

Oracle® Fusion Middleware
Client-Side Developer's Guide for Oracle WebLogic Portal

10g Release 3 (10.3.4)

E14229-02

November 2011

Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.4)

E14229-02

Copyright © 2010, 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: William Witman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

1 What's in this Guide?

1.1 The Disc Framework .. 1-1
1.2 Toolkit Integration .. 1-1
1.3 Portlet Publishing .. 1-1
1.4 The REST API .. 1-2
1.5 The Dynamic Visitor Tools ... 1-2

2 Client-Side Development Technologies

2.1 Brief History of Client-Side Technology and the Portal.. 2-1
2.2 JavaScript ... 2-2
2.3 Ajax ... 2-2
2.4 Disc JavaScript Framework ... 2-2
2.5 Portal-Aware XMLHttpRequest .. 2-2
2.6 Web-Based and REST Style Services .. 2-3
2.7 JSON.. 2-3
2.8 Ajax Toolkits .. 2-3

3 The WLP Disc Framework

3.1 What is Disc? .. 3-1
3.2 Enabling Disc... 3-2
3.2.1 What Enabling Disc Means .. 3-2
3.2.2 Enabling Disc in Oracle Enterprise Pack for Eclipse .. 3-3
3.2.3 Enabling Disc in the Administration Console ... 3-3
3.2.4 Using Disc Outside of a Portal... 3-4
3.3 Using Portal-Aware XMLHttpRequest to Retrieve Data from a Non-Portal Source 3-4
3.3.1 Use Case ... 3-4
3.3.2 Example... 3-4
3.4 Using Portal-Aware XMLHttpRequest to Update Portlets .. 3-5
3.4.1 Use Cases ... 3-5

iv

3.4.2 Example... 3-5
3.5 Using Context Objects .. 3-6
3.6 The XMLHttpRequest Interaction Engine .. 3-7
3.7 Event Handling .. 3-8
3.8 Manipulating URIs On the Client... 3-9
3.8.1 Background.. 3-9
3.8.2 Using the URI API ... 3-9
3.9 Logging.. 3-10
3.9.1 Example.. 3-10

4 Configuring JavaScript Libraries in a Portal Web Project

4.1 Creating a Simple Portal Project with Dojo... 4-1
4.2 The Hello World JSP Portlet with Dojo ... 4-2
4.3 Creating a Render Dependencies File ... 4-3
4.3.1 The Importance of Render Dependencies .. 4-3
4.3.2 Creating the Sample Render Dependencies File ... 4-4

5 Portlet Publishing

5.1 What is Portlet Publishing? .. 5-1
5.1.1 What is the Portlet Publishing Service?.. 5-1
5.1.2 Asking the Portlet Publishing Service for Portlets.. 5-2
5.1.3 Consuming a Published Portlet .. 5-2
5.2 Portlet Publishing URL Forms ... 5-3
5.2.1 Library Instance URL Form ... 5-3
5.2.2 Desktop Instance URL Form ... 5-3
5.3 Consuming Published Portlets .. 5-4
5.3.1 Inline Frame Integration .. 5-4
5.3.1.1 Example Code .. 5-5
5.3.1.2 Embedding Static Portlets ... 5-6
5.3.1.3 Embedding Dynamic Portlets... 5-6
5.3.2 DOM Integration.. 5-6
5.3.2.1 Basic JavaScript Coding Steps .. 5-6
5.3.3 Finding the Portlet Publishing Context ... 5-8
5.3.3.1 Finding the Publishing Context for a Library Instance Portlet.............................. 5-8
5.3.3.2 Finding the Publishing Context for a Desktop Instance Portlet 5-8
5.4 Advanced Topics... 5-8
5.4.1 Using the Decoration Parameter .. 5-9
5.4.2 Integrating Multiple Portlets into the DOM ... 5-9
5.4.3 Integrating Portlets from Multiple Publishing Contexts .. 5-10
5.4.4 Specifying URL Redirect Options .. 5-10
5.5 Portlet Publishing vs. WSRP ... 5-11
5.6 Using JSP and HTML Portlet Publishing Templates .. 5-12
5.6.1 Using the JSP Template.. 5-12
5.6.2 Using the HTML Template.. 5-14
5.7 Limitations .. 5-16

v

6 Client-Side Development Best Practices

6.1 Namespacing ... 6-1
6.1.1 A Simple Dynamic Table Portlet ... 6-1
6.1.2 Namespace Collisions ... 6-3
6.1.3 The Mysterious Table Row... 6-5
6.2 Avoiding Namespace Collisions .. 6-6
6.2.1 Using Ad Hoc Namespacing.. 6-6
6.2.2 Using Rewrite Tokens ... 6-8
6.2.3 Parameterizing Your JavaScript Functions ... 6-10
6.2.4 Using the Disc APIs ... 6-12

7 The WebLogic Portal REST API

7.1 What is REST?.. 7-1
7.2 What is the WLP REST API? .. 7-1
7.2.1 WLP REST API Reference Documentation .. 7-2
7.2.2 REST API Use Cases.. 7-2
7.2.3 REST Command Format .. 7-2
7.2.4 Commonly Used REST Command Parameters .. 7-3
7.2.4.1 The webapp Parameter.. 7-3
7.2.4.2 The format Parameter .. 7-3
7.2.4.3 The scope Parameter .. 7-3
7.2.5 REST Command Example .. 7-4
7.3 Disabling REST Commands .. 7-5
7.4 Basic WLP REST API Examples.. 7-6
7.4.1 Retrieving Information About a Single Portlet .. 7-6
7.4.2 Changing the Title of a Portlet .. 7-6
7.4.3 Moving a Book or Page ... 7-7
7.5 Using REST and Disc.. 7-7
7.5.1 Constructing a REST URL Using Disc Context Objects .. 7-8
7.5.2 Open and Send an XHR Request... 7-8
7.5.3 Handle the REST Response ... 7-9
7.5.4 Putting It All Together ... 7-10

vi

List of Examples

3–1 Using Portal-Aware XHR to Retrieve Data from a Non-Portal Source 3-4
3–2 Using Portal-Aware XHR to Update Portlets ... 3-5
3–3 Wrong Way to Access a Context Object .. 3-6
3–4 Recommended Way to Access a Context Object .. 3-6
3–5 Simple Debugging Example.. 3-7
3–6 Using Disc to Determine Portlet State ... 3-7
3–7 Simple Example: Setting Up a Console Listener ... 3-10
4–1 Hello World with Dojo... 4-2
4–2 Empty Render Dependencies File .. 4-4
4–3 Render Dependencies File Includes Dojo Toolkit .. 4-4
5–1 Simple Inline Frame that Embeds a Library Instance Portlet... 5-5
5–2 Simple Inline Frame that Embeds a Desktop Instance Portlet ... 5-5
5–3 Example Code for Portlet DOM Integration... 5-7
5–4 Embedding Multiple Portlets ... 5-9
5–5 Sample Code to Detect the Rendering Method ... 5-11
5–6 JavaScript Function Template Inserted Into a JSP File ... 5-13
5–7 Sample Template JavaScript .. 5-14
5–8 JavaScript Function Inserted Into the HTML File ... 5-15
5–9 Sample Template JavaScript Function ... 5-16
6–1 Render Dependencies File ... 6-2
6–2 JSP File ... 6-2
6–3 Dynamic Table JSP with Ad Hoc Namespacing .. 6-7
6–4 Render Dependencies File ... 6-9
6–5 Contents of External dojotest.js File with Rewrite Tokens ... 6-9
6–6 JSP File ... 6-10
6–7 External JavaScript File (.js) ... 6-11
6–8 Modified JSP File.. 6-11
7–1 Example Response from the List Portlets REST Command ... 7-4
7–2 REST Command Definition ... 7-5
7–3 Portlet Details .. 7-6
7–4 Updating with a POST Method .. 7-7
7–5 Constructing a REST Command .. 7-8
7–6 Opening and Sending an XHR Request... 7-8
7–7 Handling REST Response Data... 7-9
7–8 Sample Portlet JSP ... 7-10

vii

List of Figures

3–1 Features That Depend on Disc .. 3-2
3–2 Enabling Disc in Oracle Enterprise Pack for Eclipse ... 3-3
3–3 Enable Disc... 3-4
4–1 Adding the Dojo Toolkit to a Portal Project ... 4-2
4–2 Hello World JSP Portlet with Dojo ... 4-3
5–1 Portlet Publishing Service.. 5-2
5–2 Inline Frames Provide Separation Between Portlets and the Rest of the Page 5-5
5–3 Portlet Publishing and WSRP... 5-12
5–4 Select JSP Template Page Dialog in the New JavaServer Page Wizard 5-13
5–5 Select HTML Template Page Dialog in the New JavaServer Page Wizard..................... 5-15
6–1 Simple Dynamic Table Portal.. 6-3
6–2 Multiple Dynamic Table Portlets on a Page.. 6-4
6–3 Source Code Repetition with Three Identical Portlets on a Page .. 6-5
6–4 Rows Mysteriously Added to the Wrong Table... 6-6
6–5 Namespaced Portlet Code Functions Correctly ... 6-8
7–1 Scoping Hierarchy .. 7-4
7–2 Selecting the REST Config File ... 7-5
7–3 Sample Change Layout Portlet .. 7-10

viii

List of Tables

2–1 History of Asynchronous Portals .. 2-1
7–1 REST Command Format ... 7-2

ix

Preface

This guide explains how to integrate client-side technologies like Ajax, JavaScript,
JSON, and others, into portals. These technologies allow developers to create rich,
highly interactive user interfaces. The guide focuses on two WebLogic Portal
frameworks:

■ The Disc framework, which provides a client-side JavaScript API to assist with
developing rich, interactive portlets and portal applications.

■ REST-style APIs for retrieving, modifying, and updating portal data dynamically
from the client.

In addition, this guide discusses portlet publishing, a feature that lets you surface
portlets remotely over HTTP.

Audience
This guide is for portal developers interested in developing rich, interactive UI for
portals. Knowledge of JavaScript and related technologies, like Ajax and JSON, are
recommended.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the WebLogic Portal
documentation set:

■ Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

x

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

What's in this Guide? 1-1

1What's in this Guide?

In a world of increasingly interactive and responsive web applications, WebLogic
Portals need to be designed and updated to keep pace with users' expectations.
Browser-based development technologies such as Ajax, JavaScript, and JSON,
web-based APIs for accessing data, architectural patterns such as REST, and client-side
development toolkits such as Dojo, enable web developers to create web applications
that approach the responsiveness of desktop applications.

This guide is for WLP developers who want to integrate these client-side technologies
into their portals. This chapter introduces the client-side portal development topics
and technologies that are discussed in this guide.

■ Section 1.1, "The Disc Framework"

■ Section 1.2, "Toolkit Integration"

■ Section 1.3, "Portlet Publishing"

■ Section 1.4, "The REST API"

■ Section 1.5, "The Dynamic Visitor Tools"

1.1 The Disc Framework
Disc (Dynamic Interface SCripting) is a client-side JavaScript framework that handles
the asynchronous updating of portlets, portlet events, and the retrieval of portal
context objects.

To get started using Disc, see Chapter 3, "The WLP Disc Framework"

1.2 Toolkit Integration
Client-side developers using WLP can use their favorite toolkits for DHTML and
JavaScript browser programming. Dojo, for instance, works well for portlet
development and for extending the WLP rendering framework.

To get started using Dojo for WLP client-side development, see Chapter 4,
"Configuring JavaScript Libraries in a Portal Web Project"

1.3 Portlet Publishing
Traditionally, portlets have been confined to use within a portal application. This
traditional model required an application server running a portal container to surface
portlets. Portlet Publishing makes portlets available to any web application over HTTP
and allows portlets to be surfaced in any web page. With Portlet Publishing, for

The REST API

1-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

example, you can render portlets within a Struts or Spring application, or any other
non-portal web page.

For detailed information on publishing your portlets, see Chapter 5, "Portlet
Publishing".

1.4 The REST API
WebLogic Portal provides a set of web-based, REST-style APIs for retrieving,
modifying, creating and updating portal data dynamically from the client.

For detailed information on the REST API, see Chapter 7, "The WebLogic Portal REST
API"

1.5 The Dynamic Visitor Tools
To get a feel for the possibilities of client-side portal development, we recommend that
you run the Dynamic Visitor Tools (DVT). The DVT uses the Disc and REST APIs to
create a rich, interactive web application.

For detailed information on running the DVT, see the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

2

Client-Side Development Technologies 2-1

2Client-Side Development Technologies

This chapter introduces technologies and techniques that enable you to create rich and
interactive WebLogic Portal applications. Rich and interactive portal web applications
use a variety of technologies such as Ajax, JavaScript, JSON, and patterns such as
REST. These technologies and patterns allow developers to create increasingly
responsive and highly interactive web applications.

This chapter includes these topics:

■ Section 2.1, "Brief History of Client-Side Technology and the Portal"

■ Section 2.2, "JavaScript"

■ Section 2.3, "Ajax"

■ Section 2.5, "Portal-Aware XMLHttpRequest"

■ Section 2.6, "Web-Based and REST Style Services"

■ Section 2.4, "Disc JavaScript Framework"

■ Section 2.7, "JSON"

■ Section 2.8, "Ajax Toolkits"

2.1 Brief History of Client-Side Technology and the Portal
Since version 9.2, WebLogic Portal has incorporated Ajax (Asynchronous JavaScript
and XML) technology to enable the asynchronous rendering of individual portlets. In
version 10.0, the asynchronous desktop feature was added, enabling portal
administrators to enable asynchronous rendering for an entire desktop, simply by
setting a property on the portal desktop.

Table 2–1 summarizes the history of asynchronous capability in WebLogic Portal.

Table 2–1 History of Asynchronous Portals

WebLogic Portal
Version Support for Asynchrony

9.2 Individual portlets can be rendered asynchronously by setting a
portlet property. You can select either IFrames or Ajax as the
integration technology. For details, see "Asynchronous Portlet
Content Rendering" in Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

JavaScript

2-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

2.2 JavaScript
JavaScript is used to enable client-side interactivity. JavaScript is a compact, loosely
typed language that is commonly used by web developers. JavaScript has become
widely adopted in recent years largely because new frameworks and best practices
have proliferated. The emergence of JavaScript toolkits, such as Dojo, make client-side
development easier while hiding many of the problems surrounding cross-browser
compatibility.

2.3 Ajax
Ajax refers to a collection of standards-based and open source browser technologies.
While a classic web application refreshes the entire web page with each response from
the server, an Ajax-enabled web application allows small amounts of data and UI
markup to be returned from the server and rendered in the browser without refreshing
the entire page. To the user, an Ajax-enabled web application responds more smoothly
and quickly than a traditional web application.

At the heart of Ajax is the XMLHttpRequest object. Often referred to as XHR,
XMLHttpRequest is an HTTP request object that makes asynchronous (typically),
incremental requests to the server. The JavaScript API for XMLHttpRequest is a key
component of Ajax-style web applications. This object allows the browser to respond
to user events without reloading the entire page. For instance, a web application that
allows users to explore folders in a content repository can be designed so that only the
explorer part of the interface refreshes each time the user opens a folder.

As explained in Section 2.5, "Portal-Aware XMLHttpRequest", the standard
XMLHttpRequest object is not always the best solution in a portal environment.

2.4 Disc JavaScript Framework
Disc is a WLP-specific, public JavaScript API for portlet development and interaction
with the WLP rendering framework. Disc helps you write Ajax-enabled portlets and
enable richly interactive web application features for your portal. See Chapter 3, "The
WLP Disc Framework"

2.5 Portal-Aware XMLHttpRequest
When standard XHR objects are used in a portal environment, certain rendering,
interportlet communication, and other problems can occur. XHR calls are scoped to an
entire portal, while portal-aware XHR calls are scoped to individual portlets. A
portal-aware XHR call retrieves some portion of a portlet's content and of any other
portlets that are affected.

10.0 In addition to the 9.2 features, entire portal desktops could be
rendered asynchronously by setting the Asynchronous Mode of a
desktop to "enabled." Desktop asynchrony uses Ajax technology.
For details, see "Asynchronous Desktop Rendering" in Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

10.2 and later versions Users can write their own asynchronous browser code using Ajax,
JavaScript, the WLP Disc framework, and related technologies, as
explained in this guide.

Table 2–1 (Cont.) History of Asynchronous Portals

WebLogic Portal
Version Support for Asynchrony

Ajax Toolkits

Client-Side Development Technologies 2-3

The Disc API class, bea.wlp.disc.io.XMLHttpRequest, is an extension of the standard
XMLHttpRequest class. WLP's XMLHttpRequest allows you to make asynchronous,
incremental calls to the portal server, and supports portal features such as interportlet
communication and WSRP. For more information, see Chapter 3, "The WLP Disc
Framework"

2.6 Web-Based and REST Style Services
Representational State Transfer, or REST, is an architectural style for interacting with
resources at a given URL. A REST architecture is typically used to provide a simple
HTTP interface to resources published on the web. Although a simplistic analogy, you
can think of REST services as an easy-to-use equivalent to traditional web services.

The primary advantage of using REST style services with web applications, such as
WebLogic Portal, is that REST allows the web application to access web-addressed
data and UI directly from the browser interface. The REST model provides a loose
coupling between the data and the UI. REST services are easy to invoke using an
HTTP request from a browser.

WebLogic Portal provides a REST framework that exposes WLP data and methods as
REST services. These services unlock data from a portal web application and allow the
data to be shared between applications. See Chapter 7, "The WebLogic Portal REST
API" for details.

2.7 JSON
JavaScript Object Notation (JSON) is a data exchange format based on JavaScript.
JSON is commonly used to pass objects between web clients and servers over HTTP.
JSON objects are easy to read and to manipulate using JavaScript. For details on JSON,
refer to http://www.json.org.

2.8 Ajax Toolkits
You can use available JavaScript toolkits and frameworks with Disc. For example, Dojo
is a toolkit for DHTML and JavaScript browser programming. Dojo provides low-level
IO (XMLHttpRequest), an event framework, JavaScript extensions, and a rich set of
interface widgets such as buttons, lists, forms, and trees. Dojo works well for use in
WLP portlets.

Dojo is discussed in Chapter 4 The Dojo web site provides additional documentation:
http://www.dojotoolkit.org.

Tip: For a good general introduction to REST, refer to the Wikipedia
article Representational State Transfer at
http://en.wikipedia.org/wiki/Representational_State_
Transfer.

Ajax Toolkits

2-4 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

3

The WLP Disc Framework 3-1

3The WLP Disc Framework

This chapter discusses the Dynamic Interface SCripting (Disc) framework. Sometimes
used in combination with the WLP REST API, Disc provides a client-side JavaScript
API to assist with developing rich, interactive portlets and portal applications. Disc
helps you write Ajax-enabled portlets that enable rich, interactive portal web
application features.

This chapter includes these topics:

■ Section 3.1, "What is Disc?"

■ Section 3.2, "Enabling Disc"

■ Section 3.4, "Using Portal-Aware XMLHttpRequest to Update Portlets"

■ Section 3.3, "Using Portal-Aware XMLHttpRequest to Retrieve Data from a
Non-Portal Source"

■ Section 3.5, "Using Context Objects"

■ Section 3.7, "Event Handling"

■ Section 3.8, "Manipulating URIs On the Client"

■ Section 3.9, "Logging"

3.1 What is Disc?
Disc provides a client-side, JavaScript, object-oriented programming framework for
handling events, making asynchronous portlet updates, and for accessing portal
context objects. Like their Java-based WLP API counterparts, Disc context objects
encapsulate descriptive portal information, such as portlet positions within
placeholders, titles, labels, and so on. The information returned in context objects can
be used as parameters to REST commands to modify the portal. For instance, the WLP
feature called placeable movement (drag and drop portlets) is implemented using Disc
and REST features (see "Enabling Placeable Movement" in Oracle Fusion Middleware
Portal Development Guide for Oracle WebLogic Portal).

The Asynchronous Desktop Mode and DVT features both use Disc, as illustrated in
Figure 3–1. If you enable either Asynchronous Desktop Mode or DVT for a portal
desktop, Disc is implicitly enabled.

Tip: For reference documentation see the Oracle Fusion Middleware
REST API Reference for Oracle WebLogic Portal and Oracle Fusion
Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD -
x86.

Enabling Disc

3-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 3–1 Features That Depend on Disc

The DVT flag enables the placeable movement (drag and drop portlets) feature for the
portal desktop. Asynchronous desktop rendering and placeable movement are both
discussed in the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

3.2 Enabling Disc
To use Disc in client-side portal code, you have to enable it first. You can enable Disc in
Oracle Enterprise Pack for Eclipse (OEPE) or in the WebLogic Portal Administration
Console. You can also use Disc outside the context of a portal.

This section includes these topics:

■ Section 3.2.1, "What Enabling Disc Means"

■ Section 3.2.2, "Enabling Disc in Oracle Enterprise Pack for Eclipse"

■ Section 3.2.3, "Enabling Disc in the Administration Console"

■ Section 3.2.4, "Using Disc Outside of a Portal"

3.2.1 What Enabling Disc Means
When Disc is enabled, you have access to the following WLP client-side development
features:

■ Portal-Aware XHR (XMLHttpRequest) objects – If you are familiar with Ajax,
then you know that XMLHttpRequest (XHR) objects are used to make
asynchronous requests to the server. Because the browser's native XHR object is
designed to operate in the context of an entire web page, it does not work well in a
portal environment where the page is composed of many separate portlets. Disc
provides a portal-aware extension of XHR that makes requests that allow portlet
markup to be updated asynchronously. The term portal-aware means that when
the Ajax request is sent to the server from a portlet, the request can fire events, if
required, and render its own view for further processing on the client. See
Section 3.4, "Using Portal-Aware XMLHttpRequest to Update Portlets".

The portal-aware XHR object, bea.wlp.disc.io.XMLHttpRequest is described in
detail in Oracle Fusion Middleware Disc API Reference for Oracle WebLogic Portal for
FreeBSD - x86.

■ Context Objects – Disc lets you work with context objects that encapsulate
information about a portal, such as the portlet placeholder information, titles,
labels, and so on. Context objects are generally read-only, and let you obtain

Enabling Disc

The WLP Disc Framework 3-3

information that you can use to create client-side interactivity and to pass to REST
commands to update the portal.

The set of context objects in the bea.wlp.disc.context module are described in
detail in the Oracle Fusion Middleware Disc API Reference for Oracle WebLogic Portal
for FreeBSD - x86.

■ XIE – The XHR Interaction Engine (XIE) provides the infrastructure for handling
asynchronous requests, interportlet communication, and event handling. For
instance, when asynchronous rendering is enabled for a desktop, XIE enables
interportlet communication (IPC) to work correctly. When a request is made from
a portlet, markup is automatically returned for that portlet and any portlet that is
affected by the request through IPC.

The set of XIE objects in the bea.wlp.disc.xie module are described in detail in the
Oracle Fusion Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD -
x86.

■ Event Handling – Disc provides event handling mechanisms that work as callback
functions and that can carry payloads. Events are tied to the "life cycle" of
asynchronous portlet requests. This means you can use events to trap information
before a request is sent or before a response is processed by the client.

For detailed information on the Event object in the bea.wlp.disc.event module, see
Oracle Fusion Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD -
x86.

3.2.2 Enabling Disc in Oracle Enterprise Pack for Eclipse
To enable Disc for a portal desktop in Oracle Enterprise Pack for Eclipse, set Disc
Enabled to true in the desktop Properties view, as shown in Figure 3–2.

Figure 3–2 Enabling Disc in Oracle Enterprise Pack for Eclipse

3.2.3 Enabling Disc in the Administration Console
To enable Disc in the Administration Console:

1. In the Portal Resources tree, select Portals and navigate to a desktop.

2. Select the Details tab.

3. Click Advanced Properties (Figure 3–3) and use the dialog to set Enable Disc to
true.

Using Portal-Aware XMLHttpRequest to Retrieve Data from a Non-Portal Source

3-4 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 3–3 Enable Disc

3.2.4 Using Disc Outside of a Portal
The WLP Portlet Publishing feature uses Disc outside of a portal. Portlet Publishing
lets you render portlets in any HTML page. For more information on Portlet
Publishing, see Chapter 5, "Portlet Publishing"

3.3 Using Portal-Aware XMLHttpRequest to Retrieve Data from a
Non-Portal Source

The standard XMLHttpRequest object, familiar to Ajax developers, can be used to
update discrete amounts of data within a portlet. The Disc API class,
bea.wlp.disc.io.XMLHttpRequest, is an extension of the standard XMLHttpRequest
class. WLP's XMLHttpRequest allows you to make asynchronous, incremental calls to
the portal server, and supports portal features such as interportlet communication and
WSRP. However, you can also use the portal-aware XHR in the same way you use a
standard XHR. Like a standard XHR request, a portal-aware XHR request can be used
from any JSP portlet page to retrieve any arbitrary data, which can then be inserted
into the portlet.

3.3.1 Use Case
For an example use case, you could write a portlet that includes an auto-complete
search form. When a user types text in the search field, the portlet sends portal-aware
XHR requests to the server to retrieve suggestions for the user. In this process, the
portlet UI does not refresh itself, except for the suggestions shown in the text field.

3.3.2 Example
In Example 3–1, a portal-aware XHR object is instantiated and used to asynchronously
retrieve data from a non-portal source. This code is intended to be embedded in a JSP
page.

Example 3–1 Using Portal-Aware XHR to Retrieve Data from a Non-Portal Source

<script type="text/javascript">
 var dataUrl = 'data.json';
 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if ((xmlhttp.readyState == 4) && (xmlhttp.status == 200)) {
 var data = eval('(' + xmlhttp.responseText + ')');
 var table = document.getElementById('data');
 for (var i = 0; i < data.length; i++) {
 // insert rows into "data" table by referencing properties of
 // data[i] objects.
 }
 }

Using Portal-Aware XMLHttpRequest to Update Portlets

The WLP Disc Framework 3-5

 }
 xmlhttp.open('GET', dataUrl, true);
 xmlhttp.send();
</script>

3.4 Using Portal-Aware XMLHttpRequest to Update Portlets
Portal-aware XMLHttpRequest allows client-side JavaScript code to interact with the
portal framework on the server on behalf of a portlet. When a portal-aware XHR call is
made to the server, the request is processed by the portal, which decides what to do
with the request. The portal may decide to invoke a given portlet and provide it with
the appropriate context, such as user properties, portlet preferences, and request and
response objects. Because the portal manages dependencies between portlets,
interportlet communication is possible with portal-aware XHR.

3.4.1 Use Cases
Two use cases for using portal-aware XHR are:

■ A portlet wants to implement a multi-step wizard process, replacing the current
form with a new form after each form submission and without completely
re-rendering the portlet.

■ When a user interacting with a portlet selects a check box for a product ID, the
portlet fires an event on the server side. Other portlets handle this event, fetch
product related information from a back-end data source, and render that
information.

As a developer, you have the option of using the WLP-specific XMLHttpRequest
object (bea.wlp.disc.io.XMLHttpRequest) to update portal-specific content. When you
make a request through this object, features such as IPC and WSRP are supported. For
detailed information on the portal-aware XHR class, see the Oracle Fusion Middleware
Disc API Reference for Oracle WebLogic Portal for FreeBSD - x86.

To enable portal-aware XHR in Oracle Enterprise Pack for Eclipse, follow the
instructions in the section Section 3.2.2, "Enabling Disc in Oracle Enterprise Pack for
Eclipse".

3.4.2 Example
Example 3–2 is basically the same as Example 3–1. The difference is that Example 3–2
refers to a portlet as the source of the data. This example code is expected to be
embedded directly in a JSP page.

Example 3–2 Using Portal-Aware XHR to Update Portlets

<%@ taglib prefix="render"
uri="http://www.bea.com/servers/portal/tags/netuix/render" %>
<render:jspContentUrl contentUri="/path/to/portlet/data.jsp" forcedAmpForm="false"
var="dataUrl"/>

<script type="text/javascript">
 var dataUrl = '${dataUrl}';
 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if ((xmlhttp.readyState == 4) && (xmlhttp.status == 200)) {
 var data = eval('(' + xmlhttp.responseText + ')');
 var table = document.getElementById('data');

Using Context Objects

3-6 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

 for (var i = 0; i < data.length; i++) {
 // insert rows into "data" table by referencing properties
 // of data[i] objects.
 }
 }
 }
 xmlhttp.open('GET', dataUrl, true);
 xmlhttp.send();
</script>

3.5 Using Context Objects
Disc lets you work with portal context objects on the client, using JavaScript. Context
objects encapsulate certain information about portal components. Context objects
contain information about the following portal components:

■ portlets

■ pages

■ books

■ layouts

■ themes

Disc content classes are loosely representative of the server-side PresentationContext
classes and serve a similar function in client-side programming. The set of context
objects in the bea.wlp.disc.context module are described in detail in the Oracle Fusion
Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD - x86.

Disc context objects are generally available only after the entire HTML page has
loaded. As a best practice, do not attempt to use context objects from inline script
blocks. Instead, register an on-load handler that specifies interaction with context
objects. For example, the code in Example 3–3, when placed inline in a portlet JSP,
results in an error:

Example 3–3 Wrong Way to Access a Context Object

//portlet will be null
var portlet = bea.wlp.disc.context.Portlet.findByLabel("myPortletLabel");
var title = portlet.getTitle(); // error

However, if you add the same code in a Dojo (for example) on-load function, the code
works as expected:

Example 3–4 Recommended Way to Access a Context Object

dojo.addOnLoad(function() {
 var portlet = bea.wlp.disc.context.Portlet.findByLabel("myPortletLabel");
 var title = portlet.getTitle();
});

Note: Only context objects for visible components are available;
context objects for non-visible components such as books peer to the
current book or hidden portlets are not available through the Disc
APIs.

The XMLHttpRequest Interaction Engine

The WLP Disc Framework 3-7

Example 3–5 illustrates a simple debugging example. The best practice is to place this
code in a render dependencies file. See Section 4.3, "Creating a Render Dependencies
File" for more information.

Example 3–5 Simple Debugging Example

dojo.addOnLoad(function() {
 var portlets = bea.wlp.disc.context.Portlet.getAll();
 for (var i = 0; i < portlets.length; i++) {
 bea.wlp.disc.Console.debug(portlets[i]);
 }
});

Example 3–6 presents another example that uses context objects.

Resources from render dependencies files are always included for a portlet regardless
of mode or state (except for minimized, which is a special case). If a portlet has a
general function that tries to inject content into a portlet that always runs when loaded
from a render dependencies file (attached to an onload handler for example), the
function should probably only try to do the content injection when the portlet is in
"normal view" mode. Example 3–6 is intended to be loaded from a render
dependencies file.

Example 3–6 Using Disc to Determine Portlet State

function createDataTables(label) {
 var portlet = bea.wlp.disc.context.Portlet.findByLabel(label);
 if (portlet.getWindowMode() == "view") {
 // retrieve data and create corresponding tables...
 if (portlet.getWindowState() == "maximized") {
 // create table with extended details
 }
 else {
 // create table with common details
 }
 }
}

3.6 The XMLHttpRequest Interaction Engine
The Disc module bea.wlp.disc.xie defines public APIs for Disc's XMLHttpRequest
Interaction Engine (XIE). XIE is the client-side foundation for Ajax-driven interactions
with WebLogic Portal. XIE is also the platform on which various other Ajax-based,
public Disc APIs are implemented, including:

■ bea.wlp.disc.io.XMLHttpRequest and

■ bea.wlp.disc.publishing.PortletSource

The XIE API is divided into two main areas:

■ XIE Events – Located in bea.wlp.disc.xie.Events.*, these global events are fired
when Ajax requests are made to WLP and when subsequent responses are
processed. These events provide public access to the underlying client-server
interaction lifecycle.

Tip: The bea.wlp.disc.context.Portlet object has a refresh()
method that you can use to refresh the contents of a portlet through
client-side code. For details, see the Oracle Fusion Middleware Disc API
Reference for Oracle WebLogic Portal for FreeBSD - x86.

Event Handling

3-8 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

■ Async Request Overlay – Located in bea.wlp.disc.xie.AsyncRequestOverlay, this
object provides control over the blocking overlay introduced on a page by some
XIE-driven interactions.

For more information on this classes described in this section, see the Oracle Fusion
Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD - x86.

3.7 Event Handling
The bea.wlp.disc.xie.Events object contains the set of public, global events that are
fired during XIE's WLP interaction lifecycle. The interaction lifecycle involves setting
up and executing an Ajax request to the WLP server, receiving a response, and
subsequently processing the response. WLP Ajax responses are encoded in an internal
JSON format (the form of which is reserved and subject to change), and XIE manages
the evaluation and handling of the body of these responses. The suite of public XIE
events provides public access to key moments of interest during this lifecycle; listening
code can use these event hooks to respond to or even influence the outcome of the
interaction. For more information on this class, see the Oracle Fusion Middleware Disc
API Reference for Oracle WebLogic Portal for FreeBSD - x86.

1. OnPrepareUpdate – Fired when an interaction has been initiated, but before the
request is made. This event can be cancelled; cancellation terminates the
interaction without making the underlying request.

2. OnHandleUpdate – Fired immediately after XIE receives the response, but before
processing has begun.

3. OnRedirectUpdate – Fired if the server is forcing the client to perform a redirect;
processing will complete as soon as possible and then a client-side redirect is
performed.

4. Then, for each piece of response markup returned by the server, the following
events are fired:

a. OnPrepareMarkup – Fired before converting a response markup fragment
into a DOM subtree; this event fires once for each markup fragment that was
returned in the response.

b. OnPrepareContent – Fired immediately after converting a markup fragment
into a DOM subtree, but before doing additional processing (such as rewriting
anchor hrefs and form actions); this event fires once for each markup fragment
that was returned in the response.

c. OnInjectContent – Fired immediately after injecting the fully processed (for
example, rewritten) DOM subtree into the document, but before executing any
scripts associated with that content; this event fires once for each markup
fragment that was returned in the response.

5. OnCompleteUpdate – Fired after XIE has completed all response processing for
the interaction, including the execution of any scripts defined by the markup
updated during the interaction

6. OnError – Fired any time an error occurs during interaction processing; processing
may or may not continue once an OnError event has fired.

Each event delivers a payload object to its listeners when the event is fired. The type
and capabilities of each payload object differ from event to event. See the
documentation for each individual event for more information about specific event
payloads in the Oracle Fusion Middleware Disc API Reference for Oracle WebLogic Portal
for FreeBSD - x86.

Manipulating URIs On the Client

The WLP Disc Framework 3-9

3.8 Manipulating URIs On the Client
Disc provides an API for manipulating URIs on the client. This feature lets you
manipulate URIs that have been rewritten for XmlHttpRequests (XHR) and Web
Services for Remote Portlets (WSRP). URI manipulation consists of parsing the URI,
optionally replacing template keys with values, and performing CRUD (create, read,
update, delete) operations on the components of the URI.

3.8.1 Background
The use of XHR in portal applications results in URI strings that have been rewritten to
become JavaScript pseudo-protocol links. These links are the result of client-side URL
rewriting performed by the Disc framework to support Ajax enabled portlets and
desktops. For example, an HREF attribute value such as:

http://localhost:7001/myApp?portletID=1001

could be present in the markup of a web page in a rewritten form, such as:

javascript:com.mystuff.update(http://localhost:7001/myApp?portletID=1001);
return false;

The URI manipulation API lets you write URI manipulation JavaScript code to parse a
URI string in both its original form and in a form that has been rewritten into a
JavaScript pseudo-protocol link.

In the case of WSRP portlets, you might need to write code that is reusable for either
the local or remote case. The URI manipulation API identifies remote-proxied URIs
and provides access to the target URI of the remote URI so that either or both URIs can
be manipulated. When the URI is not remote, the URI manipulation framework
recognizes that and handles the URI string with the default behavior for non-proxied
URIs.

3.8.2 Using the URI API
The bea.wlp.disc.UriRewriter class and its subclasses provide mechanisms for
manipulating target URIs. These URIs could be JavaScript pseudo-protocol links or
proxy URIs for remote portlets. UriRewriter instantiates a bea.wlp.disc.Uri object,
which includes all of the methods necessary to manipulate the components of a URI,
including template replacement for templatized URIs. In the case of template
replacement, you pass a map of template keys/values to the Uri constructor. For more
information on templates, see the bea.wlp.disc.Uri package documentation in the
Oracle Fusion Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD
- x86.

The URI API provides a bea.wlp.disc.UriRewriterFactory class that you can use to
select a UriRewriter class that recognizes the URI string of interest. If the URI passed
to the constructor of this class is a recognized URI form, the class selects an
appropriate UriRewriter. This pattern lets you write code to transparently manipulate
a target URI whether or not the URI has been rewritten.

Note that a bea.wlp.disc.PageUrl class lets you create a portal page URL on the client,
given the page label that you want to create a link to.

For additional details on the URI manipulation API and individual methods of the
API, refer to the bea.wlp.disc.uri package in the Oracle Fusion Middleware Disc API
Reference for Oracle WebLogic Portal for FreeBSD - x86.

Logging

3-10 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

3.9 Logging
One way to implement logging is to use the Firebug logging model. For information
on this model, see http://getfirebug.com/logging.html. Both Firebug and
Firebug Lite provide a global Console object that you can use to monitor logging
output.

Disc provides a Console object (bea.wlp.disc.Console) that replicates the API found in
the Firebug Console object. You can use this object anytime Disc is available. For
information on the Disc Console object, refer to bea.wlp.disc.Console in the Oracle
Fusion Middleware Disc API Reference for Oracle WebLogic Portal for FreeBSD - x86.

3.9.1 Example
Example 3–7 shows a simple example of how to set up a listener and send messages
through the Console object. All messages logged to the Console are passed to each
listener on the object. The listener function can be passed the following arguments
when the debug call is made:

■ op – "debug"

■ args – ["label=", "myPortlet"]

This configuration will output the following line of HTML text into a div named
myConsoleOutput, which needs to have been previously defined somewhere on the
page:

DEBUG: label=myPortlet

Example 3–7 Simple Example: Setting Up a Console Listener

bea.wlp.disc.Console.addListener(function(op, args) {
 var output = document.getElementById("myConsoleOutput");
 output.appendChild(document.createElement("br"));
 output.appendChild(document.createTextNode(op.toUpperCase() + ": " +
args.join(",")));
});
// Sometime later... Assume myPortlet.getLabel() returns "myPortlet"
bea.wlp.disc.Console.debug("label=", myPortlet.getLabel());

4

Configuring JavaScript Libraries in a Portal Web Project 4-1

4Configuring JavaScript Libraries in a Portal
Web Project

A wide variety of JavaScript libraries and toolkits exist today, many of which can be
used to build WebLogic Portal projects. For example, the Dojo Toolkit works well for
client-side WLP development. This section explains how to set up a WLP project that
uses the Dojo Toolkit. You can follow the same basic steps to integrate the JavaScript
libraries of your choice into a project.

This chapter includes these topics:

■ Section 4.1, "Creating a Simple Portal Project with Dojo"

■ Section 4.2, "The Hello World JSP Portlet with Dojo"

■ Section 4.3, "Creating a Render Dependencies File"

4.1 Creating a Simple Portal Project with Dojo
Dojo is a toolkit for DHTML and JavaScript browser programming. Dojo provides
low-level I/O (XMLHttpRequest), an event framework, JavaScript extensions, and a
rich set of interface widgets such as buttons, lists, forms, and trees. Dojo has a good set
of features to use for developing portals and portal components.

This section explains how to set up a WebLogic Portal project that includes the Dojo
Toolkit.

1. Locate and download the Dojo Toolkit. The toolkit is available at
http://www.dojotoolkit.org.

2. Unzip the download file.

3. In Oracle Enterprise Pack for Eclipse, create a Portal Web Project, a Portal EAR
Project, a server, and a domain. See the Oracle Fusion Middleware Tutorials for Oracle
WebLogic Portal for details on these tasks.

4. In the WebContent folder of the Portal Web Project, create a folder called
resources. In that folder, create a subfolder called js.

5. Import the Dojo Toolkit folder into the resources/js folder. To do this,
right-click the resources/js folder and select Import. In the wizard, select
General > Filesystem. Import both the dojo and dijit folders from the Dojo
download directory. See Figure 4–1.

The Hello World JSP Portlet with Dojo

4-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 4–1 Adding the Dojo Toolkit to a Portal Project

With the Dojo Toolkit added to your portal project, you can now incorporate Dojo and
other JavaScript code into your portlets, as explained in the following sections.

4.2 The Hello World JSP Portlet with Dojo
This section describes a simple JSP portlet that displays a message in a pop up. The
sample demonstrates how to import the Dojo libraries and use a bit of JavaScript in a
portlet.

1. Create a portlets folder under the WebContent folder of the web project.

2. In the portlets folder, create a new JSP portlet descriptor file, called
dojotest.portlet. To do this, right-click the folder and select New > Portlet.
Use the portlet wizard to create a JSP portlet. The wizard automatically creates
both the portlet file and an empty JSP file called, by default, dojotest.jsp.

3. Create a render dependencies file. This file will contain a reference to the Dojo
Toolkit file, dojo.js, a CSS file reference, and JavaScript function definitions used by
the portlet. See Section 4.3, "Creating a Render Dependencies File" for details.

4. Configure the portlet to refer to the render dependencies file. To do this, open the
portlet in the Portlet Editor view. Set the LAF Dependencies Path in the portlet
Properties editor to point to the dependencies file you created.

5. Add the code in Example 4–1 to the JSP file. The sample code performs these tasks:

■ Imports a button dijit Button element or widget. This is a common pattern for
importing widgets. This code ensures that the Button's JavaScript has been
loaded before a Button instance is declared.

■ Instantiates a button widget and configures an event handler for the button's
click event. When the button is pressed, the event handler shows a JavaScript
alert containing a greeting and the portlet label.

Example 4–1 Hello World with Dojo

<script type="text/javascript">
 // Load the Dojo Button widget
 dojo.require("dijit.form.Button");
</script>

<button dojoType="dijit.form.Button" id="helloButton">
 Hello World!
 <script type="dojo/method" event="onClick">
 alert('You pressed the button');

Creating a Render Dependencies File

Configuring JavaScript Libraries in a Portal Web Project 4-3

 </script>
</button>

6. Add the portlet to a portal and run it on the server. When you click the button in
the portlet, the popup displays the text defined in the callback.

Figure 4–2 Hello World JSP Portlet with Dojo

This section explained how to use a bit of Dojo code in a JSP portlet. In Chapter 6 we
discuss specific problems related to using JavaScript code in portlets and suggest best
practices to avoid the problems.

4.3 Creating a Render Dependencies File
This section explains the purpose and importance of render dependency files and how
to create a render dependencies file.

4.3.1 The Importance of Render Dependencies
A render dependencies file is XML that defines page-level events and resources such
as external JavaScript and CSS that are needed by a portlet. In a non-portal web page,
these are often included inside the <head> tags of an HTML page; however, portlets
should avoid using this approach, as it can lead to a variety of problems in a portal or
mashup environment including creating pages that are not HTML/XHTML compliant
and causing unexpected behavior when WebLogic Portal's Desktop Ajax feature is
enabled. The render dependencies mechanism addresses these problems by allowing
portlets to declare resource references and to wire into page-level events including
load and unload. Blocks of JavaScript can even be included in a render dependencies
file, wrapped inside of the usual <script> element.

Creating a Render Dependencies File

4-4 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

4.3.2 Creating the Sample Render Dependencies File
The simplest way to create a render dependencies file is to right-click a folder in your
web application and select New > Other > WebLogic Portal > Markup Files > Render
Dependencies. The resulting file looks like Example 4–2.

Example 4–2 Empty Render Dependencies File

<?xml version="1.0" encoding="UTF-8"?>
<window
 xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
 laf-window-1_0_0.xsd">
</window>

Next, add a <render-dependencies> XML tag to the file. Include in the tag the path to
the Dojo toolkit, as shown in Example 4–3. This listing includes certain elements that
Dojo requires for this example: the Tundra theme and the djConfig object, which is
created when the page loads and configures Dojo.

The <path-element> must be a relative reference from the render dependencies file to
the directory that contains the script sources referenced by the <script> tags.

Example 4–3 Render Dependencies File Includes Dojo Toolkit

<?xml version="1.0" encoding="UTF-8"?>
<window
 xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
 laf-window-1_0_0.xsd">
 <render-dependencies>
 <html>
 <links>
 <search-path>
 <path-element>../resources/js</path-element>
 </search-path>
 <link href="dijit/themes/tundra/tundra.css" type="text/css"
 rel="stylesheet"/>
 </links>
 <scripts>
 <search-path>
 <path-element>../resources/js</path-element>
 </search-path>
 <script type="text/javascript">
 var djConfig = {parseOnLoad:true, isDebug:true};
 </script>
 <script src="dojo/dojo.js" type="text/javascript"/>
 </scripts>
 </html>
 </render-dependencies>
</window>

5

Portlet Publishing 5-1

5Portlet Publishing

This chapter discusses Portlet Publishing, a feature that lets you surface portlets
remotely over HTTP.

This chapter includes these topics:

■ Section 5.1, "What is Portlet Publishing?"

■ Section 5.2, "Portlet Publishing URL Forms"

■ Section 5.3, "Consuming Published Portlets"

■ Section 5.4, "Advanced Topics"

■ Section 5.5, "Portlet Publishing vs. WSRP"

■ Section 5.6, "Using JSP and HTML Portlet Publishing Templates"

■ Section 5.7, "Limitations"

5.1 What is Portlet Publishing?
Portlet Publishing refers to a family of WebLogic Portal features that make portlets
available over HTTP. Once published through the WLP Portlet Publishing service, a
portlet can be reused in a variety of heterogeneous host environments. For example,
you can embed published portlets in an <iframe> tag or include the portlet into a
non-portal web page using JavaScript.

This section includes these topics:

■ Section 5.1.1, "What is the Portlet Publishing Service?"

■ Section 5.1.2, "Asking the Portlet Publishing Service for Portlets"

■ Section 5.1.3, "Consuming a Published Portlet"

5.1.1 What is the Portlet Publishing Service?
Portlets are published through the WLP Portlet Publishing service. The publishing
service is a REST-style service that runs in the WLP server. As shown in Figure 5–1, the
Portlet Publishing service serves individual portlet instances to remote consumers
over HTTP. A remote consumer simply uses a URL to request that the Portlet
Publishing service return a portlet. The service then returns the portlet markup to the
consumer.

What is Portlet Publishing?

5-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 5–1 Portlet Publishing Service

5.1.2 Asking the Portlet Publishing Service for Portlets
You can ask the Portlet Publishing service to return a library instance of a portlet or a
desktop instance. The type of portlet instance you want determines the structure of the
URL sent to the service.

You can think of a library portlet instance as a non-customizable instance of a portlet.
When you use the Administration Console to add a library portlet to a page in a portal
desktop, the added portlet becomes a desktop instance, which makes it possible for
each user of the portlet to have their own customized version of it. You can see library
and desktop portlets listed in the Portal Resources Tree of the WebLogic Portal
Administration Console.

You might decide to ask for a library instance of a portlet if you do not expect users to
customize it or if it was not designed to be customizable. For example, a simple
mortgage calculator portlet might not require customization. You might choose to
consume a desktop instance of a portlet, on the other hand, if you do expect users to
customize it. A stock quote portlet might allow users to select their favorite stocks to
display and then remember their individual choices.

As noted previously, the type of portlet you want the publishing service to return
determines the type of URL that you send to the service. The two Portlet Publishing
URL patterns are explained in Section 5.2, "Portlet Publishing URL Forms".

5.1.3 Consuming a Published Portlet
As explained previously, you formulate a specific kind of URL to ask the WLP
publishing service for a library instance or for a desktop instance of a portlet. The
publishing service then returns the portlet markup to the requesting consumer. The
consumer can render the returned portlet markup in three ways:

■ Render the portlet in an HTML inline frame tag (an <iframe> tag). This is by far
the simplest and safest technique. The <iframe> tag provides a loose coupling
between the portlet and the rest of your rendered web page. Portlets rendered in
<iframe> tags are effectively isolated from one another, reducing possible security
risks and adverse side-effects. See also Section 5.3.1, "Inline Frame Integration."

■ Use a JavaScript API to integrate the portlet into the DOM. WLP provides a Disc
API called PortletSource that lets you retrieve a portlet and render it directly into
an HTML <div> tag. This technique provides greater flexibility and control to the

Portlet Publishing URL Forms

Portlet Publishing 5-3

web developer. For instance, integrated portlets can interact with and affect each
other. Greater care is required on the part of the client-side developer to ensure
that integrated portlets work and interoperate properly and securely. See also
Section 5.3.2, "DOM Integration."

■ Use the <portalFacet> JSP tag. To surface a portlet in a JSP page, you can insert a
portalFacet tag into a JSP page. For example:

<%@taglib uri="http://www.bea.com/servers/portal/tags/netuix/render"
prefix="render"%>
...
<render:portalFacet label="_myportlet" path="/myPortlet.portlet" />

The web application includes a file called myPortlet.portlet. The label tag
attribute must be unique to all <portalFacet> tags on the page because it identifies the
portlet instance. At runtime, the <portalFacet> tag renders the specified portlet on the
page. You may include multiple portlets on a single page by inserting multiple
<portalFacet> tags with unique label attributes. See also Section 5.3, "Consuming
Published Portlets".

5.2 Portlet Publishing URL Forms
This section describes the two Portlet Publishing URL forms. The first form retrieves a
library instance of a portlet. The second form retrieves a desktop instance. The WLP
Portlet Publishing service processes these commands and returns the appropriate
portlet to the consumer. Library and desktop portlet instances are explained in more
detail in Section 5.1.2, "Asking the Portlet Publishing Service for Portlets".

5.2.1 Library Instance URL Form
To return a library instance of a portlet, use this URL form:

http://<domain_name>/<webapp_name>/<path_to_portlet>/<portlet_name>.portlet

For example:

http://foo.com/myWebapp/myPortlet.portlet

Note that the part of the URL that includes the web application name, the path to the
portlet, and the portlet name is called the publishing context. The publishing context
can be used as a parameter to certain Disc JavaScript API calls. See Section 5.3.2,
"DOM Integration" for more information. See also Section 5.3.3, "Finding the Portlet
Publishing Context".

Because a library instance is, by definition, not directly associated with a portal
desktop, it does not include certain look and feel and other information associated
with a desktop instance. The look and feel of a library instance consists of the default
WLP look and feel and cannot be changed.

5.2.2 Desktop Instance URL Form
The desktop instance URL form is somewhat more complicated than the form used for
library instances. The desktop instance URL is composed of these required parts and
parameters:

■ Domain name and web application name. For example:
http://foo.com/myWebapp

■ WLP REST API namespace identifier. For example: bea/wlp/api

Consuming Published Portlets

5-4 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

■ Portlet Publishing service command. For example: portlet/publish

■ Context parameter. The context parameter value is the path to a streaming portal
desktop. For information on obtaining the context path, see Section 5.3.3, "Finding
the Portlet Publishing Context".

For example:

/myWebApp/appmanager/myPortal/myDesktop

Note that appmanager is a WLP servlet name that is part of every streaming
desktop path.

■ Portlet parameter. This parameter specifies the instance label of the library portlet.
You can determine the instance label from either Oracle Enterprise Pack for Eclipse
or from the WLP Administration Console. For example, a portlet with instance
identifier myPortlet_1 would appear as:

portlet=myPortlet_1

Putting it all together, here is an example URL to retrieve a desktop instance portlet
from the publishing service:

http://foo.com/myWebApp/bea/wlp/api/portlet/publish?
context=/myWebApp/appmanager/myPortal/myDesktop&portlet=myPortletInstanceLabel

There is one more optional parameter you can use in the desktop instance URL form.
The decoration parameter is explained in the section Section 5.4, "Advanced
Topics".

5.3 Consuming Published Portlets
This section discusses two techniques for consuming published portlets: inline frame
(<iframe> tag) integration and DOM integration. This section includes these topics:

■ Section 5.3.1, "Inline Frame Integration"

■ Section 5.3.2, "DOM Integration"

■ Section 5.3.3, "Finding the Portlet Publishing Context"

5.3.1 Inline Frame Integration
The HTML <iframe> tag creates an inline frame that contains another HTML
document. You can use an inline frame to include a WLP portlet in an HTML page.
The value of the tag's src parameter can be a Portlet Publishing URL of either the
library instance or desktop instance form as explained in Section 5.2, "Portlet
Publishing URL Forms".

Figure 5–2 illustrates that inline frames are rendered as separate HTML documents
within the parent document. The loose coupling between the parent page and the
inline frame pages makes inline frames relatively secure. Inline frames are a good
choice if you don't trust a portlet to interact securely with the rest of the page. Only
limited interaction between the inline frame portlets and the rest of the page is
possible. Note that some portlets will not work properly if they are embedded using

Tip: The difference between streaming and file-based portals is
explained in more detail in the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Consuming Published Portlets

Portlet Publishing 5-5

the DOM integration technique, described in Section 5.3.2, "DOM Integration". In these
cases, inline frame integration is the best option.

Figure 5–2 Inline Frames Provide Separation Between Portlets and the Rest of the Page

5.3.1.1 Example Code
Example 5–1 shows an inline frame tag that includes a library instance portlet.
Example 5–2 shows an example that embeds a desktop instance of a portlet. The value
of the <iframe> src parameter is the Portlet Publishing URL of the appropriate form
for a library instance and a desktop instance. See also Section 5.2, "Portlet Publishing
URL Forms".

Example 5–1 Simple Inline Frame that Embeds a Library Instance Portlet

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <body>
 <iframe src ="http://foo.com/myWebapp/myPortlet.portlet"> </iframe>
 </body>
</html>

Example 5–2 Simple Inline Frame that Embeds a Desktop Instance Portlet

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <body>
 <iframe src ="http://foo.com/myWebApp/bea/wlp/api/portlet/publish/?
 context=myWebApp/appmanager/myPortal/myDesktop&
 portlet=myPortletInstanceLabel"> </iframe>
 </body>
</html>

Consuming Published Portlets

5-6 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

You can use inline frames to embed either static or dynamic portlets, as explained in
the following sections.

5.3.1.2 Embedding Static Portlets
Inline frames offer a relatively safe and easy way to integrate legacy portlets into
newly developed, static applications. Inline frames are ideal for portlets that use basic
HTML, do not make extensive use of JavaScript, post navigation commands back to
the server, and contain logic that is captured in Struts or Page Flow actions.

5.3.1.3 Embedding Dynamic Portlets
Dynamic portlets make use of rich user interface technology and asynchronous
browser-server communication. More and more sites are being built using mashups of
content from one or more providers that are often not known and possibly not trusted
by one another. Inline frames provide a convenient and relatively secure sandboxing
mechanism in environments where rich widgets and portlets must be integrated
together without mutual trust.

5.3.2 DOM Integration
WLP provides a JavaScript API called Disc that lets you integrate portlets directly into
the DOM of an HTML page.

DOM integration provides a level of integration and capability that exceeds the
inherent limitations of inline frame integration. DOM integration allows a portlet to be
treated as if it were a native part of the HTML page's DOM tree. This added capability
increases both security risks and integration complexity. Portlets integrated using this
approach have complete access to data and UI that exist in other parts of the page. In
addition, the developer must take care to prevent collisions in the JavaScript global
namespace. See also Section 6.2, "Avoiding Namespace Collisions".

5.3.2.1 Basic JavaScript Coding Steps
The basic JavaScript coding steps for integrating a remote portlet into the DOM of an
HTML page follow a consistent pattern. This section lists and explains each step and
then provides a complete example.

1. Include the Disc Portlet Publishing JavaScript module in your page, as shown in
the following fragment:

<script type="text/javascript"
 src="/<portal_web_app>/framework/scripts/bundles/disc-publishing.js">
</script>

This JavaScript module is contained in a WLP Shared J2EE Library, and is always
addressed by the web application-scoped path shown in the fragment. You only

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Tip: For a comprehensive introduction to Disc, see Chapter 3.

Consuming Published Portlets

Portlet Publishing 5-7

need to include this module once per page, even if you are embedding portlets
from several different web applications.

2. Build a variable to hold the publishing context of the portlet. The publishing
context is either the path to a .portal file or a desktop of a streaming portal. See
also Section 5.3.3, "Finding the Portlet Publishing Context".

For example, the following fragment specifies the context for a file-based portlet,
where <portal_web_app> and <portal_name> are the names of the WLP web
application and the portal that contain the portlet. The context for a file-based
portlet is the physical path from the web application root to the .portal file.

var publishingContext = "/<portal_web_app>/<portal_name>.portal";

To embed a desktop instance of a portlet from a streaming portal, you construct
the context variable as follows:

var publishingContext =
 "/<portal_web_app>/appmanager/<portal_name>/<desktop_name>

See also Section 5.2, "Portlet Publishing URL Forms".

3. Use the Disc API to retrieve a PortletSource instance for the publishing context.
Pass the publishing context variable you constructed in Step 2 as the parameter in
this call. For example:

var source = bea.wlp.disc.publishing.PortletSource.get(publishingContext);

4. Call the PortletSource object's render() function, passing it a JavaScript object with
two properties. The first property, portlet, specifies the instance label of the
portlet you want to embed. The second property, to, specifies the value of an id
attribute for an HTML div tag in which to embed the portlet. For example:

source.render({ portlet: "<portlet_instance_label>", to: "<div_id_value>" });

The render() method also accepts an array of JavaScript objects. See Section 5.4,
"Advanced Topics" for details.

5. Place the portlet in a <div> element on the HTML page. For example:

<div id="div_id_value"></div>

Putting it all together, Example 5–3 shows a complete example where a portlet library
instance is embedded into the DOM of an HTML page. In this example, most of the
code is wrapped in a JavaScript function called handleOnLoad() that is called when
the page loads.

Example 5–3 Example Code for Portlet DOM Integration

<html>
 <head>
 <title>My Portlet</title>
 <script type="text/javascript"
 src="/myWebApp/framework/scripts/bundles/disc-publishing.js">
 </script>
 <script type="text/javascript">
 function handleOnLoad() {

Tip: Note that the text "Loading..." appears in the <div> tag. This text
provides a visual cue to the user. "Loading..." appears momentarily in
the page and is replaced by the portlet after the portlet markup is
received.

Advanced Topics

5-8 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

 var publishingContext = "/myWebApp/portals/main.portal";
 var source =
 bea.wlp.disc.publishing.PortletSource.get(publishingContext);
 source.render({ portlet: "myPortlet_1", to: "myPortlet" });
 }
 </script>
 </head>
 <body onload="handleOnLoad();">
 <p>Basic tests for rendering portlets on a host page.</p>
 <div style="border: 1px solid black;">
 <div id="myPortlet">Loading...</div>
 </div>
 </body>
</html>

5.3.3 Finding the Portlet Publishing Context
This section explains how to find the value of the context parameter for library and
desktop instance portlets.

5.3.3.1 Finding the Publishing Context for a Library Instance Portlet
To find the publishing context for library instance portlet, in Oracle Enterprise Pack for
Eclipse, right-click the .portal file and select Run As > Run On Server. The path
shows up in the browser. For example, if the full URL to the portal is:

http://foo.com/myWeb/portal-1.portal

then the publishing context is:

/myWeb/portal-1.portal

5.3.3.2 Finding the Publishing Context for a Desktop Instance Portlet
The easiest way to obtain the context path for a desktop instance portlet, is to look it
up in the WLP Administration Console. In the Portal Resources tree, navigate to the
desktop and select it. The path shows up on the Details tab in the URL to Access
Desktop field. A complete path looks like this, where the context part is everything
from <webapp_name> on.

http://<domain_name>/<webapp_name>/appmanager/<portal_name>/<desktop_name>

Here is an example desktop URL with the publishing context highlighted:

5.4 Advanced Topics
This section discusses several advanced topics of interest to developers.

■ Section 5.4.1, "Using the Decoration Parameter"

■ Section 5.4.2, "Integrating Multiple Portlets into the DOM"

■ Section 5.4.3, "Integrating Portlets from Multiple Publishing Contexts"

■ Section 5.4.4, "Specifying URL Redirect Options"

Advanced Topics

Portlet Publishing 5-9

5.4.1 Using the Decoration Parameter
The desktop instance URL form, discussed in Section 5.2.2, "Desktop Instance URL
Form", includes an optional decoration parameter. The decoration parameter lets
you specify how the look and feel of the portlet will be rendered. The possible values
for the decoration portlet are:

■ light – (default) Only the content of the portlet is rendered. Light decoration
does not include a border or titlebar if they were part of the original desktop
portlet instance. This style portlet tends to blend in more with the surrounding
web page elements.

■ full – This option renders the portlet almost exactly it appears in its original
desktop context. If defined in the original portlet, the border and title bar (with
mode and state buttons) will be rendered. Essentially, the portlet is rendered with
the same look and feel as the original portlet appeared in its host desktop.

For example, to remove the border using the Desktop URL Form, you can do this:

http://foo.com/myWebApp/bea/wlp/api/portlet/publish/?context=myWebApp/appmanager/myPortal/myDesktop
&portlet=myPortletInstanceLabel&decoration=full

Or, if you want to use a library instance, you can use this form. This form is similar to
the Desktop URL Form shown previously; however, with this option, the portlet must
be placed in a .portal file.

http://foo.com/myWebApp/bea/wlp/api/portlet/publish?context=myWebApp/<path_to_portal>/my.portal&por
tlet=myPortletInstanceLabel&decoration=light

Or, you can specify a portlet directly using the Library Instance URL Form:

http://foo.com/myWebApp/<path_to_portlet>/my.portlet?_portlet.contentOnly=true&_portlet.contentMode
=FULL

For more information, see Section 5.2.2, "Desktop Instance URL Form".

5.4.2 Integrating Multiple Portlets into the DOM
Section 5.3.2, "DOM Integration" discussed how to use the Disc API to integrate a
single portlet into the DOM. If you want to integrate multiple portlets onto a page, you
can pass the render() function an array of {portlet: , to: } objects. In this case, Disc only
makes one request to the server to retrieve all of the portlets.

For example, Example 5–4 illustrates how to integrate multiple desktop instances of
portlets into the DOM by passing an array of objects to the Disc render() function.

Example 5–4 Embedding Multiple Portlets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>Portlet Publishing Example</title>

Note: If you want to generate a decoration-free portlet URL from a
JSP, use the render:standalonePortletUrl tag, which has
contentOnly and contentMode attributes. If you want to generate
the URL from a backing file, use the StandalonePortletURL class. For
information on this class, see the Javadoc.

Advanced Topics

5-10 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

 <script type="text/javascript"
src="/publishingPortal/framework/scripts/bundles/disc-publishing.js">
 </script>
 <script type="text/javascript">

 function handleOnLoad() {
 var publishingContext =
"/publishingPortal/appmanager/mainPortal/mainDesktop";
 var source =
bea.wlp.disc.publishing.PortletSource.get(publishingContext);

 source.render([{ portlet: "myPortlet_1", to: "portlet1Div" },
 { portlet: "myPortlet_2", to: "portlet2Div" },
 { portlet: "myPortlet_3", to: "portlet3Div" },
 { portlet: "myPortlet_4", to: "portlet4Div" }]);
 }
 </script>
 </head>
 <body onload="handleOnLoad();">

 <div style="border: 1px solid black;" id="portlet1Div">Loading...</div>
 </br>
 <div style="border: 1px solid black;" id="portlet2Div">Loading...</div>
 </br>
 <div style="border: 1px solid black;" id="portlet3Div">Loading...</div>
 </br>
 <div style="border: 1px solid black;" id="portlet4Div">Loading...</div>

 </body>
</html>

5.4.3 Integrating Portlets from Multiple Publishing Contexts
You can integrate portlets from more than one Portlet Publishing context into page. If
you are doing DOM integration, you must construct a separate PortletSource API call
for each publishing context. If you are using inline frame integration, just use the
appropriate Portlet Publishing URL form as the value of the <iframe> src tag.

Note that each PortletSource.render() call produces one interaction with the server. If
you group several portlets into one render() call, the function will not return until all
of the portlets are processed on the server. If one of the portlets requires excessive
processing time on the server, users might experience a delay in the rendering of the
entire group of portlets. In this case, consider placing the slower portlet in a separate
render() call. This causes the portlet to be rendered in a separate, asynchronous call to
the server.

5.4.4 Specifying URL Redirect Options
When initiating a redirect response from a portlet that is published through Portlet
Publishing, you might need to redirect to the URL of the referrer rather than to allow
the portal Java API to construct the URL. For example, if you only want to refresh the
current web page containing the portlet, a redirect to the referrer is appropriate. To
allow for this case, add code to the backing file of your portlet to detect whether or not
the portlet is to be rendered through the Portlet Publishing mechanism or the portal
Java API. Sample code illustrating this technique is shown in Example 5–5. In this
sample, if the portlet is consumed by a client through the Portlet Publishing
mechanism, a refresh URL is obtained by using the value of the Referer request header.

Portlet Publishing vs. WSRP

Portlet Publishing 5-11

If the portlet is not being consumed through Portlet Publishing, the refresh redirect
URL is obtained through the WLP PostbackURL API.

Example 5–5 Sample Code to Detect the Rendering Method

PortletBackingContext pbc = PortletBackingContext.getPortletBackingContext(request);
if(pbc.isPortletRenderedByClient()) {
 pbc.sendRedirect(request.getHeader('Referer'));
} else {
 pbc.sendRedirect(WindowURL.createWindowURL(request, response));
}

5.5 Portlet Publishing vs. WSRP
You can think of Portlet Publishing and WSRP (Web Services for Remote Portlets) as
complementary technologies. Both technologies allow you to consume portlets
deployed in remote portals.

In the case of WSRP, portlets from one or more portals, called producers, are aggregated
into a common, unified portal, called the consumer. The consumer communicates with
producers over a SOAP-based protocol. Because WSRP is an OASIS standard, the
producers can use entirely different vendor technologies. Also, because the consumer
and producer communicate through standard web services, UDDI registries and
service busses can be used to locate portlets and route traffic. Traditional WSRP
portlets are closely tied to the producer portals in which they are deployed.

Portlet Publishing, on the other hand, aggregates content (typically portlets) on the
browser. Client-side developers make inline frame (iframe) or XMLHttpRequest calls to
the server to retrieve content. Portlet Publishing is typically used to expose portlets in
a non-portal applications, although you can also use Portlet Publishing techniques in a
portal.

Figure 5–3 illustrates the fundamental differences between Portlet Publishing and
WSRP. Portlet Publishing obtains content directly from a WLP application. WSRP
aggregates content in a consumer portal from one or more producers. Because WSRP
is a standard, producers can be from different vendors.

Tip: The WSRP approach to creating federated portals is described in
the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic
Portal.

Using JSP and HTML Portlet Publishing Templates

5-12 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 5–3 Portlet Publishing and WSRP

5.6 Using JSP and HTML Portlet Publishing Templates
The New JSP Page and the New HTML Page wizards provide a page creation template
for portlet publishing. These templates conveniently insert JavaScript code in the
resulting JSP or HTML page to render the portlet referenced by a portlet publishing
URL.

5.6.1 Using the JSP Template
When you create a new JSP page in Oracle Enterprise Pack for Eclipse (by selecting
New > JSP), the New JavaServer Page wizard includes an optional step that lets you
pick a JSP template. The template options are:

■ New Portlet Publishing JSP – Creates a JSP that includes the content of an Oracle
WebLogic Portal portlet. This JSP does not have to reside within a portal.

■ New Portlet Publishing JSP (in Portal WebApp) – Creates a JSP that includes the
content of an Oracle WebLogic Portal portlet. This JSP does not have to reside
within a portal, but only works in an Oracle WebLogic Portal web application.

The Select JSP Template wizard dialog is shown in Figure 5–4.

Using JSP and HTML Portlet Publishing Templates

Portlet Publishing 5-13

Figure 5–4 Select JSP Template Page Dialog in the New JavaServer Page Wizard

The basic procedure for inserting and configuring the template is:

1. Select New > JSP to bring up the New JavaServer Page wizard.

2. Enter a name for the JSP file and click Next.

3. In the Select JSP Template dialog, select New Portlet Publishing JSP (see
Figure 5–4).

4. Click Finish.

5. Open the JSP file in the JSP editor. You will see that a JavaScript function has been
inserted into the file.

6. Edit the JavaScript function so that it refers to the portlet you wish to consume in
the JSP. You need to edit two items in the file: the publishingContext variable
and the portlet parameter in the source.render function. Example 5–6 shows
the JavaScript function that is inserted into the JSP. The items you need to edit,
shown in bold, are described below.

Example 5–6 JavaScript Function Template Inserted Into a JSP File

<script type="text/javascript" src="<render:resourceUrl
contextualPath='framework/scripts/bundles/disc-publishing.js'/>">
</script>
 <script type="text/javascript">
 function handleOnLoad() {
 /* Enter your own publishing context instead of appmanager/p/d */
 var publishingContext = "${request.contextPath}/appmanager/your_portal/your_desktop";
 var source = bea.wlp.disc.publishing.PortletSource.get(publishingContext);
 source.render({ portlet: "your_instance_label_here", to: "myPortlet" });
 }
 </script>

Using JSP and HTML Portlet Publishing Templates

5-14 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

The items to edit in the JavaScript function are:

■ appmanager – Be sure to use the use the pattern mapped to the
AppManagerServlet defined in your servlet descriptor for your application.
Note that appmanager is only the default value, and that it might have been
changed.

■ your_portal/your_desktop – Provide the name of the portal and desktop
that contain the portlet you want to consume. For information on finding
these names, see Section 5.3.3, "Finding the Portlet Publishing Context."

■ your_instance_label_here – Provide the instance label of the portlet you
want to consume. For information on finding the instance label, see
Section 5.2.2, "Desktop Instance URL Form."

For more information on this JavaScript function, see Section 5.3.2.1, "Basic
JavaScript Coding Steps."Example 5–7 shows a completed JavaScript template for
a sample portlet:

Example 5–7 Sample Template JavaScript

 <script type="text/javascript"
 src="<render:resourceUrl contextualPath='framework/scripts/bundles/disc-publishing.js'/>">
 </script>
 <script type="text/javascript">
 function handleOnLoad() {
 /* Enter your own publishing context instead of appmanager/p/d */
 var publishingContext = "${request.contextPath}/appmanager/MyPortal/MyDesktop";
 var source = bea.wlp.disc.publishing.PortletSource.get(publishingContext);
 source.render({ portlet: "myportlet_1", to: "myPortlet" });
 }
 </script>

5.6.2 Using the HTML Template
When you create a new HTML page in Oracle Enterprise Pack for Eclipse (by selecting
New > HTML), the New JavaServer Page wizard includes an optional step that lets
you pick an HTML template. The Select HTML Template wizard dialog is shown in
Figure 5–5.

Using JSP and HTML Portlet Publishing Templates

Portlet Publishing 5-15

Figure 5–5 Select HTML Template Page Dialog in the New JavaServer Page Wizard

The basic procedure for inserting and configuring the template is:

1. Select New > HTML to bring up the New HTML Page wizard.

2. Enter a name for the HTML file and click Next.

3. In the Select HTML Template dialog, select New Portlet Publishing Page (see
Figure 5–5).

4. Click Finish.

5. Open the HTML file in the editor. You will see that a JavaScript function has been
inserted into the file.

6. Edit the JavaScript function so that it refers to the portlet you wish to consume in
the HTML page. You need to edit three items in the file: the publishingContext
variable, the portlet parameter in the source.render function. You also need
to provide your context root in the indicated places. Example 5–8 shows the
JavaScript that is inserted into the HTML page. The items you need to edit, shown
in bold, are described below.

Example 5–8 JavaScript Function Inserted Into the HTML File

<script type="text/javascript"
src="/your_context_root_here/framework/scripts/bundles/disc-publishing.js">
</script>
<script type="text/javascript">
 function handleOnLoad() {
 /* enter your own publishing context instead of appmanager/p/d */
 var publishingContext = "/your_context_root_here/appmanager/your_portal/your_desktop";
 var source = bea.wlp.disc.publishing.PortletSource.get(publishingContext);
 source.render({ portlet: "your_instance_label_here", to: "myPortlet" });
 }

Limitations

5-16 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

</script>

The items to edit in the JavaScript function are:

■ appmanager – Be sure to use use the pattern mapped to the
AppManagerServlet defined in your servlet descriptor for you application.
Note that appmanager is only the default value, and that it might have been
changed.

■ your_portal/your_desktop – Provide the name of the portal and desktop
that contain the portlet you want to consume. For information on finding
these names, see Section 5.3.3, "Finding the Portlet Publishing Context."

■ your_instance_label_here – Provide the instance label of the portlet you
want to consume. For information on finding the instance label, see
Section 5.2.2, "Desktop Instance URL Form."

For more information on the content of this JavaScript function, see Section 5.3.2.1,
"Basic JavaScript Coding Steps."Example 5–7 shows a completed template for a
sample portlet:

Example 5–9 Sample Template JavaScript Function

<script type="text/javascript"
src="/your_context_root_here/framework/scripts/bundles/disc-publishing.js">
</script>
<script type="text/javascript">
 function handleOnLoad() {
 /* enter your own publishing context instead of appmanager/p/d */
 var publishingContext = "/your_context_root_here/appmanager/MyPortal/MyDesktop";
 var source = bea.wlp.disc.publishing.PortletSource.get(publishingContext);
 source.render({ portlet: "myportlet_1", to: "myPortlet" });
 }
</script>

5.7 Limitations
■ Portlet Publishing does not support server-side interportlet communication.

Portlets that implement IPC will not send or receive IPC events in the Portlet
Publishing context. For more information on IPC, see the Oracle Fusion Middleware
Portlet Development Guide for Oracle WebLogic Portal.

■ In some cases, the capabilities of the original host desktop will not be available to
published portlets. For example, the host desktop's backing context will not be
available.

■ In some cases, it is possible that some parts of the portal control tree are not
available to published portlets.

■ Desktops with URL compression enabled should not be published. URL
compression is discussed in the Oracle Fusion Middleware Portal Development Guide
for Oracle WebLogic Portal.

■ Disc context objects will not be available on the published page. See Chapter 3 for
more information.

6

Client-Side Development Best Practices 6-1

6Client-Side Development Best Practices

This chapter discusses tips and best practices for developing client-side portal code.
The chapter includes these topics:

■ Section 6.1, "Namespacing"

■ Section 6.2, "Avoiding Namespace Collisions"

6.1 Namespacing
If you are writing browser-based JavaScript code in a WLP environment, namespacing
conflicts can easily arise if you are not careful. This section illustrates the kind of
JavaScript namespace conflict that can occur when you place multiple portlets on a
page.

■ Section 6.1.1, "A Simple Dynamic Table Portlet"

■ Section 6.1.2, "Namespace Collisions"

6.1.1 A Simple Dynamic Table Portlet
The following example uses JavaScript to add rows to an HTML table dynamically.
The Dojo Toolkit is used to provide the primary UI element (a button) and the event
handling mechanism. As you will see, you will encounter problems if you intend to
use code like this in a portlet/portal context.

Note: Opening the same portal desktop in multiple browser
windows that share the same process (and, therefore, the same
session) is not supported. For example, using the render:pageURL
tag or the JavaScript window.open function to open a portal desktop
in a new window is not supported and can result in unwanted side
effects. For instance, if a portlet is deleted in the new window, and
then the user tries to interact with that portlet in the main window, the
interaction will fail.

Note: The following code is designed according to the best,
recommended practice of using a render dependencies file for
including toolkit references, CSS references, and JavaScript functions
in a portlet. For an introduction to this technique and step by step
instructions on creating and referencing a render dependencies file,
see Chapter 4, "Configuring JavaScript Libraries in a Portal Web
Project"

Namespacing

6-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

The render dependencies file is shown in Example 6–1. A render dependencies file is
XML that defines page-level events and resources such as external JavaScript and CSS
that are needed by a portlet. The overall pattern of the file follows the pattern
discussed in Chapter 4, "Configuring JavaScript Libraries in a Portal Web Project"

The JSP file is shown in Example 6–2. It defines a JavaScript function that adds a row
to an HTML table and includes the Dojo button that fires the onClick event that calls
the addRowsToTable() function.

Example 6–1 Render Dependencies File

<?xml version="1.0" encoding="UTF-8"?>
<window xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
laf-window-1_0_0.xsd">
 <render-dependencies>
 <html>
 <links>
 <search-path>
 <path-element>../resources/js</path-element>
 </search-path>
 <link href="dijit/themes/tundra/tundra.css" type="text/css"
rel="stylesheet"/>
 </links>
 <scripts>
 <search-path>
 <path-element>../resources/js</path-element>
 </search-path>
<script src="dojo/dojo.js" type="text/javascript"/>
 <script type="text/javascript">
var djConfig = {parseOnLoad:true, isDebug:true};
 </script>
 </scripts>
 </html>
 </render-dependencies>
</window>

Example 6–2 JSP File

<script type="text/javascript">
 // Load the Dojo Button widget
 dojo.require("dijit.form.Button");
</script>

<script type="text/javascript" >
 function addRowToTable() {
 var tbl = document.getElementById("table_1");
 var lastRow = tbl.rows.length;
 var row = tbl.insertRow(lastRow);

 //-- Update left cell
 var cellLeft = row.insertCell(0);
 var node1 = document.createTextNode(lastRow);
 cellLeft.appendChild(node1);

 //-- Update right cell
 var cellRight = row.insertCell(1);
 var node2 = document.createTextNode(lastRow);
 cellRight.appendChild(node2); }

Namespacing

Client-Side Development Best Practices 6-3

 </script>

<button dojoType="dijit.form.Button" id="addRowButton">Add Row <script
type="dojo/method" event="onClick">
 addRowToTable();
 </script></button>

<table border="1" id="table_1">
 <tr>
 <th colspan="3">Simple Dynamic Table</th>
 </tr>
 <tr>
 <td>Column 1</td>
 <td>Column 2</td>
 </tr>
</table>

Figure 6–1 shows the JSP portlet added to a portal page. Each time the Add Row
button is clicked, a new row is added to the table, and the row number is displayed in
the new table cells.

Figure 6–1 Simple Dynamic Table Portal

The addRowToTable() JavaScript function retrieves the table element using the table's
ID. While the portlet works perfectly well in this scenario, what happens if you add a
second identical portlet to the same portal page?

6.1.2 Namespace Collisions
Suppose you add the dynamic table portlet to the same page multiple times. For
example, consider the following portal (Figure 6–2), which contains three dynamic
table portlets.

Namespacing

6-4 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 6–2 Multiple Dynamic Table Portlets on a Page

The current configuration causes a JavaScript error to be thrown. After the event
handler for the first button on the page is registered, subsequent attempts to register it
fail. The error message is something like this:

Exception... "'Error: Tried to register widget with id==helloButton but that id is
already registered' ...

As a result of this error, only the first button is registered, and it is the only button that
works.

When you understand why multiple dynamic table portlets fail to work properly in a
portal page, you can learn avoid many common browser-side programming problems
encountered by portal developers.

The reason why the dynamic table fails to function properly when the portlet is
duplicated is clear when you look at the HTML source code that is generated for the
portal page. The portal framework on the server returns exactly the same HTML
markup for each portlet. Both the JavaScript block and the HTML table code are
duplicated verbatim three times in the same HTML page, as illustrated in Figure 6–3.
The WebLogic Portal framework assigns the portlets themselves unique IDs; however,
all of the JSP and HTML code is identical for each rendered portlet.

Namespacing

Client-Side Development Best Practices 6-5

Figure 6–3 Source Code Repetition with Three Identical Portlets on a Page

6.1.3 The Mysterious Table Row
It is possible to assign the dijit button in Example 6–2 a unique name, such as by
prefixing it with the portlet's unique ID (see techniques discussed in Section 6.2.1,
"Using Ad Hoc Namespacing"). Such a technique will avoid the error condition;
however, assigning a unique name to the button ID is insufficient to solve the
namespacing problem.

Note that when a JavaScript function block is included multiple times, each time a
duplicate variable is declared, it is overwritten by subsequent variables with the same
name. In this example, the variable addRowButton is declared three times (because the
script block is included three times in the page). Therefore, whichever button you click
will only affect (add rows to) the first table, as illustrated in Figure 6–4.

Avoiding Namespace Collisions

6-6 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 6–4 Rows Mysteriously Added to the Wrong Table

Techniques for avoiding these namespace problems are discussed in the next section,
Section 6.2, "Avoiding Namespace Collisions".

6.2 Avoiding Namespace Collisions
This section discusses techniques and best practices for avoiding the kinds of
namespace collisions illustrated in Section 6.1.2, "Namespace Collisions". The
techniques include:

■ Section 6.2.1, "Using Ad Hoc Namespacing"

■ Section 6.2.2, "Using Rewrite Tokens"

■ Section 6.2.3, "Parameterizing Your JavaScript Functions"

■ Section 6.2.4, "Using the Disc APIs"

6.2.1 Using Ad Hoc Namespacing
One way to avoid namespace collisions in client-side browser code is to use ad hoc
namespacing. Ad hoc namespacing means giving a unique name to:

■ Global functions

■ Global variables

■ DOM IDs (for example: <table id="someUniqueId">)

■ DOM names (apply only to anchor and form tags)

■ References to all of the above

Avoiding Namespace Collisions

Client-Side Development Best Practices 6-7

For example, the JSP listed in Section 6.1.2, "Namespace Collisions" can be rewritten so
that all of the global functions, variables, and IDs are unique and scoped to a specific
portlet. One simple technique for achieving this in a portlet is to append the portlet's
instance label to the appropriate global JavaScript identifiers, as shown in
Example 6–3. Additions to this code sample are highlighted. As you can see, the
example relies on obtaining the portlet instance label from the
PortletPresentationContext object. This ID is unique for each portlet that appears in a
portal. JSP expressions are then used to append the portlet label to appropriate global
identifiers. In this case, we need to uniquely namespace the HTML table ID, the global
function addRowToTable(), the Button widget ID, and the Button widget variable.

Example 6–3 Dynamic Table JSP with Ad Hoc Namespacing

<%@ page
import="com.bea.netuix.servlets.controls.portlet.PortletPresentationContext"%>
<%
// Tip: you can also use the JSP tag <render:encodeName name="someName" .../>
// to accomplish the same task as this scriptlet (obtaining the portlet
// instance label.)
PortletPresentationContext portletCtx = (PortletPresentationContext)
PortletPresentationContext.getPortletPresentationContext(request);
String portletId = portletCtx.getInstanceLabel();
pageContext.setAttribute("prefix", portletCtx.getInstanceLabel());
%>

<script type="text/javascript">
 // Load the Dojo Button widget
 dojo.require("dijit.form.Button");
</script>

<script type="text/javascript" >
 function ${prefix}_addRowToTable() {
 var tbl = document.getElementById("${prefix}_table_1");
 var lastRow = tbl.rows.length;
 var row = tbl.insertRow(lastRow);

 //-- Update left cell
 var cellLeft = row.insertCell(0);
 var node1 = document.createTextNode(lastRow);
 cellLeft.appendChild(node1);

 //-- Update right cell
 var cellRight = row.insertCell(1);
 var node2 = document.createTextNode(lastRow);
 cellRight.appendChild(node2);
 }
 </script>

<button dojoType="dijit.form.Button" id="${prefix}_helloButton"> Add Row
 <script type="dojo/method" event="onClick">
 ${prefix}_addRowToTable();
 </script>
</button>

<table border="1" id="${prefix}_table_1">

Tip: JavaScript variables within functions are locally scoped, and
therefore do not need to be namespaced for the global context.

Avoiding Namespace Collisions

6-8 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

<tr>
<th colspan="3">Simple Dynamic Table</th>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>

</table>

If you generate a portlet from this JSP and add the portlet multiple times to a portal,
you will see that the portlets function independently and correctly, as shown in
Figure 6–5.

Figure 6–5 Namespaced Portlet Code Functions Correctly

While ad hoc namespacing is an effective way to ensure that portlets with browser
code function properly, other techniques and best practices are examined in the
following sections.

6.2.2 Using Rewrite Tokens
A well known best practice among JavaScript developers is to externalize functions
into .js files. An alternative approach to the ad hoc namespacing technique described
in Section 6.2.1, "Using Ad Hoc Namespacing" is to externalize your JavaScript
functions and use the WLP render dependencies feature and the rewrite token to
provide unique scoping of variables. For additional information on the rewrite token,
see the section "Portlet Dependencies" in Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

Avoiding Namespace Collisions

Client-Side Development Best Practices 6-9

The first step is to place the JavaScript script blocks that require namespacing into an
external .js file. You then reference this file in the render dependencies file.

Example 6–4 shows a sample render dependencies file. The included .js file is
highlighted in bold text.

Example 6–4 Render Dependencies File

<?xml version="1.0" encoding="UTF-8"?>
<window xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
laf-window-1_0_0.xsd">
 <render-dependencies>
 <html>
 <links>
 <search-path>
 <path-element>../resources/js</path-element>
 </search-path>
 <link href="dijit/themes/tundra/tundra.css" type="text/css"
rel="stylesheet"/>
 </links>
 <scripts>
 <search-path>
 <path-element>../resources/js</path-element>
 </search-path>
 <script src="dojo/dojo.js" type="text/javascript"/>
 <script type="text/javascript">
var djConfig = {parseOnLoad:true, isDebug:true};
 </script>
 <script type=
 "text/javascript" content-uri="dojotest.js"/>
 </scripts>
 </html>
 </render-dependencies>
</window>

The contents of the external .js file are shown in Example 6–5. Note that
wlp_rewrite_ is appended to all of the function names and identifiers that require
unique names within the page.

Example 6–5 Contents of External dojotest.js File with Rewrite Tokens

 function wlp_rewrite_addRowToTable() {
var tbl = document.getElementById("wlp_rewrite_table_1");
var lastRow = tbl.rows.length;
var row = tbl.insertRow(lastRow);

//-- Update left cell
var cellLeft = row.insertCell(0);
var node1 = document.createTextNode(lastRow);

Tip: The trick to including the .js file is to include it with the <script
content-uri ...> tag rather than with the <script src ...> tag. Although
the src tag is the most standard mechanism, if you use it, the rewrite
tokens will not be expanded. For information on creating a
dependency file and attaching a dependency file to a portlet, see
"Portlet Dependencies" in Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

Avoiding Namespace Collisions

6-10 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

cellLeft.appendChild(node1);

//-- Update right cell
var cellRight = row.insertCell(1);
var node2 = document.createTextNode(lastRow);
cellRight.appendChild(node2);
 }

The portal framework takes care of replacing this token with the portlet's instance
label, which is a unique identifier.

Example 6–6 shows the JSP file with the JavaScript function removed. Note that the .js
file does not have to be imported into the JSP file if it is included in a render
dependencies file. Namespacing of the dijit button id and the table id with the unique
portlet id is still required in the JSP.

Example 6–6 JSP File

<%@ page
import="com.bea.netuix.servlets.controls.portlet.PortletPresentationContext"%>
<%
PortletPresentationContext portletCtx = (PortletPresentationContext)
PortletPresentationContext.getPortletPresentationContext(request);
String portletId = portletCtx.getInstanceLabel();
pageContext.setAttribute("prefix", portletCtx.getInstanceLabel());
%>

<script type="text/javascript">
 // Load the Dojo Button widget
 dojo.require("dijit.form.Button");
</script>

<button dojoType="dijit.form.Button" id="${prefix}_helloButton"> Add Row
 <script type="dojo/method" event="onClick">
 ${prefix}_addRowToTable();
 </script>
</button>

<table border="1" id="${prefix}_table_1">
<tr>
<th colspan="3">Simple Dynamic Table</th>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>

</table>

6.2.3 Parameterizing Your JavaScript Functions
This section discusses another version of the dynamic table example in which
parameterized JavaScript functions are factored out into a .js file. This external file is
shown in Example 6–7. Note that both the addRow() and init() functions are
parameterized. Note that it is a best practice to include external .js files in a portlet
using a render dependencies file. See Section 4.3, "Creating a Render Dependencies
File".

Avoiding Namespace Collisions

Client-Side Development Best Practices 6-11

Example 6–7 External JavaScript File (.js)

function addRow(id) {

var table = document.getElementById(id+"_table");
var numrows = table.getElementsByTagName("tr").length;
var row = table.insertRow(numrows);

//-- Add text to the row cells.
var cellLeft = row.insertCell(0);
var textLeft = document.createTextNode(numrows-1);
cellLeft.appendChild(textLeft);

var cellRight = row.insertCell(1);
var textRight = document.createTextNode(numrows-1);
cellRight.appendChild(textRight);

}
function initialize(id) {
var addHandler =
function() {
addRow(id);
};

 var addRowButton = dijit.byId(id+"_addRowButton");
 dojo.connect(addRowButton, 'onClick', addHandler);
}

The JSP file from which the portlet is generated must be written so that the ID
parameter is passed to the init() function. Note that the addOnLoad() function is called
by passing in an anonymous function that returns the init() function. This technique is
necessary, and allows the parameter passed to init() to persist after the addOnLoad()
function returns.

Example 6–8 Modified JSP File

<%@ page
import="com.bea.netuix.servlets.controls.portlet.PortletPresentationContext"%>
<%
PortletPresentationContext portletCtx = (PortletPresentationContext)
PortletPresentationContext.getPortletPresentationContext(request);
pageContext.setAttribute("prefix", portletCtx.getInstanceLabel());
%>

<script type="text/javascript">
 // Load the Dojo Button widget
 dojo.require("dijit.form.Button");
</script>

<script type="text/javascript">
 dojo.addOnLoad(function() {
 initialize("${prefix}");
 });
</script>

<button dojoType="dijit.form.Button" id="${prefix}_addRowButton"> Add Row
</button>

Avoiding Namespace Collisions

6-12 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

<table border="1" id="${prefix}_table">
<tr>
<th colspan="3">Simple Dynamic Table</th>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>

</table>

In summary, the original dynamic portlet described in Section 6.1.1, "A Simple
Dynamic Table Portlet" has been redesigned to function in a portal/portlet
environment. First, global variables and functions were addressed with ad hoc
namespacing to prevent namespace collisions. Second, JavaScript code was
externalized into a .js file. To accomplish this, we parameterized functions and used
techniques of closure and anonymous functions. Of course, externalizing JavaScript
code is always a best practice, as it allows for code reuse and reduces clutter in JSP or
HTML files.

6.2.4 Using the Disc APIs
You can use the Disc APIs to retrieve unique portlet labels that can be used to scope
JavaScript variables. The basic technique is similar to the one described in
Section 6.2.1, "Using Ad Hoc Namespacing". With Disc, you can get the portlet label
from the portlet's context object. For more information, see Section 7.5, "Using REST
and Disc".

7

The WebLogic Portal REST API 7-1

7The WebLogic Portal REST API

WebLogic Portal provides a set of web-based, REST-style APIs for retrieving,
modifying, and updating portal data dynamically from the client. This chapter
discusses the WLP REST API and provides use cases and examples.

7.1 What is REST?
REST (REpresentational State Transfer) is an approach for building services that make
specific resources available at a URL. A REST service has well defined operations for
manipulating the resource. Typically, these operations include reading, writing,
editing, and removing. In the case of WLP, a resource might be a portlet, page, or book.
For example, the following WLP REST command retrieves a list of portlets in the
specified web application:

http://localhost:7001/myWebApp/bea/wlp/api/portlet/list?webapp=myWebApp

7.2 What is the WLP REST API?
The WLP REST API focuses on a number of straightforward use cases, such as
"retrieving a list of portlets" and "adding a page to a book." Following the general
pattern for REST APIs, the WLP REST API provides commands that read, create,
update, and delete portal artifacts. For example, WLP REST commands exist for listing
portlets, adding portlets, updating portlets, and deleting portlets. The results of REST
commands are persisted through the WLP customization framework. The REST
commands discussed in this chapter are not intended for portlet rendering.

Tip: See the Oracle Fusion Middleware REST API Reference for Oracle
WebLogic Portal for detailed information on each of the WLP REST
commands.

Tip: For a good general introduction to REST, see the Wikipedia
article Representational State Transfer at
http://en.wikipedia.org/wiki/Representational_State_
Transfer.

Note: Some of the REST API commands only work with streaming
portals. Generally, a streaming portal is one that has been configured
using the Portal Administration Console. For more information, see
"File Based and Streaming Portals" in Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

What is the WLP REST API?

7-2 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

7.2.1 WLP REST API Reference Documentation
See Oracle Fusion Middleware REST API Reference for Oracle WebLogic Portal.

7.2.2 REST API Use Cases
The WLP REST commands currently provide access to WLP data to support visitor
customization features of WLP. The commands allow browser-based tools to interact
with and modify a user's desktop. For example, REST commands are used extensively
by the placeable movement feature as well as in the Dynamic Visitor Tools feature of
WLP. The commands provide services such as adding, removing, and moving portlets
on a page. In general, the WLP REST commands provide a more natural and easy to
use alternative to a web services approach.

7.2.3 REST Command Format
The format of a WLP REST command is:

<protocol>://<host>:<port>/<webapp>/bea/wlp/api/<type>/<action>/<label>?<params>

Table 7–2 describes the parts of a WLP REST command:

Note: Some REST commands only return what is not currently
visible on the desktop. This supports the use case where users would
not want or expect to see a list of, for instance, portlets to add if they
were already added to the desktop.

Table 7–1 REST Command Format

Command Part Description

<protocol> The transport protocol, typically http.

<host> The IP host name, such as localhost.

<port> The port number, such as 7001

<webapp> The name of the web application hosting the services, such as
myWebApp. Note that all REST commands also require a
webapp parameter. The webapp parameter specifies the specific
web application for the command to operate on. The web
application specified in the parameter can be different from the
web application you post to, as long as it is deployed in the
same EAR file.

bea/wlp/api Standard namespace path used for all REST commands

<type> The type of portal artifact the command operates on, such as
desktop, book, page, portlet, lookandfeel, shell, menu, layout,
them.

<action> The specific action to take, such as list, delete, add, and get.

<label> The unique label of the object.

command-specific
parameters

A list of command-specific URL parameters. See the Oracle
Fusion Middleware REST API Reference for Oracle WebLogic
Portal for a complete list for each command. Commonly used
parameters are described in Section 7.2.4, "Commonly Used
REST Command Parameters".

What is the WLP REST API?

The WebLogic Portal REST API 7-3

7.2.4 Commonly Used REST Command Parameters
Each REST command takes a list of parameters that are described in Oracle Fusion
Middleware REST API Reference for Oracle WebLogic Portal. This section describes three
commonly used parameters in greater detail.

7.2.4.1 The webapp Parameter
The webapp parameter is always required. It specifies the name of the web application
on which you are calling the REST command. If you have more than one web
application deployed in a given EAR, this parameter lets you easily switch between
them. The web application specified with the parameter can be different web
application you are posting to (that is, the application specified in the base URL).

For example, in the following command, myWebApp is the application that receives
the command, and yourWebApp is the one for which the portlet list is retrieved. Both
web applications must be deployed in the same EAR.

http://localhost:7001/myWebApp/bea/wlp/api/portlet/list?webapp=yourWebApp

7.2.4.2 The format Parameter
The format parameter can be either xml or json. The default is xml. JSON is an object
notation for JavaScript, and is generally easier to work with in a browser environment
with JavaScript. See Section 2.7, "JSON" for more information For example:

http://localhost:7001/myWebApp/bea/wlp/api/portlet/list?webapp=yourWebApp&format=j
son

7.2.4.3 The scope Parameter
The scope parameter lets you fine tune certain REST commands. This parameter can
affect the data retrieved as well as the data updated. The scope parameter can take one
of these three values:

■ library – An object (book, page, or portlet) can exist in the library and not be
referenced by any desktop. A developer or administrator may create a page
outside the context of a desktop. This page can then be placed on a desktop at a
later point in time. Changes made to objects in the library are cascaded down
through all desktops.

■ admin – The admin scope represents the "default desktop" this is where the
administrator makes changes to a individual desktop. So an admin or community
leader can make changes to a page and those changes are not reflected in the
library or on other desktops. Those changes may get cascaded down to the visitors
view though.

■ visitor – (default) Visitors, or end users, are allowed to customize their desktop
according to their personal preferences. Changes made to one visitor's view do not
show up in the default desktop nor do they show up in other visitor's views.

Figure 7–2 shows the hierarchy of this scoping in a portal application, the direction of
proliferated changes and what tools are typically used to modify at the different levels.

Note: If scope is not specified then the default value is visitor for
regular non-privileged users. If, however, the user has administrator's
rights, then the default values are read from the session. This value
can be set using the adminscope REST command.

What is the WLP REST API?

7-4 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

Figure 7–1 Scoping Hierarchy

If the value of the scope parameter is set to visitor, then you can optionally specify a
user name if you have permissions to do so. WLS administrators, WLP administrators,
and community leaders may make changes to other user's desktops; however, a
regular user can only affect his or her own desktop.

Example:

/bea/wlp/api/adminscope/item?webapp=mywebapp&portal=portalpath&desktop=
desktoppath&scope=visitor

This command puts a special token in the HttpSession. This same token is used when
an individual user makes a request for a desktop. So if the user "weblogic" logs into a
desktop the framework looks at this value to determine what view to bring back. If the
value is admin then bring back the default view, otherwise bring back the
administrator's personal view.

7.2.5 REST Command Example
The following REST command retrieves a list of portlets from a portal web application
called myWeb that contains just two portlets.

http://localhost:7001/myWeb/bea/wlp/api/portlet/list?webapp=myWeb

Example 7–1 shows an example of the type of XML data (the default format) returned
by this REST command. This portlet information (such as the portlet label) can then be
parsed out and used as input to another REST command, such as a command to add a
portlet to a page.

Example 7–1 Example Response from the List Portlets REST Command

<rsp>
 <portlet_summaries>
 <portlet_summary>

Tip: A best practice is to always specify the scope parameter instead
of trying to rely on what is in the session because the session can
timeout at any point.

Disabling REST Commands

The WebLogic Portal REST API 7-5

 <label>p1</label>
 <title>Portlet One</title>
 </portlet_summary>
 <portlet_summary>
 <label>p2</label>
 <title>Portlet Two</title>
 </portlet_summary>
 </portlet_summaries>
</rsp>

7.3 Disabling REST Commands
You can disable specific REST commands by editing the config file
wlp-restapi-config.xml. To disable REST commands, do the following:

1. Select the Merged Projects view in Oracle Enterprise Pack for Eclipse.

2. Open the WEB-INF folder of the web application.

3. Right-click wlp-restapi-config.xml and select Copy To Project, as shown in
Figure 7–2. This copies the file from its library module to your project so that you
can edit it.

Figure 7–2 Selecting the REST Config File

4. Open the file in the editor.

5. Locate the REST command and set the value of the <enable> element to false, as
shown in Example 7–2.

Example 7–2 REST Command Definition

<rest-handler>

Tip: By default, WLP REST commands return data in XML format.
You can add the parameter format=json to a command to return a
JSON (JavaScript Object Notation) object rather than XML to the
client. It is easy to convert the JSON response to a JavaScript object.
Once the data is in object form, you can use JavaScript to iterate and
access values using familiar dot notation, such as item.title and
item.markupName. See also Section 2.7, "JSON".

Basic WLP REST API Examples

7-6 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

 <name>getPortlets</name>
 <path>portlet/list</path>
 <handler-class>com.bea.wlp.rest.portlet.command.GetPortlets
 </handler-class>
 <methods>
 <method>
 <name>get</name>
 <enable>false</enable>
 </method>
 </methods>
</rest-handler>

7.4 Basic WLP REST API Examples
This section gives examples of some WLP REST commands and their responses. For a
more complete example that includes using Disc to obtain portal information, see
Section 7.5, "Using REST and Disc".

7.4.1 Retrieving Information About a Single Portlet
The following REST command returns details on a single portlet with the label
revenue_1 from the web application called "banking." This result is shown in
Example 7–3.

http://blaster:7041/banking/bea/wlp/api/portlet/details/revenue_1?webapp=dvt

Example 7–3 Portlet Details

<rsp>
 <title>5 Largest Customers</title>
 <content_uri>/portlets/revenue/index.jsp</content_uri>
 <forkable>false</forkable>
 <fork_render>false</fork_render>
 <is_public>true</is_public>
 <cacheable>false</cacheable>
 <cache_expires>-1</cache_expires>
 <portlet_file>/portlets/revenue/revenue.portlet</portlet_file>
 <deleted>false</deleted>
 <webapp>dvt</webapp>
 <wsrp_user_properties_mode>3</wsrp_user_properties_mode>
 <state_change_flag>0</state_change_flag>
 <requires_url_templates>false</requires_url_templates>
 <templates_stored_in_session>false</templates_stored_in_session>
 <producer_offered_portlet>false</producer_offered_portlet>
 <created_date>2007-10-31 15:54:19.0</created_date>
 <modified_date>2007-10-31 15:54:19.0</modified_date>
</rsp>

7.4.2 Changing the Title of a Portlet
REST commands that update portal data require an HTTP POST method. Example 7–4
shows a simple script that uses the XMLHttpRequest.open method to post the REST
URL.

Tip: Each of the various portal artifacts (such as pages and books)
can be queried to return similar information. Refer to Oracle Fusion
Middleware REST API Reference for Oracle WebLogic Portal for the
appropriate command syntax.

Using REST and Disc

The WebLogic Portal REST API 7-7

Example 7–4 Updating with a POST Method

<script type="text/javascript">
 var urlStem =
 'http://localhost:7001/myWeb/bea/wlp/api/portlet/item/restTest_1';
 var params = "webapp=myWeb&title=New Title";
 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();
 var url = urlStem + "?" + params;

 xmlhttp.open('POST', urlStem, true);
 xmlhttp.send(params);

</script>

7.4.3 Moving a Book or Page
The REST commands let you create, delete, and modify objects. Here is an example
that illustrates how to move a book from one page to another.

<protocol>://<hostname>:<port>/<webapp>/bea/wlp/api/<type>/<action>/<childtype>/<l
abel>?webapp=<webapp>&format=<format>

Where childtype is a child of the object specified by the type and with the label. For
example, moving a page within a book would have a URL such as:

http://mysite.com/flatweb/bea/wlp/api/book/move/bookorpage/mainbook_01
Where mainbook_01 is the label of the book to move the page on. The POST
parameters would look like the following:

webapp=flatweb
portal=flatirons
desktop=flatweb
scope=visitor
label=mypage
position=0
alignment=0

The label is the label of the page to move and the position is the position within the
book to move to. The scope can be specified as visitor, admin, or library, allowing an
admin user to make changes to default instances, library instances, and so on.

7.5 Using REST and Disc
REST commands by themselves are not sufficient to satisfy all use cases. You need to
use the Disc JavaScript API to retrieve portal context objects and the information they
contain. This information can then be added to a REST call to update the portal. For
example, to move a portlet, you need to use the Disc APIs to get information about the
portlet's current location and add this information to the REST call. The Disc
framework is discussed in Chapter 3

The following example sections illustrate many of the key concepts around using
REST and Disc for client-side portal UI development.

The following sections discuss parts of a sample JSP portlet that is shown in its entirety
in Section 7.5.4, "Putting It All Together". The portlet lets the user change the page
layout by selecting a new layout from a drop down list. The list is populated by

Note: The DOM does not automatically reflect changes. Use DHTML
on the client to update the page.

Using REST and Disc

7-8 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

querying the portal with the Disc API, and a user's selection is communicated to the
server with a REST command.

7.5.1 Constructing a REST URL Using Disc Context Objects
Using the information obtained from a Disc context object, you can call REST API
commands to update the portal. Most REST commands require parameters that can
only be obtained from context objects. REST command parameters are listed and
described in the Oracle Fusion Middleware REST API Reference for Oracle WebLogic Portal.

The function in Example 7–5 uses Disc context objects to obtain information from the
portal that is used to construct REST command parameters. The code is
straightforward JavaScript. The REST command requires such parameters as the
portlet context, page context, portal path, desktop path, and others. After the
parameters are gathered, the REST command URL is constructed.

Example 7–5 Constructing a REST Command

...
function ${uid}setLayout(layoutName) {
 // Get the canvas element to use for output
 var canvas = document.getElementById("${uid}canvas");

 // Get the portlet context from Disc
 var portletContext = bea.wlp.disc.context.Portlet.findByElement(canvas);

 // Get the parent page context for the portlet
 var pageContext = portletContext.getParentPage();

 // Get the application instance from Disc
 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Create the parameters to pass to the REST command
 var params = "";
 params += "&portal=" + appContext.getPortalPath();
 params += "&desktop=" + appContext.getDesktopPath();
 params += "&webapp=" + appContext.getWebAppName();
 params += "&layout=" + layoutName;

 // Construct the URL for the REST command to change page attributes
 var url = "/" + appContext.getWebAppName();
 url += "/bea/wlp/api/page/item/" + pageContext.getLabel();
...

7.5.2 Open and Send an XHR Request
After you construct a request to send a REST command, you need to send it to the
server. The recommended practice is to use an XHR object to send the command and
retrieve the results.

Example 7–6 shows a code sample that opens an XHR request using a URL and sends
a parameter list. The URL and parameter list could be constructed in a similar manner
to the techniques discussed in Example 7–5.

Example 7–6 Opening and Sending an XHR Request

...
// Get a portal-aware XMLHttpRequest from Disc
 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();

Using REST and Disc

The WebLogic Portal REST API 7-9

 xmlHttpReq.onreadystatechange = function() {
 if (xmlHttpReq.readyState == 4) {
 if(xmlHttpReq.status == 200) {
 var msg = "Layout changed to " + layoutName + ".\n\n";
 msg += "Press OK to refresh desktop.";
 if (confirm(msg)) {
 window.location.reload();
 }
 } else {
 alert("Unable to change layout.");
 }
 }
 };
 xmlHttpReq.open('POST', url, true);
 xmlHttpReq.send(params);
 }
...

7.5.3 Handle the REST Response
Some REST commands return a simple status response. Other commands return
additional data, such as detailed information about a portlet. The code sample in
Example 7–7 shows how response data from a REST command might be handled. In
this case, the response is a list of available portal layouts that were requested. The
response data is passed to a function that parses the list and displays it in a drop down
menu. Note that the REST command and its parameters are constructed in a similar
manner to that described previously in Example 7–5.

Example 7–7 Handling REST Response Data

...
 // Get the application instance from Disc
 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Construct the parameters for the REST command
 var params = "";
 params += "?portal=" + appContext.getPortalPath();
 params += "&desktop=" + appContext.getDesktopPath();
 params += "&webapp=" + appContext.getWebAppName();
 params += "&format=json";

 // Construct the URL for getting the list of layouts from REST
 var url = "/" + appContext.getWebAppName();
 url += "/bea/wlp/api/layout/list";
 url += params;

 // Get a porttal-aware XMLHttpRequest from Disc
 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();
 xmlHttpReq.onreadystatechange = function() {
 if (xmlHttpReq.readyState == 4) {
 if (xmlHttpReq.status == 200) {
 // Get the data from the response
 var data = eval('(' + xmlHttpReq.responseText + ')');
 ${uid}displayLayouts(data)
 } else {
 alert("Unable to retrieve layouts.");
 }
 }
 };

Using REST and Disc

7-10 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

 xmlHttpReq.open('GET', url, true);
 xmlHttpReq.send(null);
...

7.5.4 Putting It All Together
Example 7–8 shows a complete JSP file that uses REST and Disc to provide UI for
changing the layout of a portal. Note that all of the UI code is on the client-side. Disc is
used to obtain information from the portal, REST is used to update the portal, and
XHR is used to make asynchronous requests to the server. Figure 7–3 shows the
Change Layout portlet in a portal. Note that the portlet requires that the user be
logged in.

Figure 7–3 Sample Change Layout Portlet

Example 7–8 Sample Portlet JSP

<%-- Copyright (c) 2006-2008 by BEA Systems, Inc. All Rights Reserved. --%>
<jsp:root
 version="2.0"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:render="http://www.bea.com/servers/portal/tags/netuix/render"
>
 <jsp:directive.page session="false" />
 <jsp:directive.page isELIgnored="false" />
 <render:encodeName name="" var="uid"/>
 <div id="${uid}canvas" style="display: none;">
 <div style="text-align: left; margin: 8px; white-space: normal;">
 Press the Change Layout button
 to display a list of layouts. The current layout for this page will
 be selected in the drop-down list, which may be changed by selecting
 a different layout. To view the changes click OK in the confirmation
 dialog to refresh the desktop.
 </div>
 <div style="text-align: center; margin: 8px;">
 <button name="changeLayout" onclick="${uid}getLayouts();">
 Change Layout

Using REST and Disc

The WebLogic Portal REST API 7-11

 </button>
 </div>
 <div
 id="layouts"
 style="text-align: center; margin: 8px; visibility: hidden;">
 Layouts:
 <select
 id="${uid}layoutSelect"
 onchange="${uid}setLayout(this.options[this.selectedIndex].value)">
 </select>
 </div>
 </div>
 <div id="${uid}message" style="text-align: center; padding: 16px;">

 Please enable Disc to use this portlet.

 Please use this portlet on a portal desktop.

 Please login to use this portlet.

 Please enable customization to use this portlet.

 </div>
 <script type="text/javascript">
 function ${uid}loadInit() {
 if (typeof bea == "undefined") {
 document.getElementById("${uid}discMsg").style.display = "";
 } else {
 // Get the application instance from Disc
 var appContext = bea.wlp.disc.context.Application.getInstance();

 if (appContext.getDotPortal()) {
 // Inform the user that the portlet must be on a desktop
 document.getElementById("${uid}desktopMsg").style.display = "";
 } else if (!appContext.getUserName()) {
 // Inform the user that they must login go use the portlet
 document.getElementById("${uid}loginMsg").style.display = "";
 } else if (!appContext.getCustomizationEnabled()) {
 // Inform the user that Disc must be enabled
 document.getElementById("${uid}customizeMsg").style.display = "";
 } else {
 // Display the canvas div and hide the message div
 document.getElementById("${uid}canvas").style.display = "";
 document.getElementById("${uid}message").style.display = "none";
 }
 }
 }

 function ${uid}getLayouts() {
 // Get the application instance from Disc
 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Construct the parameters for the REST command
 var params = "";
 params += "?portal=" + appContext.getPortalPath();
 params += "&desktop=" + appContext.getDesktopPath();
 params += "&webapp=" + appContext.getWebAppName();

Using REST and Disc

7-12 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

 params += "&format=json";

 // Construct the URL for getting the list of layouts from REST
 var url = "/" + appContext.getWebAppName();
 url += "/bea/wlp/api/layout/list";
 url += params;

 // Get a porttal-aware XMLHttpRequest from Disc
 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();
 xmlHttpReq.onreadystatechange = function() {
 if (xmlHttpReq.readyState == 4) {
 if (xmlHttpReq.status == 200) {
 // Get the data from the response
 var data = eval('(' + xmlHttpReq.responseText + ')');
 ${uid}displayLayouts(data)
 } else {
 alert("Unable to retrieve layouts.");
 }
 }
 };
 xmlHttpReq.open('GET', url, true);
 xmlHttpReq.send(null);
 }

 function ${uid}displayLayouts(data) {
 // Get the select element to use for output
 var select = document.getElementById("${uid}layoutSelect");

 // Get the portlet context from Disc using the select element
 var portletContext = bea.wlp.disc.context.Portlet.findByElement(select);

 // Get the parent page context for the portlet
 var pageContext = portletContext.getParentPage();

 // Get the current layout for the page
 var layoutContext = pageContext.getLayout();

 // Get the markup name for the layout
 var layoutName = layoutContext.getMarkupName();

 // Set the visibilty of the parent div for the select
 var div = select.parentNode;
 div.style.visibility = "visible";

 // Clear the select box
 select.options.length = 0;

 // Get the layout details from the response data
 var layoutDetails = data.content.layouts;
 var layoutDetail = null;

 // Iterate over the layoutDetails and create options for each layout
 for (var i = 0; i < layoutDetails.length; i++) {
 layoutDetail = layoutDetails[i];

 // Create a new option element for the layout details
 option = document.createElement("option");
 option.value = layoutDetail.markup_name;
 option.innerHTML = layoutDetail.title;

Using REST and Disc

The WebLogic Portal REST API 7-13

 // Compare the markup name to the current layout and select the match
 if (layoutDetail.markup_name == layoutName) {
 option.selected = "selected";
 }

 select.appendChild(option);
 }
 }

 function ${uid}setLayout(layoutName) {
 // Get the canvas element to use for output
 var canvas = document.getElementById("${uid}canvas");

 // Get the portlet context from Disc
 var portletContext = bea.wlp.disc.context.Portlet.findByElement(canvas);

 // Get the parent page context for the portlet
 var pageContext = portletContext.getParentPage();

 // Get the application instance from Disc
 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Create the parameters to pass to the REST command
 var params = "";
 params += "&portal=" + appContext.getPortalPath();
 params += "&desktop=" + appContext.getDesktopPath();
 params += "&webapp=" + appContext.getWebAppName();
 params += "&layout=" + layoutName;

 // Construct the URL for the REST command to change page attributes
 var url = "/" + appContext.getWebAppName();
 url += "/bea/wlp/api/page/item/" + pageContext.getLabel();

 // Get a portal-aware XMLHttpRequest from Disc
 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();
 xmlHttpReq.onreadystatechange = function() {
 if (xmlHttpReq.readyState == 4) {
 if(xmlHttpReq.status == 200) {
 var msg = "Layout changed to " + layoutName + ".\n\n";
 msg += "Press OK to refresh desktop.";
 if (confirm(msg)) {
 window.location.reload();
 }
 } else {
 alert("Unable to change layout.");
 }
 }
 };
 xmlHttpReq.open('POST', url, true);
 xmlHttpReq.send(params);
 }

 // Add an onload function for this portlet
 var ${uid}oldonload = (window.onload) ? window.onload : function () {};
 window.onload = function () { ${uid}oldonload(); ${uid}loadInit(); };
 </script>
</jsp:root>

Using REST and Disc

7-14 Oracle Fusion Middleware Client-Side Developer's Guide for Oracle WebLogic Portal

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 What's in this Guide?
	1.1 The Disc Framework
	1.2 Toolkit Integration
	1.3 Portlet Publishing
	1.4 The REST API
	1.5 The Dynamic Visitor Tools

	2 Client-Side Development Technologies
	2.1 Brief History of Client-Side Technology and the Portal
	2.2 JavaScript
	2.3 Ajax
	2.4 Disc JavaScript Framework
	2.5 Portal-Aware XMLHttpRequest
	2.6 Web-Based and REST Style Services
	2.7 JSON
	2.8 Ajax Toolkits

	3 The WLP Disc Framework
	3.1 What is Disc?
	3.2 Enabling Disc
	3.2.1 What Enabling Disc Means
	3.2.2 Enabling Disc in Oracle Enterprise Pack for Eclipse
	3.2.3 Enabling Disc in the Administration Console
	3.2.4 Using Disc Outside of a Portal

	3.3 Using Portal-Aware XMLHttpRequest to Retrieve Data from a Non-Portal Source
	3.3.1 Use Case
	3.3.2 Example

	3.4 Using Portal-Aware XMLHttpRequest to Update Portlets
	3.4.1 Use Cases
	3.4.2 Example

	3.5 Using Context Objects
	3.6 The XMLHttpRequest Interaction Engine
	3.7 Event Handling
	3.8 Manipulating URIs On the Client
	3.8.1 Background
	3.8.2 Using the URI API

	3.9 Logging
	3.9.1 Example

	4 Configuring JavaScript Libraries in a Portal Web Project
	4.1 Creating a Simple Portal Project with Dojo
	4.2 The Hello World JSP Portlet with Dojo
	4.3 Creating a Render Dependencies File
	4.3.1 The Importance of Render Dependencies
	4.3.2 Creating the Sample Render Dependencies File

	5 Portlet Publishing
	5.1 What is Portlet Publishing?
	5.1.1 What is the Portlet Publishing Service?
	5.1.2 Asking the Portlet Publishing Service for Portlets
	5.1.3 Consuming a Published Portlet

	5.2 Portlet Publishing URL Forms
	5.2.1 Library Instance URL Form
	5.2.2 Desktop Instance URL Form

	5.3 Consuming Published Portlets
	5.3.1 Inline Frame Integration
	5.3.1.1 Example Code
	5.3.1.2 Embedding Static Portlets
	5.3.1.3 Embedding Dynamic Portlets

	5.3.2 DOM Integration
	5.3.2.1 Basic JavaScript Coding Steps

	5.3.3 Finding the Portlet Publishing Context
	5.3.3.1 Finding the Publishing Context for a Library Instance Portlet
	5.3.3.2 Finding the Publishing Context for a Desktop Instance Portlet

	5.4 Advanced Topics
	5.4.1 Using the Decoration Parameter
	5.4.2 Integrating Multiple Portlets into the DOM
	5.4.3 Integrating Portlets from Multiple Publishing Contexts
	5.4.4 Specifying URL Redirect Options

	5.5 Portlet Publishing vs. WSRP
	5.6 Using JSP and HTML Portlet Publishing Templates
	5.6.1 Using the JSP Template
	5.6.2 Using the HTML Template

	5.7 Limitations

	6 Client-Side Development Best Practices
	6.1 Namespacing
	6.1.1 A Simple Dynamic Table Portlet
	6.1.2 Namespace Collisions
	6.1.3 The Mysterious Table Row

	6.2 Avoiding Namespace Collisions
	6.2.1 Using Ad Hoc Namespacing
	6.2.2 Using Rewrite Tokens
	6.2.3 Parameterizing Your JavaScript Functions
	6.2.4 Using the Disc APIs

	7 The WebLogic Portal REST API
	7.1 What is REST?
	7.2 What is the WLP REST API?
	7.2.1 WLP REST API Reference Documentation
	7.2.2 REST API Use Cases
	7.2.3 REST Command Format
	7.2.4 Commonly Used REST Command Parameters
	7.2.4.1 The webapp Parameter
	7.2.4.2 The format Parameter
	7.2.4.3 The scope Parameter

	7.2.5 REST Command Example

	7.3 Disabling REST Commands
	7.4 Basic WLP REST API Examples
	7.4.1 Retrieving Information About a Single Portlet
	7.4.2 Changing the Title of a Portlet
	7.4.3 Moving a Book or Page

	7.5 Using REST and Disc
	7.5.1 Constructing a REST URL Using Disc Context Objects
	7.5.2 Open and Send an XHR Request
	7.5.3 Handle the REST Response
	7.5.4 Putting It All Together

