

Oracle® Fusion Middleware
Web Service Developer's Guide for Oracle WebCenter
Interaction

10g Release 4 (10.3.3.0.0)

E14109-02

December 2011

Describes how to develop web services for Oracle
WebCenter Interaction.

Oracle Fusion Middleware Web Service Developer's Guide for Oracle WebCenter Interaction, 10g Release 4
(10.3.3.0.0)

E14109-02

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jennifer Horrigan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

v

Contents

Preface ... xiii

Oracle WebCenter Interaction Development .. xiii
Audience... xiii
Documentation Accessibility ... xiv
Related Documents ... xiv
Conventions ... xiv

1 Oracle WebCenter Interaction Development Environment

1.1 Oracle WebCenter Interaction Development Kit (IDK) Projects ... 1-1
1.1.1 Java: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in Eclipse 1-2
1.1.1.1 Eclipse Stand-Alone (without WTP).. 1-2
1.1.1.2 Eclipse with WTP ... 1-2
1.1.2 Java: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in Eclipse 1-3
1.1.2.1 Eclipse Stand-Alone (without WTP).. 1-3
1.1.2.2 Eclipse with WTP ... 1-4
1.1.3 Java: Debugging a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project 1-4
1.1.4 .NET: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in Visual Studio 1-5
1.1.5 .NET: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in IIS 1-6
1.2 Oracle WebCenter Interaction Logging Utilities.. 1-6
1.2.1 Configuring Oracle WebCenter Interaction Development Kit (IDK) Logging 1-7
1.2.1.1 Configuring Java Oracle WebCenter Interaction Development Kit (IDK) Logging

(web.xml) 1-7
1.2.1.2 Configuring .NET Oracle WebCenter Interaction Development Kit (IDK) Logging

(Web.config) 1-8
1.2.1.3 Oracle WebCenter Interaction Development Kit (IDK) Logging Levels 1-8
1.2.1.4 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web

Application Variables 1-10
1.2.2 Using the Oracle WebCenter Interaction Development Kit (IDK) Logging API ... 1-10
1.2.2.1 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in Java

1-11
1.2.2.2 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in .NET

1-14

vi

1.2.2.3 Using Oracle WebCenter Interaction Development Kit (IDK) Logging from the
Command Line 1-18

1.3 Server Communication and the Gateway .. 1-18
1.3.1 The Oracle WebCenter Interaction Gateway ... 1-19
1.3.1.1 Portlets and the Gateway ... 1-21
1.3.2 HTTP and CSP ... 1-22
1.3.2.1 HTTP ... 1-22
1.3.2.2 CSP... 1-23
1.3.2.3 Oracle WebCenter Interaction Headers ... 1-23
1.3.2.4 SOAP ... 1-24

2 Oracle WebCenter Interaction Portlet and Pagelet Development

2.1 Oracle WebCenter Interaction Development Kit (IDK) Portlet API.................................... 2-2
2.1.1 Creating a Custom Oracle WebCenter Interaction Portlet with the Java Oracle

WebCenter Interaction Development Kit (IDK) Portlet API 2-3
2.1.2 Creating a Custom Oracle WebCenter Interaction Portlet with the .NET Oracle

WebCenter Interaction Development Kit (IDK) Portlet API 2-4
2.2 Oracle WebCenter Interaction Development Kit (IDK) Proxy API..................................... 2-6
2.2.1 Creating a Custom Pagelet with the Java Oracle WebCenter Interaction Development

Kit (IDK) Proxy API 2-7
2.2.2 Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction Development

Kit (IDK) Proxy API 2-8
2.2.3 Using Programmable Remote Client (PRC) Remote APIs ... 2-10
2.3 Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC)

Remote APIs 2-11
2.3.1 The PRC Session Object .. 2-11
2.3.2 Initiating a PRC Session to Use Oracle WebCenter Interaction Development Kit (IDK)

Remote APIs 2-12
2.3.3 Oracle WebCenter Interaction Development Kit (IDK) PRC Remote API Development

Tips 2-13
2.3.4 Remote Oracle WebCenter Interaction APIs .. 2-14
2.3.4.1 Remote Object Management .. 2-15
2.3.4.1.1 Retrieving Object Managers Using Oracle WebCenter Interaction

Development Kit (IDK) Remote APIs 2-15
2.3.4.1.2 Querying Objects Using Oracle WebCenter Interaction Development Kit (IDK)

Remote APIs 2-16
2.3.4.1.3 Oracle WebCenter Interaction Object Type Class IDs and Modes 2-19
2.3.4.1.4 Querying Object Properties Using Oracle WebCenter Interaction Development

Kit (IDK) Remote APIs 2-20
2.3.4.1.5 Managing Object Security (ACLs) Using Oracle WebCenter Interaction

Development Kit (IDK) Remote APIs 2-24
2.3.4.1.6 Access Control List (ACL) Privileges .. 2-25
2.3.4.2 Remote Portlet Operations ... 2-26
2.3.4.2.1 Creating Portlets and Portlet Templates Using Oracle WebCenter Interaction

Development Kit (IDK) Remote APIs 2-26
2.3.4.2.2 Editing Portlets and Portlet Templates Using Oracle WebCenter Interaction

Development Kit (IDK) Remote APIs 2-28
2.3.4.3 Remote Directory Operations .. 2-29

vii

2.3.4.3.1 Querying Documents in the Directory Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs 2-29

2.3.4.3.2 Creating Documents in the Directory Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs 2-31

2.3.4.3.3 Editing Document Properties in the Directory Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs 2-33

2.3.4.4 Remote User Operations... 2-34
2.3.4.4.1 Querying Users Using Oracle WebCenter Interaction Development Kit (IDK)

Remote APIs 2-34
2.3.4.4.2 Creating Groups and Adding Users Using Oracle WebCenter Interaction

Development Kit (IDK) Remote APIs 2-35
2.3.4.5 Remote Search Operations ... 2-37
2.3.4.5.1 Querying Objects Using the Oracle WebCenter Interaction Development Kit

(IDK) Remote Search API 2-38
2.3.4.5.2 Using Query Constraints with the Oracle WebCenter Interaction Development

Kit (IDK) Remote Search API 2-40
2.3.4.5.3 Managing Search Results Using the Oracle WebCenter Interaction

Development Kit (IDK) Remote Search API 2-42
2.3.4.6 Starting Portal Jobs Using Oracle WebCenter Interaction Development Kit (IDK)

Remote APIs 2-45
2.3.5 Remote Oracle WebCenter Collaboration APIs ... 2-46
2.3.5.1 Remote Oracle WebCenter Collaboration Project Operations............................ 2-47
2.3.5.1.1 Querying Existing Oracle WebCenter Collaboration Projects Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-47
2.3.5.1.2 Creating Oracle WebCenter Collaboration Projects Using Oracle WebCenter

Interaction Development Kit (IDK) Remote APIs 2-51
2.3.5.1.3 Editing Oracle WebCenter Collaboration Project Properties Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-56
2.3.5.1.4 Managing Oracle WebCenter Collaboration Project Roles Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-58
2.3.5.1.5 Managing Oracle WebCenter Collaboration Subscriptions Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-60
2.3.5.2 Remote Oracle WebCenter Collaboration Discussion Operations..................... 2-61
2.3.5.2.1 Querying Existing Oracle WebCenter Collaboration Discussions Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-61
2.3.5.2.2 Creating Oracle WebCenter Collaboration Discussions Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-66
2.3.5.2.3 Creating Oracle WebCenter Collaboration Discussion Messages Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-67
2.3.5.2.4 Editing Oracle WebCenter Collaboration Discussion Properties Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-69
2.3.5.3 Remote Oracle WebCenter Collaboration Document and Folder Operations . 2-71
2.3.5.3.1 Querying Oracle WebCenter Collaboration Folders and Documents Using

Oracle WebCenter Interaction Development Kit (IDK) Remote APIs 2-72
2.3.5.3.2 Managing Oracle WebCenter Collaboration Documents Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-74
2.3.5.3.3 Creating Oracle WebCenter Collaboration Folders and Documents Using

Oracle WebCenter Interaction Development Kit (IDK) Remote APIs 2-75

viii

2.3.5.3.4 Editing Oracle WebCenter Collaboration Folder and Document Properties
Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
2-78

2.3.5.4 Remote Oracle WebCenter Collaboration Task Operations................................ 2-81
2.3.5.4.1 Querying Oracle WebCenter Collaboration Tasks and Task Lists Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-81
2.3.5.4.2 Creating Oracle WebCenter Collaboration Tasks and Task Lists Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-83
2.3.5.4.3 Editing Oracle WebCenter Collaboration Task and Task List Properties Using

Oracle WebCenter Interaction Development Kit (IDK) Remote APIs 2-85
2.3.5.4.4 Managing Oracle WebCenter Collaboration Task Workflow Using Oracle

WebCenter Interaction Development Kit (IDK) Remote APIs 2-87
2.3.5.5 Oracle WebCenter Collaboration Access Levels... 2-88
2.4 Adaptive Portlets ... 2-89
2.4.1 Adaptive Portlet Design Patterns... 2-89
2.4.2 Adaptive Tags ... 2-92
2.4.2.1 Adaptive Tag Development Tips .. 2-94
2.4.2.2 Using Internationalized Strings in Adaptive Tags ... 2-95
2.4.2.3 Using Variables in Adaptive Tags .. 2-95
2.4.2.4 Common Adaptive Tag Library (pt:common) ... 2-96
2.4.2.4.1 Accessing User Information Using Adaptive Tags 2-97
2.4.2.4.2 Adding Header Content Using Adaptive Tags ... 2-97
2.4.2.4.3 Defining a Unique Namespace Token Using Adaptive Tags 2-98
2.4.2.4.4 Displaying Errors Using Adaptive Tags... 2-98
2.4.2.4.5 Transforming URLs Using Adaptive Tags ... 2-99
2.4.2.5 Logic Adaptive Tag Library (pt:logic) .. 2-99
2.4.2.5.1 Using Shared Variables in Adaptive Tags.. 2-101
2.4.2.5.2 Evaluating Expressions Using Adaptive Tags... 2-101
2.4.2.5.3 Looping Over Data Collections Using Adaptive Tags 2-102
2.4.2.5.4 Caching Data... 2-102
2.4.2.5.5 Creating Hierarchical Data ... 2-103
2.4.2.6 Standard Adaptive Tag Library (pt:standard) .. 2-103
2.4.2.6.1 Accessing Oracle WebCenter Interaction Objects Using Adaptive Tags. 2-106
2.4.2.6.2 Building Gatewayed URLs Using Adaptive Tags....................................... 2-107
2.4.2.6.3 Creating Tree Controls Using Adaptive Tags.. 2-108
2.4.2.6.4 Securing Content Based on User Permissions Using Adaptive Tags 2-112
2.4.2.7 Navigation Adaptive Tag Library (pt:plugnav) .. 2-113
2.4.2.7.1 Implementing Custom Navigation Using Adaptive Tags 2-113
2.4.2.8 Conditional Adaptive Tag Library (pt:ptcond)... 2-115
2.4.2.9 UI Adaptive Tag Library (pt:ptui) ... 2-116
2.4.2.9.1 Implementing Custom UI Elements Using Adaptive Tags 2-118
2.4.2.10 Data Adaptive Tag Library (pt:ptdata) ... 2-118
2.4.2.11 Adaptive Tag Control Flow ... 2-121
2.4.2.12 Creating Custom Adaptive Tags... 2-122
2.4.2.12.1 Coding Custom Tags with the ATag Base Class ... 2-123
2.4.2.12.2 Accessing Browser Session Information in Custom Adaptive Tags......... 2-125
2.4.2.12.3 Accessing Attributes in Custom Adaptive Tags... 2-125
2.4.2.12.4 Storing and Accessing Custom Data in Custom Adaptive Tags............... 2-126

ix

2.4.2.12.5 Including JavaScript in Custom Adaptive Tags .. 2-127
2.4.2.12.6 Using Nested Tags in Custom Adaptive Tags... 2-128
2.4.2.12.7 Implementing Non-Standard Custom Adaptive Tag Types 2-128
2.4.2.12.8 Deploying Custom Adaptive Tags ... 2-128
2.4.3 The Oracle WebCenter Interaction Scripting Framework 2-129
2.4.3.1 Oracle WebCenter Interaction Scripting Framework Development Tips....... 2-130
2.4.3.2 Using Oracle WebCenter Interaction Scripting Framework Event Notification.........

2-130
2.4.3.2.1 Page-Level Events for Use with the Oracle WebCenter Interaction Scripting

Framework 2-134
2.4.3.3 Using In-Place Refresh.. 2-134
2.4.4 Adaptive Portlet Development Tips .. 2-135
2.5 Portlet Style... 2-136
2.5.1 Oracle WebCenter Interaction Portlet Alignment.. 2-136
2.5.2 CSS Customization for Oracle WebCenter Interaction Portlets............................... 2-137
2.6 Oracle WebCenter Interaction Portlet Settings.. 2-137
2.6.1 Portlet Settings Development Tips... 2-137
2.6.2 Oracle WebCenter Interaction Portlet Setting Types... 2-138
2.6.3 Administrative Preferences and Portlet Template Preferences Pages 2-140
2.6.4 Creating an Administrative Preferences Page.. 2-140
2.6.5 Community Preferences Pages ... 2-140
2.6.6 Creating a Community Preferences Page ... 2-140
2.6.7 Portlet Preferences Pages... 2-141
2.6.8 Creating a Portlet Preferences Page ... 2-141
2.6.9 Using Session Preferences .. 2-142
2.6.9.1 Oracle WebCenter Interaction Development Kit (IDK) Methods 2-143
2.6.9.2 Oracle WebCenter Interaction Scripting Framework Methods 2-144
2.6.10 Accessing User Information .. 2-145
2.7 Oracle WebCenter Interaction Portlet Security ... 2-146
2.7.1 Using the Oracle WebCenter Interaction Credential Vault 2-147
2.7.2 Using Oracle WebCenter Interaction Development Kit (IDK) Encryption............ 2-148
2.8 Portlet Internationalization... 2-151
2.8.1 Modifying the Portlet Title Bar ... 2-151
2.9 Portlet Caching .. 2-151
2.9.1 Portlet Caching Strategies.. 2-153
2.9.2 Portlet Cache Key ... 2-153
2.9.3 Implementing Portlet Caching.. 2-154
2.9.4 Setting HTTP Caching Headers - Cache-Control... 2-155
2.9.5 Setting HTTP Caching Headers - Expires ... 2-156
2.9.6 Setting HTTP Caching Headers - Last-Modified and ETag 2-156
2.9.7 Configuring Oracle WebCenter Interaction Portlet Caching Settings 2-157

3 Content Service Development

3.1 Content Crawlers .. 3-1
3.1.1 Oracle WebCenter Interaction Development Kit (IDK) Interfaces for Content Crawler

Development 3-2
3.1.1.1 IContainerProvider... 3-3

x

3.1.1.2 IContainer ... 3-4
3.1.1.3 IDocumentProvider ... 3-5
3.1.1.4 IDocument .. 3-6
3.1.1.5 SCI Variables for Content Crawler Properties ... 3-7
3.1.2 Content Crawler Development Tips ... 3-8
3.1.3 Content Crawler Security Options ... 3-10
3.1.4 Content Crawler Indexing... 3-10
3.1.4.1 Indexing Streaming Content .. 3-11
3.1.4.2 Creating Temporary Files for Indexing.. 3-11
3.1.5 Content Crawler Click-Through... 3-13
3.1.5.1 Implementing Content Crawler Click-Through .. 3-13
3.1.5.2 Content Crawler DocFetch... 3-15
3.1.5.2.1 Implementing Content Crawler DocFetch .. 3-15
3.1.6 Handling Exceptions in Custom Content Crawlers .. 3-16
3.1.7 Deploying a Custom Content Crawler ... 3-17
3.1.7.1 Java .. 3-17
3.1.7.2 .NET... 3-18
3.1.8 Testing Custom Content Crawlers ... 3-19
3.1.9 Debugging Custom Content Crawlers ... 3-19
3.1.10 Configuring Content Crawlers ... 3-19
3.1.10.1 Creating Service Configuration Pages for Content Crawlers 3-21
3.2 Oracle WebCenter Interaction Federated Search Services... 3-23
3.2.1 Creating a Federated Search Service.. 3-24
3.2.2 Oracle WebCenter Development Kit (IDK) Interfaces for Federated Search Service

Development 3-24
3.2.2.1 IRemoteSearch ... 3-25
3.2.2.2 ISearchQuery.. 3-25
3.2.2.3 ISearchUser... 3-25
3.2.2.4 ISearchContext ... 3-25
3.2.2.5 ISearchResult.. 3-25
3.2.2.6 ISearchRecord .. 3-26
3.2.3 Deploying a Federated Search Service ... 3-26
3.2.3.1 Java .. 3-26
3.2.3.2 NET.. 3-27

4 Identity Service Development

4.1 Authentication Services ... 4-1
4.1.1 Synchronization ... 4-1
4.1.2 Authentication.. 4-2
4.1.3 Development .. 4-2
4.1.4 Authentication Service Internals ... 4-2
4.1.4.1 Plumtree.Remote.Auth .. 4-3
4.1.4.2 Synchronization .. 4-3
4.1.4.3 Authentication .. 4-3
4.1.5 Implementing an Authentication Service .. 4-3
4.1.6 Deploying an Authentication Service ... 4-9
4.1.6.1 Java ... 4-9

xi

4.1.6.2 .NET... 4-10
4.1.7 Configuring an Authentication Service... 4-11
4.2 Profile Services ... 4-12
4.2.1 Synchronization .. 4-12
4.2.2 Property Mapping: User Information.. 4-13
4.2.3 Development ... 4-13
4.2.4 Profile Service Internals ... 4-13
4.2.4.1 Plumtree.Remote.Profile... 4-13
4.2.4.2 Profile Synchronization .. 4-13
4.2.5 Implementing a Profile Service... 4-14
4.2.6 Deploying a Profile Service ... 4-18
4.2.6.1 Java .. 4-18
4.2.6.2 ,NET .. 4-18
4.2.7 Configuring a Profile Service .. 4-19

5 Oracle WebCenter Interaction REST APIs

5.1 Using the Oracle WebCenter Interaction Directory REST API ... 5-2
5.2 Using the Oracle WebCenter Interaction User REST API .. 5-3
5.3 Using the Oracle WebCenter Interaction Activity Stream API ... 5-4
5.4 Configuring Web Services that Use Oracle WebCenter Interaction REST APIs 5-9

A API Libraries

A Oracle WebCenter Interaction Development Kit (IDK) ... A-1

B Additional Development References

xii

xiii

Preface

This guide describes how to develop web services to expand the functionality of
Oracle WebCenter Interaction.

Oracle WebCenter Interaction Development
Oracle WebCenter Interaction is a powerful framework that combines portal, content
management, collaboration, integration and search technologies, and provides key
application services that allow you to build integrated solutions across diverse
platforms and systems.

Every Oracle WebCenter Interaction component is designed to provide a personalized
experience for each organization and for specific groups and users. Using the Oracle
WebCenter Interaction Development Kit (IDK), you can create powerful applications
to meet the specific needs of your organization.

■ Chapter 1, "Oracle WebCenter Interaction Development Environment": If you are
developing services for Oracle WebCenter Interaction, you will need to
understand the system and prepare your IDE for use with the Oracle WebCenter
Interaction Development Kit (IDK).

■ Chapter 2, "Oracle WebCenter Interaction Portlet and Pagelet Development":
Pagelets and portlets are web applications that produce a self-contained, reusable
user interface widget. Pagelets/portlets can be used for everything from
displaying useful information to building integrated applications that combine
functionality from multiple systems.

■ Chapter 3, "Content Service Development": Content services allow you to search
external repositories through the portal and index external content in the portal
Directory. These services allow users to access documents and other resources
from multiple repositories without leaving the portal workspace.

■ Chapter 4, "Identity Service Development" : Identity Services allow you to
integrate established repositories of user information into your portal.

■ Chapter 5, "Oracle WebCenter Interaction REST APIs": Oracle WebCenter
Interaction REST APIs allow remote web services to post documents to the portal
Directory, update Community membership, and post stories to portal user’s
activity stream through simple HTTP requests.

Audience
This guide is written for developers responsible for creating web services to expand
the functionality of Oracle WebCenter Interaction.

xiv

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle WebCenter
Interaction 10g Release 4 (10.3.3.0.0) documentation set:

■ Oracle Fusion Middleware Installation Guide for Oracle WebCenter Interaction for
Windows

■ Oracle Fusion Middleware Installation Guide for Oracle WebCenter Interaction for Unix
and Linux

■ Oracle Fusion Middleware Upgrade Guide for Oracle WebCenter Interaction for Windows

■ Oracle Fusion Middleware Upgrade Guide for Oracle WebCenter Interaction for Unix and
Linux

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Oracle WebCenter Interaction Development Environment 1-1

1Oracle WebCenter Interaction Development
Environment

If you are developing services for Oracle WebCenter Interaction, you will need to
understand the system and prepare your IDE for use with the Oracle WebCenter
Interaction Development Kit (IDK). This chapter contains instructions for setting up
an Oracle WebCenter Interaction Development Kit (IDK) development environment,
and important background information on the Oracle WebCenter Interaction
development environment.

■ Section 1.1, "Oracle WebCenter Interaction Development Kit (IDK) Projects": This
section provides step-by-step instructions for the most common tasks in setting up
a development environment.

■ Section 1.2, "Oracle WebCenter Interaction Logging Utilities": Oracle WebCenter
Interaction Logging Utilities are a collection of debugging and logging solutions
available for use in Oracle WebCenter Interaction.

■ Section 1.3, "Server Communication and the Gateway": This section explains how
Oracle WebCenter Interaction acts as a gateway, brokering transactions between
client computers and external resources. This section also provides detailed
information on HTTP and CSP, the protocols that define the syntax of
communication between Oracle WebCenter Interaction and external resources.

1.1 Oracle WebCenter Interaction Development Kit (IDK) Projects
The following sections provide step-by-step instructions for the most common tasks in
setting up a development environment. For details on installing or downloading the
Oracle WebCenter Interaction Development Kit (IDK), see the installation guide on
Oracle Technology Network at
http://www.oracle.com/technology/index.html.

Java

■ Section 1.1.1, "Java: Setting Up a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in Eclipse"

■ Section 1.1.2, "Java: Deploying a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in Eclipse"

■ Section 1.1.3, "Java: Debugging a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project"

.NET

■ Section 1.1.4, ".NET: Setting Up a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in Visual Studio"

Oracle WebCenter Interaction Development Kit (IDK) Projects

1-2 Web Service Developer's Guide for Oracle WebCenter Interaction

■ Section 1.1.5, ".NET: Deploying a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in IIS"

1.1.1 Java: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in Eclipse

This section describes how to set up a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse. The process is different depending on
whether or not Eclipse Web Tools Platform (WTP) is installed:

■ Section 1.1.1.1, "Eclipse Stand-Alone (without WTP)"

■ Section 1.1.1.2, "Eclipse with WTP"

1.1.1.1 Eclipse Stand-Alone (without WTP)
These instructions describe how to set up a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse stand-alone, without Web Tools Platform
(WTP) installed.

1. Open Eclipse and click File > New > Project.

2. Type the Project Name (for example, "idkproject"). Click Next and Finish.

3. In the Package Explorer in Eclipse, right-click on the new project and click
Properties > Java Build Path > Libraries > Add External Jars.

4. Select the *.jar files from the IDK installation directory under the
idk\<version>\devkit\java\WEB-INF\lib directory. Click OK.

1.1.1.2 Eclipse with WTP
These steps describe how to set up a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse with Web Tools Platform (WTP) installed.

1. Open Eclipse and click File > New > Other > Web > Dynamic Web Project.

2. Type the Project Name (for example, "idkproject").

3. Choose a Target Runtime from the drop-down list. If you have not previously
configured a server runtime, click New to configure your Apache Tomcat setup.

4. Click Finish to complete the Dynamic Web Project wizard.

5. Import the IDK Web project template:

a. Right-click the project in the Project Explorer and click Import > General >
File System.

b. To define the From directory field, navigate to the IDK root directory and
select the \devkit\WEB-INF folder.

c. Change the Into folder field to <project name>/WebContent/WEB-INF.

d. Click Finish.

Note: These instructions assume you have installed the Java version
of the Oracle WebCenter Interaction Development Kit (IDK).

Oracle WebCenter Interaction Development Kit (IDK) Projects

Oracle WebCenter Interaction Development Environment 1-3

1.1.2 Java: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in Eclipse

These steps describe how to deploy a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse. The process is different depending on
whether or not Web Tools Platform (WTP) is installed:

■ Section 1.1.2.1, "Eclipse Stand-Alone (without WTP)"

■ Section 1.1.2.2, "Eclipse with WTP"

1.1.2.1 Eclipse Stand-Alone (without WTP)
These steps describe how to deploy a custom Java IDK project in Eclipse stand-alone
(without Web Tools Platform (WTP) installed).

1. Deploy the Oracle WebCenter Interaction Development Kit (IDK) in your
application server:

a. Create a folder for the custom project in the application server's \webapps
directory. (For example, if Apache Tomcat is installed in C:\tomcat and the
project name is "idkproject", the path would be
C:\tomcat\webapps\idkproject.)

b. Navigate to the IDK installation directory and copy the WEB-INF and its \LIB
subfolder to the directory you created in the previous step. This loads Apache
AXIS into the application server.

c. Confirm that Apache AXIS is available by opening the following page in a
browser: http://<hostname:port>/<projectname>/servlet/AxisServlet.
(Change <hostname:port> to fit your application server, for example,
localhost:8080 for Apache Tomcat. Change <projectname> to the name of the
folder you created in step 1a.) The browser should display the message "And
now... Some Services" and a list of installed services.

2. Compile the class that implements the IDK interface(s) and copy the entire
package structure to the appropriate location in your web application, usually the
\WEB-INF\classes directory.

3. Content services, identity services and SCI pages require additional configuration.
You must add the custom class to the appropriate *Impl keys in the web.xml file in
the WEB-INF directory. For details, see XXX_missing x-ref to ref_idk_
deploymentimplkeys.dita_XXX.

4. Start your application server. In most cases, you must restart your application
server after copying a file.

Note: The Eclipse Web project view hides the imported JARs stored
in WEB-INF/lib and puts those files under ./Java
Resources/src/Libraries/Web App Libraries.

Note: The instructions below are for Apache Tomcat or Oracle
WebLogic. For IBM WebSphere, you must create a .war or .ear file that
is compatible with IBM WebSphere. You must first create an
appropriate server-config.wsdd using the Oracle WebCenter
Interaction Development Kit (IDK) DeployServlet or the supplied
service wsdd files. See the IBM WebSphere documentation for
detailed instructions.

Oracle WebCenter Interaction Development Kit (IDK) Projects

1-4 Web Service Developer's Guide for Oracle WebCenter Interaction

1.1.2.2 Eclipse with WTP
These steps describe how to deploy a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse with Web Tools Platform (WTP) installed.

These instructions use Apache Tomcat as an example.

1. Define the server in Eclipse:

a. Click File > New > Other > Server > Server and click Next.

b. Select the server type (Apache Tomcat v5.0) and click Next.

c. Select the Apache Tomcat v5.0 installation directory and click Next.

d. Add your custom project to the list of configured projects and click Finish.

2. Run and debug the application:

a. In Project Explorer, right-click your custom project and click Debug As >
Debug On Server.

b. Select the existing server and click Finish.

3. Content services, identity services and custom preference (SCI) pages require
additional configuration. You must add the custom class to the appropriate *Impl
keys in the web.xml file in the WEB-INF directory. For details, see XXX_missing
x-ref to ref_idk_deploymentimplkeys.dita_XXX.

4. When Apache Tomcat starts in a new Servers tab, hit
http://localhost:8080/<projectname>/servlet/AxisServlet to ensure that Axis has
deployed correctly and the web service APIs are correctly configured.

1.1.3 Java: Debugging a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project

After you create a custom Oracle WebCenter Interaction Development Kit (IDK)
project, you must deploy it in your Java application server.

These instructions use Apache Tomcat as an example.

1. Define the server in Eclipse:

a. Click File > New > Other > Server > Serverand click Next.

b. Select the server type as Apache Tomcat v5.0 and click Next.

c. Select the Apache Tomcat v5.0 installation directory and click Next.

d. Add your project to the list of configured Apache Tomcat projects and click
Finish.

2. Content services, identity services and SCI pages require additional configuration.
You must add the custom class to the appropriate *Impl keys in the web.xml file in
the WEB-INF directory. For details on Impl keys, see XXX_missing x-ref to ref_
idk_deploymentimplkeys.dita_XXX.

3. Run and debug the application:

a. In Eclipse Project Explorer, right-click your project and click Debug As >
Debug On Server.

b. Select the existing server and click Finish.

4. When Apache Tomcat starts in a new Servers tab, hit
http://localhost:8080/<project name>/servlet/AxisServlet to

Oracle WebCenter Interaction Development Kit (IDK) Projects

Oracle WebCenter Interaction Development Environment 1-5

ensure that Axis has deployed correctly and the web service APIs are correctly
configured.

1.1.4 .NET: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in Visual Studio

These steps describe how to set up a custom .NET Oracle WebCenter Interaction
Development Kit (IDK) project in Visual Studio.

1. Start Visual Studio and click File > New Project > C# Projects > ASP.NET Web
Service.

2. Type an intuitive name in the Location field.

3. Delete Service1.asmx and Web.config.

4. In the new project, click File > Add Existing Item.

5. Browse to the \devkit folder in the IDK installation directory.

6. In the File Types mask, click All Files.

7. Select all the .asmx files and Web.config. Do not select the \bin directory.

8. Click Open. You will be prompted to create a class file for each .asmx file; click No
for each file.

9. In the Solution Explorer (usually in the upper right), you should see the project
you created in step 1. Add the IDK assemblies:

a. Right-click References and click Add Reference.

b. Browse to the \devkit\bin folder in the IDK installation directory.

c. Select the assemblies to add to the bin directory: all the .dll files (Ctrl+A).
These are the assemblies that resolve the references in the *.asmx files.

– If you are using the standard (un-signed) version of the IDK, select all the
.dll files (Ctrl+A).

– If you are using the signed dll version of the IDK, select only
Plumtree.openlog-framework_signed.dll. (You must deploy the other
assemblies in the GAC as described in step f below.)

d. Click Open > OK.

e. In the Solution Explorer References, confirm that you now see idk,
openfoundation, etc.

f. If you are using the signed dll version of the IDK, deploy the following
assemblies in the GAC:

– Plumtree.EDK_signed.dll

– OpenFoundation_signed.dll

– Plumtree.openkernel_signed.dll

– Plumtree.openlog-framework_signed.dll

– Plumtree.pmb_signed.dll

Note: These instructions assume you have installed the .NET version
of the Oracle WebCenter Interaction Development Kit (IDK).

Oracle WebCenter Interaction Logging Utilities

1-6 Web Service Developer's Guide for Oracle WebCenter Interaction

– Plumtree.RAT_signed.dll

10. Click File > Add New Item to create new classes and complete your project.

1.1.5 .NET: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in IIS

These steps describe how to deploy a custom .NET Oracle WebCenter Interaction
Development Kit (IDK) project in IIS.

These instructions assume you have set up Visual Studio for IDK development as
described in the previous section.

1. Compile the class that implements the Oracle WebCenter Interaction Development
Kit (IDK) interface(s).

2. Content services, identity services and SCI pages require additional configuration.
You must add the class and the assembly that contains it to the appropriate
*Assembly and *Impl keys in the web.config file in your project. For details, see
XXX_missing x-ref to ref_idk_deploymentimplkeys.dita_XXX.

3. If you do not already have a virtual directory in IIS for your services, add one
using the steps below:

a. Navigate to Internet Services Manager (Internet Information Services) in the
Control Panel under Administrative Tools.

b. Select Default Web Site.

c. Click Action > New > Virtual Directory and type the name of your Visual
Studio location.

d. Click Next twice. Type the path to the home directory for the IDK:
<installdir>\idk\6.0\devkit\dotnet.

e. Check both the Read and Scripts only checkboxes if they are cleared (they
should be checked by default). Click Next then click Finish.

4. Copy the compiled class files to the \bin folder in the
<installdir>\idk\<version>\devkit\dotnet directory.

1.2 Oracle WebCenter Interaction Logging Utilities
Oracle WebCenter Interaction Logging Utilities are a collection of debugging and
logging solutions available for use in Oracle WebCenter Interaction.

Oracle WebCenter Interaction Logging Utilities allow for a wide variety of logging
solutions. The Oracle WebCenter Interaction Development Kit (IDK) provides a
remote API that allows you to send logging messages from remote web applications.

This chapter contains the following sections:

■ Section 1.2.1, "Configuring Oracle WebCenter Interaction Development Kit (IDK)
Logging": Oracle WebCenter Interaction Development Kit (IDK) logging is not
enabled by default. You can enable logging options programmatically or using the
web.xml or Web.config file distributed with the IDK.

■ Section 1.2.2, "Using the Oracle WebCenter Interaction Development Kit (IDK)
Logging API": The Oracle WebCenter Interaction Development Kit (IDK) logging
API allows you to send log messages from remote services and applications to a
variety of logging receivers. This section explains how to use the logging API
from Java and .NET applications and from the command line.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Interaction Development Environment 1-7

1.2.1 Configuring Oracle WebCenter Interaction Development Kit (IDK) Logging
To enable and configure Oracle WebCenter Interaction Development Kit (IDK)
logging, first determine how the IDK is deployed.

Oracle WebCenter Interaction Development Kit (IDK) logging is disabled by default. If
logging is enabled, it is sent only to the local machine by default, requiring direct
access to the machine to view the logs. These default settings were chosen to secure
potentially sensitive information present in log messages.

■ If the Oracle WebCenter Interaction Development Kit (IDK) is deployed as a Web
application to support Integration Service implementations, edit the distributed
Web application configuration file (web.xml or Web.config). For details, see
Section 1.2.1.1, "Configuring Java Oracle WebCenter Interaction Development Kit
(IDK) Logging (web.xml)" or Section 1.2.1.2, "Configuring .NET Oracle WebCenter
Interaction Development Kit (IDK) Logging (Web.config)"

■ If the Oracle WebCenter Interaction Development Kit (IDK) is deployed as a
library supporting a Web application (for example, a portlet), copy and paste the
configuration parameters from the IDK's distributed web.xml/Web.config into
your Web application configuration file. For details, see Section 1.2.1.1,
"Configuring Java Oracle WebCenter Interaction Development Kit (IDK) Logging
(web.xml)" or Section 1.2.1.2, "Configuring .NET Oracle WebCenter Interaction
Development Kit (IDK) Logging (Web.config)".

■ If the Oracle WebCenter Interaction Development Kit (IDK) is deployed as a
stand-alone application outside a Web application context, such as
report-generating or data loading and dumping applications using the PRC, use
programmatic configuration to initialize logging parameters. Programmatic
logging configuration can be done at startup, or by using a static initialization call
on a façade class that the Web application runtime code uses to obtain logging
components or logger instances. For details, see Section 1.2.2, "Using the Oracle
WebCenter Interaction Development Kit (IDK) Logging API".

To use the Oracle WebCenter Interaction Development Kit (IDK) Logging API, you
must configure the logging receiver to read logs from the IDK. To configure the log
receiver, you must know the logging application name. The Oracle WebCenter
Interaction Development Kit (IDK) logging application name is configured in the Web
application configuration file or set via the initialize() method in the Logging
API.

1.2.1.1 Configuring Java Oracle WebCenter Interaction Development Kit (IDK)
Logging (web.xml)
For web services using the Java Oracle WebCenter Interaction Development Kit (IDK),
the web.xml file is the standard way to configure log instrumentation.

The example below shows the logging settings only. The bulk of the web.xml file has
been omitted; environment keys are inserted at the end according to the DTD.

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE web-app
PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN
'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd'>
<web-app>
...

Note: Verbose logging cannot be enabled programmatically; you
must change a setting in the web.xml or Web.config file.

Oracle WebCenter Interaction Logging Utilities

1-8 Web Service Developer's Guide for Oracle WebCenter Interaction

<env-entry>
 <env-entry-name>ptedk.VerboseLogging</env-entry-name
 <env-entry-value>true</env-entry-value>
 <env-entry-type>java.lang.Boolean</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>ptedk.LoggingApplicationName</env-entry-name>
 <env-entry-value>EDK</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>ptedk.LogToNetwork</env-entry-name>
 <env-entry-value>true</env-entry-value>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 </env-entry>
<web-app>

1.2.1.2 Configuring .NET Oracle WebCenter Interaction Development Kit (IDK)
Logging (Web.config)
If you are running the .NET Oracle WebCenter Interaction Development Kit (IDK) as a
web application that hosts Web services (that do not use the logging API), the
Web.config file is the best way to configure log instrumentation.

The Oracle WebCenter Interaction Development Kit (IDK) Web.config follows the
normal precedence rules of IIS Web.config: within a web application, machine.config
is read first for configuration values, then overlaid with Web.config from each parent
directory within the web application subtree down to the directory containing the
running code. The example below shows the logging settings only. All .NET Web
applications have Web.config files. If the configuration file does not have an
<appSettings> section, it can be added along with the key-value pairs to configure
logging.

<configuration>
 <appSettings>
 <add key="ptedk.LoggingApplicationName" value="Bulk-Document-Loader" />
 <add key="ptedk.LogToNetwork" value="true" />
 <add key="ptedk.VerboseLogging" value="true" />
 </appSettings>
 <system.web>
 ...
 </system.web>
</configuration>

For stand-alone .NET applications outside a web application context, use
programmatic configuration. For details, see Section 1.2.2.2, "Using Oracle WebCenter
Interaction Development Kit (IDK) Logging in .NET".

1.2.1.3 Oracle WebCenter Interaction Development Kit (IDK) Logging Levels
This page summarizes logging levels and their implementation in Oracle WebCenter
Interaction Development Kit (IDK) logging.

The Oracle WebCenter Interaction Development Kit (IDK) ILogger interface provides
access to all eight standard logging levels.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Interaction Development Environment 1-9

Table 1–1 Severity-Based Logging Levels

Logging Level Description IDK Implementation

Debug The most common and numerous log call, used
for detailed call tracing and parameter logging.
The message should contain a detailed
descriptive message reporting a minor step
taken in the code or providing variable values
(or both).

Remote call tracing. Function parameters.
ToString() of portlet settings or service request.

Info Used for normal but significant events. Reports
a common operation that is of possible interest,
for example, serving a new user request or
making a remote procedure call.

New portlet or service request. PRC session
initialization (login). The IDK logging service
sends an Info message to the "EDK main"
logging component when it is initialized.

Warn Used for minor problems. Indicates a possible
problem which the person responsible for the
application should be aware of.

Expected (application) exceptions. For a portlet,
this includes non-proxied requests and missing
settings. The Oracle WebCenter Interaction
Development Kit (IDK) logging service sends a
Warn message to the 'EDK main' logging
component when it is initialized if verbose
logging is enabled, since the network or
application administrator should be aware of
possible security implications of sending remote
call parameters to a cleartext logging channel.

Error Used for major problems affecting application
function. Indicates a definite problem that
should to be corrected. The message should
state and explain the problem and suggest how
to fix it.

Unexpected platform exceptions. For a portlet,
this includes errors parsing CSP headers.

Fatal Used for problems so severe that the
application cannot continue to function. The
message should state the problem, explain why
it is a problem, and suggest how to fix it.
Examples include inability to obtain necessary
system or network resources.

A Fatal message is logged when an instance of
the class configured for the Web Service object
cannot be instantiated. Otherwise reserved for
application developer use.

Table 1–2 Supplemental Logging Levels

Logging Level Description IDK Implementation

Action Used for significant actions (between Info and
Warn in severity). Examples include the
beginning or ending of a startup routine or the
start or completion of a new user request.

Initialize an application component or a new
remote session.

Function Used to bracket the beginning and ending of a
function. Use at the very beginning and end of
methods to illustrate code paths and provide
context for messages occurring between the
beginning and ending function messages.

Dispatching and receiving a remote call, and
parsing request parameters.

Performance Provides a millisecond timestamp (for example,
operation X took # milliseconds). Use to
measure operations that may be costly in time.
Typically a pair of begin and end performance
calls will bracket a blocking call to an operation
of interest such as a disk read or write, remote
call, external process invocation, database
query, or large sort operation.

PRC remote calls. Web request lifecycle for
services.

Oracle WebCenter Interaction Logging Utilities

1-10 Web Service Developer's Guide for Oracle WebCenter Interaction

1.2.1.4 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web
Application Variables
To enable Oracle WebCenter Interaction Development Kit (IDK) logging, you must
enter the application name and change the settings in the web.xml (Java) or
Web.config (.NET) file distributed with the Oracle WebCenter Interaction
Development Kit (IDK). The table below lists the applicable variables.

1.2.2 Using the Oracle WebCenter Interaction Development Kit (IDK) Logging API
The Oracle WebCenter Interaction Development Kit (IDK) logging API allows you to
send log messages from remote services and applications to a variety of logging
receivers.

The com.plumtree.remote.logging package provides two interfaces:

■ LogFactory provides static methods to configure logging, query configuration
properties, and obtain ILogger instances.

■ ILogger allows you to test if various log levels are enabled and provides logging
methods. To create a logger object, call LogFactory.getLogger().

Table 1–3 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web Application Variables

Setting Default Value Description

ptedk.LoggingApplicationName "" (No logging occurs if
the application name is
not set.)

OpenLog and Logging Spy use a text string (OpenLog:
'Application' / PTSpy: 'server') to identify a specific log channel
to which log appenders can send messages, and from which log
receivers can receive messages. To receive messages sent to an
OpenLog channel, a listening application must be configured
with the same application name used by the log-generating
application. To receive log messages from an existing Oracle
WebCenter Interaction Development Kit (IDK) deployment in a
Web application, set values for the name and logging options
according to the example in the web.xml or Web.config file. To
receive log messages from a non-Web application that uses the
Oracle WebCenter Interaction Development Kit (IDK) (for
example, batch or utility processes using remote APIs), set the
logging application name programmatically. Use the value in the
key ptedk.LoggingApplicationName to set a matching server
name in the logging receiver. Note: If the application is already
using OpenLog and also using the Oracle WebCenter Interaction
Development Kit (IDK), the code must not attempt to initialize
OpenLog with a different application name

ptedk.LogToNetwork false (Logs to local
machine only.)

Logging to the network is disabled by default. In this condition,
log messages can only be received by OpenLog receiver
processes on the local machine, including Logging Spy, the File
Logger, or receivers using the OpenLog-Log4J Bridge.Logging
can be enabled by setting the value associated with
ptedk.LogToNetwork to true in the Web application
configuration file. For non-Web applications, you can enable
network logging programmatically using the Oracle WebCenter
Interaction Development Kit (IDK).

ptedk.VerboseLogging false (Does not log
method parameters or
return values unless
requested.)

Verbose logging is disabled by default. Basic logging messages
are still sent to the log receiver. The portlet API sends an Info log
message with each new portlet context created (each portlet
request). Any exceptions, errors, or requests for missing settings
are logged as Error or Warning as appropriate.If you enable
verbose logging, additional messages and details are sent to the
log receiver. The portlet API sends a Warning message informing
the log reader that sensitive information may be logged in
cleartext. With each portlet request, the portlet API sends a
Debug message with a toString() of the PortletRequest object,
containing request parameters and portlet settings; and a Debug
message with a toString() of the PortletUser object, containing
user settings.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Interaction Development Environment 1-11

To use the Oracle WebCenter Interaction Development Kit (IDK) Logging API, you
must configure the logging receiver to read logs from the IDK. To configure the log
receiver, you must know the logging application name. The Oracle WebCenter
Interaction Development Kit (IDK) logging application name is configured in the Web
application configuration file or set via the initialize() method in the Logging
API.

For details on using the logging API, see the following sections:

■ Section 1.2.2.1, "Using Oracle WebCenter Interaction Development Kit (IDK)
Logging in Java"

■ Section 1.2.2.2, "Using Oracle WebCenter Interaction Development Kit (IDK)
Logging in .NET"

■ Section 1.2.2.3, "Using Oracle WebCenter Interaction Development Kit (IDK)
Logging from the Command Line"

1.2.2.1 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in Java
This example demonstrates how to enable and use Oracle WebCenter Interaction
Development Kit (IDK) logging in a remote Java application.

1. The first step in this example is to enable logging programmatically, by defining
the logging application name and setting the log to network option to true. For
details on logging options, see Section 1.2.1.1, "Configuring Java Oracle WebCenter
Interaction Development Kit (IDK) Logging (web.xml)".

import com.plumtree.remote.logging.ILogger;
import com.plumtree.remote.logging.LogFactory;

public class LoggingExample extends Thread
{
 private static final String INSTANCES_COMPONENT_NAME = 'Instances';
 private static final String MAIN_LOOP_COMPONENT_NAME = 'Main Loop';

 // set the application name
 // (legal characters: ASCII alphanumerics plus . - _ and space)
 public static final String LOGGING_APPLICATION_NAME = 'Logging_API_
Example-1';

 // set to true to multicast log messages to local network
 // set to false to send message only listeners on local machine
 public static final boolean LOG_TO_NETWORK = true;

 private ILogger logger; //instance logging class
 private static ILogger mainLogger; // main component logging class

2. Initialize LogFactory. The recommended way to initialize non-web applications
is in a static block in the application's main class or a logging utility class. Always
check to see if LogFactory has already been initialized (for example, as part of an
IDK-based web application).

if (!LogFactory.isInitialized())
{
 LogFactory.initialize(LOGGING_APPLICATION_NAME, LOG_TO_NETWORK);
}
System.out.print('Set your logging receiver to the \'server\' or \'application
name\' ');
System.out.println(LogFactory.getApplicationName());
System.out.println('The logging component names are \'EDK\', \'' + MAIN_LOOP_
COMPONENT_NAME + '\' and \''

Oracle WebCenter Interaction Logging Utilities

1-12 Web Service Developer's Guide for Oracle WebCenter Interaction

+ INSTANCES_COMPONENT_NAME + '\'.');

mainLogger = LogFactory.getLogger(MAIN_LOOP_COMPONENT_NAME,
LoggingExample.class);
This code creates the following messages in Logging Spy. These messages are sent
automatically by the Oracle WebCenter Interaction Development Kit (IDK). For
the sample code above, the <appname> would be "Logging_API_"

1 <#> <app name> <date/time> Info EDK main LogFactory Initiating EDK logging on behalf
of EDK: LogFactory.

2 <#> <app name> <date/time> Info EDK main LogFactory Verbose logging of internal EDK
classes is off. It may be enabled by setting ptedk.VerboseLogging='true' .

3. Create an instance of ILogger by calling LogFactory.getLogger. In the code
below, the LoggingExample method sends an Info level log message when an
instance is created. The snippet below also uses ILogger.functionBegin and
ILogger.functionEnd to log when a method is entered and exited,
ILogger.action to log significant events, and ILogger.performanceBegin
and ILogger.performanceEnd to log the time required to execute the methods.

public LoggingExample(String instanceName)
{
 setName(instanceName);
 this.logger = LogFactory.getLogger(INSTANCES_COMPONENT_NAME,
LoggingExample.class);
 mainLogger.info('Created new instance named {0}', instanceName);
}
public static void main(String[] args)
{
 final String methodName = 'main';
 mainLogger.functionBegin(methodName);

 // get a timestamp to measure performance of this function
 long performanceStartTicks = mainLogger.performanceBegin();

 mainLogger.action('Creating and starting instances');

 LoggingExample bill = new LoggingExample('Bill');
 bill.start();
 LoggingExample larry = new LoggingExample('Larry');
 larry.start();

 mainLogger.action('Done creating instances');

 // send log message with time since performanceBegin
 mainLogger.performanceEnd(methodName, performanceStartTicks);

 mainLogger.functionEnd(methodName);
}

This code creates the following messages in Logging Spy.

 3 <#> <app name> <date/time> Function Main Loop main LoggingExample Entering
Function main

4 <#> <app name> <date/time> Action Main Loop main LoggingExample Creating and
starting instances

5 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Bill

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Interaction Development Environment 1-13

6 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Larry

7 <#> <app name> <date/time> Action Main Loop main LoggingExample Done creating
instances

8 <#> <app name> <date/time> Performance Main Loop main LoggingExample main took 0
ms.

9 <#> <app name> <date/time> Function Main Loop main LoggingExample Leaving Function
mainInfo

4. The code below demonstrates available logging levels and provides an example of
how to use token substitution in formatting strings to construct messages. The
thread runs through a small test of logging messages and transfers work to the
next by calling yield(). Note: Wrap any complex message construction in a
conditional block to avoid doing work if there are no listeners at that log level.

public void run()
{
 String levelDescriptionFormat = '{0} level messages are {1} by default in
the log receiver.';
 logger.debug(levelDescriptionFormat, 'Debug', 'off');
 logger.info(levelDescriptionFormat, 'Info', 'off');
 logger.warn(levelDescriptionFormat, 'Warn', 'on');
 logger.error(levelDescriptionFormat, 'Error', 'on');
 logger.fatal(levelDescriptionFormat, 'Fatal', 'on');

 yield();

 // Exceptions may also be caught and logged, and may use token substitution
 try
 {
 throw new InterruptedException(getName() + ' was interrupted.');
 }
 catch (Exception eCaught)
 {
 logger.warn(eCaught, 'Caught an exception from {0}. ',
eCaught.getClass().getPackage().getName());
 }
}

This code creates the following messages in Logging Spy:

10 <#> <app name> <date/time> Function Instances Larry LoggingExample Entering
Function run

11 <#> <app name> <date/time> Action Instances Bill LoggingExample Action log messages
are on by default in the log receiver.

12 <#> <app name> <date/time> Debug Instances Bill LoggingExample Debug level messages
are off by default in the log receiver.

13 <#> <app name> <date/time> Info Instances Bill LoggingExample Info level messages are
off by default in the log receiver.

14 <#> <app name> <date/time> Warning Instances Bill LoggingExample Warn level
messages are on by default in the log receiver.

15 <#> <app name> <date/time> Error Instances Bill LoggingExample Error level messages
are on by default in the log receiver.

Oracle WebCenter Interaction Logging Utilities

1-14 Web Service Developer's Guide for Oracle WebCenter Interaction

16 <#> <app name> <date/time> Fatal Instances Bill LoggingExample Fatal level messages are
on by default in the log receiver.

17 <#> <app name> <date/time> Action Instances Larry LoggingExample Action log
messages are on by default in the log receiver.

18 <#> <app name> <date/time> Debug Instances Larry LoggingExample Debug level
messages are off by default in the log receiver.

19 <#> <app name> <date/time> Info Instances Larry LoggingExample Info level messages are
off by default in the log receiver.

20 <#> <app name> <date/time> Warning Instances Larry LoggingExample Warn level
messages are on by default in the log receiver.

21 <#> <app name> <date/time> Error Instances Larry LoggingExample Error level messages
are on by default in the log receiver.

22 <#> <app name> <date/time> Fatal Instances Larry LoggingExample Fatal level messages
are on by default in the log receiver.

23 <#> <app name> <date/time> Warning Instances Bill LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Bill was interrupted. -
java.lang.InterruptedException: Bill was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

24 <#> <app name> <date/time> Warning Instances Larry LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Larry was interrupted. -
java.lang.InterruptedException: Larry was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

1.2.2.2 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in .NET
This example demonstrates how to use Oracle WebCenter Interaction Development
Kit (IDK) logging in a remote .NET application.

1. The first step in this example is to enable logging programmatically, by defining
the logging application name and setting the log to network option to true. For
details on logging options, see Section 1.2.1.2, "Configuring .NET Oracle
WebCenter Interaction Development Kit (IDK) Logging (Web.config)".

using System;
using System.Threading;
using Plumtree.Remote.Logging;

public class LoggingCommandLineExample
{
 private static readonly String INSTANCES_COMPONENT_NAME = 'Instances';
 private static readonly String MAIN_LOOP_COMPONENT_NAME = 'Main Loop';

 // set the application name
 // (legal characters: ASCII alphanumerics plus . - _ and space)
 public static readonly String LOGGING_APPLICATION_NAME = 'Logging_API_
Example-1';

 // set to true to multicast log messages to local network
 // set to false to send message only listeners on local machine
 public static readonly bool LOG_TO_NETWORK = true;

 private ILogger logger; //instance logging class
 private static ILogger mainLogger; // main component logging class

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Interaction Development Environment 1-15

 // thread for each instance of LoggingCommandLineExample
 private Thread _thread;

2. Initialize LogFactory. The recommended way to initialize non-web applications
is in a static block in the application's main class or a logging utility class. Always
check to see if LogFactory has already been initialized (for example, as part of an
IDK-based web application).

if (!LogFactory.isInitialized())
{
 LogFactory.Initialize(LOGGING_APPLICATION_NAME, LOG_TO_NETWORK);
}
Console.Out.WriteLine('Set your logging receiver to the \'server\' or
\'application name\' ');
Console.Out.WriteLine(LogFactory.GetApplicationName());
Console.Out.WriteLine('The logging component names are \'EDK\', \'' + MAIN_
LOOP_COMPONENT_NAME + '\' and \'' +
INSTANCES_COMPONENT_NAME + '\'.');

mainLogger = LogFactory.GetLogger(MAIN_LOOP_COMPONENT_NAME,
typeof(LoggingCommandLineExample));

This code creates the following messages in Logging Spy. These messages are sent
automatically by the Oracle WebCenter Interaction Development Kit (IDK). For
the sample code above, the <app name> entry would be "Logging_API_"

1 <#> <app name> <date/time> Info EDK main LogFactory Initiating EDK logging on behalf
of EDK: LogFactory.

2 <#> <app name> <date/time> Info EDK main LogFactory Verbose logging of internal EDK
classes is off. It may be enabled by setting ptedk.VerboseLogging='true' .

3. Create an instance of ILogger by calling LogFactory.getLogger. In the code
below, the LoggingExample method sends an Info level log message when an
instance is created. The snippet below also uses ILogger.functionBegin and
ILogger.functionEnd to log when a method is entered and exited,
ILogger.action to log significant events, and ILogger.performanceBegin
and ILogger.performanceEnd to log the time required to execute the methods.

public LoggingCommandLineExample(String instanceName)
{
 _thread = new Thread(new ThreadStart(Run));
 _thread.Name = instanceName;
 this.logger = LogFactory.GetLogger(INSTANCES_COMPONENT_NAME,
typeof(LoggingCommandLineExample));
 mainLogger.Info('Created new instance named {0}', instanceName);
}
[STAThread]
public static void main(String[] args)
{
 String methodName = 'main';
 mainLogger.FunctionBegin(methodName);

 // get a timestamp to measure performance of this function
 long performanceStartTicks = mainLogger.PerformanceBegin();

 mainLogger.Action('Creating and starting instances');

 LoggingExample bill = new LoggingExample('Bill');
 bill.Thread.Start();
 LoggingExample larry = new LoggingExample('Larry');

Oracle WebCenter Interaction Logging Utilities

1-16 Web Service Developer's Guide for Oracle WebCenter Interaction

 larry.Thread.Start();

 mainLogger.Action('Done creating instances');

 // send log message with time since performanceBegin
 mainLogger.PerformanceEnd(methodName, performanceStartTicks);

 mainLogger.FunctionEnd(methodName);
}
This code creates the following messages in Logging Spy.

 3 <#> <app name> <date/time> Function Main Loop main LoggingExample Entering
Function main

4 <#> <app name> <date/time> Action Main Loop main LoggingExample Creating and
starting instances

5 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Bill

6 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Larry

7 <#> <app name> <date/time> Action Main Loop main LoggingExample Done creating
instances

8 <#> <app name> <date/time> Performance Main Loop main LoggingExample main took 0
ms.

9 <#> <app name> <date/time> Function Main Loop main LoggingExample Leaving Function
mainInfo

4. The code below demonstrates available logging levels and provides an example of
how to use token substitution in formatting strings to construct messages. The
thread runs through a small test of logging messages and interleaves the messages
using Thread.Sleep.

public void Run()
{
 String methodName = 'run';

 // send log message that function is starting
 logger.FunctionBegin(methodName);

 // get a timestamp to measure performance of this function
 long performanceStartTicks = mainLogger.PerformanceBegin();
 Thread.Sleep(1); // interleaves work to the other thread

 String levelDescriptionFormat = '{0} level messages are {1} by default in
the log receiver.';
 logger.Debug(levelDescriptionFormat, 'Debug', 'off');
 logger.Info(levelDescriptionFormat, 'Info', 'off');
 logger.Warn(levelDescriptionFormat, 'Warn', 'on');
 logger.Error(levelDescriptionFormat, 'Error', 'on');
 logger.Fatal(levelDescriptionFormat, 'Fatal', 'on');

 Thread.Sleep(1); // interleaves work to the other thread

Note: Wrap any complex message construction in a conditional
block to avoid doing work if there are no listeners at that log level.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Interaction Development Environment 1-17

 // Exceptions may also be caught and logged, and may use token substitution
 try
 {
 throw new ThreadInterruptedException(_thread.Name + ' was interrupted.');
 }
 catch (Exception eCaught)
 {
 logger.Warn(eCaught, 'Caught an exception from {0}. ',
eCaught.GetType().Name);
 }

 Thread.Sleep(1); // interleaves work to the other thread

 // send log message with time since performanceBegin
 mainLogger.PerformanceEnd(methodName, performanceStartTicks);

 // send log message that function is ending
 logger.FunctionEnd(methodName);
}
public Thread Thread
{
 get
 {
 return _thread;
 }
}
This code creates the following messages in Logging Spy:

10 <#> <app name> <date/time> Function Instances Larry LoggingExample Entering
Function run

11 <#> <app name> <date/time> Action Instances Bill LoggingExample Action log messages
are on by default in the log receiver.

12 <#> <app name> <date/time> Debug Instances Bill LoggingExample Debug level messages
are off by default in the log receiver.

13 <#> <app name> <date/time> Info Instances Bill LoggingExample Info level messages are
off by default in the log receiver.

14 <#> <app name> <date/time> Warning Instances Bill LoggingExample Warn level
messages are on by default in the log receiver.

15 <#> <app name> <date/time> Error Instances Bill LoggingExample Error level messages
are on by default in the log receiver.

16 <#> <app name> <date/time> Fatal Instances Bill LoggingExample Fatal level messages are
on by default in the log receiver.

17 <#> <app name> <date/time> Action Instances Larry LoggingExample Action log
messages are on by default in the log receiver.

18 <#> <app name> <date/time> Debug Instances Larry LoggingExample Debug level
messages are off by default in the log receiver.

19 <#> <app name> <date/time> Info Instances Larry LoggingExample Info level messages are
off by default in the log receiver.

20 <#> <app name> <date/time> Warning Instances Larry LoggingExample Warn level
messages are on by default in the log receiver.

Server Communication and the Gateway

1-18 Web Service Developer's Guide for Oracle WebCenter Interaction

21 <#> <app name> <date/time> Error Instances Larry LoggingExample Error level messages
are on by default in the log receiver.

22 <#> <app name> <date/time> Fatal Instances Larry LoggingExample Fatal level messages
are on by default in the log receiver.

23 <#> <app name> <date/time> Warning Instances Bill LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Bill was interrupted. -
java.lang.InterruptedException: Bill was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

24 <#> <app name> <date/time> Warning Instances Larry LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Larry was interrupted. -
java.lang.InterruptedException: Larry was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

1.2.2.3 Using Oracle WebCenter Interaction Development Kit (IDK) Logging from
the Command Line
These instructions explain how to run the Oracle WebCenter Interaction Development
Kit (IDK) Logging API example code (Java or .NET) from the command line.

1. Scan the sample code and note the LOGGING_APPLICATION_NAME parameter
declared near the top of the class. Change this value if you wish, and record it.

2. Java: Compile with all the idk jar files in the classpath. Make sure servlet.jar and
all idk jar files are in the classpath. .NET: Compile the source with reference to
idk.dll and its supporting DLLs.

3. Launch Logging Spy. Go to the Filters dialog box and add a new server
(right-click and select Add Server). Enter the value set for LOGGING_
APPLICATION_NAME in the Add Server dialog box and click OK . Wait a few
seconds until a new entry appears in the Filter Settings list .

4. Run the example from the command line. Note any messages displayed in
Logging Spy. Error and exception logs are included in the logging demonstration.

5. Go back to the Filters dialog in Logging Spy. Click the gray selection box beside
the 'server' entry to accept logging for all logging levels.

6. Run the example again. Note that the messages displayed now in Logging Spy
include examples of all logging levels, including error and exception logs.

1.3 Server Communication and the Gateway
Oracle WebCenter Interaction acts as a gateway server, brokering transactions
between client computers and external resources.

Services on external resources communicate with Oracle WebCenter Interaction via
HTTP and SOAP as shown in the simplified diagram below. For example, when a
browser requests a page, Oracle WebCenter Interaction makes simultaneous requests
to each external resource to retrieve the portlet content for the page. The external
resource reads the current user's preferences from the HTTP headers sent by Oracle
WebCenter Interaction and sends back the appropriate HTML. Oracle WebCenter
Interaction inserts the HTML into the table that makes up the page. Any images stored
in the Image Service are retrieved and displayed by the browser.

Server Communication and the Gateway

Oracle WebCenter Interaction Development Environment 1-19

Figure 1–1 Server Communication (Simplified Diagram)

HTTP and SOAP are both necessary because each standard fits the specific needs of
different tasks. SOAP involves posting and returning XML documents and is
appropriate for exchanging highly structured data. SOAP is used in the
server-to-server communication required for content services, identity services, and
importing documents. HTTP is a much more lightweight protocol, used in Oracle
WebCenter Interaction for UI presentation, basic configuration and click-through, and
caching. For an introduction to SOAP, see Section 1.3.2.4, "SOAP".

CSP is a platform-independent protocol based on the open standard of HTTP 1.1. The
syntax of communication between Oracle WebCenter Interaction and external
resources is defined by CSP. CSP defines custom headers and outlines how services
use HTTP to communicate and modify settings. For details on CSP, see Section 1.3.2,
"HTTP and CSP".

1.3.1 The Oracle WebCenter Interaction Gateway
A gateway server acts as a middleman, brokering transactions between a client
computer and another server. This configuration is typically used to serve content to
clients that would otherwise be unable to access the external resource, but it can be
used to impose additional security restrictions on the client. The gateway hides the
external resource; to the end user, the content appears to come directly from the
gateway server.

This architecture makes Oracle WebCenter Interaction the single point of access for
content, and allows external resources to reside on a private network or behind a
firewall. As long as Oracle WebCenter Interaction can connect to the external resource,
users can view the content, even if they cannot access it directly. To the browser,
Oracle WebCenter Interaction appears to be the source of content on the external
resource.

When a user interacts with a service, any request made to a URL in the gateway is
automatically rerouted through Oracle WebCenter Interaction. To the user, the content
appears to come from Oracle WebCenter Interaction; the remote server is an unknown
back-end system.

Server Communication and the Gateway

1-20 Web Service Developer's Guide for Oracle WebCenter Interaction

Figure 1–2 Gateway Architecture

There are many benefits to this configuration. The most useful to services are:

■ Dynamic functionality and personalization: Oracle WebCenter Interaction
intercepts requests from portlets, which allows it to include information stored in
the database in HTTP requests and responses. Most of this information is
accessible through Oracle WebCenter Interaction Development Kit (IDK) methods.
In many situations, an adaptive tag provides the functionality required, including
navigation and login elements. Custom tags can be created for additional
functionality.

■ Security: Services can allow users to access content that is not publicly available.
Files stored on a secure server can be made available by including specific URLs in
the configuration of the gateway. Note: The gateway is a powerful feature, and
can compromise security if incorrectly configured. Allowing direct access to a
remote server that hosts unprotected private content could create a dangerous
security hole.

■ Performance: Oracle WebCenter Interaction caches proxied content, decreasing
response time for end users and improving performance on the remote server.
While gatewaying works efficiently for content like HTML, it is generally not
appropriate for binary data like static images. Images do not need to be
transformed, and gatewaying large images can adversely affect performance. This
is one reason the Image Service should be used to prevent routing static images
through the gateway.

The collection of URLs that should be gatewayed for a service is configured in the Web
Service editor on the HTTP Configuration page. In the Gateway URL Prefixes list, you
must enter the base URLs for any directories that should be gatewayed.

Keep the following warnings and best practices in mind when implementing services
that use the gateway:

■ URL transformation: Oracle WebCenter Interaction must transform code so that
proxied URLs open correctly. Before Oracle WebCenter Interaction sends a
response, it parses the HTML and looks for any URLs that use the Internal URL
prefix configured for the associated Web Service. Oracle WebCenter Interaction

Server Communication and the Gateway

Oracle WebCenter Interaction Development Environment 1-21

transforms any URLs that should be proxied before returning the response to the
client. Relative URLs are transformed to point to the correct location.

■ Scripting limitations: JavaScript constructs that dynamically create URLs can
cause problems, because they are run after content is already transformed.
VBScript is not transformed by the gateway; you can continue to use dynamic
scripts and VBScript as long as your code is gateway-aware. To manually mark a
URL for transformation, use the pt:url tag. To disable transformation, use
pt:transformer with a pt:fixurl attribute of 'off.' For details, see Section 2.4.2,
"Adaptive Tags".

■ URL encoding: It is a best practice to encode all headers that are URLs to prevent
unexpected transformation. In JSP, encode all URLs that are written. If the code
writes URLs in the body of a page (for example, a link to a preferences page) it
should be encoded. The standard Java servlet command response.encodeURL() is
the preferred method, but you can also use URLEncoder.encode(url). In the .NET
Framework, the HttpUtility.URLEncode class provides the necessary
functionality. Note: In .NET, there is no need to encode the redirect URL; this is
handled automatically on the back end.

1.3.1.1 Portlets and the Gateway
All portlets are designed to be displayed with other portlets. As explained in the
previous section, Oracle WebCenter Interaction acts as a gateway, processing and
combining portlets from multiple applications to create a single, unified page with a
range of functionality.

The code returned by a portlet is parsed by the gateway server and inserted into the
appropriate cell in the HTML table that makes up the mashup page. Portlets from the
same back-end application can interact with each other within the page.

Figure 1–3 Oracle WebCenter Interaction as Gateway Server

In Oracle WebCenter Interaction, the portal page defines the layout and includes
specific portlets in the page using adaptive tags. Header navigation can be added
using tags.

Server Communication and the Gateway

1-22 Web Service Developer's Guide for Oracle WebCenter Interaction

1.3.2 HTTP and CSP
HTTP is a protocol used mostly for transferring web page content and XML between a
server and a client. CSP is a platform-independent protocol based on the open
standard of HTTP 1.1 that defines the syntax of communication between Oracle
WebCenter Interaction and remote servers.

1.3.2.1 HTTP
HTTP communication is made up of Requests and Responses. Requests and Responses
are essentially lists of name-value pairs of metadata in headers, along with an optional
body. The body is the data that is being transferred (an HTML page or XML file). The
metadata in the headers is information about the Request or Response itself (what
language the content is in, or how long the browser should cache it). The Request and
Response each contain specific information, outlined next. For more detailed
information on HTTP, see RFC 2616
(http://www.faqs.org/rfcs/rfc2616.html).

The client sends the server an HTTP Request, asking for content. The Request body is
used only for requests that transfer data to the server, such as POST and PUT.

HTTP Request Format:

[METHOD] [REQUEST-URI] HTTP/[VERSION]
[fieldname1]: [field-value1]
[fieldname2]: [field-value2]
[request body, if any]
HTTP Request Example:

GET /index.html HTTP/1.1
Host: www.plumtree.com
User-Agent: Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT4)
Accept: */*
Cookie: username=JoeSmith
The server sends back an HTTP Response that contains page content and important
details, such as the content type, when the document was last modified, and the server
type. The Response contains an error message if the requested content is not found.

HTTP Response Format:

HTTP/[VERSION] [CODE] [TEXT]
[fieldname1]: [field-value1]
[fieldname2]: [field-value2]
[response body, if any (document content here)]
HTTP Response Example:

HTTP/1.0 200 Found
Last-modified: Thursday, 20-Nov-97 10:44:53
Content-length: 6372
Content-type: text/html
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 3.2 Final// EN'><HTML>
...followed by document content...
Custom HTTP headers can be configured to include specialized information.

Note: Header size limits are controlled by the server that hosts the
code. The standard limit for IIS/ASP is 60K. Java Application Servers
range from 2K to 10K. These limits are generally configurable; see
your server documentation for details.

Server Communication and the Gateway

Oracle WebCenter Interaction Development Environment 1-23

Services can also access standard HTTP headers, such as the Set-Cookie header or
HTTP 1.1 basic authentication header. If you want to investigate HTTP further, you
can view all the headers being passed back and forth between your browser and Web
server using a tunnel tool. HTTP is used in conjunction with SSL to serve up secure
content. Single Sign-On (SSO) also uses HTTP headers for basic authentication.

1.3.2.2 CSP
CSP extends HTTP and defines proprietary headers to pass settings between Oracle
WebCenter Interaction.) and remote servers. CSP outlines how Oracle WebCenter
Interaction services use HTTP to communicate and modify settings. (CSP is also used
by Oracle WebCenter Interaction.)

The current version is CSP 1.4, which includes backward compatibility with previous
versions. For links to the latest versions of the CSP specification, see Appendix B,
"Additional Development References".

The Oracle WebCenter Interaction Development Kit (IDK) provides simplified, stable
interfaces that allow you to write code that communicates using CSP.

1.3.2.3 Oracle WebCenter Interaction Headers
Oracle WebCenter Interaction uses a group of custom headers to communicate system
and user configuration variables. These headers include information that can be used
by services.

All the usefulinformation stored in these headers should be accessed using the Oracle
WebCenter Interaction Development Kit (IDK). Additional proprietary headers
contain the protocol version, gateway type, and aggregationmode. All the key
information in these headers is accessible through the IPortletUser and
IPortletRequest interfaces in the IDK.

Table 1–4 Oracle WebCenter Interaction Headers

Header Name IDK Method Description

User ID IPortletUser.GetUserID The User ID of the currently logged in user.
This value can be used to determine if the
session has expired. If UserID=2, the default
'Guest' user is logged in; any other user's
session has ended.

User Name IPortletUser.GetUserName The name of the logged in user. The user's
name can be used to personalize display or
pre-fill form fields.

Locale IPortletUser.GetUserCharacterSet The current user's language and character set.
This value is essential when determining the
correct content to return in an internationalized
implementation.

Time Zone IPortletRequest.GetTimeZone The time zone of the current user in the format
used by Oracle WebCenter Interaction. This
value can be used to synchronize remote server
time with Oracle WebCenter Interaction.

Image Service URL IPortletRequest.GetImageServerURI The URL to the root virtual directory of the
Image Service in the user's implementation of
Oracle WebCenter Interaction. This location
should be used for all static images used in
services.

Server Communication and the Gateway

1-24 Web Service Developer's Guide for Oracle WebCenter Interaction

1.3.2.4 SOAP
SOAP is a text-based protocol to wrap XML data for any type of transport, providing
an efficient way to communicate structured data.

The SOAP 1.1 specification describes SOAP as follows: "SOAP is a lightweight
protocol for exchange of information in a decentralized, distributed environment. It is
an XML based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of encoding
rules for expressing instances of application-defined datatypes, and a convention for
representing remote procedure calls and responses."

SOAP is based on web standards. Like HTML, SOAP uses tags to indicate the role of
each piece of information. In most implementations, SOAP uses HTTP for its transport
protocol. A SOAP request is an XML document that describes a method to invoke on a
remote machine and any parameters to be used. A program sends a SOAP request to a
SOAP server. The SOAP server tries to execute the method with the parameters it was
passed, and it sends back a SOAP response (the result or an error message). A SOAP
endpoint is an HTTP-based URL identifying a target for method invocation.

A common analogy illustrates this concept well. If your XML code was a letter, SOAP
would be the envelope; like an envelope, SOAP protects content from unauthorized
access and provides information about the sender and the addressee. All the elements

Stylesheet URL IPortletRequest.GetStylesheetURI The URL to the current user's style sheet. In
each implementation of Oracle WebCenter
Interaction, the UI is customized. In some
portals, users can choose between a selection of
stylesheets. Using these styles ensures that
portlets appear in the style of the current user's
implementation of Oracle WebCenter
Interaction.

Page ID IPortletRequest.GetPageID The Page ID for the current portal page. This
value allows a single portlet to display different
content on different pages.

Portlet ID IPortletRequest.GetPortletID The ID for the current portlet. This value is
useful for appending to the names of HTML
forms and client-side JavaScript functions to
ensure unique form and function names on the
page to avoid name conflicts.

Return URL IPortletRequest.GetReturnURI The URL to the page that the portlet should
return to when finished, usually the page that
hosts the portlet. Note that if the user has
navigated to another page in the portal, this
URL will be the last personal or community
page that the user visited. Preference pages
need this URL to return the user to the correct
page after settings are configured.

Content Mode IPortletRequest.GetPortletMode The current content mode. This value is used to
display portlet content in the appropriate
manner.

Browser Type IPortletRequest.GetUserInterface The type of device being used to access Oracle
WebCenter Interaction. Oracle WebCenter
Interaction can support wireless handheld
devices that communicate with HDML, WML,
or HTML.

Table 1–4 (Cont.) Oracle WebCenter Interaction Headers

Header Name IDK Method Description

Server Communication and the Gateway

Oracle WebCenter Interaction Development Environment 1-25

of the SOAP envelope are defined by a schema. The schema URI is also the identifier
for the SOAP envelope namespace:
http://schema.xmlsoap.org/soap/envelope.

As in standard XML, SOAP uses namespaces to segregate content. The formal
designation of a namespace is a URI, usually a URL. Namespaces ensure unique
element references, and they allow a processor to pick out which instructions it should
obey and treat instructions for other processors as simple data. Processors are set up to
handle elements from a particular namespace. Elements that have no namespace are
treated as data.

SOAP Message in HTTP Request:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset='utf-8'
Content-Length: nnnn
SOAPAction: 'Some-URI'

<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m='Some-URI'>
<symbol>DIS</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
SOAP Message in HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset='utf-8'
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m='Some-URI'>
<Price>34.5</Price>
</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Download the complete SOAP 1.1 specification from the World Wide Web
Consortium at http://www.w3c.org/TR/SOAP/.

The Oracle WebCenter Interaction SOAP API exposes commonly used elements of the
traditional Oracle WebCenter Interaction API, focused on the functions required to
develop applications that access portal users, communities, portlets, and directory
functions. The Oracle WebCenter Interaction Development Kit (IDK) PRC API
provides an efficient, object-oriented way to call into Oracle WebCenter Interaction's
SOAP API. For details, see Chapter 2.3, "Oracle WebCenter Interaction Development
Kit (IDK) Programmable Remote Client (PRC) Remote APIs".

Server Communication and the Gateway

1-26 Web Service Developer's Guide for Oracle WebCenter Interaction

2

Oracle WebCenter Interaction Portlet and Pagelet Development 2-1

2Oracle WebCenter Interaction Portlet and
Pagelet Development

The chapter provides general information about Oracle WebCenter Interaction portlet
development and configuration, including descriptions of portlet API, proxy API,
Programmable Remote Client (PRC) remote APIs, and adaptive portlets.

■ Oracle WebCenter Interaction Development Kit (IDK): The IDK provides
interfaces that facilitate portlet and pagelet development for a variety of platforms.

– Section 2.1, "Oracle WebCenter Interaction Development Kit (IDK) Portlet
API": The plumtree.remote.portlet package provides Oracle WebCenter
Interaction-specific support for portlet development, including manipulating
settings in the portal database, accessing user information, and managing
communication with the portal.

– Section 2.2, "Oracle WebCenter Interaction Development Kit (IDK) Proxy API":
The bea.alui.proxy package provides access to information about the
environment in which the pagelet is displayed and the user currently
accessing the pagelet, including session preferences associated with that user.
This package also includes methods to implement security and access XML
payloads.

– Section 2.3, "Oracle WebCenter Interaction Development Kit (IDK)
Programmable Remote Client (PRC) Remote APIs": The IDK includes a
collection of APIs that provide access to functionality within Oracle
WebCenter Interaction, Oracle WebCenter Collaboration, and the portal
Search Service. These APIs are supported by Oracle WebCenter Interaction,
and can be used by any portlet deployed in an environment with access to
these applications.

■ "Section 2.4, "Adaptive Portlets": Adaptive portlets allow you to create a
coordinated page with dynamic, interactive functionality comprised of
cross-platform services that talk to multiple back-ends.

Adaptive portlet tools include the following:

■ Adaptive Tags: Adaptive Tags are used to display contextual data and control
Oracle WebCenter Interaction from remote portlets. Unlike the Oracle
WebCenter Interaction Development Kit (IDK), Adaptive Tags use XML in
portlet content instead of code, which avoids a network round trip. Tags can
be included in the markup returned by any gatewayed page (HTML, JSP or
ASP.Net). Using the attributes defined in the tag, the Oracle WebCenter
Interaction gateway transforms the XML and replaces it with standard HTML
and/or executes the relevant operations. The Adaptive Tag collection
currently includes libraries for use in both Oracle WebCenter Interaction and

Oracle WebCenter Interaction Development Kit (IDK) Portlet API

2-2 Web Service Developer's Guide for Oracle WebCenter Interaction

Oracle WebCenter Ensemble, as well as libraries that are specific to each
environment. For details, see Section 2.4.2, "Adaptive Tags"

■ Oracle WebCenter Interaction Scripting Framework: The Oracle WebCenter
Interaction Scripting Framework is a client-side JavaScript library that
provides services to portlets and gatewayed pages. For details, see
Section 2.4.3, "The Oracle WebCenter Interaction Scripting Framework".

For details on configuring portlets, see the online help.

2.1 Oracle WebCenter Interaction Development Kit (IDK) Portlet API
The Oracle WebCenter Interaction Development Kit (IDK) Portlet API provides Oracle
WebCenter Interaction-specific support for portlet development, including
manipulating settings in the portal database, accessing user information, and
managing communication with the portal.

This page provides an introduction to the Oracle WebCenter Interaction Development
Kit (IDK) Portlet API. For more details, see the API documentation.

The plumtree.remote.portlet package/namespace includes the following interfaces:

■ IPortletContext

■ IPortletRequest

■ IPortletResponse

■ IPortletUser

In general, these interfaces are called in the following order:

1. A portlet uses PortletContextFactory.createPortletContext to initiate
a connection for communicating with the portal.

2. The IPortletContext interface returned allows the portlet to access
information about the request and response, the current user, and the session. The
portlet uses this information as needed, in arbitrary order, to generate a proper
response. Using IPortletContext, the portlet can access IPortletRequest,
IPortletUser, IRemoteSession and IPortletResponse.

3. The portlet retrieves parameters from the request using IPortletRequest.

4. The portlet retrieves user information and preferences from IPortletUser.

5. The portlet can access functionality in Oracle WebCenter Interaction applications
using IRemoteSession. For details, see Section 2.4.1, "Adaptive Portlet Design
Patterns".

6. The portlet constructs a response using IPortletResponse. The response
includes content to be displayed and any settings to be stored or removed.

For examples of using IPortlet interfaces in a portlet, see Section 2.1.1, "Creating a
Custom Oracle WebCenter Interaction Portlet with the Java Oracle WebCenter
Interaction Development Kit (IDK) Portlet API" and Section 2.1.2, "Creating a Custom
Oracle WebCenter Interaction Portlet with the .NET Oracle WebCenter Interaction
Development Kit (IDK) Portlet API".

Note: The IDK was formerly called the AquaLogic Interaction
Development Kit (IDK) and the Plumtree Development Kit (EDK);
some package names retain old naming conventions.

Oracle WebCenter Interaction Development Kit (IDK) Portlet API

Oracle WebCenter Interaction Portlet and Pagelet Development 2-3

2.1.1 Creating a Custom Oracle WebCenter Interaction Portlet with the Java Oracle
WebCenter Interaction Development Kit (IDK) Portlet API

This simplified Hello World portlet example allows a user to set the message that is
displayed within a portlet.

Before writing any code, create a new Oracle WebCenter Interaction Development Kit
(IDK) project as described in Section 1.1.1, "Java: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Eclipse".

This example uses two pages: a portlet that displays the current setting value and a
form for changing the value, and a page that sets the value in the portal database and
redirects to the portal page.

In the new project, create a new JSP page for the portlet (portlet.jsp). The portlet code
shown below instantiates the Oracle WebCenter Interaction Development Kit (IDK)
and uses the portlet API IPortletRequest object to check for a Portlet setting called
"PortletEntry." If the setting has an associated value, the portlet displays it. The portlet
also displays a form that allows the user to enter a value. When the user clicks Submit,
the portlet code sends the value from the form in a request to the setPrefs.jsp page,
shown next.

<%@ page language="java" import="com.plumtree.remote.portlet.*,java.util.Date" %>
You refreshed at <%= new Date().toString()%>

<%
//get the idk
IPortletContext portletContext =
PortletContextFactory.createPortletContext(request, response);
IPortletRequest portletRequest = portletContext.getRequest();
String settingKey = "PortletEntry";

String settingValue = portletRequest.getSettingValue(SettingType.Portlet,
settingKey);

//if the entry has already been set, display it here
if (null != settingValue)
{
%>

 Preference value is <%=settingValue%>!

<%
}

//form to enter the preference
%>
<P>Enter your preference:
<form METHOD="post" ACTION="setPrefs.jsp" name="form1">
<input type="text" name="<%=settingKey%>">

<input type="submit" name="Submit" value="Submit">
</form>

Next, create the Set Preferences page (setPrefs.jsp). The code shown below gets the
value for the PortletEntry Portlet setting from the request, then uses the IDK Portlet

Note: There is no need to include html, head and body tags; the
portlet is displayed as part of the HTML table that makes up the
portal page.

Oracle WebCenter Interaction Development Kit (IDK) Portlet API

2-4 Web Service Developer's Guide for Oracle WebCenter Interaction

API IPortletResponse object to add the setting to the database and redirect to the
portal. The redirect causes the portal page to refresh and display the updated setting
in the portlet.

<%@ page language="java" import="com.plumtree.remote.portlet.*" %>

<%
//set the cache control so we don't get a cached page
response.setHeader("Cache-control", "max-age=0");

//get the idk
IPortletContext portletContext =
PortletContextFactory.createPortletContext(request, response);

//get IPortletResponse to set preferences and redirect back to the portal
IPortletResponse portletResponse = portletContext.getResponse();

//get the setting value from the servlet request
String settingKey = "PortletEntry";
String settingValue = request.getParameter(settingKey);

//set the setting value
portletResponse.setSettingValue(SettingType.Portlet, settingKey, settingValue);

//redirect back to the portal
portletResponse.returnToPortal();

%>

After you have completed the JSP pages, deploy your custom project as described in
Section 1.1.2, "Java: Deploying a Custom Oracle WebCenter Interaction Development
Kit (IDK) Project in Eclipse" .

2.1.2 Creating a Custom Oracle WebCenter Interaction Portlet with the .NET Oracle
WebCenter Interaction Development Kit (IDK) Portlet API

This simplified Hello World portlet example allows a user to set the message that is
displayed within a portlet.

Before writing any code, create a new Oracle WebCenter Interaction Development Kit
(IDK) project as described in Section 1.1.4, ".NET: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Visual Studio".

This example creates a portlet that displays the current setting value and a form for
changing the value. .NET portlets use a code-behind page to manipulate settings and
redirect to the portal. The web form that makes up the portlet (portlet.asp) simply
initiates the code-behind page (portlet.aspx.cs) and displays a form that prompts the
user to enter a message. The sample code below is for VisualStudio 2005.

<%@ Page language="c#" CodeFile="portlet.aspx.cs" AutoEventWireup="false"
Inherits="HelloWorld.WebForm1" ResponseEncoding="UTF-8"%>

<form id="Form1" method="post" runat="server">

Note: There is no need to include html, head and body tags; the
portlet is displayed as part of the HTML table that makes up the
portal page.

Oracle WebCenter Interaction Development Kit (IDK) Portlet API

Oracle WebCenter Interaction Portlet and Pagelet Development 2-5

<asp:label runat="server" id="settingsDisplay"></asp:label>

Enter your message:

<asp:textbox id="PrefName" runat="server"></asp:textbox>

<asp:Button id="AddButton" runat="server" Text="Submit" ></asp:Button>

</form>

The code-behind page instantiates the Oracle WebCenter Interaction Development Kit
(IDK) and uses the portlet API IPortletRequest object to check for a Portlet setting
called "MyPref". If the setting has an associated value, the page sends it back for
display. If the user entered a new value in the form, the portlet sends it back for
display and uses the IPortletResponse object to store it in the portal database.
When the setting value and portlet display are updated, the portal page is refreshed.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using Plumtree.Remote.Portlet;

namespace HelloWorld

{
 /// <summary>
 /// Summary description for WebForm1.
 /// </summary>
 public class WebForm1 : System.Web.UI.Page
 {
 //put member variables in protected scope as that is the most
 //limited scope that the aspx page can see.

 protected System.Web.UI.WebControls.Label settingsDisplay;
 protected System.Web.UI.WebControls.TextBox PrefName;
 protected System.Web.UI.WebControls.Button AddButton;
 protected Plumtree.Remote.Portlet.IPortletRequest portletRequest;
 protected Plumtree.Remote.Portlet.IPortletResponse portletResponse;
 protected string settingKey = "MyPref";
 protected string settingValue;
 private void Page_Load(object sender, System.EventArgs e)
 {
 }
 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form
 // Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }
 /// <summary>

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

2-6 Web Service Developer's Guide for Oracle WebCenter Interaction

 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.AddButton.Click += new
 System.EventHandler(this.AddButton_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion
 private void AddButton_Click(object sender, System.EventArgs e)
 {
 //get the setting value
 IPortletContext portletContext =
 PortletContextFactory.CreatePortletContext(Request,Response);
 portletRequest = portletContext.GetRequest();
 portletResponse = portletContext.GetResponse();
 settingValue =
portletRequest.GetSettingValue(SettingType.Portlet,settingKey);

 //set the label with the retrieved value
 //(if it has already been set)
 if (null != settingValue)
 {
 settingsDisplay.Text = "Old preference value is " +
Server.HtmlEncode(settingValue) + "!";
 }
 if (PrefName.Text != "")
 {
 settingsDisplay.Text += "\New preference value is " +
Server.HtmlEncode(PrefName.Text)+ "!";
 portletResponse.SetSettingValue(SettingType.Portlet,
settingKey,PrefName.Text);
 }
 }
}
After you have completed the portlet code, deploy your custom project as described in
Section 1.1.5, ".NET: Deploying a Custom Oracle WebCenter Interaction Development
Kit (IDK) Project in IIS".

2.2 Oracle WebCenter Interaction Development Kit (IDK) Proxy API
This section provides an introduction to the Oracle WebCenter Interaction
Development Kit (IDK) Proxy API. For more details on objects and methods, see the
API documentation. For details on Oracle WebCenter Interaction-specific portlet
interfaces, see the Oracle Fusion Middleware Web Service Developer's Guide for Oracle
WebCenter Interaction.

The bea.alui.proxy package/namespace includes the following interfaces:

■ IProxyContext

■ IProxyRequest

■ IProxyResponse

■ IProxyUser

In general, these interfaces are called in the following order:

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

Oracle WebCenter Interaction Portlet and Pagelet Development 2-7

1. A pagelet uses
ProxyContextFactory.getInstance().createProxyContext to initiate a
connection for communicating with Oracle WebCenter Ensemble.

2. The IProxyContext object returned allows the pagelet to access information
about the request and response, the current user, and the session. The pagelet uses
this information as needed, in arbitrary order, to generate a proper response.
Using IProxyContext, the pagelet can access IProxyRequest, IProxyUser,
IRemoteSession and IProxyResponse.

3. The pagelet retrieves parameters from the request using IProxyRequest.

4. The pagelet retrieves user information and preferences from IProxyUser.

5. The pagelet can access functionality in Oracle WebCenter Interaction applications
using IRemoteSession. For details, see Section 2.4.1, "Adaptive Portlet Design
Patterns".

6. The pagelet constructs a response using IProxyResponse. The response includes
content to be displayed and any settings to be stored or removed.

For examples of using IProxy interfaces in a pagelet, see Section 2.2.1, "Creating a
Custom Pagelet with the Java Oracle WebCenter Interaction Development Kit (IDK)
Proxy API" and Section 2.2.2, "Creating a Custom Pagelet with the .NET Oracle
WebCenter Interaction Development Kit (IDK) Proxy API".

2.2.1 Creating a Custom Pagelet with the Java Oracle WebCenter Interaction
Development Kit (IDK) Proxy API

This example creates a simple pagelet that displays information from the proxy,
including setting values.

1. Before writing any code, create a new Oracle WebCenter Interaction Development
Kit (IDK) project as described in Section 1.1.1, "Java: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Eclipse".

2. In the new project, create a new JSP page for the pagelet (pagelet.jsp).

3. Implement your code. The pagelet code shown below instantiates the Oracle
WebCenter Interaction Development Kit (IDK) and uses the IProxyContext
interface to retrieve IProxyRequest and IProxyUser objects to access
information about the user and the settings associated with the pagelet.

<%@ page language='java' import='com.bea.alui.proxy.*' %>
<%
String Att1 = 'no setting';
String Att2 = 'no setting';
String sessionVariable = 'no setting';

//get the idk
IProxyContext proxyContext =
ProxyContextFactory.getInstance().createProxyContext(request, response);
IProxyRequest proxyRequest = proxyContext.getProxyRequest()

IProxyUser proxyUser = proxyRequest.getUser();
String userName = proxyUser.getUserName();

Note: There is no need to include html, head and body tags; the
display is handled by the Consumer resource.

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

2-8 Web Service Developer's Guide for Oracle WebCenter Interaction

int userID = proxyUser.getUserID();

Att1 = proxyRequest.getSetting('Att1')
Att2 = proxyRequest.getSetting('Att2');
sessionVariable = proxyRequest.getSetting('sessionVar');

byte[] payload = proxyRequest.getPayload().getText();
String payloadStr = new String(payload)
%>

<p>User name: <%=userName%>

User ID: <%=userID%>

Attribute 1: <%=Att1%>

Attribute 2: <%=Att2%>

Session variable: <%=sessionVariable%>

Payload: <textarea name=xml cols=80 rows=6> <%=payloadStr%> </textarea>
</p>

2.2.2 Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction
Development Kit (IDK) Proxy API

This example creates a simple pagelet that displays information from the proxy,
including setting values. .NET pagelets use a code-behind page (.aspx.cs) to retrieve
settings and a Web form (.aspx) to display the pagelet content.

1. Before writing any code, create a new Oracle WebCenter Interaction Development
Kit (IDK) project as described in Section 1.1.4, ".NET: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Visual Studio".

2. In the new project, implement your code. The example below uses a code-behind
page and a web form.

The code-behind page (IDKPagelet.aspx.cs) instantiates the Oracle WebCenter
Interaction Development Kit (IDK) and uses the IProxyContext interface to retrieve
IProxyRequest and IProxyUser objects to access information about the user and
the settings associated with the pagelet.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using Plumtree.Remote.Portlet;
using System.Xml;
using System.Text;
using Bea.Alui.Proxy;

namespace IDKProxyWS
{
/// <summary>
/// Hello World Pagelet
/// </summary>
 public class IDKPagelet : System.Web.UI.Page
 {
 public String name;

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

Oracle WebCenter Interaction Portlet and Pagelet Development 2-9

 public bool isGuest;
 public int userID;
 public String envType;
 public String payload;
 public String Att1,Att2;
 public String SessionVar;
 private void Page_Load(object sender, System.EventArgs e
 {
 // Put user code to initialize the page here
 InitializeCSP();
 }
 private void InitializeCSP()
 {
 IProxyRequest proxyRequest;
 IProxyResponse proxyResponse;
 IProxyUser proxyUser;
 IProxyContext proxyContext;
 ProxyContextFactory factory;
 HttpRequest request = HttpContext.Current.Request;
 HttpResponse response = HttpContext.Current.Response;

 try
 {
 factory = ProxyContextFactory.getInstance();
 proxyContext = factory.CreateProxyContext(request, response);
 proxyRequest = proxyContext.GetProxyRequest();
 proxyResponse = proxyContext.GetProxyResponse();
 envType = proxyRequest.GetEnvironment().GetType().ToString();
 proxyUser = proxyRequest.GetUser();
 isGuest = proxyUser.IsAnonymous();
 name= proxyUser.GetUserName();
 userID = proxyUser.GetUserID();

 Att1 = (String)proxyRequest.GetSetting('attr1');
 Att2 = (String)proxyRequest.GetSetting('attr2');
 Att2 = (String)proxyRequest.GetSetting('SessionVar');

 byte[] bpayload = proxyRequest.GetPayload().GetText()
 System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding()
 payload = enc.GetString(bpayload)
 }
 catch(Bea.Alui.Proxy.NotGatewayedException e)
 {
 }
 }
 }
#region Web Form Designer generated code
...
#endregion
}
The Web form that displays the pagelet (IDKPagelet.aspx) displays the information
retrieved by the code-behind page above.

<%@ Page Language='c#' runat='server' CodeBehind='IDKPagelet.aspx.cs'
AutoEventWireup='false' inherits='IDKProxyWS.IDKPagelet' %>
<%@ import Namespace='System.Collections' %>
<%@ import Namespace='System.Web' %>
<%@ import Namespace='System.Web.UI' %>

<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN' >
<html>

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

2-10 Web Service Developer's Guide for Oracle WebCenter Interaction

<head>
<title>IDKPagelet</title>
<meta name='GENERATOR' Content='Microsoft Visual Studio .NET 7.1'>
<meta name='CODE_LANGUAGE' Content='C#'>
<meta name='vs_defaultClientScript' content='JavaScript'>
<meta name='vs_targetSchema'
content='http://schemas.microsoft.com/intellisense/ie5'>
</head>

<body MS_POSITIONING='GridLayout'>

Proxy Pagelet

<%
 Response.Write('IDK Proxy Pagelet
');
 Response.Write('Environment Type ' + envType + '
');
 Response.Write('Guest User? ' + isGuest + '
');
 Response.Write('User Name: ' + name + '
');
 Response.Write('User ID: ' + userID + '
');
 Response.Write('<P>');

 Response.Write('Pagelet Attributes:
');
 Response.Write('Attribute1: ' + Att1 + '
');
 Response.Write('Attribute2: ' + Att2 + '
')
 Response.Write('SessionVar: ' + SessionVar + '
')
 Response.Write('<P>')

 Response.Write('Pagelet XML Payload:
');
 Response.Write('<textarea name=xml cols=80 rows=6>' + payload + '</textarea>');
 Response.Write('<P>');
%>

</body>
</html>

2.2.3 Using Programmable Remote Client (PRC) Remote APIs
The plumtree.remote.prc package includes a collection of APIs that provide access to
functionality within Oracle WebCenter Interaction, Oracle WebCenter Collaboration,
and the portal Search Service. These APIs are supported by Oracle WebCenter
Ensemble, and can be used by any pagelet deployed in an environment with access to
these applications.

PRC APIs free you from serializing SOAP messages and minimize the amount of data
that travels between the portal and other servers, improving performance.

The PRC is included with both the Java and .NET versions of the Oracle WebCenter
Interaction Development Kit (IDK). The Java version includes Apache AXIS 1.0; the
.NET version uses the platform-native SOAP client stack. Java clients can call .NET
portals and vice-versa; the PRC takes care of the communication between AXIS and
.NET. Pagelets that use the PRC can be deployed in either Oracle WebCenter
Interaction or Oracle WebCenter Ensemble. For details on using the PRC, see the
Oracle Fusion Middleware Web Service Developer's Guide for Oracle WebCenter Interaction.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-11

2.3 Oracle WebCenter Interaction Development Kit (IDK) Programmable
Remote Client (PRC) Remote APIs

The Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote
Client (PRC) provides an object-oriented way to call into Oracle WebCenter
Interaction SOAP APIs. The PRC can be used to write applications that access the
Oracle WebCenter Interaction and search, and Oracle WebCenter Collaboration.

PRC APIs free you from serializing SOAP messages and minimize the amount of data
that travels between the portal and the remote server, improving performance.

The PRC is included with both the Java and .NET versions of the Oracle WebCenter
Interaction Development Kit (IDK). The Java version includes Apache AXIS 1.0; the
.NET version uses the platform-native SOAP client stack. Java clients can call .NET
portals and vice-versa; the PRC takes care of the communication between AXIS and
.NET.

The PRC provides access to functionality in a range of Oracle WebCenter products:

■ Section 2.3.4, "Remote Oracle WebCenter Interaction APIs"

■ Section 2.3.5, "Remote Oracle WebCenter Collaboration APIs"

For an introduction to using the PRC, see the following sections:

■ Section 2.3.1, "The PRC Session Object"

■ Section 2.3.2, "Initiating a PRC Session to Use Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs"

■ Section 2.3.3, "Oracle WebCenter Interaction Development Kit (IDK) PRC Remote
API Development Tips"

2.3.1 The PRC Session Object
When using Oracle WebCenter Interaction Development Kit (IDK) remote APIs. the
Session object is the master object; most other portal objects must be derived from it.

A Session object is created whenever any user logs in to the Oracle WebCenter
Interaction system through the web or a client application. All subsequent access is
made in the security context of the connected user. Users in the Administrators group
have superuser access. Users in Content Manager and Content Maintainer groups also
have privileged access. For details on portal groups and specific privileges, see the
Administrator Guide for Oracle WebCenter Interaction.

The Session object supports the IPTSession interface, represented in the PRC by the
IRemoteSession interface. The Session object is comprised of:

■ A set of Object Managers for the objects of the Oracle WebCenter Interaction
system. An Object Manager is like a super collection. It provides advanced
querying capabilities as well as create, delete, and clone methods. The Session
object includes managers for almost every Oracle WebCenter Interaction portal,
Search Service, and Oracle WebCenter Collaboration object. Managers are added
as new object classes are introduced.

■ A User object representing the current user of the system.

■ A Catalog object representing the structure of the Oracle WebCenter Interaction
catalog.

■ Version information.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-12 Web Service Developer's Guide for Oracle WebCenter Interaction

■ Access to global Oracle WebCenter Interaction objects such as the MyPortal object,
the scheduler, and global mapping objects.

Initiating a session is the first step in any implementation of the PRC.

2.3.2 Initiating a PRC Session to Use Oracle WebCenter Interaction Development Kit
(IDK) Remote APIs

To use the Oracle WebCenter Interaction Development Kit (IDK) Programmable
Remote Client (PRC) Remote APIs, you must first establish a session with Oracle
WebCenter Interaction.

The session is used to manipulate objects via the PRC. Once you have initiated a
session, you can use PRC methods to manipulate Oracle WebCenter Interaction
objects.

To establish a session with the portal, acquire a reference to an IRemoteSession
object. The simple code examples below do the following:

1. Create a new class (HelloWorldSession).

2. Create a new remote session using RemoteSessionFactory. The code below
logs in with a user name of "administrator" and no password. You can also access
an IRemoteSession through the IDK portlet and proxy APIs
(IPortletContext.GetRemoteSession or
IProxyContext.GetRemoteSession).

3. Print out the portal API version from the remote session.

Java:

import java.net.URL;
import com.plumtree.remote.prc.*;
public class HelloWorldSession
{
public static void main(String[] args) throws Exception
{
try
{
IRemoteSession session = RemoteSessionFactory.getExplicitLoginContext(
new URL("http://portalserver/ptapi/services/QueryInterfaceAPI"),
 "administrator","");

 System.out.println(session.getAPIVersion());
 }
 catch(Exception e)
 {
 System.err.println(e.getMessage());

Note: Before writing any code, you must prepare a custom project
that references the standard Oracle WebCenter Interaction
Development Kit (IDK) library (idk.jar/idk.dll).

Note: You must configure Oracle WebCenter Interaction to send a
login token to any portlet that uses the PRC by selecting the login
token option on the Advanced Settings page of the Web Service
editor.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-13

 e.printStackTrace(System.err);
 }
 }
}
.NET (C#):

using System;
using Plumtree.Remote.PRC;
public class HelloWorldSession
{
 public static void Main(string[] args)
 {
 try
 {
 IRemoteSession session = RemoteSessionFactory.GetExplicitLoginContext(
 new Uri("http://portalserver/ptapi/services/QueryInterfaceAPI"),
"administrator","");

 Console.Out.WriteLine(session.GetAPIVersion());
 }
 catch(Exception e)
 {
 Console.Error.WriteLine(e.Message);
 Console.Error.WriteLine(e.StackTrace);
 }
 }
}

.NET (VB):

Imports System
Imports Plumtree.Remote.PRC
Module HelloWorldSession

 Sub Main()
 Try
 Dim session As IRemoteSession
 session = RemoteSessionFactory.GetExplicitLoginContext(_
 New Uri("http://portalserver/ptapi/services/QueryInterfaceAPI"), _
 "administrator", _"")
 Console.Out.WriteLine(session.GetAPIVersion())
 Catch e As Exception
 Console.Error.WriteLine(e.Message)
 Console.Error.WriteLine(e.StackTrace)
 End Try
 End Sub

End Module

2.3.3 Oracle WebCenter Interaction Development Kit (IDK) PRC Remote API
Development Tips

These development tips apply to any application that uses the Oracle WebCenter
Interaction Development Kit (IDK) PRC remote APIs.

■ You must configure Oracle WebCenter Interaction or Oracle WebCenter
Ensemble to send a login token to any portlet that uses the PRC. In Oracle
WebCenter Interaction, the login token option is on the Advanced Settings page of
the Web Service editor. In Oracle WebCenter Ensemble, this option is on the CSP
tab in Resource configuration.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-14 Web Service Developer's Guide for Oracle WebCenter Interaction

■ Perform expensive processing outside the interface method, in a separate
thread, or use back-end caching such that the interface method can respond in a
timely fashion. For example, an Active Directory Authentication Source Identity
Service might employ user signatures to minimize reads/writes from the AD
database during remote calls like IProfileProvider.attachToUser. The
Oracle WebCenter Interaction Development Kit (IDK) PRC manager interfaces
generally make remote calls. PRC object interfaces are normally local
accessors/mutators and do not make remote calls (with the exception of store
methods). Avoid unnecessary, repeated use of manager interface methods and
maximize your application’s use of PRC object methods. Avoid looping remote
calls wherever possible. Maintaining local copies of PRC objects can improve your
application’s performance but be aware that your local state may not match the
server state if another application modifies server state after you receive your local
copy. For example, a portlet using PRC Collaboration to display the current user’s
personal Oracle WebCenter Collaboration project area corresponding to
“Username-Project” ensures that IProjectManager.queryProjects is used
once. The resulting IProject object can be cached by the portlet per user session
rather than performing a query on every portlet refresh. The user’s project is never
deleted, so the local caching is “safe.”

2.3.4 Remote Oracle WebCenter Interaction APIs
The portal provides the framework for applications and integrates Oracle WebCenter
Interaction components into a cohesive web work environment. Administration is the
core of the portal, where all portal objects and operations are configured.

The Oracle WebCenter Interaction Development Kit (IDK) PRC's remote Oracle
WebCenter Interaction APIs provide access to key administrative components, as
explained in the following sections:

■ Section 2.3.4.1, "Remote Object Management": Everything in the portal, except
users and documents, is represented by a portal object stored in the portal
database. This includes portlets, content crawlers, authentication sources, profile
sources, remote servers, and content sources. The IObjectManager interface
allows you to access portal objects from your remote services. You can look up
information about a specific object, or query for objects using a range of methods,
including location, class, and custom filters. You can also query and manipulate
the security for portal objects.

■ Section 2.3.4.2, "Remote Portlet Operations": There are many settings and options
that apply only to portlets. In addition to manipulating portlet objects via
IObjectManager, the PRC supports advanced portlet operations. Using the
IPortlet* interfaces, you can create and edit portlets and portlet templates, and
manage administrative and communityportlet preferences for a specific portlet
instance.

■ Section 2.3.4.3, "Remote Directory Operations": The portal directory stores links to
documents in a hierarchical structure of folders and subfolders. These documents
can be external or internal web pages, Office documents, or essentially any file of
interest. The IDocument* interfaces allow you to query for documents and
document properties, create new documents, and edit the properties for existing
documents.

■ Section 2.3.4.4, "Remote User Operations": Portal users are organized into groups
and sub-groups. This role-based hierarchy allows administrators to customize the
portal display for specific audiences and assign object security for collections of
users. The IUserManager and IUserGroupManager interfaces allow you to

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-15

leverage the portal's user hierarchy. You can query for the current user's ID and
group information, create new groups, and manage group membership.

■ Section 2.3.4.5, "Remote Search Operations": Using the PRC search API, you can
query document, folder, user and Community objects using a standard
request-response model. The API allows you to add multiple constraints and filter
searches by location or object type.

■ Section 2.3.4.6, "Starting Portal Jobs Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs": A job is a collection of related portal
operations. Each operation is one task, such as a crawl for documents, an import of
users, or one of the system maintenance tasks. To start an existing job from a
remote application, use the IJobManager interface.

2.3.4.1 Remote Object Management
Everything in the portal, except users and documents, is represented by a portal object
stored in the portal database. This includes portlets, content crawlers, authentication
sources, profile sources, remote servers, and content sources. The PRC
IObjectManager interface in the Oracle WebCenter Interaction Development Kit
(IDK) allows applications to access portal objects from remote services.

Using the PRC, you can look up information about a specific object, or query for
objects using a range of methods, including location, class, and custom filters. You can
also query and manipulate the security for portal objects.

For details on using remote object management, see the following sections:

■ Section 2.3.4.1.1, "Retrieving Object Managers Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs"

■ Section 2.3.4.1.2, "Querying Objects Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs"

■ Section 2.3.4.1.3, "Oracle WebCenter Interaction Object Type Class IDs and Modes"

■ Section 2.3.4.1.4, "Querying Object Properties Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs"

■ Section 2.3.4.1.5, "Managing Object Security (ACLs) Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs"

2.3.4.1.1 Retrieving Object Managers Using Oracle WebCenter Interaction Development Kit (IDK)
Remote APIs To access portal objects from a remote application, first retrieve an
IObjectManager object from the IRemoteSession object.

To retrieve an IObjectManager object from the IRemoteSession object, follow the
steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an instance of IObjectManager from the IRemoteSession object, as
shown in the sample code below. This example demonstrates how to retrieve an
Object Manager to query communities, using an existing IRemoteSession
instance. For a list of object types, see Section 2.3.4.1.3, "Oracle WebCenter
Interaction Object Type Class IDs and Modes".

Java:

IObjectManager objectManager = session.getObjectManager(ObjectClass.Community);

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-16 Web Service Developer's Guide for Oracle WebCenter Interaction

.NET (C#):

IObjectManager objectManager = session.GetObjectManager(ObjectClass.Community);

.NET (VB):

Dim objectManager as IObjectManager
objectManager= session.GetObjectManager(ObjectClass.Community)

2.3.4.1.2 Querying Objects Using Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs To query for portal objects from a remote application, use the IObjectManager
interface in the Oracle WebCenter Interaction Development Kit (IDK).

The IObjectManager interface in the Oracle WebCenter Interaction Development
Kit (IDK) PRC allows you to query for objects using a range of methods, including
location, class, and custom filters. To query for portal objects, follow the steps below.
You can also use the PRC Search API to query for portal objects; for details, see
Section 2.3.4.5, "Remote Search Operations".

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an Object Manager for the type of object you are querying. For details, see
Section 2.3.4.1.1, "Retrieving Object Managers Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".

3. Execute the query, as shown in the sample code below. This example
demonstrates how to query for portal users matching specific criteria within the
portal, using the following process:

a. Declare and prepare all parameters to be passed to the query method. This
example uses the most flexible query call, with the following parameters. If
any of these parameters is omitted, the default value will be used. (There are
simpler calls with fewer parameters; for details, see the IDK API
documentation.)

b. Execute the query to retrieve an IObjectQuery instance.

c. Enumerate through the query, displaying interesting information.

Java:

public static voidqueryObjects(String loginToken)
{

Parameter Description Default

folderID The folder to search. all folders (folderID = -1)

startRow The row on which to start the search. the initial row (startRow = 0)

maxRows The maximum number of rows to search. unlimited (maxRow = -1)

sortProperty The object property on which to sort
results.

object ID (sortProperty =
ObjectProperty.ObjectID)

ascending The sort order for results (ascending or
descending).

ascending (ascending = true)

propsToReturn The properties to return. all properties

filters The values on which to filter results. no filters

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-17

 IObjectManager objectManager =
getSession(loginToken).getObjectManager(ObjectClass.User);

 int folderID = -1; //search all folders
 int startRow = 0; //start at the first found
 int maxRows = -1; //return unlimited results
 ObjectProperty sortProperty = UserProperty.UniqueName; //sort on the unique name
 boolean ascending = true; //sort ascending

 ObjectProperty[] propsToReturn = new ObjectProperty[4]; //return specific
properties
 propsToReturn[0] = UserProperty.SimpleName;
 propsToReturn[1] = UserProperty.UniqueName;
 propsToReturn[2] = UserProperty.AuthName;
 propsToReturn[3] = ObjectProperty.Created;

 QueryFilter[] filters = new QueryFilter[2]; //filter the results
 //simple name contains "user"
 filters[0] = new StringQueryFilter(UserProperty.SimpleName,
Operator.Contains,"user");
 //created at most a day ago
 GregorianCalendar filterDate = new GregorianCalendar();
 filterDate.add(Calendar.DATE, -1);
 Date yesterday = filterDate.getTime();
 filters[1] = new DateQueryFilter(ObjectProperty.Created, Operator.GreaterThan,
yesterday);
 try
 {
 IObjectQuery queryResults = objectManager.queryObjects(
 folderID,
 startRow,
 maxRows,
 sortProperty,
 ascending,
 propsToReturn,
 filters);

 for (int i = 0; i < queryResults.getRowCount(); i++)
 {
 IObjectQueryRow queryObject = queryResults.getRow(i);
 System.out.println(
 "User: " + queryObject.getStringValue(UserProperty.SimpleName) +
 ", Created:" + queryObject.getCreated());
 }
 }
 catch(Exception e)
 {
 System.err.println(e.getMessage());
 e.printStackTrace(System.err);
 }
}

.NET (C#):

public static voidQueryObjects(stringloginToken)
{
 IObjectManager objectManager =
GetSession(loginToken).GetObjectManager(ObjectClass.User);

 int folderID = -1; //search all folders
 int startRow = 0; //start at the first found

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-18 Web Service Developer's Guide for Oracle WebCenter Interaction

 int maxRows = -1; //return unlimited results
 ObjectProperty sortProperty = UserProperty.UniqueName; //sort on the unique name
 bool ascending = true; //sort ascending

 ObjectProperty[] propsToReturn = new ObjectProperty[4]; //return specific
properties
 propsToReturn[0] = UserProperty.SimpleName;
 propsToReturn[1] = UserProperty.UniqueName;
 propsToReturn[2] = UserProperty.AuthName;
 propsToReturn[3] = ObjectProperty.Created;

 DateTime yesterday = new DateTime();
 yesterday = DateTime.Now.AddDays(-1);

 QueryFilter[] filters = new QueryFilter[2]; //filter the results
 //simple name contains "user"
 filters[0] = new StringQueryFilter(UserProperty.SimpleName, Operator.Contains,
"user");
 //created at most a day ago
 filters[1] = new DateQueryFilter(ObjectProperty.Created, Operator.GreaterThan,
yesterday);

 try
 {
 IObjectQuery queryResults = objectManager.QueryObjects(
 folderID,
 startRow,
 maxRows,
 sortProperty,
 ascending,
 propsToReturn,
 filters);

 for (int i = 0; i < queryResults.GetRowCount(); i++)
 {
 IObjectQueryRow queryObject = queryResults.GetRow(i);
 Console.Out.WriteLine(
 "User: " + queryObject.GetStringValue(UserProperty.SimpleName) +
 ", Created:" + queryObject.GetCreated());
 }
 }
 catch(Exception e)
 {
 Response.Write(e.Message + "
");
 Response.Write(e.StackTrace + "

");
 }
}

.NET (VB):

Public Shared SubQueryObjects(ByVal loginToken As String)

 Dim objectManager As IObjectManager
 Dim session As IRemoteSession = portletContext.GetRemotePortalSession

 objectManager = session.GetObjectManager(ObjectClass.User)

 Dim folderID As Integer
 folderID = -1 'search all folders

 Dim startRow As Integer

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-19

 startRow = 0 'start at the first found

 Dim maxRows As Integer
 maxRows = -1 'return unlimited results

 Dim sortProperty As ObjectProperty
 sortProperty = UserProperty.UniqueName 'sort on the unique name

 Dim ascending As Boolean
 ascending = True 'sort ascending

 Dim propsToReturn(4) As ObjectProperty 'return specific properties
 propsToReturn(0) = UserProperty.SimpleName
 propsToReturn(1) = UserProperty.UniqueName
 propsToReturn(2) = UserProperty.AuthName
 propsToReturn(3) = ObjectProperty.Created

 Dim yesterday As DateTime
 yesterday = DateTime.Now.AddDays(-1)

 Dim filters(2) As QueryFilter 'filter the results
 'simple name contains "user"
 filters(0) = New StringQueryFilter(UserProperty.SimpleName, _Operator.Contains, _
"user")
 'created at most a day ago
 filters(1) = New DateQueryFilter(ObjectProperty.Created, _Operator.GreaterThan,
yesterday)

 Try

 Dim queryResults As IObjectQuery
 queryResults = objectManager.QueryObjects(folderID, startRow, maxRows,
sortProperty,
ascending, propsToReturn, filters)

 Dim i As Integer
 Dim queryObject As IObjectQueryRow
 For i = 0 To queryResults.GetRowCount()-1

 queryObject = queryResults.GetRow(i)
 Response.Write(_ "User: " & queryObject.GetStringValue(UserProperty.SimpleName)&
_
 ", Created:" & queryObject.GetCreated() + "
")
 Next

 Catch e As Exception
 Response.Write(e.Message + "
")
 Response.Write(e.StackTrace)

 End Try
EndSub

2.3.4.1.3 Oracle WebCenter Interaction Object Type Class IDs and Modes This table lists class
IDs for all Oracle WebCenter Interaction object types and describes how modes are
implemented by each.

Object Type Class ID Mode 1:Open Mode 2:View Mode 3:View Metadata

Administrative Folder 20 Edit View Contents View properties

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-20 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.4.1.4 Querying Object Properties Using Oracle WebCenter Interaction Development Kit (IDK)
Remote APIs To query the properties of a specific portal object from a remote
application, use the instance of IObjectQueryRow that represents the portal object.

To query the properties of a specific portal object, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

Authentication Source 3 Edit - View properties

Community 512 Edit Preview
community

View properties

Community Page 514 Edit Preview
community
page

View properties

Community Template 54 Edit - View properties

Content Crawler 38 Edit - View properties

Content Source 35 Edit - View properties

Directory Link 18 Edit - View properties

Directory Folder 17 Edit View contents View properties

Content Type 37 Edit - View properties

Experience Definition 8 Edit - View properties

External Operation 58 Edit - View properties

Federated Search 46 Edit - View properties

Filter 32 Edit - View properties

Invitation 44 Edit - View properties

Job 256 Edit - View properties

Page Template 56 Edit - View properties

Portlet 43 Edit Preview portlet View properties

Portlet Bundle 55 Edit - View properties

Portlet Template 61 Edit - View properties

Profile Source 7 Edit - View properties

Property 36 Edit - -

Remote Server 48 Edit - View properties

Site Map Folder 515 Edit - View properties

Smart Sort 42 Edit - View properties

Snapshot Query 33 Edit - View properties

User 1 Edit View user
profile

View properties

User Group 2 Edit - View properties

Web Service 47 Edit - View properties

Object Type Class ID Mode 1:Open Mode 2:View Mode 3:View Metadata

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-21

2. Retrieve an Object Manager for the type of object you are querying. For details, see
Section 2.3.4.1.1, "Retrieving Object Managers Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".

3. Use the Object Manager to query for the object. For details, see Section 2.3.4.1.2,
"Querying Objects Using Oracle WebCenter Interaction Development Kit (IDK)
Remote APIs".

4. Use the instance of IObjectQueryRow that represents the portal object to query
for object properties or for custom properties. The code below uses the getValue
call to retrieve object property values. The IObjectQueryRow interface also
provides methods that cast the requested property to a known data type.
Attempting to retrieve a property as an incorrect data type will result in an
exception.

The following sample code demonstrates how to query the object properties of a
specific community. This example prints out most of the standard properties available
on community objects, including generic object properties and all community-specific
properties (all fields in CommunityProperty).

Java

public static void printCommunityProperties(IObjectQueryRow communityObject)
throws
PropertyNotRequestedException
{
 System.out.println("Object ID is " + communityObject.getID());
 System.out.println("Created Date is " + communityObject.getCreated());
 System.out.println("Description is " + communityObject.getDescription());
 System.out.println("Name is " + communityObject.getName());
 System.out.println("Last Modified Date is " +
communityObject.getLastModified());
 System.out.println("Owner ID is " + communityObject.getOwner());
 System.out.println("Parent folder ID is " +
communityObject.getParentFolderID());

 if (communityObject.getObjectClass() == ObjectClass.Community) //only one
instance so reference comparison is ok
 {
 System.out.println("Template ID is " +
communityObject.getValue(CommunityProperty.CommunityTemplateID));
 System.out.println("Footer ID is " +
communityObject.getValue(CommunityProperty.FooterID));
 System.out.println("Header ID is " +
communityObject.getValue(CommunityProperty.HeaderID));
 System.out.println("MandatoryTabOrder is " +
communityObject.getValue(CommunityProperty.MandatoryTabOrder));
 System.out.println("OwnerInfo is " +
communityObject.getValue(CommunityProperty.OwnerInfo));
 System.out.println("SiteMapRoot ID is " +

Note: You must include the properties you want to query in the
propsToReturn parameter when you query for the object.

Note: If you attempt to retrieve a property that was not specified as a
field in the propsToReturn parameter in the query for the object, a
PropertyNotRequestException will be thrown.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-22 Web Service Developer's Guide for Oracle WebCenter Interaction

communityObject.getValue(CommunityProperty.SiteMapRootID));
 }
 else System.out.println("Not a community object!");
}

.NET (C#)

public static void PrintCommunityProperties(IObjectQueryRow communityObject)
{
 Console.Out.WriteLine("Object ID is " + communityObject.GetID());
 Console.Out.WriteLine("Created Date is " + communityObject.GetCreated());
 Console.Out.WriteLine("Description is " + communityObject.GetDescription());
 Console.Out.WriteLine("Name is " + communityObject.GetName());
 Console.Out.WriteLine("Last Modified Date is " +
communityObject.GetLastModified());
 Console.Out.WriteLine("Owner ID is " + communityObject.GetOwner());
 Console.Out.WriteLine("Parent folder ID is " +
communityObject.GetParentFolderID());

 if (communityObject.GetObjectClass() == ObjectClass.Community) //only one
instance so reference comparison is ok
 {
 Console.Out.WriteLine("Template ID is " +
communityObject.GetValue(CommunityProperty.CommunityTemplateID));
 Console.Out.WriteLine("Footer ID is " +
communityObject.GetValue(CommunityProperty.FooterID));
 Console.Out.WriteLine("Header ID is " +
communityObject.GetValue(CommunityProperty.HeaderID));
 Console.Out.WriteLine("MandatoryTabOrder is "+
communityObject.GetValue(CommunityProperty.MandatoryTabOrder));
 Console.Out.WriteLine("OwnerInfo is " +
communityObject.GetValue(CommunityProperty.OwnerInfo));
 Console.Out.WriteLine("SiteMapRoot ID is " +
communityObject.GetValue(CommunityProperty.SiteMapRootID));
 }
 else Console.Out.WriteLine ("Not a community object!");
}

.NET (VB)

Public Shared Sub PrintCommunityProperties(ByVal communityObject As
IObjectQueryRow)

 Console.Out.WriteLine("Object ID is " & communityObject.GetID())
 Console.Out.WriteLine("Created Date is " & communityObject.GetCreated())
 Console.Out.WriteLine("Description is " & communityObject.GetDescription())
 Console.Out.WriteLine("Name is " & communityObject.GetName())
 Console.Out.WriteLine("Last Modified Date is " &
communityObject.GetLastModified())
 Console.Out.WriteLine("Owner ID is " & communityObject.GetOwner())
 Console.Out.WriteLine("Parent folder ID is " &
communityObject.GetParentFolderID())

 If communityObject.GetObjectClass() = ObjectClass.Community Then 'only one
instance so reference comparison is ok
 Console.Out.WriteLine("Template ID is " &
communityObject.GetValue(CommunityProperty.CommunityTemplateID))
 Console.Out.WriteLine("Footer ID is " &
communityObject.GetValue(CommunityProperty.FooterID))
 Console.Out.WriteLine("Header ID is " &
communityObject.GetValue(CommunityProperty.HeaderID))

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-23

 Console.Out.WriteLine("MandatoryTabOrder is " &
communityObject.GetValue(CommunityProperty.MandatoryTabOrder))
 Console.Out.WriteLine("OwnerInfo is " &
communityObject.GetValue(CommunityProperty.OwnerInfo))
 Console.Out.WriteLine("SiteMapRoot ID is " &
communityObject.GetValue(CommunityProperty.SiteMapRootID))
 Else
 Console.Out.WriteLine("Not a community object!")
 End If
EndSub

To query for custom properties of an object, use the IExtendedData interface. This
example prints out all the custom properties available on a portal object by
enumerating through the available properties and printing out their name and value.
To retrieve property IDs, use the standard object manager object querying method
with ObjectClass.Property, and use the ID on the object returned to query for the
properties you need.

Java

public static void printCustomProperties(IObjectQueryRow portalObject)
 throws PortalException, MalformedURLException, RemoteException
{
 IExtendedData customProperties = portalObject.getExtendedData();
 Enumeration propertyNames = customProperties.getNames();
 String propertyName;
 while(propertyNames.hasMoreElements())
 {
 propertyName = (String)propertyNames.nextElement();
 System.out.println("Property "+ propertyName + " is "+
customProperties.getValue(propertyName));
 }
}
.NET (C#)

public static void PrintCustomProperties(IObjectQueryRow portalObject)
{
 IExtendedData customProperties = portalObject.GetExtendedData();
 IEnumerator propertyNames = customProperties.GetNames();
 string propertyName;
 while(propertyNames.MoveNext())
 {
 propertyName = (string)propertyNames.Current;
 Console.WriteLine("Property " + propertyName + " is " +
customProperties.GetValue(propertyName));
 }
}

.NET (VB)

Public Shared Sub PrintCustomProperties(ByVal portalObject As IObjectQueryRow)
 Dim customProperties As IExtendedData = portalObject.GetExtendedData()
 Dim propertyNames As IEnumerator = customProperties.GetNames()
 Dim propertyName As String
 While propertyNames.MoveNext()
 propertyName = propertyNames.Current
 Console.WriteLine("Property " & propertyName & " is " &
customProperties.GetValue(propertyName))

 End While
EndSub

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-24 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.4.1.5 Managing Object Security (ACLs) Using Oracle WebCenter Interaction Development Kit
(IDK) Remote APIs To manipulate object security, use the IACL interface in the Oracle
WebCenter Interaction Development Kit (IDK).

The IACL interface provides full access to object security, allowing you to add and
remove users from an object's Access Control List. To access an ACL using the PRC,
follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an object manager for the type of object you are querying. For details, see
Section 2.3.4.1.1, "Retrieving Object Managers Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".

3. Use the Object Manager to query for the object and use the instance of
IObjectQueryRow that represents the portal object to determine the object ID.
For details, seeSection 2.3.4.1.2, "Querying Objects Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs" and Section 2.3.4.1.4, "Querying
Object Properties Using Oracle WebCenter Interaction Development Kit (IDK)
Remote APIs".

4. Use IACL to query the ACL of the object and enumerate or modify entries. The
following sample code demonstrates how to edit the ACL of a specific portal
object. The code accesses the ACL, removes an existing entry, adds a new entry,
and saves the updated ACL. It then enumerates the users with admin access to the
object.

Java

public static void updateACL(IObjectManager objectManager, int objectID)
 throws PortalException, MalformedURLException, RemoteException
{
 IACL acl = objectManager.queryACL(objectID);

 // Remove user with ID 101 from the ACL - will be ignored if the user is not
present
 acl.removeUserEntry(101);

 // Add user with ID 10 to the ACL with Admin access
 acl.addUserGroupEntry(10, AccessLevel.ADMIN);

 //store changes to the portal
 objectManager.updateACL(objectID, acl);
 IACLEntry[] entries = acl.entries();
 for (int i = 0; i < entries.length; i++)
 {
 if (entries[i].getAccessLevel().equals(AccessLevel.ADMIN))
 System.out.println(
 entries[i].getPrincipalObjectClass() + " with ID " +
 entries[i].getPrincipalID() + " has admin access");
 }
}

.NET (C#)

public static void UpdateACL(IObjectManager objectManager, int objectID)
{
 IACL acl = objectManager.QueryACL(objectID);

 // Remove user with ID 101 from the ACL - will be ignored if the user is not

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-25

present
 acl.RemoveUserEntry(101);

 // Add user with ID 10 to the ACL with Admin access
 acl.AddUserGroupEntry(10, AccessLevel.ADMIN);

 //store changes to the portal
 objectManager.UpdateACL(objectID, acl);

 IACLEntry[] entries = acl.Entries();

 for (int i = 0; i < entries.Length; i++)
 {
 if (entries[i].GetAccessLevel().equals(AccessLevel.ADMIN))
 Console.WriteLine(
 entries[i].GetPrincipalObjectClass() + " with ID " +
 entries[i].GetPrincipalID() + " has admin access");
 }
}

.NET (VB)

PublicShared Sub UpdateACL(ByVal objectManager As IObjectManager, ByVal objectID
As Integer)

 Dim acl As IACL = objectManager.QueryACL(objectID)

 ' Remove user with ID 101 from the ACL - will be ignored if the user is not
present
 acl.RemoveUserEntry(101)

 ' Add user with ID 10 to the ACL with Edit access
 acl.AddUserGroupEntry(10, AccessLevel.EDIT)

 ' store changes to the portal
 objectManager.UpdateACL(objectID, acl)

 Dim entries() As IACLEntry = acl.Entries()
 Dim i As Integer

 For i = 0 To entries.Length
 If entries(i).GetAccessLevel() Is AccessLevel.ADMIN Then
 Console.WriteLine(_
 entries(i).GetPrincipalObjectClass() & " with ID " & _
 entries(i).GetPrincipalID() & " has admin access")
 End If
 Next i

EndSub

2.3.4.1.6 Access Control List (ACL) Privileges Security for portal objects is implemented
using Access Control Lists (ACLs) that can be applied to folders or individual objects.
The ACL defines the access privileges for portal users and groups.

Users in the Administrators group have full access to allportal objects. Other users can
be assigned the following access privileges.

Privilege Description

Read Allows users or groups to see an object.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-26 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.4.2 Remote Portlet Operations
There are many settings and options that apply only to portlets. In addition to
manipulating portlet objects via IObjectManager, the Oracle WebCenter Interaction
Development Kit (IDK) supports advanced remote portlet operations. Using the PRC
IPortlet* interfaces, you can create and edit portlets and portlet templates, and
manage Administrative and CommunityPortlet preferences for a specific portlet
instance.

2.3.4.2.1 Creating Portlets and Portlet Templates Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs To manipulate portlet and portlet template objects in
Oracle WebCenter Interaction Administration from a remote application, use the
IPortlet* interfaces in the Oracle WebCenter Interaction Development Kit (IDK).

Creating portlets and portlet templates is very similar; if you create a portlet from a
portlet template, it inherits the settings and properties from the template. There is no
further relationship between the two objects; changes in a template are not reflected in
individual portlet instances made from that template. To create a new portlet or
portlet template, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IPortletManager IPortletTemplateManager object by calling
IRemoteSession.getPortletManager or getPortletTemplateManager.

3. Create the portlet or portlet template as shown in the sample code below.

a. Create a new method to create a new portlet template or portlet.

b. Create the portlet template object using the parent folder ID and the web
service ID (to create a portlet, you would provide the portlet template ID).

– There are three ways to retrieve an administrative folder ID: (1) Use PRC
search to perform a search for administrative folder objects, (2) Query for
an existing portlet or portlet template and use its parent folder ID
(available from the IPortlet or IPortletTemplate object), or (3) Let

Select Allows users or groups to add an object to other objects. For example, it allows
users to add portlets to their My Pages, add users to groups, or associate Remote
Servers with Web Services. Object selection lists display only those objects to
which you have Select access.

Edit Allows users or groups to modify an object, including moving or copying an
object.

Admin Allows users or groups full administrative control of an object, including
deleting the object or approving it for migration.

Note: The PRC IPortlet* interfaces in the Oracle WebCenter
Interaction Development Kit (IDK) (com.plumtree.remote.prc) are
different from the Oracle WebCenter Interaction Development Kit
(IDK) portlet API (com.plumtree.remote.portlet). The interfaces in the
portlet API are used to manage communication between a portlet and
the portal, while the PRC IPortlet* interfaces provide access to
administrative functionality related to the portlet objects stored in the
portal.

Privilege Description

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-27

the user select a folder by using a pt:treeLink tag with classID = 20. (There
is no Object Manager for administrative folders.) For details on tags, see
Section 2.4.2, "Adaptive Tags".

– To query for the web service ID, execute a standard object query using
ObjectClass.WebService.

c. Set the name and description for the portlet template or portlet object.

d. Save the portlet template or portlet.

e. Return the ID for the newly created portlet template or portlet.

This example demonstrates how to create a new portlet template based on a web
service. To create a new Portlet, replace all instances of "PortletTemplate" with
"Portlet" and pass in a Portlet Template ID instead of the Web Service ID.

Java

public static int createPortletTemplate(IPortletTemplateManager
portletTemplateManager,
int parentfolderID, int webserviceID)
 throws PortalException, MalformedURLException, RemoteException
{
 IPortletTemplate portletTemplate =
portletTemplateManager.createPortletTemplate(parentFolderID, webserviceID);
 portletTemplate.setName("IDK Test Template");
 portletTemplate.setDescription("Created in IDK example");
 int portletTemplateID = portletTemplate.save();
 return portletTemplateID;
}

.NET (C#)

public static int CreatePortletTemplate(IPortletTemplateManager
portletTemplateManager,
int parentfolderID, int webserviceID)
{
 IPortletTemplate portletTemplate =
portletTemplateManager.CreatePortletTemplate(parentFolderID, webserviceID);
 portletTemplate.SetName("IDK Test Template");
 portletTemplate.SetDescription("Created in IDK example");
 int portletTemplateID = portletTemplate.Save();
 return portletTemplateID;
}

.NET (VB)

Public Shared Function CreatePortletTemplate(_
 ByVal portletTemplateManager As IPortletTemplateManager, ByVal parentfolderID
As Integer, ByVal webserviceID As Integer) As Integer

 Dim portletTemplate As IPortletTemplate =
portletTemplateManager.CreatePortletTemplate(parentfolderID,webserviceID)
 portletTemplate.SetName("IDK Test Template");
 portletTemplate.SetDescription("Created in IDK example");
 Dim portletTemplateID As Integer = portletTemplateID = portletTemplate.Save()

 Return portletTemplateID

End Function

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-28 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.4.2.2 Editing Portlets and Portlet Templates Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs To modify settings for a Portlet or Portlet Template
object from a remote application, use the IPortlet and IPortletTemplate
interfaces in the Oracle WebCenter Interaction Development Kit (IDK).

The IPortlet* interfaces allow you to set the name, description and alignment for a
portlet or portlet template. You can also edit Administrative settings for a portlet or
portlet template, or modify CommunityPortlet settings for a portlet. To edit an existing
portlet or portlet template, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IPortletManager or IPortletTemplateManager object by
calling IRemoteSession.getPortletManager or
getPortletTemplateManager.

3. Retrieve an existing portlet or portlet template using IPortletManager.
getPortlet or IPortletTemplateManager. getPortletTemplate. (To
query for the portlet or portlet template ID, execute a standard object query.)

4. Edit the portlet or portlet template as shown in the sample code below.

This example demonstrates how to change the alignment, name and description, and
edit a administrative setting for a portlet template. To make the same changes to a
portlet, replace all instances of "portletTemplate" with "portlet".

Java

public static void editPortletTemplate(IPortletTemplate portletTemplate)
 throws PortalException, MalformedURLException, RemoteException
{
 portletTemplate.setAlignment(Alignment.Narrow);
 portletTemplate.setName("IDK Test Document EDITED");
 portletTemplate.setDescription("Edited by IDK example");
 portletTemplate.save();
}

public static void addAdminSetting(IPortletTemplate portletTemplate,
String settingName, String settingValue)
 throws PortalException, MalformedURLException, RemoteException
{
 portletTemplate.addAdminSetting(settingName, settingValue);
 portletTemplate.save();
}

.NET (C#)

public static void EditPortletTemplate(IPortletTemplate portletTemplate)
 throws PortalException, MalformedURLException, RemoteException
{
 portletTemplate.SetAlignment(Alignment.Narrow);
 portletTemplate.SetName("IDK Test Document EDITED");
 portletTemplate.SetDescription("Edited by IDK example");
 portletTemplate.Save();
}

public static void AddAdminSetting(IPortletTemplate portletTemplate,
string settingName, string settingValue)
{
 portletTemplate.AddAdminSetting(settingName, settingValue);

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-29

 portletTemplate.Save();
}

.NET (VB)

Public Shared Sub EditWebLinkDocument(ByVal portletTemplateManager As
IPortletTemplate)

 portletTemplate.SetAlignment(Alignment.Narrow)
 portletTemplate.SetName("IDK Test Document EDITED")
 portletTemplate.SetDescription("Edited by IDK example")
 portletTemplate.Save()

EndSub

Public Shared Sub AddAdminSetting(ByRef portletTemplateManager As
IPortletTemplate,
ByVal settingName As String, ByVal settingValue As String)

 portletTemplate.AddAdminSetting(settingName, settingValue)
 portletTemplate.Save()

EndSub

2.3.4.3 Remote Directory Operations
The PRC IDocument* interfaces in the Oracle WebCenter Interaction Development
Kit (IDK) allow you to query for documents and document properties, create new
documents, and edit the properties for existing documents.

The portal directory displays links to documents in a hierarchical structure of folders
and subfolders. These documents can be external or internal web pages, Office
documents, or essentially any file of interest. In Oracle WebCenter Interaction,
documents are referenced by document ID. File metadata is interpreted based on the
Content Type. For details on Content Types, see the Administrator Guide for Oracle
WebCenter Interaction or the online help.

The documents displayed in the dirctory are not stored in the portal; the portal
database contains only the file properties, including a link to the source file.

2.3.4.3.1 Querying Documents in the Directory Using Oracle WebCenter Interaction Development
Kit (IDK) Remote APIs To query for documents in the portal Directory from a remote
application, use the IDocumentManager interface in the Oracle WebCenter
Interaction Development Kit (IDK).

To query for documents, follow the steps below. You can also query documents using
the PRC Search API; for details, see Section 2.3.4.5, "Remote Search Operations".

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IDocumentManager object by calling
IRemoteSession.getDocumentManager.

Note: The folders in the portal directory are different from the
folders in portal administration. For information on manipulating the
portal objects found in administrative folders, see Section 2.3.4.1,
"Remote Object Management".

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-30 Web Service Developer's Guide for Oracle WebCenter Interaction

3. Execute the query, as shown in the sample code below.

a. Create a new method to print out information about new documents in a
folder.

b. Create a query within the specified folder. There are two ways to retrieve a
KD folder ID: (1) Use the PRC search API to perform a search for document
folder objects, or (2) Let the user select a folder by using a pt:treeLink tag with
classID = 17. (There is no Object Manager for document folders.) For details on
tags, Section 2.4.2, "Adaptive Tags".

c. Set up a query filter with the appropriate parameters.

d. Execute the query.

e. Loop through the results and print out document details.

This example demonstrates how to query for documents matching specific criteria
(new documents) within a specific folder.

Java

public static void printNewDocumentDetails(IDocumentManager documentManager, int
folderID, int daysOld) throws PortalException, RemoteException
{
 IDocumentQuery documentQuery = documentManager.createQuery(folderID);

 // Set up a filter to query only documents up to the specified age
 GregorianCalendar createdAge = new GregorianCalendar();
 createdAge.add(Calendar.DATE, -daysOld);
 QueryFilter ageFilter = new DateQueryFilter(ObjectProperty.Created,
Operator.GreaterThan, createdAge.getTime());
 documentQuery.setFilters(new QueryFilter[]{ageFilter});

 IObjectQuery queryResults = documentQuery.execute();
 for (int i = 0; i < queryResults.getRowCount(); i++)
 {
 IObjectQueryRow document = queryResults.getRow(i);
 //Print out standard properties
 System.out.println("Document: " + document.getName());
 System.out.println("Created: " + document.getCreated());
 System.out.println("Description" + document.getDescription());
 //Print out a Document-specific property
 System.out.println("Located at URL: " +
document.getStringValue(DocumentProperty.URL));
 }
}

.NET (C#)

public static void PrintNewDocumentDetails(IDocumentManager documentManager, int
folderID, int daysOld)
{
 IDocumentQuery documentQuery = documentManager.CreateQuery(folderID);

 // Set up a filter to query only documents up to the specified age
 DateTime createdAge = DateTime().AddDays(-daysOld);
 QueryFilter ageFilter = new DateQueryFilter(ObjectProperty.Created,
Operator.GreaterThan, createdAge);
 documentQuery.SetFilters(new QueryFilter[]{ageFilter});
 IObjectQuery queryResults = documentQuery.Execute();
 for (int i = 0; i < queryResults.GetRowCount(); i++)
 {

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-31

 IObjectQueryRow document = queryResults.GetRow(i);
 //Print out standard properties
 Console.WriteLine("Document: " + document.GetName());
 Console.WriteLine("Created: " + document.GetCreated());
 Console.WriteLine("Description" + document.GetDescription());
 //Print out a Document-specific property
 Console.WriteLine("Located at URL: " +
document.GetStringValue(DocumentProperty.URL));
 }
}

.NET (VB)

Public Shared SubPrintNewDocumentDetails (ByVal documentManager As
IDocumentManager,
ByVal folderID As Integer, ByVal daysOld As Integer)

 Dim documentQuery As IDocumentQuery = documentManager.CreateQuery(folderID)

 ' Set up a filter to query only documents up to the specified age
 Dim createdAge As DateTime = New DateTime().AddDays(-daysOld)
 Dim ageFilter As QueryFilter = New DateQueryFilter(ObjectProperty.Created,
Operator.GreaterThan,createdAge)
 Dim ageFilters() As QueryFilter = {ageFilter} 'Put the filter into an array

 documentQuery.SetFilters(ageFilters)

 Dim queryResults As IObjectQuery = documentQuery.Execute()
 Dim i As Integer
 For i = 0 To queryResults.GetRowCount -1
Dim document As IObjectQueryRow = queryResults.GetRow(i)
'Print out standard properties
Console.WriteLine("Document: " + document.GetName())
Console.WriteLine("Created: " + document.GetCreated())
Console.WriteLine("Description: " + document.GetDescription())
'Print out a Document-specific property
Console.WriteLine("Located at URL:"+
document.GetStringValue(DocumentProperty.URL))
 Next

EndSub

2.3.4.3.2 Creating Documents in the Directory Using Oracle WebCenter Interaction Development
Kit (IDK) Remote APIs To create new remote documents in the portal Directory from a
remote application, use the IRemoteDocument and IWebLinkDocument interfaces
in the Oracle WebCenter Interaction Development Kit (IDK).

The IWebLinkDocument interface can only be used for HTML pages. To create a
remote document of another type, use IRemoteDocument and set the content type.
To create a new document, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IDocumentManager object by calling
IRemoteSession.getDocumentManager.

3. Create the document, as shown in the sample code below.

a. Create a new method to create a new Web Link document.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-32 Web Service Developer's Guide for Oracle WebCenter Interaction

b. Create the document with the specified parameters: the folder ID, Content
Source ID, and the URL to the html page.

– There are two ways to retrieve a folder ID: (1) Use the PRC search API to
perform a search for document folder objects, or (2) Let the user select a
folder by using a pt:treeLink tag with classID = 17. (There is no Object
Manager for document folders.). For details on tags, see Section 2.4.2,
"Adaptive Tags" .

– This example uses the standard World Wide Web Content Source (ID 104).
To query for available Content Sources, execute a standard object query
using ObjectClass.DataSource.

c. Override the document name.

d. Save the document.

e. Return the newly created document ID.

This example demonstrates how to create a new Web Link document (HTML page).
The implementation of IRemoteDocument is identical to the sample code shown
below with one exception: you must set the Content Type. To query for available
Content Types, execute a standard object query using
ObjectClass.DocumentType.

Java

public static void createWebLinkDocument(IDocumentManager documentManager, int
folderID, String URL)
 throws PortalException, MalformedURLException, RemoteException
{
 IWebLinkDocument webLinkDocument =
 documentManager.createWebLinkDocument(folderID,104, URL);// 104 is WWW Content
Source
 webLinkDocument.setOverrideName("EDK Test Document"); // overrride intrinsic name
 int documentID = webLinkDocument.save();
 return documentID;
}

.NET (C#)

public static void CreateWebLinkDocument(IDocumentManager documentManager, int
folderID, string URL)
 throws PortalException, MalformedURLException, RemoteException
{
 IWebLinkDocument webLinkDocument =
 documentManager.CreateWebLinkDocument(folderID,104, URL);// 104 is WWW Content
Source
 webLinkDocument.SetOverrideName("EDK Test Document"); // overrride intrinsic name
 int documentID = webLinkDocument.Save();
 return documentID;
}

.NET (VB)

Public Shared Function CreateWebLinkDocument(_
 ByVal documentManager As IDocumentManager, ByVal folderID As Integer, ByVal URL
As String)As Integer

 Dim webLinkDocument As IWebLinkDocument =
 documentManager.CreateWebLinkDocument(folderID,104, URL)' 104 is WWW
ContentSource
 webLinkDocument.SetOverrideName("EDK Test Document")' overrride intrinsic name

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-33

 Dim documentID As Integer = webLinkDocument.Save()
 Return documentID

EndFunction

2.3.4.3.3 Editing Document Properties in the Directory Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs To edit properties for existing documents in the portal
directory from a remote application, use the IDocumentManager interface in the
Oracle WebCenter Interaction Development Kit (IDK).

To edit an existing document, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IDocumentManager object by calling
IRemoteSession.getDocumentManager.

3. Edit the document, as shown in the sample code below.

This example demonstrates how to edit the document name, title, description and last
modified date for an existing Web Link document (HTML page).

Java

public static void editWebLinkDocument(IDocumentManager documentManager, int
documentID)
throws PortalException, RemoteException
{
IDocumentProperties documentProperties =
documentManager.queryDocumentProperties(documentID);
documentProperties.setStringValue(1, "IDK Document EDITED"); // 1 = name
documentProperties.setStringValue(105, "IDK Document Title EDITED"); // 105 =
title
documentProperties.setStringValue(2, "Edited in IDK example "); // 2 = description
documentProperties.setDateValue(112, newDate()); // 112 = last modified date
documentManager.updateDocumentProperties(documentID, documentProperties);
}

.NET (C#)

public static void EditWebLinkDocument(IDocumentManager documentManager, int
documentID)
{
IDocumentProperties documentProperties =
documentManager.QueryDocumentProperties(documentID);
documentProperties.SetStringValue(1, "IDK Document EDITED"); // 1 = name
documentProperties.SetStringValue(105, "IDK Document Title EDITED"); // 105 =
title
documentProperties.SetStringValue(2, "Edited in IDK example "); // 2 = description

Note: This example uses integers to set properties on the document,
in contrast with the ObjectProperty parameters used to retrieve
information about general objects. This is because document
properties can contain custom properties defined in the portal, for
which there are no standard ObjectProperty parameters. To
retrieve property IDs to use for this API, use the standard object
querying method with ObjectClass.Property, and use the ID on
the object returned to query for the properties you need.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-34 Web Service Developer's Guide for Oracle WebCenter Interaction

documentProperties.SetDateValue(112, newDateTime()); // 112 = last modified date
documentManager.UpdateDocumentProperties(documentID, documentProperties);
}

.NET (VB)

Public Shared Sub EditWebLinkDocument(ByVal documentManager As IDocumentManager,
ByVal folderID As Integer)

Dim documentProperties As IDocumentProperties =
documentManager.QueryDocumentProperties(documentID)
documentProperties.SetStringValue(1, "IDK Document EDITED")' 1 = name
documentProperties.SetStringValue(105, "IDK Document Title EDITED") ' 105 = title
documentProperties.SetStringValue(2, "Edited in IDK example ") ' 2 = description
documentProperties.SetDateValue(112, NewDateTime()) ' 112 = last modified date
documentManager.UpdateDocumentProperties(documentID, documentProperties)

EndSub

2.3.4.4 Remote User Operations
The PRC IUserManager and IUserGroupManager interfaces in the Oracle
WebCenter Interaction Development Kit (IDK) allow you to leverage the portal's user
hierarchy. You can query for the current user's ID and group information, create new
groups, and manage group membership.

Portal users are organized into groups and sub-groups. This hierarchy allows
administrators to customize the portal display for specific audiences and assign object
security for collections of users.

2.3.4.4.1 Querying Users Using Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs To query for the current user's ID and group information from a remote
application, use the IUserManager interface in the Oracle WebCenter Interaction
Development Kit (IDK).

The IUserManager interface only provides access to user-specific administrative
functionality. To access user settings and user profile information, use the methods in
the com.plumtree.remote.util package. To manipulate user objects, create an Object
Manager of type ObjectClass.User. For details, see Section 2.3.4.1, "Remote Object
Management".To query for the properties for an existing user, follow the steps below.
(To retrieve a user ID, you can also execute a standard object query with type
ObjectClass.User.)

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IUserManager by calling IRemoteSession.getUserManager.

3. Query the current user's groups, as shown in the sample code below.

Note: The PRC IUser* interfaces provide access to administrative
functionality related to users in the portal. To access user settings and
user profile information, use the methods in the
com.plumtree.remote.portlet and com.plumtree.remote.util packages.
To manipulate user objects, create an Object Manager of type
ObjectClass.User.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-35

This example retrieves the current user's group associations and prints out the group
IDs.

Java

public static void printGroupIDs(IUserManager userManager)
 throws PortalException, MalformedURLException, RemoteException
{
 int[] ids = userManager.getCurrentUserGroups();
 for (int i = 0 ; i < ids.length ; i++)
 {
 System.out.println("Current user belongs to group with ID: " + ids[i]);
 }
}

.NET (C#)

public static void PrintGroupIDs(IUserManager userManager)
 throws PortalException, MalformedURLException, RemoteException
{
 int[] ids = userManager.GetCurrentUserGroups();
 for (int i = 0 ; i < ids.length ; i++)
 {
 Console.WriteLine("Current user belongs to group with ID: " + ids[i]);
 }
}

.NET (VB)

Public Shared Sub PrintGroupIDs(ByVal userManager As IUserManager)

 Dim ids() As Integer = userManager.GetCurrentUserGroups()

 Dim i As Integer
 For i = 0 To ids.Length
 Console.WriteLine("Current user belongs to group with ID: " & ids[i])

EndSub

2.3.4.4.2 Creating Groups and Adding Users Using Oracle WebCenter Interaction Development
Kit (IDK) Remote APIs To create new groups and manage group membership from a
remote application, use the IUserGroupManager interface in the Oracle WebCenter
Interaction Development Kit (IDK).

To create a new group and add a user, follow the steps below.

Note: The current user is the user initially used to create the PRC
session, the user associated with the login token.

Note: To print out the names of groups, you must look up each
group using an IUserGroupManager (IObjectManager with
ObjectClass.UserGroup); group names are available on each
IObjectQueryRow.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-36 Web Service Developer's Guide for Oracle WebCenter Interaction

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IUserGroupManager by calling
IRemoteSession.getUserGroupManager.

3. Create a new method to create a group.

4. Create a new group using the folder ID as shown in the sample code below. There
are two ways to retrieve an administrative folder ID: (1) Use PRC search to
perform a search for administrative folder objects, or (2) Let the user select a folder
by using a pt:treeLink tag with classID = 20. (There is no IObjectManager for
administrative folders.) For details on tags, see Section 2.4.2, "Adaptive Tags".

5. Return the group ID for the newly created group.

6. Create a new method to add a user.

7. Add the user to the new group, using the group ID returned in the previous
method. (To query for an existing group ID, execute a standard object query using
ObjectClass.Group.)

Java

public static int createEmptyGroup(IUserGroupManager userGroupManager, int
adminFolderID)
 throws PortalException, RemoteException
{
 int newGroupID = userGroupManager.createGroup(
 "IDK Group",
 "Created in IDK example",
 adminFolderID,
 new int[0], //no member users
 new int[0]); //no member groups
 return newGroupID;
}

public static void addUserToGroup(IUserGroupManager userGroupManager, int
userIDToAdd,
int newGroupID)
 throws PortalException, RemoteException
{
 userGroupManager.addMemberUsers(newGroupID, new int[]{userIDToAdd});
}

.NET (C#)

public static int CreateEmptyGroup(IUserGroupManager userGroupManager, int
adminFolderID)
{
 int newGroupID = userGroupManager.CreateGroup(
 "IDK Group",
 "Created in IDK example",
 adminFolderID,
 new int[0], //no member users
 new int[0]); //no member groups

Note: The PRC IUserGroupManager interface only provides access
to group-specific administrative functionality. To manipulate group
objects, create an Object Manager of type ObjectClass.UserGroup.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-37

 return newGroupID;
}

public static void AddUserToGroup(IUserGroupManager userGroupManager, int
userIDToAdd,
int newGroupID)
{
 userGroupManager.AddMemberUsers(newGroupID, new int[]{userIDToAdd});
}

.NET (VB)

Public Shared Function CreateEmptyGroup(ByVal userGroupManager As
IUserGroupManager,
ByVal adminFolderID As Integer)

 Dim emptyIntegerArray(0) As Integer
 Dim newGroupID As Integer = userGroupManager.CreateGroup(_
 "IDK Group", _
 "Created in IDK example", _
 adminFolderID, _
 emptyIntegerArray, _
 emptyIntegerArray) 'no member users or groups
 Return newGroupID

EndFunction

Public Shared Sub AddUserToGroup(_
 (ByVal userGroupManager As IUserGroupManager, ByVal userIDToAdd As Integer, ByVal
newGroupID As Integer)

 Dim singleUserArray() As Integer= {userIDToAdd}

 userGroupManager.AddMemberUsers(newGroupID, singleUserArray)

EndSub

2.3.4.5 Remote Search Operations
The Oracle WebCenter Interaction Development Kit (IDK) remote search API
(com.plumtree.remote.prc.search) provides a generic interface to portal search
operations.

Using the PRC search API, you can query document, folder, user and Community
objects using a standard request-response model. The API allows you to add multiple
constraints and filter searches by location or object type.

Portal properties are represented as standard fields that can be accessed in search
results by name or by iteration. By default, searches return a set of standard
properties; you can choose to retrieve additional properties.

For information on remote search services, see Section 3.2, "Oracle WebCenter
Interaction Federated Search Services".

Note: The portal Search Service is a full-text search engine optimized
for dealing with text; it should not be used for precise storage of
numeric values, such as currency values.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-38 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.4.5.1 Querying Objects Using the Oracle WebCenter Interaction Development Kit (IDK)
Remote Search API To search for portal objects and documents from a remote
application, use the IPortalSearchRequest interface in the Oracle WebCenter
Interaction Development Kit (IDK).

To construct a query, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an ISearchFactory from the session by calling
IRemoteSession.getSearchFactory.

3. Create a new IPortalSearchRequest to represent your query.

4. Create a new method and construct the query, as shown in the sample code that
follows.

The sample code below demonstrates how to query for a folder ID by folder name.
The folder ID is required to execute other PRC functionality, including creating
portlets, documents and groups. This example uses query constraints; for more
information, see Section 2.3.4.5.2, "Using Query Constraints with the Oracle
WebCenter Interaction Development Kit (IDK) Remote Search API".

Java

//set the endpoint to the value of web services server
String endpoint = "http://IP-GW-AS08:9080/ptapi/services/QueryInterfaceAPI";
URL url = new URL(endpoint);

//set username and password to log in
//hard-coding the values is only for demo purposes
String username = "Administrator";
String password = "";
IRemoteSession prcSession = RemoteSessionFactory.getExplicitLoginContext(url,
username, password);
ISearchFactory searchFactory = prcSession.getSearchFactory();
IPortalSearchRequest searchRequest = searchFactory.createPortalSearchRequest();
public static int getFolderId(IPortalSearchRequest searchRequest, String
folderName)
 throws Exception
{
int folderId = -1;

//search for the given folder name
searchRequest.setQuery(folderName);

// only search for folders
ObjectClass[] objectTypes = {ObjectClass.DocumentFolder};
searchRequest.setObjectTypesToSearch(objectTypes);

ISearchResponse searchResponse = searchRequest.execute();
ISearchResultSet resultSet = searchResponse.getResultSet();
int numResults = searchResponse.getReturnedCount();

if (numResults > 0)
{
Enumeration results = resultSet.getResults(); //just get the first element
IPortalSearchResult result = (IPortalSearchResult) results.nextElement();
folderId = result.getObjectID();
}

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-39

returnfolderId;
}

.NET (C#)

//set the endpoint to the value of web services server
String endpoint = "http://IP-GW-AS08:9080/ptapi/services/QueryInterfaceAPI";

//set username and password to log in
//hard-coding the values is only for demo purposes
String username = "Administrator";
String password = "";
IRemoteSession session = RemoteSessionFactory.GetExplicitLoginContext(new
System.Uri(endpoint), username, password);
ISearchFactory searchFactory = session.GetSearchFactory();
IPortalSearchRequest searchRequest = searchFactory.CreatePortalSearchRequest();

public static int GetFolderId(IPortalSearchRequest searchRequest, String
folderName)
{
int folderId = -1;

//search for the given folder name
searchRequest.SetQuery(folderName);

// only search for folders
ObjectClass[] objectTypes = {ObjectClass.DocumentFolder};
searchRequest.SetObjectTypesToSearch(objectTypes);

ISearchResponse searchResponse = searchRequest.Execute();
ISearchResultSet resultSet = searchResponse.GetResultSet();
int numResults = searchResponse.GetReturnedCount();

if (numResults > 0)
{
Enumeration results = resultSet.GetResults(); //just get the first element
IPortalSearchResult result = (IPortalSearchResult) results.Current;
folderId = result.GetObjectID();
}
returnfolderId;
}

.NET (VB)

//set the endpoint to the value of web services server
String endpoint = "http://IP-GW-AS08:9080/ptapi/services/QueryInterfaceAPI"

//set username and password to log in
//hard-coding the values is only for demo purposes
String username = "Administrator"
String password = ""

Dim session As IRemoteSession = RemoteSessionFactory.GetExplicitLoginContext(New
System.Uri(endpoint), username, password)
Dim searchFactory As ISearchFactory = session.GetSearchFactory()
Dim searchRequest As IPortalSearchRequest =
searchFactory.CreatePortalSearchRequest()

Public Shared Function GetFolderID(ByVal searchRequest As IPortalSearchRequest,
ByVal
folderName As String)

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-40 Web Service Developer's Guide for Oracle WebCenter Interaction

Dim folderID As Int32 = -1
searchRequest.SetQuery(folderName)

Dim objectTypes() As ObjectClass = {ObjectClass.DocumentFolder}
searchRequest.SetObjectTypesToSearch(objectTypes)

Dim searchResponse As ISearchResponse = searchRequest.Execute()
Dim resultSet As ISearchResultSet = searchResponse.GetResultSet()
Dim numResults As Int32 = searchResponse.GetReturnedCount()

If (numResults > 0) Then

Dim results As IEnumerator = resultSet.GetResults()
results.MoveNext()
Dim result As IPortalSearchResult = DirectCast(results.Current,
IPortalSearchResult)
folderId = result.GetObjectID()

End If
Return folderId
End Function

2.3.4.5.2 Using Query Constraints with the Oracle WebCenter Interaction Development Kit (IDK)
Remote Search API To limit search results to an object type or filter on a specific object
property, use constraints.

Portal properties are represented as standard fields (PortalField,
PlumtreeField) that can be accessed in search results by name or by iteration. By
default, searches return a set of standard properties; you can choose to retrieve
additional properties. To find the property ID, edit the property and note the ObjectID
in the query string (for example, &in_hi_ObjectID=206).

This example sets constraints to limit the results to documents that are less than a year
old.

Java

...
//add a property field to the search
//SetFieldsToReturn adds fields to the existing default fields
//make the PortalField based on the property ID
int propertyID = 206;
Field[] fieldsToReturn = new Field[] {PortalField.forID(propertyID)};
searchRequest.setFieldsToReturn(fieldsToReturn);

//constrain the results to documents
ObjectClass[] objectClasses = new ObjectClass[] {ObjectClass.Document};
searchRequest.setObjectTypesToSearch(objectClasses);

//return only documents that are less than a year old
Calendar cal = Calendar.getInstance();
cal.add(Calendar.YEAR, -1);
Date createdDate = cal.getTime();
IFilterClause filterClause = searchFactory.createAndFilterClause();
filterClause.addStatement(PlumtreeField.CREATED, Operator.GreaterThan,

Note: The code below should be executed within a method that can
throw a SearchException and a RemoteException.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-41

createdDate);
searchRequest.setQuery(searchString, filterClause);

//execute the query and display the results
DisplayResults(searchRequest, propertyID);
...

.NET (C#)

...
//add a property field to the search
//SetFieldsToReturn adds fields to the existing default fields
//make the PortalField based on the property ID
int propertyID = 206;
Field[] fieldsToReturn = new Field[] {PortalField.ForID(propertyID)};
searchRequest.SetFieldsToReturn(fieldsToReturn);

//constrain the results to documents
ObjectClass[] objectClasses = new ObjectClass[] {ObjectClass.Document};
searchRequest.SetObjectTypesToSearch(objectClasses);

//return only documents that are less than a year old
DateTime createdDate = DateTime.Today.AddYears(-1);
IFilterClause filterClause = searchFactory.CreateAndFilterClause();
filterClause.AddStatement(PlumtreeField.CREATED, Operator.GreaterThan,
createdDate);
searchRequest.SetQuery(searchString, filterClause);

//execute the query and display the results
DisplayResults(searchRequest, propertyID);
...

.NET (VB)

...
'add a property field to the search
'note that SetFieldsToReturn only adds fields to the existing default fields
'make the PortalField based on the property ID
Dim propertyID As Int32 = 206
Dim fieldsToReturn(0) As Field
fieldsToReturn(0) = PortalField.ForID(propertyID)
searchRequest.SetFieldsToReturn(fieldsToReturn)

'constrain the results to documents
Dim objectClasses(0) As ObjectClass
objectClasses(0) = ObjectClass.Document
searchRequest.SetObjectTypesToSearch(objectClasses)

'return only documents that are less than a year old
Dim createdDate As DateTime = DateTime.Today.AddYears(-1)
Dim filterClause As IFilterClause = searchFactory.CreateAndFilterClause()
filterClause.AddStatement(PlumtreeField.CREATED, Operator.GreaterThan,
createdDate)
searchRequest.SetQuery(searchString, filterClause)

'execute the query and display the results
DisplayResults(searchRequest, propertyID)
...

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-42 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.4.5.3 Managing Search Results Using the Oracle WebCenter Interaction Development Kit
(IDK) Remote Search API To manage the results returned from a search in a remote
application, use the IPortalSearchResult interface.

Oracle WebCenter Interaction Search stores numeric and date fields (properties) as
32-bit floats. This means that any prc.search method that returns the value of a
numeric field is potentially subject to roundoff. getFieldAsInt is converted to a
float and then converted back to an int. getFieldAsFloat rounds the original value
to return it as a float.

This example continues the sample code from Section 2.3.4.5.1, "Querying Objects
Using the Oracle WebCenter Interaction Development Kit (IDK) Remote Search API".
The code samples below print out a result summary and display the returned
properties.

Java

public static void displayResults(IPortalSearchRequest searchRequest, int
propertyID)
 throws SearchException, RemoteException
{

//execute the search
ISearchResponse searchResponse = searchRequest.execute();

//get information about the number of results returned
System.out.println("Total matches is " + searchResponse.getTotalCount());
System.out.println("First result is " + searchResponse.getFirstResultIndex());
System.out.println("Number returned is " + searchResponse.getReturnedCount());

//write out any warnings
SearchWarning warning = searchResponse.getWarning();
if (null != warning)
{
if (warning.getCode() == (SearchWarning.PROCESSING_TIMED_OUT.getCode()))
{
System.out.println("Search Warning: Timed out when processing search request; a
partial search result was returned");
}
if (warning.getCode == (SearchWarning.TOO_MANY_WILDCARD_EXPANSIONS.getCode())
{
System.out.println("Search Warning: A wildcard query, such as \"a*\", matched a
large number of patterns, only some of which were used for your search.");
}
}

//make the PortalField based on the property ID (from
IPortalSearchRequest.SetFieldsToReturn)
Field propField = PortalField.forID(propertyID);

//iterate through the results

Note: To access the additional property referenced in the
setFieldsToReturn method of IPortalSearchRequest, this
example uses getFieldAsString. This is because the field type is
unknown; if you know the type of property being returned, use the
appropriate type-specific field (e.g., getFieldAsDate,
getFieldAsFloat).

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-43

ISearchResultSet resultSet = searchResponse.getResultSet();
IEnumerator results = resultSet.getResults();
while (results.hasMoreElements())
{
System.out.println("--");
IPortalSearchResult result = (IPortalSearchResult) results.nextElement();
System.out.println("name is " + result.getName());
System.out.println("class id is " + result.getClassID());
System.out.println("created is " + result.getCreated());
System.out.println("excerpt is " + result.getExcerpt());
System.out.println("last modified is " + result.getLastModified());
System.out.println("object id is " + result.getObjectID());
System.out.println("url is " + result.getURL());
System.out.println("icon url is " + result.getIconURL());
System.out.println("rank is " + result.getRank());
//write out the property if the field exists
Object value = result.getFieldAsObject(propField);
if (null != value)
{
//use GetFieldAsString because type of field is unknown
String propResult = result.GetFieldAsString(propField);
System.out.println("property field is " + propResult);
}
}
}

.NET (C#)

public static void DisplayResults(IPortalSearchRequest searchRequest, int
propertyID)
{

//execute the search
ISearchResponse searchResponse = searchRequest.Execute();

//get information about the number of results returned
Console.WriteLine("Total matches is " + searchResponse.GetTotalCount());
Console.WriteLine("First result is " + searchResponse.GetFirstResultIndex());
Console.WriteLine("Number returned is " + searchResponse.GetReturnedCount());

//write out any warnings
SearchWarning warning = searchResponse.GetWarning();
if (null != warning)
{
if (warning.GetCode().Equals(SearchWarning.PROCESSING_TIMED_OUT.GetCode()))
{
Console.WriteLine("Search Warning: Timed out when processing search request; a
partial search result was returned");
}
if (warning.GetCode().Equals(SearchWarning.TOO_MANY_WILDCARD_EXPANSIONS.GetCode())
{
Console.WriteLine("Search Warning: A wildcard query, such as \"a*\", matched a
large number of patterns, only some of which were used for your search.");
}
}

//make the PortalField based on the property ID (from
IPortalSearchRequest.SetFieldsToReturn)
Field propField = PortalField.ForID(propertyID);

//iterate through the results

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-44 Web Service Developer's Guide for Oracle WebCenter Interaction

ISearchResultSet resultSet = searchResponse.GetResultSet();
IEnumerator results = resultSet.GetResults();
while (results.MoveNext())
{
Console.WriteLine("--");
IPortalSearchResult result = (IPortalSearchResult) results.Current;
Console.WriteLine("name is " + result.GetName());
Console.WriteLine("class id is " + result.GetClassID());
Console.WriteLine("created is " + result.GetCreated());
Console.WriteLine("excerpt is " + result.GetExcerpt());
Console.WriteLine("last modified is " + result.GetLastModified());
Console.WriteLine("object id is " + result.GetObjectID());
Console.WriteLine("url is " + result.GetURL());
Console.WriteLine("icon url is " + result.GetIconURL());
Console.WriteLine("rank is " + result.GetRank());
//write out the property if the field exists
Object value = result.GetFieldAsObject(propField);
if (null != value)
{
//use GetFieldAsString because type of field is unknown
String propResult = result.GetFieldAsString(propField);
Console.WriteLine("property field is " + propResult);
}
}
}

.NET (VB)

Public Shared Sub DisplayResults(ByVal searchRequest As IPortalSearchRequest,
ByVal
propertyID As Int32)

//execute the search
Dim searchResponse As ISearchResponse = searchRequest.Execute()

'get information about the number of results returned
Console.WriteLine("Total matches is "& searchResponse.GetTotalCount())
Console.WriteLine("First result is "& searchResponse.GetFirstResultIndex())
Console.WriteLine("Number returned is "& searchResponse.GetReturnedCount())

'write out any warnings
Dim warning AsSearchWarning = searchResponse.GetWarning()
If Notwarning IsNothing Then

If (warning.GetCode().Equals(SearchWarning.PROCESSING_TIMED_OUT.GetCode())) Then
Console.WriteLine("Search Warning: Timed out when processing search request; a
partial search result was returned")
End If

If (warning.GetCode().Equals(SearchWarning.TOO_MANY_WILDCARD_
EXPANSIONS.GetCode()))
Then
Console.WriteLine("Search Warning: A wildcard query, such as a*, matched a large
number of patterns, only some of which were used for your search.")
End If

End If

'make the PortalField based on the property ID (from
IPortalSearchRequest.SetFieldsToReturn)
Dim propField As Field = PortalField.ForID(propertyID)

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-45

'iterate through the results
Dim resultSet AsISearchResultSet = searchResponse.GetResultSet()
Dim results AsIEnumerator = resultSet.GetResults()
While(results.MoveNext())

Console.WriteLine("--")
Dim result As IPortalSearchResult = DirectCast(results.Current,
IPortalSearchResult)
Console.WriteLine("name is " + result.GetName())
Console.WriteLine("class id is " + result.GetClassID())
Console.WriteLine("created is " + result.GetCreated())
Console.WriteLine("excerpt is " + result.GetExcerpt())
Console.WriteLine("last modified is " + result.GetLastModified())
Console.WriteLine("object id is " + result.GetObjectID())
Console.WriteLine("url is " + result.GetURL())
Console.WriteLine("icon url is " + result.GetIconURL())
Console.WriteLine("rank is " + result.GetRank())
'write out the property if the field exists
Dim value As Object = result.GetFieldAsObject(propField)
If Not value Is Nothing Then
'use GetFieldAsString because type of field is unknown
Dim propResult As String = result.GetFieldAsString(propField)
Console.WriteLine("property field is " + propResult)
End If

End While

End Sub

2.3.4.6 Starting Portal Jobs Using Oracle WebCenter Interaction Development Kit
(IDK) Remote APIs
To start an existing Oracle WebCenter Interaction job from a remote application, use
the IJobManager interface in the Oracle WebCenter Interaction Development Kit
(IDK).

A job is a collection of related portal operations. Each operation is one task, such as a
crawl for documents, an import of users, or one of the system maintenance tasks. The
return code from starting a job indicates whether or not the call was successful
(whether or not the object is locked). See the Oracle WebCenter Interaction
Development Kit (IDK) API documentation for LockStatus for more information on
what each return value indicates. To start a portal job, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Retrieve an IJobManager by calling IRemoteSession.getJobManager.

3. Query for the objectID of the job. For details, see Section 2.3.4.1.4, "Querying
Object Properties Using Oracle WebCenter Interaction Development Kit (IDK)
Remote APIs".

4. Create a new method to start a job and start the job as shown in the code below. It
is a best practice to check the return code in the response and print out a
description.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-46 Web Service Developer's Guide for Oracle WebCenter Interaction

This example checks to see if the job object is locked. If it is unlocked, the code
assumes that the job will start.

Java

public static voidstartJob(IJobManager jobManager, int jobID)
{
 int status = jobManager.startJob(jobID);

 if (status == LockStatus.UNLOCKED) //LockStatus.UNLOCKED = 0
 System.out.println("Job started successfully");
 else
 System.out.println("Job failed to start");
}

.NET (C#)

public static voidStartJob(IJobManager jobManager, int jobID)
{
 int status = jobManager.startJob(jobID);

 if (status == LockStatus.Unlocked) //LockStatus.Unlocked = 0
 Console.WriteLine("Job started successfully");
 else
 Console.WriteLine("Job failed to start");
}

.NET (VB)

Public Shared SubStartJob ByVal jobManager As IJobManager, ByVal jobID As Integer)

 Dim objectManager As Integer = jobManager.StartJob(jobID)

 If status = LockStatus.UnlockedThen 'LockStatus.Unlocked = 0
 Console.WriteLine "Job started successfully");
 Else
 Console.WriteLine("Job failed to start");
 End If
End Sub

2.3.5 Remote Oracle WebCenter Collaboration APIs
The Oracle WebCenter Interaction Development Kit (IDK) remote Collaboration API
(com.plumtree.remote.prc.collaboration) provides programmatic access to many of the
objects stored within Oracle WebCenter Collaboration. Use this remote programming
interface to embed collaborative components and functions into any web application
delivered through the Oracle WebCenter Interaction framework.

The PRC Collaboration API can be used to access existing Oracle WebCenter
Collaboration objects. Each object interface provides a GetDetailsURL method that
returns the URL to the associated detail page in Oracle WebCenter Collaboration. To
create a URL to a component, first obtain an instance of the associated object, then call
the getDetailsURL method.

Note: The startJob method does not technically start the portal
job; it sets the start time for the job to the current time. If there are
problems that prevent the job from running once it is rescheduled,
they are not accessible from this call.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-47

For details on remote PRC Collaboration APIs, see the following sections:

■ Section 2.3.5.1, "Remote Oracle WebCenter Collaboration Project Operations"

■ Section 2.3.5.2, "Remote Oracle WebCenter Collaboration Discussion Operations"

■ Section 2.3.5.3, "Remote Oracle WebCenter Collaboration Document and Folder
Operations"

■ Section 2.3.5.4, "Remote Oracle WebCenter Collaboration Task Operations"

Each object interface allows you to determine a user's permissions for a specific Oracle
WebCenter Collaboration object in two ways:

■ Get the access level for each role (getAccessLevel).

■ Determine whether a specific action is permitted (isActionAllowed).

For details, see Section 2.3.5.5, "Oracle WebCenter Collaboration Access Levels".

For more details on Oracle WebCenter Collaboration functionality, see the
Administrator Guide for Oracle WebCenter Collaboration and the online help.

2.3.5.1 Remote Oracle WebCenter Collaboration Project Operations
Every Oracle WebCenter Collaboration task, document and discussion is associated
with a project; the project must exist before you can create any component objects.
Using the PRC Collaboration API in the Oracle WebCenter Interaction Development
Kit (IDK), you can query, create and modify projects, and manage project security and
subscriptions from a remote application.

Each Oracle WebCenter Collaboration project has its own set of objects and properties
that are not shared with other projects. The PRC Collaboration API provides access to
the following project functionality:

■ Collaboration Workspace: Create, copy, modify, and delete projects.

■ Subscriptions: Provide users with e-mail notifications when an activity occurs in a
project, such as adding a folder or modifying a document.

■ Search: Search projects, and create filters for focused results.

2.3.5.1.1 Querying Existing Oracle WebCenter Collaboration Projects Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To search for Oracle WebCenter
Collaboration projects by name from a remote application, use the
IProjectManager interface in the Oracle WebCenter Interaction Development Kit
(IDK).

Results can be filtered in a variety of ways. The IProjectManager query method
takes in an IProjectFilter object that allows you to set the following search
options:

Search
Option Description

Search Text
(Name)

Sets the string that will be used to search project names. If you do not set a
search string, all projects will be returned. The name search string is
case-insensitive by default; all projects will be returned that contain the text
using the form *text*.

Maximum
Results

Sets the maximum number of results returned. The default is to return all
results.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-48 Web Service Developer's Guide for Oracle WebCenter Interaction

The code samples below are simplified for illustration.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

2. Query for a project as shown in the code below.

1. Retrieve an IProjectManager.

2. Implement IProjectFilter to filter results and define the query.

3. Execute the search and display results in table format.

Java

...

//perform the search
IProjectManager projectManager = getProjectManager(request, response, out);
IProjectFilter projectFilter = projectManager.createProjectFilter();

//hard-code the max results to 10
projectFilter.setMaximumResults(10);

//set the query
projectFilter.setNameSearchText(searchText);

//execute the search and print out the results
IProject[] projects = projectManager.queryProjects(projectFilter);
if (projects.length > 0)
{
%>
<table>
<tr>
<td>
Search Results
</td>
</tr>
<tr>
<td>
Project Name
</td>
<td>
Project ID
</td>

Order-By
Fields and
Sort Order

Sets the fields to be displayed with an order-by functionality (name or last
modified date) and sets the sort order (ascending or descending).

Security Enables or disables the security filter that applies security to the result set with
respect to the user that submitted the query. If the filter is enabled, the query
result will only include objects for which the querying user has appropriate
permission. The default is false (disabled); all objects matching the query
criteria will be returned.

Result Filter:
Project Type

Limits the query to those projects for which the current user is a project leader,
or extend the search to all projects. For details on project roles, see
Section 2.3.5.1.4, "Managing Oracle WebCenter Collaboration Project Roles
Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

Search
Option Description

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-49

</tr>
<%
for (int i = 0; i < projects.length; i++)
{
IProject project = projects[i];
%>
<tr>
<td>
<%out.println(project.getName());%>
</td>
<td>
<%out.println(project.getID());%>
</td>
</tr>
<%
}
}
else
{
%>
<tr>
<td colspan="2">
<%out.println("No projects found using search query of " + searchText);%>
</td>
</tr>
</table>
...
.NET (C#)

...

//perform the search
Plumtree.Remote.PRC.Collaboration.Project.IProjectManager projectManager =
GetProjectManager(Request, Response);
Plumtree.Remote.PRC.Collaboration.Project.IProjectFilter projectFilter =
projectManager.CreateProjectFilter();

//hard-code the max results to 10
projectFilter.MaximumResults = 10;

//set the query
projectFilter.NameSearchText = searchText;

//execute the search and print out the results
Plumtree.Remote.PRC.Collaboration.Project.IProject[] projects =
projectManager.QueryProjects(projectFilter);
if (projects.Length > 0)
{
%>
<table>
<tr>
<td>
Search Results
</td>
</tr>
<tr>
<td>
Project Name
</td>
<td>
Project ID

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-50 Web Service Developer's Guide for Oracle WebCenter Interaction

</td>
</tr>
<%
for (int i = 0; i < projects.Length; i++)
{
Plumtree.Remote.PRC.Collaboration.Project.IProject project = projects[i];
%>
<tr>
<td>
<%Response.Write(project.Name);%>
</td>
<td>
<%Response.Write(project.ID);%>
</td>
</tr>
<%
}
}
else
{
Response.Write("No projects found using search query of " + searchText);
}
...
.NET (VB)

...

'perform the search
dim projectManager as Plumtree.Remote.PRC.Collaboration.Project.IProjectManager =
GetProjectManager(Request, Response)
dim projectFilter as Plumtree.Remote.PRC.Collaboration.Project.IProjectFilter =
projectManager.CreateProjectFilter()

'hard-code the max results to 10
projectFilter.MaximumResults = 10

'set the query
projectFilter.NameSearchText = searchText

'execute the search and print out the results
dim projects() as Plumtree.Remote.PRC.Collaboration.Project.IProject =
projectManager.QueryProjects(projectFilter)
if projects.Length > 0 then
%>
<tr>
<td>
Search Results
</td>
</tr>
<tr>
<td>
Project Name
</td>
<td>
Project ID
</td>
</tr>
<%
dim i as Integer
for i = 0 to projects.Length -1
dim project as Plumtree.Remote.PRC.Collaboration.Project.IProject = projects(i)

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-51

%>
<tr>
<td>
<%Response.Write(project.Name) %>
</td>
<td>
<%Response.Write(Cstr(project.ID)) %>
</td>
</tr>
<%
next
else
Response.Write("No projects found using search query of " + searchText)
...

2.3.5.1.2 Creating Oracle WebCenter Collaboration Projects Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs To create a new Oracle WebCenter Collaboration
project from a remote application, use the IProjectManager interface in the Oracle
WebCenter Interaction Development Kit (IDK).

The IProjectManager interface provides a factory method for creating new projects
that takes in a name and description, and returns an IProject object with a
corresponding object ID and associated properties. The sample code below provides a
simple example of creating a new project. The IProjectManager interface also
provides methods for copying content and metadata from existing collaboration
projects. Prior to the call, both the source and target project must be a persisted
IProject, and both projects must have a set start date. The user must be a Project
Leader and have READ access in both the source and target projects.

For details on these methods, see the IDK API documentation.

Method Description Copies

copyProjectConte
nt

Copies all project content from the source
project to the target project. The copied project
will be stored permanently. Security is
mapped isomorphically from the source
project to the target project; if the
ProjectMember role in the source project has
access level 1 on object X, and object X is
copied to object Y, then the ProjectMember role
in the target project will have access level 1 on
object Y.

■ All document
folders

■ All documents

■ All discussions
(not messages)

■ All task lists

■ All tasks

copyProjectMetad
ata

Copies the basic metadata and all IRole objects
from the source project to the target project.
The copied project will be stored permanently.
No store method is required. The old roles in
the target project will be overwritten with the
copied roles from the source project.

■ Project
description

■ All IRole objects

■ Start date
information (if
the target
project's start
date is not set
and the source
project's start
date is available)

Note: Before writing any code, you must prepare a custom
development project that references the standard IDK library
(idk.jar/idk.dll).

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-52 Web Service Developer's Guide for Oracle WebCenter Interaction

The code samples below implement the following steps:

1. Initiate a PRC session. This example retrieves a login token using
IPortletContext; you can also use IRemoteSession. (For details, see
Section 2.3.2, "Initiating a PRC Session to Use Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".)

2. Get the Project Manager.

3. Create a project with name and description.

4. Get the ID for the new project.

Java

<%@page import="com.plumtree.remote.prc.IRemoteSession,
com.plumtree.remote.prc.RemoteSessionFactory,
com.plumtree.remote.prc.collaboration.*,com.plumtree.remote.prc.collaboration.proj
ect.*,
com.plumtree.remote.portlet.*,java.util.*,java.text.*" %>

<%
//get the project manager
private IProjectManager getProjectManager(HttpServletRequest req,
HttpServletResponse
res, JspWriter pout) throws Exception
{

IProjectManager projectManager = null;
IPortletContext portletContext = PortletContextFactory.createPortletContext(req,
res);
IPortletRequest portletRequest = portletContext.getRequest();
String loginToken = portletRequest.getLoginToken();
if (null == loginToken)
{
pout.println("Unable to retrieve the login token. Confirm that the login token has
been checked in the Advanced Settings page of the Web Service.");
}

//get the remote session
com.plumtree.remote.prc.IRemoteSession portalSession =
portletContext.getRemotePortalSession();

//get a collab factory and a project manager
ICollaborationFactory collabFactory = portalSession.getCollaborationFactory();
projectManager = collabFactory.getProjectManager();

return projectManager;

}

//create a project and print out the project id
name = (null == name) ? "ExampleProject" : name;
description = (null == description) ? "ExampleProjectDescription" : description;

//create the project
IProjectManager projectManager = getProjectManager(request, response, out);
IProject project = projectManager.createProject(name, description);

//to set additional properties, you must call store() after making changes
//for example:
/*

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-53

project.setStatus(ProjectStatus.NOT_STARTED);
project.setStartDate(new Date());
*/

//call store before asking for the ID.
project.store();

//get the new project ID
project.getID()

%>

.NET (C# - Project Page)

<%@ Page language="c#" Codebehind="ProjectSample.aspx.cs" AutoEventWireup="false"
Inherits="WebProjectSample.ProjectSample" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<html>
<body>

//create a project and print out the project id
<%
{
name = (null == name) ? "ExampleProject" : name;
description = (null == description) ? "ExampleProjectDescription" : description;

//create the project
Plumtree.Remote.PRC.Collaboration.Project.IProjectManager projectManager =
GetProjectManager(Request, Response);
Plumtree.Remote.PRC.Collaboration.Project.IProject project =
projectManager.CreateProject(name, description);

//to set additional properties, you must call store() after making changes
//for example:
/*
project.Status = ProjectStatus.NotStarted;
project.StartDate = new Date();
*/

//call store before asking for the id.
project.Store();
}
%>

<table>
<tr>
<td>
<%
Response.Write("ID of newly created project is " + project.ID);
%>
</td>
</tr>
</table>
</body>
</html>

.NET (C# - Code-Behind Page)

using System;

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-54 Web Service Developer's Guide for Oracle WebCenter Interaction

using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using Plumtree.Remote.PRC;
using Plumtree.Remote.PRC.Collaboration;
using Plumtree.Remote.PRC.Collaboration.Project;
using Plumtree.Remote.Portlet;

namespace WebProjectSample
{
public class ProjectSample: System.Web.UI.Page
{
//name and description for new project
public String name = "ExampleProject";
public String description = "ExampleProjectDescription";

//get the Project Manager
public IProjectManager GetProjectManager(HttpRequest req, HttpResponse res)
{
IProjectManager projectManager = null;
IPortletContext portletContext = PortletContextFactory.CreatePortletContext(req,
res);
IPortletRequest portletRequest = portletContext.GetRequest();
String loginToken = portletRequest.GetLoginToken();
if (null == loginToken)
{
res.Write("Unable to retrieve the login token. Confirm that the login token has
been checked in the Advanced Settings page of the Web Service.");
}
//get the remote session
Plumtree.Remote.PRC.IRemoteSession portalSession =
portletContext.GetRemotePortalSession();

//get a collab factory and a project manager
ICollaborationFactory collabFactory = portalSession.GetCollaborationFactory();
projectManager = collabFactory.GetProjectManager();
return projectManager;
}
}
}
.NET (VB - Project Page)

<%@ Page Language="vb" AutoEventWireup="false" Codebehind="ProjectSample.aspx.vb"
Inherits="TestProjectVB.ProjectSample"%>
<!DOCTYPE HTML PUBLIC "-'W3C'DTD HTML 4.0 Transitional'EN" >
<html>
<body>
<%
'create a project and print out the project id
name = "ExampleProject"
description = "ExampleProjectDescription"

'create the project
dim projectManager as Plumtree.Remote.PRC.Collaboration.Project.IProjectManager =
GetProjectManager(Request, Response)

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-55

dim project as Plumtree.Remote.PRC.Collaboration.Project.IProject =
projectManager.CreateProject(name, description)

'to set additional properties, you must call store() after making changes
'for example:
'project.Status = ProjectStatus.NotStarted
'project.StartDate = new Date()

'call store before asking for the id.
project.Store()
%>
<table>
<tr>
<td>
<%
Response.Write("ID of newly created project is " + Cstr(project.ID))
%>
</td>
</tr>
</table>
</body>
</html>

.NET (VB - Code-Behind Page)

Imports System
Imports System.Collections
Imports System.ComponentModel
Imports System.Data
Imports System.Drawing
Imports System.Web
Imports System.Web.SessionState
Imports System.Web.UI
Imports System.Web.UI.WebControls
Imports System.Web.UI.HtmlControls
Imports Plumtree.Remote.PRC
Imports Plumtree.Remote.PRC.Collaboration
Imports Plumtree.Remote.PRC.Collaboration.Project
Imports Plumtree.Remote.Portlet

Public Class ProjectSample
Inherits System.Web.UI.Page

'get the project manager
Public Function GetProjectManager(ByVal req As HttpRequest, ByVal res As
HttpResponse)
As IProjectManager
Dim projectManager As IProjectManager = Nothing
Dim portletContext As IPortletContext =
PortletContextFactory.CreatePortletContext(req, res)
Dim portletRequest As IPortletRequest = portletContext.GetRequest()
Dim loginToken As String = portletRequest.GetLoginToken()
If loginToken Is Nothing Then
res.Write("Unable to retrieve the login token. Confirm that the login token has
been checked in the Advanced Settings page of the Web Service.")
End If

'get the remote session
Dim portalSession As Plumtree.Remote.PRC.IRemoteSession =
portletContext.GetRemotePortalSession()

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-56 Web Service Developer's Guide for Oracle WebCenter Interaction

'get a collab factory and a project manager
Dim collabFactory As ICollaborationFactory =
portalSession.GetCollaborationFactory()
projectManager = collabFactory.GetProjectManager()

Return projectManager

End Function

End Class
The IProjectManager also allows you to remove projects. The removeProject
method takes in an IProject object and removes the associated project from the
system.

2.3.5.1.3 Editing Oracle WebCenter Collaboration Project Properties Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To query or modify Oracle WebCenter
Collaboration project metadata from a remote application, use the IProject interface
in the Oracle WebCenter Interaction Development Kit (IDK).

Each Oracle WebCenter Collaboration project has its own set of objects and properties
that are not shared with other projects. The IProject interface provides access to the
following project properties:

The IProject interface also allows you to modify user access levels. For details, see
Section 2.3.5.1.4, "Managing Oracle WebCenter Collaboration Project Roles Using
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".To edit settings
for an existing project, follow the steps below.

1. Create a session with the portal. For details, see Section 2.3.2, "Initiating a PRC
Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote
APIs".

Note: This action cannot be undone. No call to store is required.

Property Name Description API Access

ID The object ID for the current project. Read Only

Name The name of the current project. Read/Write

Description The description for the current project. Read/Write

Details The URL to the details page for the current project. Read Only

Created Date The date the current project was created (this
information might not be available).

Read Only

Last-Modified Date The date the current project was last updated (this
information might not be available).

Read Only

Owner ID The user ID of the project owner. Read Only

Access Level The permissions for the current user (edit, delete,
edit security).

Read Only

Start Date The start date for the current project. Read/Write

Status The status of the current project (not started, 25%
complete, 50% complete, 75% complete, or
completed).

Read/Write

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-57

2. Retrieve the project ID. For details, see Section 2.3.5.1.1, "Querying Existing Oracle
WebCenter Collaboration Projects Using Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".

3. Edit the properties as shown in the code below.

1. Retrieve an IProjectManager.

2. Change the settings. The simplified sample code below changes the name,
description, start date, and current status.

3. Store the settings.

Java

...

//get the project
IProjectManager projectManager = getProjectManager(request, response, out);
IProject project = projectManager.getProject(projectID);

//set the name, description, start date and status
project.setName() = "Updated Name";
project.setDescription() = "Updated description";
project.setStatus(ProjectStatus.TWENTY_FIVE_PERCENT_COMPLETED);

//you must call store to persist changes.
project.store();

...

.NET (C#)

...

//get the project
Plumtree.Remote.PRC.Collaboration.Project.IProjectManager projectManager =
GetProjectManager(Request,Response);
IProject project = GetProject(projectID);

//set project metadata
project.Name = "Updated Name";
project.Description = "Updated Description";
project.Status = ProjectStatus.TwentyFivePercentCompleted;

//you must call store to persist changes
project.Store();

...

.NET (VB)

...

'get the project
dim projectManager as Plumtree.Remote.PRC.Collaboration.Project.IProjectManager =
GetProjectManager(Request, Response)
dim project as Plumtree.Remote.PRC.Collaboration.Project.IProject =
projectManager.GetProject(-1)

'set project properties
project.Name = "Updated Name"
project.Description = "Updated Description

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-58 Web Service Developer's Guide for Oracle WebCenter Interaction

project.Status = ProjectStatus.TwentyFivePercentCompleted

'you must call store to persist changes
project.Store()

...

2.3.5.1.4 Managing Oracle WebCenter Collaboration Project Roles Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To assign users to Oracle WebCenter
Collaboration project roles from a remote application, use the IRole interface in the
Oracle WebCenter Interaction Development Kit (IDK).

The project role defines the actions that users are able to perform in a given project.
The default Collaboration roles are defined as follows:

■ Project Leaders have Admin control over project objects, which includes Read,
Write, and Edit permission for all objects, as well as the ability to set role
permissions (access levels) for each object.

■ Project Members have Write access to project objects and can participate in the
project. This role can create tasks, add documents, attach links, and check files in
and out. The access privileges for this role are configured by the Project Leader.

■ Project Guests have Read access to project objects. This role cannot create objects;
it is intended for users who simply want to monitor projects but not participate
actively. The access privileges for this role are configured by the Project Leader.

The IRole interface allows you to assign users to each project role. Each instance of
IRole applies to a specific role within a specific project. You can assign roles to
individual users, or to all the users that fulfill a specific role in a community. Once you
have defined roles, you can modify the default access levels for a project, or for an
individual object in the project (task list, task, folder, document, or discussion). For a
list of access levels for Collaboration components, see Section 2.3.5.5, "Oracle
WebCenter Collaboration Access Levels".The IProject.getRole method takes in
the role type (guest, member or leader) and returns the associated IRole object for the
project. To define roles for a project, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the project ID and retrieve the associated object.

3. Get the role to assign.

4. Add users to the role.

5. Set any specific access level restrictions.

Java

...

//get the project
IProjectManager projectManager = getProjectManager(request, response, out);
IProject project = projectManager.getProject(projectID);

//get the guest role for the project
IRole guestrole = project.getRole(RoleType.GUEST);

Note: You must call store after making any changes or they will
not be persisted.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-59

//add the guests from a community and an individual user to the role
guestrole.addCommunityMember(CommunityID, COMMUNITY_GUEST);
guestrole.addMember(UserID, USER);

//set the access level for discussions to write
guestrole.setAccessLevel(FunctionalArea.DISCUSSION, AccessLevel.WRITE);

//call store to persist the changes
guestrole.store()

...

.NET (C#)

...

//get the project
Plumtree.Remote.PRC.Collaboration.Project.IProjectManager projectManager =
GetProjectManager(Request, Response);
IProject project = GetProject(projectID);

//get the guest role for the project
IRole guestrole = project.GetRole(RoleTypes.Guest);

//add the guests from a community and an individual user to the role
guestrole.AddCommunityMember(CommunityID, CommunityGuest);
guestrole.AddMember(UserID, User);

//set the access level for discussions to write
guestrole.SetAccessLevel(FunctionalAreas.Discussion, AccessLevels.Write);

//call store to persist the changes
guestrole.Store();

...

.NET (VB)

...

//get the project
dim projectManager As Plumtree.Remote.PRC.Collaboration.Project.IProjectManager =
GetProjectManager(Request, Response)
dim project As IProject = GetProject(projectID)

//get the guest role for the project
dim guestrole As IRole = project.GetRole(RoleTypes.Guest)

//add the guests from a community and an individual user to the role
guestrole.AddCommunityMember(CommunityID, CommunityGuest)
guestrole.AddMember(UserID, User)

//set the access level for discussions to write
guestrole.SetAccessLevel(FunctionalAreas.Discussion, AccessLevels.Write)

//call store to persist the changes
guestrole.Store()

...

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-60 Web Service Developer's Guide for Oracle WebCenter Interaction

2.3.5.1.5 Managing Oracle WebCenter Collaboration Subscriptions Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To provide users with e-mail notifications
when an activity occurs in Collaboration, use a subscription. The IProjectManager
interface allows you to query current subscriptions, and subscribe and unsubscribe
users to Collaboration projects. You can also subscribe users to individual project
components.

The IProjectManager allows you to manage subscriptions for a project. To manage
subscriptions for individual project components (folders, documents, task lists and
discussions), use the associated component manager:

■ The ITaskListManager interface allows you to query current subscriptions, and
subscribe and unsubscribe users to collaboration task lists.

■ The IDocumentManager interface allows you to query current subscriptions, and
subscribe and unsubscribe users to collaboration folders and documents.

■ The IDiscussionManager interface allows you to query current subscriptions,
and subscribe and unsubscribe users to collaboration discussions.

The subscription methods within each interface are identical aside from the type of
object passed into the method as a parameter. The sample code below uses the
ITaskListManager subscription methods as an example.To subscribe a user to a
project or project component, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the project or project component ID and retrieve the associated object
manager.

3. Get the IDs of any users to be subscribed. (To retrieve the users that are currently
subscribed, use the getSubscribedUserIDs method.)

4. Add users to a role if they are not already assigned one.

5. Subscribe the users to the project or project component..

Java

...

//userID1 and userID2 are both valid int user IDs that have not been added to any
project roles
int[] validUserIDs = new int(userID1, userID2);
IRole guestRole = project.getRole(RoleType.GUEST);

//Add the two users to the GUEST role.
guestRole.addMember(userID1, MemberType.USER);
guestRole.addMember(userID2, MemberType.USER);
guestRole.store();

//Subscribe the two users to the task list.
//No store() needs to be called after the call to subscribeUsers.
tasklistManager.subscribeUsers(tasklist, validUserIDs);

...

Note: The users to be subscribed must be in at least GUEST role, and
the calling user has to have ADMIN access to the project, or else an
exception will be thrown.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-61

.NET (C#)

...

//userID1 and userID2 are both valid int user IDs that have not been added to any
project roles
int[] validUserIDs = new int(userID1, userID2);
IRole guestRole = project.GetRole(RoleTypes.Guest);

//Add the two users to the GUEST role
guestRole.AddMember(userID1, MemberTypes.User);
guestRole.AddMember(userID2, MemberTypes.User);
guestRole.Store();

//Subscribe the two users to the project, set notifyForAllCreation setting to
true,
//so the two subscribed users will get notified upon all new object creations in
this project.
//No Store needs to be called on the project after the call to SubscribeUsers.
projectManager.SubscribeUsers(project, validUserIDs, true);
...

2.3.5.2 Remote Oracle WebCenter Collaboration Discussion Operations
Oracle WebCenter Collaboration discussions provide a virtual forum where project
users hold online conversations on subjects of interest. The PRC Collaboration API in
the IDK (com.plumtree.remote.prc.collaboration.discussion) allows you to manage
discussions remotely and embed discussion functionality in your remote applications.

The PRC Collaboration API provides access to the following discussion functionality:

■ Collaboration Workspace: Query, create, approve, and delete discussions and
messages.

■ User Assignment: Add users to discussions, and assign moderators who approve
messages before they are published.

■ Subscriptions: Provide users with e-mail notifications when a new subject of
conversation is started or when a new message is added to an existing subject.

2.3.5.2.1 Querying Existing Oracle WebCenter Collaboration Discussions Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To query Oracle WebCenter
Collaboration discussions and messages from a remote application, use the
IDiscussionManager interface in the Oracle WebCenter Interaction Development
Kit (IDK).

The PRC Collaboration API allows you to query existing collaboration discussions and
messages. Results can be filtered in a variety of ways.

■ To query for existing discussions in a project, use
IDiscussionManager.queryDiscussions using the project instance.

■ To query for existing messages in a discussion, use
IDiscussionManager.queryDiscussionMessages using the discussion
instance.

■ To query for existing messages in a project, use
IDiscussionManager.queryDiscussionMessages using the project
instance.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-62 Web Service Developer's Guide for Oracle WebCenter Interaction

For any of these queries, the IDiscussionFilter/IDiscussionMessageFilter
interfaces allow you to set the following search options:

To query for discussions and messages, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the project or discussion ID and retrieve the associated object.

3. Create a new method to query for discussions or messages.

4. Get the Discussion Manager.

5. Create a query filter and execute the query as shown in the code samples below.

Java

...

//perform the search
IDiscussionManager discussionManager = getDiscussionManager(request, response);
IDiscussionMessageFilter discussionMessageFilter =
discussionManager.createDiscussionMessageFilter();

//disable security checking on the returned objects against the user who performs
this query,
//so that all objects will be returned
messageFilter.setRestoreSecurity(false);

//hard-code the max results to 10; setting to 0 will return all results
discussionMessageFilter.setMaximumResults(10);

//search for ALL messages; other options include searching for APPROVED or
UNAPPROVED messages
messageFilter.setMessageStatusType(DiscussionMessageStatusFilterType.ALL);

//optionally, set the query orders
//example below sorts returned messages by CREATED date in descending order
DiscussionMessageQueryOrder messageQueryOrder = new
DiscussionMessageQueryOrder(DiscussionMessageAttribute.CREATED, false);
messageFilter.setQueryOrders(new DiscussionMessageQueryOrder(messageQueryOrder));

Search Option Description

Maximum Results Sets the maximum number of results returned. The default is to return all
results.

Order-By Fields
and Sort Order

Messages only. Sets the fields to be displayed with an order-by
functionality, and sets the sort order (ascending or descending). The
following fields support the order-by option: created, most recent, last
modified, project, replies, and owner.

Security Enables or disables the security filter that applies security to the result set
with respect to the user that submitted the query. If the filter is enabled,
the query result will only include objects for which the querying user has
appropriate permission. The default is false (disabled); all objects
matching the query criteria will be returned.

Result Filter:
Status

Messages only. Limits queries by status (approved or unapproved).

Result Filter:
Moderator Type

Messages only. Limits queries to those discussions for which the current
user is a moderator, or extends the search to all discussions.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-63

//execute the search and print out the results
IDiscussionMessage[] discussionMessages =
discussionManager.queryDiscussionMessages(project,
discussionMessageFilter);
if (discussionMessages.length > 0)
{
%>
<tr>
<td colspan="2">
Search Results
</td>
</tr>
<tr>
<td>
Discussion Message Name- Link to Discussion Message
</td>
<td>
Discussion ID
</td>
</tr>
<%
for (int i = 0; i < discussionMessages.length; i++)
{
IDiscussionMessage discussionMessage = discussionMessages[i];
int id = discussionMessage.getID();
name = discussionMessage.getSubject();
String url = discussionMessage.getDetailsURL();
%>
<tr>
<td>
<%out.print("" + name + "");%>
</td>
<td>
<%out.print(id);%>
</td>
</tr>

...

.NET (C#)

...

//get the project ID out of session- this should never be null as it is added in
the page load event
Plumtree.Remote.PRC.Collaboration.Project.IProject project =
(Plumtree.Remote.PRC.Collaboration.Project.IProject)
Session[SESSION_PROJECT_KEY];

//perform the search
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionManager discussionManager
= GetDiscussionManager(Request, Response);
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessageFilter
discussionMessageFilter = discussionManager.CreateDiscussionMessageFilter();

//disable security checking on the returned objects against the user who performs
this query,
//so that all objects will be returned
messageFilter.RestoreSecurity = false;

//hard-code the max results to 10

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-64 Web Service Developer's Guide for Oracle WebCenter Interaction

discussionMessageFilter.MaximumResults = 10;

//search for ALL messages; other options include searching for Approved or
Unapproved messages
messageFilter.MessageStatusType = DiscussionMessageStatusFilterTypes.All;

//optionally, set the query orders
//example below sorts returned messages by CREATED date in descending order
DiscussionMessageQueryOrder messageQueryOrder = new
DiscussionMessageQueryOrder(DiscussionMessageAttributes.Created, false);
messageFilter.setQueryOrders(new DiscussionMessageQueryOrder(messageQueryOrder));

//execute the search and print out the results
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage[]
discussionMessages
= discussionManager.QueryDiscussionMessages(project, discussionMessageFilter);
if (discussionMessages.Length > 0)
{
%>
<tr>
<td colspan="2">
Search Results
</td>
</tr>
<tr>
<td>
Discussion Message Name- Link to Discussion Message
</td>
<td>
Discussion ID
</td>
</tr>
<%
for (int i = 0; i < discussionMessages.Length; i++)
{
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage discussionMessage
= discussionMessages[i];
int id = discussionMessage.ID;
String name = discussionMessage.Subject;
String url = discussionMessage.DetailsURL;
%>
<tr>
<td>
<%Response.Write("" + name + "");%>
</td>
<td>
<%Response.Write(id);%>
</td>
</tr>
<%
}
}
else
{
Response.Write("No discussion messages found.");
}
...

.NET (VB)

...

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-65

'get the project ID out of session- this should never be Nothing as it is added in
the page load event
dim project as Plumtree.Remote.PRC.Collaboration.Project.IProject =
CType(Session.Item(SESSION_PROJECT_
KEY),Plumtree.Remote.PRC.Collaboration.Project.IProject)

'perform the search
dim discussionManager as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionManager =
GetDiscussionManager(Request, Response)
dim discussionMessageFilter as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessageFilter =
discussionManager.CreateDiscussionMessageFilter()

//disable security checking on the returned objects against the user who performs
this query,
//so that all objects will be returned
messageFilter.RestoreSecurity = false

'hard-code the max results to 10; setting to 0 will return all messages
discussionMessageFilter.MaximumResults = 10

//search for ALL messages; other options include searching for Approved, or
Unapproved messages
messageFilter.MessageStatusType = DiscussionMessageStatusFilterTypes.All

'optionally, set the query orders
'example below sorts returned messages by CREATED date in descending order
DiscussionMessageQueryOrder messageQueryOrder = new
DiscussionMessageQueryOrder(DiscussionMessageAttributes.Created, false)
messageFilter.setQueryOrders(new DiscussionMessageQueryOrder(messageQueryOrder))

'execute the search and print out the results
dim discussionMessages() as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage
= discussionManager.QueryDiscussionMessages(project, discussionMessageFilter)
if discussionMessages.Length > 0 then
%>
<tr>
<td colspan="2">
Search Results
</td>
</tr>
<tr>
<td>
Discussion Message Name- Link to Discussion Message
</td>
<td>
Discussion Message ID
</td>
</tr>
<%
dim i as Integer
for i = 0 to discussionMessages.Length -1
dim discussionMessage as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage =
discussionMessages(i)
dim id as Integer = discussionMessage.ID
dim name as String = discussionMessage.Subject

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-66 Web Service Developer's Guide for Oracle WebCenter Interaction

dim url as String = discussionMessage.DetailsURL
%>
<tr>
<td>
<%Response.Write("" & name & "") %>
</td>
<td>
<%Response.Write(CStr(id)) %>
</td>
</tr>
<%
next
else
Response.Write("No discussion messages found.")
end if
...

2.3.5.2.2 Creating Oracle WebCenter Collaboration Discussions Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To create Oracle WebCenter Collaboration
discussions from a remote application, use the IDiscussionManager interface in the
Oracle WebCenter Interaction Development Kit (IDK).

The IDiscussionManager interface allows you to create new discussions in an
existing project. To create a new discussion, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Retrieve the project ID (a source project must exist before you can create any
Collaboration component objects). For details, see Section 2.3.5.1.1, "Querying
Existing Oracle WebCenter Collaboration Projects Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs".

3. Get the Discussion Manager and create a new discussion as shown in the code
samples below.

Java

...

//create the discussion
IDiscussionManager discussionManager = getDiscussionManager(request, response);
IDiscussion discussion =
discussionManager.createDiscussion(project, name, description);

//call store before asking for the ID
discussion.store();
String url = discussion.getDetailsURL();
int id = discussion.getID();
String detailsUrl = "DiscussionMessage.jsp?" + SESSION_DISCUSSION_KEY + "=" + id;

...

.NET (C#)

...

Note: You must call store after creating a discussion, or it will not
be persisted.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-67

//get the project ID out of session- this should never be null as it is added in
the page load event
Plumtree.Remote.PRC.Collaboration.Project.IProject project =
(Plumtree.Remote.PRC.Collaboration.Project.IProject)
Session[SESSION_PROJECT_KEY];

//create the discussion
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionManager discussionManager
= GetDiscussionManager(Request, Response);
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussion discussion =
discussionManager.CreateDiscussion(project, name, description);

//call store before asking for the id.
discussion.Store();
String url = discussion.DetailsURL;
int id = discussion.ID;
String detailsUrl = "DiscussionMessage.aspx?" + SESSION_DISCUSSION_KEY + "=" + id;

...

.NET (VB)

...

'get the project ID out of session- this should never be Nothing as it is added in
the page load event
dim project as Plumtree.Remote.PRC.Collaboration.Project.IProject =
CType(Session.Item(SESSION_PROJECT_
KEY),Plumtree.Remote.PRC.Collaboration.Project.IProject)

'create the discussion
dim discussionManager as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionManager =
GetDiscussionManager(Request, Response)
dim discussion as Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussion =
discussionManager.CreateDiscussion(proje ct, name, description)

'call store before asking for the id.
discussion.Store()
dim url as String = discussion.DetailsURL
dim id as Integer = discussion.ID
dim detailsUrl as String = "DiscussionMessage.aspx?" & SESSION_DISCUSSION_KEY &
"=" & CStr(id)

...

2.3.5.2.3 Creating Oracle WebCenter Collaboration Discussion Messages Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To create Oracle WebCenter
Collaboration discussion messages and reply messages from a remote application, use
the IDiscussion interface in the Oracle WebCenter Interaction Development Kit
(IDK).

Messages and replies are structured in a tree hierarchy. Each message and reply in the
hierarchy is represented by an instance of IDiscussionMessage.

■ To create a new message thread in a discussion, use the
IDiscussion.createMessage method to create a new IDiscussionMessage
object.

■ To create a reply to a message, use the associated
IDiscussionMessage.createDiscussionReplyMessage method. This

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-68 Web Service Developer's Guide for Oracle WebCenter Interaction

creates a child message (reply) that is also represented by an instance of
IDiscussionMessage. You can create a reply at any level in the hierarchy (the
root message, the latest message, or a specific message in the thread).

These methods use the same syntax, and take in the subject and body for the message.
You can also set the description and approval status when you create a message. To
create a new discussion message, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Retrieve the discussion ID and retrieve the discussion instance.

3. Create a new discussion message as shown in the code samples below.

Java

...

//create the discussion message
IDiscussionMessage discussionMessage = discussion.createDiscussionMessage(subject,
body);

//call store before asking for the id.
discussionMessage.store();
int id = discussionMessage.getID();
String url = discussionMessage.getDetailsURL();

%>
<tr>
<td>
<%
out.println("Link to collab message " + id + "");
%>
</td>
</tr>

...

.NET (C#)

...

//create the discussion message
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage discussionMessage
= discussion.CreateDiscussionMessage(subject, body);

//call store before asking for the id.
discussionMessage.Store();
int id = discussionMessage.ID;
String url = discussionMessage.DetailsURL;

%>
<tr>
<td colspan="6">
<%
Response.Write("Link to collab message " + id + "");

Note: You must call store after creating a discussion message, or it
will not be persisted.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-69

%>
</td>
</tr>
...

.NET (VB)

...

'create the discussion message
dim discussionMessage as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage =
discussion.CreateDiscussionMessage(subject, body)

'call store before asking for the id.
discussionMessage.Store()
dim id as Integer = discussionMessage.ID
dim url as String = discussionMessage.DetailsURL

%>
<tr>
<td colspan="6">
<%
Response.Write("Link to collab message " & Cstr(id) &
"")
%>
</td>
</tr>
...

2.3.5.2.4 Editing Oracle WebCenter Collaboration Discussion Properties Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To query and modify Oracle
WebCenter Collaboration discussion and message properties from a remote
application, use the IDiscussion and IMessage interfaces in the Oracle WebCenter
Interaction Development Kit (IDK).

The IDiscussion and IMessage interfaces allow you to change the subject,
description, and body of the message before approving it. These interfaces provide
access to the following metadata:

Property Name Description API Access

ID The object ID for the current discussion or message. Read Only

Name The name of the current discussion or message. Read/Write

Subject Messages only. The subject of the current message Read/Write

Description The description for the current discussion or message. Read/Write

Details The URL to the details page for the current discussion or
message.

Read Only

Created Date The date the current discussion or message.was created
(this information might not be available).

Read Only

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-70 Web Service Developer's Guide for Oracle WebCenter Interaction

To modify discussion or message properties, follow the steps below.

1. Initiate a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to
Use Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the Discussion Manager.

3. Get the discussion or message and modify properties as shown in the code
samples below.

Java

...

//get the discussion message
IDiscussionManager discussionManager = getDiscussionManager(request, response);
IDiscussion discussionMessage = discussionManager.getDiscussionMessage(messageID);

//update properties
discussionMessage.setName() = "Updated Name";
discussionMessage.setDescription() = "Updated Description";

Read Only Last-Modified Date The date the
current
discussion or
message.was
last updated
(this
information
might not be
available).

Approval Status Messages only. The approval status of the message. Read/Write

Owner ID The user ID of the message owner. Read Only

Moderators Discussions only. The user IDs of the dicussion
moderators (if any).

Read/Write

Access Level The permissions for the defined roles on the current
discussion or message (edit, delete, edit security). You
can only change permissions for the folder if the default
project security is set to false.

Read/Write

Permissions The permissions for the current user on the current
discussion or message (post, attach links, create, edit,
edit security, delete).

Read Only

Discussion Messages only. The discussion that contains the current
message.

Read Only

Project The parent project that contains the current discussion
or message.

Read Only

Default Project
Security

Whether or not default project security should be
applied to the discussion or message. If default project
security is enabled, you cannot change the security for
the folder.

Read/Write

Note: You must call store after making any changes or they will
not be persisted.

Property Name Description API Access

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-71

//approve the message
discussionMessage.setApproved();

//call store to persist your changes
discussionMessage.store();

...

.NET (C#)

...

//get the discussion message
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionManager discussionManager
= GetDiscussionManager(Request, Response);
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage discussionMessage
= discussionManager.GetDiscussionMessage(messageID);

//update properties
discussionMessage.Name = "Updated Name";
discussionMessage.Description = "Updated Description";

//approve the message
discussionMessage.Approved = true;

//call store to persist your changes
discussionMessage.Store();

...

.NET (VB)

...

'get the discussion message
dim discussionManager as
Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionManager =
GetDiscussionManager(Request, Response)
dim discussion as Plumtree.Remote.PRC.Collaboration.Discussion.IDiscussionMessage
= discussionManager.GetDiscussionMessage(messageID)

'update properties
discussionMessage.Name = "Updated Name"
discussionMessage.Description = "Updated Description"

'approve the message
discussionMessage.Approved = true

'call store to persist your changes
discussionMessage.Store()

...

2.3.5.3 Remote Oracle WebCenter Collaboration Document and Folder Operations
Documents are any kind of file uploaded to a Oracle WebCenter Collaboration project,
including spreadsheets, presentations, images, and PDF files. Documents are
organized in a standard folder taxonomy. The PRC Collaboration API in the Oracle
WebCenter Interaction Development Kit (IDK) provides full access to documents and
folders, allowing you to query, create, or modify these objects.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-72 Web Service Developer's Guide for Oracle WebCenter Interaction

The PRC Collaboration API provides access to the following document functionality:

■ Collaboration Workspace: Query, create, copy, modify, and delete documents
and folders in Collaboration projects.

■ Folder Organization: Create new folders and subfolders, copy existing folders and
documents, and insert new documents.

■ Version Control: Check in and check out documents, and query version
information. The system retains a history of all versions.

■ Subscriptions: Provide users with e-mail notifications when an activity occurs,
such as deleting or modifying a document.

2.3.5.3.1 Querying Oracle WebCenter Collaboration Folders and Documents Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To query existing Oracle
WebCenter Collaboration documents and folders from a remote application, use the
IDocumentManager interface in the Oracle WebCenter Interaction Development Kit
(IDK).

The PRC Collaboration API allows you to query existing folders or documents in a
given project or folder. Results can be filtered in a variety of ways.

■ To query for existing folders in a parent folder, use
IDocumentManager.queryFolders using the parent folder instance. To return
all folders in a project, get the top level document folder for the project using
getTopLevelFolder, then query the top level document folder for all the
document folders it contains.

■ To query for existing documents in a folder, use
IDocumentManager.queryDocuments using the folder instance.

■ To query for existing documents in a project, use
IDocumentManager.queryDocuments using the project instance.

For any of these queries, the IDocumentFolderFilter/IDocumentFilter
interfaces allow you to set the following search options:

To query for folders or documents in a folder or project, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the Document Manager.

Search Option Description

Maximum Results Sets the maximum number of results returned. The default is to return all
results.

Order-By Fields
and Sort Order

Sets the fields to be displayed with an order-by functionality (name or
last modified date), and sets the sort order (ascending or descending).
The following fields support the order-by option for documents: name,
author, project, parent folder, content type, size (bytes), timestamp, last
modified, last check in user, check out user.

Security Enables or disables the security filter that applies security to the result set
with respect to the user that submitted the query. If the filter is enabled,
the query result will only include objects for which the querying user has
appropriate permission. The default is false (disabled); all objects
matching the query criteria will be returned.

Result Filter:
Checkin Status

Documents only. Limits queries by document status (checked in or
checked out).

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-73

3. Get the ID of the parent folder or project. To query all the folders in a project, get
the top level document folder for the project using getTopLevelFolder.

4. Create a query filter and execute the query as shown in the code samples below.

The examples below query a project for all checked-out documents and order results
by size and then last-modified date.

Java

...
//create a query filter
IDocumentFilter filter = manager.createDocumentFilter();

//set to only search for checked-out documents
filter.filterType = DocumentFilterTypes.checkedOutByCurrentUser;

//order results by size, then last modified date
DocumentQueryOrder sizeOrder = new
DocumentQueryOrder(DocumentFolderAttribute.NUMBYTES, true);
DocumentQueryOrder lastModifiedOrder = new
DocumentQueryOrder(DocumentFolderAttribute.LASTMODIFIED, true);
DocumentQueryOrder[] orders = new DocumentQueryOrder(sizeOrder,
lastModifiedOrder);
filter.setQueryOrders(orders);

//perform the query
IDocument[] foundDocuments = manager.queryDocuments(project, filter);
...

.NET (C#)

...
//create a query filter
IDocumentFilter filter = documentManager.CreateDocumentFilter();

//set to only search for checked-out documents
filter.FilterType = DocumentFilterTypes.CheckedOutByCurrentUser;

//order results by size, then last modified date
DocumentQueryOrder sizeOrder = new DocumentQueryOrder(DocumentAttributes.NumBytes,
true);
DocumentQueryOrder lastModifiedOrder = new
DocumentQueryOrder(DocumentAttributes.LastModified, true);
DocumentQueryOrder[] orders = new DocumentQueryOrder(sizeOrder,
lastModifiedOrder);
filter.QueryOrders = orders;

//perform query
IDocument[] foundDocuments = documentManager.QueryDocuments(project, filter);
...

.NET (VB)

...
'create a query filter
dim filter As IDocumentFilter = documentManager.CreateDocumentFilter()

'set to only search for checked-out documents
filter.FilterType = DocumentFilterTypes.CheckedOutByCurrentUser;

'order results by size, then last modified date

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-74 Web Service Developer's Guide for Oracle WebCenter Interaction

dim sizeOrder As DocumentQueryOrder = new
DocumentQueryOrder(DocumentAttributes.NumBytes, true)
dim lastModifiedOrder As DocumentQueryOrder = new
DocumentQueryOrder(DocumentAttributes.LastModified, true)
dim orders As DocumentQueryOrder[] = new DocumentQueryOrder(sizeOrder,
lastModifiedOrder)
filter.QueryOrders = orders

'perform query
dim foundDocuments As IDocument[] = documentManager.QueryDocuments(project,
filter)
...

2.3.5.3.2 Managing Oracle WebCenter Collaboration Documents Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To check in and check out Oracle
WebCenter Collaboration documents from a remote application, use the
IDocumentManager interface in the Oracle WebCenter Interaction Development Kit
(IDK).

Only one person can check out a document at a time. To check out a document, the
current user must have at least WRITE access to the document.Checking in a
document saves a new version of the document, increments the current version
number, and makes a new entry in the document's history. When you check in a
document, you can set the following properties:

To check out or check in documents, follow the steps below.

1. Initiate a PRC session. This example retrieves a login token using the
IPortletContext; you can also use IRemoteSession. (For details, see
Section 2.3.2, "Initiating a PRC Session to Use Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".)

2. Get the Document Manager.

3. Get the document ID and retrieve the document.

■ To check out the document, pass in the document instance.

■ To check in the document, pass in the document instance, the check in
comment, the input stream, language (optional) and whether or not the file
should be checked out again as shown in the code samples below.

Java

...
IRemoteSession remoteSession = portletContext.getRemotePortalSession();
IDocumentManager documentManager =
remoteSession.getCollaborationFactory().getDocumentManager();

Property Description

Check in
comment

Required. A string that will be added as the first check in comment for the
new document.

Input stream Required. An InputStream from which the contents of the new document
can be read.

Language The ISO 639-1 language code for the content in the document (for example,
en for english). If null, the language is set to that of the current user.

Keep checked
out

If set to true, the document will be checked in and automatically checked
out again. The default is false.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-75

//get the document
IDocument checkedOutDocument = documentManager.getDocument(documentID);

//Open an inputstream for the document contents - this can be any InputStream
InputStream fileInputStream = new FileInputStream("c:\\myNewDocument.doc");

//Check in the new version
documentManager.checkInDocument(checkedOutDocument, "updated version of the
document", fileInputStream, "en", false);
...

.NET (C#)

...
remoteSession = portletContext.GetRemotePortalSession();
documentManager = remoteSession.GetCollaborationFactory().GetDocumentManager();

//get the document
IDocument checkedOutDocument = documentManager.GetDocument(documentID);

//open an inputstream for the document contents - this can be any readable Stream
Stream fileInputStream = File.OpenRead("c:\\MyNewDocument.doc");

//check in the new version
documentManager.CheckInDocument(checkedOutDocument, "updated version of the
document", fileInputStream, "en", false);
...

.NET (VB)

...
dim documentManager As IDocumentManager
dim remoteSession As Plumtree.Remote.PRC.IRemoteSession
remoteSession = portletContext.GetRemotePortalSession()
documentManager = remoteSession.GetCollaborationFactory().GetDocumentManager()

'get the document
IDocument checkedOutDocument = documentManager.GetDocument(documentID)

'Open an inputstream for the document contents - this can be any readable Stream
dim fileInputStream As Stream = File.OpenRead("c:\\MyNewDocument.doc")

'Check in the new version
documentManager.CheckInDocument(checkedOutDocument, "updated version of the
document", fileInputStream, "en", false)
...

2.3.5.3.3 Creating Oracle WebCenter Collaboration Folders and Documents Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To create new Oracle WebCenter
Collaboration folders and documents from a remote application, use the
IDocumentManager interface in the Oracle WebCenter Interaction Development Kit
(IDK).

The IDocumentManager interface allows you to create new folders, subfolders and
documents. The IDocumentManager interface also allows you to copy existing
documents and folders to target folders in any project.

■ To create a new folder, create it and insert it into an existing folder. The
insertNewFolder method takes in the target parent folder, the new folder, and

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-76 Web Service Developer's Guide for Oracle WebCenter Interaction

an optional third parameter to set the new folder to inherit security from the
parent folder.

■ To create a new document, create it and insert it into an existing folder. The
parameters in the insertNewDocument method allow you to set the following
properties:

■ To copy a folder or document, use the IDocumentManager.copyToFolder
method and pass in the source folder, target folder, and document(s) or folder(s)
to copy.

■ To create a new folder or document, follow the steps below.

1. Create a PRC session. This example retrieves a login token using the
IPortletContext; you can also use IRemoteSession. (For details, see
Section 2.3.2, "Initiating a PRC Session to Use Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".)

2. Get the IDocumentManager.

3. Get the ID of the parent folder. To insert a folder or document at the root level, get
the top level document folder for the project using getTopLevelFolder.

4. Create the folder or document and insert it in the parent folder as shown in the
code samples below.

These examples create a new folder in the top level folder and a new document in the
new folder.

Java

...
IRemoteSession remoteSession = portletContext.getRemotePortalSession();
IDocumentManager documentManager =
remoteSession.getCollaborationFactory().getDocumentManager();

//get top level folder in project to create new root folder
topLevelFolder = documentManager.getTopLevelFolder(containingProject);

Property Description

Check in
comment

Required. A string that will be added as the first check in comment for the
new document.

Input stream Required. An InputStream from which the contents of the new document
can be read.

Language The ISO 639-1 language code for the content in the document (for example,
"en" for english). If null, the language is set to that of the current user.

Inherit security If set to true, the new document will inherit security from the parent folder.

Note: If there is already a document or subfolder in the parent folder
with the same name as a supplied document, the name of the newly
inserted document will be changed. For example, if a document is
submitted with a name of report.doc and a file with this name already
exists, the name of the new file will be changed to report_1.doc (or
report_2.doc if report_1.doc also already exists). You can check the
name of the returned IDocument to see if it differs from the name in
the document parameter.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-77

//create a new folder
newFolder = documentManager.createNewFolder("Example Name", "Example
Description");

//insert the folder, set to inherit security from the top level folder
IDocumentFolder storedFolder = documentManager.insertNewFolder(topLevelFolder,
newFolder, true);

//create the document
IDocument newDocument = documentManager.createNewDocument("Example Document Name",
"Example Document Description");

//set additional properties before inserting the document or they will not be
persisted
newDocument.setAuthor("joe bloggs");
newDocument.setContentType("text/vnd.ms-word");

//open an inputstream for the document contents
InputStream fileInputStream = new FileInputStream("c:\\report.doc");

//insert the document, inheriting the containing folder's security
documentManager.insertNewDocument(storedFolder, newDocument, "initial check-in",
fileInputStream, "en", true);
...

.NET (C#)

...
remoteSession = portletContext.GetRemotePortalSession();
documentManager = remoteSession.GetCollaborationFactory().GetDocumentManager();

//get the top level folder for the project to create a root folder
IDocumentFolder rootFolder = documentManager.GetTopLevelFolder(project);

//create a new folder
IDocumentFolder newFolder = documentManager.CreateDocumentFolder("Example Name",
"Example Description");

//insert the new folder into the top level folder, set to inherit security
IDocumentFolder storedFolder = documentManager.InsertNewFolder(topLevelFolder,
newFolder,true);

//create the document
IDocument newDocument = documentManager.CreateNewDocument("Example Document Name",
"Example Document Description");

//set additional properties before inserting the document or they will not be
persisted
newDocument.Author = "joe bloggs";
newDocument.ContentType = "text/vnd.ms-word";

//open a Stream for the document contents
Stream fileInputStream = new FileStream("c:\\report.doc");

//insert the document, set to inherit security from the parent folder
documentManager.InsertNewDocument(storedFolder, newDocument, "initial check-in",
fileInputStream, "en", true);
...

.NET (VB)

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-78 Web Service Developer's Guide for Oracle WebCenter Interaction

...
dim documentManager As IDocumentManager
dim remoteSession As Plumtree.Remote.PRC.IRemoteSession
remoteSession = portletContext.GetRemotePortalSession()
documentManager = remoteSession.GetCollaborationFactory().GetDocumentManager()

'get the top level folder for the project to create a root folder
dim rootFolder As IDocumentFolder = documentManager.GetTopLevelFolder(project)

'create the new folder
dim newFolder As IDocumentFolder = documentManager.CreateDocumentFolder("Example
Name", "Example Description")

'Insert the new folder into the top level folder, set to inherit security
dim storedFolder As IDocumentFolder =
documentManager.InsertNewFolder(topLevelFolder, newFolder, true)

'create the document
dim newDocument As IDocument = documentManager.CreateNewDocument("Example Document
Name", "Example Document Description")

'set additional properties before inserting the document or they will not be
persisted
newDocument.Author = "joe bloggs"
newDocument.ContentType = "text/vnd.ms-word"

'open a Stream for the document contents
dim fileInputStream as Stream = new FileStream("c:\\report.doc")

'insert the document, set to inherit security from the parent folder
documentManager.InsertNewDocument(storedFolder, newDocument, "initial check-in",
fileInputStream, "en", true)
...

2.3.5.3.4 Editing Oracle WebCenter Collaboration Folder and Document Properties Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To query and modify Oracle
WebCenter Collaboration folder and document properties from a remote application,
use the IDocumentFolder and IDocument interfaces in the Oracle WebCenter
Interaction Development Kit (IDK).

The IDocumentFolder and IDocument interfaces allow you to update metadata
and manipulate security settings. These interfaces provide access to the following
metadata:

Property Name Description API Access

ID The object ID for the current folder or document. Read Only

Read/Write Name The name of the
current folder or
document.

Description The description for the current folder or document. Read/Write

Details The URL to the details page for the current folder or
document.

Read Only

Content Type Documents only. The Content Type of the current
document.

Read/Write

Content URL The URL at which the document content can be
downloaded.

Read Only

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-79

To modify folder or document properties, follow the steps below.

1. Initiate a PRC session. This example retrieves a login token using the
IPortletContext; you can also use IRemoteSession. (For details, see
Section 2.3.2, "Initiating a PRC Session to Use Oracle WebCenter Interaction
Development Kit (IDK) Remote APIs".)

2. Get the Document Manager.

3. Get the folder or document and modify properties as shown in the code samples
below.

Java

...

Path The path to the document (as a string). Read Only

Author Documents only. The user ID of the author of the current
document.

Read Only

Created Date The date the current folder or document was created
(this information might not be available).

Read Only

Read Only Last-Modified Date The date the
current folder or
document was
last updated
(this
information
might not be
available).

Checked-Out
Date

The date the document was last checked out. (Returns
null if the document is not checked out.)

Read Only

Owner The user ID of the folder or document owner. Read Only

Access Level The permissions for the defined roles on the current
folder or document (edit, delete, edit security). You can
only change permissions for the folder if the default
project security is set to false.

Read/Write

Permissions Documents only. The permissions for the current user
on the current document (check out, attach links, copy,
edit, edit security, delete).

Read Only

Parent Folder The parent folder that contains the current folder or
document.

Read Only

Read Only Project The parent
project that
contains the
current folder or
document.

Default Project
Security

Whether or not default project security should be
applied to the folder or document. If default project
security is enabled, you cannot change the security for
the folder.

Read/Write

Note: You must call store after making any changes or they will not
be persisted.

Property Name Description API Access

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-80 Web Service Developer's Guide for Oracle WebCenter Interaction

IRemoteSession remoteSession = portletContext.getRemotePortalSession();
IDocumentManager documentManager =
remoteSession.getCollaborationFactory().getDocumentManager();

//get the document
IDocument document = documentManager.getDocument(documentID);

//set properties
document.setName() = "Updated Name";
document.setDescription() = "Updated Description ";

//update security
document.setAccessLevel(RoleType.MEMBER, AccessLevel.WRITE);

//call store to persist your changes
document.store();
...

.NET (C#)

...
remoteSession = portletContext.GetRemotePortalSession();
documentManager = remoteSession.GetCollaborationFactory().GetDocumentManager();

//get the document
IDocument document = documentManager.GetDocument(documentID);

//set properties
document.Name = "Updated Name";
document.Description = "Updated Description";

//update security
document.SetAccessLevel(RoleTypes.Member, AccessLevels.Write);

//call store to persist your changes
document.Store();
...

.NET (VB)

...
dim documentManager As IDocumentManager
dim remoteSession As Plumtree.Remote.PRC.IRemoteSession
remoteSession = portletContext.GetRemotePortalSession()
documentManager = remoteSession.GetCollaborationFactory().GetDocumentManager()

'get the document
dim document As IDocument = documentManager.GetDocument(documentID)

'set properties
document.Name = "Updated Name"
document.Description = "Updated Description"

'update security
document.SetAccessLevel(RoleTypes.Member, AccessLevels.Write)

//call store to persist your changes
document.Store()
...

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-81

2.3.5.4 Remote Oracle WebCenter Collaboration Task Operations
Oracle WebCenter Collaboration tasks can be used to track workflow and process in a
wide range of applications. Using the PRC Collaboration API in the Oracle WebCenter
Interaction Development Kit (IDK), you can query, create, and modify tasks and task
lists, as well as manage workflow and task dependencies.

Oracle WebCenter Collaboration tasks define work that needs to be done, who will do
it, when it should be completed, and how it relates to other tasks. Individual tasks can
contain up to three levels of subtasks, and you can set dependencies between tasks in
the same project. Task lists serve as structured to-do lists of tasks to be completed for a
project or a phase of a project. Security for tasks is implemented through the
associated task list.

The PRC Collaboration API provides access to the following task functionality:

■ Collaboration Workspace: Query, create, copy, modify, and delete task lists, tasks
and subtasks.

■ Workflow: Add subtasks and task dependencies, assign users, and track task
status and risk.

■ Subscriptions: Provide users with e-mail notifications when an event occurs, such
as when new task list is created or a task is assigned.

2.3.5.4.1 Querying Oracle WebCenter Collaboration Tasks and Task Lists Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To query Oracle WebCenter
Collaboration task lists, tasks and subtasks from a remote application, use the
ITaskListManager interface in the Oracle WebCenter Interaction Development Kit
(IDK).

The PRC Collaboration API allows you to query existing collaboration tasks and task
lists. Results can be filtered in a variety of ways.

■ To query for task lists in a given project, use
ITaskListManager.queryTaskLists using the project instance.

■ To query for tasks in a given project, use ITaskListManager.queryTasks
using the project instance.

■ To query for tasks in a given task list, use ITaskListManager.queryTasks
using the task list instance.

For any of these queries, the ITaskListFilter/ITaskFilter interfaces allow you
to set the following search options:

Search Option Description

Maximum Results Sets the maximum number of results returned. The default is to return all
results.

Order-By Fields
and Sort Order

Sets the fields to be displayed with an order-by functionality, and sets the
sort order (ascending or descending). The following fields support the
order-by option: name, start date, end date, status, assigned to (tasks and
subtasks only) and order (location of the task or subtask in the hierarchy -
tasks and subtasks only).

Security Enables or disables the security filter that applies security to the result set
with respect to the user that submitted the query. If the filter is enabled,
the query result will only include objects for which the querying user has
appropriate permission. The default is false (disabled); all objects
matching the query criteria will be returned.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-82 Web Service Developer's Guide for Oracle WebCenter Interaction

To query for task lists, tasks and subtasks, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the project or task list ID and retrieve the associated object.

3. Create a new method to query for task lists or tasks.

4. Get the Task List Manager.

5. Create a query filter as shown in the code samples below.

6. Execute the query.

The following examples query for task lists in a project. To create a query filter for
tasks, replace ITaskListFilter with ITaskFilter.

Java

...
ITaskListFilter taskListFilter = tasklistManager.createTaskListFilter();

//set the query to search for all task lists
//options can be set to search for task lists that contain only pending tasks,
//completed tasks, or overdue tasks
taskListFilter.setCompletionType(TaskListCompletionFilterType.ALL);

//limit the return results to be 10
taskListFilter.setMaximumResults(10);

//disable security checking against the user who performs the query,
//so that all objects will be returned
taskListFilter.setRestoreSecurity(false);

//use TaskListQueryOrder to sort the query result by NAME in ascending order
TaskListQueryOrder taskListQueryOrder = new
TaskListQueryOrder(TaskListAttribute.NAME, true);
taskListFilter.setQueryOrders(new TaskListQueryOrder(taskListQueryOrder));

//an array of ITaskList objects are returned from queryTaskLists();
// if no result is retrieved, a zero-length array will be returned
ITaskList[] retrievedTaskLists = tasklistManager.queryTaskLists(project,
taskListFilter);
...
.NET (C#)

...
ITaskListFilter taskListFilter = tasklistManager.CreateTaskListFilter();

//set the query to search for all task list
//options can be set to search for task lists that contain only pending tasks,
//completed tasks, or overdue tasks.

Result Filter:
Status

Limits queries by status (completed, pending or overdue).

Result Filter: User Tasks and subtasks only. Limits queries to those tasks assigned to a
specific user.

Result Filter:
Assignment

Tasks and subtasks only. Limits queries to unassigned tasks.

Search Option Description

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-83

taskListFilter.CompletionType = TaskListCompletionFilterTypes.All;

//limit the return results to be 10
taskListFilter.MaximumResults = 10;

//disable security checking against the user who performs the query,
//so that all objects will be returned
taskListFilter.RestoreSecurity = false;

//use TaskListQueryOrder to sort the query result by NAME in ascending order
TaskListQueryOrder taskListQueryOrder = new
TaskListQueryOrder(TaskListAttributes.Name, true);
taskListFilter.QueryOrders = new TaskListQueryOrder(taskListQueryOrder);

//an array of ITaskList objects are returned from queryTaskLists();
//if no result is retrieved, a zero-length array will be returned
ITaskList[] retrievedTaskLists = tasklistManager.QueryTaskLists(project,
taskListFilter);
...
.NET (VB)

...
dim taskListFilter As ITaskListFilter = tasklistManager.CreateTaskListFilter();

'set the query to search for all task list
'options can be set to search for task lists that contain only pending tasks,
'completed tasks, or overdue tasks.
taskListFilter.CompletionType = TaskListCompletionFilterTypes.All

'limit the return results to be 10
taskListFilter.MaximumResults = 10

'disable security checking against the user who performs the query,
'so that all objects will be returned
taskListFilter.RestoreSecurity = false

'use TaskListQueryOrder to sort the query result by NAME in ascending order
dim taskListQueryOrder As TaskListQueryOrder = new
TaskListQueryOrder(TaskListAttributes.Name, true)
taskListFilter.QueryOrders(0) = taskListQueryOrder

'an array of ITaskList objects are returned from queryTaskLists()
'if no result is retrieved, a zero-length array will be returned
dim retrievedTaskLists() As ITaskList = tasklistManager.QueryTaskLists(project,
taskListFilter)
...

2.3.5.4.2 Creating Oracle WebCenter Collaboration Tasks and Task Lists Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To create new Oracle WebCenter
Collaboration task lists, tasks and subtasks from a remote application, use the ITask*
interfaces in the Oracle WebCenter Interaction Development Kit (IDK).

The ITaskListManager.createTaskList method takes in a project ID, name and
description, and returns an ITaskList object with a corresponding object ID and
associated properties. In some cases, an existing task list can be used as a template.
The ITaskListManager.copyTaskLists method allows you to copy existing task
lists from one project to another. Once a task list is created, you can create tasks and
subtasks. The ITaskList.createTask method takes in a name, description, start
date and end date, and returns an ITask object with a corresponding object ID and
associated properties. The ITask.createSubTask method allows you to create

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-84 Web Service Developer's Guide for Oracle WebCenter Interaction

subtasks using the same parameters. Subtasks are represented by an instance of
ITask. To create a new task list, follow the steps below.

1. Create a session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Retrieve the project ID (a source project must exist before you can create any
Collaboration component objects). For details, see Section 2.3.5.1.1, "Querying
Existing Oracle WebCenter Collaboration Projects Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs".

3. Create a new task list as shown in the code samples below.

4. Use the new task list to add tasks and subtasks as shown in the code samples
below.

Java

...
ICollaborationFactory collabFactory = portalSession.getCollaborationFactory();
ITaskListManager tasklistManager = collabFactory.getTaskListManager();

//create the task list
ITaskList tasklist = tasklistManager.createTaskList(project, name, description);

//call store() to persist the task list
tasklist.store();

//get the details URL and ID for the new task list
string url = tasklist.getDetailsURL();
int id = tasklist.getID();

//create the task
ITask task = tasklist.createTask(taskname, taskdescription, startTime, endTime);

//call store to persist the task
task.store();
......

.NET (C#)

...
//get the project ID out of session- this should never be null as it is added in
the page load event
Plumtree.Remote.PRC.Collaboration.Project.IProject project =
(Plumtree.Remote.PRC.Collaboration.Project.IProject)
Session[SESSION_PROJECT_KEY];

//create the task list
ITaskList tasklist = tasklistManager.CreateTaskList(project, name, description);

//call Store() to persist the task list
tasklist.Store();

//create the task
ITask task = tasklist.CreateTask(taskname, taskdescription, startTime, endTime);

//call Store() to persist the task
task.Store();
...
.NET (VB)

...

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-85

name = "ExampleTaskList"
description = "ExampleTaskListDescription"

'get the project ID out of session- this should never be Nothing as it is added in
the page load event
dim project as Plumtree.Remote.PRC.Collaboration.Project.IProject =
CType(Session.Item(SESSION_PROJECT_
KEY),Plumtree.Remote.PRC.Collaboration.Project.IProject)

'create the task list
Dim tasklist As ITaskList = tasklistManager.CreateTaskList(project, name,
description)

'call Store() to persist the task list
tasklist.Store()

'create the task
Dim tasklist As ITaskList = tasklistManager.CreateTaskList(project, name,
description)

'call Store() to persist the task
task.Store()
...

2.3.5.4.3 Editing Oracle WebCenter Collaboration Task and Task List Properties Using Oracle
WebCenter Interaction Development Kit (IDK) Remote APIs To query and modify Oracle
WebCenter Collaboration task list and task properties from a remote application, use
the ITaskList and ITask interfaces in the Oracle WebCenter Interaction
Development Kit (IDK).

The ITaskList interface allows you to query and update metadata and manipulate
security settings for task lists. The ITask interface allows you to assign users and
manipulate key settings for individual tasks, including start date, due date, status and
risk. These interfaces provide access to the following metadata:

Property Name Description API Access

ID The object ID for the current task list or task. Read Only

Name The name of the current task list or task. Read/Write

Description The description for the current task list. Read/Write

Details The URL to the details page for the current task list or task. Read Only

Start Date Tasks only. The assigned start date for the current task. Read/Write

End Date Tasks only. The assigned due date for the current task. Read/Write

Created Date The date the current task list or task was created (this
information might not be available).

Read Only

Last-Modified
Date

The date the current task list or task was last updated (this
information might not be available).

Read Only

Owner The user ID of the task list or task owner. Read Only

Assigned Users Tasks only. The IDs of the users assigned to the task. Read/Write

Status Tasks only. The status of the current task (pending, 25%
complete, 50% complete, 75% complete, or completed).

Read/Write

Risk Tasks only. The risk for the current task (high, low or
medium).

Read/Write

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-86 Web Service Developer's Guide for Oracle WebCenter Interaction

To edit task list or task properties, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the task or task list ID and retrieve the associated object.

3. Edit the task or task list properties as shown in the code samples below.

The following examples modify the status and risk for a task and assign a user.

Java

...
//get the task
ITask task = tasklistManager.getTask(taskID);

//set properties
task.setStatus(TaskStatus.TWENTY_FIVE_PERCENT_COMPLETED);
task.setRisk(TaskRisk.MEDIUM);

//assign the task
task.addAssignedUser(userID);

//call store() to persist the task
task.store();
...

.NET (C#)

...
//get the task

Access Level The permissions for defined roles on the current task list or
task (edit, delete, edit security). You can only change
permissions for the task list if the default project security is
set to false.

Read/Write

Project The ID of the project that contains the current task list. Read Only

Default Project
Security

Task lists only. Whether or not default project security
should be applied to the task list. If default project security
is enabled, you cannot change the security for the task list.

Read/Write

Task List Tasks only. The ID of the task list that contains the current
task.

Read Only

Level Tasks only. The level of the task in the task hierarchy (0-3) Read Only

Parent Task Tasks only. The parent task for the current task (returns
null if this is the root task).

Read Only

Subtasks Tasks only. The subtasks of the current task. Read/Write

Dependent Tasks Tasks only. The tasks that are defined as dependent on the
current task.

Read Only

Task Dependencies Tasks only. The tasks for which the current task is defined
as dependent.

Read/Write

Note: You must call store after making any changes or they will
not be persisted.

Property Name Description API Access

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

Oracle WebCenter Interaction Portlet and Pagelet Development 2-87

ITask task = tasklistManager.GetTask(taskID);

//set properties
task.Status = TaskStatus.TwentyFivePercentCompleted;
task.Risk = TaskRisk.Medium;

//assign the task
task.AddAssignedUser(UserID);

//call Store() to persist the task
task.Store();
...

.NET (VB)

...
'get the task
dim task As ITask = tasklistManager.GetTask(taskID)

'set properties
task.Status = TaskStatus.TwentyFivePercentCompleted
task.Risk = TaskRisk.Medium

'assign the task
task.AddAssignedUser(UserID)

'call Store() to persist the task
task.Store()
...

2.3.5.4.4 Managing Oracle WebCenter Collaboration Task Workflow Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs To set dependencies between Oracle
WebCenter Collaboration tasks and create subtasks from a remote application, use the
ITask interface in the Oracle WebCenter Interaction Development Kit (IDK).

Almost every task can be broken up into detailed subtasks, and most tasks are related
to other tasks in the same project. The PRC Collaboration API allows you to create up
to three levels of subtasks, and set dependencies between tasks. You can also
manipulate assignments, task status and risk settings. The ITask interface allows you
to create subtasks for a given task and define the name, description, start date and due
date. Subtasks are also represented by an instance of ITask. You can also manipulate
dependencies between tasks in the same project using ITask.addDependentTask.

To add a subtask to an existing task, follow the steps below.

1. Create a PRC session. For details, see Section 2.3.2, "Initiating a PRC Session to Use
Oracle WebCenter Interaction Development Kit (IDK) Remote APIs".

2. Get the task ID and retrieve the associated object.

3. Create a subtask as shown in the code samples below.

Note: Tasks with subtasks cannot be added as dependents.

Note: The createSubTask method creates a persisted task, so no
call to store is required unless you modify properties after creating
the subtask.

Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs

2-88 Web Service Developer's Guide for Oracle WebCenter Interaction

Java

...
//get the parent task
ITask task = tasklistManager.getTask(taskID);

//create the subtask
ITask subtask = parentTask.createSubTask(name, description, startTime, endTime);

//to set additional properties, you must call store() to persist the subtask
subtask.AddAssignedUser(UserID);
subtask.store();
...
.NET (C#)

...
//get the parent task
ITask task = tasklistManager.GetTask(taskID);

//create a subtask
ITask subtask = parentTask.CreateSubTask(name, description, startTime, endTime);

//To set additional properties, make sure that Store() is called
subtask.Risk = TaskRisks.Low;
subtask.Status = TaskStatuses.FiftyPercentCompleted;
subtask.Store();
...

.NET (VB)

...
'get the parent task
dim task As ITask = tasklistManager.GetTask(taskID)

'create a subtask
Dim subtask As ITask = parentTask.CreateSubTask(name, description, startTime,
endTime)

'To set additional properties, make sure that Store() is called
subtask.Risk = TaskRisks.Low
subtask.Status = TaskStatuses.FiftyPercentCompleted
subtask.Store()
...

2.3.5.5 Oracle WebCenter Collaboration Access Levels
The following matrix describes the default permissions for each access level and
Oracle WebCenter Collaboration component.

By default, all objects within a project inherit the defaultproject security settings. You
can override default project securityand define object-level permissions for each role.
If default projectsecurity is enabled for the object, you cannot change the access
levelsettings. (As with any security system, permissions are defined ina hierarchy;
Admin permissions include Edit permissions,Edit permissions include Write
permissions, etc.)

Collaboration
Component Read Write Edit Admin

Projects View
project

View project Save project, modify
project properties

Save project, modify
project properties

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-89

2.4 Adaptive Portlets
Adaptive portlets allow you to create a coordinated page with dynamic, interactive
functionality comprised of cross-platform services that talk to multiple back-ends. For
detailed examples, see Section 2.4.1, "Adaptive Portlet Design Patterns"

Adaptive portlet tools include the following:

■ Adaptive Tags: Oracle WebCenter Interaction provides a collection of useful XML
tags that can be included in the markup returned by any gatewayed page,
including portlets. For details, see Section 2.4.2, "Adaptive Tags"

■ Oracle WebCenter Interaction Scripting Framework: The Oracle WebCenter
Interaction Scripting Framework is a client-side JavaScript library that provides
services to portlets and gatewayed pages. For details, see Section 2.4.3, "The Oracle
WebCenter Interaction Scripting Framework".

For additional information on adaptive portlets see Section 2.4.4, "Adaptive Portlet
Development Tips".

The Oracle WebCenter Interaction Portlet Toolkit for .NET also provides useful tools
for adaptive portlets. For installation instructions and development information,
download the toolkit from the Oracle Technology Network
(http://www.oracle.com/technology/index.html).

2.4.1 Adaptive Portlet Design Patterns
Adaptive portlet design patterns provide solutions for broad classes of problems, and
provide the base for a range of cross-platform services.

The Master-Detail design pattern uses two portlet; users select an item from a list in
one, and the details for that item are retrieved from the remote server and displayed in
another. For example, a set of customers could be listed by name in the "master"
portlet. When the user clicks a name in this portlet, the "detail" portlet presents details
about the item. The detail portlet for a customer list could list all the important
information about that customer, such as name, address, and phone number. This
pattern assumes a tight coupling between the two portlet; both the master portlet and
detail portlet must be displayed on the same page. For a looser coupling, use the

Tasks View
Tasks

Create tasks,
update task status

Modify task list and
task properties, create
task lists, assign
owners

Delete task lists and
tasks, configure task
list security

Folders View
folders

Add documents Modify folder
properties, rename
folders, copy folders,
create folders

Modify folder
properties, rename
folders, copy folders,
create folders

Documents View
files

Check files in and
out, undo
check-out

Modify file properties,
copy files

Delete files, move
files, configure file
security

Discussions View
Discussio
ns

Post messages,
reply to messages

Modify discussion
properties, create new
discussions

Delete discussions
and messages,
configure discussion
security, edit
messages, approve or
reject messages

Collaboration
Component Read Write Edit Admin

Adaptive Portlets

2-90 Web Service Developer's Guide for Oracle WebCenter Interaction

Broadcast-Listener pattern. For details and sample code, see Section 2.6.9, "Using
Session Preferences".

The Broadcast-Listener design pattern is similar to the Master-Detail pattern, but
assumes a loose coupling between portlet. Users can select an item or perform some
other action in a "broadcast" portlet, which causes the content in other related
"listener" portlet to be redrawn. The major difference is that the Broadcast-Listener
pattern relies on the Oracle WebCenter Interaction Scripting Framework to raise an
event when an action is performed in the "broadcast" portlet. One or more "listener"
portlet can respond to this event and update their content accordingly. For details and
sample code, see Section 2.4.3.2, "Using Oracle WebCenter Interaction Scripting
Framework Event Notification".

In Place Refresh allows you to refresh the content in a portlet without refreshing the
page. For details and sample code, see Section 2.4.3.3, "Using In-Place Refresh".

The Structured Response design pattern handles structured HTTP responses,
typically encoded as XML. In many cases it can be expensive and inefficient to send
large amounts of HTML back in response to some HTTP request, if only a small part of
the user interface needs to be changed. This is especially true with more complex user
interfaces. In these cases, the response can be encoded in XML. The client-side
response handler can then parse the XML, and update the user interface (or perform
some other action) based on that response. Use the Structured Response design pattern
to redraw a small area of the user interface after making an HTTP request, or to access
a simple HTTP/URI type web service from a portlet. The example code below
(structuredresponse_portlet.html) accesses an RSS feed from a selection of news sites.

<!-- jsxml includes -->

<script type="text/javascript"
src="pt://images/plumtree/common/private/js/PTLoader.js"></script>
<script type="text/javascript">
var oImgServer = new Object();
oImgServer.location = document.getElementById('imgServerHref').href;
var imageServerURL = document.getElementById('imgServerHref').href;
var imageServerConnectionURL = oImgServer.location;
new PTLoader(imageServerURL, imageServerConnectionURL).include('jsxml','en');
</script>

<!-- jscontrols includes -->
<link rel="stylesheet" type="text/css"
href="/portal-remote-server/js/jscontrols/styles/css/PTMenu.css"/>
<link rel="stylesheet" type="text/css"
href="/portal-remote-server/js/jscontrols/styles/css/PTRichTextEditor.css"/>
<script type="text/javascript"
src="/portal-remote-server/js/jscontrols/strings/PTControls-en.js"></script>
<script type="text/javascript"
src="/portal-remote-server/js/jscontrols/PTControls.js"></script>

<!-- Inline JS helper functions -->
<!-- NOTE: It is standard practice to use namespace tokens (e.g., <pt:nameSpace
pt:token="$$TOKEN$$" xmlns:pt="http://www.plumtree.com/xmlschemas/ptui/"/>) to
ensure unique global JavaScript function and object names. For simplicity, we do
not do that here.
-->

<script defer type="text/javascript" id="structured-response-portlet-A-script">
// Function that gets the RSS XML feed found at the specified url
getRSSFeed = function(url)
 {

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-91

 // First clear out any existing rows in the table
 channelTable.clearRows();

 // Force the transformer to fix up the url
 var oURL = new Object();
 oURL.location = url;

 // Do the http get
 var get = new PTHTTPGETRequest(oURL.location, handleRSSResponse);
 get.invoke();
 }

// Function that handles the RSS XML response and updates the table based on the
RSS items
handleRSSResponse = function(response)
 {
 // Get the rss xml
 var xml = response.responseText;
 if (!xml || xml.indexOf('<?xml') == -1) { return; }

 // Parse into a dom, and get the channel node
 var xmlDOM = new PTXMLParser(xml);
 var rssNode = xmlDOM.selectSingleNode('rss');
 var channelNode = rssNode.selectSingleNode('channel');

 // Get the channel title and set the status bar text in the table
 var channelTitle = channelNode.selectSingleNode('title').getNodeValue();
 channelTable.statusBarText = 'Loaded Channel: ' + channelTitle;

 // Get channel item nodes
 var itemNodes = channelNode.selectNodes('item');

 // Build table rows
 channelTable.rows = new Array();
 for (var i=0; i<itemNodes.length; i++)

 {
 var itemNode = itemNodes[i];

 // Get channel item properties
 var itemTitle = itemNode.selectSingleNode('title').getNodeValue();
 var itemLink = itemNode.selectSingleNode('link').getNodeValue();
 var itemDescription = itemNode.selectSingleNode('description').getNodeValue();
 if (itemNode.selectSingleNode('author'))
 var itemAuthor = itemNode.selectSingleNode('author').getNodeValue();
 if (itemNode.selectSingleNode('category'))
 var itemCategory = itemNode.selectSingleNode('category').getNodeValue();
 if (itemNode.selectSingleNode('pubDate'))
 var itemPubDate = itemNode.selectSingleNode('pubDate').getNodeValue();

 // Create a row and add it to the table
 var row = new PTRow();
 row.parent = channelTable;
 row.id = i;
 row.uid = i;
 row.previewText = itemDescription;
 row.link = itemLink;
 row.columnValues[0] = new PTTextColumnValue(itemTitle);
 row.columnValues[1] = new PTTextColumnValue(itemCategory);
 row.columnValues[2] = new PTTextColumnValue(itemAuthor);

Adaptive Portlets

2-92 Web Service Developer's Guide for Oracle WebCenter Interaction

 row.columnValues[3] = new PTTextColumnValue(itemPubDate);
 channelTable.rows[channelTable.rows.length] = row;
 }

 // Redraw the table
 channelTable.draw();
 }
</script>

Select RSS Feed:
<a href="#"
onclick="getRSSFeed('http://www.wired.com/news/feeds/rss2/0,2610,,00.xml'); return
false;">Wired News
<a href="#" onclick="getRSSFeed('http://news.com.com/2547-1_3-0-5.xml'); return
false;">CNET News.com
<a href="#"
onclick="getRSSFeed('http://partners.userland.com/nytRss/nytHomepage.xml'); return
false;">NY Times

<!-- Set up a table control to display channel items -->
<div id="channelTableContainer"></div>
<script defer type="text/javascript">
 var channelTable = new PTTableControl();
 channelTable.locale = 'en_US';
 channelTable.objName = 'channelTable';
 channelTable.container = 'channelTableContainer';
 channelTable.baseURL =
'/imageserver/plumtree/common/private/portal-remote-server/js/jscontrols/1/';
 channelTable.statusBarText = 'No RSS Feed Selected';
 channelTable.rowDetailAction = new
PTJavaScriptAction('window.open(\'${ROW.link}\');');
 channelTable.columns[0] = new PTColumn();
 channelTable.columns[0].name = 'Title';
 channelTable.columns[0].width = '40%';
 channelTable.columns[1] = new PTColumn();
 channelTable.columns[1].name = 'Category';
 channelTable.columns[1].width = '20%';
 channelTable.columns[2] = new PTColumn();
 channelTable.columns[2].name = 'Author';
 channelTable.columns[2].width = '20%';
 channelTable.columns[3] = new PTColumn();
 channelTable.columns[3].name = 'Publication Date';
 channelTable.columns[3].width = '20%';
 channelTable.areColumnsResizable = true;
 channelTable.clientSortEnabled = true;
 channelTable.scrollHeight = 250;

 channelTable.init();
 channelTable.draw();
</script>
</div>

2.4.2 Adaptive Tags
Oracle WebCenter Interaction provides a collection of useful XML tags that can be
included in the markup returned by any gatewayed page, including portlets. These tag
libraries include tags to display portal navigation components, portal UI components,
and standard UI elements.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-93

Using the attributes defined in the tag, the gateway transforms the XML and replaces
it with standard HTML to be displayed in a browser. For example, when used in a
banner portlet in the portal, the following code is replaced with the date and time in
the current user's locale.

<pt:standard.currenttime xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
The adaptive tag libraries provide access to a wide range of components.

The core tag library provides two basic tags to support core tag functionality:

■ pt:core.debugmode toggles debug mode.

■ pt:core.html allows you to use HTML tags within JavaScript, and supports
attribute replacement.

The core tag library also includes tags that allow you to create and display custom tag
definitions, including the pt:core.tagdef and pt:core.includetagdef tags.
For details, see Section 2.4.2.12, "Creating Custom Adaptive Tags".

The tags in the constants library provide access to useful URLs, including the
stylesheet, Image Service, and the correct return URL for the current user.

The common tag library provides access to useful functionality, including URL
transformation and namespace definition. This library also allows you to insert error
information in the page, and CSS and JavaScript references in the Head element in a
gatewayed HTML page. For details, see Section 2.4.2.4, "Common Adaptive Tag
Library (pt:common)".

The tags in the logic library handle basic logic, including creating data objects and
collections, setting shared variables, and looping over a data collection. For details, see
Section 2.4.2.5, "Logic Adaptive Tag Library (pt:logic)".

In addition to the tags above, platform-specific tags are available to access additional
information and functionality in Oracle WebCenter Interaction.

■ Navigation tags in the plugnav library are used with data tags in the ptdata
library to build complete custom navigation solutions for the portal. For details,
see Section 2.4.2.7, "Navigation Adaptive Tag Library (pt:plugnav)".

Note: The tags in the constants library are the only adaptive tags that
can be used as attribute values in html elements. They also use
different syntax from other adaptive tags: "pt://styles" compared to
"<pt:standard.currenttime ...>".

Tag Replaced with Example

pt://styles The stylesheet URL
in hosted pages and
portlets

<link type="text/css"
href="pt://styles"
rel="StyleSheet"></link>

pt://images The URL to the
Image Service

<img
src="pt://images/plumtree/portal/p
ublic/img/icon_help.gif">

pt://return A URL that returns
users to the page
from which they
came (the page on
which the portlet that
launched the page is
hosted)

Back

Adaptive Portlets

2-94 Web Service Developer's Guide for Oracle WebCenter Interaction

■ The conditional tags in the ptcond library are used to perform logic to determine
the current page. For details, see Section 2.4.2.8, "Conditional Adaptive Tag
Library (pt:ptcond)".

■ The tags in the ptui library allow you to add standard portal user interface
components to any portlet, including search inputs and buttons, login
components, access to account settings, error messages, and more. Tags from the
standard tag library can be used to display instance-specific information,
including the date and time and the page name and type. For details, see
Section 2.4.2.9, "UI Adaptive Tag Library (pt:ptui)".

■ The standard tag library includes tags for the following purposes:

■ Links: Build links to almost any portal object, community pages, login pages,
or any gatewayed page. You can also set Hosted Display Mode for any
gatewayed page. For details, see Section 2.4.2.6.2, "Building Gatewayed URLs
Using Adaptive Tags".

■ User-Specific Information: Provide user-specific content, leveraging settings
and portal permissions. Use conditional statements to secure content based on
user or group membership. For details, see Section 2.4.2.6.4, "Securing Content
Based on User Permissions Using Adaptive Tags".

■ Tree Controls: Create custom selection trees of portal objects. For details, see
Section 2.4.2.6.3, "Creating Tree Controls Using Adaptive Tags".

This package also contains most of the tags available in earlier versions,
previously called "transformer tags." Legacy tags not included in the standard
library are provided in the transformer tag library (6.1 and earlier) or the common
tag library.

For important information about using tags, see the following sections:

■ Section 2.4.2.1, "Adaptive Tag Development Tips"

■ Section 2.4.2.2, "Using Internationalized Strings in Adaptive Tags"

■ Section 2.4.2.3, "Using Variables in Adaptive Tags"

For information on how Oracle WebCenter Interaction processes tags, see
Section 2.4.2.11, "Adaptive Tag Control Flow".

You can also create custom tags; for details, see Section 2.4.2.12, "Creating Custom
Adaptive Tags".

For a full list of tags and attributes, see the tagdocs.

2.4.2.1 Adaptive Tag Development Tips
These syntax rules and tips apply to all adaptive tags.

■ All tags are XML compliant. For example, only strings are allowed; you cannot
use a tag within an attribute of another tag (<legal a=<illegal/>/>).

■ All adaptive tags belong to the namespace
http://www.plumtree.com/xmlschemas/ptui/. The namespace prefix must be "pt"
(xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/). To avoid including
the namespace in every tag, enclose all tags in a span that defines the namespace.

■ All adaptive tag attributes require the "pt:" prefix. If you do not include the pt
prefix, the portal will not return an error, but will replace the attribute with the
default value when the tag is processed.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-95

■ The adaptive tag framework displays tag errors as HTML comments. If you
suspect that a tag error has occurred, simply view the HTML source for the page.
If there was a problem, there should be an HTML comment where the adaptive
tag would have been. Error messages are also displayed in Logging Spy.

■ Adaptive tags adhere to XHTML specifications. These specifications are not
handled correctly by all HTML editors and IDEs. Some editors do not display tags
correctly because of the required "pt:" prefix before tags and Oracle WebCenter
Interaction attributes.

■ Use tag debug mode for additional insight into tag errors. Turning on Debug
Mode causes the adaptive tag framework to output HTML comments declaring
the start and end of each tag. This can be useful for determining whether a tag ran
and did not output the expected result, or did not run at all, for example. Note:
Standard HTML tags are not wrapped in HTML comments.

2.4.2.2 Using Internationalized Strings in Adaptive Tags
Adaptive tag attribute value replacement allows you to display localized content
based on the current user's portal locale.

Oracle WebCenter Interaction stores internationalized strings in localized string files
with different files for each supported language. The portal knows the locale of the
current user and retrieves strings from the correct language folder automatically. To
internationalize a portlet, move all strings into custom string files and translate them.

To display content in the portlet reference the strings using the value tag from the
Logic tag library. Oracle WebCenter Interaction knows the locale of the current user
and retrieves the string from the correct language folder automatically. For example,
the HTML below retrieves the first string from a XML language file called my_
message_file.xml.

 <pt:logic.value pt:value="$#1.my_message_file"/>

For details on tags in the Logic tag library, see Section 2.4.2.5, "Logic Adaptive Tag
Library (pt:logic)".

2.4.2.3 Using Variables in Adaptive Tags
Adaptive tag attribute value replacement allows you to access data stored in memory.

The following simple example uses the variable and value tags from the logic tag
library to store a value in memory and then display it in HTML.

 <pt:logic.variable pt:key="test" pt:value="example text"/>
 <pt:logic.value pt:value="$test"/>

Attribute value replacement can also be used to display more complicated memory
structures. Data objects can contain multiple name value pairs. The following example
creates a data object with the name and URL of a link, and then displays the name.

 <pt:logic.data pt:key="testdata" url="http://www.myco.com" name="My company"/>
 <pt:logic.value pt:value="$testdata.name"/>

Attribute value replacement cannot be used with tags outside the adaptive tag
libraries. However, the pt.core.html tag supports attribute replacement within a tag
and allows you to generate any HTML tag. Use the pt:tag attribute to specify the

Adaptive Portlets

2-96 Web Service Developer's Guide for Oracle WebCenter Interaction

HTML tag and list the necessary HTML attributes as XML attributes. All non-adaptive
tag attributes (attributes not prefixed with "pt:") are included automatically in the
outputted HTML tag. For example, the following code creates an HTML anchor tag
using an in-memory value for the "href" attribute.

<pt:core.html pt:tag="a" href="$myurl" title="My title">My link</pt:core.html>

This code would be transformed to the following HTML: <a href="[data stored
in the $myurl attribute]" title="My title">My link .

The example below combines several different techniques and tags to show how to
loop over a data collection and output HTML. This code outputs several HTML links
with lines in between them.

 <pt:logic.collection pt:key="testcollection">
 <pt:logic.data url="http://www.myco.com" name="My company"/>
 <pt:logic.data url="http://www.otherco.com" name="Other company"/>
 </pt:logic.collection>
 <pt:logic.foreach pt:data="testcollection" pt:var="link">
 <pt:core.html pt:tag="a" href="$link.url">
 <pt:logic.value pt:value="$link.name"/>
 </pt:core.html>
 <pt:logic.separator>

</pt:logic.separator>
 </pt:logic.foreach>

For details on logic tags, see Section 2.4.2.5, "Logic Adaptive Tag Library (pt:logic)".
For details on using localized strings in tags, see Section 2.4.2.2, "Using
Internationalized Strings in Adaptive Tags".

2.4.2.4 Common Adaptive Tag Library (pt:common)
The Common tag library (pt:common) provides access to useful functionality,
including URL transformation and namespace definition. This library also allows you
to insert error information in the page, and CSS and JavaScript references in the Head
element in a gatewayed HTML page.

The Common tag library is a cross-platform tag library that can be used in both Oracle
WebCenter Interaction and Oracle WebCenter Ensemble.

For a full list of tags and attributes, see the tagdocs.

Table 2–1 Tags in the Common Adaptive Tag Library

Tag Function More Information

pt:common.namespace Defines a token for use in JavaScript
functions and HTML elements to
ensure unique names in an aggregated
page.

Section 2.4.2.4.3, "Defining a Unique
Namespace Token Using Adaptive
Tags"

pt:common.url Transforms URLs that should be
gatewayed.

Section 2.4.2.4.5, "Transforming URLs
Using Adaptive Tags"

pt:common.transformer Disables and enables transformation on
a gatewayed page.

Section 2.4.2.4.5, "Transforming URLs
Using Adaptive Tags"

pt:common.error Displays errors on the page so that they
can be placed and formatted as desired.

Section 2.4.2.4.4, "Displaying Errors
Using Adaptive Tags"

pt:common.errorcode Stores a collection of the current error
codes in memory.

Section 2.4.2.4.4, "Displaying Errors
Using Adaptive Tags"

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-97

2.4.2.4.1 Accessing User Information Using Adaptive Tags You can use the
pt:common.userinfo tag to access specific user information settings.

The pt:common.userinfo tag is replaced with the value of the User Information
setting specified in the pt:info attribute. The name attribute is case sensitive.

<pt:common.userinfo pt:info="FullName"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>

2.4.2.4.2 Adding Header Content Using Adaptive Tags The pt:common.includeinhead and
headincludes tags allow you to include custom JavaScript and CSS information in the
Head element of the HTML page.

The pt:common.includeinhead tag marks the JavaScript and CSS information to
be included in the Head element of the HTML page by the
pt:common.headincludes tag. If a .js or .css file is marked for inclusion multiple
times, it will only be included once. JavaScript generated by tags will also be included.

<pt:common.includeinhead>
<script type="text/javascript"><!-- JavaScript --></script>
<script type="text/javascript" src="http://test.com/test.js"></script>
<link type="text/css" rel="stylesheet" href="http://test.com/test.css"></link>

pt:common.errortext Displays the current error text on the
page so that it can be placed and
formatted as desired. Only the first
error message will be displayed. Used
as singleton only (does not display the
contents of the tag).

Section 2.4.2.4.4, "Displaying Errors
Using Adaptive Tags"

pt:common.headincludes Allows JavaScript and Style Sheet
include information to be added to a
specific point in the Head element of an
HTML page, as required by the
XHTML specification.

Section 2.4.2.4.2, "Adding Header
Content Using Adaptive Tags"

pt:common.includeinhead Marks JavaScript and CSS information
to be included in the Head element of
the HTML page by the
pt:common.headincludes tag.

Section 2.4.2.4.2, "Adding Header
Content Using Adaptive Tags"

pt:common.userinfo Displays a specific user information
setting.

Section 2.4.2.4.1, "Accessing User
Information Using Adaptive Tags"

Note: In earlier versions of the portal, this tag is implemented as
pt:userInfo with the attribute pt:name. This syntax is also
supported.

Note: You must configure the Web Service to send the appropriate
user information settings to the portlet.

Note: This tag will be ignored during automatic in-place refresh
requests. Custom in-place refresh solutions must ensure that
JavaScript gets included correctly.

Table 2–1 (Cont.) Tags in the Common Adaptive Tag Library

Tag Function More Information

Adaptive Portlets

2-98 Web Service Developer's Guide for Oracle WebCenter Interaction

</pt:common.includeinhead>

The pt:common.headincludes tag adds JavaScript and stylesheet include
information defined by the pt:common.includeinhead tag to the Head element of
the HTML page, as required by the XHTML specification. If no
pt:common.headincludes tag is present, JavaScript will be included at the bottom
of the Head element, and a Head element will be inserted if one does not exist.

<head>
<script type="text/javascript" src="http://test.com/main.js"></script>
</head>

The pt:common.jstransform tag inserts the Oracle WebCenter Interaction
Scripting Framework headers into the Head element of the Oracle WebCenter
Interaction portal page (cannot be used in Oracle WebCenter Ensemble).

2.4.2.4.3 Defining a Unique Namespace Token Using Adaptive Tags It is an established best
practice to include the portlet ID in the name of any Javascript functions and HTML
elements to ensure unique names when the code is combined with markup from other
portlet on an aggregated page.

The pt:common.namespace tag allows you to define your own token, which is
replaced with the portlet ID. The token must follow these specifications:

■ Valid values for the token must be in the ASCII range 0x21 to 0x7E, excluding "<"
(0x3C).

■ The scope of the token runs from the tag defining it to the end of the file; you
cannot use a token prior to defining it.

■ A second pt:namespace tag with a different token redefines it; two tokens cannot
be defined at the same time.

<pt:common.namespace pt:token="$$TOKEN$$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
do stuff
<script>
function doStuff$$TOKEN$$() {
alert("hello");
}
</script>

2.4.2.4.4 Displaying Errors Using Adaptive Tags The error* tags in the Common library
allow you to insert and format error messages within the page that contains the tag(s).

The pt:common.error tag displays errors on the page, placed and formatted as
desired. If the pt:common.errortext tag is included inside this tag, the contents of
the tag will only be processed if there is an error. If the child tag is not present, any
error messages will be formatted and displayed from this tag in the standard style.If
the pt:common.errortext tag is included, only the first error message will be
displayed. Other errors, as well as exception stack traces and extended error messages,
will be ignored. The pt:common.errorcodes tag stores a collection of the current
error codes in memory. If the error has already been displayed, no error codes will be
available. These error codes can be accessed using the pt:logic.foreach tag as
shown below.

Note: If these tags are displayed on a page, errors will no longer be
displayed in the normal error location and will not be available after
the tag has been displayed.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-99

<pt:common.errorcode pt:key="errorcodes"/>
<pt:logic.foreach pt:data="errorcodes" pt:var="code">
<pt:common.errortext/>

2.4.2.4.5 Transforming URLs Using Adaptive Tags The pt:common.url and
pt:common.transformer tags allow you to create and manipulate gatewayed URLs.

The pt:common.url tag is used to transform URLs that should be gatewayed. If the
URL in the pt:href attribute is outside the gateway, it will be transformed to an
absolute URL. This feature does not generate a link in HTML; it obtains the URL as a
string and passes it to a client-side function, as shown in the following example.

<script>
function myFunction()
{
document.write("<pt:common.url pt:href="myURL"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>");
}
The pt:common.transformer tag allows you to turn off JavaScript URL
transformation in a gatewayed page. Set the pt:fixurl attribute to "off" as shown
below.

<pt:common.transformer pt:fixurl="off"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
The transformer will not insert calls to the JavaScript URL transformation function for
the rest of the file, unless you switch the feature back on in a subsequent directive
(with a pt:fixurl attribute of "on").

2.4.2.5 Logic Adaptive Tag Library (pt:logic)
Logic tags handle basic logic, including creating data objects and collections, setting
shared variables, evaluating expressions, and looping over a data collection.

The pt:logic tag library is a cross-platform tag library thatcan be used in both Oracle
WebCenter Interaction and Oracle WebCenterEnsemble.

For a full list of tags and attributes, see the tagdocs. For more information on using
these tags, see the sections that follow.

Note: Many logic tags have a pt:scope attribute. The valid scope
values are: tag, portlet request, http request, session, persistent
session, and application. The default is portlet request scope.

Table 2–2 Tags in the Logic Adaptive Tag Library

Tag Function More Information

pt:logic.data Creates a data object (collection of
name=value pairs) and stores it in a
shared variable using the key
supplied.

Section 2.4.2.5.1, "Using Shared
Variables in Adaptive Tags"

pt:logic.concat Concatenates two values into one and
sets the new value in a variable with a
specified name.

Section 2.4.2.5.1, "Using Shared
Variables in Adaptive Tags"

pt:logic.variable Stores a shared variable using the key
and value supplied. Designed for use
with attribute replacement or with the
pt:logic.value tag.

Section 2.4.2.5.1, "Using Shared
Variables in Adaptive Tags"

Adaptive Portlets

2-100 Web Service Developer's Guide for Oracle WebCenter Interaction

pt:logic.collection Creates a collection of data objects and
stores it in a shared variable using the
key supplied.

Section 2.4.2.5.1, "Using Shared
Variables in Adaptive Tags"

pt:logic.collectionlength Evaluates the length of a collection
and stores the result in memory.

Section 2.4.2.5.1, "Using Shared
Variables in Adaptive Tags"

pt:logic.value Evaluates an attribute and displays
the referenced value. Used as
singleton only (does not display the
contents of the tag).

Section 2.4.2.5.1, "Using Shared
Variables in Adaptive Tags"

pt:logic.boolexpr Evaluates a boolean expression and
stores the result as a boolean in
memory. Designed to work with the
pt:logic.if tag.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.intexpr Evaluates an integer expression and
stores the result as a boolean in
memory. Designed to work with the
pt:logic.if tag.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.stringexpr Evaluates whether or not two strings
are equal and stores the result as a
boolean in memory. The case must
match. Designed to work with the
pt:logic.if tag.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.containsexpr Checks if a collection contains a
specific data element and sets a
specified variable to true or false.
Designed to work with the
pt:logic.if tag.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.if Evaluates an expression and displays
either the pt:logic.iftrue or
pt:logic.iffalse tag contents.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic:iffalse Displayed if the surrounding
pt:logic.if tag evaluates to false.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic:iftrue Displayed if the surrounding
pt:logic.if tag evaluates to true.

Section 2.4.2.5.2, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.foreach Allows looping over a data collection.
Supports tag and portlet request scope
only.

Section 2.4.2.5.3, "Looping Over Data
Collections Using Adaptive Tags"

pt:logic.separator Inserts a separator between the
elements of a for each loop.

Section 2.4.2.5.3, "Looping Over Data
Collections Using Adaptive Tags"

pt:logic.appcache Caches data set by data tags on the
application. Note that there is no
access control on cached data.

Section 2.4.2.5.4, "Caching Data"

pt:logic.sessioncache Caches data set by data tags on each
user’s session. Note that there is no
access control on cached data.

Section 2.4.2.5.4, "Caching Data"

pt:logic.apphierdata Creates hierarchical data by
appending child data or adding new
child data if none exist.

Section 2.4.2.5.5, "Creating
Hierarchical Data"

pt:logic.replacehierdata Creates or modifies hierarchical data
by replacing child nodes with new
data collections.

Section 2.4.2.5.5, "Creating
Hierarchical Data"

Table 2–2 (Cont.) Tags in the Logic Adaptive Tag Library

Tag Function More Information

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-101

2.4.2.5.1 Using Shared Variables in Adaptive Tags The pt:logic.data, variable, and
collection tags allow you to store editable shared variables, which can be used in
attribute value replacement or with the pt:logic.value tag.

The pt:logic.data tag stores a data object (a name=value pair) as an editable
shared variable using the key passed in. The pt:logic.variable tag stores an
editable shared variable using the key and value passed in. If either tag is used inside
the pt:logic.collection tag, the variables are stored directly in the parent
collection. If the tag is used alone, the key attribute is required. The variable is only
stored after the tag is finished processing all its contents. A collection can only contain
a single type of variable, such as string variables or data objects.

<pt:logic.variable pt:key="title" pt:value="Administrator"/>

<pt:logic.data pt:key="myurl" name="Home" url="http://edocs.bea.com"/>

<pt:logic.collection pt:key="testcollection">
<pt:logic.data url="http://www.myco.com" name="My company"/>
<pt:logic.data url="http://www.otherco.com" name="Other company"/>
</pt:logic.collection>

<pt:logic.collection pt:key="teststringcollection">
<pt:logic.variable pt:value="my string data"/>
<pt:logic.variable pt:value="my other string data"/>
</pt:logic.collection>

The pt:logic.value tag displays the value of the variable referenced by the
pt:value attribute. Variables can be set using the pt:logic.data or
pt:logic.variable tags as explained in the previous section. This tag can be used
to reference localized strings in message files.

<pt:logic.value pt:value="$title"/>
<pt:logic.value pt:value="$myurl.Home"/>

For details on referencing localized strings using tags, see Section 2.4.2.2, "Using
Internationalized Strings in Adaptive Tags".

2.4.2.5.2 Evaluating Expressions Using Adaptive Tags The pt:logic.boolexpr, intexpr,
stringexpr and containsexpr tags work with the pt:logic.if tag to evaluate a range of
expressions.

The sample code below determines whether the current value for the variable "title" is
set to "Administrator". Variables can be set using the pt:logic.data or
pt:logic.variable tags.

<pt:logic.stringexpr pt:expr="($title) == Administrator" pt:key="boolvalue"/>
<pt:logic.if pt:expr="$boolvalue">
<pt:logic.iftrue>
This is displayed if expr evaluates to true.
</pt:logic.iftrue>
<pt:logic.iffalse>
This is displayed if expr evaluates to false.
</pt:logic.iffalse>
</pt:logic.if>

Note: If a variable or collection with the same name already exists, it
will be overwritten. If the preexisting variable is not editable, the tag
will fail. Variable names cannot contain the reserved character '.'.

Adaptive Portlets

2-102 Web Service Developer's Guide for Oracle WebCenter Interaction

For details on using shared variables, see Section 2.4.2.3, "Using Variables in Adaptive
Tags".

2.4.2.5.3 Looping Over Data Collections Using Adaptive Tags The pt:logic.foreach tag
allows you to loop over collections of data.

The sample code below creates a table to store links for a navigation menu.

<table cellpadding="5" cellspacing="0" width="100%" border="0">
<!-- loop starts here -->
<pt:logic.foreach pt:data="directorymenu" pt:var="temp">
<tr>
<td height="25" colspan="3" class="navSidebarText">
<pt:core.html pt:tag="img" src="$temp.img" alt="" border="0" align="absmiddle"
height="20" width="20" />
<pt:core.html pt:tag="a" href="$temp.url">
<pt:logic.value pt:value="$temp.title" />
</pt:core.html>
</td>
</tr>
</pt:logic.foreach>
</table>

This table can then be populated with links using navigation tags. For details on
navigation tags, see Section 2.4.2.4, "Common Adaptive Tag Library (pt:common)".

2.4.2.5.4 Caching Data The pt:logic.appcache and pt:logic.sessioncache
tags allow you to cache the data set by data tags. Most data tags do not need to be
cached. Data tags in the pt:data tag library already use server-side cached data.
Suitable data tags to cache are ones that execute database or search queries every time
they run.

Use the pt:logic.appcache tag to cache data that should be shared between
multiple users on the application. Do not use this tag to cache data tags that return
security filtered objects; there is no access control on cached data. Caching security
filtered data bypasses security checks and all users using the cached data will see the
view of the user who added the cache entry.

Use the pt:logic.sessioncache tag to cache data that is specific to each user on
the user’s session. The cached data is cleared after the user logs off.

To cache a data tag, define it normally and nest it inside of one of the cache tags above.
Set the pt:data attribute of the cache tag to the pt:key attribute of the enclosed data
tag. Set the datascope to the same scope as the data tag (not necessary if the data tag
uses the default portlet request scope). Define the expiration duration for the cache
entries using the expiration attribute. Use the optional contextid attribute to
define the cache context. For example, to cache data in a Community, pass in the
current Community ID. (To cache data per user, use the sessioncache tag, not a
User context.)

<pt:logic.appcache pt:cachekey="cacheddata" pt:expiration="20"
pt:data="datatocache" >
 <pt:custom.customquery pt:key="datatocache"/> // this tag is only run when
cached data expired or none is found
</pt:logic.appcache>
To access the cached data, use the pt:logic.value tag.

<pt:logic.value pt:value="$cacheddata" pt:scope="application"> // accessing the

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-103

cached data

2.4.2.5.5 Creating Hierarchical Data The pt:logic.apphierdata and
pt:logic.replacehierdata tags allow you to create hierarchical data.
Hierarchical data is used by the tree and menu tags, which display hierarchical
structure of resources such as communities, subcommunities and community pages.

Use the pt:logic.apphierdata tag to create new children or append data to
existing children. If no children exists, the data is added as children. An index attribute
with no value creates a new hierarchical data structure.

Use the pt:logic.replacehierdata tag to create or modify hierarchical data by
replacing child nodes with new data collections.

The example below replaces the children of "topCommunities" at location 0,2 with the
data in the "communityPages" tag variable. If topCommunities contains a list of
Communities and their Subcommunities and "communityPages" contains a list of
Community pages, the tag will replace the existing Community pages in the 3rd level
Subcommunity (2 is the 3rd element in a 0-based index) of the first (top level)
Community.

<pt:logic.replacehierdata pt:id="topCommunities" pt:dataid="communityPages"
pt:index="0,2"/>

2.4.2.6 Standard Adaptive Tag Library (pt:standard)
Adaptive tags can be used to build links to a variety of Oracle WebCenter Interaction
resources. The Standard tag library (pt:standard) allows you to create links to specific
portal objects, the portal login page, or to specific portlets. You can also build
gatewayed URLs, disable URL transformation, and enable Hosted Display Mode for
gatewayed pages.

The tables below summarize available standard tags. For a full list of tags and
attributes, see the tagdocs.

Page Information: These tags display instance-specific information for use in portal
navigation elements, including the date and time and the page name and type.

Note: The transformer copies any attributes not in the PT namespace
to the output link tag. These links are platform and version
independent, and do not rely on particular ASP/JSP files or query
string arguments.

Tag Function Example

pt:standard.currenttim
e

Writes the current date and
time according to the rules of
the user's chosen locale. Only
the full date and time can be
displayed; there is no way to
return just the date, just the
time, or any other subset of
information. This tag is
recalculated every time the
code is pulled out of the
cache.

For example:

<pt:standard.currenttime
xmlns:pt='http://www.plumt
ree.com/xmlschemas/ptui/'/
>

Adaptive Portlets

2-104 Web Service Developer's Guide for Oracle WebCenter Interaction

URLs: These tags provide access to key portal components, including the stylesheet,
portal objects, and the portal login pages. Additional tags allow you to create
gatewayed links and control hosted display mode for gatewayed pages.

pt:standard.pagename Replaced with the name of the
current portal page (My Page
or Community) or left blank
otherwise.

pt:standard.realmname Replaced with the portal page
type ("My Pages,"
"Documents,"
"Administration," or
"Gateway").

For example, the code snippet
below creates the portal
banner (the pt://images
constant is used to reference
the portal Image Service).

<td align="left"
colspan="1"
id="pt-header-left">
 <!--portal banner -->
<img
src="pt://images/plumtree/
portal/public/img/PT_logo_
sm_wht.gif" alt="Plumtree
Logo" border="0"
align="absmiddle"
height="50" width="125" />

</td>
<td align="right"
nowrap="nowrap"
colspan="1"
id="pt-header-right">

<h1 class="banHeader">
<pt:standard.realmname
xmlns:pt='http://www.plumt
ree.com/xmlschemas/ptui/'/
>
</h1>

<h2 class="banSubhead">
<pt:standard.pagename
xmlns:pt='http://www.plumt
ree.com/xmlschemas/ptui/'/
>
</h2>
</td>

Tag Function Example

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-105

Constants are also available for useful URLs, including the Image Service, current
stylesheet, and return URL For details, see Section 2.4.2, "Adaptive Tags".

User-Specific Information: These tags allow you to insert content on a page based on
conditional statements of user and group membership. For details on implementing
these tags, see Section 2.4.2.6.4, "Securing Content Based on User Permissions Using
Adaptive Tags".

Tag Function Example

pt:standard.stylesheet
s

Allows you to enter the
current portal stylesheet in the
HEAD of any non-hosted
gatewayed HTML page. (In
previous versions, this tag
was implemented as
pt:styleSheets. This syntax is
still supported.)

For example,

<HTML>
<HEAD>
 <pt:standard.stylesheets
xmlns:pt='http://www.plumt
ree.com/xmlschemas/ptui/'/
>
 ...
 </HEAD>
<BODY>
...

pt:standard.displaymod
e

Sets the header that tells the
portal server to display a page
in the style of the portal, with
a portal banner. The tag can
also set the title and subtitle of
the page. The displaymode
tag does not display any
contents, and should only be
used as a singleton. (Note:
Pages in hosted display mode
should not contain <HTML>,
<HEAD>, <META>, <TITLE>
or <BODY> tags.)

For example,

<pt:standard.displaymode
pt:mode="Hosted"
pt:title="My title"
pt:subtitle="My subtitle"
xmlns:pt='http://www.plumt
ree.com/xmlschemas/ptui/'/
>

pt:standard.loginlink Creates a link to the portal
login page. In previous
versions, this tag was
implemented as pt:loginLink.
This syntax is still supported.

For example,

<pt:standard.loginlink
xmlns:pt='http://www.plumt
ree.com/xmlschemas/ptui/'>
Log in
</pt:standard.loginlink>

pt:standard.openerlink Creates a link that can open or
view an object or properties of
an object that already exists
within the portal.

Section 2.4.2.6.1, "Accessing
Oracle WebCenter Interaction
Objects Using Adaptive Tags"

pt:standard.gatewaylin
k

Allows you to
buildgatewayed links to
remote pages.

Section 2.4.2.6.2, "Building
Gatewayed URLs Using
Adaptive Tags"

Tag Function

pt:standard.choose Denotes the start of a secured content section.

pt:standard.when Includes a test condition that defines who has access to the
enclosed content.

pt:standard.otherwi
se

Includes content that should be displayed as default.

Adaptive Portlets

2-106 Web Service Developer's Guide for Oracle WebCenter Interaction

To access user settings stored in the portal database, use the pt:usersetting tag. The tag
is replaced with the value of the user setting specified in the pt:name attribute. This
tag will decode %uHHHH encoded values stored in the portal database. You must
configure the Web Service object to send the appropriate settings. For details on Oracle
WebCenter Interaction settings, see Section 2.6, "Oracle WebCenter Interaction Portlet
Settings".

<pt:userSetting pt:name="myUserSetting"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>

Tree Controls: These tags provide links to a popup window that allows users to select
options from a structured list of objects. For details on implementing these tags, see
Section 2.4.2.6.3, "Creating Tree Controls Using Adaptive Tags".

2.4.2.6.1 Accessing Oracle WebCenter Interaction Objects Using Adaptive Tags To create a
link that can open or view an object or properties of an object that already exists within
the portal, use the pt:standard.openerlink tag.

You can use the pt:standard.openerlink tag for a variety of purposes, including
viewing the User Profile for a user (requires User ID), viewing a community page
(requires Community ID), opening a Remote Server object to edit the base URL
(requires Remote Server ID), and clicking through to a document in the Knowledge
Directory (requires Document ID). The pt:standard.openerlink tag is primarily
controlled by three attributes:

For a full list of class IDs and associated modes, see Section 2.3.4.1.3, "Oracle
WebCenter Interaction Object Type Class IDs and Modes".

Tag Function

pt:standard.tree Creates a form button to a popup window that allows users to
select options from a structured list of objects.

pt:standard.treelink Creates a link to a popup window that allows users to select
options from a structured list of objects.

pt:standard.treeurl Returns a URL to a popup window that allows users to select
options from a structured list of objects (can be used in
JavaScript). Does not display the contents of the tag and should
only be used as a singleton tag (i.e. <pt:standard.treeurl/>),
rather than as a tag with both an open and close tag.

Value Attribute

pt:classid The portal object type.

pt:objectid The ID of the portal object referenced in the Class ID attribute (for example,
the User or Community ID). To access the object ID, use the PRC. For
details, see Section 2.3.4.1.2, "Querying Objects Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs".

pt:mode The action of the link (open/edit, view and view metadata).

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-107

To open a link in a popup window, you must add attributes to the link to control the
popup window. All attributes that are not in the PT namespace are passed through to
the transformed link. The following example opens a community page in a separate
window.

<pt:standard.openerlink xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
pt:objectid='1'
pt:classid='512' pt:mode='2' target='myWindow' onclick=window.top.open
('','myWindow','height=800,width=700,status=no,toolbar=no,menubar=no,location=no')
;>View my Community.</pt:standard.openerlink>

Any time a user's name is displayed on a page, it is a best practice to display a
clickable link to the user’s profile page. The pt:standard.openerlink tag allows
you to create links on demand using the User ID. (As noted above, use the PRC to
access the object ID.) This example is not displayed in a popup window.

<pt:standard.openerlink xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
pt:objectid='" & _ userID & "'
pt:classid='1' pt:mode='2'>"& LocRM.GetString("userName") & _
"</pt:standard.openerlink>

2.4.2.6.2 Building Gatewayed URLs Using Adaptive Tags To buildgatewayed links to
remote pages, use the pt:standard.gatewaylink tag.

Using attributes, you can include references to associated portal objects, usually a
portlet or community. When the link is executed, the portal sends any preferences
associated with the referenced object to the remote server. The
pt:standard.gatewaylink tag supports the following attributes:

The sample code below creates a link to a remote page associated with the portlet with
ID 201. The arguments in the resulting URL tell the portal to send the preferences
associated with the portlet to the remote server.

Note: When you open an object in edit mode from a gatewayed
page, clicking Finish or Cancel will close the window, so you should
always use a popup window. When you open an object in edit mode
from within a portal page (My Page or Community Page), clicking
Finish or Cancel will redirect to the return URI within the same
window, so using a popup window might not be necessary. Always
test your code in the portal to make sure it functions as expected.

Attribute Value

pt:classid The portal object type. The default is portlet (43). The
pt:standard.gatewaylink tag also supports cards (18), Content
Sources (35), and Web Services (47).

pt:objectid The ID of the portal object referenced in the pt:classid attribute (e.g., the
Portlet ID). To access the object ID, use the PRC. For details, see
Section 2.3.4.1.2, "Querying Objects Using Oracle WebCenter
Interaction Development Kit (IDK) Remote APIs".

pt:communityid The ID of the associated Community.

pt:pageid The ID of the associated page (can be positive or negative).

pt:href The URL to the remote page. If you pass in a relative URL, the portal
will use the configuration settings for the referenced portal object to
create the gatewayed URL.

Adaptive Portlets

2-108 Web Service Developer's Guide for Oracle WebCenter Interaction

<pt:standard.gatewaylink class="myStyle"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
pt:objectid='201' pt:href="doStuff.aspx?ID=5">Click here</pt:standard.gatewaylink>

The code below creates a link to a page associated with the Web Service with ID 200,
and also sends the community preferences from the community with ID 301 to the
remote server.

<pt:standard.gatewaylinkpt:href="http://myRemoteServer/myTestPage.jsp"pt:objectid=
"200"
pt:classid="47"pt:communityid="301"xmlns:pt='http://www.plumtree.com/xmlschemas/pt
ui/'/>
Click here</pt:standard.gatewaylink>

You can also use the pt:standard.gatewayLink tag to gateway documents that
have not been crawled or uploaded to the portal using the ID for the associated WWW
Content Source, as shown in the sample code below.

<pt:standard.gatewaylinkpt:href="http://myRemoteServer/mydocs/WhitePaper2002.doc"
pt:objectid="202"pt:classid="35"xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/
'/>
WhitePaper2002</pt:standard.gatewaylink>

You can also use the pt:common.url tag to transform URLs that should be
gatewayed. For details, see Section 2.4.2.4.5, "Transforming URLs Using Adaptive
Tags".

2.4.2.6.3 Creating Tree Controls Using Adaptive Tags To create a form button or link to a
popup window that allows users to select options from a structured list of objects, use
the pt:standard.tree, pt:standard.treelink or pt:standard.treeurl tag.

The pt:standard.tree and pt:standard.treelink tags create a form button or
link, and the pt:standard.treeurl tag returns a URL that can be used in
JavaScript. All three tags use a selection of attributes to control the tree display. The
first four attributes are required.

Attribute Description Default Syntax

pt:Class The ID of the types of
objects to display in the
tree. Community pages are
not supported.
(REQUIRED)

value required pt:Class='<classI
D1>,<classID2>,<c
lassID3>,...'

pt:RootID The ID of the root folder to
be displayed in the tree.
Use ID 1 for all folders.
(REQUIRED)

value required pt:RootID='<folde
rID>'

pt:SubmitMd The mode in which the
tree submits data to the
opening page. Use mode 2
(javascript submit for
remote development).
When the data is
submitted, the javascript
function defined in
pt:Submit is called on
the main page.
(REQUIRED)

value required
(=2)

pt:SubmitMd='2'

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-109

pt:Submit The name of the javascript
function in the parent page
to call when the tree is
submitted (can take in an
array of objects with name,
Object ID, and Class ID).
Do not include
parentheses ("()") in the
value of this attribute.
(REQUIRED)

value required pt:Submit='<javas
criptFunctionName
>'

pt:AllowEmpty Allows users to click finish
in a tree window with
nothing selected:
true=allow no selection;
false=must select.

false pt:AllowEmpty='tr
ue' or
pt:AllowEmpty='fa
lse'

pt:Display Limits the display to the
selected objects, referenced
by Class ID and Object ID.
Cannot be used to display
folders. The Class ID of
each object must be
included in pt:Class.
The pt:RootID must be
specified even though it
will be ignored. Note: Do
not include any folder
Class IDs (17, 20, 515) in
the pt:Class value or the
tree will not display
correctly.

n/a pt:Display='<clas
sID1>,<objectID1>
,<classID2>,<obje
ctID2>,...'
pt:Class='<classI
D1>,<classID2>,..
.' pt:RootID='1'

pt:Form /
pt:Input

Puts the AActivitySpace
ID of the tree space into
the target form input (used
to reopen the tree after it
has been created). The
pt:Form attribute is the
name of the parent form to
which data will be passed
back. The pt:Input
attribute is the name of the
target input in the parent
form. The AActivitySpace
ID of the tree space is
placed in this input.

n/a pt:Form='<formNam
e>' pt:Input='in_
hi_parentSpace'

pt:Hide Hides the specified objects.
(See pt:openerLink for
a list of Class IDs.)

n/a pt:Hide='<classID
1>,<objectID1>,<c
lassID2>,<objectI
D2>,...'

pt:Multi Allows users to select
multiple items:
true=checkboxes,
false=radio buttons.

false pt:Multi='true'
or
pt:Multi='false'

pt:Select The default selected
item(s) in the tree,
referenced by Class ID and
Object ID.

none pt:Select='<class
ID1>,<objectID1>,
<classID2>,<objec
tID2>,...'

Attribute Description Default Syntax

Adaptive Portlets

2-110 Web Service Developer's Guide for Oracle WebCenter Interaction

pt:SelectMd The tree select mode:
1=compositeselect,
2=leafselect,
3=leafcompositeselect (1 =
select folders; 2 = select
objects; 3 = select folders
and objects).

2 pt:SelectMd='<mod
eID>'

pt:ShowRoot Allows you to hide the
root folder: true=display
root folder, false=hide root
folder (if false, subfolders
are displayed at the top
level).

true pt:ShowRoot='true
' or
pt:ShowRoot='fals
e'

pt:SubTitle Subtitle of the tree, for user
instruction (e.g., "Choose a
user.").

none pt:SubTitle='<win
dowSubtitle>'

pt:Title Title of the tree popup
window.

none pt:Title='<window
Title>'

pt:windowFeature
s

Allows you to define the
features argument for the
resulting window.open()
function call, specifying
the features for a standard
browser window.

(see syntax) pt:windowFeatures
='location=no,men
ubar=no,
resizable=yes,hei
ght=400,width=400
'

pt:windowName Window name of the
popup tree, used in the
resulting window.open()
function call.

'_blank1' pt:windowName='<w
indowName>'

pt:Access Advanced attribute.
Access level for the objects
to be displayed: None=0,
Read=1, Select =3, Edit=7,
Admin=15 Note: For
objects in the Knowledge
Directory (folders and
documents), only two
levels of security are
available (0 or 1). Use
pt:Access='1' to allow
users access to Knowledge
Directory objects.

3 pt:Access='<acces
sLevel>'

pt:CommunityMode
/ pt:CommunityID

Advanced attribute.
Specifies whether to
include community objects
in the tree: 1=no
communities, 2=this
community (specified
community + all parent
communities), 3=all
communities. Note: If
CommunityMode=2, you
must specify the
community folder ID (not
the community object ID)
in the pt:CommunityID
attribute.

1 pt:CommunityMode=
'<communityMode>'
pt:CommunityMode=
'2'
pt:CommunityID='<
communityFolderID
>'

Attribute Description Default Syntax

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-111

For a full list of Oracle WebCenter Interaction object type class IDs, see
Section 2.3.4.1.3, "Oracle WebCenter Interaction Object Type Class IDs and Modes".The
following code sample produces a button with an "onclick" action that opens a popup
window.

<pt:standard.tree xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
value="Button
Name" class="gContentSection" pt:windowName='myWindow'
pt:windowFeatures='location=no,menubar=no,height=500,width=300'
pt:RootID='1' pt:Multi='true' pt:SelectMd='2' pt:SubmitMd='2'
pt:Submit='PickerSubmit'
pt:Title='User' pt:SubTitle='Pick users' pt:Class='1'/>

The pt:treeLink tag can be used in the same way, except that it generates an anchor
tag using the supplied text instead of a form button. In this tree control, the selection is
limited to one user.

<pt:standard.treeLink xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
pt:windowName='myWindow'
pt:windowFeatures='location=no,menubar=no,height=500,width=300' pt:RootID='1'
pt:Multi='false'
pt:SelectMd='2' pt:SubmitMd='2' pt:Submit='PickerSubmit' pt:Title='User'
pt:SubTitle='Pick
a user' pt:Class='1'>Pick a user</pt:standard.treeLink>

Clicking the link opens a popup window that allows the user to browse and choose
the referenced object type. (If the popup was opened using the first code sample, the
tree would display checkboxes instead of radio buttons to allow multiple choices.)

As noted above, tree tags require a JavaScript function (named in the pt:Submit
attribute) to handle the submission from the tree. The following sample code takes in
an array with name, Object ID, and Class ID. When the pt:Multi attribute is set to
false (single selections only), only the first set of declarations is necessary.

function PickerSubmit (myInput)
{
item0Name = myInput[0].Name;
item0ObjectID = myInput[0].ObjectID;
item0ClassID = myInput[0].ClassID;

item1Name = myInput[1].Name;
item1ObjectID = myInput[1].ObjectID;
item1ClassID = myInput[1].ClassID;
...
}

pt:DirMode Advanced attribute.
Specifies which mode to
use when selecting objects
from the Knowledge
Directory: 1=Browse
Mode; 2=Edit Mode Note:
The default mode is Edit
(2); users who do not have
edit access to the
Knowledge Directory will
see an "access denied"
error when they access the
tree.

2 pt:DirMode='<dirM
ode>'

Attribute Description Default Syntax

Adaptive Portlets

2-112 Web Service Developer's Guide for Oracle WebCenter Interaction

For optimum usability, the return array can be placed into hidden form elements and
posted back to the source page so that the transformer link can specify which items
should be selected if the user opens the dialog box again.

function returnFromFolderSelection(arrIn){
var tmpObject;
var iLength;

iLength = arrIn.length;

if (iLength > 0) {
tmpObject = arrIn[0];
document.Form1.HiddenSelectedFolderName.value = tmpObject.Name;
document.Form1.HiddenSelectedFolderObjectID.value = tmpObject.ObjectID;
document.Form1.HiddenSelectedFolderClassID.value = tmpObject.ClassID;
}
document.Form1.submit();
}

2.4.2.6.4 Securing Content Based on User Permissions Using Adaptive Tags To insert content
on a page based on conditional statements of user and group membership, use the
pt:standard.choose, pt:standard.when and pt:standard.otherwise tags.

The pt:standard.choose tag denotes the start of a secured content section. The
pt:standard.when tag includes a test condition (pt:test) that defines who has access
to the enclosed content. The pt:standard.otherwise tag includes content that
should be displayed by default.

The value for the pt:test attribute is case-sensitive. Multiple users or groups should
be separated by commas, with semicolons separating user values from group values.
The syntax is as follows:

<pt:standard.choose xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
<pt:standard.when
pt:test="stringToACLGroup('user=userid1,userid2,...;group=groupid1,groupid2,groupi
d3;').isMember($currentuser) xmlns:pt='http://www.Plumtree.com/xmlschemas/ptui/'>
... content ...
</pt:standard.when>
<pt:standard.otherwise xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
... default content ...
</pt:standard.otherwise>
</pt:standard.choose>

For example:

<pt:standard.choose xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
<pt:when pt:test="stringToACLGroup('user=1;').isMember($currentuser)"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
<title>welcome administrator</title></head>
... secret administrator content ...
</pt:standard.when>
<pt:standard.when
pt:test="stringToACLGroup('user=200,201;group=200;').isMember($currentuser)"

Note: In earlier versions of the portal, these tags are implemented as
pt:choose, pt:when and pt:otherwise. This syntax is still
supported.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-113

xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
 <title>the 200 club</title></head>
... content only group 200 or users 200 and 201 can see ...
</pt:standard.when>
<pt:standard.otherwise xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
<title>everyone else</title></head>
... content any user can see ...
</pt:standard.otherwise>
</pt:standard.choose>

You can also test if the current user is a guest user (not logged in). Since there can be
multiple guest users in the portal, simply testing for default guest user ID 2 does not
work.

<pt:standard.choose>
 <pt:standard.when pt:test="isGuest($currentuser)">
 ... guest user content ...
 </pt:standard.when>
 <pt:standard.otherwise>
 ... logged in user content ...
 </pt:standard.otherwise>
</pt:standard.choose>

2.4.2.7 Navigation Adaptive Tag Library (pt:plugnav)
In Oracle WebCenter Interaction, customizing navigation can be implemented without
coding against the portal UI. The Navigation tag library (pt:plugnav) is used to
manage display of navigation elements.

The tags in the pt:plugnav tag library must be used with tagsfrom the pt:ptdata tag
library. These tags are available for use only in Oracle WebCenter Interaction.

For a full list of tags and attributes, see the tagdocs.

2.4.2.7.1 Implementing Custom Navigation Using Adaptive Tags Navigation tags are used
with Data tags to build complete navigation solutions for Oracle WebCenter
Interaction.

Tag Function

pt:plugnav.ddmenurowcontainer Manages the display and positioning of
navigation tabs that activate dropdown
menus. (Only accepts ddmenutab or
ddmenusimpletabs or equivalent as data.)

pt:plugnav.ddmenusimpletabs Defines a list of simple tabs using the data
provided. (Must be used with
ddmenurowcontainer or equivalent.)

pt:plugnav.ddmenutab Defines a tab that activates a dropdown menu
with the data provided. (Must be used with
ddmenurowcontainer or equivalent.)

pt:plugnav.horizontalrowcontainerm
enu

Generates and displays HTML for dynamic
horizontal menus. (Only accepts
horizontalrowtab or equivalent as data.)

pt:plugnav.horizontalrowtab Defines a horizontal menu tab that displays a
row of links using the data provided. (Must be
used with horizontalrowcontainermenu
or equivalent.)

Adaptive Portlets

2-114 Web Service Developer's Guide for Oracle WebCenter Interaction

The first step is coding the portlet. Initialize the menus by retrieving the navigation
links using data tags. To create a collection, set the same ID on multiple data tags. For
details on the Data tag library, see Section 2.4.2.10, "Data Adaptive Tag Library
(pt:ptdata)".

<html>

<!-- Links to my pages are stored in mypagemenu -->
<pt:ptdata.mypageactionsdata pt:id='mypagemenu' />
<pt:ptdata.mypagesdata pt:id='mypagemenu' />

<!-- Links to my communities are stored in commmenu -->
<pt:ptdata.communityactionsdata pt:id='commmenu' />
<pt:ptdata.mycommunitiesdata pt:id='commmenu' />

<!-- Links to directory are stored in directorymenu -->
<pt:ptdata.directorybrowsedata pt:id='directorymenu' />
<pt:ptdata.directoryeditdata pt:id='directorymenu'/>

<!-- Mandatory links are stored in mandlinks-->
<pt:ptdata.mandatorylinksdata pt:id='mandlinks' />
<pt:ptdata.mandatorylinknamedata pt:key='mandlinksname'/>

<!--Links to administration and mandatory communites are stored in menutabs -->
<pt:ptdata.administrationdata pt:id='menutabs' />
<pt:ptdata.mandtabcommsdata pt:id='menutabs'/>

Next, create the structure to display the menus. To replace standard portal navigation
using a header portlet, use navigation tags to handle display as shown in the code
sample below.

<!-- Dropdown menus section begin -->
<pt:plugnav.ddmenurowcontainer pt:menuvar='midrowmenu' pt:hideemptymenus='true' >
<pt:plugnav.ddmenutab pt:containervar='midrowmenu' pt:datavar='mypagemenu'
pt:text='$#1840.ptmsgs_portalbrowsingmsgs' />
<pt:plugnav.ddmenutab pt:containervar='midrowmenu' pt:datavar='commmenu'
pt:text='$#1841.ptmsgs_portalbrowsingmsgs' />
<pt:plugnav.ddmenutab
pt:containervar='midrowmenu'pt:datavar='directorymenu'pt:text='$#1842.ptmsgs_
portalbrowsingmsgs' />
<pt:plugnav.ddmenutab pt:containervar='midrowmenu' pt:datavar='mandlinks'
pt:text='$mandlinksname' />
<pt:plugnav.ddmenusimpletabs pt:containervar='midrowmenu' pt:datavar='menutabs' />
</pt:plugnav.ddmenurowcontainer>
<!-- Dropdown menus section end -->

You can also display navigation links within a portlet, as shown in the sample code
below.

<table cellpadding='0' cellspacing='0' width='200' border='0'>
 <tr>
 <td height='2' colspan='3'>
 </td>
 </tr>
 <tr class='menuHeaderBg'>
 <td align='left' valign='middle' height='20' colspan='3'
class='navSidebarSectionHeader'>
 My Communities
 </td>
 </tr>

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-115

<!-- links to communities are entered here -->
<pt:logic.foreach pt:data='commmenu' pt:var='temp'>
 <tr class='navMidtabBg'>
 <td height='16' colspan='2' class='navMidtabBtn'>
 <table cellpadding='0' cellspacing='0' width='100%'>
 <tr>
 <td height='20' width='100%' nowrap='nowrap' colspan='1'
class='objectBtn'>

 <pt:core.html pt:tag='img' src='$temp.img' alt='' border='0'
align='absmiddle' height='20' width='20' />
 <pt:core.html pt:tag='a' href='$temp.url'>
 <pt:logic.value pt:value='$temp.title' />
 </pt:core.html>

 </td>
 </tr>
 </table>
 </td>
 </tr>
</pt:logic.foreach>
</table>

You can also add portal UI elements to custom navigation using UI tags. For details on
UI tags, see Section 2.4.2.9, "UI Adaptive Tag Library (pt:ptui)".To deploy a custom
navigation header portlet in Oracle WebCenter Interaction (to replace standard
navigation), follow the steps below.

1. Register the portlet in the portal.

2. Create an Experience Definition that uses the custom navigation header portlet
you registered in step 1.

3. Create an Experience Rule to direct users to the new Experience Definition. For
details on Experience Definitions and Experience Rules, see the Administrator
Guide for Oracle WebCenter Interaction.

2.4.2.8 Conditional Adaptive Tag Library (pt:ptcond)
Conditional tags allow you to peform logic to determine the current page that the user
is on, including whether or not the current page is in a Community or not. The tags in
this library are available for use only in Oracle WebCenter Interaction.

Tag Function

pt:ptcond.iscurrenturl Outputs the contents of the tag when on a
specific page by comparing against the page
URL.

pt:ptcond.iscurrcommunity Outputs the contents of the tag when in a
specific Community by comparing against the
ID or name. Nest two or more tags to perform
checks where both id and name need to
match.

pt:ptcond.iscurrcommpage Outputs the contents of the tag when on a
specific Community page by comparing
against the page ID or name. Nest two or
more tags to perform checks where both id
and name need to match.

Adaptive Portlets

2-116 Web Service Developer's Guide for Oracle WebCenter Interaction

For example, you can use the pt:ptcond.iscurrenturl tag to determine where in
the portal the user is currently. You can also retrieve additional information from the
query string, such as the user ID, as shown in the sample code below.

<pt:ptcond.iscurrenturl pt:loginpage="true"/>
You are on the Login Page
</pt:ptcond.iscurrenturl>
<pt:ptcond.iscurrenturl pt:contains1="server.pt/mypage"
pt:contains2="server.pt/directory"/>
You are either on a MyPage or Directory Page
</pt:ptcond.iscurrenturl>
<pt:ptcond.iscurrenturl pt:contains1="space=MyPage"/>
 <pt:ptcond.iscurrenturl pt:contains1="userid=1"/>
 You are on a MyPage and your User Id is 1
 </pt:ptcond.iscurrenturl>
</pt:ptcond.iscurrenturl>
This tag library allows you to determine the current community in a variety of ways,
as shown in the examples below.

<pt:ptcond.isincommunity>
 You are in Community <pt:logic.value pt:value="$communityName"/>.
</pt:ptcond.isincommunity>
<pt:ptcond.iscurrcommunity pt:id="350"/>
This Community id is 350.
</pt:ptcond.iscurrcommunity>
<pt:ptcond.iscurrcommpage pt:name="^Community Page^">
You are on the Community Page with the name 'Community Page'
</pt:ptcond.iscurrcommpage>

2.4.2.9 UI Adaptive Tag Library (pt:ptui)
UI tags allow you to add standard portal UI components to any portlet in Oracle
WebCenter Interaction, including search inputs and buttons, login components, access
to account settings, and more.

The tags in the pt:ptui tag library are available for use only in Oracle WebCenter
Interaction. Additional tags from the pt:standardtag library can be used to display
instance-specific information,including the date and time and the page name and type.
For details,see Section 2.4.2.6, "Standard Adaptive Tag Library (pt:standard)".

For a full list of tags and attributes, see the tagdocs.

pt:ptcond.isincommunity Outputs the contents of the tag when in a
Community.

pt:ptcond.isnotincommunity Outputs the contents of the tag when NOT in
a Community.

Tag Function

pt:ptui.welcome Displays the user's personalized welcome
message. Used as singleton only (does not
display the contents of the tag).

pt:ptui.myhome Displays a link to the user's home page
(MyPage or community). Can be used as
singleton or wrapper for HTML.

Tag Function

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-117

pt:ptui.myaccount Displays a link to the user's My Account page.
Can be used as singleton or wrapper for
HTML.

pt:ptui.createaccount Displays a link to the Create Account page.
Can be used as singleton or wrapper for
HTML.

pt:ptui.searchform Displays the basic search form without any
buttons or links.

pt:ptui.basicsearchbutton Displays the basic search button. Can be used
as singleton or wrapper for HTML.

pt:ptui.advancedsearchbutton Displays the advanced search button. Can be
used as singleton or wrapper for HTML.

pt:ptui.federatedsearchbutton Displays the federated search button. Can be
used as singleton or wrapper for HTML.

pt:ptui.topbestbetsearchbutton Displays the top best bet button. Can be used
as singleton or wrapper for HTML. (Must be
used with pt:ptui.searchform.)

pt:ptui.help Displays the help image and link. Can be used
as singleton or wrapper for HTML.

pt:ptui.login Displays a login/logoff link based on the
current state of the user. (If the user is logged
in, the URL executes logoff; if the user is not
logged in, the URL executes login.)

pt:ptui.loginform Outputs the basic login form without any
buttons or links.

pt:ptui.loginusername Displays the user name text box for the login
form.

pt:ptui.loginpassword Displays the password text box for the login
form.

pt:ptui.loginbutton Displays the login button.

pt:ptui.loginauthsource Displays the authentication source input.
Note: This tag is string- and case-sensitive.
The name of the authentication source must
match the entry in portalconfig.xml.

pt:ptui.loginrememberme Displays the "Remember My Password"
checkbox for the login form.

pt:ptui.loginoptionsenabled Conditionally processes content based on the
parameters specified (e.g.,
remembermypassword).

pt:ptui.error and pt.ptui.errortext Displays portal error messages. Can be used
as singleton or wrapper for formatted error
text. The ptui.errortext tag is used to reformat
or modify error message text.

<pt:ptui.error>
<p style="msg1">
<pt:ptui.errortext pt:text="Call support
at 555-1212"/>
</p>
</pt:ptui.error>

pt:ptui.include Used to include JSComponent scripts, string
files and css files.

Tag Function

Adaptive Portlets

2-118 Web Service Developer's Guide for Oracle WebCenter Interaction

2.4.2.9.1 Implementing Custom UI Elements Using Adaptive Tags UI tags can be used to
insert Oracle WebCenter Interaction UI elements in portlets to create custom UI
layouts.

The sample code below implements standard portal header elements using tags. You
can also add navigation elements to any portlet using Navigation Tags. For details, see
Section 2.4.2.7, "Navigation Adaptive Tag Library (pt:plugnav)". Additional tags from
the Standard tag library can be used to display instance-specific information, including
the date and time and the page name and type. For details, see Section 2.4.2.6,
"Standard Adaptive Tag Library (pt:standard)" .

<!-- Topbar -->
<table cellpadding="0" cellspacing="0" width="100%" border="0" class="banTopbarBg"
id="pt-topbar">
 <tr>
 <td align="left" valign="middle" nowrap="nowrap">
 <pt:ptui.myhome pt:usespan="true"/>

 <pt:ptui.welcome pt:usespan="true" />

 <pt:ptui.myaccount pt:usespan="true" />

 <pt:ptui.login pt:usespan="true"/>

 </td>
 <td align="right" valign="middle" nowrap="nowrap">
 <pt:ptui.rulesdebug/>
 <pt:ptui.help/>
 <pt:ptui.searchform pt:usespan="true">
 <pt:ptui.basicsearchbutton/>
 <pt:ptui.advancedsearchbutton/>
 <pt:ptui.federatedsearchbutton/>
 </pt:ptui.searchform>
 </td>
 </tr>
</table>
<!-- Topbar section end -->

2.4.2.10 Data Adaptive Tag Library (pt:ptdata)
The Data tag library (pt:ptdata) provides access to URLs for most navigation-related
components, such as a user’s my pages, my communities, subcommunities, my
account page or administration.

The tags in the pt:ptdata tag library are available for use only in Oracle WebCenter
Interaction. Data tags return URL attributes as data; they must be used in conjunction
with a display tag (navigation tags or pt:core.html).

pt:ptui.rulesdebug Displays a debug button to display experience
rules debugging messages in a popup
window. Can be used as singleton or wrapper
for HTML.

Tag Function

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-119

Each data tag requires an ID that is set with an attribute and returns a single URL, a
collection of URLs, or nothing. Data tags might return no URL at all if a user does not
have access to the referenced page. You can also create a collection of data tags by
setting the same ID on multiple data tags.

<pt:ptdata.mypageactionsdata pt:id="mypagemenu" />
<pt:ptdata.mypagesdata pt:id="mypagemenu" />

In addition to the URL, each navigation data tag also provides additional information,
such as the title of the URL and the icon associated with the URL. Certain types of
URLs also contain objectIDs, classIDs, or a current page flag. It is also possible to get
values for individual query string parameters from an URL. The URL and all other
data is stored as a dataobject (DO) component. Each DO component can be accessed
through a text replacement syntax. Data tags take in the following URL attributes: title,
url, uri, img, imgwidth, and imgheight. For example, the following code gets the title
and URL component from the mydata URL.

<pt:ptdata.administrationdata pt:id="mydata" />
<pt:logic.value pt:value="$mydata.title"/>
<pt:logic.value pt:value="$mydata.url"/>
After transformation, this code generates the following data: "Administration
http://servername/portal/server.pt?open=space&name=ObjMgr&parentid=7&paren
tname=ObjMgr&control=AdminRedirect&in_hi_userid=1&cached=true
(The title text "Administration" comes from the first value tag, and the URL comes
from the second value tag.)

The tables below summarize available data tags. For an example of implementing
custom navigation using data tags, see Section 2.4.2.7, "Navigation Adaptive Tag
Library (pt:plugnav)". For a full list of tags and attributes for each tag, see the tagdocs.

Basic Portal Components: These tags provide URLs to access standard portal
components, including login/logoff, Administration, Directory, search, and online
help.

MyPages: These tags provide URLs to MyPage components, including editors.

Tag Function

pt:ptdata.loginlogoffdata Returns URL to Login/Logoff action based on
the current state of the user. (If the user is logged
in, the URL executes logoff; if the user is not
logged in, the URL executes login.)

pt:ptdata.myaccountdata Returns URL to current user's My Account page.

pt:ptdata.administrationdata Returns URL to portal Administration. The URL
is only returned if the user has permission to
access Administration.

pt:ptdata.directorybrowsedata Returns URL to the portal Directory in browse
mode.

pt:ptdata.directoryeditdata Returns URL to the portal Directory in edit mode.

pt:ptdata.advancedsearchdata Returns URL to the Advanced Search page.

pt:ptdata.federatedsearchdata Returns URL to the Federated Search page.

pt:ptdata.helppagedata Returns URL to the portal online help.

pt:ptdata.genericurl Returns URL based on parameters set in tag
attributes.

Adaptive Portlets

2-120 Web Service Developer's Guide for Oracle WebCenter Interaction

Experience Definitions: These tags provide URLs to experience-specific components
as specified in the experience definition associated with the current user.

Communities: These tags provide URLs to community components, and lists of URLs
for community pages that meet specific conditions, including subcommunities, related
communities, and a user's current communities.

Tag Function

pt:ptdata.mypagesdata Returns a list of URLs to the user's MyPages.

pt:ptdata.mypageactionsdata Returns a list of URLs to the user's
MyPage-related actions.

pt:ptdata.editmypageactionsdata Returns URL to launch the Edit MyPage
editor.

pt:ptdata.editmypageportletprefsda
ta

Returns URL to launch the Edit MyPage
Portlet Preferences editor.

pt:ptdata.createnewmypagedata Returns URL to launch the Create New
MyPage editor. The URL is not returned if the
user already has the maximum number of
MyPages.

pt:ptdata.addmypageportletsdata Returns URL to launch the Add Portlets to
MyPages editor.

pt:ptdata.deletemypagedata Returns URL to the Delete MyPage action. The
URL is not returned if the user is on the main
MyPage.

Tag Function

pt:ptdata.myhomedata Returns URL to current user's Home page as
specified in the associated experience
definition.

pt:ptdata.mandatorylinksdata Returns a list of URLs to the user's Mandatory
Links as specified in the associated experience
definition.

pt:ptdata.mandatorylinksnamedata Returns the name of the Mandatory Links
folder as a string.

Tag Function

pt:ptdata.mycommunitiesdata Returns a list of URLs to the communities in
the user's My Communities list.

pt:ptdata.mandtabcommsdata Returns a list of URLs to the user’s mandatory
communities.

pt:ptdata.communitypagesdata Returns a list of URLs to the pages in the
specified community.

pt:ptdata.currcommunitypagesdata Returns a list of URLs to the pages in the
current community.

pt:ptdata.subcommunitiesdata Returns a list of URLs to the subcommunities
for the specified community.

pt:ptdata.currsubcommunitiesdata Returns a list of URLs to the subcommunities
for the current community.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-121

2.4.2.11 Adaptive Tag Control Flow
This page describes the control flow of a typical portal request that makes use of
Adaptive Tags.

1. First, the portal page requests portlet data from the Transformer.

2. The Transformer retrieves the requested portlets from the remote portlet servers.
Native UI tags, such as JSP Tags or .NET web controls, are processed on the
remote server before the HTML is returned to the Transformer.

3. The Transformer converts the HTML into markup data including both HTML and
Adaptive Tags. This markup data is passed to the Tag Transformation Engine,
which processes the tags and converts them into standard HTML.

pt:ptdata.relatedcommunitiesdata Returns a list of URLs to the related
communities for the specified community.

pt:ptdata.currrelatedcommunitiesda
ta

Returns a list of URLs to the related
communities for the current community.

pt:ptdata.communitykddata Returns the URL to the community
Knowledge Directory

pt:ptdata.communityactionsdata Returns a list of URLs to the user's
community-related actions.

pt:ptdata.editcommunitydata Returns URL to launch the Community Editor
for the current community.

pt:ptdata.createnewcommpagedata Returns URL to launch the Create New
Community Page page of the Community
Editor. The URL is returned only if the user
has permission to edit the community.

pt:ptdata.addcommunityportletsdata Returns URL to launch the Add Portlets page
of the Community Editor. The URL is
returned only if the user has permission to
edit the community.

pt:ptdata.joincommunitiesdata Returns URL to launch Join Communities
editor.

pt:ptdata.joinparentcommunitydata Returns URL to launch Join Communities
editor for the parent Community of the
current Community.

pt:ptdata.joincurrcommunitydata Returns URL to the Join Current Community
action.

pt:ptdata.joincurrparentcommunityd
ata

Returns URL to the Join Current Community
action for the parent Community of the
current Community.

pt:ptdata.unsubscribecommunitiesda
ta

Returns URL to the Unsubscribe Communities
editor.

pt:ptdata.navsettingvalue Returns a list of URLs to the communities
listed in the NavigationSettings.xml file,
specified by the commID attribute.

pt:ptdata.communityhierdata Takes in one or more community IDs and
creates a hierarchical data collection of pages
for the specified communities. Hierarchical
data tags are used with display tags with
nested data such as a tree or multi-level
dropdown menus.

Tag Function

Adaptive Portlets

2-122 Web Service Developer's Guide for Oracle WebCenter Interaction

4. Finally, the HTML is returned to the portal page where it is displayed to the end
user.

The Tag Transformation Engine converts markup data from the Transformer into a
tree of HTML and Adaptive Tags. The Engine moves through the tree and outputs
HTML and processes the tags. When a tag is processed, it can cause all of its child
nodes to be processed, or it can skip that entire section of the tree.

In this example, when the choose tag is executed, it determines whether or not the
current user matches the conditions in the choose clause. If it does, the When tag will
display the HTML inside the tag. If not, the otherwise tag will display its HTML.

2.4.2.12 Creating Custom Adaptive Tags
The Adaptive Tag Framework allows you to create custom tags for use in portlets and
gatewayed pages. For example, the portletdefaultlayout.html file in the pagelayouts
directory on the imageserver uses a tag definition.

The easiest way to define a custom tag is by using the pt:core.tagdef tag and the
associated tag library. Custom tag definitions are declared in the tag definition file
(tagdef.html), by default located on the portal Image Service. This file is automatically
processed when the pt:logic.includetagdef tag is used to display a custom tag
definition. It is also possible to declare tag definitions in portlets or adaptive layout
files, but the tag definition will only be available on that page. Adaptive tags in a tag
definition are not executed until displayed with the pt:logic.includetagdef.

In the example below from the tagdef.html file, the script that implements the tag
functionality is removed for simplicity.

<pt:core.tagdef pt:defid="menuentry">
 <pt:core.tagdefarg pt:name="label" pt:desc="Label text to display" />
 <pt:core.tagdefarg pt:name="data" pt:desc="Name of tag variable with tag data
to populate the tree with" />
 <pt:core.tagdefarg pt:name="scope" pt:defaultvalue="portlet request"
pt:desc="Tag scope where the tag data is set" />
 <script type="text/javascript">

 </script>
</pt:core.tagdef>

<pt:core.tagdef pt:defid="menubar">
 <pt:core.tagdefarg pt:name="menuid" pt:desc="Identifier for this menu
instance." />

Tag Function

pt:core.tagdef Defines a block of arbitrary HTML and/or tags to display in
multiple locations.

pt:core.tagdefshared Defines a block of content that is only displayed once per page
for each tag definition. Use this tag for Javascript, CSS or HTML
that is shared between multiple tag definitions.

pt:core.tagdefarg Defines the argument values expected by the tag definition.
Argument values are passed to tag definitions by declaring
XML attributes on the includetagdef tag.

pt:core.includetagdef Displays tag definitions, the blocks of HTML and Adaptive
Tags created by the pt:logic.tagdef tag. Use tag variables to pass
run-time parameters to tag definitions. Names and values of
XML attributes (attributes without the pt: prefix) will be
converted to tag scope tag variables.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-123

 <pt:core.tagdefarg pt:name="vertical" pt:defaultvalue="0" pt:desc="Pass in 1
to display menu labels vertically, 0 to display horizontally" />
 <pt:core.tagdefarg pt:name="labelClass" pt:defaultvalue="" pt:desc="CSS class
to style labels in menu" />
 <script type="text/javascript">
 ...
 </script>
</pt:core.tagdef>
In the portlet that displays the custom tag definition, the includetagdef tag uses
variables to pass arguments to the tag definition.

<pt:ptdata.communityhierdata pt:id="commdata1" pt:commid="200"/>
<pt:ptdata.communityhierdata pt:id="commdata2" pt:commid="201"/>

<pt:core.includetagdef pt:defid="menubar" menuid="topbar" />
<pt:core.includetagdef pt:defid="menuentry" menuid="topbar" data="commdata1"
label="Menu Item 1" />
<pt:core.includetagdef pt:defid="menuentry" menuid="topbar" data="commdata2"
label="Menu Item 2" />
For more information and sample code, see the tagdocs.

2.4.2.12.1 Coding Custom Tags with the ATag Base Class If you want to define a custom
tag for a range of use in multiple applications, the Adaptive Tag Framework provides
support for developing custom tags in both Java and .NET. The ATag class is the base
class used to write custom tags. To implement a custom tag, follow the steps below.

1. To implement a new tag, you must have a tag library. A tag library is simply a .jar
or .dll file with exactly one class that implements ITagLibraryMetaData.

Java

public static final TagLibraryMetaData LIBRARY = new TagLibraryMetaData
("Sample Tags", "sample", "This library provides sample tags.", 1.0);
.NET

public static readonly TagLibraryMetaData LIBRARY = new TagLibraryMetaData
("Sample Tags", "sample", "This library provides sample tags.", 1.0);

2. Create one public static final ITagMetaData member variable that provides the
name and description of the tag. Create a public static final
RequiredTagAttribute or OptionalTagAttribute member variable for
every attribute that the tag supports. You can also use standard HTML and XML
attributes; see Section 2.4.2.12.3, "Accessing Attributes in Custom Adaptive Tags".

Java

public static final ITagMetaData TAG;
public static final RequiredTagAttribute MESSAGEATTRIBUTE;
public static final OptionalTagAttribute LOCATIONATTRIBUTE;

static
{
TAG = new TagMetaData("hellolocation", "This tag displays a hello message for
the given location.");
MESSAGEATTRIBUTE = new RequiredTagAttribute("message", "The message to display
for hellolocation tag", AttributeType.STRING);
LOCATIONATTRIBUTE = new OptionalTagAttribute("location", "The sample location
attribute for hellolocation tag", AttributeType.STRING, "World");
}

.NET

public static readonly ITagMetaData TAG;

Adaptive Portlets

2-124 Web Service Developer's Guide for Oracle WebCenter Interaction

public static readonly RequiredTagAttribute MESSAGEATTRIBUTE;
public static readonly OptionalTagAttribute LOCATIONATTRIBUTE;

static HelloLocationTag()
{
TAG = new TagMetaData("hellolocation", "This tag displays a hello message for
the given location.");
MESSAGEATTRIBUTE = new RequiredTagAttribute("message", "The message to display
for hellolocation tag", AttributeType.STRING);
LOCATIONATTRIBUTE = new OptionalTagAttribute("location", "The sample location
attribute for hellolocation tag", AttributeType.STRING, "World");
}

Type validation is performed by the tag framework automatically. If an optional
attribute is not present in the HTML, the tag framework will use the default value.
In the same code below, the optional attribute has a default value of "World.".

3. Implement the DisplayTag abstract method. Use this method to create and
display HTML. To display any HTML and tags defined within the tag, call
ProcessTagBody and return the resulting HTML. The sample code below adds
the "Hello" string with a user-specified location to an HTMLElement and returns it
to be displayed.

Java

public HTMLElement DisplayTag()
{
String strLocation = GetTagAttributeAsString(LOCATIONATTRIBUTE);
String strMessage = GetTagAttributeAsString(MESSAGEATTRIBUTE);
HTMLElementCollection result = new HTMLElementCollection();
result.AddInnerHTMLString(strMessage + strLocation + "!");
return result;
}

.NET

public override HTMLElement DisplayTag()
{
String strLocation = GetTagAttributeAsString(LOCATIONATTRIBUTE);
String strMessage = GetTagAttributeAsString(MESSAGEATTRIBUTE);
HTMLElementCollection result = new HTMLElementCollection();
result.ddInnerHTMLString(strMessage + strLocation + "!");
return result;
}

4. If the tag should not display any HTML contained within the tag, use the
GetTagType method to return TagType.NO_BODY.

Java

public TagType GetTagType()
{
return TagType.NO_BODY;
}

.NET

public override TagType GetTagType()
{
return TagType.NO_BODY;
}

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-125

5. Implement the Create abstract method to return a new instance of the tag.

Java

public ATag Create()
{
return new HelloLocationTag();
}

.NET

public override ATag Create()
{
return new HelloLocationTag();
}

The ATag class allows you to include a wide range of functionality in custom tags. For
a full list of interfaces and methods, see the tagdocs. For links to all tagdocs, see
Appendix A, "API Libraries". For details on deploying your custom tag, see
Section 2.4.2.12.8, "Deploying Custom Adaptive Tags".

2.4.2.12.2 Accessing Browser Session Information in Custom Adaptive Tags To access
browser session information from a custom adaptive tag, use the IEnvironment
class.

The IEnvironment class provides access to information about the current request
and user, including the following:

■ HTTP Request and Response: Retrieve the Request or Response objects, or the
Request URL. For example: IXPRequest request =
GetEnvironment().GetCurrentHTTPRequest();

■ User information: Retrieve the user's session, or key information including
language, locale, time zone, and access style (standard, 508, or low bandwidth).
For example: String strTZ = GetEnvironment().GetTimeZone();

■ VarPacks: Retrieve any VarPacks associated with the application in which the tag
is executed.

2.4.2.12.3 Accessing Attributes in Custom Adaptive Tags To access attributes used in a
custom tag, use one of the GetTagAttribute* methods.

All basic data types are supported as attributes (defined in the AttributeType
class), including boolean, char, double, int, long and string. The "pt:" attributes specify
the logic for the tag, while any non-pt attributes specify the behavior of the resulting
HTML tag. Non-pt attributes are only applicable in tags that output a simple HTML
tag.

■ To access pt attributes, use the appropriate GetTagAttributeAs* method using
the attribute name. A method is provided for each supported attribute type, e.g.,
GetTagAttributeAsLong. The GetTagAttribute method is provided for
backwards compatibility and should not be used.

1. First, define the attribute: MODE = new
OptionalTagAttribute("mode", "Turns debug mode on and
off.", AttributeType.BOOLEAN, "true");

2. Then, access the attribute in the DisplayTag method:boolean
bNewDebugMode = GetTagAttributeAsBoolean(MODE);

■ To access non-pt (XML/HTML) attributes, use the GetXMLTagAttribute
method using the attribute name, or GetXMLTagAttributesAsString to

Adaptive Portlets

2-126 Web Service Developer's Guide for Oracle WebCenter Interaction

retrieve all non-pt attributes. result.AddInnerHTMLElement(new
HTMLGenericElement("<a href=\"" + GetHREF() + "\" " +
GetXMLTagAttributesAsString() + ">"));

The ITagMetaData, RequiredTagAttribute, and OptionalTagAttribute
objects pre-process tag attributes (presence, correct type, and default values). If the
required attributes are not correct, an error is logged and the tag and its children are
skipped. An HTML comment describing the tag and error is displayed instead.

2.4.2.12.4 Storing and Accessing Custom Data in Custom Adaptive Tags To store custom
data as member variables using a custom tag, use the SetStateVariable or
SetStateSharedVariable methods. To retrieve it, use GetStateVariable or
GetStateSharedVariable.

Standard variables (stored with SetStateVariable) can only be accessed by tags in
the same library. Shared variables (stored with SetStateSharedVariable) can be
accessed by tags from any library. To prevent tags from other libraries from editing a
shared variable, set bOwnerEditOnly to true when the shared variable is stored (tags
in other libraries will still be able to read the variable).The Scope parameter
determines who can see the data and how long it stays in memory. The following
options are defined in the Scope class:

Scope Description

Application Scope Data is visible to all tags and all users, and is
only removed when the application is
restarted. Therefore, care should be used
when storing data on the application to make
sure it does not become cluttered with large
amounts of data.

HTTP Request Scope Data will be visible to all tags in the same
HTTP Request as the current tag, and is
removed from memory when the HTTP
Request is finished.

Session Scope Data is visible to all tags for the current user,
and is cleared from memory when a user logs
out and logs in again.

Persistent Session Scope Data is visible to all tags in the same HTTP
session, and is only removed from memory
when the browser is closed or the browser
session times out. Note: Data is not cleared on
user logout, so do not cache anything on this
scope that could be considered a security risk
if it was leaked to another user. Most tags
should use Session Scope for HTTP Session
data storage (as described above).

Portlet Request Scope Data is visible to all tags in the same portlet as
the current tag, and is removed from memory
when the portlet is finished displaying. Tags
in other portlets on the same page will not be
able to see the data.

Tag Scope Data can only be seen by children of the
current tag and is removed from memory
when the tag is finished. (For example, in the
following tags:
<pt:atag><pt:btag/></pt:atag><pt:ctag/>,
data stored in Tag Scope by "atag" would be
visible to "btag" but not to "ctag.")

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-127

If data is stored directly in the tag in member variables (not recommended), override
the ReleaseTag method to release the data stored on the tag.

/**
* @see com.plumtree.portaluiinfrastructure.tags.ATag#ReleaseTag()
*/
public void ReleaseTag()
{
// Release all member variables.
m_strPreviousRequestURL = null;
}

2.4.2.12.5 Including JavaScript in Custom Adaptive Tags To include JavaScript in a tag, use
the AddJavaScript method inside the DisplayTag method.

For example:

HTMLScriptCollection scriptCollection = new HTMLScriptCollection();
HTMLScript script = new HTMLScript("text/javascript");
scriptCollection.AddInnerHTMLElement(script);
script.AddInnerHTMLString("function myTest() { alert('test'); }");
AddJavascript(scriptCollection);
To include common JavaScript that can be shared between multiple instances of a tag
(i.e. JavaScript that is displayed once per page, regardless of how many tags of a
certain type there are), override the DisplaySharedJavascript method.
DisplaySharedJavaScript is called automatically by the framework.

/**
* Adds the PTIncluder object to the client. This object is used for
* retrieving JSComponent client classes from a page.
*/
public HTMLScriptCollection DisplaySharedJavascript()
{
HTMLScriptCollection result = new HTMLScriptCollection();
HTMLScript script = new HTMLScript("text/javascript");
result.AddInnerHTMLElement(script); script.SetSrc("/myjsfile.js");
return result;
}

Note: Displaying an HTMLElement in a tag and caching it so
another tag can add more HTML is not supported. HTMLElement
trees can be generated and stored for later use as long as they are
self-contained trees and used in a read-only way. It is safest to clone a
cached HTMLElement tree before trying to display it again to make
sure there are no threading problems.

Note: It is a best practice not to use static fields for data storage in
tags. Each tag instance is guaranteed to be accessed by only a single
thread at a time, but there may be multiple threads accessing different
instances of the same tag class at the same time, either from the same
user or a different user. This means that any static fields must be
accessed using synchronized methods. Since there can be multiple
instances of the same tag running at the same time, state variables set
in shared scopes (Session, Persistent Session and Application) could
change values during the execution of a single tag.

Adaptive Portlets

2-128 Web Service Developer's Guide for Oracle WebCenter Interaction

If there are errors in the tag and the JavaScript cannot be displayed properly, the tag
should throw an XPException with an error message, and the tag framework will
log the error and add the message and stack trace to the HTML as an HTML comment.
The message contents will be HTML encoded before being added to the comment.

2.4.2.12.6 Using Nested Tags in Custom Adaptive Tags Tags can be used within other tags.
To implement nested tags, use the RequiredParentTag, RequiredChildTag and
RelatedChildTag member variables.

The outer tag is referred to as the "parent" tag. Any tags within a parent tag are
referred to as "child" tags of that tag. If the tag is only intended for use within a
particular parent tag, create a public static final RequiredParentTag member
variable. If there are multiple RequiredParentTag members, at least one of the
parent tags must be present for the child tag to function. If the tag must include a
particular child tag to function, create a public static final RequiredChildTag
member variable for each tag that is required inside the parent tag. If the child tag is
not required for the parent tag to function, but is still related to that tag, create a public
static final RelatedChildTag member variable instead.

public static final RequiredChildTag DATA_OBJECT;
static
{
... DATA_OBJECT = new RequiredChildTag(DataObjectTag.TAG);
}

2.4.2.12.7 Implementing Non-Standard Custom Adaptive Tag Types To implement
non-standard tag types in custom adaptive tags, including 508-accessible, looping or
singleton tags, override the associated method.

■ To display a custom tag in non-standard access styles (508 or low bandwidth),
override the SupportsAccessStyle method. The default implementation of the
SupportsAccessStyle method will cause the tag to be skipped in 508 and
low-bandwidth mode. Make sure that tags that support 508 mode can function
without JavaScript, since JavaScript will not be displayed in 508 mode.

■ If the tag displays the tag body more than once (looping tag), override the
GetTagType() method and return TagType.LOOPING.

■ If the tag never displays the tag body (singleton tag), override GetTagType()
and return TagType.NO_BODY.

2.4.2.12.8 Deploying Custom Adaptive Tags To deploy custom adaptive tags, follow
these steps.

1. Navigate to PORTAL_HOME\settings\portal and open CustomTags.xml in a text
editor (you might need to make the file writeable).

2. Find the <AppLibFiles> tag and add a new entry using the name of the .jar/.dll
file used to define the custom tag library (e.g., mytags).

Note: JavaScript is not displayed in 508 mode for either method,
since section 508 compliant browsers do not support JavaScript.

Note: If required parent or child tags are missing when a tag is
displayed, the tag framework will not process the incorrect tag and
will add an error message to the HTML as an HTML comment.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-129

<AppLibFiles>
<libfile name="sampletags"/>
</AppLibFiles>

3. Add the custom implementation (.jar/.dll) to the portal hierarchy:

■ Java: Copy the custom .jar file to PORTAL_HOME\lib\java and add it to the
portal.war file in PORTAL_HOME\webapp. (You must stop the portal while
modifying portal.war because it will be locked while the portal is running.)

■ .NET: Copy the custom .dll file to PORTAL_HOME\webapp\portal\bin.

4. Run a clean build of the portal to refresh all the jar files associated with the portal.

5. Once you have deployed your code, create a portlet that contains the tag. Custom
Adaptive Tags must either include the correct XML namespace or be contained
within another tag that does. The simplest way is to put the HTML inside a span.
Custom adaptive tags must use the pt:libraryname.tagname and pt:attributename
format. The sample code below references the custom tag from Section 2.4.2.12,
"Creating Custom Adaptive Tags".

<pt:sample.hellolocation pt:message="Hello" pt:location="San Francisco"/>

6. Add the portlet to a portal page and view the page. Test all custom tags.

2.4.3 The Oracle WebCenter Interaction Scripting Framework
The Oracle WebCenter Interaction Scripting Framework is a client-side JavaScript
library that provides services to portlets and hosted gatewayed pages. The Portlet
Communication Component (PCC) is contained within the Scripting Framework.

The Oracle WebCenter Interaction Scripting Framework allows portlets to:

■ Store and share session state through browser level variables. Browser-level
variables can be stored and shared among portlet, even if they are not on the same
page. For example, a value entered by the user in one portlet can be retrieved by
another. The Scripting Framework acts as an intermediary, allowing all portlet
access to all values stored in a common session. For details, see Section 2.6.9,
"Using Session Preferences".

■ Leverage page-level events. A portlet can respond when specific events happen,
such as when the page loads or when the browser focus changes. For details, see
Section 2.4.3.2, "Using Oracle WebCenter Interaction Scripting Framework Event
Notification".

■ Refresh portlet content without reloading the portal page. Portlet can reload
their internal content without refreshing the page. For details, see Section 2.4.3.3,
"Using In-Place Refresh".

■ Open any Oracle WebCenter Interaction object from anywhere within the
portal. The CommonOpener_OpenObject function is included in every page
generated by the Oracle WebCenter Interaction application, and can be called from
within a portlet through the PRC. For details, see Section 2.3.4.1.1, "Retrieving
Object Managers Using Oracle WebCenter Interaction Development Kit (IDK)
Remote APIs". You can also reference Oracle WebCenter Interaction objects in
portlet and UI components using Adaptive Tags. For details, see Section 2.4.2.6.1,
"Accessing Oracle WebCenter Interaction Objects Using Adaptive Tags".

For a full list of classes and methods, see the JSPortlet API documentation.

Adaptive Portlets

2-130 Web Service Developer's Guide for Oracle WebCenter Interaction

2.4.3.1 Oracle WebCenter Interaction Scripting Framework Development Tips
These tips and best practices apply to all code that utilizes the Oracle WebCenter
Interaction Scripting Framework.

■ Use unique names for all forms and functions. Use the GUID of a portlet to form
unique names and values to avoid name collisions with other code on the page.
You can append the portlet ID using the pt:namespace and pt:token tags, as
shown in the code below.

<pt:namespace pt:token="$$TOKEN$$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
do stuffa
onclick="doStuff$$TOKEN$$();" href="#">do stuff
<script>
function doStuff$$TOKEN$$() {
alert("hello");
}
</script>
Valid values for the token are in the ASCII range 0x21 to 0x7E, excluding "<"
(0x3C). The scope of the token runs from the tag defining it to the end of the file;
you cannot use a token prior to defining it. A second pt:namespace tag with a
different token redefines it; two tokens cannot be defined at the same time.

■ Gateway all URLs. You cannot make a request to a URL whose host/port differs
from that of the calling page. All URLs requested through JavaScript must be
gatewayed. For details on the gateway, see Section 1.3.1.1, "Portlets and the
Gateway".

■ Check for Scripting Framework support. It is good practice to include code that
determines whether or not the component is present. Ideally, your portlet should
be able to handle either situation. The simplest solution is to precede your code
with an If statement that alerts the user if the Scripting Framework is not
supported.

<script>
if (PTPortlet == null)
 {
 if (document.PCC == null)
 {
 alert("This portlet only works in portals that support the JSPortlet API or
Portlet
 Communication Component (PCC). The portlet will be displayed with severely
reduced
 functionality. Contact your Administrator.");
 }
 }
else
 {
 [scripting code here]
 }
</script>

■ Close all popup windows opened by a portlet when the portal window closes.
The Scripting Framework can be used to close popup windows using the
onunload event.

2.4.3.2 Using Oracle WebCenter Interaction Scripting Framework Event
Notification
The Oracle WebCenter Interaction Scripting Framework allows portlet to respond to
both page-level events and custom events raised by other portlet.

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-131

The registerForWindowEvent and registerOnceForWindowEvent methods in
the Oracle WebCenter Interaction Scripting Framework provide portlets with access to
page-level events. For a complete list, see Section 2.4.3.2.1, "Page-Level Events for Use
with the Oracle WebCenter Interaction Scripting Framework". To register for
notification of these events, pass in the name of the event and the name of the method
that should be called when it occurs. When a page-level event is raised, the JavaScript
event object is passed to the event handler as an argument. The Oracle WebCenter
Interaction Scripting Framework also allows portlets to raise and respond to custom
events using raiseEvent and registerForEvent. The Broadcast-Listener design
pattern illustrates an important example of using notification services with session
preferences. Users can select an item or perform some other action in a "broadcast"
portlet, which causes the content in other related "listener" portlet to be redrawn. In
the following example, the broadcast portlet displays a form that allows you to enter a
number in a text box.

When the user enters a number in the text box, the values in the listener portlets
change. The first listener portlet displays the square root of the number entered in the
broadcast portlet.

The second listener portlet displays the cube root of the number entered in the
broadcast portlet.

The following steps summarize how the portlets work:

■ On load, each listener portlet calls its own instance method (registerForEvent) to
register for events of type 'onBroadcastUpdate'.

■ On each onkeyup event that occurs in the "Enter number" text box, the broadcast
portlet sets a session preference to the value entered in the text box, and calls its
own instance method (raiseEvent) to raise an event of type 'onBroadcastUpdate'.

■ When the 'onBroadcastUpdate' event is raised or the page is reloaded, each
listener portlet retrieves the session preference set by the broadcast portlet and
computes a new value to display based on the value of the preference.

Broadcast Portlet

<div style="padding:10px;" align="center">
<p>Enter number:
 <input type="text"
style="font-size:22px;font-weight:bold;text-align:center;"
id="broadcast_prefName" value="4" size="7" onkeyup="broadcast_
setPrefs(this.value)"></p>

</div>

<script type="text/javascript">

function broadcast_setPrefs(val)
{
var prefName = 'broadcastNumber';
var prefValue = val;
PTPortlet.setSessionPref(prefName,prefValue);

var broadcastPortlet =
PTPortlet.getPortletByGUID('{D9DFF3F4-EAE7-5478-0F4C-2DBD94444000}');

 if (!broadcastPortlet)
{
broadcast_debug('Could not locate PTPortlet object which corresponds to
Broadcast Portlet on page.');

Adaptive Portlets

2-132 Web Service Developer's Guide for Oracle WebCenter Interaction

return;
}

 broadcast_debug('Broadcast Portlet raising onBroadcastUpdate event.');
broadcastPortlet.raiseEvent('onBroadcastUpdate',false);

}

function broadcast_debug(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}
</script>

Listener Portlet #1

<div style="padding:10px;" align="center">
<p>Square root:
<div style="height:21px;border:2px solid
black;padding:2px;overflow:visible;font-size:14px;"id="listener1-swatch">
</div>
</div>

<script>

function listener1_update()
{
var broadcastNumber = parseFloat(PTPortlet.getSessionPref('broadcastNumber'));
if (isNaN(broadcastNumber))
{
listener1_error('Listener-1 Portlet cannot parse number from session pref
broadcastNumber');
return;
}

 listener1_debug('Listener-1 Portlet computing square root of ' +
broadcastNumber);
 var swatch = document.getElementById('listener1-swatch');
swatch.innerHTML = Math.sqrt(broadcastNumber);
}

function listener1_debug(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}

function listener1_error(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.error(str);
}

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-133

}

function listener1_getPortlet()
{
var portletGUID = '{D9DFF3F4-EAE7-5478-0F4C-2DBDB4F4A000}';
var listener1Portlet = PTPortlet.getPortletByGUID(portletGUID);
return listener1Portlet;
}

var listener1Portlet = listener1_getPortlet();
if (listener1Portlet)
{
listener1Portlet.registerForEvent('onBroadcastUpdate','listener1_update');
listener1_debug('Listener-1 Portlet registered refreshOnEvent for event
onBroadcastUpdate');
listener1Portlet.registerForEvent('onload','listener1_update');
}

</script>

Listener Portlet #2

<div style="padding:10px;" align="center">
<p>Cube root:
<div style="height:21px;border:2px solid
black;padding:2px;overflow:visible;font-size:14px;"id="listener2-swatch">
</div>
</div>

<script>
var listener2_oneThird = (1/3);

function listener2_update()
{
var broadcastNumber = parseFloat(PTPortlet.getSessionPref('broadcastNumber'));
if (isNaN(broadcastNumber))
{
listener2_error('Listener-2 Portlet cannot parse number from session pref
broadcastNumber');
return;
}

listener2_debug('Listener-2 Portlet computing square root of ' +
broadcastNumber);

var swatch = document.getElementById('listener2-swatch');
swatch.innerHTML = Math.pow(broadcastNumber,listener2_oneThird);
}

function listener2_debug(str)
{
if (window.PTDebugUtil)
{
PTDebugUtil.debug(str);
}
}

function listener2_error(str)
{
if (window.PTDebugUtil)
{

Adaptive Portlets

2-134 Web Service Developer's Guide for Oracle WebCenter Interaction

PTDebugUtil.error(str);
}
}

function listener2_getPortlet()
{
var portletGUID = '{D9DFF3F4-EAE7-5478-0F4C-2DBDCA1C7000}';
var listener2Portlet = PTPortlet.getPortletByGUID(portletGUID);
return listener2Portlet;
}

var listener2Portlet = listener2_getPortlet();
if (listener2Portlet)
{
listener2Portlet.registerForEvent('onBroadcastUpdate','listener2_update');
listener2_debug('Listener-2 Portlet registered refreshOnEvent for event
onBroadcastUpdate');
listener2Portlet.registerForEvent('onload','listener2_update');
}
</script>

2.4.3.2.1 Page-Level Events for Use with the Oracle WebCenter Interaction Scripting Framework
The Oracle WebCenter Interaction Scripting Framework automatically has access to
the following page-level events.

2.4.3.3 Using In-Place Refresh
To refresh portlet content in place, without affecting other content on the page, use the
Oracle WebCenter Interaction Scripting Framework to implement in-place refresh.

Event Triggered:

onload immediately after the browser loads the page

onbeforeunloa
d

prior to a page being unloaded (browser window closes or navigates to
different location)

onunload immediately before the page is unloaded (browser window closes or
navigates to different location)

onactivate the page is set as the active element (receives focus)

onbeforeactiva
te

immediately before the page is set as the active element (receives focus)

ondeactivate when the active element is changed from the current page to another page in
the parent document

onfocus when the page receives focus

onblur when the page loses focus

oncontrolselect when the user is about to make a control selection of the page

onresize when the size of the page is about to change

onresizestart when the user begins to change the dimensions of the page in a control
selection

onresizeend when the user finishes changing the dimensions of the page in a control
selection

onhelp when the user presses the F1 key while the browser is the active window

onerror when an error occurs during page loading

onafterprint immediately after an associated document prints or previews for printing

Adaptive Portlets

Oracle WebCenter Interaction Portlet and Pagelet Development 2-135

Many portlet display data that is time sensitive. In some cases, users should be able to
navigate across links within a portlet without changing or refreshing the rest of the
portal page. You can refresh portlet content on command, associate the refresh action
with an event (refreshOnEvent), or program the portlet to refresh at a set interval
(setRefreshInterval). The Oracle WebCenter Interaction Scripting Framework
also contains methods for expanding and collapsing portlet. In the simplified example
below, the refresh portlet displays a "Refresh Portlet" button. Clicking the button
updates the date and time displayed in the portlet. (The refresh button in the portlet
header is an optional feature available in Oracle WebCenter Interaction, configured on
the Advanced Settings page of the Web Service editor.)

The in-place refresh is executed by calling the refresh() method on the portlet
object instance. The portlet reference can be retrieved by GUID, ID or name, available
via the Oracle WebCenter Interaction Development Kit (IDK) IPortletRequest
interface. You can also set a new URL to be displayed within the portlet upon refresh
by using setRefreshURL or passing in a new URL when you call refresh. (The title
bar cannot be altered on refresh.)

<div style="padding:10px;" align="center">
<p><button onclick="refresh_portlet()">Refresh Portlet</button></p>
<p>Current time is:
 </p>
</div>
<pt:namespace pt:token="$PORTLET_ID$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>

<script type="text/javascript">
function refresh_portlet()
{
var refreshPortlet = PTPortlet.getPortletByID($PORTLET_ID$);
if (!refreshPortlet)
 {
 refresh_debug('Could not locate PTPortlet object which corresponds to Refresh
Portlet on page.');
 return;
 }
refresh_debug('Refresh Portlet calling refresh() method.');
refreshPortlet.refresh();
}

function refresh_debug(str)
{
if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}

var t = new Date();
document.getElementById('refreshTimeSpan').innerHTML = t;
</script>

2.4.4 Adaptive Portlet Development Tips
These tips apply to most adaptive portlets.

■ Gateway all URLs. You cannot make request to a URL whose host/port differs
from that of the calling page. All URLs requested through JavaScript must be
gatewayed. For details on the gateway, seeSection 1.3.1.1, "Portlets and the
Gateway."

Portlet Style

2-136 Web Service Developer's Guide for Oracle WebCenter Interaction

■ Add all required JavaScript to the page in advance. Browsers might not process
script blocks/includes added to the page through the innerHTML property.

– IE: Add the defer attribute to the script tag.

– Netscape: Use RegExp to parse the response and look for the script, then eval
it.

■ JavaScript HTTP and gatewayed HTTP must use the same authentication
credentials. JavaScript brokered HTTP requests send the same authentication
token (cookie) as when you make a normal gatewayed HTTP request.

2.5 Portlet Style
Portlets displayed in Oracle WebCenter Interaction should reflect the style of the
portal. This section explains how portal configuration affects how a portlet is
displayed.

2.5.1 Oracle WebCenter Interaction Portlet Alignment
Where a portlet is displayed on the Oracle WebCenter Interaction portal page defines
its size.

The Oracle WebCenter Interaction portal page is made up of columns. In a
two-column configuration, narrow portlets are displayed on the left, wide portlets on
the right. In a three-column configuration, wide portlets are displayed in the middle.
In the Low Bandwidth version of the portal or the Portal for People with Disabilities,
width is irrelevant; portlets are displayed in a single column.

When you configure a portlet object in the portal, you may choose from the following
alignments:

■ Narrow portlets are displayed in a narrow side column on the portal page.
Narrow portlets must fit in a column that is fewer than 255 pixels wide.

■ Wide portlets are displayed in the middle or widest side column on the portal
page. Wide portlets fit in a column fewer than 500 pixels wide.

■ Header portlets override the portal header at the top of the page, allowing you to
add custom branding to a Community page.

■ Footer portlets override the portal footer at the bottom of the page, allowing you
to add custom branding to a Community page.

■ Content Canvas portlets span across all rows and columns of a Community page,
taking up all space between the header and footer.

Each My Page or community page is made up of many portlets, selected and arranged
based on alignment.

Note: In header portlets, make sure to include the pt:pageName
and pt:realmName markup tags. The "realm" name is either the
name of the current Community or one of the following: "My Pages,"
"Documents," "Administration," or "Gateway." The page name is the
name of the current page in a Community or My Page or blank
otherwise. The localized name will be used if available. For details, see
Section 2.4.2.2, "Using Internationalized Strings in Adaptive Tags" .

Oracle WebCenter Interaction Portlet Settings

Oracle WebCenter Interaction Portlet and Pagelet Development 2-137

2.5.2 CSS Customization for Oracle WebCenter Interaction Portlets
The CSS template provided with Oracle WebCenter Interaction allows you to
customize portlet content and design in a variety of ways. (All portlets should
reference the portal style sheet as explained in Section 2.4.2, "Adaptive Tags".)

CSS customization allows you to customize specific portlets using the unique portlet
ID, or modify the design of a group of portlets (for example, those in the first column
of a two-column page). You can also set constraints for portlets, including limiting a
specific portlet to a three-column layout or preventing users from collapsing portlets.

The portal CSS template file follows standard CSS syntax rules. For details on CSS, see
http://www.w3.org/Style/CSS/.

For details on using CSS to customize portlets, see the Oracle WebCenter Interaction UI
Customization Guide.

2.6 Oracle WebCenter Interaction Portlet Settings
Most portlets use settings. In some cases, a portlet can access settings stored by
another portlet or service.

For details on Oracle WebCenter Interaction portlet settings, see the following
sections:

■ Section 2.4.2.4, "Common Adaptive Tag Library (pt:common)"

■ Section 2.4.1, "Adaptive Portlet Design Patterns"

■ Section 2.4.1, "Adaptive Portlet Design Patterns"

■ Section 2.4.1, "Adaptive Portlet Design Patterns"

■ Section 2.4.1, "Adaptive Portlet Design Patterns"

2.6.1 Portlet Settings Development Tips
These tips and best practices apply to all portlets that access settings.

■ Enter all preference and configuration pages used by a portlet in the Web
Service editor. You must enter the URL to any preference pages in the Web
Service editor on the Preferences page. You must enter the URL to any
configuration pages in the Web Service editor on the Advanced URLs page.

■ Enter all User settings and Community Settings required by a portlet in the
Preference list in the Web Service editor. If a shared setting is not entered in this
list, it will not be available to the portlet.

■ Gateway all pages that store settings in the portal. To store settings on the portal,
preference pages must be included in the Gateway Prefixes List, configured in the
Web Service editor on the HTTP Configuration page. For instructions on entering
gateway prefixes, see the portal online help.

■ Never send query string or form variables directly to the My Page. Always use a
separate page to set and remove settings. Sending query string or form variables
directly to the portal page is unreliable and can result in seemingly random errors.
Your code will not have access to these variables in most cases, because it might be
preceded by other code on the portal page.

■ Do not use session preferences for shared settings; portlets on the same portal
page and the same remote server cannot use the same session. To implement

Oracle WebCenter Interaction Portlet Settings

2-138 Web Service Developer's Guide for Oracle WebCenter Interaction

shared settings, you must use the Application object, store User settings in the
portal database, or use the Portlet Communication Component (PCC).

■ Return the user to the location of the portlet on the page when redirecting from
a preferences page to a portal page. This can be done using the IDK
IPortletResponse.ReturnToPortal method.

■ Always include a link to the correct settings page within the portlet display. It
might not be clear to users where they should enter settings for a portlet. If the
portlet requires configuration, include a link to the appropriate preference page or
configuration page within the portlet display.

■ Always use popup windows for preference pages. Use the following guidelines
for all popup windows. The portal window must remain open. Do not redirect the
portal window to the destination URL.The popup window should regain focus on
any successive click-through. If the user leave the window open and then clicks
the same link, the same popup window should regain focus (instead of opening a
new window).The popup window should close if the portal window is closed. If
the user closes the portal window, any associated popup windows should close
automatically.The popup window should appear in the style of the portal. You can
reference the stylesheet in any gatewayed page by using the pt:Stylesheets
tag as shown in the code snippet below. For details on adaptive tags,

see .Section 2.4.2, "Adaptive Tags".

<pt:styleSheets xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
<div class=platportletHeaderBg>The background here is
<i>platportletHeaderBg</i>. This adds the
font style <i>platportletWideHeader</i> from the portal
stylesheet.</div>
<p><input type=button class=inputBox value="This button uses the inputBox
style">

There are some additional considerations if the data stored by a portlet should be
secure; for details, see Section 2.7, "Oracle WebCenter Interaction Portlet Security".

2.6.2 Oracle WebCenter Interaction Portlet Setting Types
Portlets can use seven types of settings (aka preferences) to provide personalized
functionality. Each type of setting is intended for a specific range of use, and each is
handled differently by the Oracle WebCenter Interaction Development Kit (IDK) and
the portal.

Setting Type User Portlet Preference Page
Type

Notes

Administrative
Setting

All 1 specific Administrative
Preferences page
or Portlet
Template
Preferences page

Administrative
settings can be
modified only by
users with
administrative
access to the
portal and
read/write access
to the object.

Oracle WebCenter Interaction Portlet Settings

Oracle WebCenter Interaction Portlet and Pagelet Development 2-139

User Setting 1 specific All Portlet
Preferences page
or User
Configuration
page

User settings
must be uniquely
named. A portlet
has access to the
User settings
entered by name
in the Web
Service editor.

Session
Preference

1 specific All n/a (not stored
in portal
database) Session
preferences can
be set using the
Oracle
WebCenter
Interaction
Scripting
Framework. For
details, see
Section 2.6.9,
"Using Session
Preferences".

Session
preferences are
persisted for the
duration of the
user's session. A
portlet has access
to the session
preferences
entered by name
in the Web
Service editor.
Note: Portlets on
the same portal
page and the
same remote
server cannot use
the same session.

Portlet Setting 1 specific 1 specific Portlet
Preferences page

CommunityPortl
et Setting

All in a specific
community

1 specific Community
Preferences page

Only available
when a portlet is
displayed in a
community (not
on a My Page),
and can be set
only by a
community
owner.

Community
Setting

All in a specific
community

All in a specific
community

Community
Preferences page

Only available
when a portlet is
displayed in a
community (not
on a My Page),
and can be set
only by a
community
owner. A portlet
has access to the
Community
settings entered
by name in the
Web Service
editor.

User Information
Setting

1 specific All n/a (not stored
in portal
database)

User Information
settings required
by a portlet must
be configured in
the Web Service
editor on the User
Information page.

Oracle WebCenter Interaction Portlet Settings

2-140 Web Service Developer's Guide for Oracle WebCenter Interaction

2.6.3 Administrative Preferences and Portlet Template Preferences Pages
Administrative Preference pages and Portlet Template Preference pages are used to
manipulate Administrative settings for specific portlets.

Administrative settings affect all users of a specific portlet and can only be defined by
administrative users with read/write access to the associated object.

■ Administrative Preferences pages are accessible only from within the associated
Portlet editor, and only to users with administrative rights in the portal and
read/write access to the portlet object.

■ Portlet Template Preferences pages are accessible only from within the associated
Portlet Template editor, and only to users with administrative rights in the portal
and read/write access to the Portlet Template. Administrative settings that are set
via a Portlet Template Preferences page apply to all portlet objects created from
that Portlet Template.

2.6.4 Creating an Administrative Preferences Page
To create an Administrative Preferences page or Portlet Template Preference page,
deploy the page to the remote server that hosts the portlet and enter the page URL in
the Web Service editor.

The URLs to the Administrative Preferences page and/or Portlet Template Preference
page are specified in the Web Service editor on the Preferences page. The base URL is
defined by the associated Remote Server.

A Portlet Template Preferences page is structured exactly like a standard
Administrative Preferences page; the only difference is that the settings on the page
apply to all portlets created from the associated portlet template. The Oracle
WebCenter Interaction Development Kit (IDK) provides interfaces to manipulate
settings in the portal database. For an example of setting and accessing settings, see
Section 2.6.8, "Creating a Portlet Preferences Page".

2.6.5 Community Preferences Pages
Community Preferences pages are used to manipulate Community and
CommunityPortlet settings, allowing Community Owners to modify content for all
users without leaving the community.

A Community Preference page is used to define settings that apply only within the
current community, either to all portlets and users (Community Preference) or a single
portlet for all users (CommunityPortlet Preference). Community Preference pages are
accessed from the Community Editor, accessible only to Community Owners. The
Community Editor also allows you to disable the portlet title bar within the
community.

2.6.6 Creating a Community Preferences Page
To create a Community Preferences page, deploy the page to the remote server that
hosts the portlet and enter the page URL in the Web Service editor.

The URL to the Community Preferences page is specified in the Web Service editor on
the Preferences page. The base URL is defined by the associated Remote Server. All
Community settings required by the portlet must be entered by name in the Preference
list on this page. If a setting is not entered in this list, it will not be available to the
portlet. CommunityPortlet settings do not need to be entered. Any pages that access
settings must be gatewayed.

Oracle WebCenter Interaction Portlet Settings

Oracle WebCenter Interaction Portlet and Pagelet Development 2-141

The Oracle WebCenter Interaction Development Kit (IDK) provides interfaces to
manipulate settings in the portal database. For an example of setting and accessing
settings, see Section 2.6.8, "Creating a Portlet Preferences Page".

2.6.7 Portlet Preferences Pages
Portlet Preferences pages are accessible from the portal page and can be used to
manipulate both Portlet and User settings.

A Portlet Preferences page is used to define settings that affect a single user. Portlet
settings apply to one specific portlet object and one particular user. User settings apply
to one specific user but can be used by multiple portlets and services.

If a portlet has been configured with a Portlet Preferences page, an edit icon appears in
the portlet title bar.

When a user first adds the portlet to a page, it might not be obvious where to enter
necessary settings. If a portlet requires configuration, always enter a link to the
preferences page in the Web Service editor.

2.6.8 Creating a Portlet Preferences Page
To create a Portlet Preferences page, deploy the page to the remote server that hosts
the portlet and enter the page URL in the Web Service editor.

The URL to the Portlet Preferences page is specified in the Web Service editor on the
Preferences page. The base URL is defined by the associated Remote Server. All User
settings required by the portlet must be entered by name in the Preference list on this
page. If a setting is not entered in this list, it will not be available to the portlet. Portlet
settings do not need to be entered.

The Oracle WebCenter Interaction Development Kit (IDK) provides interfaces to
manipulate settings in the portal database. In the example code below, two portlets
share the User setting CoStoreProductID. Note: The setting name must be entered in
the Web Service editor for both portlets. All portlet files must be gatewayed. The first
portlet provides a form for the user to enter the product ID, and stores this
information as a User setting.

Portlet 1 - Java

<%@ page language="java" import="com.plumtree.remote.portlet.*,java.util.Date" %>

IPortletContext portletContext =
PortletContextFactory.createPortletContext(request,
response); IPortletResponse portletResponse = portletContext.getResponse();
IPortletUser portletUser = portletContext.getUser();
IPortletRequest portletRequest = portletContext.getRequest();

// Get the incoming Product ID from the query string
String currProduct = request.getParameter("ID");

if (null == currProduct)
 {
 currProduct = "";

Note: User settings are shared among all services, so you must use a
unique setting name. For example, "Exchange55Password" is less
likely to result in a name collision than "password".

Oracle WebCenter Interaction Portlet Settings

2-142 Web Service Developer's Guide for Oracle WebCenter Interaction

 }
portletResponse.setSettingValue(SettingType.User, "CoStoreProductID",
sCurrProduct);
// Redirect to the Company Store Community
portletResponse.returnToPortal();
...

Portlet 1 - .NET

...
Dim portletContext As IPortletContext
portletContext = PortletContextFactory.CreatePortletContext(Request, Response)

Dim portletRequest As IPortletRequest
portletRequest = PortletContext.GetRequest

Dim portletUser As IPortletUser
portletUser = PortletContext.GetUser

Dim portletResponse As IPortletResponse
portletResponse = PortletContext.GetResponse

portletResponse.SetSettingValue(SettingType.User, "CoStoreProductID",
Request.QueryString("ID"))
...

The second portlet checks for the User setting before building its display. (The portlet
then retrieves the stored User setting from the portal database and displays the
product.)

Portlet 2 - Java

...
currentProductID = portletRequest.getSettingValue(SettingType.User,
"CoStoreProductID");
...

Portlet 2 - .NET

...
Dim currentProductID As String
currentProductID = portletRequest.GetSettingValue(SettingType.User,
"CoStoreProductID")
...

User settings can also be entered on the User Configuration page, accessible from the
My Account page in the portal. For details, see the portal online help.

2.6.9 Using Session Preferences
To store and share settings within the client browser, use session preferences.

Portlet can use preferences to communicate with each other, but accessing preferences
usually requires a round trip to the portal database. Session preferences provide a way
to store and share settings in the user's session within the client browser. The
Master-Detail design pattern illustrates the most basic usage of session preferences.
This design pattern splits control and display between two portlet. For example, the
"master" portlet could summarize data in list form, and the "detail" portlet could
display details on each data item in response to user selection. In the example below,
the master portlet displays a form that allows you to enter a color code in a text box.
When the user enters a color code in the text box, the color in the detail portlet

Oracle WebCenter Interaction Portlet Settings

Oracle WebCenter Interaction Portlet and Pagelet Development 2-143

changes. For each onkeyup event that occurs in the "Enter color" text box in the master
portlet, the following steps are executed:

1. The master portlet sets the session preference using the current value of the text
box.

2. The master portlet calls an update method on the detail portlet.

3. The detail portlet retrieves the session preference to get the color value.

4. The detail portlet redraws its color swatch area to reflect the new color value.

Portlets can manipulate session preferences using the Oracle WebCenter Interaction
Scripting Framework or the Oracle WebCenter Interaction Development Kit (IDK).
Sample code for both options is provided below.

2.6.9.1 Oracle WebCenter Interaction Development Kit (IDK) Methods
In most cases, reading session preferences via the Oracle WebCenter Interaction
Scripting Framework is inefficient and insecure. Always use the Oracle WebCenter
Interaction Development Kit (IDK) to read session preferences, as shown in the
example code below.

Java

<%@ page language="java" import="com.plumtree.remote.portlet.*,java.util.Date" %>

IPortletContext portletContext =
PortletContextFactory.createPortletContext(request,response);
IPortletResponse portletResponse = portletContext.getResponse();
IPortletUser portletUser = portletContext.getUser();
IPortletRequest portletRequest = portletContext.getRequest();

masterColor = portletRequest.getSettingValue(SettingType.Session, "masterColor");

.NET

...
Dim portletContext As IPortletContext
portletContext = PortletContextFactory.CreatePortletContext(Request, Response)

Dim portletRequest As IPortletRequest
portletRequest = PortletContext.GetRequest

Dim portletUser As IPortletUser
portletUser = PortletContext.GetUser

Dim portletResponse As IPortletResponse
portletResponse = PortletContext.GetResponse

Dim masterColor As String
masterColor = portletRequest.GetSettingValue(SettingType.Session "masterColor")
...

Note: Shared session preferences must be specified by name on the
Preferences page of the associated Web Service editor or they will not
be sent to the portlet.

Oracle WebCenter Interaction Portlet Settings

2-144 Web Service Developer's Guide for Oracle WebCenter Interaction

2.6.9.2 Oracle WebCenter Interaction Scripting Framework Methods
The Oracle WebCenter Interaction Scripting Framework provides an easy way to
detach the relationship between portlets and use a common event interface for
communication. This example is oversimplified; the master portlet makes a direct call
to a JavaScript method of the detail portlet. Unless the master portlet takes extra
measures to ensure that the detail portlet is actually present on the same page, calls
from master to detail could generate errors. See Section 2.4.3.2, "Using Oracle
WebCenter Interaction Scripting Framework Event Notification" for more information
on inter-portlet communication.

Master Portlet

<div style="padding:10px;" align="center">
<p>Enter color:
<input type="text" style="font-size:22px;font-weight:bold;text-align:center;"
id="master_prefName"
value="#FFFFFF" size="8" onkeyup="master_setPrefs(this.value)"></p>

</div>

<script type="text/javascript">
function master_setPrefs(val)
{
var prefName = 'masterColor';
var prefValue = val;
PTPortlet.setSessionPref(prefName,prefValue);

master_debug('Master Portlet called
PTPortlet.setSessionPref(\'masterColor\',\'' + prefValue + '\').');

if (window.detail_update)
 {
 master_debug('Master Portlet calling detail_update().');
 detail_update();
 }
else
 {
 master_debug('Could not locate portlet Detail Portlet on page.');
 }
}
function master_debug(str)
{
if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}
</script>

Detail Portlet

<div style="padding:10px;" align="center">
<p>Color swatch
<div style="width:100px;height:100px;border:2px solid
black;padding:2px;"id="detail-swatch"></div>
<script>
function detail_update()
{
var color = PTPortlet.getSessionPref('masterColor');
detail_debug('Detail Portlet received value="' + color + '" for
PTPortlet.getSessionPref(\'masterColor\')');

Oracle WebCenter Interaction Portlet Settings

Oracle WebCenter Interaction Portlet and Pagelet Development 2-145

var swatch = document.getElementById('detail-swatch');
if (swatch)
 {
 swatch.innerHTML = '<div style="background-color:' + color +
';width:100%;height:100%;"></div>';
 }
else
 {
 detail_debug('Detail Portlet cannot find \'detail-swatch\' DIV
element.');
 }
}

function detail_debug(str)
{
if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}
</script>

2.6.10 Accessing User Information
Portlets can use the Oracle WebCenter Interaction Development Kit (IDK) to access
read-only User Information settings that have been entered by users or imported into
the portal using a Profile Source Identity Service.

The User Information settings required by a portlet must be selected in the Web
Service editor on the User Information page. The standard settings appear at the top of
the page; select any settings that should be sent to the portlet. You can select
additional settings that already exist in the portal by clicking Add Existing User Info.
You can enter setting names manually; to add rows to the list, click Add User Info.

Once the portlet object has been configured as described above, portlet code can access
the User Information settings sent from the portal using the Oracle WebCenter
Interaction Development Kit (IDK). In the following example code, the portlet
retrieves the Company information property (CompanyUserInfo).

Java

...
// Get user's company info setting
String companyID;
companyID = portletRequest.getSettingValue(SettingType.User, "CompanyUserInfo");

// if user's company info does not exist, retrieve from User Info properties
if (null == companyID) {
companyID = portletRequest.getSettingValue(SettingType.UserInfo,
"CompanyUserInfo");
}
...

.NET

...
' Get the user's company info setting
Dim companyID As String
companyID = portletRequest.GetSettingValue(SettingType.User, "CompanyUserInfo")

Oracle WebCenter Interaction Portlet Security

2-146 Web Service Developer's Guide for Oracle WebCenter Interaction

' if user's company info does not exist, retrieve from User Info properties
If companyID Is Nothing Then
companyID = portletRequest.GetSettingValue(SettingType.UserInfo,
"CompanyUserInfo")
End If
...

2.7 Oracle WebCenter Interaction Portlet Security
Portlets can be used to manipulate secure content. Oracle WebCenter Interaction
provides a variety of ways to control access to specific functionality.

■ Portal Roles (settings rights) control whether or not a user has the right to change
settings in the portal database. Administrative settings can only be changed by a
portal administrator. Community settings can only be changed by a community
Owner. To check which types of settings the current user has rights to change, use
the Oracle WebCenter Interaction Development Kit (IDK) methods
IPortletUser.GetSettingsRights and
IPortletUser.HasSettingsRight. For details on portal roles, see the
Administrator Guide for Oracle WebCenter Interaction or the portal online help.

■ Activity Rights confer system-wide privileges in the portal, such as the right to
create new portal objects, including portlets, communities and folders. While
ACLs control access to a specific object, activity rights confer a general, global
privilege. You can create new activity rights to correspond to user privileges.

To access the current user's activity rights, configure the portal to send activity
rights to the portlet on the Advanced Settings page of the Web Service Editor, and
use the Oracle WebCenter Interaction Development Kit (IDK) methods
IPortletUser.GetActivityRights and
IPortletUser.HasActivityRight.

■ Access Control Lists (ACL) govern which users can see each object in the portal
and what they can do with it. An ACL is different from activity rights because it
applies to a specific object. For details, see Section 2.7.2, "Using Oracle WebCenter
Interaction Development Kit (IDK) Encryption".

ACLs can be used to control access to content or functionality in community
portlets. To determine the CommunityAccessLevel (in the Community ACL) for
the current user in the current community, configure the portal to send the
community ACL to the portlet on the Advanced Settings page of the Web Service
Editor, and use the Oracle WebCenter Interaction Development Kit (IDK) method
IPortletUser.GetCurrentCommunityAccessLevel. (This method can be
used only if the portlet is on a community page.)

■ Encrypted credentials should be used for all authentication credentials used by a
portlet. The Oracle WebCenter Interaction Development Kit (IDK) provides
encryption methods for use in portlets. For details, see Section 2.7.1, "Using the
Oracle WebCenter Interaction Credential Vault". Portlets can use four types of
encryption:

Note: Activity rights apply to groups, and cannot be assigned
directly to users. If a group is given an activity right, every member of
the group inherits that activity right. Users' rights in the portal are the
sum of the activity rights of all of the groups to which they belong.

Oracle WebCenter Interaction Portlet Security

Oracle WebCenter Interaction Portlet and Pagelet Development 2-147

■ Advanced Encryption Standard (AES) is private key encryption using 128-bit
keys.

■ RC2 is private key encryption using 64-bit keys.

■ Base64 converts binary data into ASCII text and vice versa. Base64 does not
require a key for decryption. Base64 is used by the credential vault if no RSA
key is provided.

■ RSA is a public key/private key encryption type. The credential vault
provides a central repository that securely stores and manages all credentials.
Portlets that need credentials to access back-end applications can securely
retrieve the appropriate user credentials from a central location. To use RSA
encryption with IDK methods, you must use the credential vault. For details,
see Section 2.7.1, "Using the Oracle WebCenter Interaction Credential Vault".

■ All portlets should obey SSL rules because Oracle WebCenter Interaction can be
configured to run under SSL. When you are testing against SSL (https://), make
sure all images come through and do not pop up an "Unsecure items" dialog. Any
portlet that uses a password that is not encrypted should follow the rules below:

■ Do not store any passwords in the database in clear text.

■ Do not expose passwords on every request. Only send the password when it is
required (usually in the finalize method).

2.7.1 Using the Oracle WebCenter Interaction Credential Vault
The Oracle WebCenter Interaction credential vault provides a central repository that
securely stores and manages all credentials. Portlets that need login information to
access a back-end application can securely retrieve the appropriate user credentials
from a central location. Users enter their credentials once in their account settings and
have seamless access to every application they interact with throughout the portal
session.

Credentials are sent in portlet headers, using RSA public key/private key encryption.
The IDK Oracle WebCenter Interaction Development Kit (IDK)
ICredentialProvider interface allows portlets to access user credentials stored in
the central credential vault. To use the credential vault, there must be a Lockbox in the
portal associated with the authentication source. To create or configure a Lockbox, go
to portal administration and click Choose Utility > Credential Vault Manager. For
details, see the portal online help. To configure the credential vault for use with your
portlet, three steps are required:

1. In the Remote Server editor associated with the portlet, enter the Public
Encryption Key.

2. In the Web Service editor on the Authentication Settings page, choose the
appropriate Lockbox and set the Basic Authentication Settings to User's Lockbox
Credentials.

3. Provide the private key for RSA encryption in one of two ways:

■ Enter the private key in the RSAPrivateKey parameter in the IDK
web.xml/Web.config file on the remote server.

■ Set the private key programmatically using the
ICredentialProvider.setPrivateKey method as shown in the example below.

If you do not enter a key, the credential vault will use Base64 encryption.

Oracle WebCenter Interaction Portlet Security

2-148 Web Service Developer's Guide for Oracle WebCenter Interaction

The ICredentialProvider interface lets you retrieve the user name and password
from portlet headers with a few lines of code.

Java

// get an ICredentialProvider instance from IPortletContext
IPortletContext portletContext = PortletContextFactory.createPortletContext(req,
resp);
ICredentialProvider cProvider = CredentialManager.getProviderInstance(req);

// set the private key used to decrypt the password
cProvider.setPrivateKey(rsaPrivateKeyString);

// get the username and password
String username = cProvider.getUsername();
String password = cProvider.getPassword();

.NET

// get an ICredentialProvider instance from IPortletContext
IPortletContext portletContext = PortletContextFactory.CreatePortletContext(req,
resp);
ICredentialProvider cProvider = portletContext.GetCredentialProvider();

// set the private key used to decrypt the password
cProvider.SetPrivateKey(rsaPrivateKeyString);

// get the username and password
String username = cProvider.GetUsername();
String password = cProvider.GetPassword();

You can also use ICredentialProvider to access settings encrypted in RC2, AES
and Base64 that are stored in the portal database. For details, see the next section.

2.7.2 Using Oracle WebCenter Interaction Development Kit (IDK) Encryption
The Oracle WebCenter Interaction Development Kit (IDK) provides standard methods
for encrypting and decrypting credentials stored in the portal database.

You can use the Oracle WebCenter Interaction Development Kit (IDK) to access
credentials from the credential vault. If you are not using the credential vault, you
must set the encryption type and associated key, and the setting type and setting
names. You can enter these parameters in the Oracle WebCenter Interaction
Development Kit (IDK) web.xml/Web.config file, or set them programmatically. Both
options are detailed below.

■ To configure encryption in the web.xml/Web.config file, enter values for the
following parameters:

Note: If the private key for RSA encryption is set in the
web.xml/Web.config file, the setPrivateKey method is not required.
The values in the configuration file override any value set through the
setPrivateKey method.

Oracle WebCenter Interaction Portlet Security

Oracle WebCenter Interaction Portlet and Pagelet Development 2-149

■ To encrypt and store credentials in the portal database, use
ICredentialSetter.

Java

// get an ICredentialSetter instance from IPortletContext
IPortletContext portletContext =
PortletContextFactory.createPortletContext(req, resp);
ICredentialSetter cSetter = portletContext.getCredentialSetter();

// set the header type and parameter names
cSetter.setCredentialSettingType(SettingType.User);
cSetter.setUsernameParameterName("MyAppUserName");
cSetter.setPasswordParameterName("MyAppPassword");

// set the encryption type and key
cSetter.setCredentialEncryptionType(EncryptionType.RC2);
cSetter.setPrivateKey("skiroblbpauwyryrhfvnmsl");

// set the user name and password
cSetter.setUsername(username);
cSetter.setPassword(password);

Parameter Accepted Values

CredentialSettingTyp
e

Portal setting type:

■ GADGET: Portlet Preference

■ COMMUNITYGADGET: CommunityPortlet Preference

■ COMMUNITY: Community Preference

■ ADMIN: Administrative Preference

■ SESSION: Session Preference

■ USER: User Preference

■ USERINFO: User Information Setting

UsernameParameter
Name

The setting name for the user name setting (for example,
MyAppUserName).

PasswordParameter
Name

The setting name for the password setting (e.g., MyAppPassword).

CredentialEncryption
Type

Encryption type:

■ BASE64

■ RC2

■ AES

■ NONE

(RSA encryption is only available with the credential vault.)

RC2PrivateKey String of private key for RC2 encryption.

AESPrivateKey String of private key for AES encryption.

Note: The encryption settings in the configuration file will override
any values set programmatically. If you do not include encryption
settings in the configuration file, you must set them programmatically
as shown below.

Oracle WebCenter Interaction Portlet Security

2-150 Web Service Developer's Guide for Oracle WebCenter Interaction

.NET

// get an ICredentialSetter instance from IPortletContext
IPortletContext portletContext =
PortletContextFactory.CreatePortletContext(req, resp);
ICredentialSetter cSetter = portletContext.GetCredentialSetter();

// set the header type and parameter names
cSetter.SetCredentialSettingType(SettingType.User);
cSetter.SetUsernameParameterName("MyAppUserName");
cSetter.SetPasswordParameterName("MyAppPassword");

// set the encryption type and key
cSetter.SetCredentialEncryptionType(EncryptionType.RC2);
cSetter.SetPrivateKey("skiroblbpauwyryrhfvnmsl");

// set the user name and password
cSetter.SetUsername(username);
cSetter.SetPassword(password);

■ To decrypt credentials stored in the portal database, use
ICredentialProvider.

Java

// get an ICredentialProvider instance from IPortletContext
IPortletContext portletContext =
PortletContextFactory.createPortletContext(req, resp);
ICredentialProvider cProvider = portletContext.getCredentialProvider();

// set the header type and parameter names
cProvider.setCredentialSettingType(SettingType.User);
cProvider.setUsernameParameterName("MyAppUsername");
cProvider.setPasswordParameterName("MyAppPassword");

// set the encryption type and key
cProvider.setCredentialEncryptionType(EncryptionType.RC2);
cProvider.setPrivateKey("skiroblbpauwyryrhfvnmsl");

// get the username and password
String username = cProvider.getUsername();
String password = cProvider.getPassword();

.NET

// get an ICredentialProvider instance from IPortletContext
IPortletContext portletContext =
PortletContextFactory.CreatePortletContext(req, resp);
ICredentialProvider cProvider = portletContext.GetCredentialProvider();

// set the header type and parameter names
cProvider.SetCredentialSettingType(SettingType.User);
cProvider.SetUsernameParameterName("DCTMUsername");
cProvider.SetPasswordParameterName("DCTMPassword");

// set the encryption type and key
cProvider.SetCredentialEncryptionType(EncryptionType.RC2);
cProvider.SetPrivateKey("skiroblbpauwyryrhfvnmsl");

// get the username and password
String username = cProvider.GetUsername();
String password = cProvider.GetPassword();

Portlet Caching

Oracle WebCenter Interaction Portlet and Pagelet Development 2-151

2.8 Portlet Internationalization
These tips and best practices apply to all portlets that will be translated into multiple
languages.

■ Identify ALL culturally dependent data. Text messages are the most obvious
example of locale-specific data, but there are many other parts of a service that can
vary with language or location. These include: images, UI labels and buttons,
icons, sounds, graphics, dates, times, measurements, honorifics and titles, phone
numbers, and postal addresses. In Oracle WebCenter Interaction, the title bar for
the portlet must also be localized; for details, see Section 2.8.1, "Modifying the
Portlet Title Bar".

■ Do not use compound messages (concatenated strings) to create text. Compound
messages contain variable data. For example, in the text string “You have XX
credits,” only the integer “XX” will vary. However, the position of the integer in
the sentence is not the same in all languages. If the message is coded as a
concatenated string, it cannot be translated without rewriting the code.

■ Use the IDK to avoid encoding issues. All content is stored in the database in
Unicode. The Oracle WebCenter Interaction Development Kit (IDK) handles
encoding for international characters.

For details on implementing internationalization, see Section 2.4.2.2, "Using
Internationalized Strings in Adaptive Tags".

2.8.1 Modifying the Portlet Title Bar
The portlet title bar is the solid colored bar that displays the portlet name at the top of
each portlet on a portal page. The portlet code has full control over the text and
functionality displayed in the title bar.

The default title for a portlet is entered in the Portlet Editor. In internationalized
portlets, the portlet title bar should be localized. To override the default title, use the
Oracle WebCenter Interaction Development Kit (IDK) method
PortletResponse.setTitle as shown in the sample VB code below.

<%
Dim portletContext As IPortletContext
portletContext = PortletContextFactory.CreatePortletContext(Request, Response)

Dim portletResponse As IPortletResponse
portletResponse = PortletContext.GetResponse()

Dim portletRequest As IPortletRequest
portletRequest = PortletContext.GetRequest()

portletResponse.SetTitle("New Title")
...

This code can be combined with logic to determine the locale of the user and display
the title in the appropriate language. For details on internationalizing portlet content,
see Section 2.4.2.2, "Using Internationalized Strings in Adaptive Tags".

2.9 Portlet Caching
Caching is the functionality that allows Oracle WebCenter Interaction and Oracle
WebCenter Ensemble to request portlet content, save the content, and return the saved
content to users when appropriate. The importance of caching cannot be overstated.

Portlet Caching

2-152 Web Service Developer's Guide for Oracle WebCenter Interaction

Efficient caching makes every web application faster and less expensive. The only time
content should not be cached is if the data must be continuously updated. If every
portlet had to be freshly generated for each request, performance could become
unacceptably slow. Oracle WebCenter Interaction and Oracle WebCenter Ensemble
rely on caching to improve performance. Portlet content is cached and returned when
later requests match the cache’s existing settings.

Caching is indexed on the settings sent by the portlet. When the Oracle WebCenter
Interaction or Oracle WebCenter Ensemble gateway server processes a request for a
page, it looks individually at each portlet on the page and checks it against the cache.
The process can be summarized as follows:

1. The gateway server assembles a cache key used to uniquely identify each portlet
in the cache.

2. The gateway server checks the cache for a matching cache key entry:

■ If the gateway server finds a match that is not expired, it returns the content in
the cache and does not make a request to the remote server.

■ If there is no matching cache key for the portlet or if the cache key has expired,
the gateway server makes a request to the remote server. If the matching cache
entry uses ETag or Last-Modified caching, it also sends the appropriate
caching header to the remote server in the request.

3. The response comes back from the remote server; the gateway server checks for
caching headers:

■ If the headers include an Expires header, the gateway server stores the new
portlet content (along with a new expiration date) in its cache.

■ If the headers use ETag or Last-Modified caching, the existing cache entry
might be revalidated (in the case of ‘304-Not Modified’) or new portlet content
might be stored in the cache.

Oracle WebCenter Interaction and Oracle WebCenter Ensemble cache gatewayed
content to complement, not replace, browser caching. Public content is accessible to
multiple users without any user-specific information (based on HTTP headers). The
gateway server calculates the cache headers sent to the browser to ensure that the
content is properly cached on the client side.

Oracle WebCenter Interaction and Oracle WebCenter Ensemble cache all text (i.e.,
nonbinary) content returned by GET requests. Even if gateway caching is disabled (via
PTSpy), portlet caching still takes place. Gatewayed content can be cached by a proxy
server or by the user’s browser. Beware browser caching of gatewayed content; it is a
good idea to clear your browser cache often during development. An incorrectly set
Expires header can cause browsers to cache gatewayed content.

The portlet cache contains sections of finished markup and sections of markup that
require further transformation. Post-cache processing means content can be more
timely and personalized. Adaptive tags enable certain portlet (for example,
Community banners) to be cached publicly for extended periods of time and yet
contain user- and page-specific information, as well as the current date and time.

For a full explanation of HTTP caching, see RFC 2616
(http://www.w3.org/Protocols/rfc2616/rfc2616.html).

Portlet Caching

Oracle WebCenter Interaction Portlet and Pagelet Development 2-153

2.9.1 Portlet Caching Strategies
Portlet caching is controlled both by the programmer and by the administrator who
registers the portlet in Oracle WebCenter Interaction or Oracle WebCenter Ensemble.
Each and every portlet needs a tailored caching strategy to fit its specific functionality.

A portlet's caching strategy should take all possibilities into account and use the most
efficient combination for its specific functionality. A portlet that takes too long to
generate can degrade the performance of every page that displays it. These questions
can help you determine the appropriate caching strategy:

■ Will the content accessed by the portlet change? How often?

■ How time-critical is the content?

■ What processes are involved in producing portlet content? How expensive are
they in terms of server time and impact?

■ Is the portlet the only client with access to the back-end application?

■ Is the content different for specific users?

■ Can users share cached content?

Determine how often portlet content must be updated, dependent on data update
frequency and business needs. Find the longest time interval between data refreshes
that will not negatively affect the validity of the content or the business goals of the
portlet.

Since caching is indexed on the settings used by a portlet, new content is always
requested when settings change (assuming that no cached content exists for that
combination of settings).

There are two common situations in which you might mistakenly decide that a portlet
cannot be cached:

■ In-place refresh: You might think that caching would "break" a portlet that uses
in-place refresh because the portlet would be redirected to the original (cached)
content. This can be avoided if a unique setting is updated on every action that
causes a redraw, effectively "flushing" the cache. (In-place refresh renews the
portlet display by causing the browser to refresh the portal page at a set interval.)

■ Invisible preferences: If the content of the portlet is dependent on something
other than preferences (for example, the portlet keys off the User ID to display a
name or uses portal security to filter a list), caching can still be implemented with
“invisible preferences” (in this case, User ID). As with in-place refresh, invisible
preferences are set solely for the purpose of creating a different cache entry. They
are set programmatically, without the user’s knowledge.

2.9.2 Portlet Cache Key
The cache key for a portlet entry in Oracle WebCenter Interaction or Oracle
WebCenter Ensemble consists of these values.

Parameter Description

Portlet ID The unique ID for the portlet, defined by Oracle WebCenter
Interaction or Oracle WebCenter Ensemble.

Content Mode The content mode of the portlet.

Portlet Caching

2-154 Web Service Developer's Guide for Oracle WebCenter Interaction

The data below can be added to the cache key by setting options in the Web Service
editor on the Advanced Settings page.

The data below is deliberately not included in the cache key:

2.9.3 Implementing Portlet Caching
Caching on the Portal Server can be set in two ways: programmatically through HTTP
headers and/or using the administrative settings in the Web Service editor. You
should always implement caching programmatically, although the administrator can
still choose to override caching through administrative settings.

While caching is an integral and necessary part of portlet design, it is helpful to disable
it while developing and debugging. Otherwise, it can be very difficult to view the

Portal Settings All seven types of settings stored in the portal database: Portlet
settings, User settings, Community settings, CommunityPortlet
settings, Administrative settings, Session preferences, and User
Information.

User Interface The type of device used to access the portlet.

CanSet values All three values for the CanSet header: CanSetPersonal,
CanSetCommunity, CanSetAdmin

LocaleID The ID for the portal-defined locale associated with the current
user.

UserID The unique ID for the current user. Included only if private
caching is used.

URI The URL to the portlet page on the remote server.

Community ID Included only if the portlet is displayed on a community page.

Last-modified date The last modified date of the portlet.

Parameter Description

Community ACL The ACL for the community in which the portlet is displayed.

Page ID The ID for the portal page on which the portlet is displayed.

TimeZone The time zone for the portal in which the portlet is displayed.

Experience Definition ID The ID for the Experience Definition in which the portlet is
displayed.

Portlet Alignment The alignment of the portlet in the current page.

Activity Rights Only the Activity Rights configured in the Web Service editor are
included in the cache key.

Parameter Description

StyleSheetURI Portal stylesheets are applied at runtime, depending on the user
preference. Portlet content does not depend on the particular
stylesheet that the user has selected.

HostpageURI All parts of the Hostpage URI value are covered separately. The
cache key includes Community ID, so it already distinguishes
between My Pages and Community pages. The User ID is added if
private caching is used.

Parameter Description

Portlet Caching

Oracle WebCenter Interaction Portlet and Pagelet Development 2-155

results of any modifications you have made. To disable the caching implemented by
the Portal Server, go to the HTTP Configuration page of the Portlet Web Service editor
(shown under Portlet Settings above) and set the minimum and maximum caching
times to 0. Clear the checkbox marked “Suppress errors where possible (use cached
content instead).”

2.9.4 Setting HTTP Caching Headers - Cache-Control
The Cache-Control header can be used to expire content immediately or disable
caching altogether. The value of this header determines whether cached portlet
content can be shared among different users.

The Cache-Control header can contain the following values:

In JSP, use the setHeader method to configure the Cache-Control header:

<%
response.setHeader("Cache-Control","public");
%>

The JSP example below expires the content immediately using the maximum age
header.

<%
response.setHeader("Cache-Control","max-age=0");
%>

Note: After the code has been developed and debugged, make sure
to turn caching on and test the performance of your portlet. For details
on troubleshooting portlets, see Portlet Debugging. If you using the
Oracle WebCenter Interaction Logging Utilities to debug caching, turn
on all types of tracing for the OpenKernel.OpenHttp.Cache
component.

Header Value Description

public Allows any cached content to be shared across users with identical sets
of preferences using the same portal server. This value should be used
whenever possible.

private Tells the portal server not to share cached content. The User ID is
added to the cache key so that a separate copy is retained in the cache
for each individual user. This value should only be used to protect
sensitive information, for example, an e-mail inbox portlet. (User
settings can also make public content effectively private.)

max-age=[seconds] Specifies the maximum amount of time that an object is considered
fresh. Similar to the Expires header, this directive allows more
flexibility. [seconds] is the number of seconds from the time of the
request that the object should remain fresh.

must-revalidate Tells the cache that it must obey any freshness information it receives
about an object. HTTP allows caches to take liberties with the freshness
of objects; specifying this header tells the cache to strictly follow your
rules.

no-cache Disables caching completely and overrides Web Service editor settings.
Neither the client nor the Portal Server responds to subsequent
requests with a cached version.

Portlet Caching

2-156 Web Service Developer's Guide for Oracle WebCenter Interaction

In .NET, the Cache-Control header is accessed through the
System.Web.HttpCachePolicy class. To set the header to public, private or no-cache,
use the Response.Cache.SetCacheability method.

Response.Cache.SetCacheability(HttpCacheability.Public);

To set a maximum age for content in .NET, use the Response.Cache.SetMaxAge
method. The example below expires the content immediately.

TimeSpan ts = new TimeSpan(0,0,0);
Response.Cache.SetMaxAge(ts);
To set the header to must-revalidate in .NET, use the Response.Cache.SetRevalidation
method.

Response.Cache.SetRevalidation(HttpCacheRevalidation.AllCaches);

2.9.5 Setting HTTP Caching Headers - Expires
The Expires header specifies when content will expire, or how long content is “fresh.”
After this time, the portal server will always check back with the remote server to see
if the content has changed.

Most web servers allow setting an absolute time to expire, a time based on the last
time that the client saw the object (last access time), or a time based on the last time the
document changed on your server (last modification time).In JSP, setting caching to
forever using the Expires header is as simple as using the code that follows:

<%
response.setDateHeader("Expires",Long.MAX_VALUE);
%>

The .NET System.Web.HttpCachePolicy class provides a range of methods to
handle caching, but it can also be used to set HTTP headers explicitly (see MSDN for
API documentation:). The Response.Cache.SetExpires method allows you to
set the Expires header in a number of ways. The following code snippet sets it to
forever:

Response.Cache.SetExpires(DateTime.Now.AddYears(100000000));
In .NET, the Web Form page (.aspx) can also use standard ASP methods to set HTTP
headers.

2.9.6 Setting HTTP Caching Headers - Last-Modified and ETag
The Last-Modified response header specifies the last time a change was made in the
returned content, in the form of a time stamp. ETag values are unique identifiers
generated by the server and changed every time the object is modified. Either can be
used to determine if cached content is up to date.

When an object stored in the cache includes a Last-Modified or ETag header, the portal
server can use this value to ask the remote server if the object has changed since the
last time it was seen.

Note: Never use Expires = 0 to prevent caching. The Expires header
is sent by the remote server and passed through to the browser by the
Portal Server. Unless the time on all three machines is synchronized,
an Expires=0 header can mistakenly return cached content. To solve
this problem, set the Expires header to a fixed date that is definitely in
the past.

Portlet Caching

Oracle WebCenter Interaction Portlet and Pagelet Development 2-157

■ The portal server sends the value from the Last-Modified header to the remote
server in the If-Modified-Since Request header.

■ The remote server sends the ETag header to the portal server with portlet content.
When another request is made for the same content, the Portal Server sends the
value in the ETag header back to the remote server in the If-None-Match header.

The portlet code on the remote server uses the header value to determine if the content
being requested has changed since the last request, and responds with either fresh
content or a 304 Not Modified Response. If the portal server receives the latter, it
displays the cached content.JSP portlet can access the value in the If-Modified-Since
request header using the getLastModified(HttpServletRequest req) method
provided by the Java class HttpServlet.In .NET, the
Response.Cache.SetLastModified method allows you to set the Last-Modified
header to the date of your choice. Alternately, the
SetLastModifiedFromFileDependencies method sets the header based on the
time stamps of the handler’s file dependencies.

Response.Cache.SetLastModified(DateTime.Now);
To use ETag in .NET, use the Response.Cache.SetETag method to pass in the
string to be used as the ETag. The SetETagFromFileDependencies method creates
an ETag by combining the file names and last modified timestamps for all files on
which the handler is dependent.

2.9.7 Configuring Oracle WebCenter Interaction Portlet Caching Settings
In Oracle WebCenter Interaction, the HTTP Configuration page of the Web Service
editor allows portal administrators to set minimum and maximum validation times for
cached portlet content.

The default cache settings are a minimum of 0 seconds and a maximum of 20 days.
These settings affect caching as follows.

■ The portal server never makes a request to the remote server before the
Minimum Cache Time if there is content in the cache. (In version 6.0, the portlet
cache is limited to 15 minutes, so a request will always be made after 15 minutes.)
Multiple requests made for the same portlet with identical cachekeys within this
minimum time always receive cached content. As noted earlier, setting the
Cache-Control header to “no-cache” overrides editor caching settings; content will
not be cached.

■ The portal server always makes a request to the remote server after the Maximum
Cache Time. Cached content might or might not be returned, based on other
information (for example, the Last-Modified header).

■ The portal server might or might not make a request to the remote server if
content has been cached in between the Minimum and Maximum Cache Time.
The portal server observes programmatic caching (for example, the Expires
header) in the window between the minimum and maximum times.

Setting the Cache-Control header to “no-cache” overrides editor settings; content will
never be cached.For example, the minimum caching time for a particular portlet is set

Note: Using HTTP headers to control caching is always preferable.
Administrators can override some programmatic caching, but they
cannot be relied upon to set caching correctly. If your portlet requires
specific editor settings for its caching strategy, you must include this
information in your Installation Guide.

Portlet Caching

2-158 Web Service Developer's Guide for Oracle WebCenter Interaction

to ten minutes, and the maximum caching time is set to one hour. Client A requests
the portlet content. Five minutes later, Client B, with an identical set of preferences,
requests the same content. Five minutes is under the minimum caching time set in the
Portlet editor, so cached content is returned, no matter what type of programmatic
caching has been implemented by the portlet. (Remember, the Portal Server only
abides by headers if cached content was generated between the minimum and
maximum caching times set in the editor. An Expires header set to two minutes does
not refresh the cache in this example.) If no copies of the content existed for Client B’s
particular collection of settings or no content was cached, the remote server would be
called to generate content that matched that group of settings. To continue the
example, Client A requests the portlet content again, and there is a matching copy of
the content in the cache that is 15 minutes old. This is over the minimum caching time
and under the maximum. In this case, whether or not new content is generated
depends on the HTTP headers sent by the portlet. If the portlet has not specified any
caching programmatically, the Portal Server asks the remote server for fresh content. If
the portlet set the Expires header to 30 minutes, new content is not generated. If ETag
or Last-Modified caching was implemented, new content is only returned if content
has changed. Finally, Client A requests the same content two hours later, and the
matching copy was generated more than an hour before. Since this is over the
maximum caching time set in the Portlet editor, the Portal Server requests new content
from the remote server, regardless of the caching specified programmatically by the
portlet. Of course, if the portlet has implemented ETag or Last-Modified caching, new
content is only returned if content has changed.

3

Content Service Development 3-1

3Content Service Development

Content services (content crawlers and federated search services) allow you to search
external repositories through the portal and index external content in the portal
Directory. These services allow users to access documents and other resources from
multiple repositories without leaving the portal workspace.

■ Content crawlers access content from an external repository and index it in the
portal. Portal users can search for and open crawled files through the portal
Directory. Content Crawlers can be used to provide access to files on protected
back-end systems without violating access restrictions. Content Crawlers are
implemented as remote web services. For details, see Section 3.1, "Content
Crawlers".

■ Federated search services are remote web services that search external
repositories, including the web, internal company databases and document
repositories. For details, see Section 3.2, "Oracle WebCenter Interaction Federated
Search Services". For additional search customization options, see the Oracle
WebCenter Interaction UI Customization Guide.

3.1 Content Crawlers
Content crawlers are extensible components used to import documents into the portal
Directory from a back-end document repository, including Lotus Notes, Microsoft
Exchange, Documentum and Novell. Portal users can search for and open crawled
files on protected back-end systems through the portal without violating access
restrictions.

The Oracle WebCenter Interaction Development Kit (IDK) allows you to create remote
content crawlers and related configuration pages without parsing SOAP or accessing
the portal API; you simply implement four object interfaces to access the back-end
repository and retrieve files. UDDI servers are not required.

The purposes of a Content Crawler are two-fold:

1. Iterate over and catalog a hierarchical data repository. Retrieve metadata and
index documents in the data repository and include them in the portal Directory
and search index. Files are indexed based on metadata and full-text content.

2. Retrieve individual documents on demand through the portal Directory, enforcing
any user-level access restrictions.

Content Crawlers are run asynchronously by the portal Automation Service. The
associated content crawler completes step 1. The Content Crawler Job can be run on a
regular schedule to refresh any updated or added files. The portal creates a Document
object for each crawled file and indexes it in the Directory. Each object includes basic
file information, security information, and a URL that opens the file from the back-end

Content Crawlers

3-2 Web Service Developer's Guide for Oracle WebCenter Interaction

content repository. (No crawled files are stored on the portal server.) If the content is
not contained within a file or cannot be indexed for another reason, you must
implement a servlet/aspx page to return files that can be indexed to the portal.

Step 2 occurs when a user browses the Directory and opens to a previously crawled
document. After a file is crawled into the portal, users must be able to access the file
from within the portal by clicking a link. This step is called click-through. If files are
publicly accessible, click-through is simple. In many cases, you must provide access to
documents that are behind a firewall or are otherwise inaccessible from the portal
interface.

For details, see the following sections:

■ Section 3.1.1, "Oracle WebCenter Interaction Development Kit (IDK) Interfaces for
Content Crawler Development": The Oracle WebCenter Interaction Development
Kit (IDK) provides object interfaces to implement custom content crawlers. This
section introduces the IDK's crawler interfaces and lists useful warnings and best
practices.

■ Section 3.1.2, "Content Crawler Development Tips": These best practices and
development tips apply to all content crawler development.

■ Section 3.1.4, "Content Crawler Indexing": Content crawlers must return an
indexable version of each crawled file to be included in the portal Directory. This
section provides an introduction to indexing.

■ Section 3.1.5, "Content Crawler Click-Through": The crawl is just the first step.
This section explains how content crawlers can provide access to secured files that
have been indexed in the portal. For instructions, see Section 3.1.5.1,
"Implementing Content Crawler Click-Through".

■ Section 3.1.7, "Deploying a Custom Content Crawler": After coding your Content
Crawler, you must deploy your code. These sections provide detailed instructions.

■ Section 3.1.10, "Configuring Content Crawlers": Implementing a successful
Content Crawler in the portal requires specific configuration.

■ Section 3.1.9, "Debugging Custom Content Crawlers": Logging is a key component
of any successful crawl. This page introduces logging options.

■ Section 3.1.8, "Testing Custom Content Crawlers": This checklist summarizes key
tests that should be performed on every content crawler.

3.1.1 Oracle WebCenter Interaction Development Kit (IDK) Interfaces for Content
Crawler Development

The Oracle WebCenter Interaction Development Kit (IDK) plumtree.remote.crawler
package/namespace includes four interfaces to support content crawler development:
IContainerProvider, IContainer, IDocumentProvider and IDocument.

When the portal Automation Service initiates a crawl, it issues a SOAP request to
return a list of folders. It iterates over the list of folders and retrieves lists of
documents with metadata. In general, the portal calls Oracle WebCenter Interaction
Development Kit (IDK) interfaces in the following order. See the definitions that
follow for more information.

1. IContainerProvider.initialize once per thread. Use DataSourceInfo
and CrawlerInfo to initialize the Container Provider (make a connection to the
back-end system and create a new session). Note: This is not a true HTTP session,
and sessions can get dropped. Keep a variable that can be used to ensure the
session is still initialized; if it is not, throw NotInitializedException. Store

Content Crawlers

Content Service Development 3-3

the Content Source in a member variable in Initialize. Do not use direct access to
the member variable; instead use a method that checks if it is null and throws a
NotInitializedException.

2. IContainerProvider.attachToContainer

, using the starting location in the key CrawlerConstants.TAG_PATH. The key
should be populated using a Service Configuration page in the Content Crawler
editor. The string in TAG_PATH is service-specific; a file content crawler could
use the UNC path to a folder, while a database content crawler could use the full
name of a table. The following methods are not called in any specific order.

■ IContainer.getUsers and IContainer.getGroups on that container
as required. (IContainer.GetMetaData is deprecated.)

■ IContainer.getChildContainers up to the number specified in
CrawlerConstants.TAG_DEPTH. (This key must be set via a Service
Configuration page.)

■ IContainerProvider.attachToContainer for each ChildContainer
returned.

■ IContainer.getChildDocuments, then
IDocumentProvider.attachToDocument for each ChildDocument
returned.

3. IContainerProvider.shutdown (this call is optional and could be blocked by
exceptions or network failure).

4. IDocumentProvider.initialize once per thread. Note: Sessions can get
dropped. Keep a variable that can be used to ensure the session is still initialized;
if it is not, throw NotInitializedException.

5. IDocumentProvider.attachToDocument

for each ChildDocument, then

IDocument.getDocumentSignature

to see if the document has changed. If the document is new or has been modified,
the following methods are called (not in any specific order).

■ IDocument.getUsers and IDocument.getGroups on that document as
required.

■ IDocument.getMetaData to get the file name, description, content type,
URL, etc.

■ IDocument.getDocument to index the document (only if DocFetch is used).

6. IDocumentProvider.shutdown (this call is optional and could be blocked by
exceptions or network failure).

The sections below provide helpful information on the interfaces used to implement a
content crawler. For a complete listing of interfaces, classes, and methods, see the
Oracle WebCenter Interaction Development Kit (IDK) API documentation.

3.1.1.1 IContainerProvider
The IContainerProvider interface allows the portal to iterate over a back-end
directory structure. The portal calls IContainerProvider first in most cases. This
interface provides the following methods:

■ initialize allows the remote server to initialize a session and create a
connection to the back-end document repository. The Oracle WebCenter

Content Crawlers

3-4 Web Service Developer's Guide for Oracle WebCenter Interaction

Interaction Development Kit (IDK) passes in a DataSourceInfo object that
contains the necessary settings associated with a Content Source object (the name
of a directory in the repository and the credentials of a system user). The
CrawlInfo object contains the settings for the associated Content Crawler object
in the portal. The start location of the crawl is the value stored in the key
CrawlerConstants.TAG_PATH , set using a Service Configuration page.

■ attachToContainer is always the next call after Initialize; the order of the
remaining calls is not defined. It associates the session with the container specified
in the sContainerLocation parameter; subsequent calls refer to this container
until the next attachToContainer call. The value in the
sContainerLocation parameter will be the CrawlerConstants.TAG_PATH key
for the initial attach, and the value specified in ChildContainer.GetLocation for
subsequent attaches. Each time attachToContainer is called, discard any state
created during the previous attachToContainer call. If multiple translations of
the container are available, select the most appropriate using the Locale
parameter, which can be sent as a full locale (e.g., "en-us") or in the abbreviated
language-only format (e.g., "en"). Note: If the container specified does not exist,
you must throw a new NoLongerExistsException to avoid an infinite loop. If
the Content Crawler is configured to delete missing files, all files in the container
will be removed from the portal index.

■ ahutdown allows the portal to clean up any unused sessions that have not yet
expired. Content Crawlers are implemented on top of standard cookie-based
session mechanisms, so sessions expire and resources and connections are released
after an inactivity period, typically around 20 minutes. As a performance
optimization, the portal might send a Shutdown message notifying the remote
server to end the session immediately. No parameters are received and none are
returned. Do not assume that Shutdown will be called; the call could be blocked
by an exception or network failure. Remote servers must terminate sessions after
an inactivity timeout but can choose to ignore the Shutdown message and keep
the session alive until it times out.

3.1.1.2 IContainer
The portal uses the IContainer interface to query information about back-end
resource directories. This interface provides the following methods:

■ getGroups and getUsers return a list of the portal groups or users that have
read access to the container. These calls are made only if the Web Service and
Content Crawler objects are configured to import security. The portal batches
these calls; the content crawler code should return all groups or users at once.

■ getChildContainers returns the containers inside the current container (i.e.,
subfolders of a folder). The value stored in the key CrawlerContants.TAG_
DEPTH is used to determine how many times getChildContainers is called
(crawl depth). This value must be set via a Service Configuration page. If no value
is stored with this key, getChildContainers is never called; only the
documents in the folder specified for the start location are crawled into the portal.
Note: Setting CrawlerConstants.TAG_DEPTH to -1 could result in an infinite loop.

■ getChildDocuments returns the documents inside the current container
(folder). The portal batches this call; the Content Crawler code should return all
documents at once. The TypeNamespace and TypeID parameters define the
Content Type for the document. TypeNamespace associates the document with a
row in the Global Content Type Map, and the TypeID associates it with a
particular Content Type. The value in ChildDocument.getLocation is used in
IDocumentProvider.attachToDocument, so any information required by

Content Crawlers

Content Service Development 3-5

attachToDocument must be included in the location string. You can describe the
document using file or MIME, as shown in the example below.

ChildDocument doc=new ChildDocument();
String filename = WordDoc.doc;

//Location is a crawler-specific string to retrieve doc, e.g., file name
doc.setLocation(filename);

//TypeNameSpace is either FILE or MIME unless using a custom namespace (Notes,
Exchange)
//NOTE: example uses getCode because setTypeNameSpace expects a String
doc.setTypeNameSpace(TypeNamespace.MIME.getCode()):

//For file descriptions, TypeID is simply the document name with extension
(i.e., filename)
//For MIME descriptions, set the document type or map multiple file extensions
to MIME types
doc.setTypeID("application/msword");

//DisplayName is the name to display in the KD, usually overridden in
IDocument.getMetaData();
doc.setDisplayName(filename);

■ getMetaData (DEPRECATED) returns all metadata available in the repository
about the container. The name and location are used in mirrored crawls to mirror
the structure of the source repository. In most cases, the container metadata is only
the name and description.

3.1.1.3 IDocumentProvider
The IDocumentProvider interface allows the portal to specify back-end documents
for retrieval. In most cases, the portal calls IContainerProvider first. However, in
some cases, the service is used to refresh existing documents and
IDocumentProvider might be called first.

■ initialize allows the remote server to initialize a session and create a
connection to the back-end document repository. (For details on parameters and
session state, see IContainerProvider.initialize above.)
IDocumentProvider.initialize will be called once per thread as long as the
session does not time out or get interrupted for other reasons, and
attachToDocument will be called next.

■ attachToDocument

is always the next call made after Initialize; the order of the remaining calls is not
defined. This method 'attaches' a session to the document specified in the

sDocumentLocation

parameter; subsequent calls refer to this document until the next
attachToDocument call. The sDocumentLocation string is the value specified in
ChildDocument.getLocation (ChildDocument is returned by
IContainer.getChildDocuments). If multiple translations of the document are
available, select the most appropriate by using the Locale parameter, which can be
sent as a full locale (e.g., 'en-us') or in the abbreviated language only format (e.g.,
'en'). When implementing this method, you can throw the following exceptions:

Content Crawlers

3-6 Web Service Developer's Guide for Oracle WebCenter Interaction

■ shutdown allows the portal to clean up any unused sessions that have not yet
expired. (For details, see IContainerProvider.shutdown above.)

3.1.1.4 IDocument
The IDocument interface allows the portal to query information about and retrieve
documents. This interface provides the following methods:

■ getDocumentSignature allows the portal to determine if the document has
changed and should be re-indexed and flagged as updated. It can be a version
number, a last-modified date, or the CRC of the document. The Oracle WebCenter
Interaction Development Kit (IDK) does not enforce any restrictions on what to
use for the document signature, or provide any utilities to get the CRC of the
document. This is always the first call made to IDocument; on re-crawls, if the
documentSignature has not changed, no additional calls will be made.

■ getMetadata

returns all metadata available in the repository about the document. The portal
maps this data to properties based on the mappings defined for the appropriate
Content Type, along with metadata returned by the associated accessor. The
following field names are reserved. Additional properties can be added using the
portal's Global Document Property Map; for details, see Configuring Custom
Content Crawlers: Properties and Metadata. (Any properties that are not in the
Global Document Property Map will be discarded.)

Exception Description

NoLongerExistsExceptio
n

The document has been moved or deleted. (The refresh agent will
delete documents from the portal index only if this exception has
been thrown.)

NotAvailableException The document is temporarily unavailable.

NotInitializedException The IDocumentProvider is in an uninitialized state.

AccessDeniedException Access to this document is denied.

ServiceException Propagates the exception to the portal and adds an entry to
Logging Spy.

Field Name Description

Name REQUIRED. The name of the link to be displayed in the portal
Knowledge Directory. Note: By default, the portal uses the name
from the crawled file properties as the name of the card. To set the
portal to use the Name property returned by getMetadata, you
must set the CrawlerConstants.TAG_PROPERTIES to REMOTE
using the Service Configuration Interface.

Description The description of the link to be displayed in the portal Directory.

UseDocFetch Whether or not to use DocFetch to retrieve the file. The default is
False. If you use DocFetch, the value in the File Name field is used
to retrieve the file during both indexing and click-through. If you
do not use DocFetch, you must provide values for Indexing URL
and Click-Through URL.

File Name (required for
DocFetch)

The name of the click-through file, used for DocFetch.

Content Type (required
for DocFetch)

The content type of the click-through file, used to associated the
crawled document with the Global Content Type Map.

Content Crawlers

Content Service Development 3-7

■ getDocument returns the path to the file if it was not provided by getMetaData.
(For public URLs, you do not need to implement getDocument, but you must
provide values for IndexingURL and ClickThroughURL in getMetaData.)
During crawl-time indexing, this file is copied to the web-accessible
IndexFilePath location specified in your deployment descriptor and returned
to the portal via a URL to that location. If the file is not supported for indexing by
the portal, implement getDocument to convert the document into a supported
file format for indexing (e.g., text-only) and return that file during indexing. Note:
To create a custom implementation of getDocument, you must set useDocFetch
to True. When a user clicks through to the document, the display file is streamed
back via the DocFetch servlet to the browser. Any necessary cleanup due to
temporary file usage should be done on subsequent calls to
IDocumentProvider.attachToDocument or
IDocumentProvider.shutdown. For details on accessing secured content and
files that are not accessible via a public URL, see Section 3.1.5, "Content Crawler
Click-Through".

■ getGroups and GetUsers return a list of the groups or users with read access to
the document. Each entry is an ACLEntry with a domain and group name. The
portal batches these calls; the content crawler code should return all groups or
users at once. This call is made only if the Supports importing security with each
document option is checked on the Advanced Settings page of the Web Service
editor.

3.1.1.5 SCI Variables for Content Crawler Properties
Content crawler properties are configured using a defined set of variables.

The Content Crawler object should include the following properties. These properties
canbe hard-coded or configured using a Service Configuration (SCI) page.For details
on SCI pages, see

Section 3.1.10.1, "Creating Service Configuration Pages for Content Crawlers".

Indexing URL (public
URL)

(Required if not using DocFetch.) The URL to the file that can be
indexed in the portal. URLs can be relative to the Remote Server. If
a file is publicly accessible via a URL, that URL can be used to
access the document for both indexing and click-through.
Documents that cannot be indexed must provide an additional
URL at crawl-time for indexing purposes. For details on crawling
secured content, see Accessing Secured Content .

Click-Through URL
(public URL)

(Required if not using DocFetch.) The URL to the click-through file.
URLs can be relative to the Remote Server. For details on crawling
secured content, see Accessing Secured Content.

Image UUID (optional) This parameter is only required for custom Content Types. For
standard Content Types, the accessor will assign the correct image
UUID.

Variable Property Value

TAG_PATH The path to the container to crawl. Depending on the type of
container, this could be a URL, a UNC path, information for a
table in a database, information for a view in Notes, etc.

Field Name Description

Content Crawlers

3-8 Web Service Developer's Guide for Oracle WebCenter Interaction

3.1.2 Content Crawler Development Tips
These best practices and development tips apply to all content crawler development.

■ Use logging extensively to provide feedback during a crawl. In some cases, the
portal reports a successful crawl when there were minor errors. Use Log4J or
Log4Net to track progress.

■ Use relative URLs in your code to allow migration to another remote server.
Note: These URLs might be relative to different base URL endpoints. The
click-through URL is relative to the remote server base URL, and the indexing
URL is relative to the SOAP URL. Depending on whether you have implemented
your content crawler using Java or .NET, the base URL endpoint for the remote
server might differ from the base URL endpoint for SOAP. For example, the Java
IDK uses Axis, which implements programs as services. In Axis, the SOAP URL is
the remote server base URL with '/services' attached to the end. Given the remote
server base URL http://server:port/sitename, the SOAP URL would be
http://server:port/sitename/services. If both click-through and indexing URLs
point to the same servlet
(http://server:port/sitename/customdocfetch?docId=12345), the relative URLs
would be different. The relative URL for indexing would be
"../customdocfetch?docId=12345" and the relative URL for click-through would be
"customdocfetch?docId=12345". (Since the indexing URL is relative to the SOAP
URL, the '../' reorients the path from http://server:port/sitename/services to
http://server:port/sitename, yielding the correct URL to
http://server:port/sitename/customdocfetch?docId=12345.)

■ Do your initial implementation of IDocumentProvider and IDocFetchProvider
in separate classes, but factor out some code to allow reuse of the GetDocument
and GetMetaData methods. See the Viewer sample application included with the
Oracle WebCenter Interaction Development Kit (IDK) for sample code.

■ Do not make your calls order-dependent. The portal can make the above calls in
any order, so your code cannot be dependent on order.

■ If a document or container does not exist, always throw a new
NoLongerExistsException. This is the only way the portal can determine if the file
or folder has been deleted. Not throwing the exception could result in an infinite
loop.

CRAWL_DEPTH If the variable TAG_DEPTH has not been included, the
content crawler only crawls documents in the first directory.
This works for resources with no subdirectories, such as a
database. For a file system, it is usually best to use a
SCISelectElement to let users select the crawl depth (where -1
means until subcontainers return no child containers). If you
do not want users to set this option, use a SCIHiddenElement
for the same field. Note: The SCISelectElement must call
SetStorageType(TypeStorage.STORAGE_INTEGER) to
be stored correctly; otherwise the portal will return the
message "wrong property type."

TAG_PROPERTIES (optional) Represents whether properties from GetMetaData
or the local accessor should be used. Setting this variable to
TAG_PROPERTIES_LOCAL causes the local accessor
properties used to retrieve a file to override the properties
returned by the content crawler. Setting the variable to TAG_
PROPERTIES_REMOTE causes the properties from
GetMetaData to override properties from local accessors.

Variable Property Value

Content Crawlers

Content Service Development 3-9

■ If there are no results, return a zero-length array. If your intention is to return no
results, use a zero-length array, not an array with empty strings. (For example,
return new ChildContainer[0];)

■ Check the SOAP timeout for the back-end server and calibrate your response
accordingly. The SOAP timeout is set in the Web Service editor.

■ Pages that are not publicly accessible must be gatewayed. Gateway settings are
configured in the Web Service editor on the HTTP Configuration page, and in the
Content Source editor. You can gateway all URLs relative to the remote server or
enter individual URLs and add paths to other servers to gateway additional pages.

■ You must define mappings for any associated Content Types before a content
crawler is run. The portal uses the mappings in the Content Type definition to
map the data returned by the content crawler to portal properties. Properties are
only stored if you configure the Content Type mapping before running the content
crawler. (Properties that apply to all documents are configured in the Global
Document Property Map.)

■ To import security settings, the backend repository must have an associated
Authentication Source. Content crawlers that import security need the user and
category (domain) defined by an Authentication Source. You must configure the
Authentication Source before the content crawler is run. Many repositories use the
networks NT or LDAP security store; if an associated Authentication Source
already exists, there is no need to create one. For details on Authentication
Sources, see the portal online help.

■ If you use a mirrored crawl, only run it when you first import documents.
Always check every directory after a mirrored crawl. After you have imported
documents into the portal, it is safer to refresh your portal directory using a
regular crawl with filters.

■ For mirrored crawls, make crawl depth as shallow as possible. Portal users want
to access documents quickly, so folder structure is important. Also, the deeper the
crawl, the more extensive your QA process will be.

■ Use filters to sort crawled documents into portal folders. Mirrored crawls can
return inappropriate content and create unnecessary directory structures. Filters
are a more efficient way to sort crawled documents. To use filters, choose Apply
Filter of Destination Folder in the Content Crawler editor. For details on filters, see
the portal online help.

■ Do not use automatic approval unless you have tested a content crawler. It is
dangerous to use automatic approval without first testing the structure, metadata
and logs for a content crawler.

■ To clear the deletion history, you must re-open the Content Crawler editor. To
re-crawl documents that have been deleted from the portal, you must re-open the
Content Crawler editor and configure the Importing Documents settings on the
Advanced Settings page.

You can also import access restrictions during a crawl; for details, see Section 3.1.10,
"Configuring Content Crawlers". For more information on the configuration settings
above, see the following sections:

■ Section 3.1.10, "Configuring Content Crawlers"

■ Section 3.1.7, "Deploying a Custom Content Crawler"

Content Crawlers

3-10 Web Service Developer's Guide for Oracle WebCenter Interaction

3.1.3 Content Crawler Security Options
A crawler can use a range of credential types to access a secure file.

If you need to apply credentials to access a file, you can use any of the following
options:

3.1.4 Content Crawler Indexing
A content crawler must return an indexable version of each crawled file to be included
in the portal Directory.

The crawler's servlet/aspx page must return content in a indexable format and set the
content type and file name using the appropriate headers. Any information required
to retrieve the document must be included in the query string of the index URL,
including credentials (if necessary).

For files, content can be streamed directly from the source directory. If the content is
not in a file, the crawler code should create a temporary file that includes the content
with as little extraneous information as possible.

For details, see the following sections:

■ Section 3.1.4.1, "Indexing Streaming Content"

■ Section 3.1.4.2, "Creating Temporary Files for Indexing"

Credential
Type Description

SSO SSO must be configured in the portal and on the remote server, using the
instructions of your SSO vendor.

Basic
Authenticatio
n

Set the remote server to pass the user's basic authentication headers to the
remote resource. Both sources must be using the same directory. For example,
if a user logs in using an IPlanet directory, it is unlikely they will be able to
access an Exchange resource.

Content
Source
credentials

Content Source credentials are generally valid only for crawling a database.
Most other use cases require user-specific credentials.

User
preferences
via
form-based
authenticatio
n

Preferences stored in the portal database can be used to create a cookie if the
resource accepts session-based authentication. User preferences generally
cannot be used if the resource expects basic authentication. For example, the
Content Service for Notes uses this approach when Notes is using
session-based (cookie) authentication. You must enter all User settings and
User Information required by a content crawler on the Preferences page of the
Content Crawler editor.

Force users to
log in

If the required credentials are not available, redirect the user to the
appropriate page and/or provide an intelligible error message. For example,
the Content Service for Notes uses this approach when Notes is using basic
authentication.

Note: The request from the portal to the indexing servlet is a simple
HTTP GET. This call is not gatewayed, so the content crawler code
does not have access to the Content Source settings, user credentials
and preferences, or anything other information through the Oracle
WebCenter Interaction Development Kit (IDK).

Content Crawlers

Content Service Development 3-11

3.1.4.1 Indexing Streaming Content
If the content being crawled is in a file, the file can be streamed directly from the
source directory.

The following steps describe a typical custom mechanism to return files in a indexable
format and set the content type and file name using the appropriate headers.

1. In IDocument, get all the variables needed to access the document and add them
to the query string of the indexing servlet. This could be as simple as a UNC path
for a file crawler or as complicated as server name, database name, schema, table,
primary key(s) and primary key value(s) for a database record. It depends entirely
on the content crawler and the document being crawled. Make sure all values are
URLEncoded.

2. Add the content type to the query string.

3. In IDocument, add URLEncoded credentials to the query string. Keep in mind
that URLEncoding the credentials will turn a '+' to a space, which must be turned
back into a space in the indexing servlet.

4. Pass back URLs via theDocumentMetadata class that point to the servlet(s).

■ UseDocFetch: Set to False.

■ IndexingURL: Set to the endpoint/servlet that provides the indexable
version of the file, including the query string arguments defined in steps 1-3
above.

■ ClickThroughURL: Set to the endpoint/servlet that provides the path to be
used when a user clicks through to view the file. During the crawl, the
ClickThroughURL value is stored in the associated Directory document.

5. In the indexing servlet, get the location string and content type from the query
string and parse the location string to get the path to the resource.

6. Obtain the resource.

7. Set the ContentType header and the Content-Disposition header.

8. Stream the file (binary or text) or write out the file (text) in a try-catch block.

3.1.4.2 Creating Temporary Files for Indexing
If crawled content cannot be indexed as-is, the crawler code must create a temporary
file for indexing.

The following steps describe a typical custom mechanism to create a temporary
indexable file with as little extraneous information as possible and set the content type
and file name using the appropriate headers. In most cases, the resource has already
been accessed in sttachToDocument, so there is no need to call the back-end system
again. This example does not use credentials. If you do not want to create temporary
files, you can implement an indexing servlet that returns indexable content.

1. In IDocument, write a temporary file to a publicly accessible location (usually the
root directory of the web application as shown in the code snippet below).

MessageContext context = MessageContext.getCurrentContext();
 HttpServletRequest req =
(HttpServletRequest)context.getProperty(HTTPConstants.MC_HTTP_SERVLETREQUEST)
 StringBuffer buff = new StringBuffer();
 buff.append(req.getScheme()).append('://').append(req.getServerName())
 .append(':').append(req.getServerPort()).append(req.getContextPath());
 String indexRoot = buff.toString();

Content Crawlers

3-12 Web Service Developer's Guide for Oracle WebCenter Interaction

2. Pass back URLs via the IDK's DocumentMetadata class that point to the
servlet(s).

■ UseDocFetch: Set to False.

■ IndexingURL: Set to the endpoint/servlet that provides the indexable
version of the file, including the query string arguments defined in steps 1-3
above.

■ ClickThroughURL: Set to the endpoint/servlet that provides the path to be
used when a user clicks through to view the file. During the crawl, the
ClickThroughURL value is stored in the associated Directory document.

3. Add the temporary file path to the query string, along with the content type. Make
sure to URLEncode both.

4. In the indexing servlet, get the file path and content type from the query string.
Get the file name from the file path.

5. Set the ContentType header and the Content-Disposition header.

6. Stream the file (binary or text) or write out the file (text) in a try-catch block.

7. In the finally block, delete the file.

The following sample code indexes a text file.

logger.Debug('Entering Index.Page_Load()');

// try to get the .tmp filename from the Content Crawler
string indexFileName = Request[Constants.INDEX_FILE];
if (indexFileName != null)
{
 StreamReader sr = null;
 string filePath = ''; try
{
filePath = HttpUtility.UrlDecode(indexFileName);
string shortFileName = filePath.Substring(filePath.LastIndexOf('\\') + 1);

 // set the proper response headers
 Response.ContentType = 'text/plain';
 Response.AddHeader('Content-Disposition', 'inline; filename=' +
shortFileName);

 // open the file
 sr = new StreamReader(filePath);

 // stream out the information into the response
 string line = sr.ReadLine();

 while (line != null)
 {
 Response.Output.WriteLine(line);
 line = sr.ReadLine();
 }
 }
 catch (Exception ex)
{
 logger.Error('Exception while trying to write index file: ' + ex.Message, ex);
 }
 finally
 {
 // close and delete the temporary index file even if there is an error

Content Crawlers

Content Service Development 3-13

 if(sr != null){sr.Close();}
 if(!filePath.Equals('')){File.Delete(filePath);}
 }
//done
return;
}
...

3.1.5 Content Crawler Click-Through
After a repository is crawled and files are indexed in the portal, users must be able to
access the file from within the portal by clicking a link; this is the 'click-through' step.

Click-through retrieves a crawled file over HTTP to be displayed to the user. To
retrieve documents that are not available via a public URL, you can write your own
code or use the DocFetch mechanism in the Oracle WebCenter Interaction
Development Kit (IDK). If you handle document retrieval, you can also implement
custom caching or error handling. Click-through links are gatewayed, so the content
crawler can leverage user credentials and other preferences.

For details, see the following sections:

■ Section 3.1.5.1, "Implementing Content Crawler Click-Through"

■ Section 3.1.5.2, "Content Crawler DocFetch"

■ Section 3.1.3, "Content Crawler Security Options"

3.1.5.1 Implementing Content Crawler Click-Through
The content crawler's click-through implementation must return content in a readable
format and set the content type and file name using the appropriate headers.

The following example uses a file, but the crawled resource could be any type of
content. If the content is not in a file, the click-through servlet should create a
representation with as little extraneous information as possible in a temporary file (for
example, for a database, you would retrieve the record and transform it to HTML). See
Section 3.1.4.2, "Creating Temporary Files for Indexing". You can also use the Oracle
WebCenter Interaction Development Kit (IDK) DocFetch mechanism to handle
indexing and click-through; see Section 3.1.5.2, "Content Crawler DocFetch".

1. Create the clickThroughServlet, and add a mapping in web.xml.

2. Complete the implementation of IDocument.getMetaData. Set the
ClickThoughURL value to an URL constructed using the following steps:

a. Construct the base URL of the application using the same approach as in the
index servlet.

b. Add the servlet mapping to the clickThroughServlet.

c. Add any query string parameters required to access the document from the
clickThroughServlet (or aspx page). Remember: The click-through page will
have access to Content Source parameters (as administrative preferences), but
no access to content crawler settings.

3. To authenticate to the back-end resource, you can use basic authentication, User
Preferences, User Info, or credentials from the Content Source. Below are
suggestions for each; security will need to be tailored to your content crawler

■ Use Basic Authentication to use the same credentials used to log in to the
portal. For example, if the portal uses AD credentials, Basic Auth could be
used to access NT files.

Content Crawlers

3-14 Web Service Developer's Guide for Oracle WebCenter Interaction

■ Use (encrypted) User Preferences if the authentication source is different from
the one used to log in to the portal. For example, if the portal log in uses
IPlanet, but you need to access an NT or Documentum file.

■ Use (encrypted) User Info if the encrypted credentials are stored in another
profile source and imported using a profile job.

■ Use Content Source credentials when there a limited connections, for
example with a database.

4. Extract the parameters from the query string as required.

5. Display the page.

■ If there is already an HTML representation of the page, authenticate to the
page. If the site is using basic authentication and you are using basic
authentication headers, simply redirect to that page. If the site is using basic
authentication and you are not using basic authentication, users must log in
unless the site and the portal are using the same SSO solution. If the site is
using form-based authentication, post to the site and follow the redirect.

■ If there is not an HTML representation of the page, retrieve the resource and
stream it out to the client as shown in the sample code below (Java). If you use
a temporary file, put the code in a try-catch-finally block, and delete the file in
the finally block.

//get the content type, passed as a query string parameter
String contentType = request.getParameter('contentType')

//if this is a file, get the file name
String filename = request.getParameter('filename');

//set the content type on the response
response.setContentType(contentType);

//set the content disposition header to tell the browser the file name
response.setHeader('Content-Disposition', 'inline; filename=' + filename);

//set the header that tells the gateway to stream this through the gateway
response.setHeader('PTGW-Streaming', 'Yes');

//get the content - for a file, get a file input stream based on the path
(shown below)
//other repositories may simply provide an input stream
//NOTE: this code contains no error checking
String filePath = request.getParameter('filePath');
File file = new File(filePath);
FileInputStream fileStream = new FileInputStream(file);

//create a byte buffer for reading the file in 40k chunks
int BUFFER_SIZE = 40 * 1024;
byte[] buf = new byte[BUFFER_SIZE];

//start reading the file
int bytesRead = fileStream.read(buf);
ServletOutputStream out = response.getOutputStream();

//start writing out the body
out.write(buf, 0, bytesRead);

//continue writing until the input stream returns -1
while ((bytesRead = fileStream.read(buf)) != -1

Content Crawlers

Content Service Development 3-15

{
 out.write(buf, 0, bytesRead);
}

3.1.5.2 Content Crawler DocFetch
The Oracle WebCenter Interaction Development Kit (IDK) DocFetch mechanism is one
way for a content crawler to retrieve files that are not accessible via a public URL.

If a content crawler implements DocFetch, the Oracle WebCenter Interaction
Development Kit (IDK) manages the process of creating temporary files for indexing
and click-through. DocFetch also allows you to implement user-level access control.
You can pass user preferences or User Information to the content crawler, and this
information can be used by DocFetch to authenticate with the back-end system or limit
access to specific users.

3.1.5.2.1 Implementing Content Crawler DocFetch Content crawler code can use DocFetch
to access files that are not available via a public URL.

To use DocFetch, there are three relevant fields in the DocumentMetaData object
returned in the portal's call to IDocument.getMetaData:

■ UseDocFetch: Set UseDocFetch to True.

■ File Name: Set the File Name to the name of the file in the repository (must be
unique).

■ Content Type: Set the Content Type to the content type for the file. The content
type must be mapped to a supported Content Type in the portal.

When UseDocFetch is set to True, the Oracle WebCenter Interaction Development Kit
(IDK) sets the ClickThroughURL stored in the Directory to the URL of the DocFetch
servlet, and calls IDocument.getDocument to retrieve the file path to the indexable
version of the document. When a user subsequently clicks on a link to the crawled
document in the Directory, the request to the DocFetch servlet makes several calls to
the already-implemented content crawler code. getDocument is called again, but
this time as part of the IDocFetch interface. The file path returned is opened by the
servlet and streamed back in the response. As explained above, the content crawler
must implement the getDocument method in both the Crawler.IDocument and
DocFetch.IDocFetch interfaces to return the appropriate file path(s). If the
repository cannot access files directly, you must serialize the binary representation to a
temporary disk file and return that path. The IDocument and IDocFetch interfaces can
use the same process. The Oracle WebCenter Interaction Development Kit (IDK)
provides a cleanup call to delete any temporary files later.

Note: DocFetch does not allow you to use multiple methods of
authentication or implement custom error handling. If you cannot use
public URLs and are not using DocFetch, you must implement a
custom document fetching mechanism (i.e., servlet or aspx page). If
necessary, you can implement separate servlets for indexing and
click-through.

Note: If getDocument returns a path to a file (not a URL to a
publicly accessible file), the file name must be unique. Otherwise, all
copies of the file are removed during cleanup, including copies that
are currently in use by other users.

Content Crawlers

3-16 Web Service Developer's Guide for Oracle WebCenter Interaction

To use user preferences or User Information, you must configure the settings to be
used in the Content Crawler editor. DocFetch interfaces are called in the following
order. For a complete listing of interfaces, classes, and methods, see the Oracle
WebCenter Interaction Development Kit (IDK) API documentation.

1. IDocFetchProvider.initialize using the DataSourceInfo, UserPrefs and
UserInfo returned from the portal to make a connection to the backend system and
create a new session. The implementation should initialize in a similar manner to
IDocumentProvider.initialize. IDocFetchProvider can use UserInfo and
UserPrefs to perform additional authentication. The ICrawlerLog object is not
available. Note: Sessions can get dropped. Keep a variable that can be used to
ensure the session is still initialized; if it is not, throw
NotInitializedException.

2. IDocFetchProvider.attachToDocument using the authentication
information provided (including UserPrefs and UserInfo).

a. IDocFetch.getMetaData: The only DocumentMetadata required for
click-through is the file name and content type.

b. IDocFetch.getDocument: As noted above, IDocFetch.GetDocument
method should reuse as much code as possible from the
IDocument.getDocument method. The Oracle WebCenter Interaction
Development Kit (IDK) looks in web.config/*.wsdd to get the file path and
URL to the directory for creating temporary files.

3. IDocFetchProvider.Shutdown (optional).

3.1.6 Handling Exceptions in Custom Content Crawlers
Content crawler code should handle exceptions.

Most calls should be put into a try-catch block. The scope of the try-catch block should
be small enough to diagnose errors easily. In the catch block, log the error in both
Log4j/Log4net as well as ICrawlerLog and then re-throw the exception as a
ServiceException. This will result in the error displaying in the job log. However, only
the error message shows up in the log; look at the log from Log4j/Log4net to get the
full stack trace. The following exceptions have special meaning:

■ NotInitializedException means to re-initialize.

■ NoLongerExistsException means that the folder or document no longer exists,
and tells the portal to delete that resource.

If any exception is thrown during the initial attachToContainer, the crawl aborts.
If NotInitializedException is thrown, the content crawler re-initializes. If
NoLongerExistsException is thrown, the resource is removed from the Directory,
and the content crawler continues to the next resource. If other exceptions are thrown,
the error is logged, and the content crawler continues to the next resource. To use
ICrawlerLog, store the member variable in your implementation of
IContainerProvider.initialize. To send a log message, simply add the
following line: m_logger.Log('enter logging message here') Note: The
container provider log reads the logs only after AttachToContainer and after
exceptions. The document provider log reads only after exceptions. For more
information and the best visibility, use Log4j/Log4net.

For details on logging, see Section 1.2, "Oracle WebCenter Interaction Logging
Utilities".

Content Crawlers

Content Service Development 3-17

3.1.7 Deploying a Custom Content Crawler
After implementing a custom content crawler, you must deploy your code.

3.1.7.1 Java
Follow the instructions below to deploy a Java content crawler.

1. Compile the class that implements the IDK interface and copy the entire package
structure to the appropriate location in your web application (usually the
\WEB-INF\classes directory).

2. Update the web.xml file in the WEB-INF directory by adding the class to the
appropriate *Impl keys. For a content crawler, add your class to
ContainerProviderImpl and DocumentProviderImpl as shown below. Note:The
*Impl key in web.xml must reference the fully-qualified name of both provider
classes required by the service. If the service uses SCI, you must also enter the
fully-qualified name of the appropriate implementation of the IAdminEditor
interface in the SciImpl parameter.

...
<env-entry>
<env-entry-name>ContainerProviderImpl</env-entry-name>
<env-entry-value>com.plumtree.remote.crawler.helloworld.CrawlContainer</env-ent
ry-value>
<env-entry-type>java.lang.String</env-entry-type>
</env-entry>

<env-entry>
<env-entry-name>DocumentProviderImpl</env-entry-name>
<env-entry-value>com.plumtree.remote.crawler.helloworld.CrawlDocument</env-entr
y-value>
<env-entry-type>java.lang.String</env-entry-type>
</env-entry>
...

3. Start your application server. (In most cases, you must restart your application
server after copying a file.)

4. Test the directory by opening the following page in a Web browser:
http://<hostname:port>/edk/services/<servicetype>ProviderSoapBinding (for
example, http://localhost:8080/edk/ContainerProviderSoapBinding and
http://localhost:8080/edk/DocumentProviderSoapBinding). The browser should
display the following message: "Hi there, this is an AXIS service! Perhaps there
will be a form for invoking the service here..." When you configure the Web
Service object for the content crawler in the portal, enter this path as the Service
Provider URL.

5. If the content crawler uses DocFetch, you must also deploy your DocFetch code.
Open the WEB-INF\web.xml file and add the fully-qualified name of your class in
the DocFetchProvider initialization parameter, as shown in the code that follows.

...
<servlet>
<servlet-name>DocFetch</servlet-name>
<servlet-class>com.plumtree.remote.docfetch.DocFetch</servlet-class>

<!-- Modify the param-value below to reference your class -->
<init-param>
<param-name>DocFetchProvider</param-name>
<param-value>com.mycompany.MyDocFetchProvider</param-value>

Content Crawlers

3-18 Web Service Developer's Guide for Oracle WebCenter Interaction

</init-param>

</servlet>
...

3.1.7.2 .NET
To deploy a .NET content crawler, add a line to the deployment file (web.config) that
specifies the fully qualified name of the class. For a content crawler, enter values for
the following parameters, as shown in the code that follows.

■ ContainerProviderImpl

■ DocumentProviderImpl

■ ContainerProviderAssembly

■ DocumentProviderAssembly

...
<appSettings>
<add key='ContainerProviderAssembly' value='CompanyStoreCWS'/>
<add key='ContainerProviderImpl'
value='Plumtree.CompanyStore.CWS.CompanyStoreContainer'/>
<add key='DocumentProviderAssembly' value='CompanyStoreCWS'/>
<add key='DocumentProviderImpl'
value='Plumtree.CompanyStore.CWS.CompanyStoreDocument'/>
...
If the service uses SCI, you must also enter the fully-qualified name of the appropriate
implementation of the IAdminEditor interface using the SciImpl and
AdminEditorAssembly parameters.

If the content crawler uses DocFetch, you must also deploy your DocFetch code. Add a
line to the deployment file (web.config) that specifies the fully qualified name of your
class and the associated assembly (DocFetchImpl and DocFetchAssembly). You must
also add three additional parameters to the web.config deployment descriptor:

■ DocFetchURL: The URL to the DocFetch servlet or server page. This URL should
be relative to the Remote Server object URL configured for the Content Crawler
object in the portal to facilitate migration to another portal.

■ IndexFilePath: A writable, web-accessible directory to which the IDK can write
temporary files. During crawl-time, the Oracle WebCenter Interaction
Development Kit (IDK) calls IDocument.GetDocument and copies the file path
returned to this temporary file location, which is returned to the portal. These
temporary files should be deleted upon completion of the crawl. (The DocFetch
mechanism will clean up its own resources, but you must delete the temporary file
you return to GetDocument.)

■ IndexURLPrefix: The public Web address of the IndexFilePath directory.
IndexURLPrefix must be an URL accessible from the portal server.

The code below is an example of deploying DocFetch in web.config.

...
<appSettings>
<add key='DocFetchAssembly' value='MyDocFetch' />
<add key='DocFetchImpl' value='com.mycompany.MyDocFetchProvider' />
<add key='DocFetchURL' value='iis/docfetch.aspx'/>
<add key='IndexFilePath' value='D:\\root\\config\\mydomain'/>
<add key='IndexURLPrefix' value='http://yourhost/IISVirtualDirectory'/>
...

Content Crawlers

Content Service Development 3-19

3.1.8 Testing Custom Content Crawlers
These key tests should be performed on every content crawler.

All the following tests should be performed in multiple implementations of the portal.

■ Test the entire crawl depth. Confirm that documents are structured correctly in
every level. Crawl depth should be as shallow as possible. If there are problems,
check the filters on the target folders. If nothing is returned, check the
authentication settings in the associated Content Source and Web Service -
Content objects.

■ Check the document metadata. Is it stored in the appropriate properties? Does it
match the metadata in the source repository? If there are problems, check the
Content Type settings in the Content Crawler editor, and check the mappings for
each associated Content Type.

■ Click through to crawled documents from each crawled directory. If there are
problems, check the gateway settings in the Web Service - Content editor.

■ Test refreshing documents to confirm that they reflect modifications. If there are
problems, make sure you are providing the correct document signature.

■ Check logs after every crawl. The log can reveal problems even if the portal
reports a successful crawl.

3.1.9 Debugging Custom Content Crawlers
To debug custom content crawlers, use logging.

Logging is an important component of any successful content crawler. Logging allows
you to track progress and find problems.In most implementations, using Log4J or
Log4Net for logging is the best approach. The IDK ICrawlerLog object is more
efficient and useful than Logging Spy or a SOAP trace, but it only includes standard
exceptions and messages from ContainerProvider.AttachToContainer.If you
are viewing the ICrawlerLog, do not assume that the every card was imported if the
job is successful. Successful means no catastrophic failures, such as portal Search not
started, or unable to attach to the start node. Individual document failures will not fail
a job.If you are viewing logs created by Log4net or Log4j, see the associated
documentation for logging configuration options. Both products allow you to specify a
file location and a rollover log with a specified file size. If you know the location of the
file, it is not difficult to create a servlet/aspx page that streams the file from the log to
the browser.

For more information, see the following sections:

■ Section 3.1.6, "Handling Exceptions in Custom Content Crawlers"

■ Section 1.2, "Oracle WebCenter Interaction Logging Utilities"

3.1.10 Configuring Content Crawlers
Implementing a successful content crawler in the portal requires specific
configuration.

To register a content crawler in the portal, you must create the following
administrative objects and portal components:

■ Remote Server: The Remote Server defines the base URL for the content crawler.
Content crawlers can use a Remote Server object or hard-coded URLs. Multiple
services can share a single Remote Server object. If you will be using a Remote

Content Crawlers

3-20 Web Service Developer's Guide for Oracle WebCenter Interaction

Server object, you must register it before registering any related Web Service
objects.

■ Web Service - Content: The Web Service object includes basic configuration
settings, including the SOAP endpoints for the ContainerProvider and
DocumentProvider, and Preference page URLs. Multiple Content Source or
Content Crawler objects can use the same Web Service object. All remote content
crawlers require an associated Web Service object. For information on specific
settings, see the portal online help.

■ Content Source - Remote: The Content Source defines the location and access
restrictions for the back-end repository. Each Web Service - Content object has one
or more associated Content Source objects. The Content Source editor can include
Service Configuration pages created for the content crawler. Multiple Content
Crawler objects can use the same Remote Content Source, allowing you to crawl
multiple locations of the same content repository without having to repeatedly
specify all the settings. For details on specific settings, see the portal online help.
For details on Service Configuration pages, see Section 3.1.10.1, "Creating Service
Configuration Pages for Content Crawlers".

■ Content Crawler - Remote: Each content crawler has an associated Content
Crawler object that defines basic settings, including destination folder and Content
Type. The Content Crawler editor can include Service Configuration pages created
for the Content Crawler. Refresh settings are also entered in the Content Crawler
editor. For details on specific settings, see the portal online help. For details on
Service Configuration pages, see Section 3.1.10.1, "Creating Service Configuration
Pages for Content Crawlers".

■ Job: To run the content crawler, you must schedule a Job or add the Content
Crawler object to an existing Job. The Content Crawler editor allows you to set a
Job. For details on configuring Jobs, see the portal online help.

■ Global Content Type Map: If you are importing a proprietary file format, you
might need to create a new Content Type. Content Types are used to determine
the type of accessor used to index a file. You can create new Content Types, or
map additional file extensions to an existing Content Type using the Global
Content Type Map. Most standard file formats are supported for indexing by the
portal. In most cases, the same document is returned during a crawl (for indexing)
as for click-through (for display). You can also map additional file extensions to
Content Types through the Global Content Type Map. For detailed instructions,
see the portal online help or the Administrator Guide for Oracle WebCenter
Interaction.

■ Global Document Property Map: To map document attributes to portal
Properties, you must update the Global Document Property Map before running a
content crawler. During a crawl, file attributes are imported into the portal and
stored as Properties. The relationship between file attributes and portal Properties
can be defined in two places: the Content Type editor or the Global Document
Property Map.

Two types of metadata are returned during a crawl.

■ The crawler (aka provider) iterates over documents in a repository and
retrieves the file name, path, size, and usually nothing else.

■ During the indexing step, the file is copied to portal Search, where the
appropriate accessor executes full-text extraction and metadata extraction. For
example, a for a Microsoft Office document, the portal uses the MS Office
accessor to obtain additional properties, such as author, title, manager,
category, etc.

Content Crawlers

Content Service Development 3-21

If there are conflicts between the two sets of metadata, the setting in
CrawlerConstants.TAG_PROPERTIES determines which is stored in the database
(for details, see Service Configuration Pages above).

■ Global ACL Sync Map: Content crawlers can import security settings based the
Global ACL Sync Map, which defines how the Access Control List (ACL) of the
source document corresponds with Oracle WebCenter Interaction’s authentication
groups. (An ACL consists of a list of names or groups. For each name or group,
there is a corresponding list of possible permissions. The ACL returned to the
portal is for read rights only.) For detailed instructions, see the portal online help
or the Administrator Guide for Oracle WebCenter Interaction.

In most cases, the Global ACL Sync Map is automatically maintained by
Authentication Sources. The Authentication Source is the first step in Oracle
WebCenter Interaction security. To import security settings in a crawl, the
back-end repository must have an associated Authentication Source. Content
crawlers that import security need the user and category (domain) defined by an
Authentication Source. You must configure the Authentication Source before the
content crawler is run. Many repositories use the network’s NT or LDAP security
store; if an associated Authentication Source already exists, there is no need to
create one.

3.1.10.1 Creating Service Configuration Pages for Content Crawlers
Service Configuration (SCI) pages are integrated with portal editors and used to define
settings used by a content crawler.

Content crawlers must provide SCI pages for the Content Source and/or Content
Crawler editors to build the preferences used by the content crawler. The URL to any
associated SCI page(s) must be entered on the Advanced URLs page of the Web
Service - Content editor. All optional settings are in the class CrawlerConstants.
For a list, see Section 3.1.1.5, "SCI Variables for Content Crawler Properties". SCI
provides an easy way to write configuration pages that are integrated with portal
editors. SCI wraps the portal’s XUI XML and allows you to create controls without
XUI. For a complete listing of classes and methods in the plumtree.remote.sci
namespace, see the IDK API documentation. The following methods must be
implemented: .

■ initialize passes the namespace, whether Content Source or Content Crawler,
settings (NamedValueMap). Dependent objects supply data.

Note: If any properties returned by the crawler or accessor are not
included in the Global Document Property map, they are discarded.
Mappings for the specific Content Type have precedence over
mappings in the Global Document Property Map. The Object Created
property is set by the portal and cannot be modified by code inside a
Content Crawler.

Note: Two settings are required to import security settings:

■ In the Web Service - Content editor on the Advanced Settings
page, check Supports importing security with each document.

■ In the Content Crawler editor on the Main Settings page, check
Import security with each document.

Content Crawlers

3-22 Web Service Developer's Guide for Oracle WebCenter Interaction

■ getPages returns fixed-length array of the number of custom pages.

■ getContent returns the XML content for a page. The API provides a collection of
helper classes to build the page (textbox, select box, tree element, etc.)

The example below is a SCI page for a Content Source editor that gets credentials for a
database content crawler.

Imports System
Imports Plumtree.Remote.Sci
Imports Plumtree.Remote.Util
Imports System.Security.Cryptography

Namespace Plumtree.Remote.Crawler.DRV
'Page to enter name and password- first page for DataSourceEditor
Public Class AuthPage
Inherits AbstractPage
#Region "Constructors"
Public Sub New(ByVal editor As AbstractEditor)
MyBase.New(editor)
End Sub
#End Region

#Region "Functions"
'Gets the content for the page in string form.
'One textElement for name, one PasswordElement for password
'Note the way that the password is stored & the encryption used
Public Overrides Function GetContent(ByVal errorCode As Integer, ByVal pageInfo As
NamedValueMap) As String
Dim page As New SciPage
Dim userElement As New SciTextElement(DRVConstants.USER_NAME, "Enter the user name
to authenticate to SQL Server")
Dim userName As String = pageInfo.Get(DRVConstants.USER_NAME)
If Not userName Is Nothing Then
 userElement.SetValue(userName)
End If
userElement.SetMandatoryValidation("User name is mandatory")

 Dim passElement As New SciPasswordElement(DRVConstants.PASSWORD,
"Enter the password to authenticate to SQL Server", "Confirm", "Passwords do not
match")
'deal with asterisks and the like- for now, just show password
Dim password As String = pageInfo.Get(DRVConstants.ENC_PASSWORD)
'save the initial password?
Dim settings As NamedValueMap = Me.Editor.Settings
settings.Put(DRVConstants.ENC_PASSWORD, password)
Editor.Settings = settings
'set asterisks for the value
passElement.SetValue(DRVConstants.ASTERISKS)

 page.Add(userElement)
page.Add(passElement)

 Return page.ToString
End Function

 'Gets the help page URI for the page.
Public Overrides Function GetHelpURI() As String
Return ""
End Function

Oracle WebCenter Interaction Federated Search Services

Content Service Development 3-23

 'Gets the image (icon) URI for the page. (This setting is for backward
compatibility; no icon is displayed in version 5.0.)
Public Overrides Function GetImageURI() As String
Return ""
End Function

 'Gets the instructions for the page, displayed below the title in the
editor.
Public Overrides Function GetInstructions() As String
Return "Enter SQL Server authentication information"
End Function

 'Gets the title for the page.
Public Overrides Function GetTitle() As String
Return "SQL Server Authentication"
End Function

 'Validates the current page and throws a ValidationException to report an
error. Returns a NamedValueMap array of the settings entered on the editor page.
Public Overrides Sub ValidatePage(ByVal pageInfo As NamedValueMap)
'if the password is not asterisks, then put it into settings
Dim password As String = pageInfo.Get(DRVConstants.PASSWORD)
If Not password.Equals(DRVConstants.ASTERISKS) Then
 Dim settings As NamedValueMap = Me.Editor.Settings
 'encrypt this
 Dim encPassword As String = Utilities.EncryptPassword(password,
Me.Editor.Locale)
 settings.Put(DRVConstants.ENC_PASSWORD, encPassword)
 Editor.Settings = settings
End If

 End Sub
#End Region

 End Class
End Namespace

3.2 Oracle WebCenter Interaction Federated Search Services
Federated Search provides access to external repositories without adding documents
to the portal Directory. Federated Search is especially useful for content that is
updated frequently or is only accessed by a small number of portal users

When the portal requests a federated search service, the remote service accesses the
content repository and sends information about each file to the portal. The returned
information is displayed to users in search results. The results include a URL that
opens the file from the back-end content repository.

For details on implementing federated search services, see the following sections:

■ Section 3.2.1, "Creating a Federated Search Service"

■ Section 3.2.2, "Oracle WebCenter Development Kit (IDK) Interfaces for Federated
Search Service Development"

■ Section 3.2.3, "Deploying a Federated Search Service"

Oracle WebCenter Interaction Federated Search Services

3-24 Web Service Developer's Guide for Oracle WebCenter Interaction

3.2.1 Creating a Federated Search Service
The Oracle WebCenter Interaction Development Kit (IDK) allows you to create remote
Federated Search services and related configuration pages without parsing SOAP or
accessing the portal API. The Oracle WebCenter Interaction Development Kit (IDK)
Search API provides an abstraction from the necessary SOAP calls; you simply
implement an object interface.

The following best practices apply to every federated search service:

■ Know what to expect in response to a query. You must be ready to handle
pagination and authentication if necessary.

■ Check the SOAP timeout for the back-end server and calibrate your response
accordingly.

■ Use relative URLs in your code to allow migration to another remote server.

For details on implementing Federated Search Services using the Oracle WebCenter
Interaction Development Kit (IDK) Search API, see Section 3.2.2, "Oracle WebCenter
Development Kit (IDK) Interfaces for Federated Search Service Development".

3.2.2 Oracle WebCenter Development Kit (IDK) Interfaces for Federated Search Service
Development

The Oracle WebCenter Interaction Development Kit (IDK) plumtree.remote.search
package/namespace includes a set of interfaces to support federated search service
development.

The Oracle WebCenter Interaction Development Kit (IDK) plumtree.remote.search
package/namespace includes the following interfaces:

■ IRemoteSearch

■ ISearchQuery

■ ISearchUser

■ ISearchContext

■ ISearchRecord

■ ISearchResult

In general, the portal calls these interfaces in the following order. See the definitions
that follow for more information.

1. IRemoteSearch.BasicSearch, using ISearchQuery, ISearchUser and
ISearchContext as parameters.

2. The ISearchResult object returned allows the federated search service to iterate
through the search results and return them to the user. The service calls
ISearchResult.GetSearchResultList to retrieve an ISearchRecord for
each record returned. ISearchRecord allows you to retrieve the title,
description, file URL and image URL and set the title, description, file URL and
image URL to be returned to the portal.

The sections below provide helpful information on the interfaces used to implement a
federated search service For a complete listing of interfaces, classes, and methods, see
the IDK API documentation.

Oracle WebCenter Interaction Federated Search Services

Content Service Development 3-25

3.2.2.1 IRemoteSearch
The IRemoteSearch interface allows the portal to initiate a query over a back-end
directory structure. BasicSearch allows you to pass in an ISearchQuery that
defines the query to be performed. You can also pass in a ISearchUser and
ISearchContext for access to the PRC.

3.2.2.2 ISearchQuery
The ISearchQuery interface defines the search query to be performed by the portal.
Using ISearchQuery, you can define the scope of the query and provide user
preferences and user information to be used for authentication or user-level access
control. SearchException allows you to provide useful error messages (for
example, the specific preference type that was not found). For details, see the IDK API
documentation. This interface provides the following methods:

■ GetMaxReturn determines the maximum number of records to return per page.

■ GetNumberToSkip returns the number of records that will be skipped: where
the search will start. For example, the search could start at record 30.

■ GetSearchInfo returns any related administrative preferences set for the
associated Federated Search object in the portal.

■ GetSearchResult returns an ISearchResult object that allows the federated
search service to access the results returned by IRemoteSearch.

■ GetSearchString returns the query string passed to the portal.

■ GetUserInfo returns any User Information settings sent to the federated search
service. To access User Information, you must configure the specific settings you
need in the Web Service editor on the User Information page.

■ GetUserPrefs returns any user settings sent to the federated search service. To
access user settings, you must configure the specific settings you need in the Web
Service editor on the Preferences page.

3.2.2.3 ISearchUser
The ISearchUser interface can be used to access the current user's portal object ID
and locale, and to obtain the login token for the current session with the portal to
access the PRC.

3.2.2.4 ISearchContext
The ISearchContext interface can be used to access the portal UUID and SOAP
service endpoint URI to implement the PRC.

3.2.2.5 ISearchResult
The ISearchResult interface allows you to retrieve the results returned from a
search query and return the results to the portal. The federated search service code
must handle pagination; the methods in the ISearchResult facilitate iteration over
large numbers of search records.

■ Get/SetNumberSkipped returns the number of records that were skipped:
where the search started. For example, the search could start at record 30.

■ Get/SetSearchResultList returns a SearchRecord array of search results.

■ Get/SetTotalNumberofHits returns the total number of search records.

Oracle WebCenter Interaction Federated Search Services

3-26 Web Service Developer's Guide for Oracle WebCenter Interaction

■ Is/SetDescriptionEncoded determines whether or not the description for
the search results is HTMLencoded.

3.2.2.6 ISearchRecord
The ISearchRecord interface allows you to manipulate the metadata for each search
record. Only the title is required.

■ Get/SetTitle returns the title for the search record (required).

■ Get/SetDescription returns the description for the search record. If the
description should be HTMLencoded, use
ISearchResult.SetDescriptionEncoded.

■ Get/SetOpenDocumentURL returns the URL that will retrieve the document.
This URL must be accessible over the web or through the gateway. If the
document is gatewayed, make sure to configure the Web Service object with the
appropriate gateway URLs.

■ Get/SetImageURL returns the URL to the image that will be displayed with the
search record.

3.2.3 Deploying a Federated Search Service
After implementing a federated search service, you must deploy your code.

3.2.3.1 Java
Follow the instructions below to deploy a Java federated search service:

1. Compile the class that implements the Oracle WebCenter Interaction Development
Kit (IDK) interface and copy the entire package structure to the appropriate
location in your web application (usually the \WEB-INF\classes directory).

2. Update the web.xml file in the WEB-INF directory by adding the class to the
appropriate *Impl keys. For example, add your class to SearchImpl as shown
below. Note: The *Impl key in the web.xml file must reference the fully-qualified
name of the class. If the service uses SCI, you must also enter the fully-qualified
name of the appropriate implementation of the IAdminEditor interface.

...
<env-entry>
<env-entry-name>SearchImpl</env-entry-name>
<env-entry-value>com.plumtree.remote.search.helloworld.Search</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>
</env-entry>
...

3. Start your application server. (In most cases, you must restart your application
server after copying a file.)

4. Test the directory by opening the following page in a web browser:
http://<hostname:port>/idk/services/<servicetype>ProviderSoapBinding (for
example, http://localhost:8080/idk/SearchSoapBinding). The browser should
display the following message: "Hi there, this is an AXIS service! Perhaps there
will be a form for invoking the service here..." When you configure the Web
Service for the federated search service in the portal, enter this path as the Service
Provider URL.

Oracle WebCenter Interaction Federated Search Services

Content Service Development 3-27

5. If the federated search service uses a SCI page to define settings, you must also
deploy the SCI code. For details on using SCI pages, see Section 3.1.10.1, "Creating
Service Configuration Pages for Content Crawlers".

3.2.3.2 NET
To deploy a .NET federated search service, add a line to the deployment file
(web.config) that specifies the fully qualified name of the class used to implement
federated search. For a federated search service, you must enter values for the
following parameters, as shown in the code that follows.

■ SearchImpl

■ SearchAssembly

...
<appSettings>
<add key='SearchAssembly' value='CompanyStoreSWS'/>
<add key='SearchImpl' value='Plumtree.CompanyStore.SWS.CompanyStoreSWS'/>
...
If the federated search service uses a SCI page to define settings, you must also deploy
the SCI code. For details on using SCI pages, see Section 3.1.10.1, "Creating Service
Configuration Pages for Content Crawlers".

Oracle WebCenter Interaction Federated Search Services

3-28 Web Service Developer's Guide for Oracle WebCenter Interaction

4

Identity Service Development 4-1

4Identity Service Development

Identity Services (authentication and profile services) allow you to integrate
established repositories of user information into your portal. Users, groups, and group
membership configuration can be imported into the portal. Users logging into the
portal can be authenticated against the existing system of record. Information about
users can be imported from any number of external sources and mapped to portal
properties, which can then be made available to the portal or other services.

■ Authentication services are used to import users into the portal and authenticate
them against a back-end system. For details, see Section 4.1, "Authentication
Services"

■ Profile services are used to import information about existing portal users from
external systems and map that information to portal properties. For details, see
Section 4.2, "Profile Services"

In addition to the authentication and profile services, the following functionality is
available to control portal users in your implementation:

■ Experience definitions let you tailor portal experiences for different groups of
users. For details, see the portal online help.

■ Remote User Operations allow you to access and manage portal users from remote
applications. For details, see Section 2.4.1, "Adaptive Portlet Design Patterns".

4.1 Authentication Services
Authentication services are comprised of two parts: synchronization and
authentication. Together, these components import new users and allow them to
authenticate against the external system of record.

4.1.1 Synchronization
The synchronization component of an authentication service imports users from an
external system into the portal so that the users can be categorized in the portal's
group hierarchy. The synchronization process is handled by the portal Automation
Server, as scheduled in the Job associated with the Authentication Source object in the
portal.

Synchronization does not store users' passwords in the portal database.
Authentication is handled by the authentication component and the system of record.

Authentication Services

4-2 Web Service Developer's Guide for Oracle WebCenter Interaction

4.1.2 Authentication
The authentication component of an authentication service handles real-time
authentication of portal users against an external system. Since the portal cannot
change an externally managed password, a user's login must be compared against the
system of record. The remote authentication service must maintain state and handle
the communication between the portal and the back-end system. The user name and
password can be captured in the session at login to be used later for basic
authentication.

4.1.3 Development
The following sections provide detailed instructions on developing custom
authentication services:

■ Section 4.1.4, "Authentication Service Internals" describes the Oracle WebCenter
Interaction Development Kit (IDK) interfaces that must be implemented when
creating an authentication service, and how the interfaces will be called by the
portal.

■ Section 4.1.5, "Implementing an Authentication Service" provides step by step
instructions on implementing the required interfaces, with example code.

■ Section 4.1.6, "Deploying an Authentication Service" describes how to deploy an
authentication service to a Java or .NET application server.

■ Section 4.1.7, "Configuring an Authentication Service" describes how to configure
the authentication service in the portal.

4.1.4 Authentication Service Internals
The following Oracle WebCenter Interaction Development Kit (IDK) interfaces must
be implemented when creating an authentication service.

The Oracle WebCenter Interaction Development Kit (IDK) allows you to create remote
authentication services and related configuration pages without parsing SOAP or
accessing the portal API. The authentication API provides an abstraction from the
necessary SOAP calls; you simply implement an object interface. For a complete listing
of interfaces, classes, and methods, see the API documentation.

Note: Creating an Authentication Source object with a
synchronization component creates an associated option in the
Authentication Source drop-down list on the portal login page. The
name that appears in the drop-down list is the Description of the
Authentication Source object. Enter a description that all users will
recognize.

Note: The differences between the Java and .NET versions of the
Oracle WebCenter Interaction Development Kit (IDK) are
platform-specific. In this guide, method names are listed using the
Java standard. .NET methods are identical, except begin with a
uppercase letter. The ISyncProvider.Initialize method in the
.NET IDK provides the same functionality as the
ISyncProvider.initialize method in the Java IDK.

Authentication Services

Identity Service Development 4-3

4.1.4.1 Plumtree.Remote.Auth
The com.plumtree.remote.auth namespace (the Plumtree.Remote.Auth package
in .NET) provides interfaces for creating authentication and synchronization services
for users and groups in the portal. There are three interfaces provided:

■ ISyncProvider

■ IGroup

■ IAuthProvider

To provide synchronization with an external source, implement ISyncProvider and
IGroup. To provide authentication against an external source, implement
IAuthProvider. In most cases, all three interfaces should be implemented.

4.1.4.2 Synchronization
User and group synchronization takes place when the associated synchronization Job
is run by the portal Automation Service. The synchronization service must maintain
state between the portal, the remote server, and the back-end system until
synchronization is complete. Users are imported on each run via ISyncProvider.
Imported users are put into groups based on information from IGroup object(s). The
portal typically calls the methods of the authentication service interfaces in the
following order:

1. ISyncProvider.initialize

2. ISyncProvider.getGroups

3. ISyncProvider.initialize

4. ISyncProvider.getUsers

5. ISyncProvider.initialize

6. ISyncProvider.attachToGroup for each group returned in
ISyncProvider.getGroups

1. IGroup.getChildGroups

2. IGroup.getChildUsers

4.1.4.3 Authentication
When a user logs into the portal, the authentication service is called to authenticate
against the back-end system. This is done through a single call to
IAuthProvider.authenticate.

Once logged in, each user is associated with a portal User object; authentication
services do not need to maintain state.

4.1.5 Implementing an Authentication Service
To implement an authentication service, follow these step by step instructions.

This section describes the details of how to create an authentication service. This
authentication service is very simple, and is intended only as an example. It should not

Note: The portal may take a long time between calls to
getGroups(), getUsers(), and attachToGroup(). Because of
this, the Java or .NET session on the remote server may time out, so
initialize() is called more than once.

Authentication Services

4-4 Web Service Developer's Guide for Oracle WebCenter Interaction

be used in a production environment. The functional requirements for this
authentication service are as follows:

■ A single group will be synchronized into the portal: BASEGROUP

■ Ten users will be synchronized into the portal: TESTUSER0 - TESTUSER9

■ The ten users will be members of BASEGROUP

■ The ten users will all authenticate with the same password: TESTUSER

This authentication source is created by implementing the following interfaces:

■ ISyncProvider

■ IGroup

■ IAuthProvider

These interfaces are in the Plumtree.Remote.Auth namespace (C#) or the
plumtree.remote.auth package (Java). Any exceptions thrown in this code can be
found in Plumtree.Remote (C#) or plumtree.remote (Java).For the purposes of
this authentication service, a simple class, Constants, is created in the example
namespace/package. Constants has two public members, the String constants
GROUPNAME and USERNAME. These are set as follows:

■ Constants.GROUPNAME = “BASEGROUP”

■ Constants.USERNAME = “TESTUSER”

These constants are used to provide the group name and a base for the user names to
the authentication source code.For the complete code of this example, see the sample
code on the Developer Center.For details of the classes described in this section, see
the Oracle WebCenter Interaction Development Kit (IDK) API documentation.

1. Implement the ISyncProvider Interface

The ISyncProvider interface provides methods used by the portal to
synchronize users and groups with a back-end repository. The methods of
ISyncProvider are typically called in this order:

1. ISyncProvider.Initialize()

2. ISyncProvider.GetGroups()

3. ISyncProvider.Initialize()

4. ISyncProvider.GetUsers()

5. ISyncProvider.Initialize()

6. ISyncProvider.AttachToGroup()

Because the portal may take a long time between calls to GetGroups(),
GetUsers() and AttachToGroup(), Initialize() is called more than once.
This ensures that any configuration information passed to the synchronization
service is available, even if the session has timed out.

1. Implement ISyncProvider.Initialize

The Initialize() method is passed a SyncInfo object from the portal. The
SyncInfo object is a set of name-value pairs, populated with information
entered in the portal Service Configuration Interface (SCI) editor by a portal
administrator. Typically, this is information such as credentials for connecting
to the back-end system.Java:

public boolean initialize(SyncInfo info)

Authentication Services

Identity Service Development 4-5

 throws ServiceException
{
 return true;
}
C#:

public bool Initialize(SyncInfo syncInfo)
{
 return true;
}
For this example authentication service, there is no need to perform any
initialization, so the method simply returns true.In a production
implementation, false should be returned if initialization fails. For example,
if the authentication service cannot make a connection with the back-end
repository. If false is returned, the synchronization job will stop.

2. Implement ISyncProvider.GetGroups

The GetGroups() method is responsible for returning all of the groups from
the back-end system. A SyncObject should be created for each group, using
the static SyncObject.CreateGroup() method. The return value, a
SyncObjectList, is then constructed using an array of SyncObject objects
and a boolean flag, isDone. The isDone flag determines whether or not the
GetGroups() method will be called again. When you have a large number of
groups in your back-end system, you can return groups to the portal in
smaller batches. The size of each batch should be based on network
bandwidth, the SOAP timeout set in the Authentication Web Service, and the
speed of the back-end system. As a general rule, return no more than 1000
groups per batch. If GetUsers() returns SyncObjects in batches, it must
maintain state and set isDone to false until the last batch. Otherwise, isDone
should be set to true.Java:

public SyncObjectList getGroups()
 throws ServiceException
{
 SyncObject[] groups = new SyncObject[1];
 groups[0] = SyncObject.createGroup(
 Constants.GROUPNAME,
 Constants.GROUPNAME);
 return new SyncObjectList(groups, true);
}
C#:

public SyncObjectList GetGroups()
{
 SyncObject[] groups = new SyncObject[1];
 groups[0] = SyncObject.CreateGroup(
 Constants.GROUPNAME,
 Constants.GROUPNAME);
 return new SyncObjectList(groups, true);
}
For this authentication service, GetGroups() returns a single group,
BASEGROUP. As stated above, Constants.GROUPNAME is a String set to
"BASEGROUP". SyncObject.CreateGroup() accepts two String
arguments. The first argument is the name the imported group will have in
the portal. The second argument is the name of the group in the back-end
system. In this case, we set both to "BASEGROUP". The returned
SyncObjectList is then constructed with the single item SyncObject
array and the isDone flag set to true, signifying there are no more groups for
the portal to synchronize.

Authentication Services

4-6 Web Service Developer's Guide for Oracle WebCenter Interaction

3. Implement ISyncProvider.GetUsers

The GetUsers() method is responsible for returning all of the users from the
back-end system. Similar to GetGroups(), a SyncObject should be created
for each group. For GetUsers(), use the static
SyncObject.CreateUser() method to create each new SyncObject. The
return value, a SyncObjectList, is then constructed using an array of SyncObject
objects and a boolean flag, isDone.As with GetGroups(), the isDone flag
tells the portal whether it should call GetUsers() again or not, allowing you
to break retrieval of users into batches. The size of each batch should be based
on network bandwidth, the SOAP timeout set in the Authentication Web
Service, and the speed of the back-end system. As a general rule, return no
more than 1000 users per batch.If GetUsers() returns SyncObjects in
batches, it must maintain state and set isDone to false until the last batch.
Otherwise, isDone should be set to true.Java:

public SyncObjectList getUsers()
 throws ServiceException
{
 SyncObject[] users = new SyncObject[10];
 for (int i = 0; i < 10; i++)
 {
 String userName = Constants.USERNAME + i;
 users[i] = SyncObject.createUser(
 userName, userName, userName);
 }
 return new SyncObjectList(users, true);
\}
C#

public SyncObjectList GetUsers()
{
 SyncObject[] users = new SyncObject[10];
 for (int i = 0; i < 10; i++)
 {
 String userName = Constants.USERNAME + i;
 users[i] = SyncObject.CreateUser(
 userName, userName, userName);
 }
 return new SyncObjectList(users, true);
For this authentication service, GetUsers() returns ten users, TESTUSER0 -
TESTUSER9. An array of ten SyncObject objects is created, and then populated
using a for loop. The SyncObject.CreateUser() method takes three
String arguments: The first is the name of the user in the portal, the second is
the user name that will be passed for authentication, and the third is the name
of the user in the back-end system. In this case, all are set to the same String,
Constants.USERNAME + i.The returned SyncObjectList is then
constructed with the ten item SyncObject array and the isDone flag set to
true, signifying there are no more users for the portal to synchronize.

4. Implement ISyncProvider.AttachToGroup

AttachToGroup() returns an IGroup object that allows the portal to query
for users and groups contained within a given group. For details on
implementing the IGroup interface, see Implementing the IGroup Interface,
below. AttachToGroup() is passed a String, a group identifier on the
back-end system. This is the same as the second argument passed to
SyncObject.CreateGroups() in ISyncProvider.GetGroups().
AttachToGroup() should return an instance of an implementation of the
IGroup interface.Java:

Authentication Services

Identity Service Development 4-7

public IGroup attachToGroup(String groupID)
 throws ServiceException
{
 if (groupID.equals(Constants.GROUPNAME))
 {
 return new Group();
 }
 else
 {
 return null;
 }
}
C#:

public IGroup AttachToGroup(String groupID)
{
 if (groupID.Equals(Constants.GROUPNAME))
 return new Group();
 else
 return null;
}
For this authentication service, there is only one group, BASEGROUP. If the
group ID passed to AttachToGroup() is BASEGROUP, a Group object is
returned. Otherwise, null is returned. This is highly simplified; in a
production implementation, AttachToGroup() would query a back-end
system and return a group object with specific information for the given
group.

2. Implement the IGroup Interface

The IGroup interface provides methods that allow the portal to determine
relationships between users and groups. The portal takes the IGroup object
returned from each call to ISyncProvider.AttachToGroup() and calls two
IGroup methods:

1. IGroup.GetChildGroups()

2. IGroup.GetChildUsers()

Similar to the ISyncProvider.GetGroups() and
ISyncProvider.GetUsers() methods, the GetChildGroups() and
GetChildUsers() methods return objects that contain an array of either groups
or users. In both cases, the isDone flag can be used to send results back to the
portal in batches. The size of each batch should be based on network bandwidth,
the SOAP timeout set in the Authentication Web Service, and the speed of the
back-end system. As a general rule, return no more than 1000 groups or users per
batch.

1. Implement IGroup.GetChildGroups

The GetChildGroups() method defines which child groups (subgroups)
each group contains. The child groups are returned as ChildGroup objects in
a ChildGroupList object. The ChildGroup constructor takes a single
String argument, the unique name that identifies the group in the
authentication service. The ChildGroupList constructor should be passed
the array of ChildGroup objects and the isDone flag. If you want to return
child groups in batches, your implementation of IGroup must maintain state
internally and the isDone flag must be set to false until the final batch.Java:

public ChildGroupList getChildGroups()
 throws ServiceException
{

Authentication Services

4-8 Web Service Developer's Guide for Oracle WebCenter Interaction

 ChildGroup[] children = new ChildGroup[0]);
 return new ChildGroupList(children, true);
}
C#:

public ChildGroupList GetChildGroups()
{
 ChildGroup[] children = new ChildGroup[0];
 return new ChildGroupList(children, true);
}
In this example authentication service, there are no child groups, so an empty
array is returned.

2. Implement IGroup.GetChildUsers

The GetChildUsers() method returns the user membership of the group.
The users are returned as ChildUser objects, which are constructed with the
same arguments as ISyncProvider.CreateUser(). The
ChildUserList constructor should be passed the array of ChildGroup
objects and the isDone flag. If you want to return child users in batches, your
implementation of IGroup must maintain state internally and the isDone
flag must be set to false until the final batch.Java:

public ChildUserList getChildUsers()
 throws ServiceException
{
 ChildUser[] users = new ChildUser[10];
 for (int i = 0; i < 10; i++)
 {
 String userName = Constants.USERNAME + i;
 users[i] = new ChildUser(userName, userName, userName);
 }
\ return new ChildUserList(users, true);
}
C#:

public ChildUserList GetChildUsers()
{
 ChildUser[] users = new ChildUser[10];
 for (int i = 0; i < 10; i++)
 {
 String userName = Constants.USERNAME + i;
 users[i] = new ChildUser(userName, userName, userName);
 }
 return new ChildUserList(users, true);
}
For this authentication service, GetChildUsers() returns the same ten users
as ISyncProvider.GetUsers(), TESTUSER0 - TESTUSER9. An array of
ten ChildUser objects is created, and then populated using a for loop. The
ChildUser constructor takes three String arguments: the first is the name of
the user in the portal, the second is the user name that will be passed for
authentication, and the third is the name of the user in the back-end system. In
this case, all are set to the same String, Constants.USERNAME + i.The returned
ChildUserList is then constructed with the ten item ChildUser array and
the isDone flag set to true, signifying there are no more users associated with
this group.

3. Implement the IAuthProvider Interface

The IAuthProvider interface validates credentials from a portal login against a
back-end repository. There is a single method to

Authentication Services

Identity Service Development 4-9

implement,Authenticate().The Authenticate() method is passed three
arguments: two Strings for username and password, and an AuthInfo object. The
AuthInfo object, like the SyncInfo object passed to
ISyncProvider.Initialize(), is a set of name-value pairs, populated with
information entered in the portal SCI editor by a portal administrator. Typically,
this is information such as credentials for connecting to the back-end system.If the
credentials passed are valid, Authenticate() should return normally;
however, if the credentials are invalid, an exception of type ServiceException
must be thrown. See the Oracle WebCenter Interaction Development Kit (IDK)
API documentation for a complete description of the exceptions derived from
ServiceException.Java:

public void authenticate(String username,
 String password, AuthInfo authinfo)
 throws ServiceException
{
 if (username.startsWith(Constants.USERNAME_BASE) &&
 password.startsWith(Constants.USERNAME_BASE))
 {
 //do nothing- authenticated
 }
 else
 {
 throw new AccessDeniedException();
 }
}
C#:

public void Authenticate(String username,
 String password, AuthInfo authInfo)
{
 if (username.StartsWith(Constants.USERNAME) &&
 password.StartsWith(Constants.USERNAME))
 {
 //do nothing- authenticated
 }
 else
 {
 throw new AccessDeniedException();
 }
}
For this authentication service, if the username and password passed in start with
Constants.USERNAME ("TESTUSER"), the user is authenticated. Otherwise, an
AccessDeniedException is thrown.

4.1.6 Deploying an Authentication Service
This section describes how to deploy an Authentication Service in either Java or .NET.

4.1.6.1 Java
To deploy an authentication service to a Java application server, the Oracle WebCenter
Interaction Development Kit (IDK) must be installed on the server to which you intend

Note: If a message is provided in the exception, the message will not
be displayed to the user in the UI. The message will be caught by the
Oracle WebCenter Interaction Development Kit (IDK) and sent to the
Oracle WebCenter Interaction Logging Utilities.

Authentication Services

4-10 Web Service Developer's Guide for Oracle WebCenter Interaction

to deploy, and you must have implemented ISyncProvider and IGroup (for
synchronization), IAuthProvider (for authentication), or both. For details, see
Section 4.1.5, "Implementing an Authentication Service".

To deploy an authentication service to a supported Java application server:

1. Access the Oracle WebCenter Interaction Development Kit (IDK) deployment
servlet (DeployServlet) in a browser.

The Oracle WebCenter Interaction Development Kit (IDK) deployment servlet is
located at http://app server:port/idk/DeployServlet

2. Choose Auth and wait for the page to reload.

3. Enter a prefix to identify this authentication service and the fully qualified name of
the implementation of IAuthProvider, ISyncProvider, or both.

4. If this service uses SCI, check Use Service Configuration Interface (SCI) and enter
the fully qualified name of the appropriate implementation of IAdminEditor.

5. Copy and paste the URLs displayed on the results page to a text file; these are the
URLs that should be used when you configure the service in the portal.

4.1.6.2 .NET
To deploy an authentication service to IIS and .NET, the Oracle WebCenter Interaction
Development Kit (IDK) must be installed on the server to which you intend to deploy,
and you must have implemented ISyncProvider and IGroup (for synchronization),
IAuthProvider (for authentication), or both. For details, see Section 4.1.5,
"Implementing an Authentication Service".

To deploy an authentication service to IIS and .NET:

1. Ensure that you have built your project with the AuthProviderSoapBinding.asmx
and/or SyncProviderSoapBinding.asmx SOAP endpoints.

If this service uses SCI, also include SCIProviderBinding.asmx. These files can be
found in your IDK installation. The Oracle WebCenter Interaction Development
Kit (IDK) installation is typically installed to C:\Program
Files\plumtree\idk\<version>\devkit\

2. Update Web.config for services that provide authentication.

If this service provides authentication, add the following nodes to
<appSettings>:

■ <add key="AuthProviderAssembly" value="assembly name" />

Where assembly name is the name of the assembly containing your
IAuthProvider implementation.

■ <add key="AuthProviderImpl" value="fully qualified path"
/>

Where fully qualified path is the fully qualified path to the class implementing
IAuthProvider.

For example:

<appSettings>

 <add key="AuthProviderAssembly" value="Helloworld" />

 <add key="AuthProviderImpl" value="Plumtree.Remote.Auth.Helloworld.Auth" />

Authentication Services

Identity Service Development 4-11

...
3. Update Web.config for services that provide synchronization.

If this service provides synchronization, add the following nodes to
<appSettings>:

■ <add key="SyncProviderAssembly" value="assembly name" />

Where assembly name is the name of the assembly containing your
ISyncProvider implementation.

■ <add key="SyncProviderImpl" value="fully qualified path"
/>

Where fully qualified path is the fully qualified path to the class implementing
ISyncProvider.

For example:

<appSettings>

...

 <add key="SyncProviderAssembly" value="Helloworld" />

 <add key="SyncProviderImpl" value="Plumtree.Remote.Auth.Helloworld.Sync" />

...
4. Update Web.config for services that use SCI.

If this service uses SCI, add the following nodes to <appSettings>:

■ <add key="AdminEditorAssembly" value="assembly name" />

Where assembly name is the name of the assembly containing your
IAdminEditor implementation.

■ <add key="AdminEditorImpl" value="fully qualified path" />

Where fully qualified path is the fully qualified path to the class implementing
IAdminEditor.

4.1.7 Configuring an Authentication Service
To deploy an authentication service in the portal, you must configure a set of portal
objects.

This section describes how to configure portal objects in order to register your
authentication service in the portal. The steps are specific to the needs of
authentication services and assume that you are familiar with creating and configuring
portal objects. For more details on portal objects, see the portal online help.

1. Create and configure a Remote Service object.

This is optional. Configuring a Remote Service object allows multiple services to
share a single remote service configuration. Authentication Web Services can use
either a Remote Service object or hard-coded URLs.

2. Create and configure a Web Service — Authentication.

Each remote authentication service must have an associated Authentication Web
Service object. The Authentication Web Service editor allows you to specify
general settings for the back-end system.The following settings are necessary for
Authentication Services:

Profile Services

4-12 Web Service Developer's Guide for Oracle WebCenter Interaction

■ The encoding style must reflect the service implementation (.NET vs Java).
The encoding style is set on the Advanced Settings page. For .NET, you must
set the encoding to Document/Literal. Java uses the default,
RPC/Encoded.

■ All configuration pages must be entered on the Advanced URLs page. You
can add configuration pages to the Authentication Source editor. These URLs
must be entered on the Advanced URLs page.

3. Create and configure an Authentication Source — Remote

Each Authentication Web Service has one or more associated Remote
Authentication Source objects that define basic settings.Keep the following in
mind when configuring the Authentication Source:

■ Users imported by a synchronization service must be unique by name and
Authentication Source. The portal identifies users first by their category, then
by username; this combination must be unique per user. It is a best practice to
use the source domain for the category name. The category is entered in the
Authentication Source editor. You can use the same category for multiple
back-end systems, but the systems must not have users or groups with the
same name.

■ The description of the Authentication Source object is displayed on the
portal login page. Creating an Authentication Source object with a
synchronization component creates an option in the authentication source
drop-down list on the portal login page. The name that appears in the
drop-down list is the description of the Authentication Source object. Enter a
description that users will recognize.

■ By default, the portal performs partial users synchronization. Confirm that
the synchronization settings are correct for the service. The default of Partial
User Synchronization may not perform the synchronization you desire.

4. Create a configure a Job.

To run the authentication service, you must schedule a job or add the
Authentication Source to an existing job. The Remote Authentication Source
editor allows you to set a job.

4.2 Profile Services
Profile services are used to import information about existing portal users from
external systems. This information is mapped to portal properties and made available
to other services.

4.2.1 Synchronization
The purpose of a profile service is to import information about portal users from an
external system into the portal so that the information can be used by the portal and
other services. The first step is to synchronize the user information in the external
system with existing users in the portal; this is the process that must be handled by the
remote service. As with authentication services, the synchronization process is
handled by the portal Automation Server, as scheduled in the Job associated with the
Profile Source object in the portal.

Profile Services

Identity Service Development 4-13

4.2.2 Property Mapping: User Information
The profile information imported by the profile service must be associated with portal
properties so that it can be accessed by portal objects and other remote services.

4.2.3 Development
The following sections provide detailed instructions on developing custom profile
services:

■ Section 4.2.4, "Profile Service Internals" describes the Oracle WebCenter Interaction
Development Kit (IDK) interfaces that must be implemented when creating a
profile service, and how the interfaces will be called by the portal.

■ Section 4.1.5, "Implementing an Authentication Service" provides step by step
instructions on implementing the required interfaces, with example code.

■ Section 4.1.6, "Deploying an Authentication Service" describes how to deploy the
profile service to a Java or .NET application server.

■ Section 4.2.7, "Configuring a Profile Service" describes how to configure the profile
service in the portal.

4.2.4 Profile Service Internals
The following Oracle WebCenter Interaction Development Kit (IDK) interfaces must
be implemented when creating a profile service.

The Oracle WebCenter Interaction Development Kit (IDK) allows you to create remote
profile services and related configuration pages without parsing SOAP or accessing
the portal API. The profile API provides an abstraction from the necessary SOAP calls;
you simply implement an object interface. For a complete listing of interfaces, classes,
and methods, see the API documentation.

4.2.4.1 Plumtree.Remote.Profile
The plumtree.remote.profile namespace (Plumtree.Remote.Profile
package in Java) provides the following interfaces:

■ IProfileProvider

■ IUser

To import information from an external source into portal user properties, you must
implement both interfaces.

4.2.4.2 Profile Synchronization
The portal accesses a remote profile service when the associated job is run by the
portal Automation Service. The portal calls the methods of the profile service
interfaces in the following order:

1. IProfileProvider.initialize()

Note: The differences between the Java and .NET versions of the
IDK are platform-specific. In this guide, method names are listed
using the Java standard. .NET methods are identical, except begin
with a uppercase letter. The IProfileProvider.Initialize
method in the .NET IDK provides the same functionality as the
IProfileProvider.initialize method in the Java IDK.

Profile Services

4-14 Web Service Developer's Guide for Oracle WebCenter Interaction

2. IProfileProvider.getGlobalSignature()

3. IProfileProvider.attachToUser()

1. IUser.getUserSignature()

2. IUser.getUserProperties()

4. IProfileProvider.shutdown()

Step 3 is called by the portal once for every user in the group or groups to be
synchronized. Step 4, the IProfileProvider.shutdown() method is optional. It
can be used to clean up resources used by the profile service; however, it may or may
not be called by the portal, so it should not be relied upon.

4.2.5 Implementing a Profile Service
To implement a profile service, follow these step by step instructions.

This section describes the details of how to create a profile service by taking you step
by step through the implementation of a sample profile service. This is a very simple
profile service, and is not intended for use in a production environment.The functional
requirement for this profile service is simply:

■ For any request, return the user's profile property "REGION" set to "WEST".

The following interfaces will be implemented to create this profile service:

■ IProfileProvider

■ IUser

These interfaces are in the Plumtree.Remote.Profile namespace (C#) or the
plumtree.remote.profile package (Java). Any exceptions thrown in this code
can be found in Plumtree.Remote (C#) or plumtree.remote (Java).For the
complete code of this example, see the sample code on the Developer Center.For
details of the classes described in this section, see the Oracle WebCenter Interaction
Development Kit (IDK) API documentation for .NET or Java. Except for in the
example Java code, this section uses C# method names. In the IDK, methods are
named the same in C# or Java, except for leading letter capitalization. For example,
IProfileProvider.GetGlobalSignature() in the C# API is
IProfileProvider.getGlobalSignature() in the Java API.

1. Implement the IProfileProvider Interface

The IProfileProvider interface is used by the portal to initiate access to, and
obtain user profile information from, the back-end repository. The portal calls the
methods of IProfileProvider in the following order:

1. IProfileProvider.Initialize()

2. IProfileProvider.GetGlobalSignature()

3. IProfileProvider.AttachToUser()

4. IProfileProvider.Shutdown()

To implement the IProfileProvider interface:

1. Implement IProfileProvider.Initialize

Initialize() allows the profile service to initialize a session and create a
connection to the back-end repository. The method is passed two objects from
the portal: PropertyList and ProfileInfo. PropertyList is the list of
attributes mapped to properties on the Property Map page of the Profile

Profile Services

Identity Service Development 4-15

Source object in the portal. ProfileInfo is a set of name-value pairs,
populated with information entered in the portal Service Configuration
Interface (SCI) editor by a portal administrator. Typically, this is information
such as credentials for connecting to the back-end system.Java:

private String[] m_propertyList;
protected String[] getPropertyList()
{
 return m_propertyList;
}
public void initialize(String[] propertyList,
 ProfileInfo profileInfo)
 throws ServiceException
{
 this.m_propertyList = propertyList;
}
C#:

private string[] m_propertyList;
internal string[] GetPropertyList()
{
 return m_propertyList;
}
public void Initialize(string[] PropertyList,
 ProfileInfo ProfileSourceInfo)
{
 this.m_propertyList = PropertyList;
}
In this example profile service, the PropertyList is stored in the m_
propertyList member variable, where it can later be accessed by the IUser
implementation. The IUser implementation requires the PropertyList to
determine which properties to retrieve.

2. Implement IProfileProvider.GetGlobalSignature

GetGlobalSignature() allows the portal to determine whether profile
information for any of the users has changed. The portal compares the string
returned from GetGlobalSignature() with the string returned from
GetGlobalSignature() during the previous run of the profile service job.
If the two strings match, the job stops. The Oracle WebCenter Interaction
Development Kit (IDK) does not enforce any restrictions on the string used for
the global signature; it can be a last-modified date, a random number, or
another identifier.Java:

public String getGlobalSignature()
 throws ServiceException
{
 return new Date().toString();
}
C#:

public string GetGlobalSignature()
{
 return System.DateTime.Now.Ticks.ToString();
}
This profile service returns a string representation of the current date and
time. This ensures the job will continue to AttachToUser().

3. Implement IProfileProvider.AttachToUser

AttachToUser() is called for each user within the group or groups
configured in the Profile Source editor in the portal. The first three parameters

Profile Services

4-16 Web Service Developer's Guide for Oracle WebCenter Interaction

passed to AttachToUser() identify which user the profile service should
retrieve from the back-end system:

If these parameters do not identify a valid user, a NoSuchUserException
should be thrown.The final parameter, LastSignature, is the signature returned
by IUser.GetUserSignature() during the previous job.Java:

public IUser attachToUser(int userId, String loginName,
 String uniqueName, String lastSignature)
 throws ServiceException
{
 return new User(this);
}
C#:

public IUser AttachToUser(int UserID, string LoginName,
 string UniqueName, string LastSignature)
{
 return new User(this);
}
For this profile service, AttachToUser() simply returns an instance of User,
the IUser implementation. This is appropriate for this implementation
because the profile service updates the "Region" property to "WEST"
regardless of the portal user being queried.

4. Implement IProfileProvider.Shutdown

As a performance optimization, the portal might call the Shutdown()
method. No parameters are received or returned. This method is optional on
both ends; the profile service might not receive the Shutdown message, and, if
received, the profile service can ignore the call to Shutdown(). Shutdown()
can be used to clean up resources used by the profile service; however, you
should not rely on it being called.

2. Implement the IUser Interface

Returned by IProfileProvider.AttachToUser(), the IUser interface is
used by the portal to synchronize profile property information for a specific user.
The portal calls the methods of IUser in the following order:

1. IUser.GetUserSignature()

2. IUser.GetUserProperties()

Parameter Description

UserID The portal user ID. Can be used via the PRC to look up other user
attributes.

LoginName The portal login name. If this user was added using an authentication
service, this value corresponds to ChildUser.UserName.

UniqueName Usually the name used to look up the user in the back-end system. If
the user was added using an authentication service, this value
corresponds to ChildUser.UserUniqueName.

Note: For this profile service, the IUser interface implementation,
User, has a constructor that accepts a parameter of type Profile (the
IProfileProvider implementation), which is stored in the private
member m_profile. This is variable is used in GetUserProperties()
to access the PropertyList.

Profile Services

Identity Service Development 4-17

1. Implement IUser.GetUserSignature

GetUserSignature() is similar to
IProfileProvider.GetGlobalSignature(), except it allows the portal
to determine if a specific user's profile information has changed. If the
returned string matches the string returned from GetUserSignature()
during the previous job, GetUserProperties() is not called. The IDK does
not enforce any restrictions on the string used for the global signature; it can
be a last-modified date, a random number, or another identifier.Java:

public String getUserSignature()
 throws ServiceException
{
 return new Date().toString();
}
C#:

public string GetUserSignature()
{
 return System.DateTime.Now.Ticks.ToString();
}
This profile service returns a string representation of the current date and
time. This ensures GetUserProperties() is called each time the job runs.

2. Implement IUser.GetUserProperties

Typically, GetUserProperties() will access the PropertyList object
from the IProfileProvider implementation, retrieving values for each
property in the PropertyList from the back-end system.
GetUserProperties then builds a UserPropertyInfo object to return to
the portal. The portal maps the back-end property names with portal
properties and updates the portal property values.Java:

public UserPropertyInfo getUserProperties()
 throws ServiceException
{
 String prop;
 UserPropertyInfo info = new UserPropertyInfo();
 for (int i=0; i < m_profile.getPropertyList().length; i++)
 {
 prop = m_profile.getPropertyList()[i];
 if (prop.equalsIgnoreCase("REGION"))
 {
 info.put(prop, "WEST");
 }
 }
 return info;
}
C#:

public UserPropertyInfo GetUserProperties()
{
 String prop;
 UserPropertyInfo info = new UserPropertyInfo();
 for (int i=0; i < m_profile.GetPropertyList().Length; i++)
 {
 prop = m_profile.GetPropertyList()[i];
 if (prop.ToUpper().Equals("REGION"))
 {
 info.Put(prop, "WEST");
 }
 }

Profile Services

4-18 Web Service Developer's Guide for Oracle WebCenter Interaction

 return info;
}
In this profile service, a for loop checks each property in the PropertyList
against the string "REGION". If "REGION" is found, a UserPropertyInfo
object is updated with name "REGION" and value "WEST" and returned to the
portal.

4.2.6 Deploying a Profile Service
This section describes how to deploy an Profile Service in either Java or .NET.

DO: FIX OR COMBINE WITH AUTH SERVICE SECTION, MOVE TO NEW
SECTION?

4.2.6.1 Java
To deploy an a profile service to a Java application server, follow these steps.

■ Oracle WebCenter Interaction Development Kit (IDK) must be installed on the
server to which you intend to deploy.

■ You must have implemented IProfileProvider and IUser. For details, see
Section 4.2.5, "Implementing a Profile Service".

To deploy an a profile service to a supported Java application server:

1. Access the Oracle WebCenter Interaction Development Kit (IDK) deployment
servlet (DeployServlet) in a browser.

The IDK deployment servlet is located at http://app
server:port/idk/DeployServlet

2. Choose Profile and wait for the page to reload.

3. Enter a prefix to identify this profile service and the fully qualified name of the
implementation of IProfileProvider.

4. If this service uses SCI, check Use Service Configuration Interface (SCI) and enter
the fully qualified name of the appropriate implementation of IAdminEditor.

5. Copy and paste the URLs displayed on the results page to a text file; these are the
URLs that should be used when you configure the service in the portal.

4.2.6.2 ,NET
To deploy a profile service to IIS and .NET, follow these steps.

■ Oracle WebCenter Interaction Development Kit (IDK) must be installed on the
server to which you intend to deploy.

■ You must have implemented IProfileProvider and IUser. For details, see
Section 4.2.5, "Implementing a Profile Service".

1. Ensure that you have built your project with the
ProfileProviderSoapBinding.asmx SOAP endpoint.

If this service uses SCI, also include SCIProviderBinding.asmx. These files can be
found in your IDK installation. The Oracle WebCenter Interaction Development
Kit (IDK) installation is typically installed to C:\Program
Files\plumtree\idk\<version>\devkit\

2. Update Web.config for profile services.

Add the following nodes to <appSettings>:

Profile Services

Identity Service Development 4-19

■ <add key="ProfileProviderAssembly" value="assembly name"
/>

Where assembly name is the name of the assembly containing your
IProfileProvider implementation.

■ <add key="ProfileProviderImpl" value="fully qualified
path" />

Where fully qualified path is the fully qualified path to the class implementing
IProfileProvider.

For example:

<appSettings>

 <add key="ProfileProviderAssembly" value="HelloWorldProf_CS" />

 <add key="ProfileProviderImpl" value="HelloWorldProf_CS.Profile" />

...
3. Update Web.config for services that use SCI.

If this service uses SCI, add the following nodes to <appSettings>:

■ <add key="AdminEditorAssembly" value="assembly name" />

Where assembly name is the name of the assembly containing your
IAdminEditor implementation.

■ <add key="AdminEditorImpl" value="fully qualified path" />

Where fully qualified path is the fully qualified path to the class implementing
IAdminEditor.

4.2.7 Configuring a Profile Service
To deploy a profile service in the portal, you must configure a set of portal objects.

This section describes how to configure portal objects in order to register your
authentication service in the portal. The steps are specific to the needs of
authentication services and assume that you are familiar with creating and configuring
portal objects. For more details on portal objects, see the portal online help.

1. Create and configure a Remote Service object.

This is optional. Configuring a Remote Service object allows multiple services to
share a single remote service configuration. Profile Web Services can use either a
Remote Service object or hard-coded URLs.

2. Create and configure a Web Service — Profile.

Each remote authentication service must have an associated Profile Web Service
object. The Authentication Web Service editor allows you to specify general
settings for the back-end system.The following settings are necessary for
Authentication Services:

■ The encoding style must reflect the service implementation (.NET vs Java).
The encoding style is set on the Advanced Settings page. For .NET, you must
set the encoding to Document/Literal. Java uses the default,
RPC/Encoded.

Profile Services

4-20 Web Service Developer's Guide for Oracle WebCenter Interaction

■ All configuration pages must be entered on the Advanced URLs page. You
can add configuration pages to the Profile Source editor. These URLs must be
entered on the Advanced URLs page.

3. Create and configure a Profile Source — Remote

Each Profile Web Service has one or more associated Remote Profile Source objects
that define basic settings.

4. Create and configure Property objects.

To create new user information properties, you must first create a Property object
using the Property editor.

5. Configure the Global Object Property Map.

The Global Object Property Map displays the types of portal objects with which
you can associate properties. Values for a portal object's associated properties are
specified on the Properties and Names page of the object's editor.To import new
user information properties into the portal, you must add mappings to the Global
Object Property Map. Each property must be mapped to the User object.To create
a property in the portal, choose Create Object... | Property in portal
Administration. After you have created a property, you can add it to the Global
Object Property Map.For more details on the Global Object Property Map, see the
portal online help.

6. Associate user information properties with portal user profiles.

When a profile service imports user information into the portal, the attributes
imported must be associated with portal properties. To make these properties
available to other services, you must associate them with user information using
the User Profile Manager.On the User Information Property Map page of the
User Profile Manager, add any properties that should be associated with user
information settings. (The properties must already exist in the portal and be
associated with the User object in the Global Object Property Map .) For details
on the User Profile Manager, see the portal online help.

7. Create a configure a Job.

To run the authentication service, you must schedule a job or add the Profile
Source to an existing job. The Remote Profile Source editor allows you to set a
job.

5

Oracle WebCenter Interaction REST APIs 5-1

5Oracle WebCenter Interaction REST APIs

Oracle WebCenter Interaction REST APIs allow remote web services to post
documents to the portal Directory, update Community membership, and post stories
to portal user’s activity stream through simple HTTP requests.

REST stands for Representational State Transfer and is a simple way of providing APIs
over HTTP. The basic principles of REST are:

■ API URLs point to the resource being used, rather than a generic method
endpoint.

■ Requests use standard HTTP verbs for simplified CRUD methods - Create: POST,
Update: POST, Retrieve: GET, Delete: DELETE.

■ Create and Update data is sent as POST body (JSON/XML).

■ Every request should return a full (or at least standard) representation of the
object created, updated, or retrieved.

These APIs do not support the full REST range (i.e. CRUD), and handle a small
amount of functionality. The following REST APIs are available:

■ Knowledge Directory API: This API allows remote applications to post
documents to the portal Directory. For details, see Section 5.1, "Using the Oracle
WebCenter Interaction Directory REST API".

■ User API: This API allows remote applications to update Community membership
for the current user. For details, see Section 5.1, "Using the Oracle WebCenter
Interaction Directory REST API".

■ Activity Stream API: User status and activities are displayed in the Status Portlet
and User Activity Portlet included with the Oracle WebCenter Interaction
installation. New activities (stories) can be posted to these portlets from remote
applications using the Oracle WebCenter Interaction Activity Stream API. For
details, see Section 5.1, "Using the Oracle WebCenter Interaction Directory REST
API".

Note: The Oracle WebCenter Interaction REST APIs are protected by
Oracle WebCenter Interaction security. Access is restricted to portal
users by login token verification or basic authentication. For details,
see Section 5.4, "Configuring Web Services that Use Oracle WebCenter
Interaction REST APIs".

Using the Oracle WebCenter Interaction Directory REST API

5-2 Web Service Developer's Guide for Oracle WebCenter Interaction

5.1 Using the Oracle WebCenter Interaction Directory REST API
To add a new document to a the portal Directory, send a POST request containing the
necessary data to the portal URL.

The post must be of content-type “application/json” and use the following syntax:

POST http://host/portal/server.pt/api/v1/kd/{FOLDER ID}

{
 "document": {
 "name": "NAME",
 "description": "DESCRIPTION",
 "datasourceid": "DATA SOURCE ID",
 "contenturl": "CONTENT URL"
 }
}
For increased security, all JSON used in the API must be comment filtered. The JSON
data should be wrapped in /* */ for any JSON, either in the API request or response.
In addition, all JSON output will be wrapped in a plain { } block so that it can't be used
directly in a script src tag.

The response will include one of the following HTTP codes:

■ 201 // object created

Variable Description

FOLDER ID The ID of the Directory folder to access. The
folder must already exist in the portal. If you
do not know the folder ID, there are two ways
to retrieve one:

■ Let the user select a folder by using a
pt:treeLink tag with classID = 17. For
details, see Section 2.4.2.6.3, "Creating
Tree Controls Using Adaptive Tags".

■ Use the Oracle WebCenter Interaction
Development Kit remote search API to
perform a search for document folder
objects. For details, see Section 2.3.4.5,
"Remote Search Operations".

NAME The name of the document to be displayed in
the Directory.

DESCRIPTION The description of the document to be
displayed in the Directory.

DATA SOURCE ID The Content Source ID for the document. The
ID must be a valid Content Source configured
in the portal. For example, the World Wide
Web Content Source is ID 104.

CONTENT URL The full file path to the document.

Note: The Oracle WebCenter Interaction REST APIs are protected by
Oracle WebCenter Interaction security. Access is restricted to portal
users by login token verification or basic authentication. For details,
see Section 5.4, "Configuring Web Services that Use Oracle WebCenter
Interaction REST APIs".

Using the Oracle WebCenter Interaction User REST API

Oracle WebCenter Interaction REST APIs 5-3

■ 1000 // GENERAL - Unable to process request.

■ 1010 // NOT_LOGGED_IN - The current user does not have access to this API.

■ 1020 // NOT_POST - This API only supports POSTs.

■ 1030 // NO_POST_CONTENT - No POST content found.

■ 1031 // NO_JSON_POST_CONTENT - JSON data not found in POST content.

■ 2000 // NO_JSON_DOCUMENT_OBJECT - Document node not in JSON
document.

■ 2010 // NO_FOLDER_ID - The API URL did not contain the folder ID.

■ 2020 // NO_DATA_SOURCE_ID - The API data did not include a valid data
source ID.

■ 2030 // NO_CONTENT_URL - The API data did not include a valid content
source URL.

The response body includes the new object ID and the path to the folder and uses the
following syntax:

{
 "document": {
 "name": "Document name",
 "objectid": "2143",
 "folderid": "1983",
 "folderpath": "\Knowledge Directory\test folder\submits"
 }
}
To view a complete implementation of this API, see the Submit to Knowledge
Directory portlet included with the Oracle WebCenter Interaction installation (in the
image service under /plumtree/portal/private/kdsubmit/).

5.2 Using the Oracle WebCenter Interaction User REST API
To add or remove a user from a Community, send a POST request containing the
necessary data to the portal URL.

The post must be of content-type “application/json” and use the following syntax:

POST http://host/portal/server.pt/api/v1/user/current

{
 "user": {
 "joincommunityid": "COMMUNITY ID",
 "leavecommunityid": "COMMUNITY ID"
 }
}
For increased security, all JSON used in the API must be comment filtered. The JSON
data should be wrapped in /* */ for any JSON, either in the API request or response.
In addition, all JSON output will be wrapped in a plain { } block so that it can't be used
directly in a script src tag. This API currently only supports the special keyword
"current" for the user identifier, meaning the current user. This API cannot be used to
access users other than the currently logged in user.

Variable Description

COMMUNITY ID The ID of the Community to join or
unsubscribe.

Using the Oracle WebCenter Interaction Activity Stream API

5-4 Web Service Developer's Guide for Oracle WebCenter Interaction

The response will include one of the following HTTP codes:

■ 200 // successful

■ 1000 // GENERAL - Unable to process request.

■ 1010 // NOT_LOGGED_IN - The current user does not have access to this API.

■ 1020 // NOT_POST - This API only supports POSTs.

■ 1030 // NO_POST_CONTENT - No POST content found.

■ 1031 // NO_JSON_POST_CONTENT - JSON data not found in POST content.

■ 2500 // NO_JSON_USER_OBJECT - User node not in JSON document.

■ 2510 // NO_JOIN_COMMUNITY_ID - The API data did not include a valid
community ID to join.

■ 2520 // NO_LEAVE_COMMUNITY_ID - The API data did not include a valid
community ID to leave.

■ 2530 // INVALID_USER_ID - The User REST API found an invalid user ID. The
API currently only supports 'current' as a value.

■ 2540 // JOIN_COMMUNITY_ERROR - Unable to join the specified community.
This community may no longer exist or be visible to this user.

■ 2550 // LEAVE_COMMUNITY_ERROR - Unable to leave the specified
community. This community may no longer exist or be visible to this user.

The response will be in JSON. The response body uses the following syntax:

{
 "user": {
 "joincommunityid": "COMMUNITY ID",
 "leavecommunityid": "COMMUNITY ID"
 }
}
To view a complete implementation of this API, see the Join Communities flyout
included with the Oracle WebCenter Interaction installation (in the image service
under /plumtree/portal/private/joincommunities/).

5.3 Using the Oracle WebCenter Interaction Activity Stream API
To add a new story to a user's Activity Stream, send a POST request containing the
necessary data to the story server URL.

The post must use the following syntax:

POST http://${STORY_SERVER_URL}/api/story/v1/activities/${USER_ID_TYPE}/${USER_ID_
PREFIX}/${USER_ID_SUFFIX}

<soc:activity xmlns:soc="http://social.bea.com/activity">
 <body><![CDATA[${EVENT}]]></body>
</soc:activity>

Note: The Oracle WebCenter Interaction REST APIs are protected by
Oracle WebCenter Interaction security. Access is restricted to portal
users by login token verification or basic authentication. For details,
see Section 5.4, "Configuring Web Services that Use Oracle WebCenter
Interaction REST APIs".

Using the Oracle WebCenter Interaction Activity Stream API

Oracle WebCenter Interaction REST APIs 5-5

The response will include one of the following HTTP codes:

■ 201 // story successfully created

■ 401 // authorization failed

■ 404 // story user not found

■ 400 // other error, including XML syntax errors

The response body uses the following syntax:

<soc:activity xmlns:soc="http://social.bea.com/activity">
 <body>post content</body>
 <userId>4258</userId>
 <senderFullName>Joe King</senderName>
 <senderIP>10.60.28.195</senderIP>
 <userUUID>E523D1A7-475E-0B4D-76CA-6F9001480000</userUUID>
 <userFullName>Joe King</userFullName>
 <version>v1</version>
</soc:activity>
The post can be implemented in many ways, as shown in the examples that follow.

HTML/JavaScript Example

<script type="text/javascript">
// Get the gatewayed URL - This will give us authentication and prevent cross
domain POST errors.
var activitystreamBaseURL = "<pt:common.url
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
pt:href='http://bfraser03.bea.com:21030/activityservice/api/story/v1/activities/'/
>";

Variable Description

STORY_SERVER_URL The URL to the story server, typically,
%HOSTNAME%:21030/activityservice.

USER_ID_TYPE The type of user identifier that follows;
acceptable values are: username (login name),
UUID, & ID (portal object integer ID). XXXXX
Note: These strings must be lowercase. XXXXX

The identifier of the user that the story is
about; in the case of domain qualified names,
this is the domain name. (For example,
bea\jking will be represented as
.../username/bea/jking in the post URL.)

USER_ID_PREFIX

USER_ID_SUFFIX (Optional.) In the case of domain qualified
names, this is the username; omitted in all
other cases.

EVENT The story itself (the CDATA envelope is
optional if the story does not include any
markup).

Note: The Activity Stream API is protected by Oracle WebCenter
Interaction security. Access is restricted to portal users by login token
verification or basic authentication. For details, see XXX404 not found
error in the html to tsk_ali_activitystreamapi_configuring.dita XXX.

Using the Oracle WebCenter Interaction Activity Stream API

5-6 Web Service Developer's Guide for Oracle WebCenter Interaction

// Get the sender's full name.
var senderName = "<pt:common.userinfo pt:info='FullName'
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>";

var portalURL = "http://bfraser03.bea.com:8080/portal/server.pt";

function sendStory() {
var to = document.getElementById('to').value;
var message = linkedName() + ' wrote: '
+ document.getElementById('message').value;

doRestCall(
'POST',
activitystreamBaseURL + 'username/' + to,
'<?xml version="1.0" encoding="UTF-8"?>'
+ '<soc:activity xmlns:soc="http://social.bea.com/activity">'
+ '<body><![CDATA[' + message + ']]></body>'
+ '</soc:activity>');
}

function doRestCall(requestType, postURL, xml) {
var xmlhttp;
// Get the XMLHttpRequest object -- needs to work for IE and non-IE browsers
if (window.XMLHttpRequest) {
xmlhttp = new XMLHttpRequest();
} else if (window.ActiveXObject) {
xmlhttp = new ActiveXObject("Microsoft.XMLHttp");
}
// Set the callback as an anonymous funcion
xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4) {
var str = '<div>';
// We should get 201 CREATED on successful POST
if (xmlhttp.status == 201) {
str = str + 'Message sent!';
} else {
str = str + 'ERROR: ' + xmlhttp.status + '</div><div>'
+ xmlhttp.responseText + '</div>';
}
document.getElementById('output').innerHTML = str;
}
}
xmlhttp.open(requestType, postURL, true);
xmlhttp.setRequestHeader("Content-Type", "text/xml");
xmlhttp.send(xml);
}

function linkedName() {
// This function returns viewing userÕs name hyperlinked to their homepage.
var nameurl = senderName.replace(" ", "_");
nameurl = nameurl.toLowerCase();
var link = ''
+ senderName + '';
return link;
}
</script>
<div>Send a message to: <input id="to" type="text" size="30"/></div>
<div>Message: <input id="message" type="text" size="40" /></div>
<div> send it! </div>
<div id="output"></div>

Using the Oracle WebCenter Interaction Activity Stream API

Oracle WebCenter Interaction REST APIs 5-7

Java Example

The Java example below sends the message “Check out the BEA home page!”.

ActivityStreamUtil.java

package bea.sample.activitystream;

import java.io.UnsupportedEncodingException;

import org.apache.commons.httpclient.*;
import org.apache.commons.httpclient.auth.AuthScope;
import org.apache.commons.httpclient.methods.*;

public class ActivityStreamUtil {

public static HttpClient CreateAuthenticatedClient(String username,
String password) {
HttpClient client = new HttpClient();

// This is promiscuous be careful
client.getState().setCredentials(AuthScope.ANY,
new UsernamePasswordCredentials(username, password));
// Send credentials with request without waiting for challenge
client.getParams().setAuthenticationPreemptive(true);

return client;
}

public static PostMethod CreateActivityStreamPost(String url, String body) {
PostMethod postMethod = new PostMethod(url);
RequestEntity requestEntity = null;
try {
requestEntity = new StringRequestEntity("<activity><body><![CDATA["
+ body + "]]></body></activity>", "text/xml", "UTF-8");
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
postMethod.setRequestEntity(requestEntity);
return postMethod;
}
}
ActivityStreamPost.java

package bea.sample.activitystream;

import java.io.IOException;

import org.apache.commons.httpclient.*;
import org.apache.commons.httpclient.methods.PostMethod;

public class ActivityStreamPost {
public static final String ACT_USERNAME = "username";
public static final String ACT_ID = "id";
public static final String ACT_UUID = "uuid";

public static void main(String[] args) {
// Post to the guest user by name from the administrator account.
String host = "localhost:21030";
String userIDType = ACT_USERNAME;
String userID = "guest";

Using the Oracle WebCenter Interaction Activity Stream API

5-8 Web Service Developer's Guide for Oracle WebCenter Interaction

String username = "administrator";
String password = "admin";
String url = "http://" + host
+ "/activityservice/api/story/v1/activities/" + userIDType
+ "/" + userID;
String message = "Check out the BEA home
page!";
HttpClient client = ActivityStreamUtil.CreateAuthenticatedClient(
username, password);
PostMethod post = ActivityStreamUtil.CreateActivityStreamPost(url,
message);
try {
int status = client.executeMethod(post);
if (status == HttpStatus.SC_CREATED) {
System.out.println("Post successful");
System.out.println(post.getResponseBodyAsString());
} else {
System.err.println("Method failed: " + post.getStatusLine());
}
} catch (HttpException e) {
System.err.println("Fatal protocol violation: " + e.getMessage());
e.printStackTrace();
} catch (IOException e) {
System.err.println("Fatal transport error: " + e.getMessage());
e.printStackTrace();
} finally {
post.releaseConnection();
}
}
}
.NET Example

The .NET (C#) example below sends the message ’Greetings from .NET!”.

using System;
using System.Collections.Generic;
using System.Text;
using System.Net;
using System.IO;

namespace ActivityServiceTest
{
 class Program
 {
 static void Main(string[] args)
 {
 string url =
"http://localhost:8090/activityservice/api/story/v1/activities/username/bea/nsurav
ar";
 string username = "test";
 string password = "plumtree";
 string data = "<soc:activity
xmlns:soc=\"http://social.bea.com/activity\"><body>Greetings from
.NET!</body></soc:activity>";

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);
 request.Method = "POST";
 request.Credentials = new NetworkCredential(username, password);
 request.ContentLength = data.Length;
 request.KeepAlive = false;
 System.Net.ServicePointManager.Expect100Continue = false;

Configuring Web Services that Use Oracle WebCenter Interaction REST APIs

Oracle WebCenter Interaction REST APIs 5-9

 Uri uri = new Uri(url);

 NetworkCredential Credentials = request.Credentials.GetCredential(uri,
"Basic");

 request.ContentType = "text/xml;charset=UTF-8";

 if (Credentials != null)
 {
 byte[] credentialBuffer = new UTF8Encoding().GetBytes(
 Credentials.UserName + ":" +
 Credentials.Password);
 request.Headers["Authorization"] =
 "Basic " + Convert.ToBase64String(credentialBuffer);
 }

 StreamWriter writer = new StreamWriter(request.GetRequestStream());
 writer.Write(data);
 writer.Close();

 try
 {
 WebResponse response = request.GetResponse();

 byte[] ByteArray = response.Headers.ToByteArray();
 using (StreamReader reader = new
StreamReader(response.GetResponseStream()))
 {
 while (reader.Peek() != -1)
 {
 Console.WriteLine(reader.ReadLine());
 }
 }
 }
 catch (Exception ex)
 {
 Console.Write(ex.ToString());
 }
 }
 }
}

5.4 Configuring Web Services that Use Oracle WebCenter Interaction
REST APIs

To send the portal login token or basic authentication information to a remote
application that uses Oracle WebCenter Interaction REST APIs, register the remote
application as a Web Service in the portal.

To use a Oracle WebCenter Interaction REST API, a remote application must have
access to the portal login token or a portal user’s basic authentication information. To
send this information to the remote application, create a Web Service in the portal for
the remote application and configure the following settings. (For detailed information
on Web Service configuration settings, see the portal online help.)

■ On the Main Settings page, enter the location of the remote application.

■ On the HTTP Configuration page of the Web Service editor, add the root folder(s)
for the remote application to the list of Gateway URL Prefixes. Gateway URL

Configuring Web Services that Use Oracle WebCenter Interaction REST APIs

5-10 Web Service Developer's Guide for Oracle WebCenter Interaction

prefixes must include a trailing slash ("http://MyServer/") and are case sensitive.
For details on the gateway, see the Section 1.3, "Server Communication and the
Gateway".

■ To send the portal login token, on the Advanced Settings page, select the Send
Login Token option. Configure the Login Token duration or leave it at the default.
(Alternatively, you can choose to send the user’s basic authentication information
as described next.)

■ To send the user's basic authentication information, on the Authentication
Settings page, select the User’s Basic Authentication Information option.
(Alternatively, you can choose to send the portal login token as described in the
previous bullet.)

Note: All folders or pages that communicate with the API must be
gatewayed. This includes the path to the service and any pages that
are accessed by the service (for example, cross-domain scripting with
XMLHttpRequest).

Note: To use the Activity Stream API from a remote web service, the
Remote Portlet Service must be installed and enabled. The Remote
Portlet Service and Activity Stream sample portlets are included in the
activityservice.pte file provided with the Oracle WebCenter
Interaction installation package. For details on installation and
configuration, see the Installation Guide for Oracle WebCenter Interaction
and the Administrator Guide for Oracle WebCenter Interaction.

A

API Libraries A-1

AAPI Libraries

This appendix provides links to API libraries for use in Oracle WebCenter Interaction
development. All documentation is available on the Oracle Technology Network in
the Oracle WebCenter Interaction 10g Release 4 (10.3.3.0.0) documentation set:
http://download.oracle.com/docs/cd/E23010_01/index.htm.

Oracle WebCenter Interaction Development Kit (IDK)
These API libraries provide detailed documentation on IDK objects and methods.For
details on using these APIs, see Section 2.1, "Oracle WebCenter Interaction
Development Kit (IDK) Portlet API."

■ IDK - Java

■ IDK - .NET

Oracle WebCenter Interaction Development Kit (IDK)

A-2 Web Service Developer's Guide for Oracle WebCenter Interaction

B

Additional Development References B-1

BAdditional Development References

The following references provide additional information for use in Oracle WebCenter
Interaction development.

CSP

CSP is a platform-independent protocol based on the open standard of HTTP 1.1. The
syntax of communication between the portal and remote servers is defined by CSP.
CSP defines custom headers and outlines how Oracle WebCenter Interaction and
Oracle WebCenter Ensemble services use HTTP to communicate and modify settings.
The Oracle WebCenter Interaction Development Kit (IDK) provides simplified, stable
interfaces that allow you to write code that communicates using CSP. The current
version of CSP is 1.4.

Oracle WebCenter Application Accelerator for .NET / Oracle WebCenter Portlet
Toolkit for .NET

The Oracle WebCenter Application Accelerator for .NET is a collection of libraries and
Visual Studio 2005 integration features that support easy authoring of ASP.NET 2.0
and WSRP portlets. The Oracle WebCenter Application Accelerator for .NET includes
the Oracle WebCenter Portlet Toolkit for .NET. Portlets can be authored for both
Oracle WebCenter Interaction and Oracle WebLogic Portal (WLP).. Development
guides are available for both environments on the Oracle Technology Network
(http://www.oracle.com/technology/index.html).

Oracle WebCenter Analytics APIs

Oracle WebCenter Analytics delivers comprehensive reporting on activity and content
usage within portals and composite applications, allowing you to know and meet user
information needs. The OpenUsage and Query APIs provide access the Analytics
functionality from custom applications.

■ The OpenUsage API allows you to to raise Oracle WebCenter Analytics events
from custom portlets and applications and store them in the database..

■ The Query API allows you to query data in the Oracle WebCenter Analytics
database.

For details on documentation on these APIs, see the Oracle Technology Network
(http://www.oracle.com/technology/index.html).

JSR-168 Container

The Oracle WebCenter JSR-168 Container is an implementation of the JSR-168 JCP
standard for portlet authoring. For details on downloading and developing portlets
with the Oracle WebCenter JSR-168 Container 1.2, see the Oracle Technology Network
(http://www.oracle.com/technology/index.html).

B-2 Web Service Developer's Guide for Oracle WebCenter Interaction

	Contents
	Preface
	Oracle WebCenter Interaction Development
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Oracle WebCenter Interaction Development Environment
	1.1 Oracle WebCenter Interaction Development Kit (IDK) Projects
	1.1.1 Java: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in Eclipse
	1.1.1.1 Eclipse Stand-Alone (without WTP)
	1.1.1.2 Eclipse with WTP

	1.1.2 Java: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in Eclipse
	1.1.2.1 Eclipse Stand-Alone (without WTP)
	1.1.2.2 Eclipse with WTP

	1.1.3 Java: Debugging a Custom Oracle WebCenter Interaction Development Kit (IDK) Project
	1.1.4 .NET: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in Visual Studio
	1.1.5 .NET: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in IIS

	1.2 Oracle WebCenter Interaction Logging Utilities
	1.2.1 Configuring Oracle WebCenter Interaction Development Kit (IDK) Logging
	1.2.1.1 Configuring Java Oracle WebCenter Interaction Development Kit (IDK) Logging (web.xml)
	1.2.1.2 Configuring .NET Oracle WebCenter Interaction Development Kit (IDK) Logging (Web.config)
	1.2.1.3 Oracle WebCenter Interaction Development Kit (IDK) Logging Levels
	1.2.1.4 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web Application Variables

	1.2.2 Using the Oracle WebCenter Interaction Development Kit (IDK) Logging API
	1.2.2.1 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in Java
	1.2.2.2 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in .NET
	1.2.2.3 Using Oracle WebCenter Interaction Development Kit (IDK) Logging from the Command Line

	1.3 Server Communication and the Gateway
	1.3.1 The Oracle WebCenter Interaction Gateway
	1.3.1.1 Portlets and the Gateway

	1.3.2 HTTP and CSP
	1.3.2.1 HTTP
	1.3.2.2 CSP
	1.3.2.3 Oracle WebCenter Interaction Headers
	1.3.2.4 SOAP

	2 Oracle WebCenter Interaction Portlet and Pagelet Development
	2.1 Oracle WebCenter Interaction Development Kit (IDK) Portlet API
	2.1.1 Creating a Custom Oracle WebCenter Interaction Portlet with the Java Oracle WebCenter Interaction Development Kit (IDK) Portlet API
	2.1.2 Creating a Custom Oracle WebCenter Interaction Portlet with the .NET Oracle WebCenter Interaction Development Kit (IDK) Portlet API

	2.2 Oracle WebCenter Interaction Development Kit (IDK) Proxy API
	2.2.1 Creating a Custom Pagelet with the Java Oracle WebCenter Interaction Development Kit (IDK) Proxy API
	2.2.2 Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction Development Kit (IDK) Proxy API
	2.2.3 Using Programmable Remote Client (PRC) Remote APIs

	2.3 Oracle WebCenter Interaction Development Kit (IDK) Programmable Remote Client (PRC) Remote APIs
	2.3.1 The PRC Session Object
	2.3.2 Initiating a PRC Session to Use Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.3 Oracle WebCenter Interaction Development Kit (IDK) PRC Remote API Development Tips
	2.3.4 Remote Oracle WebCenter Interaction APIs
	2.3.4.1 Remote Object Management
	2.3.4.1.1 Retrieving Object Managers Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.1.2 Querying Objects Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.1.3 Oracle WebCenter Interaction Object Type Class IDs and Modes
	2.3.4.1.4 Querying Object Properties Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.1.5 Managing Object Security (ACLs) Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.1.6 Access Control List (ACL) Privileges

	2.3.4.2 Remote Portlet Operations
	2.3.4.2.1 Creating Portlets and Portlet Templates Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.2.2 Editing Portlets and Portlet Templates Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.4.3 Remote Directory Operations
	2.3.4.3.1 Querying Documents in the Directory Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.3.2 Creating Documents in the Directory Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.3.3 Editing Document Properties in the Directory Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.4.4 Remote User Operations
	2.3.4.4.1 Querying Users Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.4.4.2 Creating Groups and Adding Users Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.4.5 Remote Search Operations
	2.3.4.5.1 Querying Objects Using the Oracle WebCenter Interaction Development Kit (IDK) Remote Search API
	2.3.4.5.2 Using Query Constraints with the Oracle WebCenter Interaction Development Kit (IDK) Remote Search API
	2.3.4.5.3 Managing Search Results Using the Oracle WebCenter Interaction Development Kit (IDK) Remote Search API

	2.3.4.6 Starting Portal Jobs Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.5 Remote Oracle WebCenter Collaboration APIs
	2.3.5.1 Remote Oracle WebCenter Collaboration Project Operations
	2.3.5.1.1 Querying Existing Oracle WebCenter Collaboration Projects Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.1.2 Creating Oracle WebCenter Collaboration Projects Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.1.3 Editing Oracle WebCenter Collaboration Project Properties Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.1.4 Managing Oracle WebCenter Collaboration Project Roles Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.1.5 Managing Oracle WebCenter Collaboration Subscriptions Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.5.2 Remote Oracle WebCenter Collaboration Discussion Operations
	2.3.5.2.1 Querying Existing Oracle WebCenter Collaboration Discussions Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.2.2 Creating Oracle WebCenter Collaboration Discussions Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.2.3 Creating Oracle WebCenter Collaboration Discussion Messages Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.2.4 Editing Oracle WebCenter Collaboration Discussion Properties Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.5.3 Remote Oracle WebCenter Collaboration Document and Folder Operations
	2.3.5.3.1 Querying Oracle WebCenter Collaboration Folders and Documents Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.3.2 Managing Oracle WebCenter Collaboration Documents Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.3.3 Creating Oracle WebCenter Collaboration Folders and Documents Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.3.4 Editing Oracle WebCenter Collaboration Folder and Document Properties Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.5.4 Remote Oracle WebCenter Collaboration Task Operations
	2.3.5.4.1 Querying Oracle WebCenter Collaboration Tasks and Task Lists Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.4.2 Creating Oracle WebCenter Collaboration Tasks and Task Lists Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.4.3 Editing Oracle WebCenter Collaboration Task and Task List Properties Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs
	2.3.5.4.4 Managing Oracle WebCenter Collaboration Task Workflow Using Oracle WebCenter Interaction Development Kit (IDK) Remote APIs

	2.3.5.5 Oracle WebCenter Collaboration Access Levels

	2.4 Adaptive Portlets
	2.4.1 Adaptive Portlet Design Patterns
	2.4.2 Adaptive Tags
	2.4.2.1 Adaptive Tag Development Tips
	2.4.2.2 Using Internationalized Strings in Adaptive Tags
	2.4.2.3 Using Variables in Adaptive Tags
	2.4.2.4 Common Adaptive Tag Library (pt:common)
	2.4.2.4.1 Accessing User Information Using Adaptive Tags
	2.4.2.4.2 Adding Header Content Using Adaptive Tags
	2.4.2.4.3 Defining a Unique Namespace Token Using Adaptive Tags
	2.4.2.4.4 Displaying Errors Using Adaptive Tags
	2.4.2.4.5 Transforming URLs Using Adaptive Tags

	2.4.2.5 Logic Adaptive Tag Library (pt:logic)
	2.4.2.5.1 Using Shared Variables in Adaptive Tags
	2.4.2.5.2 Evaluating Expressions Using Adaptive Tags
	2.4.2.5.3 Looping Over Data Collections Using Adaptive Tags
	2.4.2.5.4 Caching Data
	2.4.2.5.5 Creating Hierarchical Data

	2.4.2.6 Standard Adaptive Tag Library (pt:standard)
	2.4.2.6.1 Accessing Oracle WebCenter Interaction Objects Using Adaptive Tags
	2.4.2.6.2 Building Gatewayed URLs Using Adaptive Tags
	2.4.2.6.3 Creating Tree Controls Using Adaptive Tags
	2.4.2.6.4 Securing Content Based on User Permissions Using Adaptive Tags

	2.4.2.7 Navigation Adaptive Tag Library (pt:plugnav)
	2.4.2.7.1 Implementing Custom Navigation Using Adaptive Tags

	2.4.2.8 Conditional Adaptive Tag Library (pt:ptcond)
	2.4.2.9 UI Adaptive Tag Library (pt:ptui)
	2.4.2.9.1 Implementing Custom UI Elements Using Adaptive Tags

	2.4.2.10 Data Adaptive Tag Library (pt:ptdata)
	2.4.2.11 Adaptive Tag Control Flow
	2.4.2.12 Creating Custom Adaptive Tags
	2.4.2.12.1 Coding Custom Tags with the ATag Base Class
	2.4.2.12.2 Accessing Browser Session Information in Custom Adaptive Tags
	2.4.2.12.3 Accessing Attributes in Custom Adaptive Tags
	2.4.2.12.4 Storing and Accessing Custom Data in Custom Adaptive Tags
	2.4.2.12.5 Including JavaScript in Custom Adaptive Tags
	2.4.2.12.6 Using Nested Tags in Custom Adaptive Tags
	2.4.2.12.7 Implementing Non-Standard Custom Adaptive Tag Types
	2.4.2.12.8 Deploying Custom Adaptive Tags

	2.4.3 The Oracle WebCenter Interaction Scripting Framework
	2.4.3.1 Oracle WebCenter Interaction Scripting Framework Development Tips
	2.4.3.2 Using Oracle WebCenter Interaction Scripting Framework Event Notification
	2.4.3.2.1 Page-Level Events for Use with the Oracle WebCenter Interaction Scripting Framework

	2.4.3.3 Using In-Place Refresh

	2.4.4 Adaptive Portlet Development Tips

	2.5 Portlet Style
	2.5.1 Oracle WebCenter Interaction Portlet Alignment
	2.5.2 CSS Customization for Oracle WebCenter Interaction Portlets

	2.6 Oracle WebCenter Interaction Portlet Settings
	2.6.1 Portlet Settings Development Tips
	2.6.2 Oracle WebCenter Interaction Portlet Setting Types
	2.6.3 Administrative Preferences and Portlet Template Preferences Pages
	2.6.4 Creating an Administrative Preferences Page
	2.6.5 Community Preferences Pages
	2.6.6 Creating a Community Preferences Page
	2.6.7 Portlet Preferences Pages
	2.6.8 Creating a Portlet Preferences Page
	2.6.9 Using Session Preferences
	2.6.9.1 Oracle WebCenter Interaction Development Kit (IDK) Methods
	2.6.9.2 Oracle WebCenter Interaction Scripting Framework Methods

	2.6.10 Accessing User Information

	2.7 Oracle WebCenter Interaction Portlet Security
	2.7.1 Using the Oracle WebCenter Interaction Credential Vault
	2.7.2 Using Oracle WebCenter Interaction Development Kit (IDK) Encryption

	2.8 Portlet Internationalization
	2.8.1 Modifying the Portlet Title Bar

	2.9 Portlet Caching
	2.9.1 Portlet Caching Strategies
	2.9.2 Portlet Cache Key
	2.9.3 Implementing Portlet Caching
	2.9.4 Setting HTTP Caching Headers - Cache-Control
	2.9.5 Setting HTTP Caching Headers - Expires
	2.9.6 Setting HTTP Caching Headers - Last-Modified and ETag
	2.9.7 Configuring Oracle WebCenter Interaction Portlet Caching Settings

	3 Content Service Development
	3.1 Content Crawlers
	3.1.1 Oracle WebCenter Interaction Development Kit (IDK) Interfaces for Content Crawler Development
	3.1.1.1 IContainerProvider
	3.1.1.2 IContainer
	3.1.1.3 IDocumentProvider
	3.1.1.4 IDocument
	3.1.1.5 SCI Variables for Content Crawler Properties

	3.1.2 Content Crawler Development Tips
	3.1.3 Content Crawler Security Options
	3.1.4 Content Crawler Indexing
	3.1.4.1 Indexing Streaming Content
	3.1.4.2 Creating Temporary Files for Indexing

	3.1.5 Content Crawler Click-Through
	3.1.5.1 Implementing Content Crawler Click-Through
	3.1.5.2 Content Crawler DocFetch
	3.1.5.2.1 Implementing Content Crawler DocFetch

	3.1.6 Handling Exceptions in Custom Content Crawlers
	3.1.7 Deploying a Custom Content Crawler
	3.1.7.1 Java
	3.1.7.2 .NET

	3.1.8 Testing Custom Content Crawlers
	3.1.9 Debugging Custom Content Crawlers
	3.1.10 Configuring Content Crawlers
	3.1.10.1 Creating Service Configuration Pages for Content Crawlers

	3.2 Oracle WebCenter Interaction Federated Search Services
	3.2.1 Creating a Federated Search Service
	3.2.2 Oracle WebCenter Development Kit (IDK) Interfaces for Federated Search Service Development
	3.2.2.1 IRemoteSearch
	3.2.2.2 ISearchQuery
	3.2.2.3 ISearchUser
	3.2.2.4 ISearchContext
	3.2.2.5 ISearchResult
	3.2.2.6 ISearchRecord

	3.2.3 Deploying a Federated Search Service
	3.2.3.1 Java
	3.2.3.2 NET

	4 Identity Service Development
	4.1 Authentication Services
	4.1.1 Synchronization
	4.1.2 Authentication
	4.1.3 Development
	4.1.4 Authentication Service Internals
	4.1.4.1 Plumtree.Remote.Auth
	4.1.4.2 Synchronization
	4.1.4.3 Authentication

	4.1.5 Implementing an Authentication Service
	4.1.6 Deploying an Authentication Service
	4.1.6.1 Java
	4.1.6.2 .NET

	4.1.7 Configuring an Authentication Service

	4.2 Profile Services
	4.2.1 Synchronization
	4.2.2 Property Mapping: User Information
	4.2.3 Development
	4.2.4 Profile Service Internals
	4.2.4.1 Plumtree.Remote.Profile
	4.2.4.2 Profile Synchronization

	4.2.5 Implementing a Profile Service
	4.2.6 Deploying a Profile Service
	4.2.6.1 Java
	4.2.6.2 ,NET

	4.2.7 Configuring a Profile Service

	5 Oracle WebCenter Interaction REST APIs
	5.1 Using the Oracle WebCenter Interaction Directory REST API
	5.2 Using the Oracle WebCenter Interaction User REST API
	5.3 Using the Oracle WebCenter Interaction Activity Stream API
	5.4 Configuring Web Services that Use Oracle WebCenter Interaction REST APIs

	A API Libraries
	Oracle WebCenter Interaction Development Kit (IDK)

	B Additional Development References

