-condition | None |
The Force Learning informant was created for this example to run before batch learning. It wakes up the learning server or learning server will take about 15 seconds to wake up. This is important to do it before batch prediction, not regular real time predictions.
The Offer Response informant is created for this example to simulate offer responses. It will create a "response" based on the CustomerPreference data source.
Table 8-13 Informant Offer Response
Parameter | Description |
---|---|
Informant Name | Offer Response |
Session Keys | Session / Customer Id |
Request Data | Channel (String) mapped to session.channel Choice Name (String) Choice Outcome (String) Simulation Mode (String) |
External System | CRM |
Order | 4 |
Force session close | Yes |
Logic | Contains the simulation logic that sets whether the customer "accepts" the offer presented. |
Pre-condition | None |
The Record Events informant is created for this example to simulate an offer response. It records the event that is passed through to it as a request input parameter for the given choice.
Table 8-14 Informant Record Events
Parameter | Description |
---|---|
Informant Name | Record Events |
Session Keys | Session / Customer Id |
Request Data | Channel (String) mapped to session.channel Choice Name (String) Choice Outcome (String) Event Time (String) |
External System | None |
Order | 0 |
Force session close | No |
Logic | Contains the logic that sets records the event for the given outcome through the request input parameters. |
Pre-condition | None |
The included advisors for this Inline Service are the same as found in the Cross Sell example Inline Service provided with the Oracle RTD platform. As with the Cross Sell Inline Service, they are used by the batch processes to simulate learnings and provide offer predictions and scores.
The following advisor is configured in the CrossSellBatch Inline Service:
The advisor Offer Request returns the top ranked offers for the given customer ID.
Table 8-15 Advisor Offer Request
Parameter | Description |
---|---|
Advisor Name | Offer Request |
Session Keys | Session / Customer Id |
Request Data | Channel (String) mapped to session.channel |
External System | CRM |
Order | 3 |
Force session close | No |
Decision | OfferDecision |
Group Decision | RandomDecision |
Default Choices | None |
Logic | None |
Pre-condition | None |
One model is included in the CrossSellBatch Inline Service. This model is used to learn on the positive acceptance events that are simulated for the presenting of each offer for each customer session.
Table 8-16 OfferAcceptance Event Model
Parameter | Description |
---|---|
Model Name | OfferAcceptance |
Model Setting | Use for prediction, Randomize Likelihood, Default time window, Algorithm: Bayesian |
Choice Group | Offers |
Base Event | Presented |
Positive Outcome Events | Interested Purchased |
Partitioning Attributes | Session / Channel |
Excluded Attributes | None |
Learn Location | On session close |
Temporary Data Storage | Keep for 30 Days using session key, customer ID |
This section catalogs the functions included in the CrossSellBatch Inline Service, which are used for determining profit margin and for simulating customer responses for the batch job.
Table 8-17 CrossSellBatch Inline Service Functions
Function | Inputs | Outputs | Area Utilized In | Comments |
---|---|---|---|---|
Multiply | A (Double) B (Double) | Double | Various objects | This function multiplies the given numbers. |
ShouldRespondPositively | Choice (Choice) | Boolean | OfferResponse integration point, Offers choice attribute | Returns either True or False based on the customer preference settings in the session attribute of the same name. |
After the CrossSellBatch Inline Service is deployed, the configured batch jobs should be run through Oracle RTD's batch framework. For further information on using the batch framework, refer to the Oracle RTD Batch Framework chapter in Oracle Real-Time Decisions Platform Developer's Guide.
From a workflow perspective, the java batch files should be run in the following sequence:
This batch process reads the CrossSellBatchCustomers
table and writes the output to the CrossSellBatchBestOffer
table.
This batch process reads from the CrossSellBatchBestOffer
table and writes to the CrossSellBatchLearnings
table.
This batch process reads from the CrossSellBatchBestOffer
table and writes to the CrossSellBatchLearnings
table.
Either of the following:
This batch process reads the CrossSellBatchLearnings
table.
This batch process reads the CrossSellBatchLearning
s
table.
Although they can be run independently, the Offer Scoring batch jobs (OfferScoringBatchJob.java and OfferScoringBatchJobReadahead.java) should ideally be run after 3a or 3b in order to produce scores which use the data learned in Oracle RTD from the learning batches.
Part 4 describes the component elements of the released Inline Services and Decision Management metadata for Oracle RTD Decision Management applications.
Oracle RTD Decision Management provides a general-purpose application development tool, that enables you to build and use Decision Management applications for any business area.
Oracle RTD for Marketing Optimization application (also referred to as the RTD for Marketing Optimization application) is released with Oracle RTD Base Application as a sample marketing application. You can either use RTD for Marketing Optimization as released or adapt it to suit your own marketing requirements.
RTD for Marketing Optimization, which includes the Inline Service RTD_Base_Marketing and associated Decision Management metadata, also serves as an example for any Decision Management application in any organization.
You can build your own Decision Management application by starting with a basic template Inline Service, RTD_CLM_Core, and its associated "core" Decision Management metadata, which are also released with Oracle RTD Base Application. Together these components do not constitute a complete Decision Management application, but they contain the starting-point building blocks for any Decision Management application. You can add and configure the elements specific to your organization by examining corresponding or similar elements in RTD for Marketing Optimization, and then adapting them to your particular requirements.
Part 4 contains the following chapters:
Terminology: The following terms are used throughout this chapter:
|
This chapter focuses on the Inline Service elements required for Oracle RTD Decision Management applications, as they appear in the Core ILS and the Base Marketing ILS.
This chapter also references the metadata required as additional components for Oracle RTD Decision Management applications. For details of these metadata elements, see the following:
This section contains the following topics:
Table 9-1 shows a summary of the basic elements related to all Oracle RTD Decision Management Inline Services (in the Core ILS column) and those elements specific to the Inline Service for the RTD for Marketing Optimization application (in the Base Marketing ILS column).
Table 9-1 Elements in Core and Base Marketing Inline Services for Oracle RTD Decision Management Applications
ILS Elements | Core ILS | Core Ref | Base Marketing ILS | Base Mktg Ref |
---|---|---|---|---|
Application Logic | Initialization + Cleanup logic | | As in Core ILS | NA |
Application parameters | CLM Database Polling Delay In Seconds CLM ILS Choice Groups CLM JDBC Source | "Dynamic Choice Cache Administration Methods" | As in Core ILS | NA |
Session entity | Attribute: CLM Version Initialization + Cleanup logic | | As in Core ILS | NA |
Entities | CLM Dummy Entity | | As in Core ILS +
| |
Data Sources | (None) | NA | CustomerDataSource CustomerPreferencesDataSource | NA |
Choice Groups | CLM Base | | As in Core ILS +
(All these extra choice groups are under the CLM Base choice group) | |
Decisions | (None) | NA | Creative Decision Random Creative Decision | |
Models | Statistics (general model, not oriented to Decision Management) | NA | Campaign Acceptance Channel Acceptance Creative Acceptance Offer Acceptance Placement Acceptance Slot Acceptance Slot Type Acceptance Tag Acceptance | |
Functions | CLM Are All Related Choices Eligible CLM Is Choice Eligible CLM Record Event Including Related Choices | | As in Core ILS
| |
Informants | CLM Request Database Hard Refresh CLM Request Database Soft Refresh CLM Reset Project Cache | "Dynamic Choice Cache Administration Methods" | As in Core ILS +
| "Loading the Choices of Active Projects in an Inline Service" |
Advisors | (None) | NA | Get Creative | |
Type Restrictions | (None) | NA | Approval Status Project Type Region Type | |
Java classes (in src>com>sigmadynamics>sdo) | ApplicationSession.java CLMChoiceBag.java CLMChoiceBagStore.java CLMChoiceData.java CLMChoiceGroupMapper.java CLMChoiceGroupMapperStore.java CLMChoiceInstanceStore.java CLMCustomHandler.java CLMCustomHandlerStore.java CLMData.java CLMDatabaseHelper.java CLMDatabaseLoader.java CLMDataStore.java CLMMetadata.java CLMMetadataStore.java CLMNotRunningException.java CLMPropagateEnum.java CLMRelationshipKey.java CLMRelationshipType.java CLMScheduledExecutorService.java CLMShutdownException.java | | As in Core ILS +
| NA |
This section describes the elements that occur in Inline Services that form part of a Oracle RTD Decision Management application. Some elements are general, that is, must exist in all such Inline Services, others are particular to the Base Marketing Inline Service associated with the reference application, RTD for Marketing Optimization, released with Oracle RTD Base Application.
As in other sections of this chapter, the terms Core ILS and Base Marketing ILS are used as required to specify where the elements are defined. Table 9-1 provides a summary of which elements are common to both Inline Services and which are specific to the Base Marketing ILS.
This section contains the following topics:
All Inline Services that form part of a Oracle RTD Decision Management application share a common architectural structure.
The Base Marketing ILS is a sample Inline Service that shows how to use choices managed by a Oracle RTD Decision Management application. This sample Inline Service uses the choice groups and relationship types of the RTD for Marketing Optimization application.
The Core ILS is a basic Inline Service which can be added to, to create an Inline Service specific to other Oracle RTD Decision Management applications.
[When you build your own Oracle RTD Decision Management application, you have to add application-specific elements and steps in addition to those provided with the Core ILS. You are strongly advised to refer to the application-specific elements and steps in the Base Marketing ILS to see the corresponding elements and steps there.]
In all Oracle RTD Decision Management Inline Services, you need to define the same choice groups in the Inline Service as you define in the Oracle RTD Decision Management metadata. In addition, you can define choice attributes that follow relationship types between choice groups using the sample functions provided in the Base Marketing ILS.
Oracle RTD Decision Management Inline Services use their own mechanism to load dynamic choices, instead of using an entity as explained in Oracle Real-Time Decisions Developer's Guide. The settings explained in Oracle Real-Time Decisions Developer's Guide are mandatory for dynamic choice groups, therefore "dummy" objects have been introduced for that purpose, but are not used. The load of dynamic choice groups happens automatically. The only difference to note is that the choice array passed as an argument to decisions pre-selection logic is empty. The Creative Decision decision in the Base Marketing ILS shows an example of how to properly handle this.
These design decisions enable the following application design goals:
You do not have to specify a data source and an entity for each dynamic choice group and wire all these objects manually. This makes creation and maintenance of the Inline Service much easier.
The Base Marketing Inline Service automatically detects when dynamic choices have been updated in the Decision Management database main repository. This is done asynchronously and therefore has no impact on integration point response time. Dynamic choices are loaded asynchronously and their rules are compiled asynchronously. Integration point requests for new sessions will start using a new version after this whole asynchronous process has completed. To keep cohesion within a session, multiple integration point requests in the same sessions all use the same version of dynamic choices.
During the asynchronous load of the choices from the Oracle RTD Decision Management database, you can mark choices as belonging to any list you want. During an integration point, you can retrieve the dynamic choices of that list in a single call, which saves having to do the same time consuming operations over and over in each integration point.
The Oracle RTD Decision Management database main repository gets updated to a new version when either of the following occurs:
The application has the following parameters, common to all Oracle RTD Decision Management Inline Services:
The application object has some code in initialization logic and cleanup logic to start and stop the asynchronous load of Oracle RTD Decision Management dynamic choices.
Common to all Oracle RTD Decision Management Inline Services, the Session entity has an attribute called CLM Version, which is used to track which repository version of the Oracle RTD Decision Management database this session is using. If a project is committed, current sessions will continue to use the previous repository version of the Oracle RTD Decision Management database, and new sessions will start using the new repository version of the Oracle RTD Decision Management database after it is loaded in Inline Service memory.
The session has some lines of code in the Initialization logic and Cleanup logic that should not be removed.
CLM Dummy Entity appears in both the Core ILS and the Base Marketing ILS, and is required to satisfy dynamic choice group definitions. The Customer entity appears in the Base Marketing ILS only.
The CLM Dummy Entity entity has the following attributes:
The Customer entity has the following attributes:
The dynamic choices must be created under the CLM Base choice group.
Note: The CLM Base choice group exists in both the Core ILS and the Base Marketing ILS. In the Core ILS, there are no choice groups defined under CLM Base. The Base Marketing ILS contains the choice groups described later in this section. |
For all Oracle RTD Decision Management application Inline Services, in the Dynamic Choices tab of each choice group under CLM Base, select the option Use Dynamic Choices for this Choice Group, and specify these properties:
You must create choice groups and choice attributes with ids, data types and type restrictions that match the ones specified in the Oracle RTD Decision Management metadata configuration files. Only Boolean, Date, Double, Integer and String data types are supported. Arrays are not supported.
The choice groups defined in the Base Marketing ILS are as follows:
Project Choice Group
The Project choice group is required in the Inline Service if the Decision Management application has project attributes with type restrictions. Type restrictions provide lists of values for the attributes during project creation and editing.
Note: The Project choice group must be defined in the metadata for a Decision Management application, even if no project attributes have type restrictions. |
Functions for Choice Group Relationship Attributes
You must create functions to create the relationship attributes between choices. See the following examples in the Oracle RTD Base Marketing Inline Service:
Note: In some functions, the relationship returns one choice (such as between one offer and its campaign); in other functions, the relationship returns multiple choices (such as between one campaign and its multiple offers). |
Note: in the following tables for each of the choice group attributes:
|
Table 9-2 shows the non-relationship attributes for the Campaign choice group.
Table 9-2 Campaign Choice Group Attributes
Attribute Name | Data Type | DM Visible? | Required? | Type Restricted? | DC Viewable? |
---|---|---|---|---|---|
Approval Status | String (20) | Yes | Yes | Yes | Yes |
Code | String (20) | Yes | Yes | No | Yes |
Region | String (20) | Yes | No | Yes | Yes |
Start Date | Date Time | Yes | No | No | Yes |
End Date | Date Time | Yes | No | No | Yes |
Type | String (20) | Yes | Yes | Yes | Yes |
Table 9-3 shows the non-relationship attributes for the Offer choice group.
Table 9-3 Offer Choice Group Attributes
Attribute Name | Data Type | DM Visible? | Required? | Type Restricted? | DC Viewable? |
---|---|---|---|---|---|
Code | String (20) | Yes | Yes | No | Yes |
Type | String (20) | Yes | Yes | Yes | Yes |
Start Date | Date Time | Yes | No | No | Yes |
End Date | Date Time | Yes | No | No | Yes |
Approval Status | String (20) | Yes | Yes | Yes | Yes |
Region | String (20) | Yes | No | Yes | Yes |
Product | String (40) | Yes | No | No | Yes |
Promotion | String (40) | Yes | No | No | Yes |
Cost | Double | Yes | No | No | Yes |
Revenue | Double | Yes | No | No | Yes |
Table 9-4 shows the non-relationship attributes for the Creative choice group.
Table 9-4 Creative Choice Group Attributes
Attribute Name | Data Type | DM Visible? | Required? | Type Restricted? | DC Viewable? |
---|---|---|---|---|---|
Approval Status | String (20) | Yes | Yes | Yes | Yes |
Code | String (20) | Yes | Yes | No | Yes |
Start Date | Date Time | Yes | No | No | Yes |
End Date | Date Time | Yes | No | No | Yes |
Type | String (20) | Yes | Yes | Yes | Yes |
Region | String (20) | Yes | No | Yes | Yes |
Product | String (40) | Yes | No | No | Yes |
Promotion | String (40) | Yes | No | No | Yes |
Cost | Double | Yes | No | No | Yes |
Revenue | Double | Yes | No | No | Yes |
Image | String (250) | Yes | No | No | Yes |
Script | String (CLOB) | Yes | No | No | Yes |
The Tag choice group contains only relationship attributes, defined in the Tag-related Functions for Choice Group Relationship Attributes.
Note: in the Inline Service, Tag choice groups are defined with default eligibility rules. However, unlike the other choice groups, there are no equivalent eligibility rules for Tag choices in Decision Management metadata. |
The Channel choice group contains only relationship attributes, defined in the Channel-related Functions for Choice Group Relationship Attributes.
Table 9-5 shows the non-relationship attributes for the Placement choice group.
The Slot choice group contains only relationship attributes, defined in the Slot-related Functions for Choice Group Relationship Attributes (that is, functions related specifically to Slot, rather than Slot Type).
The Slot Type choice group contains only relationship attributes, defined in the Slot Type-related Functions for Choice Group Relationship Attributes (that is, functions related specifically to Slot Type, rather than Slot).
The Project choice group is only required in the Inline Service if you want to see lists of values for project attributes in Decision Management applications when creating and editing projects. If no Project choice group exists in the Inline Service, Decision Management Project screens will show Name and Description only.
Table 9-6 shows the non-relationship attributes for the Project choice group.
There are eight choice event models in the Base Marketing ILS, one for each choice group. All the choice event models are used for tracking and reports, and the Creative Acceptance model is also used to predict the most suitable creatives.
The Inline Service can be modified to implement more advanced decision logic involving multiple predictive models, for example, to select the best offer according to certain predictive criteria, then to pick the most suitable creative associated with this offer.
Apart from the general Statistics model, there is no model defined in the Core ILS.
All the integration points and decisions described in this section occur in the Base Marketing ILS only.
The Session Start and Session Resolution informants are typical informants for opening and closing sessions.
The Get Creative advisor returns a creative for a given slot. A creative has a slot type and a slot has a slot type. Only creatives that have a slot type similar to the slot type of the slot passed as incoming parameter will be returned. This advisor uses the Creative Decision decision and the Random Creative Decision decision for the control group.
The Creative Feedback informant closes the loop by recording the outcome for that creative and that slot
See also Section 9.2.12.6, "Loading the Choices of Active Projects in an Inline Service" and Section 9.2.12.7, "Dynamic Choice Cache Administration Methods" for information about project administration informants.
All the decisions described in this section occur in the Base Marketing ILS only.
The Creative Decision decision and the Random Creative Decision decision use the same code in pre-selection logic and post-selection logic to return only creatives that are eligible and have the same slot type as the slot passed as argument. The logic records that this creative was presented for both that creative and that slot.
All the type restrictions, choice groups, and choice group attributes described in this section occur in the Base Marketing ILS only.
In the Base Marketing Inline Service, type restrictions are defined for the attributes of certain choice groups. This section lists the type restrictions and the choice group attributes that use them.
This section contains the following topics:
Table 9-7 show the values for the Approval Status type restriction.
Table 9-11 shows the choice group attributes that use the type restrictions defined in the Base Marketing Inline Service.
Table 9-11 Choice Group Attribute Usage of Type Restrictions
Type Restriction | Used By |
---|---|
Approval Status | Campaign - Approval Status Offer - Approval Status Creative - Approval Status |
Project Type | Project - Type |
Region | Campaign - Region Offer - Region Creative - Region |
Type | Campaign - Type Offer - Type Creative - Type |
The dynamic choice groups all inherit from CLM Base. Therefore they only inherit rules from CLM Base, there is no inheritance of rules from one choice group to the other as with standard, non-Decision Management Inline Service designs.
Instead, rules are propagated based on metadata defined in relationship types. In the reference implementation (RTD for Marketing Optimization), all relationship types are defined to propagate rules from destination to owner - this applies to all the choice groups except Tag, as tags do not have rules defined in the metadata. Relationship types are defined as either "many to one" or "many to zero" (where the owner is the "many" side and the destination is the "one" or "zero" side of the relationship) or "many to many".
Therefore, when eligibility is evaluated on a creative, this also evaluates eligibility on that creative's offer, channel and slot type. The offer in turn evaluates eligibility on its campaign. So, in order to be eligible, the campaign, offer, channel and slot type of that creative all have to be eligible. This is more powerful than simple inheritance because multiple "directions" can be followed. This can be thought of as multiple inheritance, or more accurately composition. The rules for propagation are defined in metadata and are therefore highly customizable.
For the rules to be properly executed, two rules have been added for CLM Base choice eligibility (functions External Rules - Evaluate Choice Eligibility Rule and CLM Are All Related Choices Eligible). One is the evaluation of the current choice rule metadata which is typical of dynamic choices. The other one is to evaluate eligibility on related choices based on this propagation metadata. The latter one is called first, so, recursively, when the eligibility of a choice is computed, the related choices that are furthest away are computed first. For instance, for a creative to be eligible, the campaign eligibility will be computed first - this is often false, and avoids having to compute intermediate eligibility rules.
Note that there is a Choice Is Eligible choice attribute in CLM Base in order to cache the eligibility for the duration of the integration point.
Propagation of events is done in a similar fashion to the propagation of rules.
In the Base Marketing ILS, Oracle RTD gets a creative for a slot. Oracle RTD records the event for:
Oracle RTD does not count the event twice on the channel and slot type, which appear in both lists. Therefore, Oracle RTD records the event once for the creative, campaign, offer, tag, channel, slot type, and placement involved related to that creative and slot.
In order to follow these relationships while recording events, you must call the CLM Record Event Including Related Choices function.
Note: The javadoc for the Java APIs can be found in |
This section contains the following topics:
Several "Store" classes are used to store objects in memory for the right lifespan.
CLMMetadataStore holds CLMMetadata in memory for the life lifespan of the Inline Service. CLMMetadata consists of information on propagation of rules and events that is stored in the Oracle RTD Decision Management database.
CLMDataStore holds CLMData in memory. CLMData consists of all the dynamic choices and all the relationships between these choices. CLMDataStore holds the latest version of that CLMData, and any older CLMData still used by existing sessions.
CLMChoiceBagStore holds a CLMChoiceBag in memory for the lifespan of each integration point. CLMChoiceBag contains dynamic choice objects that can be used in your java code to work with all the dynamic choices. See the "CLM Test Informant" for an example.
CLMCustomHandlerStore holds all the custom CLMCustomHandler instances that will be called during each new Oracle RTD Decision Management database load.
CLMChoiceGroupMapperStore and CLMChoiceInstanceStore are internal stores used to cache objects obtained using Java reflection APIs to improve performance.
Some methods ask for the "choice id" of a dynamic choice, which is different from the "SDOId" of the dynamic choice. The choice id is what users see and enter in Decision Manager. The SDOId is the concatenation of the group id, the $ symbol and the choice id. The attribute "Choice Id" has been added in choice group "CLM Base" so that it is possible to retrieve the choice id of a Oracle RTD Decision Management dynamic choice by accessing that attribute.
Some methods ask for the "group id" (also known as the "choice group id") of the dynamic choice. This is the SDOId of the choice group of the dynamic choice (getGroup().getSDOId()) and corresponds to the choice group id in both CLM and Inline Service metadata.
The choice name (as entered in the Decision Manager user interface) is retrieved by calling getSDOLabel() on the dynamic choice.
CLMDataStore holds multiple CLMData, one for each in memory version of the Oracle RTD Decision Management database.
CLMChoiceData holds data information about one choice.
CLMData holds all the choices as CLMChoiceData objects.
CLMData holds all the relationships between these objects.
CLMChoiceBagStore holds multiple CLMChoiceBag, one for each in thread currently running an integration point.
CLMChoiceBag holds choices as dynamic choices, by creating them from CLMData as needed.
The dynamic choices have relationships between each other, which are computed from CLMData as needed.
Dynamic choices are only valid for the lifespan of the integration span, so each choice bag is discarded at the end of the integration point. This is why, for performance reasons, Oracle RTD creates the dynamic choices in them. This is also one of the reasons for introducing the custom handler feature. With this feature, you can get a subset of dynamic choices without having to create other dynamic choices. In the "Get Creative" example, you can get all the creative dynamic choices of a specific slot type, without having to create a dynamic choice for every single creative, and then checking the slot type of each of these creatives, doing this every time the advisor is called.
Custom handlers let you access CLMData to build and store custom lists.
CLMData provides APIs to:
CLMChoiceBag is the main class you use in your Inline Service to access dynamic choices.
It provides APIs to:
You can load the main repository choices and the changes that have been made in a project. This can be used to test the changes in a project before committing them. See the method CLMChoiceBagStore.setProject(int projectRowId). The choices loaded for that project are cached in memory.
Oracle RTD Decision Management Inline Services must check to see if changes have been made due to a project being committed at the regular interval defined in the Application parameter CLM Database Polling Delay In Seconds.
Two informants have been added to control that behavior:
Another informant, CLM Reset Project Cache, shows how to reset the cache of the choices for a given project.
The following diagram shows the main Decision Management metadata and database setup files, as released with Oracle RTD Base Application.
Figure 10-1 Main Oracle RTD Decision Management Metadata and Database Files
Terminology: The following terms are used throughout this chapter:
|
This chapter contains the following topics:
The Core metadata files in this section all appear under the directory clm/Build/metadata.
This section contains the following topics:
core/config/config.xml
The Core config.xml file contains general configuration settings:
core/config/perspectives.xml
The Core perspectives.xml file acts as the base file for adding your application perspectives. The Core perspective file contains no specific perspectives.
core/project.xml
The Core project.xml file acts as the base file for adding your application projects. It contains the create/edit/view pages for the special choice group Project, and the attributes Name and Description for the Overview page.
core/security.xml
The Core security.xml file contains the configuration entries for the three application roles CLMConsumer, CLMAuthor, CLMAdministrator, and the choice group, project, and perspective permissions selected for those application roles. It contains no entries for any enterprise roles nor users.
The Base Marketing (ref) metadata files in this section all appear under the directory clm/Build/metadata.
This section contains the following topics:
ref/config/config.xml
The Base Marketing (ref) config.xml file contains general configuration settings:
ref/config/perspectives.xml
The Base Marketing (ref) perspectives.xml file contains the properties for the perspectives released with the RTD for Marketing Optimization application: Campaigns, Tags, Channels, Slot Types, Draft Campaigns, Pending Approval Campaigns, and Approved Campaigns.
The Base Marketing Choice Group xml files
For each of the choice groups defined in the RTD for Marketing Optimization application - Campaign, Offer, Creative, Tag, Channel, Placement, Slot, Slot Type, Project - there is a corresponding choice group xml file in the ref directory.
Each choice group xml file contains the properties to define the choice group and its attributes. Other properties control whether the choice group appears in Decision Manager dropdown lists, and whether its attributes appear by default in Decision Manager Advanced Search screens. Type restriction associations are defined for several attributes in the Campaign, Offer, Creative, and Project choice groups.
Each choice group xml file also contains the create/edit/view pages that define the pages that appear when the choice group is created, edited, or viewed in the RTD for Marketing Optimization application.
ref/project.xml
The Base Marketing (ref) project.xml file contains the extra attribute "type", and the pages associated with projects. In addition to the Overview page, which appears during project creation, editing, and viewing, the pages are defined for listing active and deployed projects.
ref/relationship-types.xml
The Base Marketing (ref) relationship-types.xml file describes the relationship types between the choice groups in the RTD for Marketing Optimization application.
For each relationship, the "from" and "to" choice groups are defined as well as the cardinality of the relationship.
In addition, there are properties to control the Delete logic (whether the delete applies just to one of the choice groups, or "cascades" to delete choices of the related choice group), rule propagation, and event propagation.
ref/security.xml
The Base Marketing (ref) security.xml file contains the configuration entries for the three application roles CLMConsumer, CLMAuthor, CLMAdministrator, and the choice group, project, and perspective permissions selected for those application roles. It contains no entries for any enterprise roles nor users.
ref/sql/insert ils data.sql and ref/sql/insert marketing data.sql
The insert ils data.sql and insert marketing data.sql files contain instructions to load some sample data for the Oracle RTD Decision Management database. These scripts are for demonstrations only.
The database files for Core and Base Marketing in this section all appear under the directory clm/Database.
This section contains the following topics:
sql/drop core.sql
The sql/drop core.sql file contains instructions to drop all the generic metadata for a Oracle RTD Decision Management database - the tables, views, and sequences that provide the infrastructure for Oracle RTD Decision Management application data.
sql/load core.sql
The sql/load core.sql file contains instructions to create and initialize all the generic tables, views, and sequences required for a Oracle RTD Decision Management database. These tables, views, and sequences provide the infrastructure for Oracle RTD Decision Management application data.
sql/ils/drop ils.sql
The sql/ils/drop core.sql file, as released with Oracle RTD Base Application, contains instructions to drop all the tables and views specific to the individual choice groups defined in the released application RTD for Marketing Optimization.
Note: After choice groups or choice group attributes are added to, removed from, or have their definition properties altered in any Oracle RTD Decision Management application, and the application is then regenerated, the sql/ils/drop core.sql file is overwritten, and then reflects the new proposed data structure. The file is not automatically run after application regeneration. |
sql/ils/load ils.sql
The sql/ils/load core.sql file, as released with Oracle RTD Base Application, contains instructions to create and initialize all the tables and views that implement the choice groups and the inter-choice group relationships defined in the released application RTD for Marketing Optimization.
Note: After choice groups or choice group attributes are added to, removed from, or have their definition properties altered in any Oracle RTD Decision Management application, and the application is then regenerated, the sql/ils/load core.sql file is overwritten, and then reflects the new proposed data structure. The file is not automatically run after application regeneration. |
 Copyright © 2011, 2012, Oracle and/or its affiliates. All rights reserved. |