
1

Oracle® Fusion Middleware
Performance Tuning Guide for Oracle WebLogic Portal

10g Release 3 (10.3.2)

E14242-01

February 2010

This guide includes these sections:

■ Section 1, "General Performance Tuning Guidelines"

■ Section 2, "Tuning Your Portal Domain"

■ Section 3, "Tuning Your Portal Application"

■ Section 4, "Tuning Your Portal Web Application"

■ Section 5, "Performance Tuning Checklists"

■ Section 6, "Documentation Accessibility"

1 General Performance Tuning Guidelines
WebLogic Portal application performance is affected by many factors. This section
discusses a few of the initial aspects that can affect performance and provides links to
documentation resources that can assist you.

■ Section 1.1, "Understanding Performance Tuning and Oracle WebLogic Portal"

■ Section 1.2, "Tuning Your WebLogic Server"

■ Section 1.3, "Tuning Your JVM"

■ Section 1.4, "Tuning Your Database"

■ Section 1.5, "Tuning Your Operating System"

■ Section 1.6, "Other Resources"

1.1 Understanding Performance Tuning and Oracle WebLogic Portal
Performance tuning is a process which spans development, staging and deployment.
During all phases, performance should be monitored and appropriate adjustments
made. If you are new to performance testing, see "Approaches to Performance
Testing," at
http://www.oracle.com/technology/pub/articles/dev2arch/2005/09/p
erformance_testing.html.

Oracle recommends that you establish an environment where you can performance
test the installation for the following reasons:

■ Testing under realistic load may uncover bugs not seen during development or
QA.

2

■ Testing your prototype under load will help you validate design decisions early in
the development cycle that may significantly alter the performance of your
application.

■ Any configuration change can dramatically affect application performance
(hardware, database, clustering environment, application tuning parameters, and
so on). Load testing your application whenever design changes are made provides
a way to narrow down performance problems to a particular area.

■ Testing early and often increases the likelihood that your site implementation and
deployment will perform well.

The recommended approach for performance testing is to start with the simplest
aspect of the installation and then move into areas of increased complexity. If you
observe slow behavior in any portion of this testing process, you should begin a more
thorough investigation into its causes.

1.1.1 General Architecture
First, perform the following steps to identify performance issues with your network,
database, or other software that is independent of WebLogic Portal.

1. Test your database (independent of any web components) to determine how well
your schema and SQL work. Note any areas where the schema or SQL may not be
optimized for performance. See the Oracle Fusion Middleware Database
Administration Guide for Oracle WebLogic Portal for more information about
proper setup and performance tuning.

2. Test your network for sufficient bandwidth, and check that the TCP/IP parameters
on the server's operating system can sufficiently handle the application load you
expect. It is possible that the network is the slowest aspect of your deployment.
Ensure that your IP Multicast for cluster deployment is configured correctly. See
also "Troubleshooting Multicast Configuration" in Oracle Fusion Middleware Using
Clusters for Oracle WebLogic Server.

3. Test your web server, ensuring that it has sufficient capacity to serve static HTML
pages when many concurrent threads are running.

4. Ensure that you have enough resources available to meet application
requirements. Most large applications are clustered, but keep in mind that a
clustered environment requires resources to perform load-balancing tasks. For
more information, see "Understanding Cluster Configuration" and "Application
Deployment for Clustered Configurations" in Oracle Fusion Middleware Using
Clusters for Oracle WebLogic Server.

5. Test your servlet engine by running a load test against a trivial servlet such as a
HelloWorld servlet. If this simple servlet does not perform and scale horizontally
(meaning that as you add Java Virtual Machines, performance increases
accordingly), the performance problems you encounter may be related to an
infrastructure or resource issue.

1.1.2 WebLogic Portal
After performing the steps in the previous section, Section 1.1.1, "General
Architecture," perform the following steps to identify performance issues with
WebLogic Portal:

1. Verify that your Oracle WebLogic Portal database configuration is optimal.
WebLogic Portal makes extensive use of the database. Check that your connection
pool is large enough and verify that your database handles connection failures in

3

an efficient manner. For example, the size of the JDBC connection pool should be
set to handle the maximum number of concurrent users as possible, and it should
be set on server startup rather than growing as connections are needed. This will
increase the server startup time but will decrease the overhead creating those
connections under server load. See the section "Performance Considerations" in
the Oracle Fusion Middleware Database Administration Guide for Oracle WebLogic
Portal for more information.

2. Verify that each portlet is optimized for speed as follows:

■ If a portlet uses forms that update the data within the portlet this will cause
the entire portal to refresh its data, which can be very time consuming.
Therefore, portlets that have this behavior should have asynchronous
rendering enabled via AJAX or iFrames so that the overall rendering of the
portal is not affected. AJAX is supported at the portal desktop and individual
portlet levels.

■ Place items that require heavy processing in an edit page or a maximized URL.
If you do not, the portal must wait for the portlet to process, and this
considerably slows down the eventual rendering of the portal. Process
intensive portlets may benefit from parallel portlet rendering (also known as
pre-render and render forking.) For more information about this see
"Optimizing Portlet Performance" in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal

■ Enable caching on portlets that do not rely on dynamic data.

3. Test your application's components, starting from the data access layer. Then
proceed toward the GUI one step at a time. Pay attention to performance and
scalability differences at each component and between each layer of your
application. Finally, do end-to-end testing from a browser-based load-testing tool.

4. Test the behavior and performance of your application under simulated,
real-world conditions. (Many tools are available to help you do this.) Be sure to
use both anonymous and logged-in users simultaneously.

1.2 Tuning Your WebLogic Server
Because WebLogic Portal runs on WebLogic Server, factors impacting the performance
of WebLogic Server will also impact the performance of WebLogic Portal.

For more information about tuning WebLogic Server, see Oracle Fusion Middleware
Performance and Tuning for Oracle WebLogic Server.

Table 1 lists the top ten tuning recommendations for WebLogic Server.

Note: Individual portlets with asynchronous rendering methods
have limitations such as not supporting inter portlet communication.

4

1.3 Tuning Your JVM
Your Java Virtual Machine is key to running your Portal efficiently. For more
information about tuning WebLogic JRockit, see the Diagnostics Guide in the JRockit
documentation at http://download.oracle.com/docs/cd/E13188_
01/jrockit/geninfo/diagnos/index.html.

When using JRockit, there are many different flags available. Depending on the
application and the SLA, different parameters and garbage collection flags should be
used. It is strongly recommended that before changing any parameters the application
should be baselined so that the performance differences between subsequent tests can
be measured. When using Sun Hotspot, adjust the -XX:MaxPermSize to be a
minimum of 128MB.

1.4 Tuning Your Database
Keeping your database tuned is an important part of using WebLogic Portal. Portal
uses the database to store content, rules, portal framework objects (streaming
desktops, books, pages, and portlets), customizations, and user profile data.

Table 1 Top Ten Tuning Recommendations

Tuning Question For Information:

How big should the JDBC connection pool
be?

See "Tune Pool Sizes" in Oracle Fusion Middleware
Performance and Tuning for Oracle WebLogic Server.

How to use JDBC caches? See "Use the Prepared Statement Cache" in Oracle
Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

What optimizations are there for
transactional database applications?

See "Use Logging Last Resource Optimization" in
Oracle Fusion Middleware Performance and Tuning for
Oracle WebLogic Server.

How many connections should WebLogic
Server accept?

See "Tune Connection Backlog Buffering" in Oracle
Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

What is the optimal size of the WebLogic
Server network layer?

See "Tune the Chunk Size" in Oracle Fusion
Middleware Performance and Tuning for Oracle
WebLogic Server.

What type of Entity Bean cache should be
used?

See "Use Optimistic or Read-only Concurrency" in
Oracle Fusion Middleware Performance and Tuning for
Oracle WebLogic Server.

How to avoid serialization when one EJB
calls another?

See "Use Local Interfaces" in Oracle Fusion
Middleware Performance and Tuning for Oracle
WebLogic Server.

How to load related beans using a single
SQL statement?

See "Use eager-relationship-caching" in Oracle
Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

How to tune session persistence? See "Tune HTTP Sessions" in Oracle Fusion
Middleware Performance and Tuning for Oracle
WebLogic Server.

What is the optimal JMS configuration? See "Tune Messaging Applications" in Oracle
Fusion Middleware Performance and Tuning for Oracle
WebLogic Server.

5

Best practices for production deployment will vary between database vendors. See the
database vendor documentation for these best practices. For WebLogic Portal specific
tuning recommendations see, the Oracle Fusion Middleware Database Administration
Guide for Oracle WebLogic Portal.

1.5 Tuning Your Operating System
Tune your operating system according to your operating system documentation.
Oracle certifies WebLogic Platform on multiple operating systems. See "Oracle Fusion
Middleware Supported System Configurations."

Reading "Operating System Tuning" in Oracle Fusion Middleware Performance and
Tuning for Oracle WebLogic Server is strongly recommended.

1.6 Other Resources
Remember that WebLogic Portal uses many components from WebLogic Server. See
the following documentation for more information:

■ Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server

■ Oracle Fusion Middleware Capacity Planning Guide for Oracle WebLogic Portal

■ Oracle Technology Network Web Site at
http://www.oracle.com/technology/index.html.

2 Tuning Your Portal Domain
Key aspects of portal performance are managed at the domain level. These include:

■ Section 2.1, "Tuning Your Domain Configuration"

■ Section 2.2, "Removing Debugging Tools from Your Domain"

■ Section 2.3, "Tuning Log Levels"

2.1 Tuning Your Domain Configuration
Optimally, when you deploy, you need to create a new domain that is configured for
your production environment. However, if you have deployed a development domain
and want to use it for production, you must change your domain environment settings
to optimize performance.

The domain settings are managed by the setDomainEnv.cmd (or
setDomainEnv.sh) script which is found in your domain directory. By default, the
script is found in: <MW_HOME>/user_projects/domain_
name/bin/setDomainEnv.cmd/sh.

To edit this file, open it in a text editor.

Table 2 lists the start script settings and their appropriate values for a production
domain. Remember if you are using a domain that was created for production mode,
you do not need to modify the configuration.

Note: It is not recommended to use a development domain for
production, see Oracle Fusion Middleware Creating Domains Using the
Configuration Wizard.

6

Table 2 setDomainEnv Settings

Flag Name
Production
Mode Setting Notes

DOMAIN_PRODUCTION_
MODE

true ■ Indicates whether you are in a
production mode or a development
mode. Default is false for domains
created in development mode and true
for domains created in production
mode.

iterativeDevFlag false ■ Checks for updated files and if found,
rebuilds and redeploys the application.
Disable this option to prevent checking
for changed Oracle Enterprise Pack for
Eclipse (OEPE) files. Default is true for
domains created in development mode
and false for domains created in
production mode.

debugFlag false ■ Used in start scripts to set debugging
options and indicate if the Oracle
Enterprise Pack for Eclipse Debugger
should be started. When switched to
false, you save the resource overhead
used for debugging.

■ Default is debugFlag=true for
domains created in development mode
and debugFlag=false for domains
created in production mode.

testConsoleFlag false ■ Enables the JWS test view.

■ Verify by checking the log for: wlw.
testConsole = false.

■ Default is true for domains created in
development mode and false for
domains created in production mode.

7

2.2 Removing Debugging Tools from Your Domain
When deploying a domain, you should remove the debug.properties file from the
domain directory. Although this file is helpful during development, debugging should
not be done in production environments.

2.3 Tuning Log Levels
WebLogic Server has several logging features available. When using the WebLogic
logging infrastructure, make sure that the server logs at an appropriate level and to the
correct location. For example, a production system logging at DEBUG or TRACE levels
can produce gigabytes of log data fairly quickly when writing to a log file. A
production system should have logging set to the INFO level or higher. This can be
done from the command line, from MBeans, or from the console. See Oracle Fusion

logErrorsToConsoleFlag false ■ Controls logging functionality.

■ Verify by checking the log for:
wlw.logErrorsToConsole = false

■ Saves you additional logging. The
trade-off is that you may see exceptions
more easily when this is set to true
(without checking the log).

■ Default is true for domains created in
development mode and false for
domains created in production mode.

verboseLoggingFlag false ■ If true, override the default LOG4J_
CONFIG_FILE
(workshopLogCfg.xml) with
workshopLogCfgVerbose.xml.

■ Priority value in the default file is warn;
in the verbose version it is debug.

■ Verify by checking the log for:
log4j.configuration =
workshopLogCfg.xml instead of
workshopLogCfgVerbose.xml

■ You can also start in verbose mode using
startWebLogic.cmd verbose.

■ Saves you debugging overhead.

■ Default is false for both domains
created in development mode and in
production mode.

pointbaseFlag= false ■ Indicates whether Pointbase should be
started.

■ Verify by checking for a running
Pointbase process.

■ Saves you the resource overhead of
starting Pointbase when it is not needed.

■ Default is true for domains created
with Pointbase as the database.

Table 2 (Cont.) setDomainEnv Settings

Flag Name
Production
Mode Setting Notes

8

Middleware Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server for
more detailed information on WebLogic Server logging.

Additionally, WebLogic server internally processes all log messages before writing
these messages to the logging infrastructure. In a production system where the logging
level has been set to INFO or NOTICE, having the server process all DEBUG
messages, for example, can add significant overhead. It is a good idea to match the
internal WebLogic Server log processing level to the logging framework level. Do this
by specifying the -Dweblogic.log.LoggerSeverity flag to the server at startup.

3 Tuning Your Portal Application
Key aspects of portal performance are managed at the portal application level. These
include:

■ Section 3.1, "Managing Caches"

■ Section 3.2, "Disabling Unused Services"

■ Section 3.3, "Tuning for Campaigns"

■ Section 3.4, "Tuning for Entitlements"

■ Section 3.5, "Tuning for Content Management"

■ Section 3.6, "Tuning for PageFlow Portlets"

■ Section 3.7, "Tuning for WSRP"

■ Section 3.8, "Tuning for Delegated Administration"

■ Section 3.9, "Using Work Managers"

3.1 Managing Caches
WebLogic Portal provides a single framework for configuring, accessing, monitoring,
and maintaining caches. If configured properly, the caches can vastly reduce the time
needed to retrieve frequently used data. Keep in mind that caches are read-only and
cluster-aware.

Many WebLogic Portal services use preconfigured caches that you can tune to meet
your performance needs. Some services use internally configured caches that you
cannot configure or access. If you extend or create additional services you can use the
cache framework to define and use your own set of caches.

The Oracle Fusion Middleware Cache Management Guide for Oracle WebLogic Portal lists
caches that might be used by your portal application. Use the list to assist you in your
tuning and keep in mind the memory that is available to your system. When
modifying the maximum cache sizes also monitor the system memory to determine
the effects.

3.1.1 Using the Portal Administration Console to Configure Cache Settings
You can use the Service Administration tools within the WebLogic Portal
Administration Console to configure statically-defined caches. For a list of
configurable caches, see the Oracle Fusion Middleware Cache Management Guide for
Oracle WebLogic Portal.

When you configure a cache you modify its parameters to change its behavior or
capability. Each cache has a Max Size setting and a Time To Live setting. For example,
you can set up a cache to hold only the last 10,000 entries and set the time they can

9

remain in the cache. You can also flush the cache so that all new requests for
information come directly from the database.

For instructions on how to configure cache settings, see "Adding a Cache" from the
Oracle Fusion Middleware Cache Management Guide for Oracle WebLogic Portal.

3.1.2 Caching with JSP Tags
Some WebLogic Portal JSP tags support caching results at various scopes such as
session or page. This allows for more control over the caching of individual content
queries. Although this can be seen as an advantage, remember that when you control
caches with coding, any cache change will require more maintenance, depending on
the size (amount of code) of your application.

For example, the following content management-related JSP tags include cache-related
attributes:

■ <cm:search>

■ <cm:getNode>

■ <cm:getProperty>

For more information about these JSP tags and their attributes, see Oracle Fusion
Middleware Java API Reference for Oracle WebLogic Portal

3.2 Disabling Unused Services
When you create a new portal application WebLogic Portal enables most services, such
as event listening and campaigns. If your portal application does not require these
services, you can improve performance by turning them off.

You can disable behavior tracking or individual events. For more information on how
to do this, see the Oracle Fusion Middleware Interaction Management Guide for Oracle
WebLogic Portal.

3.3 Tuning for Campaigns
Campaigns are powerful tools for personalization which allow the application to
target users with specific web content and e-mails based on fine-grained rules. The
following tips allow you to tune your campaign settings to ensure better performance.

3.3.1 Referencing Events
Always make scenario rules dependent on a particular event. This allows
optimizations based on the event types referenced in the scenario rules.

3.3.2 Avoiding Firing Extraneous Events
Whenever possible, avoid firing any extraneous events. The campaign services must
listen to all events. Use events to signify important occurrences on the site.

3.3.3 Asynchronous Campaigns
Setting campaigns to asynchronous can result in better response times for the end user
viewing those campaigns. This is done through the AsynchronousEventListener
mechanism.

This optimizations is beneficial if the campaign results are not required within the
same requests. If the campaign is executed prior to the next request which comes into

10

the server (not necessarily from the user who made the original request) then setting
the campaign to asynchronous will help improve the performance of campaigns. For
example, if a user were to log in they wouldn't always see the campaign content
placeholder on the screen immediately after the login form but the user would see it
prior to their next page change or refresh. Due to the nature of multi-threaded
applications the user might see the results on the next immediate screen, but that is not
guaranteed.

Setting campaigns to asynchronous does not lower the overall load on the server, but it
will lower the response time for the individual requests since the user won't be waiting
for the campaigns to execute in the same thread.

There is a limitation to this however. If the campaign is required within the same
request then setting the campaign to asynchronous is not recommended.

3.3.4 Using Goal Checking for Campaigns
If you are using campaigns that take advantage of goal checking set the goal checking
appropriately. Goal checking is used to determine if a campaign's goals are met. When
developers create campaigns they can set them to end on a specific date or use a set of
goals (for example, number of views or clicks). You should set it according to the
duration of your campaign. If a campaign's goal check mechanism is set too low it will
affect portal performance. The default is 300000 milliseconds (five minutes).

You can adjust the goal check time for campaigns using the Administration Console.

For more information about how to adjust this setting, see "Adjusting Goal
Definitions" in the Oracle Fusion Middleware Interaction Management Guide for Oracle
WebLogic Portal.

3.3.5 Using Ads During Campaigns
The Campaign service uses display counts to determine whether a campaign has met
its end goals. Each time an ad placeholder finds an ad to display as a result of a
scenario action the Campaign service updates the display count.

By default, the Campaign service does not update the display count in the database
until an ad placeholder has found 10 ads to display as a result of one or more scenario
actions. For performance tuning you can change this default to decrease the database
traffic needed to support a campaign.

For sites with high traffic, increase this number to a range of 50 to 100.

To configure the Ad Service cache, use the Administration Console to perform the
following steps:

1. From the Administration Console, choose Service Administration.

2. In the Application Configuration Settings Resource tree, select Ad Service Group
under Interaction Management.

3. Edit the Ad Service and adjust the Display Flush Size to a number appropriate for
your portal needs. The default is 10.

4. Click Update.

3.4 Tuning for Entitlements
If you want to cache entitlement information, you need to configure your application
to recognize the cache settings. You can do this by editing the netuix-config.xml
file.

11

The netuix-config.xml file resides in the portal web application in the WEB-INF
directory.

After making any changes, you must redeploy your web application for the changes to
take effect. For more information about modifying web descriptor files, see "Portal
Web Application Deployment Descriptors" in the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

1. Edit the netuix-config.xml file to include the following text:

<entitlements control-resource-cache-size="200">
 <enable>true</enable>
</entitlements>

2. If your portal uses a large number of entitlements (more than 5000), see "Best
Practices: Configure Entitlements Caching When Using WebLogic Providers" in
Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

3. After completing the changes you will need to redeploy your portal application.

3.4.1 Using Role Caching When Using Entitlements
Role values are cached automatically. However, if you define roles using expressions
that utilize dynamic attributes (such as session or request attributes), caching may
have little or no value because these expressions are evaluated at runtime. In this case,
turning off role caching may improve performance.

To disable role caching, you need to edit the web.xml file for the respective
application.

1. Navigate to the respective web.xml file. It is located in the WEB-INF subdirectory
of your portal application directory.

2. Open the web.xml file in a text editor.

3. Add the following lines

<env-entry>
 <env-entry-name>p13n.entitlements.disableRoleCache</env-entry-name>
 <env-entry-value>Y</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>

4. Save the new web.xml file.

5. Redeploy your web application.

3.5 Tuning for Content Management
This section discusses tuning practices related to content management.

Note: After making any changes, you must redeploy your web
application for the changes to take effect. For more information about
modifying web descriptor files, see "Portal Web Application
Deployment Descriptors" in the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

12

3.5.1 Reading and Searching Content
When using search capabilities with content management, it is possible to specify the
search criteria used to find a node. Make sure to focus search queries to reduce the
total number of nodes returned. This can be done by adding additional query criteria
to the search request.

Pagination has been one focus of performance tuning efforts in the product. If doing
pagination over result sets, use one of the objects provided by the Content API.
Various options for paging can be found in the Oracle Fusion Middleware Java API
Reference for Oracle WebLogic Portal.

The larger the batch size (number of nodes) in a result set, the faster the overall
performance will be. Where possible, increase the batch size for a returned result set.
See the Oracle Fusion Middleware Capacity Planning Guide for Oracle WebLogic Portal for
more details on how batch size affects performance.

There are a couple of ways to get access to nodes in the database. The fastest way to
retrieve a node is via the node ID. Whenever possible, use this method to retrieve the
node. See the Oracle Fusion Middleware Capacity Planning Guide for Oracle WebLogic
Portal for more details on how different node access types affect performance.

3.5.2 Cache Settings
When you use a WLP repository for your content management system, you can tune
the cache settings according to the needs of your portal application. Additional
performance recommendations and benchmark data can be found in the Oracle Fusion
Middleware Capacity Planning Guide for Oracle WebLogic Portal.

You can adjust repository caches by editing "Advanced Repository Properties" in the
Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal.

You can adjust cache settings for nodes or binaries according to how often your
content is accessed and how much content you want to remain in the cache. Keep in
mind that your server must have enough memory to handle the cache settings you
assign. These settings are configured in the content-config.xml under the
application's META-INF directory.

Table 3 Node Cache

Cache Setting Usage Notes

Maximum Entries Determines the maximum number of entries (folders) that can
be cached.

Time To Live Determines how long the entries will be cached.

Enable Enables the cache. Mark this checkbox to enable this cache. To
disable this cache, unmark the checkbox.

Table 4 Binary Cache

Cache Setting Usage Notes

Maximum Entries Determines the maximum number of entries (content items)
that can be cached.

Time To Live Determines how long the entries will be cached.

Cache Size/Item Sets the maximum size of a single entry (content item) stored in
the cache. The default is 1024 bytes (1K). If your content items
average a larger size than this, you should consider changing
this cache.

13

3.6 Tuning for PageFlow Portlets
PageFlow portlets have the potential to significantly increase the memory usage on the
server. This is caused by each portlet storing memory both locally and replicating it in
the session. Each visible portlet consumes between 500 and 1000 bytes of data either in
the local memory or in the session. This is true for each active session accessing the
application. This can add up quickly if there are a high number of visible page flow
portlets and a high number of active sessions on the server.

Setting the requestAttrPersistence setting on the portlet to
transient-session can decrease the amount of data in the session. However,
since this data is serialized it will still consume local memory resources. More
information about this can be found in the "Optimize Page Flow Session Footprint"
chapter under "Designing Portals for Optimal Performance" in the Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

To work around this potential system limitation it is recommended that the number of
page flow portlets visible in any given Portal be less than 100 and the memory on the
system be increased to deal with the additional overhead.

3.7 Tuning for WSRP
For more information about performance guidelines for Web Services Remote Portlets,
see the "Designing for Performance" section in the Oracle Fusion Middleware Federated
Portals Guide for Oracle WebLogic Portal.

3.7.1 Clustering for WSRP
When tuning for WSRP, it is important to strike a balance between the number of
producer machines and the number of consumer machines. In general WebLogic
Portal is CPU bound, meaning that additional CPU resources (usually via clustering)
can be used to eliminate bottlenecks. Through performance testing the WSRP
infrastructure it is possible to determine whether the producers or the consumer
machines are the bottleneck, and then add additional resources as necessary.
Depending on the configuration and application it might be necessary to cluster either
the consumer or the producer. For more information regarding WSRP architecture
refer to the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.
For more information about clustering see Oracle Fusion Middleware Using Clusters for
Oracle WebLogic Server.

3.7.2 Enabling Caches for WSRP
Cache can have an impact on performance, but the size of the portal (determined by
the total number of portlets) has the most impact. If you are using WSRP portlets,
adjust your caches accordingly. For specific information about WSRP caches, see the
"WSRP Caches" section in the Oracle Fusion Middleware Cache Management Guide for
Oracle WebLogic Portal.

Enable Enables the cache. Mark this checkbox to enable this cache. To
disable this cache, unmark the checkbox.

Table 4 (Cont.) Binary Cache

Cache Setting Usage Notes

14

3.7.3 Parallel Processing and WSRP
WebLogic Portal has the capability to render portlets in parallel. This is true for WSRP
remote portlets as well. If a remote portlet is taking a long time to render, the overall
portal may render faster by turning on parallel portlet processing. To enable parallel
processing use the forkPreRender attribute of the portlet. See "Understanding
Portlet Development" in the Oracle Fusion Middleware Portlet Development Guide for
Oracle WebLogic Portal.

3.8 Tuning for Delegated Administration
This section explains how to avoid performance problems with the Oracle WebLogic
Portal Administration Console when you configure delegated administration roles.

3.8.1 Overview
For each delegated administration role that is configured on a portal resource, several
security policies are created (CAN_VIEW, CAN_EDIT, and so on). It is important to
note that for each policy that is created, information must be retrieved to perform the
required evaluation. As the number of policies increases, the WebLogic Portal
Administration Console will perform more and more poorly.

To avoid this poor performance, create as few delegated administration policies as
possible.

3.8.2 Best Practice: Limit DA Policies on Resources
When a delegated administration (DA) role is added to a portal resource, such as a
content management node or a book node, several security policies are created for
each capability, such as CAN_VIEW, CAN_EDIT, and so on). The time taken to
retrieve these policies from LDAP and the policy reference information from the
database increases as the number of policies increases. Although caching of policy data
might improve performance, it is not a secure solution. For instance, if an
administrator changed the permissions for a user, the change would not take effect for
the user’s session. Other solutions such as flushing the cache and using the session to
store information are either technically impractical or not secure.

To achieve the best possible performance, organize your portal resources so that as few
as possible DA policies will be created. For example, consider the use case where there
are 100 content nodes and you want a particular DA user to only see 10 of those nodes.
The best practice is to create a parent node that contains these 10 content nodes and
place the DA policies on the parent node only.

3.9 Using Work Managers
WebLogic Portal uses WebLogic Server's CommonJ WorkManager infrastructure for
forked portlet pre-render and render. WorkManagers have similar but not identical
configuration parameters, behavior, and deployment options. When you upgrade an
8.1.4+ application, any existing customizations to the portalRenderQueue thread pool
will not be automatically applied to the default WorkManager used for forking.

To tune this WorkManager, configure a WorkManager and associate it with the name
wm/portalRenderQueueWorkManager. For more information about WorkManagers
and thread usage in WebLogic Server 10.3, see "Using Work Managers to Optimize

Tip: For information on delegated administration, see the Oracle
Fusion Middleware Security Guide for Oracle WebLogic Portal.

15

Scheduled Work" in Oracle Fusion Middleware Configuring Server Environments for Oracle
WebLogic Server.

4 Tuning Your Portal Web Application
One of the key things you can do to ensure good performance for your web
application is to design appropriately, see the "Designing Portals for Optimal
Performance" chapter of the Oracle Fusion Middleware Portal Development Guide for
Oracle WebLogic Portal for more information about designing portals.

This section covers a few configuration settings and key areas that can be optimized
according to your needs and includes the following sections:

■ Section 4.1, "Optimizing Your Portal Control Tree"

■ Section 4.2, "Modifying Your Portal Web Application Parameters"

4.1 Optimizing Your Portal Control Tree
Portal web applications use a control tree to cache and access different functionality.
For example, portals use controls to access desktops, books, pages, portlets, and
menus. When you create complex portals that require a large number of controls, tree
optimization is the easiest way to ensure optimal portal performance. Controls that are
not active in the current portal instance are not built, saving considerable time and
overhead. However, the use of multilevel menus negates much of the performance
benefit that control tree optimizations provide. This is due to the menu traversing the
control tree in order to build up the multilevel menu.

For more information about when to optimize your control tree, see the "Designing
Portals for Optimal Performance" chapter of the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

4.2 Modifying Your Portal Web Application Parameters
Your portal application uses configuration files to store application settings. Some
default settings may not be applicable to your particular portal application.

Each portal application uses unique configuration files to customize parameters that
can affect performance. Four configuration files that are key to portal performance
include:

■ netuix.config.xml (portal framework)

■ web.xml (web application settings)

■ weblogic.xml (server settings)

■ p13n-cache-config.xml (portal cache settings)

For most settings you can adjust them using either the WebLogic Server Console or the
WebLogic Portal Administration Console. However, many of the settings discussed in
this section must be manually entered in the configuration file.

4.2.1 Modifying Portal Framework Settings
The netuix-config.xml file resides in the portal web application directory under
WEB-INF.

After making any changes, you must redeploy your web application for the changes to
take effect. For more information about modifying web descriptor files, see

16

"Configuration Files" in the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal.

Table 5 lists key performance tuning elements within the netuix-config.xml file.

4.2.2 Modifying Web Application Settings
The web.xml file configures your web application. After making any changes you
must redeploy your web application for the changes to take effect. For more
information about modifying web descriptor files, see "Portal Web Application
Deployment Descriptors" in the Oracle Fusion Middleware Production Operations Guide
for Oracle WebLogic Portal.

The web.xml file is located in the WEB-INF subdirectory of your portal web
application directory.

Table 6 lists key elements of the web.xml file.

Table 5 netuix-config.xml

Element Usage Notes

<customization> A switch to indicate if a portal is customizable or not. If a portal is
served from a .portal file (rather than from a database) and users
are not allowed to customize it then customization can be disabled
by setting enable element's value to false. If a portal supports
customizations then customization should be enabled but keep in
mind that there will be an impact on the performance of the system
with the use of this feature.

<pageflow> A switch to enable or disable page flows usage in a portal. Disable
it if a portal is not using any page flows.

<validation> A switch for validating portal related files such as .pinc,
.portlet, and .portal files. Disable validation when running
portal server in production.

<entitlements> A switch to indicate that a portal is setup to use entitlement policies
(users able to view portal resources such as desktop, books, pages,
portlets, and so on). Disable entitlements if a portal is not using any
security policies. If a portal is using security policies, enable it and
set the value for <control-resource-cache-size> attribute
using number of desktops + number of books + number of pages +
number of portlets + number of buttons (max, min, help, edit) used
in a portal. The default value could be used if memory is a concern.

For more information, see Section 3.4, "Tuning for Entitlements."
Using entitlements will result in additional overhead for WebLogic
Portal.

<localization> A switch to indicate that a portal supports multiple locales. This
should be disabled if a portal supports only one locale.

17

4.3 Modifying WebLogic Server Settings
You can modify the weblogic.xml file via the WebLogic Server Console. For more
information on how to modify the descriptor elements see "weblogic.xml Deployment
Descriptor Elements" in Oracle Fusion Middleware Developing Web Applications, Servlets,
and JSPs for Oracle WebLogic Server.

The following parameters can be adjusted for performance. Table 7 lists key
performance tuning elements in the weblogic.xml file.

Table 6 web.xml

Parameter Usage Notes

<createAnonymousProfile> Set this to false if your portal does not store or use
user profile information.

<enableTrackedAnonymous> Set this to false unless you are tracking anonymous
users. When this is set to false, only users who login
to the portal are tracked.

<fireSessionLoginEvent> Set this to false unless using campaigns or behavior
tracking. If this is set to true, session login events
are generated.

<trackedAnonymousVisitDuration
>

This setting allows you to determine when to start
tracking anonymous users and is ignored unless
you are tracking anonymous users. The longer you
wait during a session to start tracking anonymous
users, the less performance overhead there will be
on the server.

<skipRequestPattern> Set to determine which request patterns to skip.
Each page displayed in a web application may have
many separate requests, several of which are
irrelevant. For example, the tutorial portal sends
requests for images, JavaScript, and CSS files.
Ignoring these requests for PortalServletFilter
processing increases performance and guarantees
that tracking anonymous users will behave as
expected.

18

Table 7 weblogic.xml

Parameter Usage Notes

<jspPageCheckSeconds> Sets the interval, in seconds, at which WebLogic Server
checks to see if JSP files have changed and need recompiling.
Dependencies are also checked and recursively reloaded if
changed.

If set to 0, pages are checked on every request. This default is
preset for a development environment. If set to –1, page
checking and recompiling is disabled.

In a production environment where changes to a JSP are rare,
change the value of pageCheckSeconds to –1 to disable
page checking and recompiling.

<servletReloadCheckSecs
>

Sets the interval, in seconds, at which WebLogic Server
checks to see if servlet files have changed and need
recompiling. Dependencies are also checked and recursively
reloaded if changed.

If set to 0, servlets are checked on every request. This default
is preset for a development environment. If set to –1, servlet
checking and recompiling is disabled.

In a production environment where changes to a servlet are
rare, change the value of servletReloadCheckSecs to –1
to disable servlet checking and recompiling.

<PersistentStoreType> Must be edited manually.

Sets the persistent store method to one of the following
options:

■ memory – Disables persistent session storage.

■ file – Uses file-based persistence.

■ jdbc – Uses a database to store persistent sessions.

■ replicated – Same as memory, but session data is
replicated across the clustered servers.

■ cookie – All session data is stored in a cookie in the
user's browser.

■ replicated_if_clustered – If the web application
is deployed on a clustered server, the in-effect
PersistentStoreType will be replicated. Otherwise,
memory is the default.

Note: In a clustered production environment, it is important
that you configure the PersistentStoreType property in
weblogic.xml to enable session replication to take place
across the cluster. To do this, set the element to the
replicated_if_clustered value. Without this setting,
you will not have failover of a user's state information if a
server in the cluster is stopped. By default if
persistent-store-type is not set, it defaults to disabling
persistent session storage. Also note that there will be
increased memory utilization and additional overhead on the
system with this feature enabled.

19

4.4 WebLogic Portal Cache Settings
You can modify the p13n-cache-config.xml file via the WebLogic Portal
Administration Console. For more information on how to modify the cache and a
comprehensive list of WebLogic Portal Caches see Oracle Fusion Middleware Cache
Management Guide for Oracle WebLogic Portal.

4.5 Caching Portlet Categories
Portlet category information is automatically cached, which enhances performance. If
for any reason you do not want to cache portlet categories, you can turn off this cache
by setting the following system property:
-enable.portlet.category.caches=false

5 Performance Tuning Checklists
This appendix provides checklists and tips for the following components of WebLogic
Portal:

■ Section 5.1, "Portal Framework Guidelines"

■ Section 5.2, "Portal Administration Console Guidelines"

<Timeout Secs> Sets the time, in seconds, that WebLogic Server waits before
timing out a session, where x is the number of seconds
between a session's activity.

Minimum value is 1, default is 3600, and maximum value is
integer MAX_VALUE.

On busy sites, you can tune your application by adjusting the
timeout of sessions. While you want to give a browser client
every opportunity to finish a session, you do not want to tie
up the server needlessly if the user has left the site or
otherwise abandoned the session.

This attribute can be overridden by the session-timeout
element (defined in minutes) in web.xml.

<debug> Turn off debugging by setting debug property to false.

<precompile> Precompile the JSPs in the web application to reduce the time
needed to display pages on their first invocation by setting
precompile to true.

<precompile-continue> Also set <precompile-continue> to true, because if any
JSPs do not compile, deployment of the web application
stops.

Note: Alternatively, you can use weblogic.appc to
precompile JSPs. See the WebLogic Server documentation for
more information.

Table 7 (Cont.) weblogic.xml

Parameter Usage Notes

20

5.1 Portal Framework Guidelines

5.2 Portal Administration Console Guidelines
You can improve the performance of the Portal Administration Console. Specifically,
you can decrease the time it takes to work with desktops and to browse portal
resources.

This section includes the following topics:

■ Section 5.2.1, "Creating Desktops"

5.2.1 Creating Desktops
When you create a new desktop in the Administration Console, a list of .portal files
is used to populate the templates drop-down list. If all .portal files reside under the
same directory under the web application directory, this drop-down list can be created
quickly.

Table 8 Portal Framework Guidelines

Guideline Question How to Verify

Is the WebLogic Server well tuned? See Section 1.2, "Tuning Your WebLogic Server."

Is the JVM properly tuned? See Section 1.3, "Tuning Your JVM."

Is the WebLogic Portal database tuned? See Section 1.4, "Tuning Your Database."

Is the Domain running in Production
mode?

See Section 2.1, "Tuning Your Domain
Configuration."

If you do not need to support multiple
locales, is localization disabled?

See Section 3.2, "Disabling Unused Services."

Are Campaigns tuned properly? See Section 3.3, "Tuning for Campaigns."

Are Entitlements enabled?

If yes, is control-resource-cache
size is set correctly?

See Section 3.4, "Tuning for Entitlements."

Is the Content Management System
optimal?

See Section 3.5, "Tuning for Content Management."

How many visible PageFlow portlets are
in the portal?

See Section 3.6, "Tuning for PageFlow Portlets."

Is the portalControlTreeCache
MaxSize set to the correct size for your
portal?

See Section 4.1, "Optimizing Your Portal Control
Tree."

Is validation turned off? See Section 4.2.1, "Modifying Portal Framework
Settings."

Is jspPageCheckSecs in
weblogic.xml is set to -1?

See Section 4.3, "Modifying WebLogic Server
Settings."

Is servletReloadCheckSecs in
weblogic.xml is set to -1?

See Section 4.3, "Modifying WebLogic Server
Settings."

Are sessions replicated? If so what
persistent-store-type is used?

See Section 4.3, "Modifying WebLogic Server
Settings."

Has the application been performance
tested?

See Approaches to Performance Testing at
http://www.oracle.com/technology/pub/a
rticles/dev2arch/2005/09/performance_
testing.html.

21

To take advantage of higher performance in building the drop-down list, you must
define the portalFileDirectory in the web application's web.xml file.

1. Navigate to the respective web.xml file. It is located in the WEB-INF subdirectory
of your portal application directory.

2. Open the web.xml file in a text editor.

3. Add the following lines

<context-param>
<param-name>portalFileDirectory</param-name>
<param-value>/</param-value>

</context-param>

4. Save the new web.xml file.

5. Redeploy your web application.

6 Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at

Note: After making any changes, you must redeploy your web
application for the changes to take effect. For more information about
modifying web descriptor files, see "Portal Web Application
Deployment Descriptors" in the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

22

http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Oracle Fusion Middleware Performance Tuning Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.2)
E14242-01

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications,
then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

	1 General Performance Tuning Guidelines
	1.1 Understanding Performance Tuning and Oracle WebLogic Portal
	1.1.1 General Architecture
	1.1.2 WebLogic Portal

	1.2 Tuning Your WebLogic Server
	1.3 Tuning Your JVM
	1.4 Tuning Your Database
	1.5 Tuning Your Operating System
	1.6 Other Resources

	2 Tuning Your Portal Domain
	2.1 Tuning Your Domain Configuration
	2.2 Removing Debugging Tools from Your Domain
	2.3 Tuning Log Levels

	3 Tuning Your Portal Application
	3.1 Managing Caches
	3.1.1 Using the Portal Administration Console to Configure Cache Settings
	3.1.2 Caching with JSP Tags

	3.2 Disabling Unused Services
	3.3 Tuning for Campaigns
	3.3.1 Referencing Events
	3.3.2 Avoiding Firing Extraneous Events
	3.3.3 Asynchronous Campaigns
	3.3.4 Using Goal Checking for Campaigns
	3.3.5 Using Ads During Campaigns

	3.4 Tuning for Entitlements
	3.4.1 Using Role Caching When Using Entitlements

	3.5 Tuning for Content Management
	3.5.1 Reading and Searching Content
	3.5.2 Cache Settings

	3.6 Tuning for PageFlow Portlets
	3.7 Tuning for WSRP
	3.7.1 Clustering for WSRP
	3.7.2 Enabling Caches for WSRP
	3.7.3 Parallel Processing and WSRP

	3.8 Tuning for Delegated Administration
	3.8.1 Overview
	3.8.2 Best Practice: Limit DA Policies on Resources

	3.9 Using Work Managers

	4 Tuning Your Portal Web Application
	4.1 Optimizing Your Portal Control Tree
	4.2 Modifying Your Portal Web Application Parameters
	4.2.1 Modifying Portal Framework Settings
	4.2.2 Modifying Web Application Settings

	4.3 Modifying WebLogic Server Settings
	4.4 WebLogic Portal Cache Settings
	4.5 Caching Portlet Categories

	5 Performance Tuning Checklists
	5.1 Portal Framework Guidelines
	5.2 Portal Administration Console Guidelines
	5.2.1 Creating Desktops

	6 Documentation Accessibility

