

Oracle® Fusion Middleware
Content Management SPI Development Guide for Oracle
WebLogic Portal

10g Release 3 (10.3.4)

E14231-02

November 2011

Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal, 10g
Release 3 (10.3.4)

E14231-02

Copyright © 2010, 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: William Witman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions .. vii

1 Introduction to Content Management SPI

1.1 Content Management SPI FAQ... 1-1
1.1.1 What is the CM SPI? .. 1-1
1.1.2 Why Write an SPI?... 1-2
1.1.3 What are the Structures and Data Types that can be Exposed?.................................... 1-2
1.1.4 What is the Difference Between an SPI Implementation and a Repository? 1-2
1.1.5 Who Uses the SPI? ... 1-2
1.1.6 How is an SPI Implementation Packaged and Made Available to the VCR?............. 1-3
1.1.7 Where Does the SPI Implementation Run?.. 1-3
1.2 Architecture Overview of an SPI Implementation... 1-3
1.2.1 What components are involved in the SPI? ... 1-4
1.2.2 What is the Relationship of the VCR Repository Construct and the WebLogic Portal

Application? 1-4
1.2.3 What Authentication Models are Available?... 1-4
1.2.4 How Does the VCR Interact With the SPI Implementation?... 1-4

2 SPI Data Model

2.1 About the Content Management Data Model .. 2-1
2.2 Type Data Representation ... 2-2
2.3 Node Data Representation .. 2-3

3 SPI Capabilities and Versions

3.1 About SPI Capabilities ... 3-1
3.2 VCR Detection of the SPI Implementation Capabilities.. 3-1
3.3 SPI Interface Versions... 3-2

4 Implementing an SPI

4.1 VCR SPI Implementation Interaction .. 4-1

iv

4.2 Primary Classes for a Basic SPI Implementation.. 4-1
4.3 Repository Guidelines when Creating an SPI Implementation ... 4-2
4.4 Basic SPI Implementation .. 4-3
4.4.1 Basic SPI Repository Implementation Code Example.. 4-5
4.4.2 Basic SPI Ticket Implementation Code Example .. 4-7
4.5 Optional SPI Interfaces Implementation ... 4-8
4.5.1 Exposing an Optional SPI Interface .. 4-8
4.6 SPI Interface Result Collections, Sorting, and Filtering .. 4-9
4.6.1 Filtering and Sorting Results with the SPI .. 4-10
4.6.2 Common SPI Interface Objects for Sorting and Filtering.. 4-10
4.7 Configuring Security ... 4-11
4.7.1 Authorization and Identity Management Overview ... 4-11
4.7.2 No Authentication .. 4-12
4.7.3 WLP-Secured Resource Management ... 4-12
4.7.3.1 WLP-Secured/Global User Identity Configuration ... 4-12
4.7.3.2 WLP Secured/Mapped Credential User Configuration...................................... 4-12
4.7.4 Natively-Secured Resource Management ... 4-12
4.7.4.1 Natively-Secured/Global User Identity Configuration....................................... 4-12
4.7.4.2 Natively-Secured/Mapped Credential User Configuration............................... 4-13
4.7.5 Identity Propagation with Native Security... 4-13
4.8 Connecting and Logging Into a Third-Party Repository .. 4-13
4.9 Search Cache Configuration... 4-13

5 Interface Topics

5.1 NodeOpsV1 SPI Interface Topics ... 5-1
5.1.1 What Types of Operations are Supported by the NodeOpsV1 SPI Interface? 5-1
5.1.2 What Type of Hierarchical Paths are Passed To and From the SPI layer? 5-2
5.1.3 How Should the SPI Implementation Create Node Data Objects to be Returned? ... 5-2
5.1.4 How Should the SPI Implementation Create Property Data Objects to be Returned

5-2
5.1.5 What Should the SPI Implementation Do when Node Metadata is not Available? .. 5-2
5.1.6 How are the Node ID and Property ID related? ... 5-3
5.1.7 What Node Names are Valid? ... 5-3
5.1.8 Example – Creating a Node with no ObjectClass .. 5-3
5.1.9 Example – Creating a Node with an ObjectClass and Property Values 5-3
5.2 ObjectClassOpsV1 SPI Interface Topics... 5-4
5.2.1 What are the Supported Operation Types? ... 5-4
5.2.2 How Should the SPI Implementation Create ObjectClass Objects? 5-4
5.3 SearchOpsV1 SPI Interface Topics.. 5-4
5.4 Indexing Content .. 5-5
5.4.1 How Is Content Indexed?... 5-5
5.4.2 How Can an Event Listener Perform Content Indexing? .. 5-5
5.5 SPI Testing Topics... 5-6
5.5.1 How to Configure a Repository for SPI Parameter and Response Data Checking.... 5-6
5.5.2 How to Monitor Repository and Ticket Method Invocations and Performance........ 5-6
5.5.3 How to Monitor SPI Operation Interface Method Invocations and Performance 5-7

v

List of Examples

4–1 Basic SPI Implementation .. 4-5
4–2 Ticket Implementation Code Example .. 4-7
5–1 Creating a Node with no ObjectClass .. 5-3
5–2 Creating a Node with an ObjectClass and Property Values... 5-3

vi

List of Figures

1–1 Content Management VCR-SPI Architecture ... 1-3
2–1 Content Management Data Model Diagram .. 2-2

vii

Preface

The Content Management Service Provider Interface (SPI) is an open extension point
in the WebLogic Portal Content Management Virtual Content Repository (VCR). It
supports integrating data from an external system into the WebLogic Portal VCR.

This document discusses the architecture and features of the SPI and explains how to
create an SPI implementation.

Audience
This document is intended for Java developers who want to write an CMSPI
implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the WebLogic Portal
documentation set:

■ Oracle Fusion Middleware Content Management SPI Development Guide for Oracle
WebLogic Portal

Conventions
The following text conventions are used in this document:

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Content Management SPI 1-1

1Introduction to Content Management SPI

This chapter introduces the Oracle WebLogic Portal Content Management (CM)
Service Provider Interface (SPI) by way of an FAQ. It contains the following sections:

■ Section 1.1, "Content Management SPI FAQ"

■ Section 1.2, "Architecture Overview of an SPI Implementation"

1.1 Content Management SPI FAQ
The following questions and answers provide an overview of the Content
Management SPI.

1.1.1 What is the CM SPI?
SPI is an open extension point in the WebLogic Portal Content Management Virtual
Content Repository (VCR). It supports integrating data from an external system into
the WebLogic Portal VCR.

SPI implementations can be "plugged into" the VCR to enable data access and
modification in external stores of given type. This gives you the ability to use
WebLogic Portal Interaction Management, display templates, CM APIs, content search,
WebLogic Portal Administration Tools, and other WebLogic Portal VCR features with
the external data. For example, you could create SPI implementations for accessing
SharePoint, file system, RSS, or database data.

The SPI is a group of CM interfaces supplied with WebLogic Portal. For example, there
is a Repository interface, a Ticket interface, and various optional operations
interfaces, such as NodeOps, ObjectClassOps, and SearchOps. Some of these
interfaces are required, others are optional.

An SPI implementation is a group of classes that implements the SPI to support
persisting and/or storing data externally. The SPI is not tied to any particular
architecture, protocol, or data source. This means that it is applicable to a wide range
of implementations, including database-centric, file-system based, and network
protocol-based systems. Some SPI implementations may delegate to a remote server,
while other implementations run in same JVM as WebLogic Server.

For example, you could create an SPI to access external syndicated feeds (RSS) and
present the feed data as VCR nodes and properties. The CM tags and display template
features of WebLogic Portal could be used to access and present the data.

The SPI is designed to support incremental SPI implementations. For example, you
could start with a simple read-only SPI implementation, and then later add search and
read-write capabilities.

Content Management SPI FAQ

1-2 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

1.1.2 Why Write an SPI?
The main reason to write an SPI is to expose data via the VCR.

Creating an SPI implementation enables the WebLogic Portal features built on the CM
VCR to be used with external system data. For example, content selectors,
placeholders, WebDAV, display templates, CM tags, syndicated feeds, and the
WebLogic Portal Administration tools may all run against external system data
exposed by an SPI implementation. The exact capabilities available from the VCR
depend on which features the SPI implements.

The optional interface, optional method approach allows an SPI Implementation to be
quickly created and gracefully upgraded over time to support additional capabilities.

1.1.3 What are the Structures and Data Types that can be Exposed?
The CM SPI supports exposing hierarchical data via a structured (typed) mechanism.
If data can be represented in a folder structure (including just a single folder level), it
can be exposed via the CM SPI.

Each node in the hierarchy has an implicit name (the name of the hierarchy position)
and unique ID. A node without a type has only a name and an ID. You can refer to a
node either by its unique hierarchical path from the repository root, such as
/foo/bar/bas, or by direct access with its unique (opaque) ID.

If the node has an associated type (ObjectClass), the node can have additional
metadata. The allowable metadata depends on the type (ObjectClass) definition.
For example, suppose there is an ObjectClass named City, with a numerical
property "population" and a binary property "image". A node "Denver" of type City
can then have a "population" value as well as an "image" value, in addition to its name
and ID.

1.1.4 What is the Difference Between an SPI Implementation and a Repository?
An SPI implementation is a way to interact with an external system of a given type.
For example, you could create one SPI implementation to access Documentum data,
another SPI to access file system data, and a third to access data stored in a database.

The VCR may have multiple named instances (repositories) of the same SPI
implementation running against different external data sources. For example, one
"FileSystem" Repository may represent data rooted in one directory tree and another
"FileSystem" Repository may represent data rooted in another directory tree, but both
may use the file system SPI implementation classes, and be deployed in the same
enterprise application.

A repository has an associated RepositoryConfig object that contains a name, an
SPI implementation class name, and associated property configuration data.

1.1.5 Who Uses the SPI?
The CM VCR uses an SPI implementation on behalf of clients, such as WebLogic Portal
Administration tools.

Client code does not directly use the SPI implementation; all access occurs indirectly
via the VCR. WebLogic Portal administrators register SPI implementations with the
VCR by creating or updating a repository configuration, which lets the VCR know
about an SPI implementation and its associated configuration. In order to service VCR
clients, the VCR uses the repository configuration information to connect to the SPI

Architecture Overview of an SPI Implementation

Introduction to Content Management SPI 1-3

implementation, which then connects to the external system for accessing and
modifying data.

1.1.6 How is an SPI Implementation Packaged and Made Available to the VCR?
The SPI implementation classes are placed in one or more JARs. You can then place the
JARs in the system or application class path. A WebLogic Portal administrator creates
a repository configuration to register and configure a Repository instance of a
particular SPI implementation using (for example) the WebLogic Portal
Administration tools. The administrator specifies various configuration settings,
including the repository name, the SPI Repository implementation class, a user name
and password (optional), and other properties.

1.1.7 Where Does the SPI Implementation Run?
The SPI implementation classes are loaded into the WebLogic Server's enterprise
application classloader and run inside the WebLogic Portal server. The same SPI
implementation may be loaded multiple times into different applications in the same
server.

The same SPI implementation may be loaded multiple times, into the same application
with different repository names and configurations.

1.2 Architecture Overview of an SPI Implementation
Figure 1–1 shows an architectural diagram of Content Management VCR-SPI
implementation.

Figure 1–1 Content Management VCR-SPI Architecture

Note: Because they are loaded into the WebLogic Server, they can
also be clustered.

Architecture Overview of an SPI Implementation

1-4 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

1.2.1 What components are involved in the SPI?
Several interfaces in the com.bea.content.spi.flexpi package must be
implemented by the SPI, such as Repository and Ticket. These interfaces must
have implementations for the SPI to be loaded and provide a means for calling the SPI
and for authenticating a user.

Additionally, some optional interfaces can be fully or partially implemented to
support various types of functionality. For example, to support Node operations, you
can implement the com.bea.content.spi.flexspi.ticket.NodeOpsV1
interface. Within this interface, you could implement all the methods except those
related to link properties.

Other components involved in SPI include SPI data, such as Id, Node, ObjectClass,
PropertyDefinition, QueryCriteria, and QueryResult, that are passed
through the SPI interfaces. They are located in either in com.bea.content or
com.bea.content.spi.flexspi.common.

1.2.2 What is the Relationship of the VCR Repository Construct and the WebLogic
Portal Application?

The VCR Repository construct is enterprise-application scoped. When a repository is
registered in an enterprise application with a name, an SPI Implementation class, and
a set of configuration properties, it is available (via the repository name) to all users in
the same enterprise application. In other words, all users in the enterprise application
can access the same set of configured repositories. The particular capabilities each
WebLogic Portal user can have for a given repository in the current enterprise
application depend on the user's entitlements. User capability may range from none to
full.

It is possible for multiple enterprise applications to duplicate a repository
configuration, using the same repository name and other configuration settings, to
refer to the same external system data.

1.2.3 What Authentication Models are Available?
The SPI offers several options for configuring security. You can configure the way both
authorization (access to resources) and user identity are managed. For more
information, see Section 4.7, "Configuring Security."

1.2.4 How Does the VCR Interact With the SPI Implementation?
After you complete configuration, the VCR needs to connect to the SPI
implementation before any SPI implementation methods can be invoked.

The first time the VCR contacts the SPI implementation, the VCR usually:

1. Loads and instantiates the SPI class, which implements the Repository interface
via Class.forName() and Class.newInstance().

2. Queries the Repository object for its capabilities. For more information, see
Chapter 3, "SPI Capabilities and Versions."

3. Calls Repository.connect(…) to authenticate credentials to a repository and
receive a Ticket object.

4. Queries the Ticket object for its capabilities.

After the initial setup is complete, future VCR access directly invokes the SPI methods.

Architecture Overview of an SPI Implementation

Introduction to Content Management SPI 1-5

For example, if the (optional) operation interface is supported and the capabilities
also indicate the method is supported, the VCR invokes the appropriate SPI operation
method. To illustrate, if the client calls INodeManger.getNodes(
ContentContext, ID), the VCR may try to call the SPI method
NodeOpsV1.getNodeChildrenWithQueryCriteria(ID, int,
QueryCriteria), (if the SPI implements this method).

Note: The VCR may cache data returned by the SPI or the SPI may
use its own caches.

Architecture Overview of an SPI Implementation

1-6 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

2

SPI Data Model 2-1

2SPI Data Model

This chapter describes the SPI data model. It includes the following sections:

■ Section 2.1, "About the Content Management Data Model"

■ Section 2.2, "Type Data Representation"

■ Section 2.3, "Node Data Representation"

2.1 About the Content Management Data Model
External system data is represented by two primary types:

■ Type data—information about what data a node of a given type can contain.

■ Node data— information about the node itself.

To address and access data, both Nodes and ObjectClasses have a unique ID. The
ID contains both the repository name and an opaque repository-specific (String)
UUID. Generally, from an SPI implementor's perspective, the UUID is the only field in
the ID that should be examined and all data should be tied to the repository-specific
UUID rather than to the ID. However, you need to construct the ID as the SPI needs to
return data. The repository name is assigned by the VCR, as it receives the object from
the SPI.

Nodes have a unique implicit hierarchical path from the repository root that ends with
the node name. You can retrieve nodes based on this path. For example, a node with
name "foo" might be available at repository path /someNode/anotherNode/foo.

From an SPI implementor's perspective, all paths start with the repository root node,
that is /foo. In contrast from a VCR client perspective, all paths start with the
repository name, that is /SomeRepo/foo. The VCR manages this path modification.

The special path "/" is reserved for representing the repository root and the special ID
UUID=null is reserved for repository root ID. The repository root is an artificial
address construct for retrieving the top-most nodes in a repository. You cannot directly
fetch the root node, but you can retrieve its children.

Figure 2–1shows an overview of the SPI data model.

Note: The UUID field must never be null, as this value is reserved
for the repository root ID.

Type Data Representation

2-2 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

Figure 2–1 Content Management Data Model Diagram

2.2 Type Data Representation
An ObjectClass defines the schema for a Node (that is, what kind of data a node of
that type can contain). Besides the schema, the ObjectClass contains a name and ID
that uniquely identifies the Node within the repository, plus an array of property
definitions that describe the data (Properties) that a Node of that type can hold. For
example, you could create a type "City" with property definitions for "population"
(String) and "image" (binary).

ObjectClasses support, but do not require, type-inheritance. A type City may
inherit from type Location, thus receiving property definitions from Location.
Single inheritance is supported. Additionally, ObjectClasses support, but do not
require, type nesting, which is a containment structure. This allows you to construct a
hierarchy of Node data rather than a flat list of properties.

An ObjectClass contains a PropertyDefinition that defines the schema for a
single Property that can exist on a Node of that objectClass. This is actually the
schema for a named piece of data. The primary fields in it include:

■ Property name

■ Type (String, binary, boolean, and so on)

■ Single-valued or multi-valued

■ Read only

■ Mandatory (if it is required to have a value)

A PropertyDefinition may define a set of PropertyChoices that you can use to
provide some predefined values. For example, a String property may have a set of
property choices, one for each state.

A PropertyChoice can be demarcated as default. When a node is created, if the
associated property has no value, it is created with the default PropertyChoice
value.

Node Data Representation

SPI Data Model 2-3

2.3 Node Data Representation
A Node represents a set of external system data. A Node has a name, and you can
address a node using a unique hierarchical path (ending with its name), or a unique
ID.

If a node has a type, then you can include a set of Property values that hold external
system data. The set of Properties available depends on the node's type
(ObjectClass). For example, if Node myNode is of type City, and City has
PropertyDefinitions for size and image, the myNode can have a property called
size and another called image, with values for each of these properties.

Nodes also have implicit system metadata including:

■ name

■ ObjectClass

■ Creation date

■ Created by

■ Modified date

■ Modified by

■ Parent node ID (the ID of the node's parent)

A Property represents a named piece of external system data. It exists as part of a
Node object. Each Node can have multiple properties providing its ObjectClass
defines multiple properties. A Property has a name that maps up to a
PropertyDefinition on the node's ObjectClass with the same name.

Properties may have zero or more Values. The schema for the property values
depends on the associated PropertyDefinition. For example, if Node myNode is
of type City, and City has property definitions for size (String) and image (binary),
then myNode can have a property called "size" with a string value, and another called
"image", with a binary value.

A Value represents an unnamed piece of external system data. It exists as part of a
Property object. A Property may have multiple values if its
PropertyDefinition is multi-valued. The Value contains the real value of the data
type specified on the property's PropertyDefinition. For example, if the "Person"
ObjectClass has a "favoriteColors" PropertyDefinition (a multi-valued String),
a node of type "Person" can have a Property named "favoriteColors" that contains
zero or more string Values. Valid value types are:

■ binary (a binaryvalue object holds the data.)

■ boolean

■ calendar (date and time)

■ double

■ ID (a node address, also called a link)

■ Long

■ String

■ Property[] (used for nested ObjectClass values)

A BinaryValue represents an unnamed piece of external system binary data. It exists
as part of a Value object. There can be only one BinaryValue object per Value
object. In addition to an InputStream, the BinaryValue also includes metadata:

Node Data Representation

2-4 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

■ Binary Name

■ Mime Type (Content Type)

■ Size

■ Checksum

BinaryValues are generally loaded on-demand for better performance.

3

SPI Capabilities and Versions 3-1

3SPI Capabilities and Versions

This chapter describes how an SPI implementation exposes the capabilities it supports
to the VCR. This chapter includes the following topics:

■ Section 3.1, "About SPI Capabilities"

■ Section 3.2, "VCR Detection of the SPI Implementation Capabilities"

■ Section 3.3, "SPI Interface Versions"

3.1 About SPI Capabilities
The SPI implementation exposes the capabilities it supports to the VCR. For example,
an SPI implementation may report which methods it supports, and whether it
supports Node creation. This allows the VCR and VCR client code to customize
behavior based on the capabilities of the underlying SPI implementation. There are
three types of capabilities:

■ Method capabilities

■ Feature capabilities

■ Repository defined capabilities

Method capabilities indicate which methods on an interface. These are exposed via:

■ Repository – Repository.getCapabilitySupport()

■ Ticket – Ticket.getCapabilitySupport()

Feature capabilities are exposed with Repository.getCapabilitySupport().
CM features may span multiple methods. For example,
NodeFeatureCapability.NodeUpdate affects several methods and indicates the
general ability to update a node.

Repository-defined capabilities are optional SPI implementation-specific functions.
These capabilities are exposed with
Repository.getRepositoryDefinedCapabilities() and report various
(usually dynamic) abilities of the underlying repository to the VCR client code for a
specific SPI implementation. For example, you could use an SPI implementation to
report to client code that the SPI implementation is performing case-insensitive
sorting. A basic SPI implementation likely would not use this feature.

3.2 VCR Detection of the SPI Implementation Capabilities
For method and feature capabilities, the VCR passes the set of capabilities it is aware
of to the SPI. The SPI implementation must then report its capability support

SPI Interface Versions

3-2 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

(supported or not supported) for each capability passed. The SPI implementation must
not report any additional capabilities beyond those it was passed. If additional
capabilities exist, the implementation should use repository-defined capabilities for
those capabilities.

For repository-defined capabilities, the VCR simply asks the repository for its
repository defined capabilities and associated support levels.

During the connection process, the VCR calls the methods:

■ Repository.getCapabilitySupport(...) – Defines how the SPI
implementation reports its feature capability support. If the Repository
implements any optional repository operation interfaces, such as
RepositoryConfigOpsV1, it must report a MethodCapability for each
method in these interfaces.

■ Ticket.getCapabilitySupport(...) – If the Ticket implements any
optional ticket operation interfaces, such as NodeOpsV1, it must report a
MethodCapability for each method in these interfaces.

■ Repository.getRepositoryDefinedCapabilities() – Defines how the
SPI implementation can report any repository-defined capabilities.

3.3 SPI Interface Versions
The SPI model included in WebLogic Portal allows the VCR and SPI implementation
to have different versions of the SPI interfaces. For example, the VCR may use
NodeOpsV3 while the SPI implementation may be written to NodeOpsV2. This
flexibility allows the SPI to expand over time without breaking any existing SPI
implementations and allow additional interfaces to be introduced that expose
additional functionality. The SPI version numbers are unrelated to the WebLogic Portal
product version; they are incremented anytime an interface change is made.

Versioned interfaces exist for optional repository operation interfaces, such as
RepositoryConfigOpsV1 and optional ticket operation interfaces, such as NodeOpsV1.
When you create an SPI implementation, you write the implementation for specific
versions of the SPI interfaces.

For example, suppose that WebLogic Portal v11 includes NodeOpsV1,
ObjectClassOpsV1, and ObjectClassOpsV2 (among others) and you write an SPI
implementation against WebLogic Portal v11 to implement the latest versions:
NodeOpsV1 and ObjectClassOpsV2. After a period of time, when you use WebLogic
Portal v12, which includes NodeOpsV1, NodeOpsV2, ObjectClassOpsV1,
ObjectClassOpsV2, and ObjectClassOpsV3, the SPI implementation, built to earlier
versions, works properly.

Note: Once an SPI interface version is released with WebLogic
Portal, it will not change because changing it may break any SPI
implementations that implement its version.

Tip: You should use the latest available versions of the interfaces for
your SPI implementations. Over time, SPI interface versions may be
deprecated and eventually removed, so it's best to start with the latest
available.

SPI Interface Versions

SPI Capabilities and Versions 3-3

You do not need to implement all methods in the interfaces. For example, you could
implement only a single method in NodeOpsV1.

Some SPI Implementation methods report the interface version they implement. For
example, Repository.getAllInterfaces() and
Ticket.getAllInterfaces() return a Map<String, ISPIMarker>, which has
a key with the interface version:
SPIRepositoryInterfaces.REPOSITORY_CONFIG_OPS_V1 or
SPITicketInterfaces.NODE_OPS_V1.

Note: You should not bundle the versioned SPI interface classes in
the SPI JARs with your SPI implementations; they are included with
WebLogic Portal.

SPI Interface Versions

3-4 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

4

Implementing an SPI 4-1

4Implementing an SPI

This chapter provides information about creating an SPI implementation. It contains
the following sections:

■ Section 4.1, "VCR SPI Implementation Interaction"

■ Section 4.2, "Primary Classes for a Basic SPI Implementation"

■ Section 4.3, "Repository Guidelines when Creating an SPI Implementation"

■ Section 4.4, "Basic SPI Implementation"

■ Section 4.5, "Optional SPI Interfaces Implementation"

■ Section 4.6, "SPI Interface Result Collections, Sorting, and Filtering"

■ Section 4.7, "Configuring Security"

■ Section 4.8, "Connecting and Logging Into a Third-Party Repository"

4.1 VCR SPI Implementation Interaction
When the VCR needs to access a specific repository from the set of application
repository configurations, the VCR loads and creates an instance of the configured SPI
implementation class, which implements the VCR SPI Repository interface. The VCR
invokes methods on the repository implementation to obtain objects, such as a
Ticket, which implement other VCR SPI interfaces.

The VCR invokes methods on the Repository and Ticket implementations to query the
SPI implementation for its capabilities. (Capabilities are what operations the
implementation supports.) The VCR then invokes methods to retrieve the operation
interfaces, such as NodeOpsV1, that the SPI exposes. Finally, the VCR invokes
methods on the operation interfaces.

4.2 Primary Classes for a Basic SPI Implementation
The two primary classes for an SPI implementation are:

■ Repository

■ Ticket

The Repository class is instantiated directly by the VCR. This class provides
anonymous repository access. For example, an SPI implementation can report its
version and other basic information. Most importantly, this is the entry point for
authenticating to an SPI implementation to obtain a Ticket. Only authenticated users
can obtain a Ticket; the Ticket provides access to the important repository operations.

Repository Guidelines when Creating an SPI Implementation

4-2 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

The Ticket class provides authorized repository access, and provides access to the
authorized operations interfaces such as NodeOpsV1. Only authenticated users can
obtain a Ticket; the Ticket provides access to the important repository operations.
This class is instantiated by Repository.connect(...).

The Repository can optionally expose additional authorized ticket operations
interfaces, such as NodeOpsV1, SearchOpsV1, via its implementation of
getAllInterfaces() and getInterface().

The general flow at runtime is:

■ Connection process:

■ VCR instantiates Repository class.

■ VCR configures Repository object.

■ VCR queries Repository object.

■ VCR invokes Repository.getAllInterfaces() to retrieve all repository
interfaces.

■ VCR invokes Repository.connect() to obtain a Ticket.

■ VCR invokes Ticket.getAllInterfaces() to retrieve all ticket interfaces.

■ Call process:

■ VCR accesses the desired interface, such as NodeOps.

■ VCR invokes method on the desired interface, such as
NodeOpsV1.getNodeWithId(ID).

4.3 Repository Guidelines when Creating an SPI Implementation
Use the following design guidelines when creating an SPI implementation:

■ Standalone – The SPI implementation should be standalone. The VCR calls into
the SPI implementation. The SPI implementation should not call into the VCR
federated interfaces, although it can use the VCR data objects.

■ Stateless – Generally, the SPI implementation should be stateless. All changes
should be propagated to the external system immediately.

There are several reasons for this. Primarily, because in a cluster scenario or
multiple enterprise applications on the same server, changes to external system
data should be persisted immediately. This allows the data to appear "live"
regardless from which server and enterprise application the data is accessed.

■ Object caching – The SPI implementation should not cache the data objects
instances it returns (Nodes, Properties, Values, ObjectClasses,
PropertyDefinitions, and PropertyChoices). The VCR and client code
own these objects, which they can modify. For example, the VCR may change the
node path before returning the node to the client.

A safe approach is to cache the objects, then return a clone of these objects, which
the SPI implementation will not have references to.

Because the data object types are shared between the SPI implementation, VCR,
and client code, not all methods on these data objects are appropriate for each type
of caller. (See the Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Portal for clarification.) For example, new data objects, such as Properties
passed when creating a Node from the VCR to the SPI implementation do not have
UUID on the PropertyID. This happens because the UUID is assigned by the SPI

Basic SPI Implementation

Implementing an SPI 4-3

implementation and the new object has not yet been persisted by the SPI
implementation. The UUID is present only for data objects retrieved or returned
by the SPI.

■ VCR Repository interface – SPI implementations must implement the VCR
Repository interface. Repositories are loaded dynamically by the VCR and require
a public default constructor. When the VCR loads the SPI implementation, it calls
the Repository.setName() and Repository.setProperties() methods
before it calls the connect() method.

Each Repository instance corresponds to a single repository configuration for a
single enterprise application and for use by a single user. At runtime, the VCR can
create many instances of Repositories for use by numerous current WebLogic
Portal users. For this reason they should be relatively lightweight objects, as
hundreds of these objects may exist.

In an enterprise application for a given SPI implementation, there may be multiple
active repository configurations. For example, three repository configurations may
exist for an application that the VCR is managing, and each repository will have its
own configuration data and its own Repository instance that is created at runtime.

■ Exceptions – Anytime the SPI implementation is unable to perform an operation, it
should throw a RepositoryException. Several subclasses of
RepositoryException are defined, and these should be used when a good
match exists. For example, if the SPI implementation does not support an
operation, it should throw a UnsupportedRepositoryOperationException.

■ Ticket re-use – The Ticket object is cached and re-used by the VCR. Generally, it
should be stateless for concurrency reasons. The VCR associates the Ticket with
a user on a HTTPSession. If multiple requests on the same HTTPSession arrive
for the same repository, multiple operations on the same Ticket object can be
performed simultaneously. A stateless design will avoid issues in this situation.

■ Support for multiple repository instances of the SPI implementation – To work
properly when multiple repositories of your SPI implementation are used
simultaneously, be careful with static caches by ensuring that the data is tied to a
specific repository name or instance. One option is to incorporate the repository
name in the data key when caching data. Another option is to use named
singletons to access cached data. By keeping the data segregated by repository
name, the SPI implementation should work properly in this situation.

■ Performance – SPI caching is important; the SPI should generally cache data so it
does not need to consult the external system frequently. The SPI can lazy-load
several settings to boost performance, such as:

■ Node properties – If the Node is created with a null Property[], the
properties are lazy-loaded.

■ Node objectClass – If the Node is created with a null ObjectClass, but
the ObjectClassId assigned via setObjectClassId, the ObjectClass is
lazily-loaded.

■ Binary property values – When the node's properties (and values) are loaded, the
binary property inputstream can be returned as null to boost performance.

4.4 Basic SPI Implementation
To create a basic SPI implementation:

Basic SPI Implementation

4-4 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

1. Create a Java class that implements the interface
com.bea.content.spi.flexspi.Repository.

This class is a required interface that must be implemented. It is included with
WebLogic Portal.

2. Create a public default constructor.

3. Implement setProperties() to store the repository configuration properties
passed by the VCR. Store in a local variable.

4. Implement setName() to store the repository configuration name passed by the
VCR. Store in a local variable.

5. Implement getProperties()and getName() to read the local variables.

6. Implement getDescription() to report the repository description data.

This is essentially a Properties bucket, with some well-defined keys in
SPIDescriptionKeys. It includes the vendor, version, and so on.

7. Implement getRepositoryDefinedCapabilities() to report which custom
capabilities the SPI implementation supports.

For a basic SPI implementation, just return Collections.emptySet().

8. Implement getAllInterfaces() to return all repository (not ticket)
operations interfaces.

These are optional interfaces, such as RepositoryConfigOpsV1, that a
Repository can implement.

For a bare-bones SPI implementation, just return an empty HashMap.

9. Implement getInterface(String interfaceName) to be consistent with
getAllInterfaces().

For a bare-bones SPI implementation, just return null.

10. Implement getCapabilitySupport(Set<ICapabilityDefinition>) to
report which feature capabilities this SPI implementation supports.

It also report which method capabilities the repository supports across the
optional repository operation interfaces.

11. Implement connect(Credentials) and Connect(String username,
String password) to allow a caller to obtain a ticket.

connect(username, password) is called if a username and password are
available (generally from the repository configuration data.)

connect(credentials) is called if no username/password are available.
The credentials includes the caller's implicit identity.

For a basic SPI implementation, create and return a new Ticket instance. More
advanced implementations may authenticate the credentials, and only return a
Ticket instance if successful.

12. Implement any optional Repository operation interfaces, such as
RepositoryConfigOpsV1.

For any repository operation interfaces returned by
Repository.getAllInterfaces():

a. Implement the interface.

Basic SPI Implementation

Implementing an SPI 4-5

Any methods that are not implemented should throw an
UnsupportedRepositoryOperationException and the
getCapabilitySupport() method should not report this method as
supported.

b. Modify Repository.getAllInterfaces() and getInterface() to
return the interface implementation.

c. Modify Repository.getCapabilitySupport() to report the status
(supported or unsupported) of each method on the repository operation
interface.

13. Create a Java class that implements the interface
com.bea.content.spi.flexspi.Ticket (supplied with WebLogic Portal)

a. Implement getAllInterfaces() to return all ticket operations interfaces.
These are optional interfaces, such as NodeOpsV1, which a Ticket can
implement. For a basic SPI implementation, return an empty HashMap.

b. Implement getInterface(String interfaceName) to be consistent
with getAllInterfaces(). For a basic SPI implementation, just return null.

c. Implement getCapabilitySupport(Set<ICapabilityDefinition>
) to report which method capabilities this ticket supports across the optional
ticket operation interfaces.

14. Implement any optional Ticket operation interfaces, such as NodeOpsV1.

For any ticket optional interfaces returned by Ticket.getAllInterfaces():

a. Implement the interface.

Any methods that are not implemented should throw an
UnsupportedRepositoryOperationException and the
getCapabilitySupport() method should not report this method as
supported.

b. Modify Ticket.getAllInterfaces() and getInterface() to return
the interface implementation.

c. Modify Ticket.getCapabilitySupport() to report the status (supported
or unsupported) of each method on the ticket operation interface.

4.4.1 Basic SPI Repository Implementation Code Example
Example 4–1shows a simple SPI Repository code example of a Repository with the
following limitations:

■ It does not authenticate.

■ It does not support any feature capabilities.

■ It does not support any optional repository operation interfaces, such as
RepositoryConfigOpsV1, and therefore does not support any method
capabilities.

■ It does not provide any repository defined capabilities.

Example 4–1 Basic SPI Implementation

import com.bea.content.spi.flexspi.Repository;
import com.bea.content.spi.flexspi.Ticket;
import com.bea.content.spi.flexspi.common.capability.ICapabilityDefinition;
import com.bea.content.spi.flexspi.common.capability.CapabilityLevel;

Basic SPI Implementation

4-6 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

import com.bea.content.spi.flexspi.common.capability.FeatureCapabilityDefinition;
import com.bea.content.spi.flexspi.common.ISPIMarker;
import com.bea.content.spi.flexspi.common.SPIRepositoryInterfaces;
import com.bea.content.spi.flexspi.common.SPIDescriptionKeys;
import com.bea.content.capability.NodeFeatureCapability;
import com.bea.content.*;
import java.util.*;
public class FlexRepositoryImpl implements Repository
{
 // VCR configures these before connect() is called
 private String repositoryName;
 private Properties props;

 // the description key/values
 private Map<String, String> descMap = new HashMap<String, String>();
 public FlexRepositoryImpl()
 {
 // SPI implementation MUST have a public default ctor
 //standard keys
 descMap.put(SPIDescriptionKeys.VENDOR_KEY,
 "Some third party vendor");
 descMap.put(SPIDescriptionKeys. VERSION_KEY, "0.1.1");
 descMap.put(SPIDescriptionKeys. DESCRIPTION_KEY, "Simple SPI");

 //custom keys can also be added
 descMap.put("InternalVersion", "Build 31141");
 }
 public Ticket connect(Credentials credentials)
 throws AuthenticationException, RepositoryException
 {
 // this SPI does not perform authentication
 return new FlexTicketImpl(this);
 }
 public Ticket connect(String username, String password)
 throws AuthenticationException, RepositoryException
 {
 // this SPI does not perform authentication
 return new FlexTicketImpl(this);
 }
 public String getName() {
 return repositoryName;
 }
 public void setName(String name) {
 repositoryName = name;
 }
 public Properties getProperties() {
 return props;
 }
 public void setProperties(Properties properties) {
 props = properties;
 }
 public Set<ICapabilityDefinition> getRepositoryDefinedCapabilities() {
 return Collections.emptySet();
 }
 public Map<String, String> getDescription() {
 return descMap;
 }
 public Map<String, ISPIMarker> getAllInterfaces() {
 // no repository operation interfaces
 return new HashMap<String,ISPIMarker>();

Basic SPI Implementation

Implementing an SPI 4-7

 }
 public ISPIMarker getInterface(String interfaceName) {
 // no repository operation interfaces
 return null;
 }
 public Map<ICapabilityDefinition, CapabilityLevel>
 getCapabilitySupport(Set<ICapabilityDefinition> capabilities)
 {
 HashMap<ICapabilityDefinition, CapabilityLevel> capMap
 =new HashMap<ICapabilityDefinition, CapabilityLevel>();
 // start out with everything not supported; we will mark
 // individual feature capabilities as supported.
 for (ICapabilityDefinition capDef : capabilities) {
 capMap.put(capDef, CapabilityLevel.NotSupported);
 }
 // here we would override the unsupported value if we supported anything
 // but we don't…

 // everything unsupported
 return capMap;
 }
}

4.4.2 Basic SPI Ticket Implementation Code Example
Example 4–2 shows a simple SPI Ticket code example of a Ticket that does not support
any optional ticket operation interfaces, such as NodeOpsV1 and SearchOpsV1, and
therefore does not support any method capabilities.

Example 4–2 Ticket Implementation Code Example

import com.bea.content.spi.flexspi.Ticket;
import com.bea.content.spi.flexspi.Repository;
import com.bea.content.spi.flexspi.common.ISPIMarker;
import com.bea.content.spi.flexspi.common.SPITicketInterfaces;
import com.bea.content.spi.flexspi.common.capability.ICapabilityDefinition;
import com.bea.content.spi.flexspi.common.capability.CapabilityLevel;
import com.bea.content.spi.flexspi.common.capability.MethodCapabilityDefinition;
import java.util.*;
public class FlexTicketImpl implements Ticket
{
Repository repository; // the repository this ticket was created from
//1=flex interface name, 2=flex interface object
private Map<String, ISPIMarker> advertisedInterfaces;
public FlexTicketImpl(Repository repository) {
this.repository = repository;
advertisedInterfaces= new HashMap<String,ISPIMarker>();
// no interfaces yet
}
public Map<String, ISPIMarker> getAllInterfaces() {
return advertisedInterfaces;
}
public ISPIMarker getInterface(String interfaceName) {
return advertisedInterfaces.get(interfaceName);
}
public Map<ICapabilityDefinition, CapabilityLevel>
getCapabilitySupport(Set<ICapabilityDefinition> capabilities)
{
// no interfaces, no methods, no capabilities; everything is unsupported

Optional SPI Interfaces Implementation

4-8 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

HashMap<ICapabilityDefinition, CapabilityLevel> capMap
=new HashMap<ICapabilityDefinition, CapabilityLevel>();
// start out with everything not supported; we will mark
// individual feature capabilities as supported.
for (ICapabilityDefinition capDef : capabilities) {
capMap.put(capDef, CapabilityLevel.NotSupported);
}
// here we would override the unsupported value if we supported anything
// but we don't…
// everything unsupported
return capMap;
}
}

4.5 Optional SPI Interfaces Implementation
You use optional SPI interfaces to expose nodes and types to the VCR. Generally, client
code has certain assumptions about the capabilities of the repositories the code runs
against, such as read-only access to nodes. As the VCR delegates to the repository, the
client code presumes that certain VCR methods work properly.

The optional PSPI interfaces are:

■ Repository operation interfaces – The RepositoryConfigOpsV1 provides
repository callbacks as repository configurations that are modified by VCR clients
(generally, administrators). For example, createRepository(…),
updateRepository(…), and removeRepository(…).

■ Ticket operation interfaces – The following interfaces provide CRUD operations:

■ Nodes – NodeOpsV1.

■ Types – ObjectClassOpsV1.

■ Operations for searching for nodes – SearchOpsV1.

■ Workflows – WorkflowOpsV1.

4.5.1 Exposing an Optional SPI Interface
To expose an optional SPI interface such as NodeOpsV1.

1. Create a class to implement the SPI interface.

For example MyNodeOps implements NodeOpsV1. Generally, you should make
this a light-weight class, as many objects may be created.

2. Write implementations of the SPI interface methods.

3. Modify Ticket.getAllInterfaces() and getInterface() to return the
interface implementation.

To reduce object creation, create the interfaces when the ticket is created, hold onto
them, and then return them in getAllInterfaces() and getInterface().
For example:

Note: Any methods that are not implemented should throw an
UnsupportedRepositoryOperationException. Additionally, the
Ticket.getCapabilitySupport() method should report this method as
not supported.

SPI Interface Result Collections, Sorting, and Filtering

Implementing an SPI 4-9

private Map<String,ISPIMarker> ifaces;
public FlexTicketImpl(Repository repository) {
 this.repository= repository;
//init interfaces
 ifaces= new HashMap<String,ISPIMarker>();
 ifaces.put(SPITicketInterfaces.NODE_OPS_V1,
 new MyNodeOps(…);
 . . .
}

public Map<String, ISPIMarker> getAllInterfaces() {
 return ifaces;
}
public ISPIMarker getInterface(String ifaceName) {
 return ifaces.get(ifaceName);
}

4. Modify Ticket.getCapabilitySupport() to report the status (supported or
unsupported) of each method on all the ticket operation interfaces. For example:

public Map<ICapabilityDefinition, CapabilityLevel>
 getCapabilitySupport(Set<ICapabilityDefinition> capabilities)
{
 Map<ICapabilityDefinition, CapabilityLevel> capMap
 =new HashMap<ICapabilityDefinition, CapabilityLevel>();
 // start out with everything not supported; we will mark
 // individual feature capabilities as supported.
 for (ICapabilityDefinition capDef : capabilities) {
 capMap.put(capDef, CapabilityLevel.NotSupported);
 }
 // now override the unsupported values where it makes sense
 final String[] supportedNodeOpsMethodNames = new String[] {
 NodeOpsV1.MethodName.getNodeChildren.toString(),
 NodeOpsV1.MethodName.getNodeChildrenAsNodeIds.toString(),
 NodeOpsV1.MethodName.getNodesWithIds.toString(),
 NodeOpsV1.MethodName.getNodeWithId.toString(),
 NodeOpsV1.MethodName.getNodeWithPath.toString(),
 };
 for (String methodName : supportedNodeOpsMethodNames) {
 ICapabilityDefinition capDef
 = new MethodCapabilityDefinition(
 SPITicketInterfaces.NODE_OPS, methodName
);
 if (capabilities.contains(capDef)) {
 capMap.put(capDef, CapabilityLevel.FullySupported);
 }
 }
 return capMap;
}

4.6 SPI Interface Result Collections, Sorting, and Filtering
Optionally, the SPI implementation can include the ability to sort and/or filter results.
The collections of items returned by the SPI are returned in a QueryResult object
(including an ordered list of results) and a QueryCriteria object that describes how
the returned collection is sorted and filtered (if at all). For instance, a
QueryResult<Node> may contains a collection of nodes that are both sorted and
filtered.

SPI Interface Result Collections, Sorting, and Filtering

4-10 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

4.6.1 Filtering and Sorting Results with the SPI
Many of the methods that return results collections take a QueryCriteria
parameter. This parameter allows the caller to indicate how results should be sorted or
filtered or both (if possible). For example, the caller may request that the results be
sorted by name. At present, the caller can specify only one sort criteria and one filter
criteria.

The SortCriteria contains a property (criteria) and an ascending or descending
flag, such as name ascending.

The FilterCriteria contains a property (criteria), a FilterMethod operand, such
as unfiltered, equals, not equals, contains, not contains, begins with, ends with, greater
than, and less than, and a value. For example, name contains 'foo'.

The sort and filter criteria set of properties are related to the JavaBean properties on
the data objects being used. For example, Node contains a JavaBean property for name
because it has a getName() method; for createdDate because it has a
getCreatedDate() method; and so on.

Native sorting and filtering performs best. The VCR also supports mechanisms for
sorting and filtering in-memory if the SPI implementation is unable to service a sort or
filter request. Client code (and the VCR) can ask the SPI which properties it can
natively sort and filter.

The SPI implementation reports its sorting and filtering capabilities (the properties it
can sort and filter on) to the VCR for objects on an interface by implementing methods
such as NodeOpsV1.getNativeSortableProperties() and
NodeOpsV1.getNativeFilterableProperties(). For example, the SPI may
report that it can sort nodes by name and createDate properties.

The sorting and filtering capability reporting is currently done at the interface
granularity. In other words, a given interface such as NodeOpsV1 has a primary data
object. The primary data object, a Node for example, reports the capabilities for sorting
and filtering across the results collection methods in the interface.

The SPI implementation may receive a QueryCriteria parameter that requests
sorting or filtering capabilities beyond what it can support. If this happens, the SPI
implementation should not throw an exception. Instead the SPI implementation
should do its best to report how the results are currently sorted and filtered. For
example, the SPI implementation should create an unsorted and/or unfiltered
QueryResult to express what it was unable to sort and/or filter. If the SPI
implementation can perform one of the requests, it should do so and report the results
appropriately. For instance, if it can sort, the SPI implementation should report the
results as sorted, but unfiltered.

If necessary the VCR may sort/filter the query results in memory to ensure the query
results are sorted/filtered as the client requests.

4.6.2 Common SPI Interface Objects for Sorting and Filtering
Use the following objects for sorting and filtering:

■ QueryCriteria – Some methods pass a QueryCriteria object as a means for a
caller to request sorting and filtering of results. These methods include
SortCriteria and FilterCriteria objects. Currently, only a single

Tip: If the SPI does not support native sorting or filtering, it should
return an empty set, such as Collections.emptySet() rather than null.

Configuring Security

Implementing an SPI 4-11

SortCriteria or FilterCriteria can be specified; multi-criteria sorting or
filtering is not supported.

■ SortCriteria – Provides the ability for ascending or descending sorting on a
specific property (criteria). A sortResults flag indicates whether the results are
sorted or unsorted. SortCriteria also includes a property that is one of the
JavaBean properties on the data object.

■ FilterCriteria – Provides the ability to filter on a specific property (criteria). A
filterResults flag indicates whether the results are filtered or unfiltered.
FilterCriteria includes a property that is one of the JavaBean properties on
the data object, and a filterMethod that indicates the filter operation, such as
begins with, contains, equals, greater than, unfiltered, and so on.

■ QueryResult – Represents a set of results returned by the SPI implementation.
QueryResult also includes a QueryCriteria object that describes how the
results are sorted and filtered (or neither), plus an ordered list of the data objects.

4.7 Configuring Security
This section describes the available options for configuring security with a third-party
repository through the SPI.

■ Section 4.7.1, "Authorization and Identity Management Overview"

■ Section 4.7.2, "No Authentication"

■ Section 4.7.3, "WLP-Secured Resource Management"

■ Section 4.7.4, "Natively-Secured Resource Management"

■ Section 4.7.5, "Identity Propagation with Native Security"

4.7.1 Authorization and Identity Management Overview
The SPI security model lets you configure both authorization and identity
management options. You can configure authorization to be managed by either WLP
or the native (third-party) repository. With WLP-managed authorization, data is
secured by WLP, and WLP content entitlements apply. With native authorization, data
is secured through the third-party repository. WLP content entitlements do not apply.

When user identity is configured globally, all WLP application users who log in to the
repository share the same user credentials and privileges. If the third-party repository
supports the RepositoryMultipleUsers capability, it is possible on a per-WLP-user
basis to log in to the third-party repository with "individual" credentials (typically
called "mapped credentials").

Developers can use the SPI API to develop a login feature that allows portal users to
log in with mapped credentials. For example, if a user logs in using his or her global
identity, they might have read-only access to the repository. However, if they log in
using their mapped identity, they could have read-write access. In addition,
administrators using the Portal Administration Console can log in to a third-party
repository with a mapped credential. For details, see "Logging Into a Third-Party
Repository" in the Oracle Fusion Middleware Content Management SPI Development Guide
for Oracle WebLogic Portal. Again, mapped credential identity management is only
possible if the third-party repository supports it. To support this capability in a

Note: Techniques that use native security tend to offer the best
performance (useNativeSecurity = true).

Configuring Security

4-12 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

repository, the repository must indicate it supports the RepositoryMultipleUsers
capability. When this is done, the VCR allows users to define personal mapped
credentials for this repository, and supplies the credentials to the repository as
appropriate with the Ticket.connect(...) methods.

4.7.2 No Authentication
Some SPI implementations may not have a concept of authentication. If this is the case,
the repository configuration contains no user or password credentials, and all VCR
users in the same enterprise application have access to the repository. WebLogic Portal
CM entitlements define the data each user is permitted to access. From an SPI
implementation perspective, the Repository.connect() methods should always
create and return a Ticket implementation object.

4.7.3 WLP-Secured Resource Management
If WLP manages resource authorization, the data is secured through WebLogic Portal
and WLP Content Entitlements will apply. Two options for identity management exist
for WLP-secured resource management.

4.7.3.1 WLP-Secured/Global User Identity Configuration
In the case of global user identity, all users in the application use the same credentials
to connect to the third-party repository instance.

Configure this type of security with these settings in the
META-INF/content-config.xml file in the EAR Project, as described in the
following table.

4.7.3.2 WLP Secured/Mapped Credential User Configuration
Mapped credential identity management is only available if the third-party repository
supports it. Currently, only the Oracle WebCenter Content repository supports identity
mapping. For information on the mapped identity option, see Section 4.7.1,
"Authorization and Identity Management Overview."

4.7.4 Natively-Secured Resource Management
If the third-party (native) respository manages resource authorization, the data is
secured through the third-party repository and WLP Content Entitlements do not
apply. Two options for identity management exist for natively-secured resource
management.

4.7.4.1 Natively-Secured/Global User Identity Configuration
All users in the application use the same credentials to connect to the third-party
repository instance. Configure this type of security with these settings in the
META-INF/content-config.xml file in the EAR Project:

Note: Currently, Oracle WebCenter Content is the only repository
that supports the RepositoryMultipleUsers capability.

Field Value

Username The user name of a valid user of the repository.

useNativeSecurity false

Search Cache Configuration

Implementing an SPI 4-13

4.7.4.2 Natively-Secured/Mapped Credential User Configuration
Mapped identity management is only available if the third-party repository supports
it. Currently, on the Oracle WebCenter Content repository supports identity mapping.
For information on the mapped identity option, see Section 4.7.1, "Authorization and
Identity Management Overview."

4.7.5 Identity Propagation with Native Security
With this option, WebLogic Portal and the third-party repository use the same security
store, such as a shared LDAP store. Each WLP user sees in the application what they
are permitted to see on the third-party repository side. Entitlements (WLP content
security) are disabled.

4.8 Connecting and Logging Into a Third-Party Repository
For detailed information on connecting to third-party repositories, see "Connecting to
a Third-Party Repository" in the Oracle Fusion Middleware Content Management Guide for
Oracle WebLogic Portal. For information on logging in to a third-party repository
(including the procedure for logging in using either global or mapped user
credentials), see "Logging Into a Third-Party Repository" in the Oracle Fusion
Middleware Content Management Guide for Oracle WebLogic Portal.

4.9 Search Cache Configuration
The VCR manages repository-specific search caches of the form:
searchCache.repository_name. These caches can be configured on a per-repository basis.
For details, see the Oracle Fusion Middleware Cache Management Guide for Oracle
WebLogic Portal.

SPI developers can exclude a repository from the VCR search cache. For example, you
might do this if the repository can efficiently serve search results or live search results
are required.. This feature is only available if the respository supports the feature
capability named SearchFeatureCapability.RepositoryManagedSearchCache.

Field Value

Username The user name of a valid user of the repository.

useNativeSecurity true

Field Value

Username Do not set a value for this field.

useNativeSecurity true

Search Cache Configuration

4-14 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

5

Interface Topics 5-1

5Interface Topics

This chapter provides useful information for writing an SPI implementation. It
contains the following sections:

■ Section 5.1, "NodeOpsV1 SPI Interface Topics"

■ Section 5.2, "ObjectClassOpsV1 SPI Interface Topics"

■ Section 5.3, "SearchOpsV1 SPI Interface Topics"

■ Section 5.4, "Indexing Content"

■ Section 5.5, "SPI Testing Topics"

5.1 NodeOpsV1 SPI Interface Topics
The following FAQs provides useful information when implementing the NodeOpsV1
interface. It contains the following questions, answers, and examples:

■ Section 5.1.1, "What Types of Operations are Supported by the NodeOpsV1 SPI
Interface?"

■ Section 5.1.2, "What Type of Hierarchical Paths are Passed To and From the SPI
layer?"

■ Section 5.1.3, "How Should the SPI Implementation Create Node Data Objects to
be Returned?"

■ Section 5.1.4, "How Should the SPI Implementation Create Property Data Objects
to be Returned"

■ Section 5.1.5, "What Should the SPI Implementation Do when Node Metadata is
not Available?"

■ Section 5.1.6, "How are the Node ID and Property ID related?"

■ Section 5.1.7, "What Node Names are Valid?"

■ Section 5.1.8, "Example – Creating a Node with no ObjectClass"

■ Section 5.1.9, "Example – Creating a Node with an ObjectClass and Property
Values"

5.1.1 What Types of Operations are Supported by the NodeOpsV1 SPI Interface?
The NodeOpsV1 interface supports all the operations on nodes, properties, and values:

■ Creating nodes.

■ Retrieving nodes by ID or Path.

NodeOpsV1 SPI Interface Topics

5-2 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

■ Reading groups of nodes by hierarchy positions and by link property location.

■ Updating nodes.

■ Deleting nodes.

■ Copying nodes.

■ Moving nodes.

■ Retrieving node properties.

■ Retrieving node binary values.

5.1.2 What Type of Hierarchical Paths are Passed To and From the SPI layer?
The paths used in the SPI layer must start with a path delimiter (/) and extend based
on the repository path. For example, /foo/bar/bas. The repository name is not part
of the path unlike a VCR federated path. For example,
/MyRepository/foo/bar/bas is not a valid SPI path, but it is a valid VCR path.

5.1.3 How Should the SPI Implementation Create Node Data Objects to be Returned?
The SPI implementation can directly instantiate the Node via a constructor such as:

new Node(Calendar createdDate, String createdBy, boolean hasChildren, ID id, String modifiedBy,
Calendar modifiedDate, ObjectClass objectClass, ID parentId, String path, Property[] properties)

The Node ID needs a non-null UUID set; however, the Node ID does not need the
repositoryName set, as the VCR takes care of this function.

Previous versions of WebLogic Portal had a concept of "node type." Starting with
WebLogic Portal 10.2, SPI implementations should use the node type of
Node.CONTENT when a node type is necessary.

If the node has an ObjectClass, you can create a Property on the Node for any
PropertyDefinition in the ObjectClass.

To optimize performance, the SPI implementation can optionally pass null for the
Property[] properties. This allows the properties to be lazy-loaded by the VCR
when needed. Additionally, the SPI implementation can optionally use a null
ObjectClass and call setObjectClassId() to set the ObjectClass identifier.
This allows the objectClass to be lazy-loaded by the VCR when needed.

You can use these approaches on a per-method basis. In general, use these approaches
for methods that may return a large collection of nodes. For methods returning a
single node, it is generally not advisable to lazy-load the properties.

5.1.4 How Should the SPI Implementation Create Property Data Objects to be Returned
The SPI implementation can directly instantiate each Property via a constructor such
as:

new Property(ID id, String name, int type, Value[] values)

The Property ID needs a non-null UUID set; it does not need the repositoryName
set, as the VCR takes care of the repository name.

5.1.5 What Should the SPI Implementation Do when Node Metadata is not Available?
The SPI implementation requirements, when metadata (created by, modified date, and
so on) is not available, depends on what data the VCR clients use. For maximum

NodeOpsV1 SPI Interface Topics

Interface Topics 5-3

flexibility with clients, it is best for the SPI implementation to return constant values
rather than null. For example, the SPI could return system as the "created by" or
"modified by" String, or return a constant Date as the created date or modified date.

5.1.6 How are the Node ID and Property ID related?
The Property ID is a finer granularity than the Node ID; it represents data within a
node. The exact relationship depends on the back-end system and how it represents
and can access node and property data.

The Node UUID must uniquely identify the node within an implicit repository. You
use the Node UUID retrieve all the properties (and values) for a given node.

The Property UUID must uniquely identify a single property on a single node
within an implicit repository. You use the Property UUID to retrieve a single
property on a node.

The Node UUID is not always supplied when the properties are retrieved. For
example, with NodeOpsV1.getPropertyBytes(ID propertyId) the
Property UUID needs to be able to "stand alone" and work on its own. One option
for linking the IDs together is to have the Property ID contain the Node ID. For
example, if the Node UUID is "41431", the Property UUID could be
"41431/stringProperty".

5.1.7 What Node Names are Valid?
In general, the node name must be a non-empty string, must not contain forward or
backslashes, and the last token in a node's hierarchical path must be the node name.
For detailed information, see the Oracle Fusion Middleware Java API Reference for
Oracle WebLogic Portal.

5.1.8 Example – Creating a Node with no ObjectClass
Example 5–1 shows an example of how to create a node without an ObjectClass.

Example 5–1 Creating a Node with no ObjectClass

ID id = new ID(uid);
ID parentId = new ID(parentUid);
Node node = new Node(createDate, createdBy, false, id, createdBy,
 createDate, null /* no ObjectClass */, parentId, path, null);

5.1.9 Example – Creating a Node with an ObjectClass and Property Values
Example 5–2 shows an example of how to create a node with an ObjectClass and
property values.

Example 5–2 Creating a Node with an ObjectClass and Property Values

ID id = new ID(uid);
ID parentId = new ID(parentUid);
Property [] props = getPropertiesToUse();
Node node = new Node(createDate, createdBy, false, id, createdBy, createDate,
null /* lazy-load ObjectClass */, parentId, path, props);
ID ocId = new ID(objectClassUid);
node.setObjectClassId(ocId); //lazy-load ObjectClass

ObjectClassOpsV1 SPI Interface Topics

5-4 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

5.2 ObjectClassOpsV1 SPI Interface Topics
This section contains information about implementing ObjectClassOpsV1. It
contains the following sections:

■ Section 5.2.1, "What are the Supported Operation Types?"

■ Section 5.2.2, "How Should the SPI Implementation Create ObjectClass Objects?"

5.2.1 What are the Supported Operation Types?
The ObjectClassOpsV1 interface supports all the operations on ObjectClasses,
PropertyDefinitions, and PropertyChoices, which are:

■ Creating objectClasses and propertyDefinitions.

■ Retrieving an objectCass by ID or name.

■ Retrieving a propertyDefinition by ID.

■ Retrieving all propertyDefinitions by objectClass ID.

■ Updating an objectClass or property definition.

■ Deleting objectClasses and propertyDefinitions.

■ Renaming an objectClass.

■ Retrieving some or all objectClasses.

■ Retrieving property choice binary values.

To support type inheritance, objectClasses support a hierarchical structure.
ObjectClasses have a Name and an ID that are used for identification. They also
have a path. When type inheritance is used, the ObjectClass path indicates its
relationship to other ObjectClasses.

5.2.2 How Should the SPI Implementation Create ObjectClass Objects?
The SPI implementation can directly instantiate each ObjectClass using a
constructor such as:

new ObjectClass(ID id, String name, PropertyDefinition
 primaryPropertyDefinition, PropertyDefinition[] propertyDefinitions,
 boolean hasPropertyDefinitions);

The hasPropertyDefinitions flag indicates whether PropertyDefinitions
exist for this type in the external system and supports lazy-loading of
propertyDefinitions. For example, propertyDefinitions may exist in the
external system, but not be returned in the ObjectClass.

To enhance performance, the SPI implementation can optionally pass null for the
PropertyDefinition[] propertyDefinitions. This allows the
propertyDefinitions to be lazy-loaded by the VCR when needed.

5.3 SearchOpsV1 SPI Interface Topics
The SearchOpsV1 interface supports node search and indexing operations. The
following operations are supported:

■ Searching for nodes matching criteria, either metadata search or full-text search.

■ Manually indexing or re-indexing a node tree by path.

Indexing Content

Interface Topics 5-5

■ Manually indexing or re-indexing all nodes with a specified ObjectClass.

The SearchOpsV1 interface supports the following search criteria:

■ System metadata – The JavaBean properties on the Node, such as name,
ObjectClass name, created by, and so on.

■ User metadata – The ObjectClass properties.

5.4 Indexing Content
Content indexing allows for fast lookups, especially for full-text searches. For example,
when nodes are created, data can be indexed into a full-text search engine for fast
retrieval.

This section contains the following topics:

■ Section 5.4.1, "How Is Content Indexed?"

■ Section 5.4.2, "How Can an Event Listener Perform Content Indexing?"

5.4.1 How Is Content Indexed?
You can index content in two ways:

■ Synchronously, during node creation. To do this, use the SPI implementation of
NodeOpsV1.create methods or use a synchronous event listener that is
registered to listen to node create events.

■ Asynchronously, after node creation. To do this, use an asynchronous event
listener that is registered to listen to node create events controlled via an external
timer or mechanism.

Use the index_cm_data script to re-index by path or content type.

The synchronous approach makes node creation slower, but supports immediate
searches for the data. The asynchronous approaches make node creation faster, but the
data is not available immediately.

5.4.2 How Can an Event Listener Perform Content Indexing?
The event listener must implement the interface
com.bea.p13n.events.EventListener. You can register the event listener via a
META-INF/p13n-config.xml file with an entry such as:

<?xml version="1.0" encoding="UTF-8"?>
<p13n-config xmlns="http://www.bea.com/ns/p13n/90/p13n-config">
 <event-service>
 <listener>com.xxx.ContentExporterListener</listener>
 </event-service>
</p13n-config>

The event listener should listen for the event type
ContentEventHelper.CONTENT_EVENT_BATCH_TYPE. The event listener's
handleEvent(Event) method is called as content items are created, updated, or

Note: If you use event listeners, you can temporarily disable content
indexing, then create a group of nodes, re-enable content indexing,
and then manually re-index the relevant data tree with the
index_cm_data script.

SPI Testing Topics

5-6 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

deleted. This method receives events of type ContentEventBatch, which contains a
group of events that have fired.

5.5 SPI Testing Topics
This section contains informations to aid in testing an SPI implementation. It contains
the following topics:

■ Section 5.5.1, "How to Configure a Repository for SPI Parameter and Response
Data Checking"

■ Section 5.5.2, "How to Monitor Repository and Ticket Method Invocations and
Performance"

■ Section 5.5.3, "How to Monitor SPI Operation Interface Method Invocations and
Performance"

5.5.1 How to Configure a Repository for SPI Parameter and Response Data Checking
During testing, you can configure a repository to perform SPI parameter and response
data checking. The vcrValidation and repositoryValidation repository
configuration settings enable additional runtime checks on the data passed to and
from the SPI. These settings catch some of the common errors. By default, both settings
are false (disabled) to maximize performance.

To enable VCR validation, add these settings to your repository configuration:

Property name: 'vcrValidation'
Property value: 'true' (default is false)
Property name: 'repositoryValidation'
Property value: 'true' (default is false)

Alternatively, you can place this code snippet in your
MTA-INF/content-config.xml file in the appropriate section for your repository
configuration:

<repository-property>
 <name>vcrValidation</name>
 <value>true</value>
</repository-property>
<repository-property>
 <name>repositoryValidation</name>
 <value>true</value>
</repository-property>

5.5.2 How to Monitor Repository and Ticket Method Invocations and Performance
To debug repository and ticket operations, add debug lines to your
debug.properties file:

spi.com.bea.content.manager.internal.RepositoryHelper: ON
spi.com.bea.content.manager.internal.RepositoryManagerImpl: ON
To collect timing information, add:
timing.com.bea.content.manager.internal.RepositoryHelper: ON
timing.com.bea.content.manager.internal.RepositoryManagerImpl: ON

SPI Testing Topics

Interface Topics 5-7

5.5.3 How to Monitor SPI Operation Interface Method Invocations and Performance
To enable SPI invocation, add a debug line to your debug.properties file:

spi.com.bea.content.manager.internal.delegate: ON

To enable SPI method timing, add a debug line to your debug.properties file:

timing.com.bea.content.manager.internal.delegate: ON

SPI Testing Topics

5-8 Oracle Fusion Middleware Content Management SPI Development Guide for Oracle WebLogic Portal

	Contents
	List of Examples
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Content Management SPI
	1.1 Content Management SPI FAQ
	1.1.1 What is the CM SPI?
	1.1.2 Why Write an SPI?
	1.1.3 What are the Structures and Data Types that can be Exposed?
	1.1.4 What is the Difference Between an SPI Implementation and a Repository?
	1.1.5 Who Uses the SPI?
	1.1.6 How is an SPI Implementation Packaged and Made Available to the VCR?
	1.1.7 Where Does the SPI Implementation Run?

	1.2 Architecture Overview of an SPI Implementation
	1.2.1 What components are involved in the SPI?
	1.2.2 What is the Relationship of the VCR Repository Construct and the WebLogic Portal Application?
	1.2.3 What Authentication Models are Available?
	1.2.4 How Does the VCR Interact With the SPI Implementation?

	2 SPI Data Model
	2.1 About the Content Management Data Model
	2.2 Type Data Representation
	2.3 Node Data Representation

	3 SPI Capabilities and Versions
	3.1 About SPI Capabilities
	3.2 VCR Detection of the SPI Implementation Capabilities
	3.3 SPI Interface Versions

	4 Implementing an SPI
	4.1 VCR SPI Implementation Interaction
	4.2 Primary Classes for a Basic SPI Implementation
	4.3 Repository Guidelines when Creating an SPI Implementation
	4.4 Basic SPI Implementation
	4.4.1 Basic SPI Repository Implementation Code Example
	4.4.2 Basic SPI Ticket Implementation Code Example

	4.5 Optional SPI Interfaces Implementation
	4.5.1 Exposing an Optional SPI Interface

	4.6 SPI Interface Result Collections, Sorting, and Filtering
	4.6.1 Filtering and Sorting Results with the SPI
	4.6.2 Common SPI Interface Objects for Sorting and Filtering

	4.7 Configuring Security
	4.7.1 Authorization and Identity Management Overview
	4.7.2 No Authentication
	4.7.3 WLP-Secured Resource Management
	4.7.3.1 WLP-Secured/Global User Identity Configuration
	4.7.3.2 WLP Secured/Mapped Credential User Configuration

	4.7.4 Natively-Secured Resource Management
	4.7.4.1 Natively-Secured/Global User Identity Configuration
	4.7.4.2 Natively-Secured/Mapped Credential User Configuration

	4.7.5 Identity Propagation with Native Security

	4.8 Connecting and Logging Into a Third-Party Repository
	4.9 Search Cache Configuration

	5 Interface Topics
	5.1 NodeOpsV1 SPI Interface Topics
	5.1.1 What Types of Operations are Supported by the NodeOpsV1 SPI Interface?
	5.1.2 What Type of Hierarchical Paths are Passed To and From the SPI layer?
	5.1.3 How Should the SPI Implementation Create Node Data Objects to be Returned?
	5.1.4 How Should the SPI Implementation Create Property Data Objects to be Returned
	5.1.5 What Should the SPI Implementation Do when Node Metadata is not Available?
	5.1.6 How are the Node ID and Property ID related?
	5.1.7 What Node Names are Valid?
	5.1.8 Example - Creating a Node with no ObjectClass
	5.1.9 Example - Creating a Node with an ObjectClass and Property Values

	5.2 ObjectClassOpsV1 SPI Interface Topics
	5.2.1 What are the Supported Operation Types?
	5.2.2 How Should the SPI Implementation Create ObjectClass Objects?

	5.3 SearchOpsV1 SPI Interface Topics
	5.4 Indexing Content
	5.4.1 How Is Content Indexed?
	5.4.2 How Can an Event Listener Perform Content Indexing?

	5.5 SPI Testing Topics
	5.5.1 How to Configure a Repository for SPI Parameter and Response Data Checking
	5.5.2 How to Monitor Repository and Ticket Method Invocations and Performance
	5.5.3 How to Monitor SPI Operation Interface Method Invocations and Performance

