Oracle® Solaris Cluster Data Services
Developer's Guide

Part No: E29471

ORACLG October 2012, E29471-01

Copyright © 2000, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Celogiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder a toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas quelles soient exemptes
derreurs et vous invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, oula documentation qui I'accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre la licence de ce logiciel
oul'utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante sapplique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est
destiné a étre utilisé dans des applications a risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires a son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a
d’autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées dAdvanced Micro
Devices. UNIX est une marque déposée d’'The Open Group.

Celogiciel ou matériel et la documentation qui I'accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cotts occasionnés ou des dommages causés par l'acces a
des contenus, produits ou services tiers, ou a leur utilisation.

130208@25097

Contents

2 =) - L3OO 13

Overview of Resource Management

Oracle Solaris Cluster Application ENVIronmentcccoceceevcureereneuneunecenerneeeenersesneessessesesessesnene 19
Resource Group Manager Model ..o 21
Description 0f @ RESOUICE TYPEcueurecuiurieeriiniieieireieeeciteseeenessesessesseee e ssssesesssssesessesnesessens 21
DeSCription 0f @ RESOUICEc.cuueuiuiuiiieeieisiieieiseie ettt en 22
Description 0f @ RESOUICE GIOUDPc.occurueueuriuiieiriieieieieiseeeeisesei e tseese st sseaesessesesseaeaes 22
Resource Group Manager ...t 23
Callback MethOdscuiuiiiiiciciciiciicccsc s

Programming Interfaces

Resource Management API

Data Service Development LIDIAryccceeneureercuniunrcrienieneineieneeeeneenesseeensessesensessesensens 25
Oracle Solaris Cluster Agent BUILAerc.oeucureuriciniiniieiiniecneiseeeieeseie e eeeseeseaens 25
Resource Group Manager Administrative INterfacecococvcuocucinininininencineeeeeneesceeeens 26
CLSEEUP UHLLY v 26
Administrative COMMANASoveuiuriererrieeierireeeree e seese e seesenne 27
Developing @aData SErViCe ... 29
Analyzing the Application for SUItabilityc.cccceueieinininireeceereeeeeee e naeneeeaeens 29
Determining the INterface t0 USEcovuevcuiureeeinerreieecireirieneieieneeeeeeessessesensessesessesesesaessessesennes 31
Setting Up the Development Environment for Writing a Data Serviceccocveeeveurerrecrrcrnennn. 32
V¥ How to Set Up the Development Environment
Transferring a Data Service t0 @ CIUSLT ..o
Setting Standard PrOPErties ..o esenns 34
ClIUSLET PLOPETTIES .eucviueiiacirieicieieieisectetseietseseiet sttt ettt ettt 34
ResoUIce TYPe PTOPEITIESc.vcuiiueiiciiiiciiiciricicice et senanaes 34

Contents

ReSOUICE PrOPEIIesc.cocuiiiiiiiiiiiiiiiic e 35
Resource Group Properties ... 35
ReSOUIrce Property AtIIDULESc.ocureeeueerieeiciriireeeieereieieeseieeseieisese e sese s 35
INOAE LISt PIOPEITIES weuvevreeviuiectricieieeceneeeetreaeteeeactsescse s et sseaessesesessesesesstaessescsesseacsesnsassnencs 35
Setting Resource and Resource Type Properties .35
Declaring Resource Type PIOPEITIEScevcuiureeeriurieerscerieeieenitereenesseeenseesesensensssesensessesensens 36
Declaring ReSOUIce PIOPEITIEScuvuveiuiuerecriirreeieireienseirieereenetensessesseeessessesessesssessesssssesessens 38
Declaring EXtension PrOPErtiescccuiureeerceniuereeentinieenesnesessesnesessessessssesssssesessesnesessens 42
Implementing Callback MethOdsceeuiuriciiiniiricininicreireciciresee ettt 44
Accessing Resource and Resource Group Property Informationccccvvecvciniincenennn. 44
Idempotence of Methods
How Methods Are Invoked in Zones
Generic Data SEIVICE ...ttt 45
Controlling an APPLICAIONc.vcueveeucrrieenciriiricreieeetneieeere et ssess et ssese s e seesessenns 45
Starting and StOPPING @ RESOUICEcucueueucirerriecicireieicireisectsetseeesetreteesetsetseee et sesessetseseeaesns 45
Using the Optional Init, Fini, and Boot Methodsc.cccviiuncrnerereieineneenensenenenennn. 48
Monitoring a Resource
Implementing Monitors and Methods That Execute Exclusively in the Global Zone 51
Adding Message LOZEZINg t0 @ RESOUICEc..cuvueeiuiececiiieicieieieeieie ettt ssessesesaenaes 52
Providing Process Managementccccvcueeeererreeeeerneunescenesneeeesessessesesessesesessessssesessesesessesessenne 52
Providing Administrative Support for a RESOUICEccouuiuiiiucicucirieiiniseie e 53
Implementing a Failover RESOUICEc.cccuiuieieiriiricireiccerie e
Implementing a Scalable Resourcecc.ceeeveunneee
Validation Checks for Scalable Services
Writing and Testing Data SEIVICESoucveureurecurerriereirieeeereieeesenseeesessesessessessesessessesessessesessennes 58
Using TCP Keep-Alives to Protect the SEIVETccoveireeeiineeieinieeicereeseiescenesesesseseenens 58
Testing HA Data SEIVICESovuivriiiiieeiiicieictct et 58
Coordinating Dependencies Between RESOUICESc.curreeriureeereunieerecrnieneeeneneeenseneeennens 59
Legal RGM Names
RGM Legal Names
RGM VAALUES ...t 62
Resource Management APl Reference
RMAPI Access Methods ... sssses

RMAPI Shell COMMEANAS .ottt ettt ssae e saenes

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents

CFUNCHONS ...t 65
RMAPI Callback MEhOASuvuiirieiiirieeicireieicireiseicieiseie ettt sese et s et sese et sese e 68
Arguments That You Can Provide to Callback Methodscccovceucuvicenernivencrnenccnnenneenn. 69
Callback Method EXit COAES ...c.cuiuiururimcirieieinieieireieisieieiseeieeseie ettt ssesesseasans 69
Control and Initialization Callback Methodsccoerveuniuriueineiniieienienicreneecseeeeeneesenees 70
Administrative SUPPOTt Methodscoocurireueiriieiricieiccncercsee et sseaeses 73
Net-Relative Callback MethOdscvuueveurieriueiniirieiniiniecieineieeeneisee et sesseseene 73
Monitor Control Callback Methods ..o 74
Modifying @ RESOUICETYPE ...ttt ss st st snannas 75
Overview of Modifying a RESOUICE TYPEc.vueeurevriucereireieieireirieireiseeeetseisesessessesesessessesesseseeseens 75
Setting Up the Contents of the Resource Type Registration Filecccocverernernercrervcnenenennes 76
ReSOUICE TYPE NAIME ...ttt ettt

Specifying the #$upgrade and #$upgrade_from Directives

Changing the RT_versionin an RTRFIlecocoerieiinieicniecnecreeceeeeeeenesennens
What Happens When a Cluster Administrator Upgradesccccveeeeeniveerneeneennenneernenseenenens
Determining Installation Requirements and Packagingc.ceecveureeincrneeencinenecenerneeeseenenennes 80

Before You Change the RTRFIlec.ovcouiiieiciiccccceeeeeeeneeee e nseeseeens 80

Changing Monitor Code

Changing Method Code

Determining the Packaging Scheme t0 USec.cccveurecuniinieiiinienicineenecieneiecenesessesessesens 81
Documentation to Provide for a Modified Resource TYPecccceuveureeeenerreeeecrrernecrnerreenenrenennes 82

Information About What to Do Before Installing an Upgradeccocooeeeveneeecnerecenienenens 83

Information About When to Upgrade Resources

Information About Changes to Resource Propertiesoereerneneerereenieneeeneenesenseenenes 84
SAMPIEDALASEIVICE ...ttt bbbt s s s anas
Overview of the Sample Data Service
Defining the Resource Type Registration Fileecccveureeineineeeincineineencineecreeecnesneeesenneaennes 86

Overview of the RTR FIle ..o 86

Resource Type Properties in the Sample RTR Filec.occuvinieiiniricnincrineecnceecneenenes 87

Resource Properties in the Sample RTR Filecocccuriviuiinneriniciriicnccirneceeceneceeeieieenes
Providing Common Functionality to All Methods

Identifying the Command Interpreter and Exporting the Pathcccccooocuiivivcininnincnnn. 92

Declaring the PMF_TAG and SYSLOG_TAG Variablescocevereuercuneureerniereeneereeenesnessesennens 92

Contents

Parsing the FUNCtion ATUIMENTSccovureueueuriuereeuniinrieeierrieseiesensesessesessessesessessesessessssesesnees 93
Generating Error MESSAZESccuviiuiiiuiiiiiriiiiicre s ssssssssssssssssnns 95
Obtaining Property INfOrmationcevceercrereeneineeneienenerseressessessessessensessessessesscens 95
Controlling the Data SEIVICEc.cccurieiciriirieireirieeieineieecreiseeeeessessee et ssessese e seesessenns 96
How the Start Method WOTKSc.cccieiinieeicneirctireieiciseiesieiseisese s essesesnees 96
How the Stop Method WOTKSc.oovieeeeeiecceeeeee ettt nenen
Defining @ FAult MONIEOT ...c.cucveuieeiciiirieineineeecereieeiseeseseesisese et ses e seen
How the Probe Program WOTKS ..o seseesenne
How the Monitor_start Method Works
How the Monitor stop Method Works.............
How the Monitor_ check Method Works
Handling Property UPAAtescccceurieerncireinecieinienesrerenseesessesessessesessessesessessessesessessesessesnes
How the Validate Method WOTKSc.cceeuiurieiniinieieincieiceisee et
How the Update Method WOTKSouoiieiieeeeiecececeee et nn

Data Service Development Library
DSDL OVEIVIEW ..uiiiiiiiiciciiiiii st bbb
Managing Configuration Properties
Starting and Stopping a Data Service

Implementing a Fault MONITOTcovuveicuieeicieiricieireieenreteeeeeset et seseesesse s nsessesessennes
Accessing Network Address INfOrmationcoeeeeereereeeeeineeeieinieensceneeneie s sessesensees 120
Debugging the Resource Type Implementationcoceeveeeeerierecremreenennesenenesseenessesensens 120
Enabling Highly Available Local File SYStemsc.cveureueuniureeeieineeneeceniereieieeneseneeeesseseseesesenaees 121
DesigniNng RESOUICETYPEScooiiviieieieiiieeeeie ettt et b s s sansnsees 123
Resource Type Registration Filecoccieiiiicininiciiccieeceseescesesessesese e ssasesenaes 124
Validate Method ...ttt e e sene 124
Start Method

STOP METNOA .ottt ettt bbbttt b et es ettt an s st eseseaas
MONITOr STArt MEthOQ ..ocvovevcececiieeetcc ettt b bt ne
MONITOr STOP METNOA .coieevceeeieeeetcee ettt s e b et esene
MONItOr CRECK MENOM .oovivecieieteeteees ettt b bbb ne
Update Methodcccoeveveveiiieieieeeceeeeeeeve e

Description of Init, Fini, and Boot Methods

Designing the Fault MONitor DaeMIONc.ocuevcueureeeincireeeieireiricinceneeeeetsesesseesesseeessessesessessesessesnes

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents

Sample DSDL Resource Type Implementation ... 133

XFONE SEIVET ..ttt 133
X Font Server Configuration File ... seecsesaeseens 134
TCP Port Number

ORCL.xfnts RTR File

Naming Conventions for Functions and Callback Methodsc.oceeeniericrnincecnecncrniennnens 135

scds_initialize () FUNCHON ..ottt ere e 135

XFNES STArt MEtROM ..ottt a ettt ens 136
Validating the Service Before Starting the X FONt SErvercevevereeencneeencenernecerennennene 136

Starting the Service With svc_start()

Returning From svc_start() .
XTNES STOP MENOM ...ttt bbbt s bbb s s s
XTNts MONitor STart Method ...ttt
XTNts MONitor STOP MEthOdccvivivieieiieieeecee ettt
XTnts monitor CheCK MethOd ...t
ORCL . XTNTS FAUIt MONILOT ...vveveveeeeiiieiieieteteteieicetete et teve e essssae s st s s ssesesebase s st ssesesesasasannnns

xfonts_probe Main Loop

SVC Probe () FUNCHON ..ottt

Determining the Fault MONItOr ACHONo.ccuiuiueuiirieeciireceeeeceeee e eseseene 148
XTNTS validate MEthOd ...ttt es s aan 148
XTNTS UPAAtE MELROA ...ttt b s 151
Oracle Solaris Cluster Agent BUIlderc.ooooiiiereeecccee e 153
Agent BUilder OVEIVIEWccccuciiiiiiiiciicieicieeiei e

Before You Use Agent Builder
USING AGENt BUILAET «...eueeieiiciiicctecie ettt saen

Analyzing the Application
Installing and Configuring Agent BUIldercccocvecinircrninicnenceeeeeeee e 156
Agent BUILAer SCIEENSc.vuiuiuiuciiiriicicineieecireiseie sttt et sesseae e
Starting Agent BUILAT ..ot s
Navigating Agent BUILAETc.ocurieiinieicnerceeccie e essesenne

USING the Create SCTEEIvueuiuiueiiireeeieireieietetseae sttt et e

Using the Configure Screen
Using the Agent Builder Korn Shell-Based $hostnames Variablecccccooeuvcunivecrncenennne 163
Using Property Variables ... ceeseesesessesssssse s ssesssssesans 163

Contents

Reusing Code That You Create With Agent Builderccocvevcunencincnccncneeeerneneenne 166

V¥V How to Use the Command-Line Version of Agent Builderccoceeveurerecencnencncrnenncnnn. 167

Directory Structure That Agent Builder Createseeureureeenerneeeeneenerneceneineeesesneseeeesesseennes 168

Agent Builder OULPUL w..c.vceieeieciiiricciriceiset ettt 169

Source and BINary FILES ... 169

Utility Scripts and Man Pages That Agent Builder Createsccccoeuviivvinciniiccinciniinns 171
Support Files That Agent Builder Creates ...

Package Directory That Agent Builder Creates
rtconfig File

10 GeNnericDAtaS@IVICe ...
Generic Data Service CONCEPLScouiiiiiiiiiiiiiicceeii s
Precompiled Resource Type
Advantages and Disadvantages of Using the GDS

Ways to Create a Service That Uses the GDSc.cccoviiniininieininiecsesseesiesiens

How the GDS LOGS EVENLSccovuiiiiiciiiicciceicieie e e sasesenas
ReqUiIred GDS PrOPEITIESc.c.vucuririueiricieieicinieietreeeteeeaeesesete e ssesese s sessesessesesessesessesssesseaes

Optional GDS Propertiesccocveeeureeueenecereneuerseseenenenes
Using Agent Builder to Create a Service That Uses the GDS
Creating and Configuring GDS-Based SCIIPLScovvveverreerernieererneineereireeneneenesessesenne
Output From Agent BUIlder ..ot essesenne

Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the
GDS e 187

V¥ How to Use Oracle Solaris Cluster Administration Commands to Create a Highly Available
Service That Uses the GDS ... 187

V¥ How to Use Oracle Solaris Cluster Administration Commands to Create a Scalable Service
That Uses the GDSoocovevveieeeeeceeeeeeeeen

Command-Line Interface for Agent Builder

V¥ How to Use the Command-Line Version of Agent Builder to Create a Service That Uses

GDS ettt ettt et ae b e b et ateaeeae et e ae st eneeteereebeseaseneereetenan 189

TT DSDLAPIFUNCHIONSooiiiiiiiiii ettt ettt sttt sttt 193
General-Purpose FUNCHOMScccuiiiiiiiiiiciiiiciciccet e 193
INitialiZation FUNCHIONS ...eveveviererieerieieiriicseeietseste s ses s sseses st ssssasssssssssesesessssenssssnseses 194

RetrieVal FUNCHIOMS ...ucvcveieviiieiecieieieieietecisisetes st essssas sttt sesessssssssssesesesesessssnsssnsesns 194

Failover and Restart FUNCHIONSc.cccceiiuiuiueieieiicecieete et se s sasanse s 194

8 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents

12

EXecution FUNCHONS ...c.oouiiriieieieiieee ettt st 195
Property FUNCHONS ..o 195
Network Resource Access FUNCHIONSc.c.cvvieieieieveiiiiiieccete ettt aes 195

Host Name FUNCHOMNSooueviiiiiiiiiieeeeeeee sttt sttt ettt naen

Port List Functions

Network Address Functions

Fault Monitoring Using TCP Connections FUNCHONSccccueureeemrernieeecrnienecrnenneenrenneeenne 196
PMEF FUNCHONS .ottt ettt sttt sttt sttt tnnes 197
Fault MONITOT FUNCHOMSeueirieiiecieiceisieietsee ettt ettt seaas 198
UHlLY FUNCHONS ..ot 198
Cluster Reconfiguration Notification Protocol ..o 199
CRINP CONCEPLS ..t 199

HOW the CRNP WOTKS ..ottt et 200

CRNP Semanticsoou......

CRNP Message Types
How a Client Registers With the SEIVercceiecnineireceneeeneeeenessesesessesenaens 203

Assumptions About How Administrators Set Up the Serverccouevcnercrcunenccenerneenene 203

How the Server Identifies @ CLHENTccooveerieuierieieirieeieireeeeireisee e sessesens 203

How SC_CALLBACK_REG Messages Are Passed Between a Client and the Server 203

How the Server Replies to a Client
Contents of an SC_REPLY MESSAZEcuuvreemmemreremmeriemmensessesensesesensesessesessessesesessssssesssssesenns

How a Client I's to Handle Error Conditionsceeeecuneeecuneereernerneemerneeneennennesensessesenne
How the Server Delivers Events t0 @ CHENTcovreueueurierieiniirieeieireecieiseieeseeseesesessessesessesseseeaens
How the Delivery of Events Is GUaranteedcccocoeecuereceneereemnerneenerneenenenseeessesenne
Contents of an SC_EVENT MESSAZEcucvurvrevrmeureremmeuirenmenniiresensessesessessessssessessesesessesessessessssenns
How the CRNP Authenticates Clients and the Server
Example of Creating a Java Application That Uses the CRNPccccouceueirereneecrnereennenrenes 210
V¥V How to Set Up Your ENVIrONmMeNtceceueerieuriieinieieiniciieiereeeieeeseiessesesesseseseesesesene 210
V¥ How to Start Developing Your Applicationc.cccecveereocncinenncincinicrenseceseseeeenseneeeenne 211

V¥ How to Parse the Command-Line Argumentscocveeeeeeneureeererneunecnserneensensessesensessesenne 213
V¥ How to Define the Event Reception Threadcoovcnerecncneeincincnecneinceeeineseenescneene 213
V¥ How to Register and Unregister Callbacks
V¥ How to Generate the XMLccocviiiiiiiiiiie s sssssessseens

V¥ How to Create the Registration and Unregistration MesSagescccccucueureeeureureureenns 218

Contents

10

13

VWV How t0 Set Up the XIVIL PATSET ...c.cccuiuriecirerrieeieineinescineineeeeesseasesessessesesscssessesessessesessessessescnne 220
V¥V How to Parse the Registration Replyccccveeveuneuriciniinieinenerereeeceeeeeisesesseseeeeenne 221
¥ How to Parse the Callback EVENtsc.ccocuiiiiiiiccinccccccccc s 222
V¥V How to Run the APPLCAtIONcueeeeirivrecireirieeiereieeereiseeee ettt saenae 225
SeCUrity fOr Data SEIVICEScoooieiririeiieieiee ettt ettt nseses 227
Storing Application Passwords in Private Stringscccoveeereneeneeneenicineeneeeeneeneseeeesesseenns 227
Invoking Application Programs with Least Privilegecocooencreincnernicneinecencnneeecenenneennes 229

Using the resource_security Property

Using the application_user Property

Using the scha_check_app_user Commandcocccvcueuemnenininerneenenenenenenneenseesenens 230
Sample Data Service COde LiStingscccccviiiniiinnicinicecrcceceeereee e 233
Resource Type Registration File LIStINGc.ccccverreeeineireuerneirirrieeincineseieineeeeetsessesessessesessessesessesnes 233
Start Method Code Listing
Stop Method Code LISHINGcuvuevueuieeieiiieieeicireeeneieeenseeeeeseesseseeensessesessessasssessasesessessesessesseses
gettime Utility Code LISHING ..ot nsessese s ssense s sasese s s ssessesees 241
PROBE Program Code LISNGccccuureeureirieeereiniirieireireieieinesseetsessesessesseseesessessesesessessesessessesesenns 241
Monitor_start Method Code LiStINGccceeuirecuiineeneieeeeneseeesessesenessesessesesensensesens 246
Monitor_stop Method Code LiSting ... sesiaees
Monitor_check Method Code Listing
Validate Method Code LISNGc.ccocuiuieemiiniiriciiiicicieeeieiee e ssesees
Update Method Code LISHINGccoeueuerieriureeeiniirieeieireieiceneeeneesstesesesseesesessessesessessssesessssesessesnesnes
DSDL Sample Resource Type Code LiStingsccccovvreeiiieininiiecceeeeeeseses e 257

xfnts.c File Listing
xfnts_monitor_check Method Code Listing
xfnts_monitor_start Method Code LiStINGcoeeueureeereurieercmnierieneireeensenseeenseneesesenesenens

xfnts_monitor_stop Method Code LiStINgGccccveurueuniuremeiierieercereereieineereseeeiseseesessesseseseesesens
xfnts_probe Method Code LIStINGcccvuueveuriurreermierieeeeirieeneiieereeneisesesesseeensessesssessssesessesnesns
xfnts_start Method Code LiStiNGcccoiiiininiiniiciiicisiccieiciccssisiesssissessssesssessas
xfnts_stop Method Code Listing
xfnts_update Method Code LIStINGcccoeeuiureecumiirieeiiiieiceieeieeeesee e esesseseaens
xfnts_validate Method Code LiStINGccocveueeueuriureeerieriuercirieeieeeneeseseseisesessesseseesesessesessesneaens

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents

C Requirements for Non-Cluster-Aware Applicationscccooeeeerririieceeneseeeeees 279
MUIHROSTEA DIALA <.ttt ettt s e s sasaes 279
Using Symbolic Links for Multihosted Data Placementcoceceueuveemerneeecrneneeensennenenne 280
HOSTINAIMES ..ottt sb et
Multihomed Hosts
Binding to INADDR_ANY as Opposed to Binding to Specific IP Addressescccccvvvreevrerreeennce 282
CHENE RELTY ettt ettt et sttt st seb et 283
D DocumentType Definitionsforthe CRNPccoooiieiinirccce s 285
SC_CALLBACK REG XML DTD ..ottt sttt sttt ettt ettt et sa s 285
NVPAIR XML DTD ..ottt ettt ettt sttt ettt sttt ettt s 287
SC REPLY XIML DTD ettt sts e e a st s e ane st esesesesanensnssnses 288
SC_EVENT XML DTD ..ottt sttt ettt ettt 288
E CrnpClient.java APPlICation ... ss 291
Contents Of CrNPCLLIENT. JAVA woviviereieieiieeceeiete ettt se bbb bbb sanasassesens 291
INAEX ..ot et 311

12

Preface

The Oracle Solaris Cluster Data Services Developer's Guide contains information about using the
Resource Management API to develop Oracle Solaris Cluster data services on both SPARC and
x86 based systems.

Note - This Oracle Solaris Cluster release supports systems that use the SPARC and x86 families
of processor architectures. In this document, “x86” refers to the larger family of x86 compatible
products. Information in this document pertains to all platforms unless otherwise specified.

Bash is the default shell for Oracle Solaris 11. Machine names shown with the Bash shell prompt
are displayed for clarity.

Who Should Use This Book

This document is intended for experienced developers with extensive knowledge of Oracle
software and Oracle's Sun hardware. The information in this book assumes that you have
knowledge of the Oracle Solaris Operating System.

How This Book Is Organized

The Oracle Solaris Cluster Data Services Developer's Guide contains the following chapters and
appendixes:

Chapter 1, “Overview of Resource Management,” provides an overview of the concepts that you
need to develop a data service.

Chapter 2, “Developing a Data Service,” provides detailed information about developing a data
service and describes the standard resource type, resource, and resource group properties. The
chapter also the requirements for legal characters for Resource Group Manager (RGM) names
and values.

Chapter 3, “Resource Management API Reference,” provides a reference to the access functions
and callback methods that make up the Resource Management API (RMAPI).

Preface

Chapter 4, “Modifying a Resource Type,” discusses the issues that you need to understand to
modify a resource type. Information about the means by which you enable a cluster
administrator to upgrade a resource is also included.

Chapter 5, “Sample Data Service,” provides a sample Oracle Solaris Cluster data service for the
in.named application.

Chapter 6, “Data Service Development Library,” provides an overview of the application
programming interfaces that make up the Data Services Development Library (DSDL).

Chapter 7, “Designing Resource Types,” explains the typical use of the DSDL in designing and
implementing resource types.

Chapter 8, “Sample DSDL Resource Type Implementation,” describes a sample resource type
that is implemented with the DSDL.

Chapter 9, “Oracle Solaris Cluster Agent Builder,” describes Oracle Solaris Cluster Agent
Builder.

Chapter 10, “Generic Data Service,” describes how to create a generic data service.
Chapter 11, “DSDL API Functions,” describes the DSDL API functions.

Chapter 12, “Cluster Reconfiguration Notification Protocol,” provides information about the
Cluster Reconfiguration Notification Protocol (CRNP). The CRNP enables failover and scalable
applications to be “cluster aware”

Chapter 13, “Security for Data Services,” describes the security-related features for data services.

Appendix A, “Sample Data Service Code Listings,” provides the complete code for each method
in the sample data service.

Appendix B, “DSDL Sample Resource Type Code Listings,” lists the complete code for each
method in the ORCL. xfnts resource type.

Appendix C, “Requirements for Non-Cluster-Aware Applications,” list the requirements for
ordinary, non-cluster aware applications to be candidates for high availability.

Appendix D, “Document Type Definitions for the CRNP;” lists the document type definitions
for the CRNP.

Appendix E, “CrnpClient. java Application,” shows the complete CrnpClient. java
application that is discussed in Chapter 12, “Cluster Reconfiguration Notification Protocol”

14 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Preface

Using UNIX Commands

This document contains information about commands that are specific to installing and
configuring Oracle Solaris Cluster data services. The document does not contain
comprehensive information about basic UNIX commands and procedures, such as shutting
down the system, booting the system, and configuring devices. Information about basic UNIX
commands and procedures is available from the following sources:

= Online documentation for the Oracle Solaris Operating System
= Oracle Solaris Operating System man pages
= QOther software documentation that you received with your system

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-1 Typographic Conventions

Typeface

Description

Example

AaBbCc123

AaBbCc123

aabbccl23

AaBbCc123

The names of commands, files, and directories,

and onscreen computer output

What you type, contrasted with onscreen

computer output

Placeholder: replace with a real name or value

Book titles, new terms, and terms to be
emphasized

Edit your . login file.

Use 1s -a to list all files.
machine name% you have mail.
machine name% su

Password:

The command to remove a file is rm
filename.

Read Chapter 6 in the User’s Guide.

A cacheis a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and root role prompt for shells that
are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in
command examples varies, depending on the Oracle Solaris release.

TABLEP-2 Shell Prompts

Shell

Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for root role #

C shell

C shell for root role

machine_name%

machine_name#

Related Documentation

16

Information about related Oracle Solaris Cluster topics is available in the documentation that is
listed in the following table. All Oracle Solaris Cluster documentation is available at
http://www.oracle.com/technetwork/indexes/documentation/index.html.

Topic

Documentation

Hardware installation and
administration

Concepts
Software installation

Data service installation and
administration

Data service development

System administration

Software upgrade

Error messages

Oracle Solaris Cluster 4.1 Hardware Administration Manual
Individual hardware administration guides

Oracle Solaris Cluster Concepts Guide

Oracle Solaris Cluster Software Installation Guide

Oracle Solaris Cluster Data Services Planning and Administration Guide
and individual data service guides

Oracle Solaris Cluster Data Services Developer’s Guide
Oracle Solaris Cluster System Administration Guide
Oracle Solaris Cluster Quick Reference

Oracle Solaris Cluster Upgrade Guide

Oracle Solaris Cluster Error Messages Guide

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLHAM
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCON
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLIST
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDEV
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLADM
http://docs.oracle.com/cd/E29086_01/pdf/E25031.pdf
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLUPG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLERR

Preface

Topic Documentation

Command and function references ~ Oracle Solaris Cluster Reference Manual

Oracle Solaris Cluster Data Services Reference Manual
Oracle Solaris Cluster Geographic Edition Reference Manual

Oracle Solaris Cluster Quorum Server Reference Manual

Compatible software Oracle Solaris Cluster Compatibility Guide available at the Oracle

Solaris Cluster Technical Resources page

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Getting Help

If you have problems installing or using Oracle Solaris Cluster, contact your service provider
and provide the following information.

Your name and email address (if available)

Your company name, address, and phone number

The model number and serial number of your systems

The release number of the operating environment (for example, Oracle Solaris 11)

The release number of Oracle Solaris Cluster (for example, Oracle Solaris Cluster 4.1)

Use the following commands to gather information about your system for your service

provider.

Command Function

prtconf -v Displays the size of the system memory and reports
information about peripheral devices

psrinfo -v Displays information about processors

pkg list Reports which packages are installed

prtdiag -v Displays system diagnostic information

/usr/cluster/bin/clnode show-rev -v Displays Oracle Solaris Cluster release and package

version information for each node

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRM
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDRM
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=GEORM
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLQRM
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/solariscluster4-compatibilityguide-1429037.pdf
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/cluster-how-to-1389544.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/cluster-how-to-1389544.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Also have available the contents of the /var/adm/messages file.

18 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

CHAPTER 1

Overview of Resource Management

This book provides guidelines for creating a resource type for a software application, such as
Oracle Database, Oracle GlassFish Server, or DNS. As such, this book is intended for developers
of resource types.

To understand the contents of this book, you must be thoroughly familiar with the concepts
that are presented in the Oracle Solaris Cluster Concepts Guide.

This chapter provides an overview of the concepts that you need to understand to develop a
data service. This chapter covers the following topics:

= “Oracle Solaris Cluster Application Environment” on page 19

= “Resource Group Manager Model” on page 21

“Resource Group Manager” on page 23

“Callback Methods” on page 23

= “Programming Interfaces” on page 24

= “Resource Group Manager Administrative Interface” on page 26

Note - This book uses the terms resource type and data service interchangeably. The term agent,
though rarely used in this book, is equivalent to a resource type or collection of related resource

types.

Oracle Solaris Cluster Application Environment

The Oracle Solaris Cluster system enables applications to be run and administered as highly
available and scalable resources. The Resource Group Manager (RGM) provides the
mechanism for high availability and scalability.

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCON

Oracle Solaris Cluster Application Environment

20

The following elements form the programming interface to this facility:

= Aset of callback methods that you write that enable the RGM to control an application in
the cluster.

= The Resource Management API (RMAPI), a set of low-level API commands and functions
that you can use to write the callback methods. These APIs are implemented in the
libscha.so library.

= Process Monitor Facility (PMF) for monitoring and restarting processes in the cluster.

= The Data Service Development Library (DSDL), a set of library functions that encapsulates
the low-level API and process-management functionality at a higher level. The DSDL adds
some additional functionality to ease the writing of callback methods. These functions are
implemented in the libdsdev.so library.

The following figure shows the interrelationship of these elements.

FIGURE 1-1 Programming Architecture of the Oracle Solaris Cluster Application Environment

Resource Types
4
v
Callback libdsdev (Data Service Development Library-DSDL)
Methods
f v v v v
! |_libscha (RMAPI) | PMF hatimerun (1M)
: v
RGM

The Oracle Solaris Cluster Agent Builder, which is described in Chapter 9, “Oracle Solaris
Cluster Agent Builder,” is a tool in the Oracle Solaris Cluster package that automates the process
of creating a data service. Agent Builder generates data service code in either C (by using DSDL
functions to write the callback methods) or in the Korn (ksh) shell command language (by
using low-level API commands to write the callback methods). Agent Builder also has an option
to generate a set of driving scripts to be used with the Generic Data Service (GDS).

The RGM runs as a daemon on each cluster node and automatically starts and stops resources
on selected Oracle Solaris hosts according to preconfigured policies. The RGM makes a
resource highly available in the event of a node failure or reboot. The RGM does so by stopping
the resource on the affected node and starting it on another node. The RGM also automatically

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Resource Group Manager Model

starts and stops resource-specific monitors. These monitors detect resource failures and
relocate failing resources onto other nodes or monitor other aspects of resource performance.

The RGM supports both failover resources and scalable resources. A failover resource can be
online on only one node at a time. A scalable resource can be online on multiple nodes
simultaneously.

Resource Group Manager Model

This section introduces some fundamental terminology and explains in more detail the RGM
and its associated interfaces.

The RGM handles three major kinds of interrelated objects: resource types, resources, and
resource groups. One way to introduce these objects is by means of an example, as follows.

You implement a resource type, ha-oracle, that makes an existing Oracle DBMS application
highly available. An end user defines separate databases for marketing, engineering, and
finance, each of which is a resource of type ha-oracle. The cluster administrator places these
resources in separate resource groups so that they can run on different nodes and fail over
independently. You create a second resource type, ha-calendar, to implement a highly
available calendar server that requires an Oracle database. The cluster administrator places the
resource for the finance calendar into the same resource group as the finance database resource.
The cluster administrator does so to ensure that both resources run on the same node and fail
over together.

Description of a Resource Type

A resource type consists of the following elements:

= A software component to be run in the cluster

= Control programs that are used as callback methods by the RGM to manage the software
component as a cluster resource

= A set of properties that form part of the static configuration for the software component on
the cluster

The RGM uses resource type properties to manage resources of a particular type.

Note - In addition to a software application, a resource type can represent other system
resources, such as network addresses.

You specify the properties for the resource type and set property values in a resource type
registration (RTR) file. The RTR file follows the format that is described in “Setting Resource

Chapter 1 « Overview of Resource Management 21

Resource Group Manager Model

22

and Resource Type Properties” on page 35 and in the rt_reg(4) man page. See also “Defining
the Resource Type Registration File” on page 86 for a description of a sample RTR file.

“Resource Type Properties” on page 34 provides a list of the resource type properties.

The cluster administrator installs and registers the resource type implementation and
underlying application on a cluster. The registration procedure enters the information from the
RTR file into the cluster configuration. The Oracle Solaris Cluster Data Services Planning and
Administration Guide describes the procedure for registering a data service.

Description of a Resource

A resource inherits the properties and values of its resource type. In addition, you can declare
resource properties in the RTR file. “Resource Properties” on page 35 contains a list of resource
properties, each of which can take a different value for each resource of this type.

The cluster administrator can change the values of particular properties depending on how the
properties are specified in the RTR file. For example, property definitions can specify a range of
allowable values. Property definitions can also specify when the property is tunable: never, any
time, at creation (when the resource is added to the cluster), or when the resource is disabled.
Within these specifications, the cluster administrator can make changes to properties by using
administration commands.

The cluster administrator can create many resources of the same type, with each resource
having its own name and set of property values, so that more than one instance of the
underlying application can run in the cluster. Each instantiation requires a unique name within
the cluster.

Description of a Resource Group

Each resource must be configured in a resource group. The RGM brings all resources in a group
online and offline together on the same node. When the RGM brings a resource group online or
offline, it runs callback methods on the individual resources in the group.

The nodes where a resource group is currently online are called its primaries or primary nodes.
A resource group is mastered by each of its primaries. Each resource group has an associated
Nodelist property that identifies all potential primaries or masters of the resource group. The
cluster administrator sets the Nodelist property, which otherwise includes all cluster nodes by
default.

A resource group also has a set of properties. These properties include configuration properties
that can be set by the cluster administrator and dynamic properties, set by the RGM, that reflect
the active state of the resource group.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG

Callback Methods

The RGM defines two types of resource groups: failover and scalable. A failover resource group
can be online on only one node at any time. A scalable resource group can be online on multiple
nodes simultaneously. The RGM provides a set of properties to support the creation of each
type of resource group. See “Transferring a Data Service to a Cluster” on page 34 and
“Implementing Callback Methods” on page 44 for details about these properties.

“Resource Group Properties” on page 35 contains a list of resource group properties.

Resource Group Manager

The Resource Group Manager (RGM) is implemented as a daemon, rgmd, that runs on each
global-cluster node. All of the rgmd processes communicate with each other and act as a single
cluster-wide facility.

The RGM supports the following functions:

= Whenever a node fails, the RGM attempts to maintain the availability of all managed
resource groups. The RGM does so by automatically bringing them online on correct
masters.

= Ifaparticular resource fails, its monitor program can request that the resource group be
restarted on the same master or switched to a new master.

= The cluster administrator can issue an administrative command to request one of the
following actions:

= Change mastery of a resource group.
= Enable or disable a particular resource within a resource group.
= Create, delete, or modify a resource type, a resource, or a resource group.

Whenever the RGM activates configuration changes, it coordinates its actions across all
member nodes of the cluster. This kind of activity is known as a reconfiguration. To effect a state
change on an individual resource, the RGM runs a resource type-specific callback method on
that resource.

Callback Methods

The Oracle Solaris Cluster framework uses a callback mechanism to provide communication
between a data service and the RGM. The framework defines a set of callback methods,
including their arguments and return values, and the circumstances under which the RGM calls
each method.

You create a data service by coding a set of individual callback methods and implementing each
method as a control program that the RGM can call. That is, the data service does not consist of
a single executable, but a number of executable scripts (ksh) or binaries (C), each of which the
RGM can call directly.

Chapter 1 « Overview of Resource Management 23

Programming Interfaces

Callback methods are registered with the RGM through the RTR file. In the RTR file you
identify the program for each method that you have implemented for the data service. When a
cluster administrator registers the data service on a cluster, the RGM reads the RTR file, which
provides the identity of the callback programs and other information.

The only required callback methods for a resource type are a start method (Start or
Prenet_start) and a stop method (Stop or Postnet_stop).

The callback methods can be grouped into the following categories:

= Control and initialization methods

® The Start and Stop methods start and stop resources in a group that is being brought
online or offline.

m TheInit, Fini, and Boot methods execute initialization and termination code on
resources.

= Administrative support methods

= The Validate method verifies properties that are set by administrative action.
= The Update method updates the property settings of an online resource.

® Net-relative methods

Prenet_startand Postnet_stop perform special startup or shutdown operations before
network addresses in the same resource group are configured to go up or after they are
configured to go down.

= Monitor control methods
® Monitor startandMonitor_ stop startor stop the monitor for a resource.

® Monitor_check assesses the reliability of a node before a resource group is moved to the
node.

See Chapter 3, “Resource Management API Reference,” and the rt_callbacks(1HA) man page
for more information about the callback methods. Also see Chapter 5, “Sample Data Service,”
and Chapter 8, “Sample DSDL Resource Type Implementation,” for callback methods in sample
data services.

Programming Interfaces

24

For writing data service code, the resource management architecture provides a low-level or
base API, a higher-level library that is built on top of the base AP, and Oracle Solaris Cluster
Agent Builder, a tool that automatically generates a data service from basic input that you
provide.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha

Programming Interfaces

Resource Management API

The Resource Management API (RMAPI) provides a set of low-level functions that enable a
data service to access information about the resource types, resources, and resource groups in
the system, to request a local restart or failover, and to set the resource status. You access these
functions through the libscha. so library. The RMAPI provides these callback methods both in
the form of shell commands and in the form of C functions. See the scha_calls(3HA) man
page and Chapter 3, “Resource Management API Reference,” for more information about the
RMAPI functions. Also see Chapter 5, “Sample Data Service,” for examples of how to use these
functions in sample data service callback methods.

Data Service Development Library

Built on top of the RMAPI is the Data Service Development Library (DSDL), which provides a
higher-level integrated framework while retaining the underlying method-callback model of the
RGM. The libdsdev. so library contains the DSDL functions.

The DSDL brings together various facilities for data service development, including the
following:

= libscha.so. Thelow-level resource management APIs.

= PMF. The Process Monitor Facility (PMF), which provides a means of monitoring processes
and their descendants, and restarting them if they die. See the pmfadm(1M) and
rpc.pmfd(1M) man pages.

= /usr/cluster/bin/hatimerun. A facility for running programs under a timeout. See the
hatimerun(1M) man page.

For the majority of applications, the DSDL provides most or all of the functionality you need to
build a data service. Note, however, that the DSDL does not replace the low-level API but
encapsulates and extends it. In fact, many DSDL functions call the libscha. so functions.
Likewise, you can directly call libscha. so functions while using the DSDL to code the bulk of
your data service.

See Chapter 6, “Data Service Development Library,” and the scha_calls(3HA) man page for
more information about the DSDL.

Oracle Solaris Cluster Agent Builder

Agent Builder is a tool that automates the creation of a data service. You input basic
information about the target application and the data service to be created. Agent Builder
generates a data service, which includes GDS driver scripts or source and executable code (C or
Korn shell) with a customized RTR file and an Oracle Solaris SVR4 package.

Chapter 1 « Overview of Resource Management 25

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-calls-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMpmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrpc.pmfd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMhatimerun-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-calls-3ha

Resource Group Manager Administrative Interface

For most applications, you can use Agent Builder to generate a complete data service with only
minor manual changes on your part. Applications with more sophisticated requirements, such
as adding validation checks for additional properties, might require work that Agent Builder
cannot do. However, even in these cases, you might be able to use Agent Builder to generate the
bulk of the code and manually code the rest. At a minimum, you can use Agent Builder to
generate the Oracle Solaris package for you.

Resource Group Manager Administrative Interface

26

Oracle Solaris Cluster provides a set of commands for administering a cluster.

clsetup Utility

You can perform most Oracle Solaris Cluster administration tasks interactively with the
clsetup(1CL) utility.

You can administer the following Oracle Solaris Cluster elements with the clsetup utility:

Quorum

Resource groups

Data services

Cluster interconnect
Device groups and volumes
Private host names

New nodes

Other cluster tasks

You can also perform the following operations with the clsetup utility:

Create a resource group

Create a zone cluster

Add a network resource to a resource group
Add a data service resource to a resource group
Add a file system to a zone cluster

Add a storage device to a zone cluster

Add a network address to a zone cluster
Register a resource type

Bring a resource group online or offline
Switchover a resource group

Suspend or resume the automatic recovery actions of a resource group
Enable or disable a resource

Change resource group properties

Change resource properties

Remove a resource from a resource group

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclsetup-1cl

Resource Group Manager Administrative Interface

= Remove a resource group
= Clearthe Stop_failed error flag from a resource

Administrative Commands

The Oracle Solaris Cluster commands for administering RGM objects are clresourcetype,
clresourcegroup, clresource, clnode,and cluster.

The clresourcetype, clresourcegroup, and clresource commands enable you to view,
create, configure, and delete a resource type, a resource group, and the resource objects that are
used by the RGM. These commands are part of the administrative interface for the cluster, but
are not designed to be used in the same programming context as the application interface that is
described in the rest of this chapter. However, the clresourcetype, clresourcegroup, and
clresource commands are the tools for constructing the cluster configuration in which the
API operates. Understanding the administrative interface sets the context for understanding
the application interface. See the clresourcetype(1CL), clresourcegroup(1CL), and
clresource(1CL) man pages for details about the administrative tasks that you can perform
with these commands.

Chapter 1 « Overview of Resource Management 27

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresourcetype-1cl
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresourcegroup-1cl
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresource-1cl

28

L K R 4 CHAPTER 2

Developing a Data Service

This chapter tells you how to make an application highly available or scalable, and provides
detailed information about developing a data service.

This chapter covers the following topics:

“Analyzing the Application for Suitability” on page 29
“Determining the Interface to Use” on page 31

“Setting Up the Development Environment for Writing a Data Service” on page 32
“Setting Standard Properties” on page 34

“Node List Properties” on page 35

“Setting Resource and Resource Type Properties” on page 35
“Implementing Callback Methods” on page 44

“Generic Data Service” on page 45

“Controlling an Application” on page 45

“Monitoring a Resource” on page 50

“Adding Message Logging to a Resource” on page 52
“Providing Process Management” on page 52

“Providing Administrative Support for a Resource” on page 53
“Implementing a Failover Resource” on page 54
“Implementing a Scalable Resource” on page 54

“Writing and Testing Data Services” on page 58

“Legal RGM Names” on page 60

Analyzing the Application for Suitability

The first step in creating a data service is to determine whether the target application satisfies
the requirements for being made highly available or scalable. If the application fails to meet all
requirements, you might be able to modify the application source code to make it highly
available or scalable.

29

Analyzing the Application for Suitability

30

The list that follows summarizes the requirements for an application to be made highly
available or scalable. If you need more detail or if you need to modify the application source
code, see Appendix A, “Sample Data Service Code Listings.”

Note - A scalable service must meet all the following conditions for high availability as well as
some additional criteria, which follow the list.

® Both network-aware (client-server model) and non-network-aware (client-less)
applications are potential candidates for being made highly available or scalable in the
Oracle Solaris Cluster environment. However, Oracle Solaris Cluster cannot provide
enhanced availability in timesharing environments in which applications are run on a server
that is accessed through telnet or rlogin.

m Theapplication must be crash tolerant. That is, the application must recover disk data (if
necessary) when it is started after an unexpected failure of a node. Furthermore, the
recovery time after a crash must be bounded. Crash tolerance is a prerequisite for making an
application highly available because the ability to recover the disk and restart the application
is a data integrity issue. The data service is not required to be able to recover connections.

= The application must not depend upon the physical host name of the node on which it is
running. See “Host Names” on page 281 for additional information.

= The application must operate correctly in environments in which multiple IP addresses are
configured to go up. Examples include environments with multihomed hosts, in which the
node is located on more than one public network, and environments with nodes on which
multiple, logical interfaces are configured to go up on one hardware interface.

= To be highly available, the application data must be located on a highly available local file
system. See “Multihosted Data” on page 279.

If the application uses a hard-wired path name for the location of the data, you could change
that path to a symbolic link that points to a location in the cluster file system, without
changing application source code. See “Using Symbolic Links for Multihosted Data
Placement” on page 280 for additional information.

= Application binaries and libraries can be located locally on each node or in the cluster file
system. The advantage of being located in the cluster file system is that a single installation is
sufficient. The disadvantage is that when you use rolling upgrade, the binaries are in use
while the application is running under the control of the RGM.

= The client should have some capacity to retry a query automatically if the first attempt times
out. If the application and the protocol already handle a single server's crashing and
rebooting, they also can handle the containing resource group's being failed over or
switched over. See “Client Retry” on page 283 for additional information.

= The application must not have UNIX domain sockets or named pipes in the cluster file
system.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Determining the Interface to Use

Additionally, scalable services must meet the following requirements:

= The application must have the ability to run multiple instances, all operating on the same
application data in the cluster file system.

= The application must provide data consistency for simultaneous access from multiple
nodes.

= The application must implement sufficient locking with a globally visible mechanism, such
as the cluster file system.

For a scalable service, application characteristics also determine the load-balancing policy. For
example, the load-balancing policy Lb_weighted, which allows any instance to respond to client
requests, does not work for an application that makes use of an in-memory cache on the server
for client connections. In this case, specify aload-balancing policy that restricts a given client's
traffic to one instance of the application. The load-balancing policies Lb_sticky and

Lb_sticky wild repeatedly send all requests by a client to the same application instance, where
they can make use of an in-memory cache. Note that if multiple client requests come in from
different clients, the RGM distributes the requests among the instances of the service. See
“Implementing a Failover Resource” on page 54 for more information about setting the
load-balancing policy for scalable data services.

Determining the Interface to Use

The Oracle Solaris Cluster developer support IPS package (ha-cluster/developer/api)
provides two sets of interfaces for coding data service methods:

= The Resource Management API (RMAPI), a set of low-level functions (in the libscha.so
library)

= The Data Services Development Library (DSDL), a set of higher-level functions (in the
libdsdev.so library) that encapsulate the functionality of the RMAPI and provide some
additional functionality

Oracle Solaris Cluster software provides the following additional packages to aid data service
development:

= QOracle Solaris Cluster Agent Builder (ha-cluster/developer/agent-builder),atool that
automates the creation of a data service. for more information, see Chapter 9, “Oracle
Solaris Cluster Agent Builder”

= The Generic Data Service or GDS (ha-cluster/ha-service/gds), a precompiled data
service on which to base the data service you develop. For more information, see Chapter 10,
“Generic Data Service”

Chapter2 - Developing a Data Service 31

Setting Up the Development Environment for Writing a Data Service

Here is the recommended approach to developing a data service:

1. Decide whether to use the Generic Data Service (GDS) method or to code in C or the Korn
shell. If you decide to use the Korn shell, you cannot use the DSDL, which providesa C
interface only.

2. Run Agent Builder, specify the requested information, and generate a data service, which
includes source and executable code, an RTR file, and a package.

3. Ifthe generated data service requires customizing, you can add DSDL code to the generated
source files. Agent Builder indicates, with comments, specific places in the source files where
you can add your own code.

4. Ifthe code requires further customizing to support the target application, you can add
RMAPI functions to the existing source code.

In practice, you can take numerous approaches to creating a data service. For example, rather
than add your own code to specific places in the code that is generated by Agent Builder, you
could entirely replace one of the generated methods or the generated monitor program with a
program that you write from scratch using DSDL or RMAPI functions.

However, regardless of how you proceed, in almost every case, starting with Agent Builder
using the GDS method makes sense, for the following reasons:

= The code that is generated by Agent Builder using the GDS method, while generic in nature,
has been tested in numerous data services.

= Agent Builder generates an RTR file, a Makefile, a package for the resource, and other
support files for the data service. Even if you use none of the data service code, using these
other files can save you considerable work.

= You can modify the generated code.

Note - Unlike the RMAPI, which provides a set of C functions and a set of commands for use in
scripts, the DSDL provides a C function interface only. Therefore, if you specify Korn shell
(ksh) output in Agent Builder, the generated source code makes calls to RMAPI because there
are no DSDL ksh commands.

Setting Up the Development Environment for Writing a Data

Service

32

Before you begin to develop your data service, you must install the Oracle Solaris Cluster
development IPS package (ha-cluster/developer/api) to have access to the Oracle Solaris
Cluster header and library files. Although this package is already installed on all cluster nodes,
you typically develop your data service on a separate, noncluster development machine, rather
than on a cluster node. In this typical case, you must use the pkg install command to install
the ha-cluster/developer/api IPS package on your development machine.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Setting Up the Development Environment for Writing a Data Service

When compiling and linking your code, you must set particular options to identify the header
and library files.

Note - You cannot mix compatibility-mode compiled C++ code and standard-mode compiled
C++ code in the Oracle Solaris Operating System and Oracle Solaris Cluster products.
Consequently, if you intend to create a C++ based data service for use on Oracle Solaris Cluster
software, you must use the standard mode to compile that data service.

When you have finished development (on a noncluster node), you can transfer the completed
data service to a cluster for testing.

The procedures in this section describe how to complete the following tasks:

= Install the Oracle Solaris Cluster development IPS package (ha-cluster/developer/api)
and set the correct compiler and linker options.

= Transfer the data service to a cluster.

How to Set Up the Development Environment

This procedure describes how to install the ha-cluster/developer/api IPS package and set
the compiler and linker options for data service development.

Assume the root role that provides solaris. cluster.modify RBAC authorization.

Ensure that the solaris and ha-cluster publishers are valid.
pkg publisher

PUBLISHER TYPE STATUS URI
solaris origin online solaris-repository
ha-cluster origin online ha-cluster-repository

For information about setting the solaris publisher, see “Set the Publisher Origin to the File
Repository URI” in Copying and Creating Oracle Solaris 11.1 Package Repositories.

Install the ha-cluster/developer/api package in the current directory.
pkg install ha-cluster/developer/api

Verify that the package installed successfully.
phys-schost% pkg info ha-cluster/developer/api

Installation is successful if output shows that State is Installed.

Chapter2 - Developing a Data Service 33

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSPrepo_sharenfs2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=CCOSPrepo_sharenfs2

Setting Standard Properties

In the makefile, specify compiler and linker options that identify the include and library files for
your data service code.

Specify the - I option to identify the Oracle Solaris Cluster header files, the -L option to specify
the compile-time library search path on the development system, and the -R option to specify
the library search path to the runtime linker in the cluster.

Makefile for sample data service

-I /usr/cluster/include
-L /usr/cluster/1lib

-R /usr/cluster/lib

Transferring a Data Service to a Cluster

When you have completed the data service on a development machine, you must transfer the
data service to a cluster for testing. To reduce the chance of error during the transfer, combine
the data service code and the RTR file into a package. Then, install the package on the Oracle
Solaris hosts on which you want to run the service.

Note - Agent Builder creates a System V Revision 4 (SVR4) package automatically.

Setting Standard Properties

34

You can specify standard cluster, resource type, resource, and resource group properties when
configuring data services. Resource property attributes are also available to change
system-defined properties and create extension properties.

Cluster Properties

Cluster properties are used to manage data services. For information about cluster properties,
see the cluster(1CL) man page.

Resource Type Properties

Resource type properties cannot be updated by administrative utilities with the exception of
Installed nodes and RT system. Installed nodes cannot be declared in the RTR file and
can only be set by the cluster administrator. RT_system can be assigned an initial value in the
RTR file, and can also be set by the cluster administrator.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMcluster-1cl

Setting Resource and Resource Type Properties

For information about each resource type property that is defined by Oracle Solaris Cluster
software, see the rt_properties(5) man page.

Resource Properties

For information about each resource property that is defined by Oracle Solaris Cluster software,
see the r_properties(5) man page.

Resource Group Properties

For information about each resource group property that is defined by Oracle Solaris Cluster
software, see the rg_properties(5) man page.

Resource Property Attributes

You can use resource property attributes to change system-defined properties or to create
extension properties. For information about each property, see the property_attributes(5)
man page.

Node List Properties

You can specify the following node list properties when configuring data services:

= Installed_nodes Property - See the rt_properties(5) man page for more information.
= Nodelist Property - See the rg_properties(5) man page for more information.

= Auxnodelist Property - See the clressharedaddress(1CL)man page for more
information.

Setting Resource and Resource Type Properties

Oracle Solaris Cluster software provides a set of resource type properties and resource
properties that you use to define the static configuration of a data service. Resource type
properties specify the type of the resource, its version, the version of the API, as well as the paths
to each of the callback methods. “Resource Type Properties” on page 34 lists all the resource
type properties.

Resource properties, such as Failover mode, Thorough probe interval, and method
timeouts, also define the static configuration of the resource. Dynamic resource properties,
such asResource_state and Status, reflect the active state of a managed resource. “Resource
Properties” on page 35 describes the resource properties.

Chapter2 - Developing a Data Service 35

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrg-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMproperty-attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrg-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclressharedaddress-1cl

Setting Resource and Resource Type Properties

36

You declare the resource type and resource properties in the resource type registration (RTR)
file, which is an essential component of a data service. The RTR file defines the initial
configuration of the data service at the time that the cluster administrator registers the data
service with the Oracle Solaris Cluster software.

Use Agent Builder to generate the RTR file for your data service. Agent Builder declares the set
of properties that are both useful and required for any data service. For example, particular
properties, such as Resource_type, must be declared in the RTR file. Otherwise, registration of
the data service fails. Other properties, although not required, are not available to a cluster
administrator unless you declare them in the RTR file. Some properties are available whether
you declare them or not because the RGM defines them and provides default values. To avoid
this level of complexity, use Agent Builder to guarantee the generation of a correct RTR file.
Later, you can edit the RTR file to change specific values if necessary.

The rest of this section shows a sample RTR file, which was created by Agent Builder.

Declaring Resource Type Properties

The cluster administrator cannot configure the resource type properties that you declare in the
RTR file. They become part of the permanent configuration of the resource type.

Note - Only a cluster administrator can configure the resource type property Installed_nodes.
You cannot declare Installed nodes in the RTR file.

The syntax of resource type declarations is as follows:

property-name = value;

Note - Property names for resource groups, resources, and resource types are not case sensitive.
You can use any combination of uppercase and lowercase letters when you specify property
names.

These are resource type declarations in the RTR file for a sample (smp1l) data service:

Oracle Solaris Cluster Data Services Builder template version 1.0
Registration information and resources for smpl

#

#NOTE: Keywords are case insensitive, i.e., you can use

#any capitalization style you prefer.

#

Resource type = "smpl"

Vendor id = ORCL;

RT description = "Sample Service on Oracle Solaris Cluster";

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Setting Resource and Resource Type Properties

RT version ="1.0"
API version = 2;
Failover = FALSE;
Init nodes = RG_PRIMARIES;

RT basedir=/opt/ORCLsmpl/bin;

Start = smpl_svc_start;
Stop = smpl svc stop;
Validate = smpl validate;
Update = smpl_update;

Monitor start
Monitor stop
Monitor check

smpl monitor start;
smpl _monitor stop;
smpl_monitor check;

Tip - You must declare the Resource_type property as the first entry in the RTR file. Otherwise,
registration of the resource type fails.

The first set of resource type declarations provide basic information about the resource type.

Resource type and Vendor_id
Provide a name for the resource type. You can specify the resource type name with the
Resource_type property alone (smpl) or by using the Vendor_id property as a prefix with a
period (.) separating it from the resource type (ORCL.smp1), as shown in the sample. If you
use Vendor_id, make it the stock market symbol of the company that is defining the resource
type. The resource type name must be unique in the cluster.

Note - By convention, the resource type name (vendoridApplicationname) is used as the
package name. The combination of vendor ID and application name can exceed nine
characters.

Agent Builder, on the other hand, in all cases explicitly generates the package name from the
resource type name, so it enforces the nine-character limit.

RT description
Briefly describes the resource type.

RT version
Identifies the version of the sample data service.

API version
Identifies the version of the APIL For example, API_version = 11 indicates that the data
service can be registered on any version of Oracle Solaris Cluster starting with Oracle Solaris
Cluster 3.3, assuming that the application is compatible with that version of Oracle Solaris

Chapter2 - Developing a Data Service 37

Setting Resource and Resource Type Properties

38

Cluster software. However, API_version = 11 also indicates that the data service cannot be
registered on any version of Oracle Solaris Cluster that was released before Oracle Solaris
Cluster 3.3. This property is described in more detail under the entry for API_version in
“Resource Type Properties” on page 34.

Failover = FALSE
Indicates that the data service can run in a resource group that can be online on multiple
nodes at the same time. In other words, this declaration specifies a multi-master data service.
This property is described in more detail under the entry for Failover in “Resource Type
Properties” on page 34.

Start, Stop,and Validate
Provide the paths to the respective callback method programs that are called by the RGM.
These paths are relative to the directory that is specified by RT_basedir.

The remaining resource type declarations provide configuration information.

Init nodes = RG_PRIMARIES
Specifies that the RGM call the Init, Boot, Fini, and Validate methods only on nodes that
can master the data service. The nodes that are specified by RG_PRIMARIES are a subset of all
nodes on which the data service is installed. Set the value to RT_INSTALLED_NODES to specify
that the RGM call these methods on all nodes on which the data service is installed.

RT basedir
Points to /opt/ORCLsample/bin as the directory path to complete relative paths, such as
callback method paths.

Start, Stop, and Validate
Provide the paths to the respective callback method programs that are called by the RGM.
These paths are relative to the directory that is specified by RT_basedir.

Seethe rt_properties(5) man page for more information about resource type properties. See
the clresourcetype(1CL) man page for more information about registering resource types in
the global cluster or in a zone cluster.

Declaring Resource Properties

As with resource type properties, you declare resource properties in the RTR file. By
convention, resource property declarations follow the resource type declarations in the RTR
file. The syntax for resource declarations is a set of attribute value pairs enclosed by braces ({ }):

{
attribute = value;
attribute = value;
attribute = value;
}

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresourcetype-1cl

Setting Resource and Resource Type Properties

For resource properties that are provided by Oracle Solaris Cluster, which are called
system-defined properties, you can change specific attributes in the RTR file. For example,
Oracle Solaris Cluster provides default values for method timeout properties for each callback
method. In the RTR file, you can specify different default values.

You can also define new resource properties in the RTR file, which are called extension
properties, by using a set of property attributes that are provided by Oracle Solaris Cluster.
“Resource Property Attributes” on page 35 lists the attributes for changing and defining
resource properties. Extension property declarations follow the system-defined property
declarations in the RTR file.

The first set of system-defined resource properties specifies timeout values for the callback
methods.

Resource property declarations appear as a list of bracketed
entries after the resource type declarations. The property
name declaration must be the first attribute after the open
curly bracket of a resource property entry.

#
Set minimum and default for method timeouts.
{
PROPERTY = Start timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Stop timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Validate timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Update timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Monitor Start timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Monitor Stop timeout;
MIN=60;
DEFAULT=300;
{

PROPERTY = Monitor Check timeout;
MIN=60;

Chapter2 - Developing a Data Service 39

Setting Resource and Resource Type Properties

40

DEFAULT=300;
¥

The name of the property (PROPERTY = value) must be the first attribute for each
resource-property declaration. You can configure resource properties within limits that are
defined by the property attributes in the RTR file. For example, the default value for each
method timeout in the sample is 300 seconds. The cluster administrator can change this value.
However, the minimum allowable value, specified by the MIN attribute, is 60 seconds. “Resource
Property Attributes” on page 35 contains a list of resource property attributes.

The next set of resource properties defines properties that have specific uses in the data service.

{
PROPERTY = Failover mode;
DEFAULT=SOFT;
TUNABLE = ANYTIME;
}
{
PROPERTY = Thorough Probe Interval;
MIN=1;
MAX=3600;
DEFAULT=60;
TUNABLE = ANYTIME;
}

The number of retries to be done within a certain period before concluding
that the application cannot be successfully started on this node.
{
PROPERTY = Retry count;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;
}

Set Retry interval as a multiple of 60 since it is converted from seconds
to minutes, rounding up. For example, a value of 50 (seconds)

is converted to 1 minute. Use this property to time the number of

retries (Retry count).

{
PROPERTY = Retry interval;
MAX=3600;
DEFAULT=300;
TUNABLE = ANYTIME;

}

{
PROPERTY = Network resources used;
TUNABLE = WHEN_DISABLED;
DEFAULT = "*;

}

{
PROPERTY = Scalable;
DEFAULT = FALSE;
TUNABLE = AT CREATION;

}

{

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Setting Resource and Resource Type Properties

PROPERTY = Load balancing policy;

DEFAULT = LB WEIGHTED;
TUNABLE = AT CREATION;
}
{
PROPERTY = Load balancing weights;
DEFAULT = "";
TUNABLE = ANYTIME;
}
{
PROPERTY = Port list;
TUNABLE = ANYTIME;
DEFAULT = ;
}

These resource-property declarations include the TUNABLE attribute. This attribute limits the
occasions on which the cluster administrator can change the value of the property with which
this attribute is associated. For example, the value AT_CREATION means that the cluster
administrator can only specify the value when the resource is created and cannot change the
value later.

For most of these properties, you can accept the default values as generated by Agent Builder
unless you have a reason to change them. Information about these properties follows. For
additional information, see “Resource Properties” on page 35 or the r_properties(5) man

page.

Failover mode
Indicates whether the RGM should relocate the resource group or abort the node in the case
of a failure of a Start or Stop method.

Thorough_probe_interval,Retry count,andRetry interval
Used in the fault monitor. Tunable equals ANYTIME, so a cluster administrator can adjust
them if the fault monitor is not functioning optimally.

Network resources used
A list of logical-hostname or shared-address resources on which this resource has a
dependency. This list contains all network-address resources that appear in the properties
Resource dependencies,Resource dependencies weak,
Resource dependencies restart,orResource dependencies offline restart.

The RGM automatically creates this property if the Scalable property is declared in the
RTR file. If the Scalable property is not declared in the RTR file, Network_resources_used
is unavailable unless it is explicitly declared in the RTR file.

If you do not assign a value to the Network_resources_used property, its value is updated
automatically by the RGM, based on the setting of the resource-dependencies properties.
You do not need to set this property directly. Instead, set the Resource_dependencies,
Resource dependencies offline restart,Resource dependencies restart,or
Resource_dependencies_weak property. If per-node dependencies are specified, the
derived value of the Network_resources_used property includes only those dependencies
which are in effect on the local node. The value might differ on each node.

Chapter2 - Developing a Data Service 41

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5

Setting Resource and Resource Type Properties

42

For simplicity, avoid setting a value for the Network_resources_used property. Set only the
resource dependency properties, and treat the Network_resources_used property as a
read-only property. For more information, see the r_properties(5) man page.

Scalable
If set to TRUE, indicates that the resource uses the network load balancing feature of Oracle
Solaris Cluster software. In this case, the resource must be configured with a dependency
upon a shared address resource. See “Implementing a Scalable Resource” on page 54 for
additional information about how to use this property.

In this example, the tunability of the Scalable property is declared to be AT_CREATION,
which means that this property may be set to either TRUE or FALSE when the resource is
created. This implies that the resource type implementation is capable of supporting either a
scalable or non-scalable mode of operation for the resource.

Load balancing policyandLoad balancing weights
These properties are declared automatically when the Scalable property is declared.
Therefore, their appearance in the RTR file is optional unless you want to override the
default tunability. These properties are used only when the Scalable property is set to TRUE.

Port list
Identifies the list of ports on which the application is listening. Agent Builder declares this
property so that a cluster administrator can specify a list of ports when the cluster
administrator configures the data service.

Declaring Extension Properties

Extension properties appear at the end of the sample RTR file.

Extension Properties
#

The cluster administrator must set the value of this property to point to the
directory that contains the configuration files used by the application.

For this application, smpl, specify the path of the configuration file on

PXFS (typically named.conf).

{

PROPERTY = Confdir 1list;

EXTENSION;

STRINGARRAY;

TUNABLE = AT_CREATION;

DESCRIPTION = "The Configuration Directory Path(s)"
}

The following two properties control restart of the fault monitor.
{

PROPERTY = Monitor_retry count;

EXTENSION;

INT;

DEFAULT = 4;

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5

Setting Resource and Resource Type Properties

TUNABLE = ANYTIME;
DESCRIPTION = "Number of PMF restarts allowed for fault monitor."

}
{
PROPERTY = Monitor retry interval;
EXTENSION;
INT;
DEFAULT = 2;
TUNABLE = ANYTIME;
DESCRIPTION = "Time window (minutes) for fault monitor restarts.”
}
Time out value in seconds for the probe.
{
PROPERTY = Probe timeout;
EXTENSION;
INT;
DEFAULT = 120;

TUNABLE = ANYTIME;
DESCRIPTION = "Time out value for the probe (seconds)";

}
Child process monitoring level for PMF (-C option of pmfadm).
Default of -1 means to not use the -C option of pmfadm.
A value of 0 or greater indicates the desired level of child-process.
monitoring.
{
PROPERTY = Child mon_level;
EXTENSION;
INT;
DEFAULT = -1;

TUNABLE = ANYTIME;
DESCRIPTION = “Child monitoring level for PMF"

}
User added code -- BEGIN VVVVVVVVVVVV
User added code -- END NNNNNNNNNNNN

Agent Builder creates the following extension properties, which are useful for most data
services.

Confdir list
Specifies the path to the application configuration directory, which is useful information for
many applications. The cluster administrator can provide the location of this directory when
the cluster administrator configures the data service.

Monitor retry count,Monitor retry interval,andProbe timeout
Controls the restarts of the fault monitor itself, not the server daemon.

Child mon level
Sets the level of monitoring to be carried out by the PME. See the pmfadm(1M) man page for
more information.

You can create additional extension properties in the area that is delimited by the User added
code comments.

Chapter2 - Developing a Data Service 43

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMpmfadm-1m

Implementing Callback Methods

Implementing Callback Methods

44

This section provides general information that pertains to implementing the callback methods.

Accessing Resource and Resource Group Property
Information

Generally, callback methods require access to the properties of the resource. The RMAPI
provides both shell commands and C functions that you can use in callback methods to access
the system-defined and extension properties of resources. See the scha_resource_get(1HA)
and scha_resource_get(3HA) man pages.

The DSDL provides a set of C functions (one function for each property) to access
system-defined properties, and a function to access extension properties. See the
scds_property_functions(3HA)and scds_get_ext_property(3HA) man pages.

You cannot use the property mechanism to store dynamic state information for a data service
because no API functions are available for setting resource properties other than Status and
Status_msg. Rather, you should store dynamic state information in global files.

Note - The cluster administrator can set particular resource properties by using the clresource
command or through a graphical administrative command or interface. However, do not call
clresource from any callback method because clresource fails during cluster
reconfiguration, that is, when the RGM calls the method.

Idempotence of Methods

In general, the RGM does not call a method more than once in succession on the same resource
with the same arguments. However, if a Start method fails, the RGM can call a Stop method on
aresource even though the resource was never started. Likewise, a resource daemon could die
of its own accord and the RGM might still run its Stop method on it. The same scenarios apply
totheMonitor startandMonitor stop methods.

For these reasons, you must build idempotence into your Stop and Monitor_stop methods. In
other words, repeated calls to Stop or Monitor_stop on the same resource with the same
arguments must achieve the same results as a single call.

One implication of idempotence is that Stop and Monitor_stop must return 0 (success) even if
the resource or monitor is already stopped and no work is to be done.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-get-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-get-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-property-functions-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-ext-property-3ha

Controlling an Application

Note - The Init, Fini, Boot, and Update methods must also be idempotent. A Start method
need not be idempotent.

How Methods Are Invoked in Zones

If declared in the RTR file, the Global_zone resource type property indicates whether the
methods of a resource type execute in the global zone. If the Global_zone property equals TRUE,
methods execute in the global zone.

If the resource is configured in the global zone, the - Z zonename option is not invoked.

The Global_zone resource type property is described in more detail in “Resource Type
Properties” on page 34 and in the rt_properties(5) man page.

Generic Data Service

A generic data service (GDS) is a mechanism for making simple applications highly available or
scalable by plugging them into the Oracle Solaris Cluster Resource Group Manager (RGM)
framework. This mechanism does not require the coding of a data service, which is the typical
approach for making an application highly available or scalable.

The GDS model relies on a precompiled resource type, SUNW. gds, to interact with the RGM
framework. See Chapter 10, “Generic Data Service,” for additional information.

Controlling an Application

Callback methods enable the RGM to take control of the underlying resource (that is, the
application). For example, callback methods enable the RGM to take control of the underlying
resource when a node joins or leaves the cluster.

Starting and Stopping a Resource

A resource type implementation requires, at a minimum, a Start method and a Stop method.

Using Start and Stop Methods

The RGM calls a resource type's method programs at correct times and on the correct nodes for
bringing resource groups offline and online. For example, after the crash of a cluster node, the
RGM moves any resource groups that are mastered by that node onto a new node. In this case,
you must implement a Start method to provide the RGM with, among other things, a way of
restarting each resource on the surviving host node.

Chapter2 - Developing a Data Service 45

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-properties-5

Controlling an Application

46

A Start method must not return until the resource has been started and is available on the local
node. Be certain that resource types that require a long initialization period have sufficiently
long timeouts set on their Start methods. To ensure sufficient timeouts, set the default and
minimum values for the Start_timeout property in the RTR file.

You must implement a Stop method for situations in which the RGM takes a resource group
offline. For example, suppose a resource group is taken offline in ZoneA on Host1 and brought
back online in ZoneB on Host2. While taking the resource group offline, the RGM calls the Stop
method on resources in the resource group to stop all activity in ZoneA on Host1. After the
Stop methods for all resources have completed in ZoneA on Host1, the RGM brings the
resource group back online in ZoneB on Host2.

A Stop method must not return until the resource has completely stopped all its activity on the
local node and has completely shut down. The safest implementation of a Stop method
terminates all processes on the local node that are related to the resource. Resource types that
require a long time to shut down need sufficiently long timeouts set on their Stop methods. Set
the Stop_timeout property in the RTR file.

If an RGM method callback times out, the method's process group is killed by a SIGTERM signal.
If the process group does not exit within 10 seconds, a SIGKILL is executed.

Although method core dumps are not generated when a method times out, system core dumps
are generated when a node is rebooted by the RGM due to a resource's Failover_mode property
being set to HARD and the resource method being stuck in the kernel and failing to exit after a
SIGKILL.

Note - Avoid writing data service methods that create a new process group. If your data service
method must create a new process group, write a signal handler for the SIGTERM and SIGABRT
signals. Also, ensure that your signal handler forwards the SIGTERM or SIGABRT signal to the
child process group or groups before the signal handler terminates the process. Writing a signal
handler for these signals increases the likelihood that all processes that are spawned by your
method are correctly terminated.

Failure or timeout of a Stop method causes the resource group to enter an error state that
requires the cluster administrator to intervene. To avoid this state, the Stop and Monitor_stop
method implementations must attempt to recover from all possible error conditions. Ideally,
these methods must exit with 0 (success) error status, having successfully stopped all activity of
the resource and its monitor on the local node.

Deciding Which Start and Stop Methods to Use

This section provides some tips about when to use the Start and Stop methods as opposed to
using the Prenet_start and Postnet_stop methods. You must have in-depth knowledge of
both the client and the data service's client-server networking protocol to decide the correct
methods to use.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Controlling an Application

Services that use network address resources might require that start or stop steps be done in a
particular order. This order must be relative to the logical host name address configuration. The
optional callback methods Prenet_start and Postnet_stop enable a resource type
implementation to perform special startup and shutdown operations before and after network
addresses in the same resource group are configured to go up or configured to go down.

The RGM calls methods that plumb the network addresses (but do not configure network
addresses to go up) before calling the data service's Prenet_start method. The RGM calls
methods that unplumb the network addresses after calling the data service's Postnet_stop
methods.

The sequence is as follows when the RGM takes a resource group online:

Plumb network addresses.

Call the data service's Prenet_start method (if any).
Configure network addresses to go up.

Call the data service's Start method (if any).

Ll

The reverse happens when the RGM takes a resource group oftline:

Call the data service's Stop method (if any).
Configure network addresses to go down.

Call the data service's Postnet_stop method (if any).
Unplumb network addresses.

Ll o

When deciding whether to use the Start, Stop, Prenet_start, or Postnet_stop methods, first
consider the server side. When bringing online a resource group that contains both data service
application resources and network address resources, the RGM calls methods to configure the
network addresses to go up before it calls the data service resource Start methods. Therefore, if
a data service requires network addresses to be configured to go up at the time it starts, use the
Start method to start the data service.

Likewise, when bringing offline a resource group that contains both data service resources and
network address resources, the RGM calls methods to configure the network addresses to go
down after it calls the data service resource Stop methods. Therefore, if a data service requires
network addresses to be configured to go up at the time it stops, use the Stop method to stop the
data service.

For example, to start or stop a data service, you might have to run the data service's
administrative utilities or libraries. Sometimes, the data service has administrative utilities or
libraries that use a client-server networking interface to perform the administration. That is, an
administrative utility makes a call to the server daemon, so the network address might need to
be up to use the administrative utility or library. Use the Start and Stop methods in this
scenario.

If the data service requires that the network addresses be configured to go down at the time it
starts and stops, use the Prenet_start and Postnet_stop methods to start and stop the data
service. Consider whether your client software is to respond differently, depending on whether

Chapter2 - Developing a Data Service 47

Controlling an Application

48

the network address or the data service comes online first after a cluster reconfiguration (either

scha_control() with the SCHA_GIVEOVER argument or a switchover with the clnode evacuate
command). For example, the client implementation might perform the fewest retries, giving up
soon after determining that the data service port is not available.

If the data service does not require the network address to be configured to go up when it starts,
start the data service before the network interface is configured to go up. Starting the data
service in this way ensures that the data service is able to respond immediately to client requests
as soon as the network address has been configured to go up. As a result, clients are less likely to
stop retrying. In this scenario, use the Prenet_start method rather than the Start method to
start the data service.

If you use the Postnet_stop method, the data service resource is still up at the point the
network address is configured to be down. Only after the network address is configured to go
down is the Postnet_stop method run. As aresult, the data service's TCP or UDP service port,
or its RPC program number, always appears to be available to clients on the network, except
when the network address is also not responding.

Note - If you install an RPC service in the cluster, the service must not use the following program
numbers: 100141, 100142, and 100248. These numbers are reserved for the Oracle Solaris
Cluster daemons rgmd_receptionist, fed, and pmfd, respectively. If the RPC service that you
install uses one of these program numbers, change the program number of that RPC service.

The decision to use the Start and Stop methods as opposed to the Prenet start and
Postnet_stop methods, or to use both, must take into account the requirements and behavior
of both the server and client.

Using the Optional Init, Fini, and Boot Methods

Three optional methods, Init, Fini, and Boot, enable the RGM to execute initialization and
termination code on a resource.

Using the Init Method

The RGM executes the Init method to perform a one-time initialization of the resource when
the resource becomes managed as a result of one of the following conditions:

= The resource group in which the resource is located is switched from an unmanaged to a
managed state.

= Theresource is created in a resource group that is already managed.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Controlling an Application

Using the Fini Method

The RGM executes the Fini method to clean up after a resource when that resource is no longer
managed by the RGM. The Fini method usually undoes any initializations that were performed
by the Init method.

The RGM executes Fini on the node where the resource becomes unmanaged when the
following situations arise:

= The resource group that contains the resource is switched to an unmanaged state. In this
case, the RGM executes the Fini method on all nodes in the node list.

= The resource is deleted from a managed resource group. In this case, the RGM executes the
Fini method on all nodes in the node list.

= Anodeis deleted from the node list of the resource group that contains the resource. In this
case, the RGM executes the Fini method on only the deleted node.

A “node list” is either the resource group's Nodelist or the resource type's Installed_nodes
list. Whether “node list” refers to the resource group's Nodelist or the resource type's
Installed_nodes list depends on the setting of the resource type's Init_nodes property. You
can set the Init_nodes property to RG_PRIMARIES or RT_INSTALLED_NODE. For most resource
types, Init_nodes is set to RG_PRIMARIES, the default. In this case, both the Init and Fini
methods are executed on the nodes that are specified in the resource group's Nodelist.

The type of initialization that the Init method performs defines the type of cleanup that the
Fini method that you implement needs to perform, as follows:

= Cleanup of node-specific configuration.
= Cleanup of cluster-wide configuration.

Guidelines for Implementing a Fini Method

The Fini method that you implement needs to determine whether to perform only cleanup of
node-specific configuration or cleanup of both node-specific and cluster-wide configuration.

When a resource becomes unmanaged on only a particular node, the Fini method can clean up
local, node-specific configuration. However, the Fini method must not clean up global,
cluster-wide configuration, because the resource remains managed on other nodes. If the
resource becomes unmanaged cluster-wide, the Fini method can perform cleanup of both
node-specific and global configuration. Your Fini method code can distinguish these two cases
by determining whether the resource group's node list contains the local node on which your
Fini method is executing.

If the local node appears in the resource group's node list, the resource is being deleted or is
moving to an unmanaged state. The resource is no longer active on any node. In this case, your
Fini method needs to clean up any node-specific configuration on the local node as well as
cluster-wide configuration.

Chapter2 - Developing a Data Service 49

Monitoring a Resource

If the local node does not appear in the resource group's node list, your Fini method can clean
up node-specific configuration on the local node. However, your Fini method must not clean
up cluster-wide configuration. In this case, the resource remains active on other nodes.

You must also code the Fini method so that it is idempotent. In other words, even if the Fini
method has cleaned up a resource during a previous execution, subsequent calls to the Fini
method exit successfully.

Using the Boot Method

The RGM executes the Boot method on nodes that join the cluster, that is, that have just been
booted or rebooted.

The Boot method normally performs the same initialization as Init. You must code the Boot
method so that it is idempotent. In other words, even if the Boot method has initialized the
resource during a previous execution, subsequent calls to the Boot method exit successfully.

Monitoring a Resource

50

Typically, you implement monitors to run periodic fault probes on resources to detect whether
the probed resources are working correctly. If a fault probe fails, the monitor can attempt to
restart locally or request failover of the affected resource group. The monitor requests the
failover by calling the scha_control() or scha_control_zone() RMAPI function or the
scds_fm_action() DSDL function.

You can also monitor the performance of a resource and tune or report performance. Writing a
resource type-specific fault monitor is optional. Even if you choose not to write such a fault
monitor, the resource type benefits from the basic monitoring of the cluster that Oracle Solaris
Cluster software itself does. Oracle Solaris Cluster software detects failures of the host
hardware, gross failures of the host's operating system, and failures of a host to be able to
communicate on its public networks.

The RGM provides callbacks for automatically starting and stopping resource monitors. When
bringing a resource offline, the RGM calls the Monitor_stop method to stop the resource's
monitor on the local nodes before stopping the resource itself. When bringing a resource
online, the RGM calls the Monitor start method after the resource itself has been started.

The scha_control() orscha_control zone() RMAPI function and the scds_fm_action()
DSDL function (which calls scha_control()) enable resource monitors to request the failover
of aresource group to a different node. As one of its sanity checks, scha_control() and
scha_control_zone() callMonitor_check (if defined) to determine whether the requested
node is reliable enough to master the resource group that contains the resource. If
Monitor_check reports back that the node is not reliable, or the method times out, the RGM
looks for a different node to honor the failover request. If Monitor_check fails on all nodes, the
failover is canceled.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Monitoring a Resource

The resource monitor can set the Status and Status_msg properties to reflect the monitor's
view of the resource state. Use the scha_resource setstatus() or
scha_resource_setstatus_zone() RMAPI function, the scha_resource_setstatus
command, or the scds_fm_action() DSDL function to set these properties.

Note - Although the Status and Status_msg properties are of particular use to a resource
monitor, any program can set these properties.

See “Defining a Fault Monitor” on page 101 for an example of a fault monitor that is
implemented with the RMAPI. See “ORCL. xfnts Fault Monitor” on page 143 for an example of a
fault monitor that is implemented with the DSDL. See the Oracle Solaris Cluster Data Services
Planning and Administration Guide for information about fault monitors that are built into

data services that are supplied by Oracle.

Implementing Monitors and Methods That Execute
Exclusively in the Global Zone

Most resource types execute their methods in whatever node appears in the resource group's
node list. A few resource types must execute all of their methods in the global zone, even when
the resource group is configured in a zone-cluster node. This is necessary for resource types that
manage system resources, such as network addresses or disks, which can only be managed from
the global zone. These resource types are identified by setting the Global_zone property to TRUE
in the resource type registration (RTR) file.

Caution - Do not register a resource type for which the Global_zone property is set to TRUE
unless the resource type comes from a known and trusted source. Resource types for which this
property is set to TRUE circumvent zone isolation and present a risk.

A resource type that declares Global_zone=TRUE might also declare the
Global_zone_override resource property. In this case, the value of the
Global_zone_override property supersedes the value of the Global_zone property for that
resource. The Global_zone_override property is described in more detail in “Resource
Properties” on page 35 and the r_properties(5) man page.

If the Global_zone resource type property is not set to TRUE, monitors and methods execute in
whatever nodes are listed in the resource group's node list.

The scha_control() and scha_resource_setstatus() functions and the scha_control and
scha_resource_setstatus commands operate implicitly on the node from which the function
or command is run. If the Global_zone resource type property equals TRUE, these functions and
commands need to be invoked differently when the resource is configured in a zone cluster.

Chapter2 - Developing a Data Service 51

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5

Adding Message Logging to a Resource

When the resource is configured in a zone-cluster node, the value of the zonename operand is
passed to the resource type method by the -Z option. If your method or monitor invokes one of
these functions or commands without the correct handling, it incorrectly operates on the global
zone. Your method or monitor should operate on the zone-cluster node in which the resource
that is included in the resource group's node list is configured.

To ensure that your method or monitor code handles these conditions correctly, check that it
does the following:

m Specifies the - Z zonename option in calls to the scha_control and
scha_resource_setstatus commands. Use the same value for zonename that the RGM
passes to the data service method with the -Z option.

® Includes calls to the scha_control_zone() function rather than to the scha_control()
function. Ensure that your call passes the zonename operand that was passed by the -z
option.

® Includes calls to the scha_resource setstatus zone() function rather than to the
scha_resource_setstatus() function. Ensure that your call passes the zonename operand
that was passed by the -Z option.

The DSDL functions inherently handle the -Z zonename option.

You can use the DSDL function scds_get_zone_name () to query the name of the zone that is
passed to the method in the -Z zonename command-line option. If no -Z zonename is passed,
the scds_get zone name() function returns NULL.

Adding Message Logging to a Resource

If you want to record status messages in the same log file as other cluster messages, use the
convenience function scha_cluster_getlogfacility() to retrieve the facility number that is
being used to log cluster messages.

Use this facility number with the regular Oracle Solaris syslog () function to write messages to
the cluster log. You can also access the cluster log facility information through the generic
scha_cluster get() interface.

Providing Process Management

52

The RMAPI and the DSDL provide process management facilities to implement resource
monitors and resource control callbacks. The RMAPI defines the following facilities:

Process Monitor Facility (PMF): pmfadm and rpc. pmfd
Provides a means of monitoring processes and their descendants, and restarting processes if
they die. The facility consists of the pmfadm command for starting and controlling monitored
processes, and the rpc. pmfd daemon.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Providing Administrative Support for a Resource

The DSDL provides a set of functions (preceded by the name scds_pmf_) to implement the
PMF functionality. See “PMF Functions” on page 197 for an overview of the DSDL PMF
functionality and for a list of the individual functions.

The pmfadm(1M) and rpc. pmfd(1M) man pages describe this command and daemon in
more detail.

/usr/cluster/bin/halockrun
A program for running a child program while holding a file lock. This command is
convenient to use in shell scripts.

The halockrun(1M) man page describes this command in more detail.

/usr/cluster/bin/hatimerun
A program for running a child program under timeout control. This command is
convenient to use in shell scripts.

The DSDL provides the scds_hatimerun() function to implement the features of the
hatimerun command.

The hatimerun(1M) man page describes this command in more detail.

Providing Administrative Support for a Resource

Actions that cluster administrators perform on resources include setting and changing resource
properties. The API defines the Validate and Update callback methods so that you can create
code that hooks into these administrative actions.

The RGM calls the optional Validate method when a resource is created. The RGM also calls
the Validate method when a cluster administrator updates the properties of the resource or its
containing group. The RGM passes the property values for the resource and its resource group
to the Validate method. The RGM calls Validate on the set of cluster nodes that is indicated
by the Init_nodes property of the resource's type. See “Resource Type Properties” on page 34
orthe rt_properties(5) man page for information about Init_nodes. The RGM calls
Validate before the creation or the update is applied. A failure exit code from the method on
any node causes the creation or the update to fail.

The RGM calls Validate only when the cluster administrator changes resource or resource
group properties, not when the RGM sets properties, or when a monitor sets the Status and
Status_msg resource properties.

The RGM calls the optional Update method to notify a running resource that properties have
been changed. The RGM runs Update after the cluster administrator succeeds in setting
properties of a resource or its group. The RGM calls this method on nodes where the resource is
online. This method can use the API access functions to read property values that might affect
an active resource and adjust the running resource accordingly.

Chapter2 - Developing a Data Service 53

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMpmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrpc.pmfd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMhalockrun-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMhatimerun-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-properties-5

Implementing a Failover Resource

Implementing a Failover Resource

A failover resource group contains network addresses, such as the built-in resource types
LogicalHostname and SharedAddress, and failover resources, such as the data service
application resources for a failover data service. The network address resources, along with
their dependent data service resources, move between cluster nodes when data services fail over
or are switched over. The RGM provides a number of properties that support implementation
of a failover resource.

In a global cluster, a failover resource group can fail over to a node on another Oracle Solaris
host or on the same Oracle Solaris host. A failover resource group cannot fail over in this way in
azone cluster. However, if the host fails, the failing over of this resource group to a node on the
same host does not provide high availability. Nonetheless, you might find this failing over of a
resource group to a node on the same host useful in testing or prototyping.

Set the Boolean Failover resource type property to TRUE to restrict the resource from being
configured in a resource group that can be online on more than one node at a time. The default
for this property is FALSE, so you must declare it as TRUE in the RTR file for a failover resource.

The Scalable resource property determines if the resource uses the cluster shared address
facility. For a failover resource, set Scalable to FALSE because a failover resource does not use
shared addresses.

The RG_mode resource group property enables the cluster administrator to identify a resource
group as failover or scalable. IfRG_mode is FAILOVER, the RGM sets the Maximum_primaries
property of the group to 1. The RGM also restricts the resource group to being mastered by a
single node. The RGM does not allow a resource whose Failover property is TRUE to be created
in a resource group whose RG_mode is SCALABLE.

The Implicit_network_dependencies resource group property specifies that the RGM should
enforce implicit strong dependencies of non-network address resources on all network address
resources (LogicalHostname and SharedAddress) within the group. As aresult, the Start
methods of the non-network address (data service) resources in the group are not called until
the network addresses in the group are configured to go up. The
Implicit_network_dependencies property defaults to TRUE.

Implementing a Scalable Resource

54

A scalable resource can be online on more than one node simultaneously. Scalable resources
include data services such as Oracle Solaris Cluster HA for Oracle GlassFish Server and Oracle
Solaris Cluster HA for Apache.

The RGM provides a number of properties that support the implementation of a scalable
resource.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Implementing a Scalable Resource

Set the Boolean Failover resource type property to FALSE, to allow the resource to be
configured in a resource group that can be online on more than one node at a time.

The Scalable resource property determines if the resource uses the cluster shared address
facility. Set this property to TRUE because a scalable service uses a shared address resource to
make the multiple instances of the scalable service appear as a single service to the client.

The RG_mode property enables the cluster administrator to identify a resource group as failover
or scalable. If RG_mode is SCALABLE, the RGM allows Maximum_primaries to be assigned a value
greater than 1. The resource group can be mastered by multiple nodes simultaneously. The
RGM allows a resource whose Failover property is FALSE to be instantiated in a resource group
whose RG_mode is SCALABLE.

The cluster administrator creates a scalable resource group to contain scalable service resources
and a separate failover resource group to contain the shared address resources upon which the
scalable resource depends.

The resource group that contains the scalable service resource has an implicit dependency on
the resource group that contains the shared address resource. This dependency ensures that the
network address is brought up before the scalable data service is started. The cluster
administrator need not set any explicit dependency for this.

When you declare the Scalable property in the RTR file for a resource, the RGM automatically
creates the following set of scalable properties for the resource.

Network resources used
Identifies the shared-address resources on which this resource has a dependency. This list
contains all network-address resources that appear in the properties
Resource dependencies,Resource dependencies weak,
Resource dependencies restart,or Resource dependencies offline restart.

The RGM automatically creates this property if the Scalable property is declared in the
RTR file. If the Scalable property is not declared in the RTR file, Network_resources_used
is unavailable unless it is explicitly declared in the RTR file.

If you do not assign a value to the Network_resources_used property, its value is updated
automatically by the RGM, based on the setting of the resource-dependencies properties.
You do not need to set this property directly. Instead, set the Resource_dependencies,
Resource dependencies offline restart,Resource dependencies restart,or
Resource_dependencies_weak property.

Load balancing policy
Specifies the load-balancing policy for the resource. You can explicitly set the policy in the
RTR file (or allow the default LB WEIGHTED). In either case, the cluster administrator can
change the value when he or she creates the resource (unless you set Tunable for
Load_balancing_policy to NONE or FALSE in the RTR file). These are the legal values that
you can use:

Chapter2 - Developing a Data Service 55

Implementing a Scalable Resource

56

LB_WEIGHTED
The load is distributed among various nodes according to the weights that are set in the
Load_balancing weights property.

LB_STICKY
A given client (identified by the client IP address) of the scalable service is always sent to
the same node of the cluster.

LB_STICKY WILD
A given client (identified by the client's IP address) that connects to an IP address of a
wildcard sticky service is always sent to the same cluster node regardless of the port
number to which it is coming.

For a scalable service with a Load balancing policy of LB STICKY or LB STICKY WILD,
changing Load_balancing_weights while the service is online can cause existing client
affinities to be reset. In this case, a different node might service a subsequent client request,
even if the client had been previously serviced by another node in the cluster.

Similarly, starting a new instance of the service on a cluster might reset existing client
affinities.

Load balancing weights
Specifies the load to be sent to each node. The format is weight@node, weight@node. weight is
an integer that reflects the relative portion of load that is distributed to the specified node.
The fraction of load that is distributed to a node is the weight for this node divided by the
sum of all weights of active instances. For example, 1@1, 3@2 specifies that node 1 receives
one-fourth of the load and node 2 receives three-fourths of the load.

Port list
Identifies the ports on which the application is listening. This property defaults to the empty
string. You can provide a list of ports in the RTR file. Otherwise, the cluster administrator
must provide the actual list of ports when creating the resource.

You can create a data service that the cluster administrator can configure to be either scalable or
failover. To do so, declare both the Failover resource type property and the Scalable resource
property as FALSE in the data service's RTR file. Specify the Scalable property to be tunable at
creation.

The Failover property value FALSE allows the resource to be configured in a scalable resource
group. The cluster administrator can enable shared addresses by changing the value of
Scalable to TRUE when he or she creates the resource, to create a scalable service.

On the other hand, even though Failover is set to FALSE, the cluster administrator can
configure the resource in a failover resource group to implement a failover service. The cluster
administrator does not change the value of Scalable, which is FALSE. To support this scenario,
you should provide a check in the Validate method on the Scalable property. If Scalableis
FALSE, verify that the resource is configured into a failover resource group.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Implementing a Scalable Resource

The Oracle Solaris Cluster Concepts Guide contains additional information about scalable
resources.

Validation Checks for Scalable Services

Whenever you create or update a resource with the scalable property set to TRUE, the RGM
validates various resource properties. If you do not configure the properties correctly, the RGM
rejects the attempted update or creation.

The RGM performs the following checks:

The scalable resource must declare a resource dependency on one or more existing shared
address resources.

Every node in the Nodelist for the resource group that contains the scalable resource must
appear in the NetIfList property of the SharedAddress resource.

The Nodelist of the scalable resource group must be a subset of, or the same as, the
combination, or union, of the following two node lists:

= TheNodelist for the resource group that contains the SharedAddress resource.

= TheNodelist thatislisted in the AuxNodeList property for the SharedAddress
resource.

Note - If you include all nodes in the node list for the scalable resource's resource group in
the node list for the shared address' resource group, you do not need to set the AuxNodeList

property.

The Port_list property must not be empty and must contain a list of port-protocol pairs.
You must append a slash (/) to each port number, followed by the protocol that is being
used by that port. For example:

Port 1ist=80/tcp6,40/udp6

You can specify the following protocol values:

® tcp, for TCP IPv4
® tcp6, for TCP IPv6
= udp, for UDP IPv4
= udp6, for UDP IPv6

Chapter2 - Developing a Data Service 57

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCON

Writing and Testing Data Services

Writing and Testing Data Services

58

This section describes how to write and test a data service. Topics that are covered include using
TCP keep-alives to protect the server, testing highly available data services, and coordinating
dependencies between resources.

Using TCP Keep-Alives to Protect the Server

On the server side, using TCP keep-alives protects the server from wasting system resources for
a down (or network-partitioned) client. If these resources are not cleaned up in a server that
stays up long enough, the wasted resources eventually grow without bound as clients crash and
reboot.

If the client-server communication uses a TCP stream, both the client and the server should
enable the TCP keep-alive mechanism. This provision applies even in the non-HA,
single-server case.

Other connection-oriented protocols might also have a keep-alive mechanism.

On the client side, using TCP keep-alives enables the client to be notified when a network
address resource has failed over or switched over from one physical host to another physical
host. That transfer of the network address resource breaks the TCP connection. However,
unless the client has enabled the keep-alive, it does not necessarily learn of the connection break
if the connection happens to be quiescent at the time.

For example, suppose the client is waiting for a response from the server to along-running
request, and the client's request message has already arrived at the server and has been
acknowledged at the TCP layer. In this situation, the client's TCP module has no need to keep
retransmitting the request. Also, the client application is blocked, waiting for a response to the
request.

Where possible, in addition to using the TCP keep-alive mechanism, the client application also
must perform its own periodic keep-alive at its level. The TCP keep-alive mechanism is not
perfect in all possible boundary cases. Using an application-level keep-alive typically requires
that the client-server protocol support a null operation or at least an efficient read-only
operation, such as a status operation.

Testing HA Data Services

This section provides suggestions about how to test a data service implementation in a
highly-available environment. The test cases are suggestions and are not exhaustive. You need
access to a test-bed Oracle Solaris Cluster configuration so that the testing work does not affect
production machines.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Writing and Testing Data Services

Test that your HA data service behaves correctly in all cases where a resource group is moved
between physical hosts. These cases include system crashes and the use of the clnode
command. Test that client machines continue to get service after these events.

Test the idempotence of the methods. For example, replace each method temporarily with a
short shell script that calls the original method two or more times.

Coordinating Dependencies Between Resources

Sometimes one client-server data service makes requests on another client-server data service
while fulfilling a request for a client. For example, data service A depends on data service B if, for
A to provide its service, B must provide its service. Oracle Solaris Cluster provides for this
requirement by permitting resource dependencies to be configured within a resource group.
The dependencies affect the order in which Oracle Solaris Cluster starts and stops data services.
Seethe r_properties(5) man page.

If resources of your resource type depend on resources of another type, you need to instruct the
cluster administrator to configure the resources and resource groups correctly. As an
alternative, provide scripts or tools to correctly configure them.

Decide whether to use explicit resource dependencies, or omit them and poll for the availability
of other data services in your HA data service's code. If the dependent and depended-on
resource can run on different nodes, configure them in separate resource groups. In this case,
polling is required because configuring resource dependencies across groups is not possible.

Some data services store no data directly themselves. Instead, they depend on another back-end
data service to store all their data. Such a data service translates all read and update requests into
calls on the back-end data service. For example, consider a hypothetical client-server
appointment calendar service that keeps all of its data in an SQL database, such as Oracle. The
appointment calendar service uses its own client-server network protocol. For example, it
might have defined its protocol using an RPC specification language, such as ONC RPC.

In the Oracle Solaris Cluster environment, you can use HA for Oracle to make the back-end
Oracle database highly available. Then, you can write simple methods for starting and stopping
the appointment calendar daemon. The cluster administrator registers the appointment
calendar resource type with Oracle Solaris Cluster software.

If the HA for Oracle resource is to run on a different node than the appointment calendar
resource, the cluster administrator configures them into two separate resource groups. The
cluster administrator consequently makes the appointment calendar resource dependent on the
HA for Oracle resource.

Chapter2 - Developing a Data Service 59

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5

Legal RGM Names

The cluster administrator makes the resources dependent by doing either of the following:

= Configuring the appointment calendar resource in the same resource group as the
HA-ORACLE resource.

= Specifying a strong positive affinity between the two resource groups in which each resource
is located.

You specify this affinity by using the RG_affinities property with the clresource
command.

The calendar data service daemon, after it has been started, might poll while waiting for the
Oracle database to become available. The calendar resource type's Start method usually
returns success in this case. If the Start method blocks indefinitely, however, this method
moves its resource group into a busy state. This busy state prevents any further state changes,
such as edits, failovers, or switchovers on the resource group. If the calendar resource's Start
method times out or exits with a nonzero status, its timing out or nonzero exit status might
cause the resource group to ping-pong between two or more nodes while the Oracle database
remains unavailable.

Legal RGM Names

60

This section lists the requirements for legal characters for Resource Group Manager (RGM)
names and values.

This section covers the following topics:

= “RGM Legal Names” on page 60
= “RGM Values” on page 62

RGM Legal Names

RGM names fall into the following categories:

Resource group names
Resource type names
Resource names

Property names
Enumeration literal names

Rules for Names Except Resource Type Names

Except for resource type names, all names must comply with these rules:

= Names must be in ASCII.

= Names must start with a letter.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Legal RGM Names

= Names can contain uppercase and lowercase letters, digits, dashes (-), and underscores (_).

= The maximum number of characters that you can use in a name is 255.

Format of Resource Type Names

The format of the complete name of a resource type depends on the resource type, as follows:

= Ifthe resource type's resource type registration (RTR) file contains the #$upgrade directive,
the format is as follows:

vendor-id. base-rt-name: rt-version

= Iftheresource type's RTR file does not contain the #$upgrade directive, the format is as
follows:

vendor-id. base-rt-name

A period separates vendor-id and base-rt-name. A colon separates base-rt-name and rt-version.

The variable elements in this format are as follows:

vendor-id Specifies the vendor ID prefix, which is the value of the Vendor_id resource
type property in the RTR file. If you are developing a resource type, choose a
vendor ID prefix that uniquely identifies the vendor, such as your company's
stock ticker symbol.

base-rt-name Specifies the base resource type name, which is the value of the
Resource_type resource type property in the RTR file.

rt-version Specifies the version suffix, which is the value of the RT_version resource type
property in the RTR file. The version suffix is only part of the complete
resource type name if the RTR file contains the #$upgrade directive.

Note - If only one version of a base resource type name is registered, you do not have to use the
complete name in administrative commands. You can omit the vendor ID prefix, the version
number suffix, or both.

For more information, see “Resource Type Properties” on page 34.

EXAMPLE2-1 Complete Name of a Resource Type With the #$upgrade Directive

This example shows the complete name of a resource type for which properties in the RTR file
are set, as follows:

= Vendor id=ORCL
®m Resource type=sample
® RT version=2.0

The complete name of the resource type that is defined by this RTR file is as follows:

Chapter2 - Developing a Data Service 61

Legal RGM Names

62

EXAMPLE2-1 Complete Name of a Resource Type With the #$upgrade Directive (Continued)
ORCL.sample:2.0

EXAMPLE2-2 Complete Name of a Resource Type Without the #$upgrade Directive

This example shows the complete name of a resource type for which properties in the RTR file
are set, as follows:

= Vendor id=ORCL
= Resource type=abc

The complete name of the resource type that is defined by this RTR file is as follows:

ORCL.abc

RGMValues

RGM values fall into two categories: property values and description values. Both categories
share the same rules:

= Values must be in ASCIL

= The maximum length of a value is 4 megabytes minus 1, that is, 4,194,303 bytes.

= Values cannot contain the following characters:

Null
Newline
Comma (,)

n
n
[]
= Semicolon (;)

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L K R 4 CHAPTER 3

Resource Management API Reference

This chapter lists and briefly describes the access functions and callback methods that make up
the Resource Management API (RMAPI). However, the definitive reference for these functions

and methods is the RMAPI man pages.

This chapter covers the following topics:

= “RMAPI Access Methods” on page 63
= “RMAPI Callback Methods” on page 68

RMAPI Access Methods

The API provides functions to access resource type, resource, and resource group properties,
and other cluster information. These functions are provided both in the form of shell
commands and C functions, which enable you to implement control programs as shell scripts
or as C programs.

RMAPI Shell Commands

Shell commands are used in shell script implementations of the callback methods for resource
types that represent services that are controlled by the cluster's RGM.

You can use these commands to complete the following tasks:

= Access information about resource types, resources, resource groups, and clusters.

= With a monitor, set the Status and Status_msg properties of a resource.

= Request the restart or relocation of a resource group.

63

RMAPI Access Methods

64

Note — Although this section provides brief descriptions of the shell commands, the IHA man
pages provide the definitive reference for the shell commands. A man page of the same name is
associated with each command, unless otherwise noted.

RMAPI Resource Commands

You can access information about a resource or set the Status and Status_msg properties of a
resource with these commands.

scha_resource get
Accesses information about a resource or resource type that is under the control of the RGM.
This command provides the same information as the scha_resource_get () C function. For
details, see the scha_resource_get(1HA) man page.

scha resource setstatus
Sets the Status and Status_msg properties of a resource that is under the control of the
RGM. This command is used by the resource's monitor to indicate the state of the resource
as perceived by the monitor. This command provides the same functionality as the
scha_resource_setstatus() C function. This command is described in more detail in the
scha_resource_setstatus(1HA) man page.

Note — Although scha_resource_setstatus() is of particular use to a resource monitor, any
program can call it.

Resource Type Command

scha resourcetype get
Accesses information about a resource type that is registered with the RGM. This command
provides the same functionality as the scha_resourcetype_get () C function. This
command is described in more detail in the scha_resourcetype_get(1HA) man page.

Resource Group Commands

You can access information about or restart a resource group with these commands.

scha_resourcegroup get
Accesses information about a resource group that is under the control of the RGM. This
command provides the same functionality as the scha_resourcegroup_get () Cfunction.
This command is described in more detail in the scha_resourcegroup_get(1HA) man

page.
scha control
Requests the restart of a resource group that is under the control of the RGM or its relocation

to a different node. This command provides the same functionality as the scha_control()
and scha_control zone() C functions. This command is described in more detail in the

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-get-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-setstatus-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcetype-get-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcegroup-get-1ha

RMAPI Access Methods

scha_control(1HA) man page.

Cluster Command

scha cluster get
Accesses information about a cluster, such as the cluster name, node name, zone name, IDs,
states, and resource groups. This command provides the same information as the
scha_cluster get() C function. This command is described in more detail in the
scha_cluster_get(1HA) man page.

C Functions

C functions are used in C program implementations of the callback methods for resource types
that represent services that are controlled by the cluster's RGM.

You can use these functions to complete the following tasks:
= Access information about resource types, resources, resource groups, and clusters.
= Setthe Status and Status_msg properties of a resource.

= Request the restart or relocation of a resource group.

= Convert an error code to a related error message.

Note - Although this section provides brief descriptions of the C functions, the 3HA man pages
provide the definitive reference for the C functions. A man page of the same name is associated
with each function, unless otherwise noted. See the scha_calls(3HA) man page for
information about the output arguments and return codes of the C functions.

Resource Functions

These functions access information about a resource that is managed by the RGM or indicate
the state of the resource as perceived by the monitor.

scha_resource_open(), scha_resource get(),and scha_resource close()
These functions access information about a resource that is managed by the RGM. The
scha_resource_open() function initializes access to a resource and returns a handle for
scha_resource_get (), which accesses the resource information. The
scha_resource_close() function invalidates the handle and frees memory that is allocated
for scha_resource get () return values.

A resource can change, through cluster reconfiguration or administrative action, after
scha_resource_open() returns the resource's handle. As a result, the information that
scha_resource_get () obtains through the handle might be inaccurate. In cases of cluster
reconfiguration or administrative action on a resource, the RGM returns the

Chapter 3 - Resource Management API Reference 65

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-control-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-get-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-calls-3ha

RMAPI Access Methods

scha_err_seqid error codeto scha_resource get() toindicate that information about the
resource might have changed. This error message is nonfatal. The function returns
successfully. You can choose to ignore the message and accept the returned information.
Alternatively, you can close the current handle and open a new handle to access information
about the resource.

One man page describes these three functions. You can access this man page through any of
the individual functions scha resource open(3HA), scha resource get(3HA), or
scha_resource close(3HA).

scha resource setstatus()
Sets the Status and Status_msg properties of a resource that is under the control of the
RGM. The resource's monitor uses this function to indicate the resource's state.

Note — Although scha_resource_setstatus() is of particular use to a resource monitor, any
program can call it.

scha resource setstatus zone()
Like the scha_resource_setstatus() function, sets the Status and Status_msg properties
of a resource that is under the control of the RGM. The resource's monitor uses this function
to indicate the resource's state. However, this function also specifies the name of the zone in
which the method is configured to run.

Note — Although scha_resource_setstatus_zone() is of particular use to a resource
monitor, any program can call it.

Resource Type Functions
These functions access information about a resource type that is registered with the RGM.

scha_resourcetype open(),scha resourcetype get(),and scha resourcetype close()
The scha_resourcetype open() function initializes access to a resource and returns a
handle for scha_resourcetype_get (), which accesses the resource type information. The
scha_resourcetype_close() function invalidates the handle and frees memory that is
allocated for scha_resourcetype get() return values.

A resource type can change, through cluster reconfiguration or administrative action, after
scha_resourcetype_open () returns the resource type's handle. As a result, the information
that scha_resourcetype_get () obtains through the handle might be inaccurate. In cases of
cluster reconfiguration or administrative action on a resource type, the RGM returns the
scha_err_seqid error code to scha_resourcetype get() to indicate that information
about the resource type might have changed. This error message is nonfatal. The function

66 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-open-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-get-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resource-close-3ha

RMAPI Access Methods

returns successfully. You can choose to ignore the message and accept the returned
information. Alternatively, you can close the current handle and open a new handle to access
information about the resource type.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_resourcetype open(3HA), scha_resourcetype get(3HA),
orscha_resourcetype close(3HA).

Resource Group Functions

You can access information about a resource group or restart a resource group with these
functions.

scha_resourcegroup_open(), scha_resourcegroup get(),and

scha resourcegroup close()
These functions access information about a resource group that is managed by the RGM.
The scha_resourcegroup_open () function initializes access to a resource group and
returns a handle for scha_resourcegroup_get (), which accesses the resource group
information. The scha_resourcegroup_close() function invalidates the handle and frees
memory that is allocated for scha_resourcegroup_get () return values.

A resource group can change, through cluster reconfiguration or administrative action, after
scha_resourcegroup_open () returns the resource group's handle. As a result, the
information that scha_resourcegroup_get () obtains through the handle might be
inaccurate. In cases of cluster reconfiguration or administrative action on a resource group,
the RGM returns the scha_err seqid error code to scha resourcegroup get() to indicate
that information about the resource group might have changed. This error message is
nonfatal. The function returns successfully. You can choose to ignore the message and
accept the returned information. Alternatively, you can close the current handle and open a
new handle to access information about the resource group.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_resourcegroup_open(3HA),
scha_resourcegroup_get(3HA), and scha_resourcegroup_close(3HA).

scha control() and scha control zone()
Requests the restart of a resource group that is under the control of the RGM or its relocation
to a different node. These functions are described in more detail in the scha_control(3HA)
and scha_control_zone(3HA) man pages.

Cluster Functions

These functions access or return information about a cluster.

scha_cluster_open(),scha_cluster get(),andscha cluster close()
These functions access information about a cluster, such as the cluster name, node name,
zone name, [Ds, states, and resource groups.

Chapter 3 - Resource Management API Reference 67

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcetype-open-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcetype-get-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcetype-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcegroup-open-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcegroup-get-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-resourcegroup-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-control-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-control-zone-3ha

RMAPI Callback Methods

A cluster can change, through reconfiguration or administrative action, after

scha_cluster open() returns the cluster's handle. As a result, the information that
scha_cluster_get () obtains through the handle might be inaccurate. In cases of
reconfiguration or administrative action on a cluster, the RGM returns the scha_err_seqid
error code to scha_cluster_get() to indicate that information about the cluster might have
changed. This error message is nonfatal. The function returns successfully. You can choose
to ignore the message and accept the returned information. Alternatively, you can close the
current handle and open a new handle to access information about the cluster.

One man page describes these three functions. You can access this man page through any of
the individual functions scha_cluster open(3HA), scha cluster get(3HA), and
scha_cluster close(3HA).

scha cluster getlogfacility()
Returns the number of the system log facility that is being used as the cluster log. Uses the
returned value with the syslog() Oracle Solaris function to record events and status
messages to the cluster log. This function is described in more detail in the
scha_cluster_getlogfacility(3HA) man page.

scha cluster getnodename()
Returns the name of the cluster node on which the function is called. This function is
described in more detail in the scha_cluster_getnodename(3HA) man page.

Utility Function

This function converts an error code to an error message.

scha strerror()
Translates an error code that is returned by one of the scha_ functions to a corresponding
error message. Use this function with the logger command to log messages in the Oracle
Solaris system log (syslog). This function is described in more detail in the
scha_strerror(3HA) man page.

RMAPI Callback Methods

68

Callback methods are the key elements that are provided by the API for implementing a
resource type. Callback methods enable the RGM to control resources in the cluster in the event
of a change in cluster membership, such as the failure of a node.

Note - The callback methods are executed by the RGM with root role or the greatest RBAC role
permissions because the client programs control HA services in the cluster system. Install and
administer these methods with restrictive file ownership and permissions. Specifically, give
these methods a privileged owner, such as bin or root, and do not make them writable.

This section describes callback method arguments and exit codes.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-open-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-get-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-getlogfacility-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-getnodename-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-strerror-3ha

RMAPI Callback Methods

Callback methods in the following categories are described:

Control and initialization methods
Administrative support methods
Net-relative methods

Monitor control methods

Note - This section provides brief descriptions of the callback methods, including the point at
which the method is run and the expected effect on the resource. However, the
rt_callbacks(1HA) man page is the definitive reference for the callback methods.

Arguments That You Can Provide to Callback Methods

The RGM runs callback methods, as follows:

method -R resource-name -T type-name -G group-name

The method is the path name of the program that is registered as the Start, Stop, or other
callback. The callback methods of a resource type are declared in its registration file.

All callback method arguments are passed as flagged values, as follows:

= -Rindicates the name of the resource instance
= -Tindicates the type of the resource
= -Gindicates the group into which the resource is configured

Use the arguments with access functions to retrieve information about the resource.

The Validate method is called with additional arguments that include the property values of
the resource and resource group on which it is called.

The scha_calls(3HA) man page contains more information.

Callback Method Exit Codes

All callback methods have the same exit codes. These exit codes are defined to specify the effect
of the method invocation on the resource state. The scha_calls(3HA) man page describes
these exit codes in more detail.

The two major categories of exit codes are as follows:

= @ - The method succeeded
= Anynonzero value - The method failed

The RGM also handles abnormal failures of callback method execution, such as timeouts and
core dumps.

Chapter 3 - Resource Management API Reference 69

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-calls-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-calls-3ha

RMAPI Callback Methods

70

Method implementations must output failure information by using syslog() on each node.
Output written to stdout or stderr is not guaranteed to be delivered to the user, although it is
currently displayed on the console of the local node.

Control and Initialization Callback Methods

The primary control and initialization callback methods start and stop a resource. Other
methods execute initialization and termination code on a resource.

Start

The RGM runs this method on a cluster node when the resource group that contains the
resource is brought online on that node. This method activates the resource on that node.

A Start method should not exit until the resource that it activates has been started and is
available on the local node. Therefore, before exiting, the Start method should poll the
resource to determine that it has started. In addition, you should set a sufficiently long
timeout value for this method. For example, particular resources, such as database daemons,
take more time to start, and thus require that the method have a longer timeout value.

The way in which the RGM responds to failure of the Start method depends on the setting
of the Failover_mode property.

The Start_timeout property in the resource type registration (RTR) file sets the timeout
value for a resource's Start method.

Stop

The RGM runs this required method on a cluster node when the resource group that
contains the resource is brought offline on that node. This method deactivates the resource if
itis active.

A Stop method should not exit until the resource that it controls has completely stopped all
its activity on the local node and has closed all file descriptors. Otherwise, because the RGM
assumes the resource has stopped when, in fact, it is still active, data corruption can result.
The safest way to avoid data corruption is to terminate all processes on the local node that is
related to the resource.

Before exiting, the Stop method should poll the resource to determine that it has stopped. In
addition, you should set a sufficiently long timeout value for this method. For example,
particular resources, such as database daemons, take more time to stop, and thus require that
the method have a longer timeout value.

If an RGM method callback times out, the method's process group is killed by a SIGTERM
signal. If the process group does not exit within 10 seconds, a SIGKILL is executed.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

RMAPI Callback Methods

Although method core dumps are not generated when a method times out, system core
dumps are generated when a node is rebooted by the RGM due to a resource's
Failover_mode property being set to HARD and the resource method being stuck in the kernel
and failing to exit after a SIGKILL.

Note — Avoid writing data service methods that create a new process group. If your data
service method must create a new process group, write a signal handler for the SIGTERM and
SIGABRT signals. Also, ensure that your signal handler forwards the SIGTERM or SIGABRT
signal to the child process group or groups before the signal handler terminates the process.
Writing a signal handler for these signals increases the likelihood that all processes that are
spawned by your method are correctly terminated.

The way in which the RGM responds to failure of the Stop method depends on the setting of
the Failover_mode property. See “Resource Properties” on page 35.

The Stop_timeout property in the RTR file sets the timeout value for a resource's Stop
method.

Init
The RGM runs this optional method to perform a one-time initialization of the resource
when the resource becomes managed. The RGM runs this method when its resource group is
switched from an unmanaged to a managed state or when the resource is created in a
resource group that is already managed. The method is called on nodes that are identified by
the Init_nodes resource property.

Fini
The RGM executes the Fini method to clean up after a resource when that resource is no
longer managed by the RGM. The Fini method usually undoes any initializations that were
performed by the Init method.

The RGM executes Fini on each node on which the resource becomes unmanaged when the
following situations arise:

= Theresource group that contains the resource is switched to an unmanaged state. In this
case, the RGM executes the Fini method on all nodes in the node list.

= Theresource is deleted from a managed resource group. In this case, the RGM executes
the Fini method on all nodes in the node list.

= A nodeis deleted from the node list of the resource group that contains the resource. In
this case, the RGM executes the Fini method on only the deleted node.

A “nodelist” is either the resource group's Nodelist or the resource type's Installed_nodes
list. Whether “node list” refers to the resource group's Nodelist or the resource type's
Installed_nodes list depends on the setting of the resource type's Init_nodes property.
The Init_nodes property can be set to RG_PRIMARIES or RT_INSTALLED_NODES. For most

Chapter 3 - Resource Management API Reference 71

RMAPI Callback Methods

72

resource types, Init_nodes is set to RG_PRIMARIES, the default. In this case, both the Init
and Fini methods are executed on the nodes that are specified in the resource group's
Nodelist.

The type of initialization that the Init method performs defines the type of cleanup that the
Fini method that you implement needs to perform, as follows:

= Cleanup of node-specific configuration.
= Cleanup of cluster-wide configuration.

The Fini method that you implement needs to determine whether to perform only cleanup
of node-specific configuration or cleanup of both node-specific and cluster-wide
configuration.

When a resource becomes unmanaged on only a particular node, the Fini method can clean
up local, node-specific configuration. However, the Fini method must not clean up global,
cluster-wide configuration, because the resource remains managed on other nodes. If the
resource becomes unmanaged cluster-wide, the Fini method can perform cleanup of both
node-specific and global configuration. Your Fini method code can distinguish these two
cases by determining whether the resource group's node list contains the local node on
which your Fini method is executing.

If the local node appears in the resource group's node list, the resource is being deleted or is
moving to an unmanaged state. The resource is no longer active on any node. In this case,
your Fini method needs to clean up any node-specific configuration on the local node as
well as cluster-wide configuration.

If the local node does not appear in the resource group's node list, your Fini method can
clean up node-specific configuration on the local node. However, your Fini method must
not clean up cluster-wide configuration. In this case, the resource remains active on other
nodes.

You must also code the Fini method so that it is idempotent. In other words, even if the Fini
method has cleaned up a resource during a previous execution, subsequent calls to the Fini
method exit successfully.

Boot

The RGM runs this optional method, which is similar to Init, to initialize the resource on
nodes that join the cluster after the resource group that contains the resource has already
been put under the management of the RGM. The RGM runs this method on nodes that are
identified by the Init_nodes resource property. The Boot method is called when the node
joins or rejoins the cluster as a result of being booted or rebooted.

If the Global_zone resource type property equals TRUE, methods execute in the global zone
even if the resource group that contains the resource is configured to run in a zone-cluster
node.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

RMAPI Callback Methods

Note - Failure of the Init, Fini, or Boot methods causes an error message to be written to the
system log. However, management of the resource by the RGM is not otherwise affected.

Administrative Support Methods

Administrative actions on resources include setting and changing resource properties. The
Validate and Update callback methods enable a resource type implementation to carry out
these administrative actions.

Validate
The RGM calls this optional method when a resource is created and when the cluster
administrator updates the properties of the resource or its containing resource group. This
method is called on the set of cluster nodes that are identified by the Init_nodes property of
the resource's type. The Validate method is called before the creation or the update is
applied. A failure exit code from the method on any node causes the creation or the update
to be canceled.

Validate is called only when resource or resource group properties are changed by the
cluster administrator. This method is not called when the RGM sets properties, nor when a
monitor sets the Status and Status_msg resource properties.

Update
The RGM runs this optional method to notify a running resource that properties have been
changed. The RGM runs Update after an administrative action succeeds in setting properties
of aresource or its group. This method is called on nodes where the resource is online. The
method uses the API access functions to read property values that might affect an active
resource and to adjust the running resource accordingly.

Note - Failure of the Update method causes an error message to be written to the system log.
However, management of the resource by the RGM is not otherwise affected.

Net-Relative Callback Methods

Services that use network address resources might require that start or stop steps be carried out
in a particular order relative to the network address configuration. The following optional
callback methods, Prenet_start and Postnet_stop, enable a resource type implementation to
carry out special startup and shutdown actions before and after a related network address is
configured or unconfigured.

Prenet start
This optional method is called to carry out special startup actions before network addresses
in the same resource group are configured.

Chapter 3 - Resource Management API Reference 73

RMAPI Callback Methods

Postnet stop
This optional method is called to carry out special shutdown actions after network addresses

in the same resource group are configured down.

Monitor Control Callback Methods

A resource type implementation optionally can include a program to monitor the performance
of aresource, report on its status, or take action when a resource fails. The Monitor_start,
Monitor_stop,andMonitor_check methods support the implementation of a resource
monitor in a resource type implementation.

Monitor start
This optional method is called to start a monitor for the resource after the resource is started.

Monitor_stop
This optional method is called to stop a resource's monitor before the resource is stopped.

Monitor check
This optional method is called to assess the reliability of a node before a resource group is
relocated to that node. You must implement the Monitor_check method so that it does not
conflict with the concurrent running of another method.

74 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L R 2 4 CHAPTER 4

Modifying a Resource Type

This chapter discusses the issues that you need to understand to modify a resource type.
Information about the means by which you enable a cluster administrator to upgrade a resource
is also included.

This chapter covers the following topics:

“Overview of Modifying a Resource Type” on page 75

“Setting Up the Contents of the Resource Type Registration File” on page 76
“What Happens When a Cluster Administrator Upgrades” on page 79
“Determining Installation Requirements and Packaging” on page 80
“Documentation to Provide for a Modified Resource Type” on page 82

Overview of Modifying a Resource Type

Cluster administrators must be able to carry out the following tasks:

Install and register a new version of an existing resource type
Allow the registration of multiple versions of a given resource type

Upgrade an existing resource to a new version of the resource type without having to delete
and recreate the resource

A resource type that you intend to upgrade is called an upgrade-aware resource type.

Elements of an existing resource type that you might change are as follows:

Attributes of resource type properties
The set of declared resource properties, including standard and extension properties

Attributes of resource properties, such as default, min, max, arraymin, arraymax, or
tunability

The set of declared methods

75

Setting Up the Contents of the Resource Type Registration File

= Theimplementation of methods or monitors

Note - You do not necessarily have to modify a resource type when you modify application code.

You need to understand the requirements for providing the tools that will enable a cluster
administrator to upgrade a resource type. This chapter tells you what you need to know to set
up these tools.

Setting Up the Contents of the Resource Type Registration File

76

This section describes how to set up a resource type registration file.

This section covers the following topics:

= “Resource Type Name” on page 76
= “Specifying the #$upgrade and #$upgrade_from Directives” on page 77
= “Changing the RT_versioninan RTR File” on page 78

Resource Type Name

The three components of a resource type name are properties that are specified in the RTR file
as vendor-id, resource-type, and rt-version. The clresourcetype(1CL) command inserts the
period and the colon delimiters to create the name of the resource type:

vendor-id . resource-type: rt-version

The vendor-id prefix serves to distinguish between two registration files of the same name that
different companies provide. To ensure that the vendor-id is unique, use the stock symbol of the
company when creating the resource type. The rt-version distinguishes between multiple
registered versions (upgrades) of the same base resource type.

You can obtain the fully qualified resource type name by typing the following command:

scha_resource_get -0 Type -R resource-name -G resource-group-name

The format of resource type names is described in “Format of Resource Type Names” on
page 61.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresourcetype-1cl

Setting Up the Contents of the Resource Type Registration File

Specifying the #Supgrade and #Supgrade_from
Directives

Existing resources can be upgraded at run time to a new upgrade-aware version of their
resource type. However, if the new resource type version is non-upgrade-aware, you would
have to delete and recreate any existing resources of that type to move them to the new version.
Therefore, new resource types should always include the #$upgrade directive.

To ensure that the resource type that you are modifying is upgrade-aware, include the
#$upgrade directive in the resource type's RTR file. After the #$upgrade directive, add zero or
more #$upgrade_from directives for each earlier version of the resource type that you want to
support.

The #$upgrade and #$upgrade_from directives must appear between the resource type
property declarations and the resource declarations sections in the RTR file. See the rt_reg(4)
man page.

EXAMPLE4-1 #$upgrade_from Directive in an RTR File

#$upgrade

#$upgrade from "1.1" WHEN OFFLINE
#$upgrade from "1.2" WHEN_OFFLINE
#$upgrade from "1.3" WHEN OFFLINE
#$upgrade from "2.0" WHEN UNMONITORED
#$upgrade from "2.1" ANYTIME

#$upgrade_from WHEN_UNMANAGED

The format of the #$upgrade_from directive is as follows:

#$upgrade_from version tunability

version
The RT_version. If any resource type does not have a version, or for versions other than
what you defined previously in the RTR file, specify the empty string (7).

tunability
The conditions under which, or when, the cluster administrator can upgrade the specified
RT_version.

Use the following tunability values in the #$upgrade_f rom directives:

ANYTIME
Use when there are no restrictions on when the cluster administrator can upgrade the
resource. The resource can be completely online during the upgrade.

Chapter4 - Modifying a Resource Type 77

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-reg-4

Setting Up the Contents of the Resource Type Registration File

78

WHEN_UNMONITORED

Use when the new resource type version's methods are as follows:

= TheUpdate, Stop,Monitor_check,and Postnet stop methods are compatible with
the older resource type version's starting methods (Prenet_stop and Start)

= The Fini method is compatible with the Init method of older versions

The cluster administrator must only stop the resource monitor program before
upgrading.

WHEN_OFFLINE

Use when the new resource type version's Update, Stop, Monitor_check, or
Postnet stop method is as follows:

= Compatible with the Init method of an older version

= Incompatible with an older resource type version's starting methods (Prenet_stop
and Start)

The cluster administrator must take the resource offline before upgrading.

WHEN_DISABLED

Similar to WHEN_OFFLINE. However, the cluster administrator must disable the resource
before upgrading.

WHEN_UNMANAGED

Use when the new resource type version's Fini method is incompatible with the Init
method of an older version. The cluster administrator must switch the existing resource
group to the unmanaged state before upgrading.

If a version of the resource type does not appear in the list of #$upgrade_f rom directives,
the RGM imposes the tunability of WHEN_UNMANAGED to that version by default.

AT_CREATION

Use to prevent existing resources from being upgraded to the new version of the resource
type. The cluster administrator must delete and recreate a resource.

Changing the RT_versionin an RTR File

You only need to change the RT_version property in an RTR file whenever the contents of the
RTR file change. Choose a value for this property that clearly indicates that this version of the
resource type is the latest version.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

What Happens When a Cluster Administrator Upgrades

Do not include the following characters in the RT_version string in the RTR file or registration
of the resource type fails:

Space

Tab

Slash (/)

Backslash (\)

Asterisk (*)

Question mark (?)
Comma (,)

Semicolon (;)

Left square bracket ([)
Right square bracket (])

The RT_version property is required.

What Happens When a Cluster Administrator Upgrades

Here is what the cluster administrator must do or what happens when he or she upgrades a
resource type:

If the existing resource property attributes do not satisfy the validation conditions of the
new version of the resource type, the cluster administrator must provide valid values.

The cluster administrator must provide valid values under the following conditions:

= When the new version of the resource type does not have a default value and uses a
property that is not declared in the earlier version.

= When the existing resource uses a property whose value is undeclared or invalid in the
new version. Declared properties that are undeclared in a new version of a resource type
are deleted from the resource.

Any attempt to upgrade from an unsupported version of a resource type fails.

After an upgrade, resources inherit the resource property attributes for all properties from
the new version of the resource type.

If you change the default value of a resource type in the RTR file, the new default value is
inherited by existing resources. The new default value is inherited even if the property is
declared tunable only AT_CREATION or WHEN_DISABLED. A property of the same type that the
cluster administrator creates also inherits this default value. However, if the cluster
administrator specifies a new default value for the property, the new default value overrides
the default value that is specified in the RTR file.

Chapter4 - Modifying a Resource Type 79

Determining Installation Requirements and Packaging

Note - The cluster administrator can overcome this limitation by specifying values for the
properties and thus overriding the defaults.

Determining Installation Requirements and Packaging

80

Keep the following two requirements in mind when determining installation requirements and
packaging for resource type packages:

= When a new resource type is registered, its RTR file must be accessible on disk.

= When aresource of the new type is created, all declared method path names and the
monitor program for the new type must be on disk and be executable. The old method and
monitor programs must remain in place as long as the resource is in use.

To determine the correct packaging to use, consider the following questions:

= Doesthe RTR file change?

= Does the default value or tunability of a property change?

= Does themin or max value of a property change?

= Does the upgrade add or delete properties?

= Does the monitor code change?

= Does the method code change?

= Are the new methods, the monitor code, or both compatible with the previous versions?

The answers to these questions will help you determine the correct packaging to use for your
new resource type.

Before You Change the RTRFile

You do not necessarily need to create new method or monitor code when you modify a resource
type. For example, you might only change the default value or tunability of a resource property.
In this instance, because you do not change the method code, you only require a new valid path
name to a readable RTR file.

If you do not need to reregister the old resource type, the new RTR file can overwrite the
previous version. Otherwise, place the new RTR file in a new path.

If the upgrade changes the default value or tunability of a property, use the Validate method
for the new version of the resource type to verify that the existing property attributes are valid
for the new resource type. If they are not, the cluster administrator can change the properties of
an existing resource to the correct values. If the upgrade changes the min, max, or type attributes
of a property, the clresourcetype(1CL) command automatically validates these constraints
when the cluster administrator upgrades the resource type.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresourcetype-1cl

Determining Installation Requirements and Packaging

If the upgrade adds a new property or deletes an old property, you probably need to change
callback methods or monitor code.

Changing Monitor Code

If you change only the monitor code for a resource type, the package installation can overwrite
the monitor binaries.

Changing Method Code

If you change only the method code in a resource type, you must determine whether the new
method code is compatible with the old method code. The answer to this question determines
whether the new method code must be stored in a new path or whether the old methods can be
overwritten.

If you can apply the new Stop, Postnet_stop, and Fini methods (if declared) to resources that
were initialized or started by the old versions of the Start, Prenet_stop, or Init methods, the
old methods can be overwritten with the new methods.

If applying a new default value to a property causes a method such as Stop, Postnet_stop, or
Fini to fail, the cluster administrator must accordingly restrict the state of the resource when
the resource type is upgraded.

You enable the cluster administrator to restrict the state of the resource when it is upgraded by
limiting the tunability of the Type_version property.

One approach to packaging is to include all earlier versions of a resource type that are still
supported in the package. This approach permits the new version of a package to replace the old
version of the package, without overwriting or deleting the old paths to the methods. You must
decide the number of previous versions to support.

Determining the Packaging Scheme to Use

The following table summarizes the packaging schemes to use for your new resource types.

TABLE4-1 Determining the Packaging Scheme to Use

Type of Change Tunability Value Packaging Scheme

Make property changes in only the RTR file. | ANYTIME Deliver only new RTR file.

Update the methods. ANYTIME Place the updated methods in a different path
than the old methods.

Chapter4 - Modifying a Resource Type 81

Documentation to Provide for a Modified Resource Type

TABLE4-1 Determining the Packaging Scheme to Use (Continued)

Type of Change Tunability Value Packaging Scheme

Install the new monitor program. WHEN_UNMONITORED Overwrite only the previous version of the
monitor.

Update the methods. WHEN_OFFLINE Place the updated methods in a different path
than the old methods.

The new Update and Stop methods are

incompatible with the old Start methods.

Update the methods and add new properties | WHEN_DISABLED Overwrite the previous versions of the methods.

to the RTR file. The new methods require

new properties.

The goal is to allow the containing resource

group to remain online but prevent the

resource from coming online if the resource

group moves from the offline state to the

online state on a node.

Update the methods and add new properties | ANYTIME Overwrite the previous versions of the methods.

to the RTR file. New methods do not require

new properties.

Update the methods. The new Fini method |WHEN_UNMANAGED Place the updated methods in a different path

is incompatible with the old Init method. than the old methods.

Update the methods. No changes are made | Notapplicable. No changes are Overwrite the previous versions of the methods.

to the RTR file. made to the RTR file. Because you made no changes to the RTR file,
the resource does not need to be registered or
upgraded.

Documentation to Provide for a Modified Resource Type

Instructions that tell the cluster administrator how to upgrade a resource type are provided in
“Upgrading a Resource Type” in Oracle Solaris Cluster Data Services Planning and
Administration Guide. To enable the cluster administrator to upgrade a resource type that you
modify, supplement these instructions with additional information, as described in this section.

Generally, when you create a new resource type, you need to provide documentation that does
the following:

= Describes the properties that you add, change, or delete

m Describes how to make the properties conform to the new requirements
= States the tunability constraints on resources

= Calls out any new default property attributes

= Informs the cluster administrator that he or she can set existing resource properties to their
correct values if necessary

82 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAGch14_resources_admin-1046
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAGch14_resources_admin-1046

Documentation to Provide for a Modified Resource Type

Information About What to Do Before Installing an
Upgrade

Explain to the cluster administrator what he or she must do before installing the upgrade
package on a node, as follows:

= Ifthe upgrade package overwrites existing methods or monitors, tell the cluster
administrator to unmonitor all resources.

= Ifthe upgrade package updates only the RTR file, leaving the method and monitor code
unchanged, it is not necessary to unmonitor resources.

Information About When to Upgrade Resources

Explain to the cluster administrator when he or she can upgrade resources to a new version of
the resource type.

The conditions under which the cluster administrator can upgrade the resource type depend on
the tunability of the #$upgrade_f rom directive for each version of the resource in the RTR file,
as follows:

= Anytime (ANYTIME)

= Only when the resource is unmonitored (WHEN_UNMONITORED)

= Only when the resource is offline (WHEN_OFFLINE)

= Only when the resource is disabled (WHEN_DISABLED)

= Only when the resource group is unmanaged (WHEN_UNMANAGED)

EXAMPLE4-2 How #$upgrade_from Defines When a Cluster Administrator Can Upgrade

This example shows how the tunability of the #$upgrade_f rom directive affects the conditions
under which the cluster administrator can upgrade a resource to a new version of a resource

type.

#$upgrade_from 1.1 WHEN_OFFLINE
#$upgrade from "1.2" WHEN OFFLINE
#$upgrade from "1.3" WHEN OFFLINE
#$upgrade from "2.0" WHEN_UNMONITORED
#$upgrade_from "2.1" ANYTIME

#$upgrade_from WHEN UNMANAGED

Chapter4 - Modifying a Resource Type 83

Documentation to Provide for a Modified Resource Type

EXAMPLE4-2 How #$upgrade_from Defines When a Cluster Administrator Can Upgrade (Continued)

Version When the Cluster Administrator Can Upgrade a Resource
1.1,1.2,0r1.3 Only when the resource is offline

2.0 Only when the resource is unmonitored

2.1 Any time

All other versions Only when the resource group is unmanaged

Information About Changes to Resource Properties

Describe any changes that you have made to the resource type that require the cluster
administrator to modify properties of existing resources when he or she upgrades.

Possible changes that you can make include the following:

= Default settings of existing resource type properties that you have changed

= New extension properties of the resource type that you have introduced

= Existing properties of the resource type that you have withdrawn

= Changes to the set of standard properties that you have declared for the resource type

= Attributes of resource properties such as min, max, arraymin, arraymax, default, and
tunability that you have changed

= Changes to the set of methods that you have declared

= Implementation of methods or the fault monitor that you have changed

84 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L K R 4 CHAPTER 5

Sample Data Service

This chapter describes a sample Oracle Solaris Cluster data service, HA for DNS, for the
in.named application. The in.named daemon is the Oracle Solaris implementation of the
Domain Name Service (DNS). The sample data service demonstrates how to make an
application highly available, using the Resource Management AP

The Resource Management API supports a shell script interface and a C program interface. The
sample application in this chapter is written using the shell script interface.

This chapter covers the following topics:

“Overview of the Sample Data Service” on page 85

“Defining the Resource Type Registration File” on page 86
“Providing Common Functionality to All Methods” on page 92
“Controlling the Data Service” on page 96

“Defining a Fault Monitor” on page 101

“Handling Property Updates” on page 110

Overview of the Sample Data Service

The sample data service starts, stops, restarts, and switches the DNS application among the
nodes of the cluster in response to cluster events, such as administrative action, application
failure, or node failure.

Application restart is managed by the Process Monitor Facility (PMF). If the number of
applications that die exceeds the failure count within the failure time window, the fault monitor
fails over the resource group that contains the application resource to another node.

The sample data service provides fault monitoring in the form of a PROBE method that uses the
nslookup command to ensure that the application is healthy. If the probe detects a hung DNS
service, the probe tries to correct the situation by restarting the DNS application locally. If

85

Defining the Resource Type Registration File

restarting the DNS application locally does not improve the situation and the probe repeatedly
detects problems with the service, the probe attempts to fail over the service to another node in
the cluster.

Specifically, the sample data service includes the following elements:

A resource type registration file that defines the static properties of the data service.

A Start callback method that is run by the RGM to start the in.named daemon when the
resource group that contains the HA-DNS data service is brought online.

A Stop callback method that is run by the RGM to stop the in.named daemon when the
resource group that contains HA-DNS goes offline.

A fault monitor to check the availability of the service by verifying that the DNS server is
running. The fault monitor is implemented by a user-defined PROBE method, and is started
and stopped by the Monitor_start and Monitor_stop callback methods.

A validate callback method that is run by the RGM to validate that the configuration
directory for the service is accessible.

An Update callback method that is run by the RGM to restart the fault monitor when the
cluster administrator changes the value of a resource property.

Defining the Resource Type Registration File

86

The resource type registration (RTR) file in this example defines the static configuration of the
DNS resource type. Resources of this type inherit the properties that are defined in the RTR file.

The information in the RTR file is read by the Resource Group Manager (RGM) when the
cluster administrator registers the HA-DNS data service. By convention, you place the RTR file
inthe /opt/cluster/lib/rgm/rtreg/ directory. Note that the package installer places the RTR
file that Agent Builder creates in this directory as well.

Overview of the RTR File

The RTR file follows a well-defined format. Resource type properties are defined first in the file,
system-defined resource properties are defined next, and extension properties are defined last.
See the rt_reg(4) man page and “Setting Resource and Resource Type Properties” on

page 35for more information.

The following sections describe the specific properties in the sample RTR file. These sections
provide listings of different parts of the file. For a complete listing of the contents of the sample
RTR file, see “Resource Type Registration File Listing” on page 233.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-reg-4

Defining the Resource Type Registration File

Resource Type Properties in the Sample RTR File

The sample RTR file begins with comments followed by resource type properties that define the
HA-DNS configuration, as shown in the following listing. The example assumes that previous
versions of the resource type exist, so #$upgrade directives are included. See “Specifying the
#$upgrade and #$upgrade_from Directives” on page 77 for more information.

Note - Property names for resource groups, resources, and resource types are not case sensitive.
You can use any combination of uppercase and lowercase letters when you specify property
names.

#

Copyright (c) 1998, 2011, Oracle and/or its affiliates.
ALl rights reserved.

#

Registration information for Domain Name Service (DNS)
#

#pragma ident “@(#)ORCL.sample 1.3 00/05/24"

Resource type = “sample”;
Vendor id = ORCL;
RT description = “Domain Name Service on Oracle Solaris Cluster”;

RT version ="3";
API version = 2;
Failover = TRUE;

RT_basedir=/opt/ORCLsample/bin;
Pkglist = ORCLsample;

Start = dns_svc_start;
Stop = dns_svc stop;
Validate = dns_validate;

Update = dns_update;

Monitor start
Monitor stop
Monitor check

dns_monitor start;
dns _monitor stop;
dns _monitor check;

#$upgrade
#$upgrade from "1" when disabled
#$upgrade_from "2" anytime

Tip - You must declare the Resource_type property as the first entry in the RTR file. Otherwise,
registration of the resource type fails.

Chapter5 « Sample Data Service 87

Defining the Resource Type Registration File

88

The following information describes these properties:

= You can specify the resource type name by the Resource_type property alone (sample) or
by using the vendor-id as a prefix, followed by a period (.), followed by the resource type
property (ORCL. sample).

If you specify vendor-id, use the stock exchange symbol of the company that is defining the
resource type. The resource type name must be unique in the cluster.

= TheRT_version property identifies the version of the sample data service as specified by the
vendor.

= TheAPI_version property identifies the Oracle Solaris Cluster version. For example,
API_version =11 indicates that the data service can be registered on any version of Oracle
Solaris Cluster starting with 3.3, assuming that the application is compatible with that
version of Oracle Solaris Cluster software. However, API_version = 11 also indicates that
the data service cannot be registered on any version of Oracle Solaris Cluster that was
released before 3.3. This property is described in more detail in the rt_properties(5) man
page.

= Failover = TRUE indicates that the data service cannot run in a resource group that can be
online on multiple nodes at the same time.

= RT_basedir pointsto /opt/ORCLsample/bin as the directory path to complete relative
paths, such as callback method paths.

® Start, Stop,and Validate provide the paths to the respective callback method programs
that are run by the RGM. These paths are relative to the directory that is specified by
RT basedir.

= Pkglist identifies ORCLsample as the package that contains the sample data service
installation.

Resource type properties that are not specified in this RTR file, such as Single_instance,
Init_nodes,and Installed_nodes, are set to their default values. “Resource Type Properties”
on page 34 contains a complete list of the resource type properties, including their default
values.

The cluster administrator cannot change the values for resource type properties in the RTR file.

Resource Properties in the Sample RTR File

By convention, you declare resource properties after the resource type properties in the RTR
file. Resource properties include system-defined properties that are provided by the Oracle
Solaris Cluster software and extension properties that you define. For either type, you can
specify a number of property attributes that are supplied by the Oracle Solaris Cluster software,
such as minimum, maximum, and default values.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-properties-5

Defining the Resource Type Registration File

System-Defined Properties in the RTRFile
The following listing shows the system-defined properties in a sample RTR file.
A list of bracketed resource property declarations follows the

resource type declarations. The property-name declaration must be
the first attribute after the open curly bracket of each entry.

The <method> timeout properties set the value in seconds after which
the RGM concludes invocation of the method has failed.
The MIN value for all method timeouts is set to 60 seconds. This
prevents administrators from setting shorter timeouts, which do not
improve switchover/failover performance, and can lead to undesired
RGM actions (false failovers, node reboot, or moving the resource group
to ERROR STOP_FAILED state, requiring operator intervention). Setting
too-short method timeouts leads to a *decrease* in overall availability
of the data service.
{
PROPERTY = Start timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Stop timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Validate timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Update timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Monitor Start timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Monitor Stop timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Thorough Probe Interval;
MIN=1;
MAX=3600;
DEFAULT=60;
TUNABLE = ANYTIME;
}

The number of retries to be done within a certain period before concluding

Chapter5 « Sample Data Service 89

Defining the Resource Type Registration File

90

that the application cannot be successfully started on this node.

{

}

PROPERTY = Retry count;
MIN=0;

MAX=10;

DEFAULT=2;

TUNABLE = ANYTIME;

Set Retry interval as a multiple of 60 since it is converted from seconds
to minutes, rounding up. For example, a value of 50 (seconds)

is converted to 1 minute. Use this property to time the number of

retries (Retry count).

{

}

PROPERTY = Retry interval;
MIN=60;

MAX=3600;

DEFAULT=300;

TUNABLE = ANYTIME;

PROPERTY = Network resources used;
TUNABLE = AT CREATION;
DEFAULT = ““;

Although the Oracle Solaris Cluster software provides the system-defined properties, you can
set different default values by using resource property attributes. See “Resource Property
Attributes” on page 35 for a complete list of attributes that are available to you to apply to
resource properties.

Note the following points about the system-defined resource properties in the sample RTR file:

Oracle Solaris Cluster provides a minimum value (1 second) and a default value (3600
seconds, or one hour) for all timeouts. The sample RTR file changes the minimum timeout
to 60 seconds and the default value to 300 seconds. A cluster administrator can accept this
default value or change the value of the timeout to another value, 60 or greater. Oracle
Solaris Cluster has no maximum allowed value.

The TUNABLE attribute for the properties Thorough_probe_interval,Retry_count,and
Retry_interval, are set to ANYTIME. These settings indicate that the cluster administrator
can change the value of these properties, even when the data service is running. These
properties are used by the fault monitor implemented by the sample data service. The
sample data service implements an Update method to stop and restart the fault monitor
when these or other resource properties are changed by administrative action. See “How the
Update Method Works” on page 114.

Resource properties are classified as follows:
= Required. The cluster administrator must specify a value when creating a resource.

= Optional. If the cluster administrator does not specify a value, the system supplies a
default value.

= Conditional. The RGM creates the property only if it is declared in the RTR file.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Defining the Resource Type Registration File

The fault monitor of the sample data service makes use of the Thorough_probe_interval,
Retry count,Retry interval,andNetwork resources used conditional properties, so
you need to declare them in the RTR file. See the r_properties(5) man page or “Resource
Properties” on page 35 for information about how properties are classified.

Extension Properties in the RTR File

At the end of the sample RTR file are extension properties, as shown in this listing.

Extension Properties

The cluster administrator must set the value of this property to point to the
directory that contains the configuration files used by the application.

For this application, DNS, specify the path of the DNS configuration file on
PXFS (typically named.conf).

PROPERTY = Confdir;

EXTENSION;

STRING;

TUNABLE = AT CREATION;

DESCRIPTION = “The Configuration Directory Path”;

}
Time out value in seconds before declaring the probe as failed.
{

PROPERTY = Probe timeout;

EXTENSION;

INT;

DEFAULT = 120;

TUNABLE = ANYTIME;

DESCRIPTION = “Time out value for the probe (seconds)”;
}

The sample RTR file defines two extension properties, Confdir and Probe timeout. The
Confdir property specifies the path to the DNS configuration directory. This directory contains
the in.named file, which DNS requires to operate successfully. The sample data service's Start
and Validate methods use this property to verify that the configuration directory and the
in.named file are accessible before starting DNS.

When the data service is configured, the Validate method verifies that the new directory is
accessible.

The sample data service's PROBE method is not an Oracle Solaris Cluster callback method buta
user-defined method. Therefore, Oracle Solaris Cluster does not provide a Probe_timeout
property for it. You need to define an extension property in the RTR file to enable a cluster
administrator to configure a Probe_timeout value.

Chapter5 « Sample Data Service 91

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5

Providing Common Functionality to All Methods

Providing Common Functionality to All Methods

92

This section describes the following functionality that is used in all callback methods of the
sample data service:

“Identifying the Command Interpreter and Exporting the Path” on page 92
“Declaring the PMF_TAG and SYSLOG_TAG Variables” on page 92

“Parsing the Function Arguments” on page 93

“Generating Error Messages” on page 95

“Obtaining Property Information” on page 95

Identifying the Command Interpreter and Exporting
the Path

The first line of a shell script must identify the command interpreter. Each method script in the
sample data service identifies the command interpreter, as follows:

#!/bin/ksh

All method scripts in the sample application export the path to the Oracle Solaris Cluster
binaries and libraries rather than relying on the user's PATH settings.

HHHRHH R
MAIN
HHH BRI R

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Declaring the PMF_TAG and SYSLOG_TAG Variables

All the method scripts, except Validate, use the pmfadm command to start or to stop either the
data service or the monitor, and to pass the name of the resource. Each script defines a variable,
PMF_TAG, that can be passed to the pmfadm command to identify either the data service or the
monitor.

Likewise, each method script uses the logger command to log messages in the system log. Each
script defines a variable, SYSLOG_TAG, that can be passed to logger with the -t option to identify
the resource type, resource name, and resource group of the resource for which the message is
being logged.

All methods define SYSLOG_TAG in the same way, as shown in the following sample code. The
dns_probe,dns_svc_start,dns _svc_stop,anddns_monitor check methods define PMF_TAG
as follows (the use of pmfadm and logger is from the dns_svc_stop method).

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Providing Common Functionality to All Methods

B s
MAIN
B R R s

PMF_TAG=$RESOURCE_NAME . named
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME , $RESOURCE_NAME

Send a SIGTERM signal to the data service and wait for 80% of the

total timeout value.

pmfadm -s $PMF TAG.named -w $SMOOTH TIMEOUT TERM

if [$? -ne 0]; then

logger -p ${SYSLOG FACILITY}.info \

-t [$SYSLOG TAG] \
“${ARGVQ} Failed to stop HA-DNS with SIGTERM; Retry with \
SIGKILL”

The dns monitor start,dns monitor stop,anddns update methods define PMF TAG as
follows (the use of pmfadm is from the dns_monitor stop method):

B e e S i
MAIN
A e e L L T L R

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME , $RESOURCE_NAME

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG.monitor; then
pmfadm -s $PMF TAG.monitor KILL

Parsing the Function Arguments

The RGM runs all of the callback methods, except Validate, as follows:

method-name -R resource-name -T resource-type-name -G resource-group-name

The method name is the path name of the program that implements the callback method. A
data service specifies the path name for each method in the RTR file. These path names are
relative to the directory that is specified by the RT_basedir property, also in the RTR file. For
example, in the sample data service's RTR file, the base directory and method names are
specified as follows:

RT basedir=/opt/ORCLsample/bin;
Start = dns_svc_start;
Stop = dns_svc stop;

All callback method arguments are passed as flagged values. The -R argument indicates the
name of the resource instance. The -T argument indicates the type of the resource. The -G
argument indicates the group into which the resource is configured. See the
rt_callbacks(1HA) man page for more information about callback methods.

Chapter5 « Sample Data Service 93

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha

Providing Common Functionality to All Methods

94

Note - The Validate method is called with additional arguments, that is, the property values of
the resource and resource group on which it is called. See “Handling Property Updates” on
page 110 for more information.

Each callback method needs a function to parse the arguments that the function is passed.
Because the callbacks are all passed the same arguments, the data service provides a single parse
function that is used in all the callbacks in the application.

The following sample shows the parse_args () function that is used for the callback methods in
the sample application.

B
Parse program arguments.

#
function parse_args # [args ...]
{
typeset opt
while getopts 'R:G:T:’ opt
do
case "$opt" in
R)
Name of the DNS resource.
RESOURCE _NAME=$0PTARG
G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$0PTARG
T)
Name of the resource type.
RESOURCETYPE_NAME=$0PTARG
Y HH
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
"ERROR: Option $OPTARG unknown"
exit 1
esac
done
}

Note - Although the PROBE method in the sample application is user defined (not an Oracle
Solaris Cluster callback method), it is called with the same arguments as the callback methods.
Therefore, this method contains a parse function that is identical to the one that is used by the
other callback methods.

The parse function is called in MAIN as:

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Providing Common Functionality to All Methods

parse_args “$@”

Generating Error Messages

Callback methods should use the syslog() function to output error messages to end users. All
callback methods in the sample data service use the scha_cluster get command to retrieve
the number of the syslog () function that is used for the cluster log, as follows:

SYSLOG FACILITY='scha cluster get -0 SYSLOG FACILITY'

The value is stored in a shell variable, SYSLOG_FACILITY, and can be used as the facility of the
logger command to log messages in the cluster log. For example, the Start method in the
sample data service retrieves the syslog() function and logs a message that the data service has
been started, as follows:

SYSLOG FACILITY='scha cluster get -0 SYSLOG FACILITY'

if [$? -eq 0]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGVO} HA-DNS successfully started"
fi

See the scha_cluster_get(1HA) man page for more information.

Obtaining Property Information

Most callback methods need to obtain information about resource and resource type properties
of the data service. The API provides the scha_resource_get () function for this purpose.

Both system-defined properties and extension properties are available. System-defined
properties are predefined. You define extension properties in the RTR file.

When you use scha_resource_get () to obtain the value of a system-defined property, you
specify the name of the property with the -0 option. The command returns only the value of the
property. For example, in the sample data service, the Monitor_start method needs to locate
the probe program so it can start it. The probe program is located in the base directory for the
data service, which is pointed to by the RT_basedir property. The Monitor_start method
retrieves the value of RT_basedir and places it in the RT_BASEDIR variable, as follows:

RT BASEDIR=‘scha resource get -0 RT basedir -R $RESOURCE NAME -G \
$RESOURCEGROUP_NAME'

For extension properties, you must use the -0 option to specify that the property is an extension
property. You must also supply the name of the property as the last argument. For extension
properties, the command returns both the type and value of the property. For example, in the

Chapter5 « Sample Data Service 95

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-get-1ha

Controlling the Data Service

sample data service, the probe program retrieves the type and value of the Probe_timeout
extension property, and uses the awk command to put the value only in the PROBE_TIMEOUT shell
variable, as follows:

probe timeout info=‘scha resource get -0 Extension \
-R $RESOURCE_NAME -G $RESOURCEGROUP NAME Probe timeout
PROBE_TIMEOUT='echo $probe timeout info | awk ’'{print $2}’'°

Controlling the Data Service

A data service must provide a Start or Prenet_start method to activate the application
daemon in the cluster, and a Stop or Postnet_stop method to stop the application daemon in
the cluster. The sample data service implements a Start and a Stop method. See “Deciding
Which Start and Stop Methods to Use” on page 46 for information about when to use
Prenet startandPostnet stop instead.

How the Start Method Works

The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node or when the resource group is already
online and the resource is enabled. In the sample application, the Start method activates the
in.named DNS daemon on the cluster node on that host.

This section describes the major pieces of the Start method for the sample application. This
section does not describe functionality that is common to all callback methods, such as the
parse_args () function. This section also does not describe using the syslog() function.
Common functionality is described in “Providing Common Functionality to All Methods” on
page 92.

For the complete listing of the Start method, see “Start Method Code Listing” on page 236.

What the Start Method Does

Before attempting to start DNS, the Start method in the sample data service verifies that the
configuration directory and configuration file (named . conf) are accessible and available.
Information in named. conf is essential to the successful operation of DNS.

This callback method uses the PMF (pmfadm) to start the DNS daemon (in.named). If DNS
crashes or fails to start, the PMF attempts to start the DNS daemon a prescribed number of
times during a specified interval. The number of retries and the interval are specified by
properties in the data service's RTR file.

96 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Controlling the Data Service

Verifying the Configuration

In order to operate, DNS requires information from the named. conf file in the configuration
directory. Therefore, the Start method performs some sanity checks to verify that the directory
and file are accessible before attempting to start DNS.

The Confdir extension property provides the path to the configuration directory. The property
itself is defined in the RTR file. However, the cluster administrator specifies the actual location
when the cluster administrator configures the data service.

In the sample data service, the Start method retrieves the location of the configuration
directory by using the scha_resource_get () function.

Note - Because Confdir is an extension property, scha_resource_get () returns both the type
and value. The awk command retrieves just the value and places that value in a shell variable,
CONFIG_DIR.

find the value of Confdir set by the cluster administrator at the time of
adding the resource.

config info=‘scha resource get -0 Extension -R $RESOURCE NAME \

-G $RESOURCEGROUP NAME Confdir®

scha resource get returns the "type" as well as the "value" for the
extension properties. Get only the value of the extension property
CONFIG DIR=‘echo $config info | awk ’{print $2}’°

The Start method uses the value of CONFIG_DIR to verify that the directory is accessible. If it is
not accessible, Start logs an error message and exits with an error status. See “Start Exit
Status” on page 98.

Check if $CONFIG DIR is accessible.
if [! -d $CONFIG_DIR]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} Directory $CONFIG DIR is missing or not mounted"
exit 1
fi

Before starting the application daemon, this method performs a final check to verify that the
named. conf file is present. If the file is not present, Start logs an error message and exits with
an error status.

Change to the $CONFIG DIR directory in case there are relative
pathnames in the data files.
cd $CONFIG DIR

Check that the named.conf file is present in the $CONFIG DIR directory
if [! -s named.conf]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \

Chapter5 « Sample Data Service 97

Controlling the Data Service

98

"${ARGVO} File $CONFIG DIR/named.conf is missing or empty"
exit 1
fi

Starting the Application

This method uses the process manager facility (pmfadm) to start the application. The pmfadm
command enables you to set the number of times to try to restart the application during a
specified time frame. The RTR file contains two properties: Retry count specifies the number
of times to attempt restarting an application, and Retry_interval specifies the time period
over which to do so.

The Start method retrieves the values of Retry_count andRetry_interval by using the
scha_resource_get () function and stores their values in shell variables. The Start method
passes these values to pmfadm by using the -n and - t options.

Get the value for retry count from the RTR file.

RETRY CNT=‘scha resource get -0 Retry count -R $RESOURCE NAME \

-G $RESOURCEGROUP_NAME

Get the value for retry interval from the RTR file. This value is in seconds
and must be converted to minutes for passing to pmfadm. Note that the

conversion rounds up; for example, 50 seconds rounds up to 1 minute.
((RETRY_INTRVAL=‘scha resource get -0 Retry interval -R $RESOURCE NAME \

-G $RESOURCEGROUP NAME‘ / 60))

Start the in.named daemon under the control of PMF. Let it crash and restart
up to $RETRY COUNT times in a period of $RETRY_INTRVAL; if it crashes

more often than that, PMF will cease trying to restart it.

If there is a process already registered under the tag

<$PMF_TAG>, then PMF sends out an alert message that the

process is already running.

pmfadm -c $PMF _TAG -n $RETRY CNT -t $RETRY INTRVAL \

/usr/sbin/in.named -c named.conf

#
#
#
#
#
#

Log a message indicating that HA-DNS has been started.
if [$? -eq 0 1; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} HA-DNS successfully started"
fi
exit 0

Start Exit Status

A Start method should not exit with success until the underlying application is actually
running and is available, particularly if other data services depend on it. One way to verify
success is to probe the application to make sure that it is running before exiting the Start
method. For a complex application, such as a database, be certain to set the value for the
Start_timeout property in the RTR file sufficiently high to allow time for the application to
initialize and recover from a crash.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Controlling the Data Service

Note - Because the application resource (DNS) in the sample data service starts quickly, the
sample data service does not poll to verify that it is running before exiting with success.

If this method fails to start DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service does not
explicitly set the Failover_mode property, so this property has the default value NONE (unless
the cluster administrator overrides the default value and specifies a different value). In this case,
the RGM takes no action other than to set the state of the data service. The cluster administrator
needs to initiate a restart on the same node or a fail over to a different node.

How the Stop Method Works

The RGM runs the Stop method on a cluster node when the resource group that contains the
HA-DNS resource is brought offline on that node or if the resource group is online and the
resource is disabled. This method stops the in.named (DNS) daemon on that node.

This section describes the major pieces of the Stop method for the sample application. This
section does not describe functionality that is common to all callback methods, such as the
parse_args () function. This section also does not describe using the syslog() function.
Common functionality is described in “Providing Common Functionality to All Methods” on
page 92.

For the complete listing of the Stop method, see “Stop Method Code Listing” on page 238.

What the Stop Method Does

There are two primary considerations when attempting to stop the data service. The first is to
provide an orderly shutdown. Sending a SIGTERM signal through pmfadm is the best way to
accomplish an orderly shutdown.

The second consideration is to ensure that the data service is actually stopped to avoid putting it
in Stop_failed state. The best way to accomplish putting the data service in this state is to send
a SIGKILL signal through pmfadm.

The Stop method in the sample data service takes both of these considerations into account. It
first sends a SIGTERM signal. If this signal fails to stop the data service, the method sends a
SIGKILL signal.

Before attempting to stop DN, this Stop method verifies that the process is actually running. If
the process is running, Stop uses the PMF (pmfadm) to stop the process.

This Stop method is guaranteed to be idempotent. Although the RGM should not call a Stop
method twice without first starting the data service with a call to its Start method, the RGM

Chapter5 « Sample Data Service 99

Controlling the Data Service

could call a Stop method on a resource even though the resource was never started or the
resource died of its own accord. Therefore, this Stop method exits with success even if DNS is
not running.

Stopping the Application

The Stop method provides a two-tiered approach to stopping the data service: an orderly or
smooth approach using a SIGTERM signal through pmfadm and an abrupt or hard approach using
a SIGKILL signal. The Stop method obtains the Stop_timeout value (the amount of time in
which the Stop method must return). Stop allocates 80 percent of this time to stopping
smoothly and 15 percent to stopping abruptly (5 percent is reserved), as shown in the following
sample code.

STOP_TIMEOUT=‘scha_resource get -0 STOP TIMEOUT -R $RESOURCE NAME \
-G $RESOURCEGROUP NAME*

((SMOOTH_TIMEOUT=$STOP TIMEOUT * 80/100))

((HARD TIMEOUT=$STOP TIMEOUT * 15/100))

The Stop method uses pmfadm -q to verify that the DNS daemon is running. If the DNS
daemon is running, Stop first uses pmfadm - s to send a TERM signal to terminate the DNS
process. If this signal fails to terminate the process after 80 percent of the timeout value has
expired, Stop sends a SIGKILL signal. If this signal also fails to terminate the process within 15
percent of the timeout value, the method logs an error message and exits with an error status.

If pmfadm terminates the process, the method logs a message that the process has stopped and
exits with success.

If the DNS process is not running, the method logs a message that it is not running and exits
with success anyway. The following code sample shows how Stop uses pmfadm to stop the DNS
process.

See if in.named is running, and if so, kill it.
if pmfadm -q $PMF_TAG; then
Send a SIGTERM signal to the data service and wait for 80% of the
total timeout value.
pmfadm -s $RESOURCE NAME.named -w $SMOOTH TIMEOUT TERM
if [$? -ne @ 1; then
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \
SIGKILL”

Since the data service did not stop with a SIGTERM signal, use
SIGKILL now and wait for another 15% of the total timeout value.
pmfadm -s $PMF _TAG -w $HARD TIMEOUT KILL
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
“${ARGVQ} Failed to stop HA-DNS; Exiting UNSUCCESSFUL”
exit 1
fi

100 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Defining a Fault Monitor

fi
else
The data service is not running as of now. Log a message and
exit success.
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
“HA-DNS is not started”

Even if HA-DNS is not running, exit success to avoid putting
the data service resource in STOP_FAILED State.
exit 0

fi

Could successfully stop DNS. Log a message and exit success.
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“HA-DNS successfully stopped”
exit 0

Stop Exit Status

A Stop method should not exit with success until the underlying application is actually stopped,
particularly if other data services depend on it. Failure to do so can result in data corruption.

For a complex application, such as a database, be certain to set the value for the Stop_timeout
property in the RTR file sufficiently high to allow time for the application to clean up while

stopping.

If this method fails to stop DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service does not
explicitly set the Failover_mode property, so this property has the default value NONE (unless
the cluster administrator overrides the default value and specifies a different value). In this case,
the RGM takes no action other than to set the state of the data service to Stop failed. The
cluster administrator needs to stop the application forcibly and clear the Stop_failed state.

Defining a Fault Monitor

The sample application implements a basic fault monitor to monitor the reliability of the DNS
resource (in.named).

The fault monitor consists of the following elements:

= dns_probe, a user-defined program that uses nslookup to verify that the DNS resource that
is controlled by the sample data service is running. If DNS is not running, this method
attempts to restart it locally, or depending on the number of restart attempts, requests that
the RGM relocate the data service to a different node.

= dns_monitor_start, acallback method that starts dns_probe. The RGM automatically calls
dns_monitor_start after the sample data service is brought online if monitoring is enabled.

= dns_monitor_stop, acallback method that stops dns_probe. The RGM automatically calls
dns_monitor_stop before bringing the sample data service offline.

Chapter5 « Sample Data Service 101

Defining a Fault Monitor

102

= dns_monitor_check, a callback method that calls the Validate method to verify that the
configuration directory is available when the PROBE program fails over the data service to a
new node.

How the Probe Program Works

The dns_probe program implements a continuously running process that verifies that the DNS
resource that is controlled by the sample data service is running. The dns_probe is started by
the dns_monitor_start method, which is automatically run by the RGM after the sample data
service is brought online. The data service is stopped by the dns_monitor_stop method, which
the RGM runs before the RGM brings the sample data service offline.

This section describes the major pieces of the PROBE method for the sample application. It does
not describe functionality that is common to all callback methods, such as the parse_args()
function. This section also does not describe using the syslog () function. Common
functionality is described in “Providing Common Functionality to All Methods” on page 92.

For the complete listing of the PROBE method, see “PROBE Program Code Listing” on page 241.

What the Probe Program Does

The probe runs in an infinite loop. It uses nslookup to verify that the correct DNS resource is
running. If DNS is running, the probe sleeps for a prescribed interval (set by the
Thorough_probe_interval system-defined property) and checks again. If DNS is not running,
this program attempts to restart it locally, or depending on the number of restart attempts,
requests that the RGM relocate the data service to a different node.

Obtaining Property Values
This program requires the values of the following properties:
= Thorough_probe_interval - To set the period during which the probe sleeps

® Probe_timeout - To enforce the timeout value of the probe on the nslookup command that
does the probing

= Network_resources_used — To obtain the IP address on which DNS is running

m Retry countandRetry interval - To determine the number of restart attempts and the
period over which to count them

= RT_basedir - To obtain the directory that contains the PROBE program and the gettime
utility

The scha_resource_get () function obtains the values of these properties and stores them in
shell variables, as follows:

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Defining a Fault Monitor

while :

do

PROBE_INTERVAL='scha_resource_get -0 Thorough_probe_interval \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME

PROBE TIMEOUT INFO=‘scha resource get -0 Extension -R $RESOURCE NAME \
-G $RESOURCEGROUP_NAME Probe timeout
Probe timeout=‘echo $probe timeout info | awk ’{print $2}'°

DNS HOST=‘scha_resource get -0 Network resources used -R $RESOURCE NAME \
-G $RESOURCEGROUP_NAME

RETRY COUNT=‘scha resource get -0 Retry count -R $RESOURCE NAME -G \
$RESOURCEGROUP_NAME'

RETRY_INTRVAL='scha_resource get -0 Retry interval -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME'

RT BASEDIR=‘scha resource get -0 RT basedir -R $RESOURCE NAME -G \
$RESOURCEGROUP NAME'

Note - For system-defined properties, such as Thorough_probe_interval, the
scha_resource_get () function returns the value only. For extension properties, such as
Probe_timeout, the scha_resource_get () function returns the type and value. Use the awk
command to obtain the value only.

Checking the Reliability of the Service

The probe itself is an infinite while loop of nslookup commands. Before the while loop, a
temporary file is set up to hold the nslookup replies. The probefail and retries variables are
initialized to 0.

Set up a temporary file for the nslookup replies.
DNSPROBEFILE=/var/cluster/run/.$RESOURCE NAME.probe
probefail=0

retries=0

The while loop carries out the following tasks:

= Sets the sleep interval for the probe

= Uses /usr/cluster/bin/hatimerun to start nslookup, passes the Probe_timeout value,
and identifies the target host

m Sets the probefail variable based on the success or failure of the nslookup return code
= Ifprobefailissetto 1 (failure), verifies that the reply to nslookup came from the sample

data service and not some other DNS server

Here is the while loop code.

The interval at which the probe needs to run is specified in the
property THOROUGH PROBE INTERVAL. Therefore, set the probe to sleep

Chapter5 « Sample Data Service 103

Defining a Fault Monitor

for a duration of THOROUGH_PROBE_INTERVAL.
sleep $PROBE_INTERVAL

Run an nslookup command of the IP address on which DNS is serving.
/usr/cluster/bin/hatimerun -t $PROBE TIMEOUT /usr/sbin/nslookup $DNS HOST $DNS HOST \
> $DNSPROBEFILE 2>&1

retcode=$7?

if [$retcode -ne 0]; then
probefail=1

fi

Make sure that the reply to nslookup comes from the HA-DNS
server and not from another nameserver mentioned in the
/etc/resolv.conf file.
if [$probefail -eq @]; then
Get the name of the server that replied to the nslookup query.
SERVER=' awk ’ $1=="Server:" { print $2 }' \
$DNSPROBEFILE | awk -F. ' { print $1 } " °
if [-z "$SERVER"]; then
probefail=1
else
if [$SERVER != $DNS HOST]; then
probefail=1
fi
fi
fi

Comparing Restart With Failover

If the probefail variable is something other than 0 (success), the nslookup command timed
out or the reply came from a server other than the sample service's DNS. In either case, the DNS
server is not functioning as expected and the fault monitor calls the

decide restart or failover() function to determine whether to restart the data service
locally or request that the RGM relocate the data service to a different node. If the probefail
variable is 0, a message is generated that the probe was successful.

if [$probefail -ne @]; then
decide restart or failover

else

logger -p ${SYSLOG FACILITY}.err\

-t [$SYSLOG TAGI\

"${ARGVO} Probe for resource HA-DNS successful"
fi

The decide restart or failover() function usesa time window (Retry interval)anda
failure count (Retry_count) to determine whether to restart DNS locally or request that the
RGM relocate the data service to a different node. This function implements the following
conditional logic. The code listing for decide_restart_or_failover() in “PROBE Program
Code Listing” on page 241 contains the code.

= Ifthisis the first failure, restart the data service. Log an error message and bump the counter
in the retries variable.

104 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Defining a Fault Monitor

If this is not the first failure, but the window has been exceeded, restart the data service. Log
an error message, reset the counter, and slide the window.

If the time is still within the window and the retry counter has been exceeded, fail over to
another node. If the failover does not succeed, log an error and exit the probe program with
status 1 (failure).

If time is still within the window but the retry counter has not been exceeded, restart the data
service. Log an error message and bump the counter in the retries variable.

If the number of restarts reaches the limit during the time interval, the function requests that
the RGM relocate the data service to a different node. If the number of restarts is under the
limit, or the interval has been exceeded so the count begins again, the function attempts to
restart DNS on the same node.

Note the following points about this function:

The gettime utility is used to track the time between restarts. This is a C program that is
located in the (RT_basedir) directory.

TheRetry_count andRetry_interval system-defined resource properties determine the
number of restart attempts and the time interval over which to count. These properties
default to two attempts in a period of 5 minutes (300 seconds) in the RTR file, although the
cluster administrator can change these values.

The restart_service() function is called to attempt to restart the data service on the same
node. See the next section, “Restarting the Data Service” on page 105, for information about
this function.

The scha_control() APIfunction, with the SCHA_GIVEOVER argument, brings the resource
group that contains the sample data service offline and back online on a different node.

Restarting the Data Service

The restart_service() function is called by decide_restart_or_failover() to attempt to
restart the data service on the same node.

This function executes the following logic:

Determines if the data service is still registered under the PME

If the service is still registered, the function carries out the following actions:
m Obtains the Stop method name and the Stop_timeout value for the data service

m Uses /usr/cluster/bin/hatimerun to start the Stop method for the data service,
passing the Stop_timeout value

= Ifthe data service is successfully stopped, obtains the Start method name and the
Start timeout value for the data service

= Uses hatimerun to start the Start method for the data service, passing the
Start timeout value

Chapter5 « Sample Data Service 105

Defining a Fault Monitor

= Ifthe data service is no longer registered under the PMEF, the implication is that the data
service has exceeded the maximum number of allowable retries under the PMF. The
scha_control command is run with the GIVEOVER argument to fail over the data service to a
different node.

function restart service

{

To restart the data service, first verify that the

data service itself is still registered under PMF.

pmfadm -q $PMF_TAG

if [[$? -eq @ 11; then
Since the TAG for the data service is still registered under
PMF, first stop the data service and start it back up again.

Obtain the Stop method name and the STOP_TIMEOUT value for
this resource.
STOP_ TIMEOUT =scha resource get -0 STOP TIMEOUT \
-R $RESOURCE_NAME -G $RESOURCEGROUP NAME
STOP_METHOD =scha resource get -0 STOP \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME
/usr/cluster/bin/hatimerun -t $STOP_TIMEOUT $RT BASEDIR/$STOP_METHOD \
-R $RESOURCE NAME -G $RESOURCEGROUP NAME \
-T $RESOURCETYPE NAME

if [[$? -ne 0 11; then
logger-p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV0Q} Stop method failed.”
return 1
fi

Obtain the START method name and the START TIMEOUT value for
this resource.
START TIMEOUT =scha_resource get -0 START TIMEOUT \
-R $RESOURCE NAME -G $RESOURCEGROUP NAME
START METHOD =scha resource get -0 START \
-R $RESOURCE _NAME -G $RESOURCEGROUP NAME
/usr/cluster/bin/hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne @0 11; then
logger-p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV0Q} Start method failed.”
return 1
fi

else
The absence of the TAG for the dataservice
implies that the data service has already
exceeded the maximum retries allowed under PMF.
Therefore, do not attempt to restart the
data service again, but try to failover
to another node in the cluster.
scha_control -0 GIVEOVER -G $RESOURCEGROUP_ NAME \
-R $RESOURCE_NAME

106 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Defining a Fault Monitor

fi

return 0

Probe Exit Status

The sample data service's PROBE program exits with failure if attempts to restart locally fail and
the attempt to fail over to a different node fails as well. This program logs the message Failover
attempt failed.

How the Monitor_start Method Works

The RGM calls the Monitor_ start method to start the dns_probe method after the sample data
service is brought online.

This section describes the major pieces of the Monitor_start method for the sample
application. This section does not describe functionality that is common to all callback
methods, such as the parse_args () function. This section also does not describe using the
syslog() function. Common functionality is described in “Providing Common Functionality
to All Methods” on page 92.

For the complete listing of the Monitor_start method, see “Monitor start Method Code
Listing” on page 246.

What the Monitor_start Method Does
This method uses the PMF (pmfadm) to start the probe.

Starting the Probe

TheMonitor_start method obtains the value of the RT_basedir property to construct the full
path name for the PROBE program. This method starts the probe by using the infinite retries
option of pmfadm (-n -1, -t -1), which means that if the probe fails to start, the PMF tries to
start it an infinite number of times over an infinite period of time.

Find where the probe program resides by obtaining the value of the
RT basedir property of the resource.

RT BASEDIR=‘scha resource get -0 RT basedir -R $RESOURCE NAME -G \
$RESOURCEGROUP NAME®

Start the probe for the data service under PMF. Use the infinite retries
option to start the probe. Pass the resource name, type, and group to the
probe program.
pmfadm -c $RESOURCE_NAME.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE _NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME

Chapter5 « Sample Data Service 107

Defining a Fault Monitor

108

How the Monitor_stop Method Works

The RGM calls the Monitor_ stop method to stop execution of dns_probe when the sample data
service is brought offline.

This section describes the major pieces of the Monitor_stop method for the sample application.
This section does not describe functionality that is common to all callback methods, such as the
parse_args () function. This section also does not describe using the syslog() function.
Common functionality is described in “Providing Common Functionality to All Methods” on
page 92.

For the complete listing of the Monitor_stop method, see “Monitor_stop Method Code
Listing” on page 248.

What the Monitor_stop Method Does
This method uses the PMF (pmfadm) to check whether the probe is running, and if so, to stop it.

Stopping the Monitor

The Monitor_stop method uses pmfadm -q to see if the probe is running, and if so, uses pmfadm
-s to stop it. If the probe is already stopped, the method exits successfully anyway, which
guarantees the idempotence of the method.

Caution - Be certain to use the KILL signal with pmfadm to stop the probe and not a signal that can
be masked, such as TERM. Otherwise, the Monitor_stop method can hang indefinitely and
eventually time out. The reason is that the PROBE method calls scha_control() whenitis
necessary to restart or fail over the data service. When scha_control() callsMonitor_stopas
part of the process of bringing the data service offline, if Monitor_stop uses a signal that can be
masked, Monitor_stop hangs waiting for scha_control() to complete, and scha_control()
hangs waiting for Monitor_stop to complete.

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG; then
pmfadm -s $PMF_TAG KILL
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} Could not stop monitor for resource " \
$RESOURCE_NAME
exit 1
else
could successfully stop the monitor. Log a message.
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} Monitor for resource " $RESOURCE NAME \
" successfully stopped"

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Defining a Fault Monitor

fi
fi
exit 0

Monitor_stop Exit Status

The Monitor_stop method logs an error message if it cannot stop the PROBE method. The RGM
puts the sample data service into MONITOR _FAILED state on the primary node, which can panic
the node.

Monitor stop should not exit before the probe has been stopped.

How the Monitor check Method Works

The RGM calls the Monitor check method whenever the PROBE method attempts to fail over
the resource group that contains the data service to a new node.

This section describes the major pieces of the Monitor_ check method for the sample
application. This section does not describe functionality that is common to all callback
methods, such as the parse_args () function. This section also does not describe using the
syslog() function. Common functionality is described in “Providing Common Functionality
to All Methods” on page 92.

For the complete listing of the Monitor_check method, see “Monitor_check Method Code
Listing” on page 249.

TheMonitor_check method must be implemented so that it does not conflict with other
methods that are running concurrently.

TheMonitor_check method calls the Validate method to verify that the DNS configuration
directory is available on the new node. The Confdir extension property points to the DNS
configuration directory. Therefore, Monitor_check obtains the path and name for the
Validate method and the value of Confdir. It passes this value to Validate, as shown in the
following listing.

Obtain the full path for the Validate method from

the RT basedir property of the resource type.

RT_BASEDIR =scha resource _get -0 RT basedir -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME

Obtain the name of the Validate method for this resource.
VALIDATE METHOD =scha resource get -0 Validate \
-R $RESOURCE NAME -G $RESOURCEGROUP NAME

Obtain the value of the Confdir property in order to start the
data service. Use the resource name and the resource group entered to
obtain the Confdir value set at the time of adding the resource.
config info'=scha resource get -0 Extension -R $RESOURCE NAME \

-G $RESOURCEGROUP_NAME Confdi'r

Chapter5 « Sample Data Service 109

Handling Property Updates

scha resource get returns the type as well as the value for extension
properties. Use awk to get only the value of the extension property.
CONFIG DIR'=echo $config info | awk ‘{print $2}"’

Call the validate method so that the dataservice can be failed over

successfully to the new node.

$RT BASEDIR/$VALIDATE METHOD -R $RESOURCE NAME -G $RESOURCEGROUP NAME \
-T $RESOURCETYPE NAME -x Confdir=$CONFIG DIR

See “How the Validate Method Works” on page 110 to see how the sample application verifies
the suitability of a node for hosting the data service.

Handling Property Updates

110

The sample data service implements Validate and Update methods to handle the updating of
properties by a cluster administrator.

How the Validate Method Works

The RGM calls the Validate method when a resource is created and when administrative
action updates the properties of the resource or its containing group. The RGM calls Validate
before the creation or update is applied, and a failure exit code from the method on any node
causes the creation or update to be canceled.

The RGM calls Validate only when resource or resource group properties are changed by the
cluster administrator, not when the RGM sets properties or when a monitor sets the resource
properties Status and Status_msg.

Note - The Monitor_check method also explicitly calls the Validate method whenever the
PROBE method attempts to fail over the data service to a new node.

What the Validate Method Does

The RGM calls Validate with additional arguments to those that are passed to other methods,
including the properties and values that are being updated. Therefore, this method in the
sample data service must implement a different parse_args () function to handle the
additional arguments.

The Validate method in the sample data service verifies a single property, the Confdir
extension property. This property points to the DNS configuration directory, which is critical to
the successful operation of DNS.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Handling Property Updates

Note - Because the configuration directory cannot be changed while DNS is running, the
Confdir property is declared in the RTR file as TUNABLE = AT_CREATION. Therefore, the
Validate method is never called to verify the Confdir property as the result of an update, but
only when the data service resource is being created.

If Confdir is one of the properties that the RGM passes to Validate, the parse_args ()
function retrieves and saves its value. Validate verifies that the directory pointed to by the new
value of Confdir is accessible and that the named. conf file exists in that directory and contains
data.

Ifthe parse_args () function cannot retrieve the value of Confdir from the command-line
arguments that are passed by the RGM, Validate still attempts to validate the Confdir
property. Validate uses scha_resource_get () to obtain the value of Confdir from the static
configuration. Validate performs the same checks to verify that the configuration directory is
accessible and contains a named . conf file that is not empty.

If validate exits with failure, the update or creation of all properties, not just Confdir, fails.

Validate Method Parsing Function

Because the RGM passes the Validate method a different set of arguments than the other
callback methods, Validate requires a different function for parsing arguments than the other
methods. See the rt_callbacks(1HA) man page for more information about the arguments
that are passed to Validate and the other callback methods. The following code sample shows
the Validate parse_args() function.

Al S L A A L L S T
Parse Validate arguments.

#

function parse args # [args...]

{

typeset opt
while getopts ’cur:x:g:R:T:G:X:’' opt

do

case "$opt" in

R)
Name of the DNS resource.
RESOURCE NAME=$0PTARG

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP NAME=$0PTARG

T)

Name of the resource type.
RESOURCETYPE NAME=$0PTARG

r

Chapter5 « Sample Data Service m

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha

Handling Property Updates

112

X)
Per-node extension property setting. The format of the
option argument is "propertyname{nodeid}=propertyvalue".
For example, there might be two -X options with the following
arguments:

myprop{1l}=myvalue

myprop{2}=othervalue
representing the setting of property 'myprop’ on nodes 1
and 2.
In most cases, the -X arguments can be ignored. Instead
use the -x argument to get the property setting for the
local node.

H o HEHHHHHH KR

r)
The method is not accessing any system defined
properties so this is a no-op

v

The method is not accessing any resource group
properties, so this is a no-op

c)
Indicates the Validate method is being called while
creating the resource, so this flag is a no-op.

u)
Indicates the updating of a property when the
resource already exists. If the update is to the
Confdir property then Confdir should appear in the
command-line arguments. If it does not, the method must
look for it specifically using scha resource get.
UPDATE PROPERTY=1

X)
Extension property list. Separate the property and
value pairs using "=" as the separator.
PROPERTY='echo $OPTARG | awk -F= ’'{print $1}’‘
VAL='echo $OPTARG | awk -F= ’'{print $2}'‘
If the Confdir extension property is found on the
command line, note its value.
if [$PROPERTY == "Confdir" 1; then

CONFDIR=$VAL
CONFDIR FOUND=1

fi

*) "
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"ERROR: Option $OPTARG unknown"
exit 1

esac

done

}

Aswith the parse_args () function for other methods, this function provides a flag (R) to
capture the resource name, (G) to capture the resource group name, and (T) to capture the
resource type that is passed by the RGM.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Handling Property Updates

The r flag (which indicates a system-defined property), g flag (which indicates a resource group
property), and the c flag (which indicates that the validation is occurring during creation of the
resource) are ignored. They are ignored because this method is being called to validate an
extension property when the resource is being updated.

The u flag sets the value of the UPDATE_PROPERTY shell variable to 1 (TRUE). The x flag captures
the names and values of the properties that are being updated. If Confdir is one of the
properties being updated, its value is placed in the CONFDIR shell variable, and the variable
CONFDIR FOUND is set to 1 (TRUE).

Validating Confdir

In its MAIN function, Validate first sets the CONFDIR variable to the empty string and
UPDATE PROPERTY and CONFDIR FOUND to 0.

CONFDIR=""
UPDATE_PROPERTY=0
CONFDIR_FOUND=0

Validate calls parse_args() to parse the arguments that are passed by the RGM.

parse args “$@”

Validate checksif Validate is being called as the result of an update of properties. Validate
also checks if the Confdir extension property was on the command line. Validate verifies that
the Confdir property has a value, and if not, exits with failure status and an error message.

if ((($UPDATE PROPERTY == 1)) & ((CONFDIR FOUND == 0))); then
config info='scha _resource get -0 Extension -R $RESOURCE NAME \
-G $RESOURCEGROUP NAME Confdir
CONFDIR=‘echo $config info | awk ’{print $2}'°
fi

Verify that the Confdir property has a value. If not there is a failure
and exit with status 1
if [[-z $CONFDIR]]1; then
logger -p ${SYSLOG FACILITY}.err \
"${ARGVO} Validate method for resource "$RESOURCE NAME " failed"
exit 1
fi

Note - Specifically, the preceding code checks if Validate is being called as the result of an
update ($UPDATE_PROPERTY == 1) and if the property was not found on the command line
(CONFDIR_FOUND == 0). In this case, the code retrieves the existing value of Confdir by using
scha resource get().If Confdir was found on the command line (CONFDIR FOUND == 1), the
value of CONFDIR comes from the parse_args () function, not from scha_resource get().

The Validate method uses the value of CONFDIR to verify that the directory is accessible. If the
directory is not accessible, Validate logs an error message and exits with error status.

Chapter5 « Sample Data Service 113

Handling Property Updates

114

Check if $CONFDIR is accessible.
if [! -d $CONFDIR]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} Directory $CONFDIR missing or not mounted"
exit 1
fi

Before validating the update of the Confdir property, Validate performs a final check to verify

that the named. conf file is present. If the file is not present, the method logs an error message
and exits with error status.

Check that the named.conf file is present in the Confdir directory
if [! -s $CONFDIR/named.conf]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} File $CONFDIR/named.conf is missing or empty"
exit 1
fi
If the final check is passed, Validate logs a message that indicates success and exits with success
status.

Log a message indicating that the Validate method was successful.
logger -p ${SYSLOG FACILITY}.err \

-t [$SYSLOG_TAG] \

"${ARGVO} Validate method for resource "$RESOURCE NAME \

" completed successfully"

exit 0

Validate Exit Status

If validate exits with success (@), Confdir is created with the new value. If Validate exits with
failure (1), Confdir and any other properties are not created and a message that indicates the
reason is generated.

How the Update Method Works

The RGM runs the Update method to notify a running resource that its properties have been
changed. The RGM runs Update after the cluster administrator succeeds in setting properties of
aresource or its group. This method is called on nodes where the resource is online.

What the Update Method Does

The Update method does not update properties. The RGM updates properties. The Update
method notifies running processes that an update has occurred. The only process in the sample
data service that is affected by a property update is the fault monitor. Consequently, the fault
monitor process is the process that the Update method stops and restarts.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Handling Property Updates

The Update method must verify that the fault monitor is running and then kill it by using the
pmfadm command. The method obtains the location of the probe program that implements the
fault monitor, and restarts it by using the pmfadm command.

Stopping the Monitor With Update

The Update method uses pmfadm - q to verify that the monitor is running, and if so, kills it with
pmfadm - s TERM. If the monitor is successfully terminated, a message to that effect is sent to the
cluster administrator. If the monitor cannot be stopped, Update exits with failure status and
sends an error message to the cluster administrator.

if pmfadm -q $RESOURCE NAME.monitor; then

Kill the monitor that is running already
pmfadm -s $PMF TAG TERM
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
"${ARGVO} Could not stop the monitor"
exit 1
else
could successfully stop DNS. Log a message.
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
"Monitor for HA-DNS successfully stopped"
fi

Restarting the Monitor

To restart the monitor, the Update method must locate the script that implements the probe
program. The probe program is located in the base directory for the data service, which is
pointed to by the RT_basedir property. Update retrieves the value of RT_basedir and stores it
in the RT BASEDIR variable, as follows.

RT BASEDIR=‘scha resource get -0 RT basedir -R $RESOURCE NAME -G \
$RESOURCEGROUP NAME'

Update uses the value of RT_BASEDIR with pmfadm to restart the dns_probe program. If
successful, Update exits with success and sends a message to that effect to the cluster
administrator. If pnfadm cannot start the probe program, Update exits with failure status and
logs an error message.

Update Exit Status

Update method failure causes the resource to be put into an “update failed” state. This state has
no effect on RGM management of the resource, but indicates the failure of the update action to
administration tools through the syslog () function.

Chapter5 « Sample Data Service 115

116

L K R 4 CHAPTER 6

Data Service Development Library

This chapter provides an overview of the application programming interfaces that constitute
the Data Service Development Library (DSDL). The DSDL is implemented in the libdsdev. so
library and is included in the Oracle Solaris Cluster package.

This chapter covers the following topics:

“DSDL Overview” on page 117

“Managing Configuration Properties” on page 118

“Starting and Stopping a Data Service” on page 119
“Implementing a Fault Monitor” on page 119

“Accessing Network Address Information” on page 120
“Debugging the Resource Type Implementation” on page 120
“Enabling Highly Available Local File Systems” on page 121

DSDL Overview

The DSDL APl is layered on top of the Resource Management Application Programming
Interface (RMAPI). As such, the DSDL API does not supersede the RMAPI but rather
encapsulates and extends the RMAPI functionality. The DSDL simplifies data service
development by providing predetermined solutions to specific Oracle Solaris Cluster
integration issues. Consequently, you can devote the majority of development time to the high
availability and scalability issues that are intrinsic to your application. You spend less time
integrating the application startup, shutdown, and monitor procedures with Oracle Solaris
Cluster.

117

Managing Configuration Properties

Managing Configuration Properties

All callback methods require access to the configuration properties.

The DSDL supports access to properties in these ways:

= Initializing the environment
= Providing a set of convenience functions to retrieve property values

The scds_initialize() function, which must be called at the beginning of each callback
method, does the following:

= Checks and processes the command-line arguments (argc and argv[1) that the RGM
passes to the callback method, obviating the need for you to write a command-line parsing
function.

m Sets up internal data structures for use by other DSDL functions. For example, the
convenience functions that retrieve property values from the RGM store the values in these
structures. Likewise, values from the command line, which take precedence over values
retrieved from the RGM, are stored in these data structures.

= Initializes the logging environment and validates fault monitor probe settings.

Note - For the Validate method, scds_initialize() parsesthe property values that are passed
on the command line, obviating the need to write a parse function for Validate.

The DSDL provides sets of functions to retrieve resource type, resource, and resource group
properties as well as commonly used extension properties.

These functions standardize access to properties by using the following conventions:

= Each function takes only a handle argument (returned by scds_initialize()).

= Each function corresponds to a particular property. The return value type of the function
matches the type of the property value that it retrieves.

= Functions do not return errors as the values have been precomputed by
scds_initialize().Functions retrieve values from the RGM unless a new value is passed
on the command line.

118 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Implementing a Fault Monitor

Starting and Stopping a Data Service

A start method performs the actions that are required to start a data service on a cluster node.
Typically, these actions include retrieving the resource properties, locating application-specific
executable and configuration files, and starting the application with the correct command-line

arguments.

The scds_initialize() function retrieves the resource configuration. The Start method can
use property convenience functions to retrieve values for specific properties, such as
Confdir_list, thatidentify the configuration directories and files for the application to start.

A Start method can call scds_pmf_start() to start an application under control of the Process
Monitor Facility (PMF). The PMF enables you to specify the level of monitoring to apply to the
process and provides the ability to restart the process in case of failure. See “xfnts_start
Method” on page 136 for an example of a Start method that is implemented with the DSDL.

A Stop method must be idempotent so that the Stop method exits with success even if it is
called on a node when the application is not running. If the Stop method fails, the resource that
is being stopped is set to the STOP_FAILED state, which can cause the cluster to perform a hard
reboot.

To avoid putting the resource in the STOP_FAILED state, the Stop method must make every
effort to stop the resource. The scds_pmf stop() function provides a phased attempt to stop
the resource. This function first attempts to stop the resource by using a SIGTERM signal, and if
this fails, uses a SIGKILL signal. See the scds_pmf_stop(3HA) man page for more information.

Implementing a Fault Monitor

The DSDL absorbs much of the complexity of implementing a fault monitor by providing a
predetermined model. A Monitor_start method starts the fault monitor, under the control of
the PMF, when the resource starts on a node. The fault monitor runs in a loop aslong as the
resource is running on the node.

The high-level logic of a DSDL fault monitor is as follows:

m Thescds_fm_sleep() function uses the Thorough_probe_interval property to determine
the amount of time between probes. Any application process failures that are detected by the
PMEF during this interval lead to a restart of the resource.

= The probe itself returns a value that indicates the severity of failures, from 0, no failure, to
100 complete failure.

= The probe return value is sent to the scds_action() function, which maintains a
cumulative fajlure history within the interval of the Retry_interval property.

= Thescds action() function determines what to do in the event of a failure, as follows:

= Ifthe cumulative failure is below 100, do nothing.

Chapter6 - Data Service Development Library 119

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-stop-3ha

Accessing Network Address Information

= Ifthe cumulative failure reaches 100 (complete failure), restart the data service. If
Retry_intervalis exceeded, reset the history.

= Ifthe number of restarts exceeds the value of the Retry_count property, within the time
specified by Retry_interval, fail over the data service.

Accessing Network Address Information

The DSDL provides convenience functions to return network address information for
resources and resource groups. For example, the scds_get_netaddr_list() retrieves the
network address resources that are used by a resource, enabling a fault monitor to probe the
application.

The DSDL also provides a set of functions for TCP-based monitoring. Typically, these functions
establish a simple socket connect to a service, read and write data to the service, and disconnect
from the service. The result of the probe can be sent to the DSDL scds_fm_action() function
to determine the action to take.

See “xfnts_validate Method” on page 148 for an example of TCP-based fault monitoring.

Debugging the Resource Type Implementation

120

The DSDL has built-in features to help you debug your data service.

The DSDL utility scds_syslog_debug() provides a basic framework for adding debugging
statements to the resource type implementation. The debugging level (a number between 1-9)
can be dynamically set for each resource type implementation on each cluster node. A file
named /var/cluster/rgm/rt/rtname/loglevel, which contains only an integer between 1
and 9, is read by all resource type callback methods. The DSDL function scds_initialize()
reads this file and sets the debug level internally to the specified level. The default debuglevel 0
specifies that the data service is not to log debugging messages.

The scds_syslog_debug() function uses the facility that is returned by the
scha_cluster_getlogfacility() function ata priority of LOG_DEBUG. You can configure these
debug messages in the /etc/syslog. conf file.

You can turn some debugging messages into information messages for regular operation of the
resource type (perhaps at LOG_INFO priority) by using the scds_syslog() function. Note that
the sample DSDL application in Chapter 8, “Sample DSDL Resource Type Implementation,”
includes calls to the scds_syslog_debug() and scds_syslog() functions.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Enabling Highly Available Local File Systems

Enabling Highly Available Local File Systems

You can use the HAStoragePlus resource type to make a local file system highly available within
an Oracle Solaris Cluster environment.

Note - Local file systems include the UNIX File System (UFS) and Oracle Solaris ZFS.

The local file system partitions must be located on global disk groups. Affinity switchovers must
be enabled, and the Oracle Solaris Cluster environment must be configured for failover. This
setup enables the cluster administrator to make any file system that is located on multihost disks
accessible from any host that is directly connected to those multihost disks. You use a highly
available local file system for selected I/O intensive data services. “Enabling Highly Available
Local File Systems” in Oracle Solaris Cluster Data Services Planning and Administration Guide
contains information about configuring the HAStorageP1lus resource type.

Chapter6 - Data Service Development Library 121

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAGcdcegbeg
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAGcdcegbeg

122

CHAPTER 7

Designing Resource Types

This chapter explains the typical use of the Data Service Development Library (DSDL) in
designing and implementing resource types. This chapter also focuses on designing the
resource type to validate the resource configuration, and to start, stop, and monitor the
resource. In addition, this chapter describes how to use the DSDL to implement the resource
type callback methods.

See the rt_callbacks(1HA) man page for additional information.

You need access to the resource's property settings to complete these tasks. The DSDL utility
scds_initialize() providesa uniform way to access these resource properties. This function
is designed to be called at the beginning of each callback method. This utility function retrieves
all the properties for a resource from the cluster framework and makes it available to the family
of scds_getname() functions.

This chapter covers the following topics:

“Resource Type Registration File” on page 124

“Validate Method” on page 124

“Start Method” on page 126

“Stop Method” on page 127

“Monitor_start Method” on page 128

“Monitor_stop Method” on page 128

“Monitor_check Method” on page 129

“Update Method” on page 129

“Description of Init, Fini, and Boot Methods” on page 130
“Designing the Fault Monitor Daemon” on page 130

123

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha

Resource Type Registration File

Resource Type Registration File

The Resource Type Registration (RTR) file specifies the details about the resource type to the
Oracle Solaris Cluster software.

Details include information as follows:

= Properties that are needed by the implementation
= The data types and default values of those properties
= The file system path for the callback methods for the resource type implementation

= Various settings for the system-defined properties

The sample RTR file that is shipped with the DSDL is sufficient for most resource type
implementations. You need only edit some basic elements, such as the resource type name and
the path name of the resource type callback methods. If a new property is needed to implement
the resource type, you can declare it as an extension property in the RTR file of the resource type
implementation, and access the new property by using the DSDL scds_get_ext_property ()
function.

Validate Method

124

The purpose of the Validate callback method of a resource type implementation is to check
that the proposed resource settings (as specified by the proposed property settings on the
resource) are acceptable to the resource type.

The Validate method of a resource type implementation is called by the Resource Group
Manager (RGM) under one of the following two conditions:

= A new resource of the resource type is being created
= A property of the resource or resource group is being updated

These two scenarios can be distinguished by the presence of the command-line option - ¢
(create) or -u (update) that is passed to the Validate method of the resource.

The Validate method is called on each node of a set of nodes, where the set of nodes is defined
by the value of the resource type property Init_nodes.If Init_nodes is set to RG_PRIMARIES,
Validate is called on each node that can host (be a primary of) the resource group that contains
the resource. If Init nodes is set to RT_INSTALLED NODES, Validate is called on each node
where the resource type software is installed, typically all nodes in the cluster.

The default value of Init_nodes is RG_PRIMARIES (see the rt_reg(4) man page). At the point
the Validate method is called, the RGM has not yet created the resource (in the case of creation
callback) or has not yet applied the updated values of the properties that are being updated (in
the case of update callback).

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-reg-4

Validate Method

Note - If you are using local file systems that are managed by the HAStoragePlus resource type,
you use the scds_hasp_check() function to check the state of that resource type. This
information is obtained from the state (online or otherwise) of all SUNW.HAStoragePlus
resources on which the resource depends. See the scds_hasp_check(3HA) man page for a
complete list of status codes that are returned by the scds_hasp_check() function.

The DSDL function scds_initialize() handles these situations in the following manner:

= Iftheresource is being created, scds_initialize() parses the proposed resource
properties, as they are passed on the command line. The proposed values of resource
properties are therefore available to you as though the resource was already created in the
system.

= Ifthe resource or resource group is being updated, the proposed values of the properties that
are being updated by the cluster administrator are read in from the command line. The
remaining properties (whose values are not being updated) are read in from Oracle Solaris
Cluster by using the Resource Management API. If you are using the DSDL, you do not need
to concern yourself with these tasks. You can validate a resource as if all the properties of the
resource were available.

Suppose the function that implements the validation of a resource's properties is called
svc_validate(), which uses the scds_get_name() family of functions to look at the property
to be validated. Assuming that an acceptable resource setting is represented by a 0 return code
from this function, the Validate method of the resource type can thus be represented by the
following code fragment:

int
main(int argc, char *argv[])
{

scds_handle t handle;

int rc;

if (scds_initialize(&handle, argc, argv)!= SCHA ERR NOERR) {
return (1); /* Initialization Error */

}

rc = svc_validate(handle);

scds_close(&handle);

return (rc);

}

The validation function should also log the reason why the validation of the resource failed.
However, by leaving out that detail (Chapter 8, “Sample DSDL Resource Type
Implementation,” contains a more realistic treatment of a validation function), you can
implement a simpler example svc_validate() function, as follows:

int

svc validate(scds handle t handle)

{

Chapter7 - Designing Resource Types 125

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-hasp-check-3ha

Start Method

scha_str_array_t *confdirs;
struct stat statbuf;
confdirs = scds get confdir list(handle);

if (stat(confdirs->str array[0], &statbuf) == -1) {
return (1); /* Invalid resource property setting */
}

return (0); /* Acceptable setting */
}

Thus, you must concern yourself with only the implementation of the svc_validate()
function.

Start Method

126

The Start callback method of a resource type implementation is called by the RGM on a chosen
cluster node to start the resource. The resource group name, the resource name, and resource
type name are passed on the command line. The Start method performs the actions that are
needed to start a data service resource in the cluster node. Typically this involves retrieving the
resource properties, locating the application specific executable file, configuration files, or both,
and starting the application with the correct command-line arguments.

With the DSDL, the resource configuration is already retrieved by the scds_initialize()
function. The startup action for the application can be contained in a function svc_start().
Another function, svc_wait (), can be called to verify that the application actually starts. The
simplified code for the Start method is as follows:

int
main(int argc, char *argv[])
{

scds handle t handle;

if (scds_initialize(&handle, argc, argv)!= SCHA ERR _NOERR) {
return (1); /* Initialization Error */

}

if (svc validate(handle) != 0) {
return (1); /* Invalid settings */
}

if (svc_start(handle) !'= 0) {

return (1); /* Start failed */

}

return (svc wait(handle));
}

This start method implementation calls svc_validate() to validate the resource configuration.
If it fails, either the resource configuration and application configuration do not match or there
is currently a problem on this cluster node with regard to the system. For example, a cluster file
system that is needed by the resource might currently not be available on this cluster node. In
this case, it is futile to attempt to start the resource on this cluster node. It is better to let the
RGM attempt to start the resource on a different node.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Stop Method

Note, however, that the preceding statement assumes that svc_validate() is sufficiently
conservative, checking only for resources on the cluster node that are required by the
application. Otherwise, the resource might fail to start on all cluster nodes and thus enter a
START_FAILED state. See the Oracle Solaris Cluster Data Services Planning and Administration
Guide for an explanation of this state.

The svc_start() function must return 0 for a successful startup of the resource on the node. If
the startup function encounters a problem, it must return nonzero. Upon failure of this
function, the RGM attempts to start the resource on a different cluster node.

To take advantage of the DSDL as much as possible, the svc_start() function can call the
scds_pmf_start() utility to start the application under the Process Monitor Facility (PMF).
This utility also uses the failure callback action feature of the PMF to detect process failure. See
the description of the -a action argument in the pmfadm(1M) man page for more information.

Stop Method

The Stop callback method of a resource type implementation is called by the RGM on a cluster
node to stop the application.

The callback semantics for the Stop method demand the following factors:

= The Stop method must be idempotent because the Stop method can be called by the RGM
even if the Start method did not complete successfully on the node. Thus, the Stop method
must succeed (exit zero) even if the application is not currently running on the cluster node
and there is no work for it to do.

= Ifthe Stop method of the resource type fails (exits nonzero) on a cluster node, the resource
that is being stopped enters the STOP_FAILED state. Depending on the Failover_mode
setting on the resource, this condition might lead the RGM to perform a hard reboot of the
cluster node.

Thus, you must design the Stop method so that this method definitely stops the application.
You might even need to resort to using SIGKILL to kill the application abruptly if the
application otherwise fails to terminate.

You must also ensure that this method stops the application in a timely fashion because the
framework treats expiry of the Stop_timeout property as a stop failure, and consequently
puts the resource in a STOP_FAILED state.

The DSDL utility scds_pmf_stop () should suffice for most applications as it first attempts to
softly stop the application with SIGTERM. This function then delivers a SIGKILL to the process.
This function assumes that the application was started under the PMF with scds_pmf_start().
See “PMF Functions” on page 197 for details about this utility.

Assuming that the application-specific function that stops the application is called svc_stop(),
implement the Stop method as follows:

Chapter7 - Designing Resource Types 127

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMpmfadm-1m

Monitor_start Method

if (scds_initialize(&handle, argc, argv)!= SCHA ERR_NOERR)
{

}

return (svc_stop(handle));

return (1); /* Initialization Error */

Whether or not the implementation of the preceding svc_stop () function includes the
scds_pmf_stop() function is irrelevant. Your decision to include the scds_pmf stop()
function depends on whether or not the application was started under the PMF through the
Start method.

The svc_validate() method is not used in the implementation of the Stop method because,
even if the system is currently experiencing a problem, the Stop method should attempt to stop
the application on this node.

Monitor_start Method

The RGM calls the Monitor start method to start a fault monitor for the resource. Fault
monitors monitor the health of the application that is being managed by the resource. Resource
type implementations typically implement a fault monitor as a separate daemon that runs in the
background. The Monitor_start callback method is used to start this daemon with the correct
arguments.

Because the monitor daemon itself is prone to failures (for example, it could die, leaving the
application unmonitored), you should use the PMF to start the monitor daemon. The DSDL
utility scds_pmf_start () has built-in support for starting fault monitors. This utility uses the
path name that is relative to the RT_basedir for the location of the resource type callback
method implementations of the monitor daemon program. This utility uses the
Monitor_retry_intervalandMonitor_retry count extension properties that are managed
by the DSDL to prevent unlimited restarts of the daemon.

This utility also imposes the same command-line syntax as defined for all callback methods
(thatis, -Rresource -G resource-group -T resource-type) onto the monitor daemon, although the
monitor daemon is never called directly by the RGM. Finally, this utility also allows the monitor
daemon implementation itself to enable the scds_initialize() utility to set up its own
environment. The main effort is in designing the monitor daemon itself.

Monitor_stop Method

128

The RGM calls the Monitor stop method to stop the fault monitor daemon that was started
with theMonitor_start method. Failure of this callback method is treated in exactly the same
fashion as failure of the Stop method. Therefore, the Monitor stop method must be
idempotent and just as robust as the Stop method.

If you use the scds_pmf_start() utility to start the fault monitor daemon, use the
scds_pmf_stop () utility to stop it.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Update Method

Monitor check Method

The RGM runs the Monitor_check callback method on a resource on a node for the specified
resource to ascertain whether the cluster node is capable of mastering the resource. In other
words, the RGM runs this method to determine whether the application that is being managed
by the resource can run successfully on the node.

Typically, this situation involves ensuring that all the system resources that are required by the
application are indeed available on the cluster node. As discussed in “validate Method” on
page 124, the function svc_validate() that you implement is intended to ascertain at least
that.

Depending on the specific application that is being managed by the resource type
implementation, the Monitor_check method can be written to carry out additional tasks. The
Monitor check method must be implemented so that it does not conflict with other methods
that are running concurrently. If you are using the DSDL, the Monitor_check method should
call the svc_validate() function, which implements application-specific validation of
resource properties.

Update Method

The RGM calls the Update method of a resource type implementation to apply any changes that
were made by the cluster administrator to the configuration of the active resource. The Update
method is only called on nodes (if any) where the resource is currently online.

The changes that have just been made to the resource configuration are guaranteed to be
acceptable to the resource type implementation because the RGM runs the Validate method of
the resource type before it runs the Update method. The Validate method is called before the
resource or resource group properties are changed, and the Validate method can veto the
proposed changes. The Update method is called after the changes have been applied to give the
active (online) resource the opportunity to take notice of the new settings.

You must carefully determine the properties that you want to be able to update dynamically,
and mark those with the TUNABLE = ANYTIME setting in the RTR file. Typically, you can specify
that you want to be able to dynamically update any property of a resource type implementation
that the fault monitor daemon uses. However, the implementation of the Update method must
at least restart the monitor daemon.

Possible properties that you can use are as follows:

Thorough probe interval
Retry count

Retry interval

Monitor retry count
Monitor retry interval

Chapter7 - Designing Resource Types 129

Description of Init, Fini, and Boot Methods

= Probe timeout

These properties affect the way a fault monitor daemon checks the health of the service, how
often the daemon performs checks, the history interval that the daemon uses to keep track of
the errors, and the restart thresholds that are set by the PME To implement updates of these
properties, the utility scds_pmf_restart() is provided in the DSDL.

If you need to be able to dynamically update a resource property, but the modification of that
property might affect the running application, you need to implement the correct actions. You
must ensure that the updates to that property are correctly applied to any running instances of
the application. Currently, you cannot use the DSDL to dynamically update a resource property
in this way. You cannot pass the modified properties to Update on the command line (as you
can with Validate).

Description of Init, Fini, and Boot Methods

These methods are one-time action methods as defined by the Resource Management API
specifications. The sample implementation that is included with the DSDL does not illustrate
the use of these methods. However, all the facilities in the DSDL are available to these methods
as well, should you need these methods. Typically, the Init and the Boot methods would be
exactly the same for a resource type implementation to implement a one-time action. The Fini
method typically would perform an action that undoes the action of the Init or Boot methods.

Designing the Fault Monitor Daemon

Resource type implementations that use the DSDL typically have a fault monitor daemon that
carries out the following responsibilities:

= Periodically monitors the health of the application that is being managed. This particular
responsibility of a monitor daemon largely depends on the particular application and can
vary widely from resource type to resource type. The DSDL contains some built-in utility
functions that perform health checks for simple TCP-based services. You can use these
utilities to implement applications that use ASCII-based protocols, such as HTTP, NNTP,
IMAP, and POP3.

= Keeps track of the problems that are encountered by the application by using the resource
propertiesRetry_interval and Retry_ count. When the application fails completely, the
fault monitor needs to determine whether the PMF action script should restart the service or
whether the application failures have accumulated so rapidly that a failover needs to be
carried out. The DSDL utilities scds fm action() and scds fm sleep() are intended to
aid you in implementing this mechanism.

= Takes action, typically either restarting the application or attempting a failover of the
containing resource group. The DSDL utility scds_fm_action() implements this
algorithm. This utility computes the current accumulation of probe failures in the past
number of Retry_interval seconds for this purpose.

130 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Designing the Fault Monitor Daemon

Updates the resource state so that the state of the application's health is available to the
Oracle Solaris Cluster administrative commands.

The DSDL utilities are designed so that the main loop of the fault monitor daemon can be
represented by the pseudo code at the end of this section.

Keep the following factors in mind when you implement a fault monitor with the DSDL:

scds_fm_sleep() detects the death of an application process rapidly because notification of
the application process's death through the PMF is asynchronous. Thus, the fault detection
time is reduced significantly, thereby increasing the availability of the service. A fault
monitor might otherwise wake up every so often to check on a service's health and find that
the application process has died.

If the RGM rejects the attempt to fail over the service with the scha_control API,
scds_fm_action() resets, or forgets, its current failure history. This function resets its
current failure history because its history already exceeds Retry_count. If the monitor
daemon wakes up in the next iteration and is unable to successfully complete its health
check of the daemon, the monitor daemon again attempts to call the scha_control()
function. That call is probably rejected once again, as the situation that led to its rejection in
the last iteration is still valid. Resetting the history ensures that the fault monitor at least
attempts to correct the situation locally (for example, through restarting the application) in
the next iteration.

scds_fm_action() does not reset application failure history in case of restart failures, as you
would typically like to issue scha_control() quickly thereafter if the situation does not
correct itself.

The utility scds_fm_action() updates the resource status to SCHA_RSSTATUS_OK,
SCHA_RSSTATUS_DEGRADED, or SCHA_RSSTATUS_FAULTED depending on the failure history.
This status is consequently available to cluster system management.

In most cases, you can implement the application-specific health check action in a separate
stand-alone utility (svc_probe (), for example). You can integrate it with the following generic
main loop.

for (;;) {

/* sleep for a duration of thorough probe interval between
* successive probes.

*/

(void) scds fm sleep(scds handle,

scds get rs thorough probe interval(scds handle));
/* Now probe all ipaddress we use. Loop over

* 1. ALl net resources we use.

* 2. All ipaddresses in a given resource.

* For each of the ipaddress that is probed,

* compute the failure history.

*/

probe result = 0;

/* Iterate through the all resources to get each

* IP address to use for calling svc probe()

Chapter7 - Designing Resource Types 131

Designing the Fault Monitor Daemon

132

*/

for (ip = 0; ip < netaddr->num netaddrs; ip++) {
/* Grab the hostname and port on which the
* health has to be monitored.

*/

hostname = netaddr->netaddrs[ip].hostname;
port = netaddr->netaddrs[ip].port proto.port;
/*

* HA-XFS supports only one port and

* hence obtaint the port value from the

* first entry in the array of ports.

*/

htl = gethrtime();

/* Latch probe start time */

probe result = svc probe(scds handle, hostname, port,
/*

* Update service probe history,

* take action if necessary.

* Latch probe end time.

*/

ht2 = gethrtime();

/* Convert to milliseconds */

dt = (ulong t)((ht2 - htl) / 1leb6);

/*

* Compute failure history and take

* action if needed

*/

(void) scds_fm action(scds_handle,

probe result, (long)dt);

} /* Each net resource */

} /* Keep probing forever */

timeout);

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L K R 4 CHAPTER 8

Sample DSDL Resource Type Implementation

This chapter describes a sample resource type, ORCL. xfnts, which is implemented with the
Data Service Development Library (DSDL). This data service is written in C. The underlying
application is the X Font Server, a TCP/IP-based service. Appendix B, “DSDL Sample Resource
Type Code Listings,” contains the complete code for each method in the ORCL. xfnts resource

type.
This chapter covers the following topics:

“X Font Server” on page 133

“ORCL.xfnts RTR File” on page 134

“Naming Conventions for Functions and Callback Methods” on page 135
“scds_initialize() Function” on page 135
“xfnts_start Method” on page 136
“xfnts_stop Method” on page 140
“xfnts_monitor_start Method” on page 141
“xfnts_monitor_stop Method” on page 142
“xfnts_monitor_check Method” on page 143
“ORCL.xfnts Fault Monitor” on page 143
“xfnts_validate Method” on page 148
“xfnts_update Method” on page 151

XFont Server

The X Font Server is a TCP/IP-based service that serves font files to its clients. Clients connect
to the server to request a font set, and the server reads the font files off the disk and serves them
to the clients. The X Font Server daemon consists of a server binary at /usr/bin/xfs. The
daemon is normally started from inetd. However, for the current sample, assume that the
correct entry in the /etc/inetd. conf file has been disabled (for example, by using the fsadmin
-d command) so that the daemon is under sole control of the Oracle Solaris Cluster software.

133

ORCL.xfnts RTRFile

X Font Server Configuration File

By default, the X Font Server reads its configuration information from the file
/usr/openwin/1ib/X11/fontserver.cfg. The catalog entry in this file contains a list of font
directories that are available to the daemon for serving. The cluster administrator can locate the
font directories in the cluster file system. This location optimizes the use of the X Font Server on
Oracle Solaris Cluster by maintaining a single copy of the font's database on the system. If the
cluster administrator wants to change the location, the cluster administrator must edit
fontserver.cfg to reflect the new paths for the font directories.

For ease of configuration, the cluster administrator can also place the configuration file itself in
the cluster file system. The xfs daemon provides command-line arguments that override the
default, built-in location of this file. The ORCL.xfnts resource type uses the following command
to start the daemon under the control of the Oracle Solaris Cluster software.

/usr/bin/xfs -config location-of-configuration-file/fontserver.cfg \
-port port-number

In the ORCL. xfnts resource type implementation, you can use the Confdir_list property to
manage the location of the fontserver. cfg configuration file.

TCP Port Number

The TCP port number on which the xfs server daemon listens is normally the “fs” port,
typically defined as 7100 in the /etc/services file. However, the -port option that the cluster
administrator includes with the xfs command enables the cluster administrator to override the
default setting.

You can use the Port_list property in the ORCL. xfnts resource type to set the default value
and to enable the cluster administrator to use the -port option with the xfs command. You
define the default value of this property as 7100/tcp in the RTR file. In the ORCL . xfnts Start
method, you pass Port_1ist to the -port option on the xfs command line. Consequently, a
user of this resource type is not required to specify a port number (the port defaults to
7100/tcp). The cluster administrator can specify a different value for the Port_1ist property
when the cluster administrator configures the resource type.

ORCL.xfnts RTRFile

134

This section describes several key properties in the ORCL.xfnts RTR file. It does not describe
the purpose of each property in the file. For such a description, see “Setting Resource and
Resource Type Properties” on page 35.

The Confdir_list extension property identifies the configuration directory (or alist of
directories), as follows:

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

scds_initialize() Function

{

PROPERTY = Confdir list;

EXTENSION;

STRINGARRAY;

TUNABLE = AT CREATION;

DESCRIPTION = "The Configuration Directory Path(s)";
}

The Confdir_list property does not specify a default value. The cluster administrator must
specify a directory name when the resource is created. This value cannot be changed later
because tunability is limited to AT_CREATION.

The Port_list property identifies the port on which the application listens, as follows:

{
PROPERTY = Port_list;
DEFAULT = 7100/tcp;
TUNABLE = ANYTIME;

}

Because the property declares a default value, the cluster administrator can specify a new value
or accept the default value when the resource is created. No one can change this value later
because tunability is limited to AT_CREATION.

Naming Conventions for Functions and Callback Methods

You can identify the various pieces of the sample code by knowing these conventions:

RMAPI functions begin with scha_.
DSDL functions begin with scds_.
Callback methods begin with xfnts_.
User-written functions begin with svc_.

scds_initialize() Function

The DSDL requires that each callback method call the scds_initialize() function at the
beginning of the method.

This function performs the following operations:

= Checks and processes the command-line arguments (argc and argv) that the framework
passes to the data service method. The method does not have to process any additional
command-line arguments.

= Sets up internal data structures for use by the other functions in the DSDL.
= Initializes the logging environment.

= Validates fault monitor probe settings.

Chapter8 - Sample DSDL Resource Type Implementation 135

xfnts_start Method

Use the scds_close() function to reclaim the resources that are allocated by
scds initialize().

xfnts_start Method

The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node or when the resource is enabled. In the
ORCL.xfnts sample resource type, the xfnts_start method activates the xfs daemon on that
node.

The xfnts_start method calls scds_pmf_start() to start the daemon under the PME The
PMEF provides automatic failure notification and restart features, as well as integration with the
fault monitor.

Note - The first call in xfnts_startisto scds_initialize(), which performssome necessary
housekeeping functions. “scds_initialize() Function” on page 135 and the
scds_initialize(3HA) man page contain more information.

Validating the Service Before Starting the X Font
Server

Before the xfnts_start method attempts to start the X Font Server, it calls svc_validate() to
verify that a correct configuration is in place to support the xfs daemon.

rc = svc validate(scds handle);
if (rc !'=0) {
scds syslog(LOG ERR,
"Failed to validate configuration.");
return (rc);

}

See “xfnts_validate Method” on page 148 for details.

Starting the Service With svc_start()

The xfnts_start method calls the svc_start() method, which is defined in the xfnts. c file,
to start the xfs daemon. This section describes svc_start().

The command to start the xfs daemon is as follows:

xfs -config config-directory/fontserver.cfg -port port-number

136 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-initialize-3ha

xfnts_start Method

The Confdir_list extension property identifies the config-directory while the Port_list
system property identifies the port-number. The cluster administrator provides specific values
for these properties when he or she configures the data service.

The xfnts_start method declares these properties as string arrays. The xfnts_start method
obtains the values that the cluster administrator sets by using the

scds_get ext confdir list() and scds get port list() functions. These functions are
described in the scds_property_functions(3HA) man page.

scha str array t *confdirs;
scds port list t *portlist;
scha err t err;

/* get the configuration directory from the confdir list property */
confdirs = scds get ext confdir list(scds handle);

(void) sprintf(xfnts conf, "ss/fontserver.cfg", confdirs->str array[0]);

/* obtain the port to be used by XFS from the Port list property */
err = scds get port list(scds handle, &portlist);
if (err != SCHA ERR NOERR) {
scds_syslog(LOG_ERR,
"Could not access property Port list.");
return (1);

}

Note that the confdirs variable points to the first element () of the array.
The xfnts_start method uses sprintf () to form the command line for xfs.

/* Construct the command to start the xfs daemon. */
(void) sprintf(cmd,
"/usr/bin/xfs -config %s -port %d 2>/dev/null"
xfnts_conf, portlist->ports[0].port);

Note that the output is redirected to /dev/null to suppress messages that are generated by the
daemon.

The xfnts_start method passes the xfs command line to scds_pmf_start() to start the data
service under the control of the PMF.

scds_syslog(LOG INFO, "Issuing a start request.");
err = scds_pmf start(scds handle, SCDS PMF TYPE SVC,
SCDS PMF SINGLE INSTANCE, cmd, -1);

if (err == SCHA ERR NOERR) {
scds_syslog(LOG INFO,
"Start command completed successfully.");
} else {
scds_syslog(LOG_ERR,
"Failed to start HA-XFS ");

Chapter8 - Sample DSDL Resource Type Implementation 137

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-property-functions-3ha

xfnts_start Method

Note the following points about the call to scds_pmf_start():

= TheSCDS_PMF_TYPE_SVC argument identifies the program to start as a data service
application. This method can also start a fault monitor or some other type of application.

= The SCDS_PMF_SINGLE_INSTANCE argument identifies this as a single-instance resource.
= The cmd argument is the command line that was generated previously.

= The final argument, -1, specifies the child monitoring level. The -1 value specifies that the
PMF monitor all children as well as the original process.

Before returning, svc_pmf_start() frees the memory that is allocated for the portlist
structure.

scds free port list(portlist);
return (err);

Returning From svc_start()

Even when svc_start() returns successfully, the underlying application might have failed to
start. Therefore, svc_start () must probe the application to verify that it is running before
returning a success message. The probe must also take into account that the application might
not be immediately available because it takes some time to start. The svc_start() method calls
svc_wait (), whichis defined in the xfnts. c file, to verify that the application is running.

/* Wait for the service to start up fully */
scds syslog debug(DBG LEVEL HIGH,
“Calling svc wait to verify that service has started.");

rc = svc_wait(scds handle);

scds syslog debug(DBG LEVEL HIGH,
"Returned from svc wait");

if (rc = 0) {

scds_syslog(LOG INFO, "Successfully started the service.");
} else {

scds_syslog(LOG ERR, "Failed to start the service.");
}

The svc_wait() function calls scds_get netaddr list() to obtain the network address
resources that are needed to probe the application.

/* obtain the network resource to use for probing */
if (scds get netaddr list(scds handle, &netaddr)) {
scds_syslog(LOG_ERR,
“No network address resources found in resource group.");
return (1);

}

/* Return an error if there are no network resources */

138 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_start Method

if (netaddr == NULL || netaddr->num_netaddrs == 0) {
scds syslog(LOG ERR,
"No network address resource in resource group.");
return (1);

}

The svc_wait () function obtains the Start timeout and Stop_timeout values.

svc_start timeout = scds get rs start timeout(scds handle)
probe timeout = scds get ext probe timeout(scds handle)

To account for the time the server might take to start, svc_wait() calls scds_svc_wait() and
passes a timeout value equivalent to three percent of the Start_timeout value. The svc_wait()
function calls the svc_probe () function to verify that the application has started. The
svc_probe () method makes a simple socket connection to the server on the specified port. If it
fails to connect to the port, svc_probe () returns a value of 100, which indicates a total failure. If
the connect goes through but the disconnect to the port fails, svc_probe() returns a value of 50.

On failure or partial failure of svc_probe(), svc_wait() calls scds_svc_wait() with atimeout
value of 5. The scds_svc_wait () method limits the frequency of the probes to every five
seconds. This method also counts the number of attempts to start the service. If the number of
attempts exceeds the value of the Retry_count property of the resource within the period that is
specified by the Retry_interval property of the resource, the scds_svc_wait () function
returns failure. In this case, the svc_start () function also returns failure.

#define SVC_CONNECT_TIMEOUT PCT 95
#define SVC_WAIT PCT 3
if (scds svc wait(scds handle, (svc start timeout * SVC WAIT PCT)/100)
!= SCHA_ERR_NOERR) {

scds_syslog(LOG _ERR, "Service failed to start.");

return (1);
}
do {

/*

* probe the data service on the IP address of the
* network resource and the portname
*/
rc = svc_probe(scds handle,
netaddr->netaddrs[0].hostname,
netaddr->netaddrs[@].port proto.port, probe timeout);
if (rc == SCHA ERR NOERR) {
/* Success. Free up resources and return */
scds_free netaddr list(netaddr);
return (0);

}

/* Call scds svc wait() so that if service fails too
if (scds svc wait(scds handle, SVC WAIT TIME)
!= SCHA ERR NOERR) {
scds syslog(LOG ERR, "Service failed to start.");
return (1);

Chapter8 - Sample DSDL Resource Type Implementation 139

xfnts_stop Method

/* Rely on RGM to timeout and terminate the program */
} while (1);

Note - Before it exits, the xfnts_start method calls scds_close() to reclaim resources that are
allocated by scds_initialize().“scds_initialize() Function” on page 135 and the
scds_close(3HA) man page contain more information.

xfnts_stop Method

140

Because the xfnts_start method uses scds_pmf_start() to start the service under the PMEF,
xfnts_stopuses scds_pmf_stop() to stop the service.

Note - The first call in xfnts_stopisto scds_initialize(), which performssome necessary
housekeeping functions. “scds_initialize() Function” on page 135 and the
scds_initialize(3HA) man page contain more information.

The xfnts_stop method calls the svc_stop () method, which is defined in the xfnts. c file, as
follows:

scds_syslog(LOG ERR, "Issuing a stop request.");
err = scds_pmf_stop(scds_handle,
SCDS_PMF_TYPE_SVC, SCDS PMF_SINGLE INSTANCE, SIGTERM,
scds get rs stop timeout(scds handle));

if (err != SCHA ERR NOERR) {
scds_syslog(LOG ERR,
"Failed to stop HA-XFS.");
return (1);

}

scds_syslog(LOG_INFO,
"Successfully stopped HA-XFS.");
return (SCHA_ERR NOERR); /* Successfully stopped */

Note the following points about the call in svc_stop() to the scds_pmf_stop() function:

= The SCDS_PMF_TYPE_SVC argument identifies the program to stop as a data service
application. This method can also stop a fault monitor or some other type of application.

= The SCDS_PMF_SINGLE_INSTANCE argument identifies the signal.

= The SIGTERM argument identifies the signal to use to stop the resource instance. If this signal
fails to stop the instance, scds_pmf_stop () sends SIGKILL to stop the instance, and if that
fails, returns with a timeout error. See the scds_pmf_stop(3HA) man page for details.

= The timeout value is that of the Stop_timeout property of the resource.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-initialize-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-stop-3ha

xfnts_monitor_start Method

Note - Before it exits, the xfnts_stop method calls scds close() to reclaim resources that are
allocated by scds_initialize().“scds_initialize() Function” on page 135 and the
scds_close(3HA) man page contain more information.

xfnts_monitor_start Method

The RGM calls the Monitor start method on anode to start the fault monitor after a resource
is started on the node. The xfnts_monitor start method uses scds pmf_ start() to start the
monitor daemon under the PMFE.

Note - The first callin xfnts monitor startistoscds initialize(), which performssome
necessary housekeeping functions. “scds_initialize() Function” on page 135 and the
scds_initialize(3HA) man page contain more information.

The xfnts monitor start method calls themon start method, which is defined in the
xfnts.c file, as follows:

scds syslog debug(DBG LEVEL HIGH,
"Calling Monitor start method for resource <%s>."
scds_get resource name(scds handle));

/* Call scds_pmf_start and pass the name of the probe. */
err = scds_pmf _start(scds handle, SCDS PMF TYPE MON,
SCDS_PMF_SINGLE INSTANCE, "xfnts probe", 0);

if (err != SCHA ERR NOERR) {
scds_syslog(LOG ERR,
"Failed to start fault monitor.");
return (1);

}

scds_syslog(LOG_INFO,
"Started the fault monitor.");

return (SCHA ERR NOERR); /* Successfully started Monitor */
}

Note the following points about the call in svc_mon_start() to the scds_pmf_start()
function:

= The SCDS_PMF_TYPE_MON argument identifies the program to start as a fault monitor. This
method can also start a data service or some other type of application.

= TheSCDS_PMF_SINGLE_INSTANCE argument identifies this as a single-instance resource.

= Thexfnts_probe argument identifies the monitor daemon to start. The monitor daemon is
assumed to be located in the same directory as the other callback programs.

Chapter8 - Sample DSDL Resource Type Implementation 141

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-initialize-3ha

xfnts_monitor_stop Method

= The final argument, 0, specifies the child monitoring level. In this case, this value specifies
that the PMF monitor the monitor daemon only.

Note - Before it exits, the xfnts monitor start method calls scds close() to reclaim
resources that were allocated by scds_initialize().“scds_initialize() Function” on
page 135 and the scds_close(3HA) man page contain more information.

xfnts_monitor_stop Method

142

Because the xfnts _monitor start method uses scds pmf start() to start the monitor
daemon under the PME xfnts_monitor_stop uses scds_pmf_stop()to stop the monitor
daemon.

Note - The first call in xfnts monitor stopistoscds initialize(), which performssome
necessary housekeeping functions. “scds_initialize() Function” on page 135 and the
scds_initialize(3HA) man page contain more information.

The xfnts_monitor stop() method calls the mon stop method, which is defined in the
xfnts. c file, as follows:

scds_syslog debug(DBG LEVEL HIGH,
"Calling scds pmf stop method");

err = scds_pmf_stop(scds_handle, SCDS PMF_TYPE_MON,
SCDS PMF_SINGLE INSTANCE, SIGKILL,
scds_get rs _monitor stop timeout(scds handle));

if (err != SCHA_ERR NOERR) {
scds syslog(LOG ERR,
"Failed to stop fault monitor.");
return (1);
}

scds syslog(LOG INFO,
"Stopped the fault monitor.");

return (SCHA ERR NOERR); /* Successfully stopped monitor */
}

Note the following points about the call in svc_mon_stop() to the scds_pmf_stop() function:

= The SCDS_PMF_TYPE_MON argument identifies the program to stop as a fault monitor. This
method can also stop a data service or some other type of application.
= The SCDS_PMF_SINGLE_INSTANCE argument identifies this as a single-instance resource.

= The SIGKILL argument identifies the signal to use to stop the resource instance. If this signal
fails to stop the instance, scds_pmf_stop() returns with a timeout error. See the
scds_pmf_stop(3HA) man page for details.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-initialize-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-stop-3ha

ORCL.xfnts Fault Monitor

= The timeout value is that of the Monitor_stop_timeout property of the resource.

Note - Before it exits, the xfnts_monitor stop method calls scds_close() to reclaim resources
that were allocated by scds_initialize().“scds_initialize() Function” on page 135 and
the scds_close(3HA) man page contain more information.

xfnts_monitor check Method

The RGM calls the Monitor_check method whenever the fault monitor attempts to fail over the
resource group that contains the resource to another node. The xfnts_monitor_check method
calls the svc_validate() method to verify that a correct configuration is in place to support the
xfs daemon. See “xfnts_validate Method” on page 148 for details. The code for

xfnts monitor check isas follows:

/* Process the arguments passed by RGM and initialize syslog */

if (scds_initialize(&scds_handle, argc, argv) != SCHA ERR _NOERR)
{
scds syslog(LOG ERR, "Failed to initialize the handle.");
return (1);
}
rc = svc validate(scds handle);
scds syslog debug(DBG LEVEL HIGH,
"monitor check method "
"was called and returned <%d>.", rc);
/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);
/* Return the result of validate method run as part of monitor check */
return (rc);
}

ORCL.xfnts Fault Monitor

The RGM does not directly call the PROBE method, but rather calls the Monitor_start method
to start the monitor after a resource is started on a node. The xfnts_monitor start method
starts the fault monitor under the control of the PME The xfnts _monitor stop method stops
the fault monitor.

Chapter8 - Sample DSDL Resource Type Implementation 143

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-close-3ha

ORCL. xfnts Fault Monitor

The ORCL. xfnts fault monitor performs the following operations:

= Periodically monitors the health of the xfs server daemon by using utilities that are
specifically designed to check simple TCP-based services, such as xfs.

= Tracks problems that the application encounters within a time window (using the
Retry countandRetry interval properties) and decides whether to restart or fail over
the data service if the application fails completely. The scds_fm_action() and
scds_fm_sleep() functions provide built-in support for this tracking and decision
mechanism.

= Implements the failover or restart decision by using scds_fm_action().

= Updates the resource state and makes the resource state available to administrative tools and
GUIs.

xfonts_probe Main Loop
The xfonts_probe method implements a loop.

Before implementing the loop, xfonts_probe performs the following operations:
m Retrieves the network address resources for the xfnts resource, as follows:

/* Get the ip addresses available for this resource */
if (scds get netaddr list(scds handle, &netaddr)) {
scds_syslog(LOG_ERR,
"No network address resource in resource group.");
scds close(&scds _handle);
return (1);

}

/* Return an error if there are no network resources */
if (netaddr == NULL || netaddr->num netaddrs == 0) {
scds syslog(LOG ERR,
“No network address resource in resource group.");
return (1);

}
= Callsscds_fm_sleep() and passes the value of Thorough_probe_interval as the timeout
value. The probe sleeps for the value of Thorough_probe_interval between probes, as
follows:

timeout = scds get ext probe timeout(scds handle);

for (5;) {
/*
* sleep for a duration of thorough probe interval between
* successive probes.
*/
(void) scds fm sleep(scds handle,
scds get rs thorough probe interval(scds handle));

The xfnts_probe method implements the following loop:

144 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

ORCL.xfnts Fault Monitor

for (ip = 0; ip < netaddr->num_netaddrs; ip++) {
/*
* Grab the hostname and port on which the
* health has to be monitored.
*/
hostname = netaddr->netaddrs[ip].hostname;
port = netaddr->netaddrs[ip].port proto.port;
/*
* HA-XFS supports only one port and
* hence obtain the port value from the
* first entry in the array of ports.
*/
htl = gethrtime(); /* Latch probe start time */
scds_syslog(LOG INFO, "Probing the service on port: %d.

, port);

probe result =
svc_probe(scds_handle, hostname, port, timeout);

/*
* Update service probe history,
* take action if necessary.
* Latch probe end time.
*/
ht2 = gethrtime();

/* Convert to milliseconds */
dt = (ulong t)((ht2 - htl) / 1le6);

/*
* Compute failure history and take
* action if needed
*/
(void) scds fm action(scds handle,
probe result, (long)dt);
} /* Each net resource */
} /* Keep probing forever */

The svc_probe() function implements the probe logic. The return value from svc_probe() is
passed to scds_fm_action(), which determines whether to restart the application, fail over the
resource group, or do nothing.

svc_probe() Function

The svc_probe () function makes a simple socket connection to the specified port by calling
scds_fm tcp connect().If the connect fails, svc_probe() returns a value of 100, which
indicates a complete failure. If the connect succeeds, but the disconnect fails, svc_probe()
returns a value of 50, which indicates a partial failure. If the connect and disconnect both
succeed, svc_probe() returns a value of @, which indicates success.

The code for svc_probe() is as follows:

int svc probe(scds handle t scds handle,
char *hostname, int port, int timeout)

{

Chapter8 - Sample DSDL Resource Type Implementation 145

ORCL. xfnts Fault Monitor

int rc;
hrtime t tl, t2;
int sock;
char testcmd[2048];
int time used, time remaining;
time t connect_timeout;
/*
* probe the data service by doing a socket connection to the port
* specified in the port list property to the host that is
* serving the XFS data service. If the XFS service which is configured
* to listen on the specified port, replies to the connection, then
* the probe is successful. Else we will wait for a time period set
* in probe timeout property before concluding that the probe failed.
*/
/*

* Use the SVC CONNECT TIMEOUT PCT percentage of timeout

* to connect to the port

*/

connect timeout = (SVC CONNECT TIMEOUT PCT * timeout)/100;
tl = (hrtime t) (gethrtime()/1E9);

/*
* the probe makes a connection to the specified hostname and port.
* The connection is timed for 95% of the actual probe timeout.
*/
rc = scds fm tcp connect(scds handle, &sock, hostname, port,
connect timeout);
if (rc) {
scds syslog(LOG ERR,
"Failed to connect to port <%d> of resource <%s>.",
port, scds get resource name(scds handle));
/* this is a complete failure */
return (SCDS PROBE COMPLETE FAILURE);
}

t2 = (hrtime_ t) (gethrtime()/1E9);

/*
* Compute the actual time it took to connect. This should be less than
* or equal to connect timeout, the time allocated to connect.
* If the connect uses all the time that is allocated for it,
* then the remaining value from the probe timeout that is passed to
* this function will be used as disconnect timeout. Otherwise, the
* the remaining time from the connect call will also be added to
* the disconnect timeout.
*

*
~

time used = (int)(t2 - t1);

/*
* Use the remaining time(timeout - time took to connect) to disconnect
*/

time remaining = timeout - (int)time used;

146 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

ORCL.xfnts Fault Monitor

/*

* If all the time is used up, use a small hardcoded timeout

* to still try to disconnect. This will avoid the fd leak.

*/

if (time_remaining <= 0) {

scds_syslog _debug(DBG_LEVEL LOW,

"svc_probe used entire timeout of
"%d seconds during connect operation and exceeded the "
"timeout by %d seconds. Attempting disconnect with timeout
n %d ||’
connect timeout,
abs(time used),
SVC DISCONNECT TIMEOUT SECONDS);

time remaining = SVC_DISCONNECT_ TIMEOUT SECONDS;

/*
* Return partial failure in case of disconnection failure.
* Reason: The connect call is successful, which means
* the application is alive. A disconnection failure
* could happen due to a hung application or heavy load.
* If it is the later case, don’t declare the application
* as dead by returning complete failure. Instead, declare
* it as partial failure. If this situation persists, the
* disconnect call will fail again and the application will be
* restarted.
*/
rc = scds fm tcp disconnect(scds handle, sock, time remaining);
if (rc !'= SCHA ERR NOERR) {
scds_syslog(LOG ERR,
"Failed to disconnect to port %d of resource %s."
port, scds get resource name(scds handle));
/* this is a partial failure */
return (SCDS PROBE COMPLETE FAILURE/2);
}

t2 = (hrtime_t) (gethrtime()/1E9);
time used = (int)(t2 - t1);
time remaining = timeout - time used;

/*

* If there is no time left, don’'t do the full test with

* fsinfo. Return SCDS PROBE COMPLETE FAILURE/2

* instead. This will make sure that if this timeout

* persists, server will be restarted.

*/

if (time_remaining <= 0) {
scds_syslog(LOG ERR, "Probe timed out.");
return (SCDS PROBE COMPLETE FAILURE/2);

* The connection and disconnection to port is successful,
* Run the fsinfo command to perform a full check of

* server health.

* Redirect stdout, otherwise the output from fsinfo

* ends up on the console.

Chapter8 - Sample DSDL Resource Type Implementation 147

xfnts_validate Method

(void) sprintf(testcmd,
"/usr/openwin/bin/fsinfo -server %s:%d > /dev/null"
hostname, port);
scds_syslog debug(DBG LEVEL HIGH,
"Checking the server status with %s.", testcmd);
if (scds_timerun(scds_handle, testcmd, time remaining,
SIGKILL, &rc) != SCHA ERR_NOERR || rc != 0) {

scds_syslog(LOG ERR,
"Failed to check server status with command <%s>"
testcmd) ;
return (SCDS PROBE COMPLETE FAILURE/2);
}

return (0);

}

When finished, svc_probe() returns a value that indicates success (0), partial failure (50), or
complete failure (100). The xfnts_probe method passes this value to scds_fm_action().

Determining the Fault Monitor Action
The xfnts_probe method calls scds fm_action() to determine the action to take.

Thelogicin scds_fm_action() is as follows:

= Maintain a cumulative failure history within the value of the Retry_interval property.

= [fthe cumulative failure reaches 100 (complete failure), restart the data service. If
Retry_intervalisexceeded, reset the history.

= Jfthe number of restarts exceeds the value of the Retry_count property, within the time
specified by Retry_interval, fail over the data service.

For example, suppose the probe makes a connection to the xfs server, but fails to disconnect.
This indicates that the server is running, but could be hung or just under a temporary load. The
failure to disconnect sends a partial (50) failure to scds_fm_action(). This value is below the
threshold for restarting the data service, but the value is maintained in the failure history.

If during the next probe the server again fails to disconnect, a value of 50 is added to the failure
history maintained by scds_fm_action (). The cumulative failure value is now 100, so
scds_fm action() restarts the data service.

xfnts_validate Method

148

The RGM calls the Validate method when a resource is created and when a cluster
administrator updates the properties of the resource or its containing group. The RGM calls the
Validate method before the creation or update is applied. A failure exit code from the method
on any node causes the creation or update to be canceled.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_validate Method

The RGM calls Validate only when a cluster administrator changes resource or resource group
properties or when a monitor sets the Status and Status_msg resource properties. The RGM
does not call Validate when the RGM sets properties.

Note - The Monitor_check method also explicitly calls the Validate method whenever the
PROBE method attempts to fail over the data service to a new node.

The RGM calls Validate with additional arguments to those that are passed to other methods,
including the properties and values that are being updated. The call to scds_initialize() at
the beginning of xfnts_validate parses all the arguments that the RGM passes to
xfnts_validate and stores the information in the scds_handle argument. The subroutines
that xfnts_validate calls make use of this information.

The xfnts_validate method calls svc_validate(), which verifies the following conditions:
= TheConfdir_list property has been set for the resource and defines a single directory.

scha str array t *confdirs;
confdirs = scds get ext confdir list(scds handle);

/* Return error if there is no confdir list extension property */
if (confdirs == NULL || confdirs->array cnt != 1) {
scds syslog(LOG ERR,
"Property Confdir list is not set properly.");
return (1); /* Validation failure */

}
= The directory that is specified by Confdir_list contains the fontserver.cfqg file.

(void) sprintf(xfnts conf, "ss/fontserver.cfg", confdirs->str array[0]);

if (stat(xfnts_conf, &statbuf) !'= 0) {
/*
* suppress lint error because errno.h prototype
* is missing void arg
*/
scds_syslog(LOG_ERR,
"Failed to access file <%s> : <%s>"
xfnts conf, strerror(errno)); /*¥lint 'e746 */
return (1);

}
= The server daemon binary is accessible on the cluster node.

if (stat("/usr/bin/xfs", &statbuf) != 0) {
scds syslog(LOG ERR,
"Cannot access XFS binary : <%s> ", strerror(errno));
return (1);

}
= ThePort_list property specifies a single port.
scds port list t *portlist;

err = scds _get port list(scds handle, &portlist);
if (err != SCHA ERR NOERR) {

Chapter8 - Sample DSDL Resource Type Implementation 149

xfnts_validate Method

scds_syslog(LOG_ERR,
"Could not access property Port list: %s."
scds error _string(err));
return (1); /* Validation Failure */

}

#ifdef TEST
if (portlist->num ports != 1) {
scds syslog(LOG ERR,
"Property Port list must have only one value.");
scds_free port list(portlist);
return (1); /* Validation Failure */
}
#endif

= The resource group that contains the data service also contains at least one network address
resource.

scds _net resource list t *snrip;
if ((err = scds get rs hostnames(scds handle, &snrlp))
= SCHA_ERR_NOERR) {
scds syslog(LOG ERR,
“No network address resource in resource group: %s.
scds_error_string(err));
return (1); /* Validation Failure */

"
’

}

/* Return an error if there are no network address resources */
if (snrlp == NULL || snrlp->num netresources == 0) {
scds syslog(LOG ERR,
“No network address resource in resource group.");
rc =1;
goto finished;

}

Before it returns, svc_validate() frees all allocated resources.

finished:
scds free net list(snrlp);
scds free port list(portlist);

return (rc); /* return result of validation */

Note - Before it exits, the xfnts_validate method calls scds close() to reclaim resources that
were allocated by scds_initialize().“scds_initialize() Function” on page 135 and the
scds_close(3HA) man page contain more information.

150 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-close-3ha

xfnts_update Method

xfnts_update Method

The RGM calls the Update method to notify a running resource that its properties have
changed. The only properties that can be changed for the xfnts data service pertain to the fault
monitor. Therefore, whenever a property is updated, the xfnts_update method calls
scds_pmf_restart fm() to restart the fault monitor.

/* check if the Fault monitor is already running and if so stop

* and restart it. The second parameter to scds pmf_restart fm()

* uniquely identifies the instance of the fault monitor that needs
* to be restarted.

*/

scds syslog(LOG INFO, "Restarting the fault monitor.");
result = scds pmf restart fm(scds handle, 0);
if (result != SCHA ERR NOERR) {

scds_syslog(LOG ERR,

"Failed to restart fault monitor.");

/* Free up all the memory allocated by scds initialize */

scds close(&scds handle);

return (1);

}

scds_syslog(LOG INFO,
"Completed successfully.");

Note - The second argument to scds_pmf_restart_fm() uniquely identifies the instance of the
fault monitor to be restarted if there are multiple instances. The value 0 in the example indicates
that there is only one instance of the fault monitor.

Chapter8 - Sample DSDL Resource Type Implementation 151

152

L K R 4 CHAPTER 9

Oracle Solaris Cluster Agent Builder

This chapter describes Oracle Solaris ClusterAgent Builder, which automates the creation of
resource types, or data services, to be run under the control of the Resource Group Manager
(RGM). A resource type is a wrapper around an application that enables that application to run
in a clustered environment, under control of the RGM.

This chapter covers the following topics:

= “Agent Builder Overview” on page 153

= “Before You Use Agent Builder” on page 154

“Using Agent Builder” on page 155

“Directory Structure That Agent Builder Creates” on page 168
= “Agent Builder Output” on page 169

Agent Builder Overview

Agent Builder provides a graphical user interface (GUI) for specifying information about your
application and the kind of resource type that you want to create. Agent Builder supports
network-aware applications and non-network-aware applications. Network-aware applications
use the network to communicate with clients. Non-network-aware applications are standalone
applications.

Note - If the GUI version of Agent Builder is not accessible, you can access Agent Builder
through a command-line interface. See “How to Use the Command-Line Version of Agent
Builder” on page 167.

153

Before You Use Agent Builder

Based on the information you specify, Agent Builder generates the following software:

= Asetof C, Korn shell (ksh), or generic data service (GDS) source files for a failover or
scalable resource type that corresponds to the resource type's method callbacks. These files
are intended for both network-aware (client-server model) and non-network-aware
(clientless) applications.

= A customized Resource Type Registration (RTR) file (if you generate C or Korn shell source
code).

= Customized utility scripts for starting, stopping, and removing an instance (resource) of the
resource type, as well as customized man pages that document how to use each one of these
files.

= An Oracle Solaris SVR4 package that includes the binaries (if you generate C source code),
an RTR file (if you generate C or Korn shell source code), and the utility scripts.

Agent Builder also enables you to generate a resource type for an application that has multiple
independent process trees that the Process Monitor Facility (PMF) must monitor and restart
individually.

Before You Use Agent Builder

154

Before you use Agent Builder, you need to know how to create resource types with multiple
independent process trees.

Agent Builder can create resource types for applications that have more than one independent
process tree. These process trees are independent in the sense that the PMF monitors and starts
them individually. The PMF starts each process tree with its own tag.

Note - Agent Builder enables you to create resource types with multiple independent process
trees only if the generated source code that you specify is C or GDS. You cannot use Agent
Builder to create these resource types for the Korn shell. To create these resource types for the
Korn shell, you must manually write the code.

In the case of a base application with multiple independent process trees, you cannot specify a
single command line to start the application. Rather, you must create a text file, with each line
specifying the full path to a command to start one of the application's process trees. This file
must not contain any empty lines. You specify this text file in the Start Command text field on
the Agent Builder Configure screen.

Ensuring that this file does not have execute permissions enables Agent Builder to distinguish
this file. The purpose of this file is to start multiple process trees from a simple executable script
that contains multiple commands. If this text file is given execute permissions, the resources

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder

come up with no problems or errors on a cluster. However, all the commands are started under
one PMF tag. As a result, the PMF is unable to monitor and restart the process trees
individually.

Using Agent Builder

This section describes how to use Agent Builder. In addition, this section includes tasks that you
must complete before you can use Agent Builder. This section also explains ways that you can
take advantage of Agent Builder after you generate your resource type code.

This section covers the following topics:

“Analyzing the Application” on page 155

“Installing and Configuring Agent Builder” on page 156

“Agent Builder Screens” on page 156

“Starting Agent Builder” on page 157

“Navigating Agent Builder” on page 157

“Using the Create Screen” on page 159

“Using the Configure Screen” on page 161

“Using the Agent Builder Korn Shell-Based $hostnames Variable” on page 163
“Using Property Variables” on page 163

“Reusing Code That You Create With Agent Builder” on page 166
“How to Use the Command-Line Version of Agent Builder” on page 167

Analyzing the Application

Before using Agent Builder, you must determine whether the application that you intend to
make highly available or scalable meets the required criteria. Agent Builder cannot perform this
analysis, which is based solely on the runtime characteristics of the application. “Analyzing the
Application for Suitability” on page 29 provides more information about this topic.

Agent Builder might not always be able to create a complete resource type for your application.
However, in most cases, Agent Builder provides at least a partial solution. For example, more
sophisticated applications might require additional code that Agent Builder does not generate
by default. Examples of additional code include code that adds validation checks for additional
properties or that tunes parameters that Agent Builder does not expose. In these cases, you must
make changes to the generated source code or to the RTR file. Agent Builder is designed to
provide just this kind of flexibility.

Agent Builder places comments at particular points in the generated source code where you can
add your own resource type code. After making changes to the source code, you can use the
makefile that Agent Builder generates to recompile the source code and regenerate the resource
type package.

Chapter9 - Oracle Solaris Cluster Agent Builder 155

Using Agent Builder

156

Even if you write your entire resource type code without using any code that is generated by
Agent Builder, you can use the makefile and structure that Agent Builder provides to create the
Oracle Solaris package for your resource type.

Installing and Configuring Agent Builder

Agent Builder requires no special installation. Agent Builder is included in the
ha-cluster/developer/api IPS package, which is installed by default when you install the
Oracle Solaris Cluster software. The Oracle Solaris Cluster Software Installation Guide contains
more information.

Before you use Agent Builder, verify the following requirements:

= The Java runtime environment is included in your $PATH variable.

= The cc compiler is included in your $PATH variable. Agent Builder uses the first occurrence
of cc in your $PATH variable to identify the compiler with which to generate C binary code
for the resource type. If cc is not included in $PATH, Agent Builder disables the option to
generate C code. See “Using the Create Screen” on page 159.

Note - You can use a different compiler with Agent Builder than the standard cc compiler. To
use a different compiler, create a symbolic link in $PATH from cc to a different compiler, such as
gcc. Or, change the compiler specification in the makefile (currently, CC=cc) to the complete
path for a different compiler. For example, in the makefile that is generated by Agent Builder,
change CC=cc to CC=pathname/gcc. In this case, you cannot run Agent Builder directly. Instead,
you must use the make and make pkg commands to generate data service code and the package.

Agent Builder Screens
Agent Builder is a two-step wizard with a corresponding screen for each step.

Agent Builder provides the following two screens to guide you through the process of creating a
new resource type:

1. Create screen. On this screen, you provide basic information about the resource type to
create, such as its name and the working directory for the generated files. The working
directory is where you create and configure the resource type template.

You also specify the following information:
m Thekind of resource to create (scalable or failover)

= Whether the base application is network aware (that is, if it uses the network to
communicate with its clients)

= The type of code to generate (C, Korn shell (ksh), or GDS)

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLIST

Using Agent Builder

For information about GDS, see Chapter 10, “Generic Data Service” You must provide all
the information on this screen and select Create to generate the corresponding output.
Then, you can display the Configure screen.

2. Configure screen. On this screen, you must specify the full command line that can be
passed to any UNIX shell to start your base application. Optionally, you can provide
commands to stop and to probe your application. If you do not specify these two
commands, the generated output uses signals to stop the application and provides a default
probe mechanism. See the description of the probe command in “Using the Configure
Screen” on page 161. The Configure screen also enables you to change the timeout values for
each of these three commands: start, stop, probe.

Starting Agent Builder

Note - If the GUI version of Agent Builder is not accessible, you can access Agent Builder
through a command-line interface. See “How to Use the Command-Line Version of Agent
Builder” on page 167.

If you start Agent Builder from the working directory for an existing resource type, Agent
Builder initializes the Create and Configure screens to the values of the existing resource type.

Start Agent Builder by typing the following command:

% /usr/cluster/bin/scdsbuilder

The Create screen appears.

Navigating Agent Builder

You enter information on the Create and Configure screens by performing the following
operations:

= Typinginformation in a field
= Browsing your directory structure and selecting a file or directory

= Selecting one of a set of mutually exclusive radio buttons, for example, selecting Scalable or
Failover

= Selecting the Network Aware check box to identify the base application as network aware, or
leaving this box empty to identify a non-network-aware application

The buttons at the bottom of each screen enable you to complete the task, move to the next or
previous screen, or exit Agent Builder. Agent Builder emphasizes or grays out these buttons, as
necessary.

Chapter9 - Oracle Solaris Cluster Agent Builder 157

Using Agent Builder

158

For example, when you have filled in the fields and selected the preferred options on the Create
screen, click Create at the bottom of the screen. Previous and Next are grayed out because no
previous screen exists and you cannot go to the next step before you complete this step.

§tep1uf2:| Create || <<Previous || Mext=> || Cancel |

Agent Builder displays progress messages in the Output Log area at the bottom of the screen.
When Agent Builder finishes, it displays a success message or a warning message. Next is
highlighted, or if this is the last screen, only Cancel is highlighted.

You can click Cancel at any time to exit Agent Builder.

Browse Command
Some Agent Builder fields enable you to type information in them. Other fields enable you to
click Browse to browse a directory structure and select a file or a directory.

When you click Browse, a screen appears that lists the files and directory folders.

Double-click a folder to open it. When you move the cursor to a file, the file's name appears in
the File Name field. Click Select when you have located and moved the cursor to the file that you
want.

Note - If you are browsing for a directory, move the cursor to the directory that you want and
click Open. If the directory contains no subdirectories, Agent Builder closes the browse window
and places the name of the directory to which you moved the cursor in the appropriate field. If
this directory has subdirectories, click Close to close the browse window and redisplay the
previous screen. Agent Builder places the name of the directory to which you moved the cursor
in the appropriate field.

The icons in the upper right corner of the Browse screen do the following:

Icon Purpose
This icon moves you up one level in the directory tree.
This icon returns you to the home folder.
This icon creates a new folder under the currently selected folder.
BE |8 This icon, for toggling between different views, is reserved for future use.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder

Agent Builder Menus

Agent Builder provides File and Edit drop-down menus.

Agent Builder File Menu

The File menu contains two options:

= Load Resource Type. Loads an existing resource type. Agent Builder provides a browse
screen from which you select the working directory for an existing resource type. Ifa
resource type exists in the directory from which you start Agent Builder, Agent Builder
automatically loads the resource type. Load Resource Type enables you to start Agent
Builder from any directory and select an existing resource type to use as a template for
creating a new resource type. See “Reusing Code That You Create With Agent Builder” on
page 166.

= Exit. Exits Agent Builder. You can also exit by clicking Cancel on the Create or the
Configure screen.

Agent Builder Edit Menu

The Edit menu contains two options:

= Clear Output Log. Clears the information from the output log. Each time you select Create
or Configure, Agent Builder appends status messages to the output log. If you are iteratively
making changes to your source code and regenerating output in Agent Builder and want to
segregate the status messages, you can save and clear the log file before each use.

= Save Log File. Saves the log output to a file. Agent Builder provides a browse screen that
enables you to select the directory and specify a file name.

Using the Create Screen

The first step in creating a resource type is to complete the Create screen, which appears when
you start Agent Builder.
The Create screen contains the following fields, radio buttons, and check box:

= Vendor Name. A name that identifies the vendor of the resource type. Typically, you specify
the stock symbol of the vendor. However, any name that uniquely identifies the vendor is
valid. Use alphanumeric characters only.

= Application Name. The name of the resource type. Use alphanumeric characters only.

Chapter9 - Oracle Solaris Cluster Agent Builder 159

Using Agent Builder

Note - Together, the vendor name and application name make up the full name of the
resource type.

RT Version. The version of the generated resource's type. The RT Version distinguishes
between multiple registered versions, or upgrades, of the same base resource type.

You cannot use the following characters in the RT Version field:

= Space
= Tab
= Slash (/)

= Backslash (\)

® Asterisk (*)

= Question mark (?)

= Commal(,)

= Semicolon (;)

m Left square bracket ([)

= Rightsquare bracket (])

Working Directory. The directory under which Agent Builder creates a directory structure
to contain all the files that are created for the target resource type. You can create only one
resource type in any one working directory. Agent Builder initializes this field to the path of
the directory from which you started Agent Builder. However, you can type a different name
or use Browse to locate a different directory.

Under the working directory, Agent Builder creates a subdirectory with the resource type
name. For example, if ORCL is the vendor name and ftp is the application name, Agent
Builder names this subdirectory ORCLftp.

Agent Builder places all the directories and files for the target resource type under this
subdirectory. See “Directory Structure That Agent Builder Creates” on page 168.

Scalable or Failover. Specify whether the target resource type is failover or scalable.

Network Aware. Specify whether the base application is network aware, that is, if it uses the
network to communicate with its clients. Select the Network Aware check box to specify
network aware, or do not select the check box to specify non-network aware.

G, ksh. Specify the language of the generated source code. Although these options are
mutually exclusive, with Agent Builder you can create a resource type with Korn
shell-generated code and reuse the same information to create C generated code. See
“Reusing Code That You Create With Agent Builder” on page 166.

GDS. Specify that this service is a generic data service. Chapter 10, “Generic Data Service,”
contains more detailed information about creating and configuring a generic data service.

160 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder

Note - If the cc compiler is not in your $PATH variable, Agent Builder grays out the C radio
button and allows you to select the ksh radio button. To specify a different compiler, see the
note at the end of “Installing and Configuring Agent Builder” on page 156.

After you have specified the required information, click Create. The Output Log area at the
bottom of the screen shows the actions that Agent Builder performs. You can choose Save
Output Log from the Edit menu to save the information in the output log.

When finished, Agent Builder displays either a success message or a warning message.

= If Agent Builder was unable to complete this step, examine the output log for details.

= If Agent Builder completes successfully, click Next to display the Configure screen. The
Configure screen enables you to finish generating the resource type.

Note - Although generation of a complete resource type is a two-step process, you can exit Agent
Builder after completing the first step (create) without losing the information that you have
specified or the work that Agent Builder has completed. See “Reusing Code That You Create
With Agent Builder” on page 166.

Using the Configure Screen

The Configure screen appears after Agent Builder finishes creating the resource type and you
click Next on the Create screen. You cannot access the Configure screen before the resource
type has been created.

The Configure screen contains the following fields:

= Start Command. The complete command line that can be passed to any UNIX shell to start
the base application. You must specify a start command. You can type the command in the
field provided, or use Browse to locate a file that contains the command to start the
application.

The complete command line must include everything necessary to start the application,
such as host names, port numbers, a path to configuration files. You can also specify
property variables, which are described in “Using Property Variables” on page 163. If your
Korn shell-based application requires a host name to be specified on the command line, you
can use the $hostnames variable that Agent Builder defines. See “Using the Agent Builder
Korn Shell-Based $hostnames Variable” on page 163.

Do not enclose the command in double quotation marks ().

Chapter9 - Oracle Solaris Cluster Agent Builder 161

Using Agent Builder

162

Note - If the base application has multiple independent process trees, each of which is started
with its own tag under Process Monitor Facility (PMF) control, you cannot specify a single
command. Rather, you must create a text file that contains individual commands to start
each process tree, and specify the path to this file in the Start Command text field. See
“Before You Use Agent Builder” on page 154. This section lists some special characteristics
that this file requires to work correctly.

Stop Command. The complete command line that can be passed to any UNIX shell to stop
the base application. You can type the command in the field provided, or use Browse to
locate a file that contains the command to stop the application. You can also specify
property variables, which are described in “Using Property Variables” on page 163. If your
Korn shell-based application requires a host name to be specified on the command line, you
can use the $hostnames variable that Agent Builder defines. See “Using the Agent Builder
Korn Shell-Based $hostnames Variable” on page 163.

This command is optional.
If you do not specify a stop command, the generated code uses signals (in the Stop method)
to stop the application, as follows:

= The Stop method sends SIGTERM to stop the application and waits for 80 percent of the
timeout value for the application to exit.

= Jfthe SIGTERMsignal is unsuccessful, the Stop method sends SIGKILL to stop the
application and waits for 15 percent of the timeout value for the application to exit.

m IfSIGKILL is unsuccessful, the Stop method exits unsuccessfully. The remaining 5
percent of the timeout value is considered overhead.

Caution - Be certain the stop command does not return before the application has stopped
completely.

Probe Command. A command that can be run periodically to check the health of the
application and return an exit status between 0 (success) and 100 (complete failure). This
command is optional. You can type the complete path to the command, or use Browse to
locate a file that contains the commands to probe the application.

Typically, you specify a simple client of the base application. If you do not specify a probe
command, the generated code simply connects to and disconnects from the port that is used
by the resource. If the connect and disconnect succeed, the generated code declares the
application healthy. You can also specify property variables, which are described in “Using
Property Variables” on page 163. If your Korn shell-based application requires that you
specify a host name on the probe command line, you can use the $hostnames variable that
Agent Builder defines. See “Using the Agent Builder Korn Shell-Based $hostnames
Variable” on page 163.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder

Do not enclose the command in double quotation marks ().

= Timeout. A timeout value, in seconds, for each command. You can specify a new value, or
accept the default value that Agent Builder provides. The default value is 300 seconds for
start and stop and 30 seconds for probe.

Using the Agent Builder Korn Shell-Based $Shostnames
Variable

For many applications, specifically network-aware applications, the host name on which the
application listens and services customer requests must be passed to the application on the
command line. In many cases, the host name is an argument that you must specify for start,
stop, and probe commands for the target resource type on the Configure screen. However, the
host name on which an application listens is cluster specific. The host name is determined when
the resource is run on a cluster. The host name cannot be determined when Agent Builder
generates your resource type code.

To solve this problem, Agent Builder provides the $hostnames variable that you can specify on
the command line for the start, stop, and probe commands.

Note - The $hostnames variable is supported for use with Korn shell-based services only. The
$hostnames variable is not supported for use with C-based and GDS-based services.

You specify the $hostnames variable exactly as you would an actual host name, for example:

% /opt/network_aware/echo_server -p port-no -1 $hostnames

When a resource of the target resource type is run on a cluster, the LogicalHostname or
SharedAddress host name that is configured for that resource is substituted for the value of the
$hostnames variable. The host name is configured for that resource in the
Network_resources_used resource property of the resource.

If you configure the Network_resources_used property with multiple host names, the
$hostnames variable contains all host names, each host name separated by a comma.

Using Property Variables

You can also retrieve the values of selected Oracle Solaris Cluster resource type, resource, and
resource group properties from the RGM framework by using property variables. Agent Builder
scans your start, probe, or stop command strings for property variables and substitutes these
variables with their values before Agent Builder executes the command.

Chapter9 - Oracle Solaris Cluster Agent Builder 163

Using Agent Builder

Note - Property variables are not supported for use with Korn shell-based services.

List of Property Variables

This section lists the property variables that you can use. The Oracle Solaris Cluster resource
type, resource, and resource group properties are described in “Setting Standard Properties” on
page 34.

Resource Property Variables

HOSTNAMES

RS _CHEAP_PROBE_ INTERVAL

RS MONITOR START TIMEOUT
RS MONITOR STOP TIMEOUT

RS NAME

RS _NUM_RESTARTS

RS RESOURCE DEPENDENCIES
RS RESOURCE DEPENDENCIES WEAK
RS RETRY COUNT

RS _RETRY INTRVAL

RS SCALABLE

RS START TIMEOUT

RS _STOP TIMEOUT

RS _THOROUGH PROBE_INTERVAL
SCHA STATUS

Resource Type Property Variables

= RT API VERSION

= RT BASEDIR

= RT_FAILOVER

= RT INSTALLED NODES
= RT NAME

= RT RT_VERSION

= RT SINGLE INSTANCE

Resource Group Property Variables

RG_DESIRED PRIMARIES

RG_GLOBAL RESOURCES USED
RG_IMPLICIT NETWORK DEPENDENCIES
RG_MAXIMUM PRIMARIES

RG_NAME

164 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder

RG_NODELIST

RG_NUM RESTARTS
RG_PATHPREFIX
RG_PINGPONG_INTERVAL
RG_RESOURCE_LIST

Syntax of Property Variables

You include a percent sign (%) before a property name to indicate a property variable, as shown
in this example:

/opt/network aware/echo server -t %RS STOP TIMEOUT -n %RG NODELIST

Given the preceding example, Agent Builder might interpret these property variables and start
the echo_server script with the following values:

/opt/network aware/echo server -t 300 -n phys-node-1,phys-node-2,phys-node-3

How Agent Builder Substitutes Property Variables

Agent Builder interprets the types of property variables, as follows:

An integer is substituted with its actual value (300, for example).
A Boolean value is substituted with the string TRUE or FALSE.
A string is substituted with the actual string (phys-node- 1, for example).

A list of strings is substituted with all members in the list, each string separated by a comma
(phys-node-1,phys-node-2,phys-node-3, for example).

A list of integers is substituted with all members in the list, each integer separated by a
comma (1,2, 3, for example).

An enumerated type is substituted with its value, in string form.

Chapter9 - Oracle Solaris Cluster Agent Builder 165

Using Agent Builder

166

Reusing Code That You Create With Agent Builder

Agent Builder enables you to reuse completed work in the following ways:

= You can clone an existing resource type that you created with Agent Builder.

= You can edit the source code that Agent Builder generates and recompile the code to create a
new package.

How to Clone an Existing Resource Type

Follow this procedure to clone an existing resource type that is generated by Agent Builder.

Load an existing resource type into Agent Builder.

Use one of the following methods:

= Start Agent Builder from the working directory for an existing resource type that you
created with Agent Builder. Ensure that the working directory contains the rtconfig file.
Agent Builder loads the values for that resource type in the Create and Configure screens.

= Use the Load Resource Type option from the File drop-down menu.

Change the working directory on the Create screen.

You must use Browse to select a directory. Typing a new directory name is not sufficient. After
you select a directory, Agent Builder re-enables the Create button.

Make the changes that you want to the existing resource type.
You might change the type of code that is generated for the resource type.

For example, if you initially create a Korn shell version of a resource type but find over time that
you require a C version, you can do the following:

= Load the existing Korn shell resource type.

= Change the language for the output to C.

= Click Create to have Agent Builder build a C version of the resource type.
Create the cloned resource type.

a. Click Create to create the resource type.

b. Click Next to display the Configure screen.

¢. Click Configure to configure the resource type, and click Cancel to finish.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder

Editing the Generated Source Code

To simplify the process of creating a resource type, Agent Builder limits the amount of
information that you can specify, which necessarily limits the scope of the generated resource
type. Therefore, to add more sophisticated features, you need to modify the generated source
code or the RTR file. Examples of additional features include code that adds validation checks
for additional properties or that tunes parameters that Agent Builder does not expose.

The source files are in the install-directory/rt-name/ s rc directory. Agent Builder embeds
comments in the source code where you can add code. These comments are of the form (for C
code):

/* User added code -- BEGIN vvvvvvvvvvvvvvv */
/* User added code -- END ""ANANAANAAAAAA X/

Note - These comments are identical in Korn shell source code, except the comment mark (#)
indicates the beginning of a comment.

For example, rt-name. h declares all the utility functions that the different programs use. At the
end of the list of declarations are comments that enable you to declare additional functions that
you might have added to your code.

Agent Builder also generates the makefile in the install-directory/rt-name/src directory with
corresponding targets. Use the make command to recompile the source code. Use the make pkg
command to regenerate the resource type package.

The RTR file is in the install-directory/rt-name/etc directory. You can edit the RTR file with a
standard text editor. See “Setting Resource and Resource Type Properties” on page 35 for more
information about the RTR file. See “Setting Standard Properties” on page 34 for information
about properties.

How to Use the Command-Line Version of Agent
Builder

The command-line version of Agent Builder follows the same basic process as the GUI.
However, instead of typing information in the GUI, you pass arguments to the scdscreate and
scdsconfig commands. See the scdscreate(1HA) and scdsconfig(1HA) man pages for more
information.

Follow these steps to use the command-line version of Agent Builder.

Use scdscreate to create an Oracle Solaris Cluster resource type template for making an
application highly available or scalable.

Chapter9 - Oracle Solaris Cluster Agent Builder 167

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscdscreate-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscdsconfig-1ha

Directory Structure That Agent Builder Creates

2 Usescdsconfig to configure the resource type template that you created with scdscreate.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 163.

3 Changedirectories to the pkg subdirectory in the working directory.
4 (Optional) Edit the generated source code.

5 Oneachnode, use the pkgadd command to install the packages that you created with
scdscreate.

pkgadd -d . package-name

Note - This instruction applies to the SVR4 package that Agent Builder creates. If you need an
IPS version of the package, use the pkgsend command to convert your SVR4 agent package to
an IPS package, and use the pkg install command to install the IPS package. For more
information, see the pkgsend(1) and pkg(1) man pages.

6 Runthe startscript.

Directory Structure That Agent Builder Creates

Agent Builder creates a directory structure to hold all the files that it generates for the target
resource type. You specify the working directory on the Create screen. You must specify
separate install directories for any additional resource types that you develop. Under the
working directory, Agent Builder creates a subdirectory whose name is a concatenation of the
vendor name and the resource type name. For example, if you specify ORCL as the vendor name
and create a resource type called ftp, Agent Builder creates a directory called ORCLftp under the
working directory.

Under this subdirectory, Agent Builder creates and populates the directories that are listed in

the following table.
Directory
Name Contents
bin For C output, contains the binary files that are compiled from the source files. For Korn shell

output, contains the same files as the src directory.

etc Contains the RTR file. Agent Builder concatenates the vendor name and application name,
separated by a period (.), to form the RTR file name. For example, if the vendor name is ORCL and
the name of the resource type is ftp, the name of the RTR file is ORCL. ftp.

168 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkg-1

Agent Builder Output

Directory

Name Contents

man Contains customized man pages for the start, stop, and remove utility scripts, for example,
startftp(1M), stopftp(1M), and removeftp(1M).
To view these man pages, specify the path with the man -M option. For example:
% man -M install-directory/ORCLftp/man removeftp

pkg Contains the final Oracle Solaris package that includes the created data service.

src Contains the source files that Agent Builder generates.

util Contains the start, stop, and remove utility scripts that Agent Builder generates. See “Utility

Scripts and Man Pages That Agent Builder Creates” on page 171. Agent Builder appends the
application name to each of these script names, for example, startftp, stopftp, and removeftp.

Agent Builder Output
This section describes the output that Agent Builder generates.

This section covers the following topics:

= “Source and Binary Files” on page 169

“Utility Scripts and Man Pages That Agent Builder Creates” on page 171
“Support Files That Agent Builder Creates” on page 172

= “Package Directory That Agent Builder Creates” on page 172

= “rtconfig File” on page 173

Source and Binary Files

The Resource Group Manager (RGM) manages resource groups and ultimately resources on a
cluster. The RGM works on a callback model. When specific events happen, such as a node
failure, the RGM calls the resource type's methods for each of the resources that are running on
the affected node. For example, the RGM calls the Stop method to stop a resource that is
running on the affected node, and calls the resource's Start method to start the resource on a
different node. See “Resource Group Manager Model” on page 21, “Callback Methods” on
page 23, and the rt_callbacks(1HA) man page for more information about this model.

To support this model, Agent Builder generates eight executable C programs or Korn shell
scripts in the install-directory/rt-name/bin directory. These programs or shell scripts serve as
callback methods.

Chapter9 - Oracle Solaris Cluster Agent Builder 169

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha

Agent Builder Output

170

Note - Strictly speaking, the rt-name_probe program, which implements a fault monitor, is not
a callback program. The RGM does not directly call rt-name_probe. Instead, the RGM calls
rt-name_monitor_start and rt-name_monitor_stop. These methods start and stop the fault
monitor by calling rt-name _probe.

Here are the eight methods that Agent Builder generates:

= rf-name _monitor check
= rf-name_monitor start
= rf-name_monitor stop
= rf-name_probe

® rf-name svc_start

= rif-name_svc_stop

= rt-name_update

= rf-name validate

See the rt_callbacks(1HA) man page for specific information about each method.

In the install-directory/rt-name/src directory (C output), Agent Builder generates the
following files:

® A header file (rt-name. h)

® A source file (rt-name. c) that contains code that is common to all methods
= Anobject file (rt-name. o) for the common code

m Source files (*. c) for each method

= Object files (*. 0) for each method

Agent Builder links the rt-name. o file to each of the method . o files to create the executable files
in the install-directory/rt-name/bin directory.

For Korn shell output, the install-directory/rt-name/bin and install-directory/rt-name/src
directories are identical. Each directory contains the eight executable scripts that correspond to
the seven callback methods and the Probe method.

Note - The Korn shell output includes two compiled utility programs, gettime and
gethostnames. Particular callback methods require these methods for getting the time and for
probing.

You can edit the source code, run the make command to recompile the code, and when you are
finished, run the make pkg command to generate a new package. To support making changes to
the source code, Agent Builder embeds comments in the source code at correct locations where
you can add code. See “Editing the Generated Source Code” on page 167.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrt-callbacks-1ha

Agent Builder Output

Utility Scripts and Man Pages That Agent Builder
Creates

Once you have generated a resource type and installed its package on a cluster, you must still get
an instance (resource) of the resource type that is running on a cluster. Generally, to get an
instance, you use administrative commands. However, as a convenience, Agent Builder
generates a customized utility script for this purpose as well as scripts for stopping and
removing a resource of the target resource type.

These three scripts, which are located in the install-directory/rt-name/util directory, do the
following:

= Start script. Registers the resource type, and creates the necessary resource groups and
resources. This script also creates the network address resource (LogicalHostname or
SharedAddress) that enables the application to communicate with the clients on the
network.

= Stop script. Stops the resource.

= Remove script. Undoes the work of the start script. That is, this script stops and removes
the resources, resource groups, and the target resource type from the system.

Note - You can only use the remove script with a resource that was started by the corresponding
start script because these scripts use internal conventions to name resources and resource
groups.

Agent Builder names these scripts by appending the application name to the script names. For
example, if the application name is ftp, the scripts are called startftp, stopftp, and
removeftp.

Agent Builder provides man pages in the install-directory/rt-name/man/man1lm directory for
each utility script. You should read these man pages before you start these scripts because they
document the arguments that you need to pass to the script.

To view these man pages, specify the path to this man directory by using the -M option with the
man command. For example, if ORCL is the vendor and ftp is the application name, type the
following command to view the startftp(1M) man page:

% man -M install-directory/ORCLftp/man startftp

The man page utility scripts are also available to the cluster administrator. When an Agent
Builder-generated package is installed on a cluster, the man pages for the utility scripts are
placed in the /opt/rt-name/man directory. For example, type the following command to view
the startftp(1M) man page:

% man -M /opt/ORCLftp/man startftp

Chapter9 - Oracle Solaris Cluster Agent Builder 171

Agent Builder Output

172

Support Files That Agent Builder Creates

Agent Builder places support files, such as pkginfo, postinstall, postremove, and preremove,
in the install-directory/rt-name/etc directory. This directory also contains the resource type
registration (RTR) file. The RTR file declares resource and resource type properties that are
available for the target resource type and initializes property values at the time a resource is
registered with a cluster. See “Setting Resource and Resource Type Properties” on page 35 for
more information. The RTR file is named as vendor-name. resource-type-name, for example,
ORCL. ftp.

You can edit this file with a standard text editor and make changes without recompiling your
source code. However, you must rebuild the package with the make pkg command.

Package Directory That Agent Builder Creates

The install-directory/rt-name/pkg directory contains an Oracle Solaris SVR4 package. The
name of the package is a concatenation of the vendor name and the application name, for
example, ORCL ftp. The makefile in the install-directory/rt-name/src directory supports the
creation of a new package. For example, if you make changes to the source files and recompile
the code, or you make changes to the package utility scripts, use the make pkg command to
create a new package.

Note - If you need an IPS version of the package that Agent Builder creates, use the pkgsend
command to convert your SVR4 agent package to an IPS package, and use the pkg install
command to install the IPS package. For more information, see the pkgsend(1) and pkg(1) man

pages.

When you remove a package from a cluster, the pkgrm (SVR4) or pkg remove (IPS) command
can fail if you attempt to run the command simultaneously from more than one node.

You can solve this problem in one of two ways:

= Run the remove rt-name script from one node of the cluster before running the pkgrm
command from any node.

= Run the pkgrm command from one node of the cluster, which takes care of all necessary
cleanup operations. Then, run the pkgrm command from the remaining nodes,
simultaneously if necessary.

If pkgrm fails because you attempt to run it simultaneously from multiple nodes, run the
command again from one node. Then, run the command from the remaining nodes.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkg-1

Agent Builder Output

rtconfigFile

If you generate C or Korn shell source code in the working directory, Agent Builder generates a
configuration file called rtconfig. This file contains the information that you specified on the
Create and Configure screens. If you start Agent Builder from the working directory for an
existing resource type, Agent Builder reads the rtconfig file. Agent Builder fills in the Create
and Configure screens with the information that you provided for the existing resource type.
Agent Builder works similarly if you load an existing resource type by choosing Load Resource
Type from the File drop-down menu. This feature is useful if you want to clone an existing
resource type. See “Reusing Code That You Create With Agent Builder” on page 166.

Chapter9 - Oracle Solaris Cluster Agent Builder 173

174

L K R 4 CHAPTER 10

Generic Data Service

This chapter provides information about the generic data service (GDS) and shows you how to
create a service that uses the GDS. You create this service by using either Oracle Solaris Cluster
Agent Builder or Oracle Solaris Cluster administration commands.

This chapter covers the following topics:

= “Generic Data Service Concepts” on page 175

= “Using Agent Builder to Create a Service That Uses the GDS” on page 183

= “Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the
GDS” on page 187

= “Command-Line Interface for Agent Builder” on page 189

Generic Data Service Concepts

The GDS is a mechanism for making simple network-aware and non-network-aware
applications highly available or scalable by plugging them into the Oracle Solaris Cluster
Resource Group Management (RGM) framework. This mechanism does not require you to
code a data service, which you typically must do to make an application highly available or
scalable.

The GDS is a single, precompiled data service. You cannot modify the precompiled data service
and its components, the callback method (rt_callbacks) implementations, and the resource
type registration file (rt_reg).

This section covers the following topics:

“Precompiled Resource Type” on page 176

“Advantages and Disadvantages of Using the GDS” on page 176
“Ways to Create a Service That Uses the GDS” on page 177
“How the GDS Logs Events” on page 177

“Required GDS Properties” on page 178

175

Generic Data Service Concepts

176

= “Optional GDS Properties” on page 179

Precompiled Resource Type

The generic data service resource type SUNW. gds is included in the
ha-cluster/ha-service/gds package. The ha-cluster/ha-service/gds package includes
the following files:

pkg contents ha-cluster/ha-service/gds

PATH

/opt/SUNWscgds

/opt/SUNWscgds/bin
/opt/SUNWscgds/bin/gds monitor check
/opt/SUNWscgds/bin/gds monitor start
/opt/SUNWscgds/bin/gds monitor stop
/opt/SUNWscgds/bin/gds_probe
/opt/SUNWscgds/bin/gds svc start
/opt/SUNWscgds/bin/gds_svc_stop
/opt/SUNWscgds/bin/gds update
/opt/SUNWscgds/bin/gds_validate
/opt/SUNWscgds/etc
/opt/SUNWscgds/etc/SUNW.gds
/opt/cluster

/opt/cluster/lib
/opt/cluster/lib/rgm
/opt/cluster/lib/rgm/rtreg
/opt/cluster/lib/rgm/rtreg/SUNW.gds

Advantages and Disadvantages of Using the GDS

Using the GDS has the following advantages over using either the Agent Builder source code
(see the scdscreate(1HA) man page) or Oracle Solaris Cluster administration commands:

= The GDS is easy to use.

® The GDS and its methods are precompiled and therefore cannot be modified.

= You can use Agent Builder to generate scripts for your application. These scripts are put in
an Oracle Solaris package that can be reused across multiple clusters.

While using the GDS has many advantages, the GDS is not the mechanism to use in these

instances:

= When more control is required than is available with the precompiled resource type, such as
when you need to add extension properties or change default values

= When the source code needs to be modified to add special functions

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscdscreate-1ha

Generic Data Service Concepts

Ways to Create a Service That Uses the GDS

There are two ways to create a service that uses the GDS:

= Agent Builder
m Qracle Solaris Cluster administration commands

GDS and Agent Builder

Use Agent Builder and select GDS as the type of generated source code. The user input is used
to generate a set of scripts that configure resources for the given application.

GDS and Oracle Solaris Cluster Administration Commands

This method uses the precompiled data service code in ha-cluster/ha-service/gds.
However, the cluster administrator must use Oracle Solaris Cluster administration commands
to create and configure the resource. See the clresource(1CL) man page.

Selecting the Method to Use to Create a GDS-Based Service

A significant amount of typing is required to issue Oracle Solaris Cluster commands. For
example, see “How to Use Oracle Solaris Cluster Administration Commands to Create a Highly
Available Service That Uses the GDS” on page 187 and “How to Use Oracle Solaris Cluster
Administration Commands to Create a Scalable Service That Uses the GDS” on page 188.

Using the GDS with Agent Builder simplifies the process because the GDS generates the scripts
that issue the scrgadmand scswitch commands for you.

How the GDS Logs Events

The GDS enables you to log relevant information that is passed from the GDS to the scripts that
the GDS starts. This information includes the status of the start, probe, validate, and stop
methods as well as property variables. You can use this information to diagnose problems or
errors in your scripts, or apply it to other purposes.

You use the Log_level property that is described in “Log_level Property” on page 180 to
specify the level, or type, of messages that the GDS is to log. You can specify NONE, INFO, or ERR.

Chapter 10 « Generic Data Service 177

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclresource-1cl

Generic Data Service Concepts

06/12/2006
06/12/2006

06/12/2006
06/12/2006
06/12/2006
06/12/2006

178

12:
12:

38

GDS LogFiles

The following two GDS log files are placed in the directory
/var/cluster/logs/DS/resource-group-name/resource-name:

= start_stop_log.txt, which contains messages that are generated by resource start and
stop methods

= probe_log.txt, which contains messages that are generated by the resource monitor

The following example shows the types of information that start_stop_log.txt contains:

105 phys-node-1 START-INFO> Start succeeded. [/home/brianx/sc/start cmd]
42:

11 phys-node-1 STOP-INFO> Successfully stopped the application

The following example shows the types of information that probe_log. txt contains:

:15 phys-node-1 PROBE-INFO> The GDS monitor (gds probe) has been started
:15 phys-node-1 PROBE-INFO> The probe result is 0
115 phys-node-1 PROBE-INFO> The probe result is 0
:15 phys-node-1 PROBE-INFO> The probe result is 0

Required GDS Properties

This section describes the required GDS properties.

Port_list Property

The Port_list property identifies the list of ports on which the application listens. You must
specify the Port_list property in the start script that Agent Builder creates or with the
clresource command.

Whether you must specify this property depends on whether your application is network aware
or not. If you specify that your application is network aware (you set the Network_aware
property to TRUE, the default), you must provide both the Start_command extension property
and the Port_list property. If you specify that your application is non-network aware (you set
the Network_aware property to FALSE), you must provide only the Start_command extension
property. The Port_list property is optional.

Start_command Property

The start command, which you specify with the Start_command extension property, starts the
application. This command must be a UNIX command with arguments that can be passed
directly to a shell to start the application.

If your application is network aware, you must provide both the Start_command extension
property and the Port_list property. If your application is non-network aware, you must
provide only the Start_command extension property.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Generic Data Service Concepts

Optional GDS Properties

Optional GDS properties include both system-defined properties and extension properties.
System-defined properties are a standard set of properties that are provided by Oracle Solaris
Cluster. Properties that are defined in the RTR file are called extension properties.

Here are optional GDS properties:

Child_mon_level extension property (used only with administration commands)
Failover enabled extension property
Log_level extension property
Monitor_retry count extension property
Monitor_retry_interval extension property
Network_aware extension property
Network_resources_used property
Probe_command extension property
Probe_timeout extension property
Start_timeout property

Stop_command extension property
Stop_signal extension property
Stop_timeout property

Validate_ command extension property
Validate_ timeout property

Child_mon_level Property

Note - If you use Oracle Solaris Cluster administration commands, you can use the
Child_mon_level property. If you use Agent Builder, you cannot use this property.

This property provides control over the processes that are monitored through the Process
Monitor Facility (PMF). This property denotes the level up to which the forked children
processes are monitored. This property works like the - C argument to the pmfadm command.
See the pmfadm(1M) man page.

Omitting this property, or setting it to the default value of - 1, has the same effect as omitting the
-C option on the pmfadm command. That is, all children and their descendents are monitored.

Failover_enabled Property

This property controls the failover behavior of the resource. If this extension property is set to
TRUE, the application fails over when the number of restarts exceeds the Retry_count within the
Retry interval number of seconds.

Chapter 10 « Generic Data Service 179

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMpmfadm-1m

Generic Data Service Concepts

180

If this property is set to FALSE, the application does not restart or fail over to another node when
the number of restarts exceeds the Retry count within the Retry interval number of
seconds.

You can use this property to prevent the application resource from initiating a failover of the
resource group. The default value for this property is TRUE.

Note - In future, use the Failover_mode property in place of the Failover_enabled extension
property as Failover_mode better controls failover behavior. For more information, see the
descriptions of the LOG_ONLY and RESTART ONLY values for Failover mode in the
r_properties(5) man page.

Log_level Property

This property specifies the level, or type, of diagnostic messages that are logged by the GDS. You
can specify NONE, INFO, or ERR for this property. When you specify NONE, diagnostic messages
are not logged by the GDS. When you specify INFO, only informational messages are logged.
When you specify ERR, only error messages are logged. By default, the GDS does not log
diagnostic messages (NONE).

Monitor_retry_count Property

This property specifies the number of times that the process monitor facility (PMF) restarts the
fault monitor during the time window that theMonitor_retry_interval property specifies.
This property refers to restarts of the fault monitor itself rather than to the resource. The
system-defined properties Retry_interval and Retry_count control restarting of the
resource.

Monitor_retry_interval Property

This property specifies the time (in minutes) over which failures of the fault monitor are
counted. If the number of times that the fault monitor fails exceeds the value that is specified in
the extension property Monitor_retry_count within this period, the PMF does not restart the
fault monitor.

Network_aware Property
This property specifies whether your application uses the network. By default, the GDS assumes
that your application is network aware, that is, uses the network (Network_aware is set to TRUE).

If your application is network aware, you must provide both the Start_command extension
property and the Port_list property. If your application is non-network aware, you must
provide only the Start_command extension property.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5

Generic Data Service Concepts

Network_resources_used Property

This property specifies a list of logical host name or shared address network resources that are
used by a resource. The default value for this property is the empty list. You must specify this
property if the application needs to bind to one or more specific addresses. If you omit this
property or you specify Null, the application listens on all addresses.

Before you create the GDS resource, a LogicalHostname or SharedAddress resource must
already be configured. See the Oracle Solaris Cluster Data Services Planning and Administration
Guide for information about how to configure a LogicalHostname or SharedAddress resource.

To specify a value, specify one or more resource names. Each resource name can contain one or
more LogicalHostname resources or one or more SharedAddress resources. See the
r_properties(5) man page for details.

Probe_command Property

This property specifies the probe command that periodically checks the health of a given
application. This command must be a UNIX command with arguments that can be passed
directly to a shell to probe the application. The probe command returns with an exit status of @
if the application is running correctly.

The exit status of the probe command is used to determine the severity of the application's
failure. This exit status, called the probe status, must be an integer between 0 (for success) and
100 (for complete failure). The probe status can also be a special value of 201, which causes the
application to immediately fail over unless Failover_enabled is set to FALSE. The GDS probing
algorithm uses the probe status to determine whether to restart the application locally or fail it
over. See the scds_fm_action(3HA) man page for more information. If the exit status is 201,
the application is immediately failed over.

If the probe command is omitted, the GDS provides its own simple probe. This probe connects
to the application on the set of IP addresses that is derived from the Network resources used
property or from the output of the scds_get_netaddr_list() function. See the
scds_get_netaddr_list(3HA) man page for more information. If the connect succeeds, the
connect disconnects immediately. If both the connect and disconnect succeed, the application
is deemed to be running well.

Note - The probe that is provided with the GDS is only intended to be a simple substitute for the
fully functioning application-specific probe.

Probe_timeout Property

This property specifies the timeout value for the probe command. See “Probe_command
Property” on page 181 for additional information. The default for Probe_timeout is 30 seconds.

Chapter 10 « Generic Data Service 181

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLDAG
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMr-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-action-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-netaddr-list-3ha

Generic Data Service Concepts

182

Start_timeout Property

This property specifies the start timeout for the start command. See “Start_command Property”
on page 178 for additional information. The default for Start_timeout is 300 seconds.

Stop_command Property

This property specifies the command that must stop an application and only return after the
application has been completely stopped. This command must be a complete UNIX command
that can be passed directly to a shell to stop the application.

If the Stop_command extension property is provided, the GDS stop method starts the stop
command with 80 percent of the stop timeout. Regardless of the outcome of starting the stop
command, the GDS stop method sends SIGKILL with 15 percent of the stop timeout. The
remaining 5 percent of the time is reserved for housekeeping overhead.

If the stop command is omitted, the GDS tries to stop the application by using the signal
specified in Stop _signal.

Stop_signal Property

This property specifies a value that identifies the signal to stop an application through the PME
See the signal(3HEAD) man page for a list of the integer values that you can specify. The
default value is 15 (SIGTERM).

Stop_timeout Property

This property specifies the timeout for the stop command. See “Stop_command Property” on
page 182 for additional information. The default for Stop_timeout is 300 seconds.

Validate_command Property

This property specifies the absolute path to a command to invoke to validate the application. If
you do not provide an absolute path, the application is not validated.

Validate_timeout Property

This property specifies the timeout for the validate command. See “validate_command
Property” on page 182 for additional information. The default for Validate_timeout is 300
seconds.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Fsignal-3head

Using Agent Builder to Create a Service That Uses the GDS

Using Agent Builder to Create a Service That Uses the GDS

You can use Agent Builder to create the service that uses the GDS. Agent Builder is described in
more detail in Chapter 9, “Oracle Solaris Cluster Agent Builder.”

Creating and Configuring GDS-Based Scripts

¥ How to Start Agent Builder and Create the Scripts
1 Assumethe rootrole orarole that provides solaris.cluster.modify RBAC authorization.

2 Start AgentBuilder.
/usr/cluster/bin/scdsbuilder

3 Typethevendorname.

4 Typetheapplication name.

Note - The combination of vendor name and application name is used as the name of the
package for the scripts.

5 Gototheworking directory.

You can use the Browse drop-down menu to select the directory rather than typing the path.

6 Select whether the data service is scalable or failover.

You do not need to select Network Aware because that setting is the default when you create the
GDS.

7 Select GDS.

8 (Optional) Change the RT version from the default value that is shown.

Note - You cannot use the following characters in the RT Version field: space, tab, slash (/),
backslash (\), asterisk (*), question mark (?), comma (,), semicolon (;), left square bracket ([),
or right square bracket (]).

9 ClickCreate.
Agent Builder creates the scripts. The results are displayed in the Output Log area.

Note that the Create button is grayed out. You can now configure the scripts.

Chapter 10 « Generic Data Service 183

Using Agent Builder to Create a Service That Uses the GDS

10 Click Next.

The Configure screen appears.

V¥ How to Configure the Scripts

After creating the scripts, you need to configure the new service.

1 Typethelocation of the start command, or click Browse to locate the start command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 163.

2 (Optional) Type the location of the stop command, or click Browse to locate the stop command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 163.

3 (Optional) Type the location of the validate command, or click Browse to locate the validate
command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 163.

4 (Optional) Type the location of the probe command, or click Browse to locate the probe
command.

You can specify property variables. Property variables are described in “Using Property
Variables” on page 163.

5 (Optional) Specify new timeout values for the start, stop, validate, and probe commands.

6 Click Configure.
Agent Builder configures the scripts.

Note - Agent Builder concatenates the vendor name and the application name to create the
package name.

A package for scripts is created and placed in the following directory:

working-dir/vendor-name-application/pkg

For example, /export/wdir/NETapp/pkg.

7 Oneach node of the cluster, assume the root role or arole that provides
solaris.cluster.modify RBAC authorization.

184 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Agent Builder to Create a Service That Uses the GDS

On each node of the cluster, install the completed package.

cd /export/wdir/NETapp/pkg
pkgadd -d . NETapp

Note - This instruction applies to the SVR4 package that Agent Builder creates. If you need an
IPS version of the package, use the pkgsend command to convert your SVR4 agent package to
an IPS package, and use the pkg add command to install the IPS package. For more
information, see the pkgsend(1) and pkg(1) man pages.

The following files are installed by pkgadd:

/opt/NETapp

/opt/NETapp/README. app
/opt/NETapp/man
/opt/NETapp/man/manlm
/opt/NETapp/man/manlm/removeapp.1lm
/opt/NETapp/man/manlm/startapp.1lm
/opt/NETapp/man/manlm/stopapp.1m
/opt/NETapp/man/manlm/app_config.1lm
/opt/NETapp/util
/opt/NETapp/util/removeapp
/opt/NETapp/util/startapp
/opt/NETapp/util/stopapp
/opt/NETapp/util/app config

Note - The man pages and script names correspond to the application name that you typed
previously on the Create screen, preceded by the script name (for example, startapp).

On one node of the cluster, configure the resources and start the application.
/opt/NETapp/util/startapp -h logicalhostname -p port-and-protocol-list

The arguments to the startapp script vary according to the type of resource: failover or
scalable.

Chapter 10 « Generic Data Service 185

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkg-1

Using Agent Builder to Create a Service That Uses the GDS

186

Note - To determine the command line that you need to type, check the customized man page,
or run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/NETapp/man startapp

To display a usage statement, type:

/opt/NETapp/util/startapp
The resource name of LogicalHostname or SharedAddress must be
specified. For failover services:
Usage: startapp -h logicalhostname
-p port-and-protocol-list
[-n ipmpgroup-adapter-list]
For scalable services:
Usage: startapp -h shared-address-name
-p port-and-protocol-list
[-1 load-balancing-policy]
[-n ipmpgroup/adapter-list]
[-w load-balancing-weights]

Output From Agent Builder

Agent Builder generates three scripts and a configuration file based on input that you provide
when you create the package. The configuration file specifies the names of the resource group
and the resource type.

The scripts are as follows:

= Start script. Configures the resources and starts the application that is under RGM control.
= Stop script. Stops the application and takes down resources and resource groups.

= Remove script. Removes the resources and resource groups that are created by the start
script.

These scripts have the same interface and behavior as the utility scripts that are generated by
Agent Builder for non-GDS-based data services. The scripts are put in an Oracle Solaris package
that you can reuse across multiple clusters.

You can customize the configuration file to provide your own names for resource groups or
other arguments that are normally given as arguments to the scrgadm and scswitch
commands. If you do not customize the scripts, Agent Builder provides default values for these
arguments.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the GDS

Using Oracle Solaris Cluster Administration Commands to
Create a Service That Uses the GDS

Before You Begin

This section describes how to input arguments to the GDS. You use the existing Oracle Solaris
Cluster administration commands, such as clresourcetype, clresourcegroup, and
clresource to maintain and administer the GDS.

If the scripts provide adequate functionality, you do not need to use the lower-level
administration commands that are shown in this section. However, you can use the lower-level
administration commands if you need to have finer control over the GDS-based resource.
These commands are executed by the scripts.

How to Use Oracle Solaris Cluster Administration
Commands to Create a Highly Available Service That
Uses the GDS

Ensure that the /etc/netmasks file has IP-address subnet and netmask entries for all logical
hostnames. If necessary, edit the /etc/netmasks file to add any missing entries.

Assume the root role or arole that provides solaris. cluster.modify RBAC authorization.

Register the resource type SUNW. gds.
clresourcetype register SUNW.gds

Create the resource group that contains the LogicalHostname resource and the failover service
itself.

clresourcegroup create haapp_rg

Create the resource for the LogicalHostname resource.

clreslogicalhostname create -g haapp_rg hhead

Create the resource for the failover service itself.

clresource create -g haapp_rg -t SUNW.gds
-p Validate_command="/export/app/bin/configtest" \
-p Scalable=false -p Start_timeout=120 \
-p Stop_timeout=120 -p Probe_timeout=120 \
-p Port_list="2222/tcp" \
-p Start_command="/export/ha/appctl/start" \
-p Stop_command="/export/ha/appctl/stop"” \
-p Probe_command="/export/app/bin/probe" \
-p Child_mon_level=0 -p Network_resources_used=hhead \
-p Failover_enabled=TRUE -p Stop_signal=9 haapp_rs

Chapter 10 « Generic Data Service 187

Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the GDS

6 Bring theresource group haapp_rgonline in a managed state.

clresourcegroup online -M haapp_rg

v How to Use Oracle Solaris Cluster Administration
Commands to Create a Scalable Service That Uses the

GDS

BeforeYouBegin Ensure that the /etc/netmasks file has IP-address subnet and netmask entries for all logical
hostnames. If necessary, edit the /etc/netmasks file to add any missing entries.

1 Assume the rootrole orarole that provides solaris.cluster.modify RBAC authorization.

2 Register the resource type SUNW. gds.
clresourcetype register SUNW.gds

3 Createtheresource group for the SharedAddress resource.

clresourcegroup create sa_rg

4 Createthe SharedAddress resource hhead in resource group sa_rg.

clressharedaddress create -g sa_rg hhead

5 Create theresource group for the scalable service.

clresourcegroup create -S -p RG_dependencies=sa_reg app_rg

6 Createtheresource for the scalable service.

clresource create -g app_rg -t SUNW.gds
-p Validate_command="/export/app/bin/configtest" \
-p Scalable=TRUE -p Start_timeout=120 \
-p Stop_timeout=120 -p Probe_timeout=120 \
-p Port_list="2222/tcp" \
-p Start_command="/export/app/bin/start" \
-p Stop_command="/export/app/bin/stop" \
-p Probe_command="/export/app/bin/probe" \
-p Child_mon_level=0 -p Network_resource_used=hhead \
-p Failover_enabled=TRUE -p Stop_signal=9 app_rs

7 Bring the resource group that contains the network resources online.

clresourcegroup online sa_reg

8 Bringtheresource group app_rgonline in a managed state.

clresourcegroup online -M app_reg

188 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Command-Line Interface for Agent Builder

Command-Line Interface for Agent Builder

Agent Builder incorporates a command-line interface that provides the same functionality that
the GUI provides. This interface consists of the commands scdscreate and scdsconfig. See
the scdscreate(1HA) and scdsconfig(1HA) man pages.

v How to Use the Command-Line Version of Agent
Builder to Create a Service That Uses GDS

This section describes how to use the command-line interface to perform the same set of steps
shown in “Using Agent Builder to Create a Service That Uses the GDS” on page 183.

1 Assumethe root role orarole that provides solaris.cluster.modify RBAC authorization.

2 Createthe service.
= For a failover service, type:

scdscreate -g -V NET -T app -d /export/wdir
= For ascalable service, type:

scdscreate -g -s -V NET -T app -d /export/wdir

Note - The -d argument is optional. If you do not specify this argument, the current directory
becomes the working directory.

3 Configure the service.

scdsconfig -s "/export/app/bin/start" \
-e "/export/app/bin/configtest" \

-t "/export/app/bin/stop" \

-m "/export/app/bin/probe" -d /export/wdir

You can specify property variables. Property variables are described in “Using Property
Variables” on page 163.

Note - Only the start command (scdsconfig -s) is required. All other options and arguments
are optional.

4 Oneachnode of the cluster, install the completed package.

cd /export/wdir/NETapp/pkg
pkgadd -d . NETapp

Chapter 10 « Generic Data Service 189

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscdscreate-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscdsconfig-1ha

Command-Line Interface for Agent Builder

Note - This instruction applies to the SVR4 package that Agent Builder creates. If you need an
IPS version of the package, use the pkgsend command to convert your SVR4 agent package to
an IPS package, and use the pkg add command to install the IPS package. For more
information, see the pkgsend(1) and pkg(1) man pages.

The following files are installed by pkgadd:

/opt/NETapp

/opt/NETapp/README. app
/opt/NETapp/man
/opt/NETapp/man/manlm
/opt/NETapp/man/manlm/removeapp.1lm
/opt/NETapp/man/manlm/startapp.1lm
/opt/NETapp/man/manlm/stopapp.1lm
/opt/NETapp/man/manlm/app_config.1lm
/opt/NETapp/util
/opt/NETapp/util/removeapp
/opt/NETapp/util/startapp
/opt/NETapp/util/stopapp
/opt/NETapp/util/app_config

Note - The man pages and script names correspond to the application name that you typed
previously on the Create screen, preceded by the script name (for example, startapp).

5 Ononenode of the cluster, configure the resources and start the application.
/opt/NETapp/util/startapp -h logicalhostname -p port-and-protocol-list

The arguments to the startapp script vary according to the type of resource: failover or
scalable.

190 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkgsend-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=IPSMPpkg-1

Command-Line Interface for Agent Builder

Note - To determine the command line that you need to type, check the customized man page or
run the startapp script without any arguments to display a usage statement.

To view the man pages, you need to specify the path to the man page. For example, to view the
startapp(1M) man page, type:

man -M /opt/NETapp/man startapp

To display a usage statement, type:

/opt/NETapp/util/startapp
The resource name of LogicalHostname or SharedAddress must be specified.
For failover services:
Usage: startapp -h logicalhostname
-p port-and-protocol-list
[-n ipmpgroup/adapter-list]
For scalable services:
Usage: startapp -h shared-address-name
-p port-and-protocol-list
[-1 load-balancing-policy]
[-n ipmpgroup/adapter-list]
[-w load-balancing-weights]

Chapter 10 « Generic Data Service 191

192

L R 2 4 CHAPTER 11

DSDL API Functions

This chapter lists and briefly describes the Data Service Development Library (DSDL) API
functions. See the individual 3HA man pages for a complete description of each DSDL function.
The DSDL provides a C interface only. A script-based DSDL interface is not available.

This chapter covers the following topics:

= “General-Purpose Functions” on page 193

= “Property Functions” on page 195

“Network Resource Access Functions” on page 195
“PMF Functions” on page 197

“Fault Monitor Functions” on page 198

“Utility Functions” on page 198

General-Purpose Functions

The functions in this section provide a broad range of functionality.

These functions enable you to perform the following operations:

= Initialize the DSDL environment

= Retrieve resource type, resource, and resource group names, and extension property values
= Fail over and restart a resource group, and restart a resource

= Convert error strings to error messages

m Execute a command under a timeout

193

General-Purpose Functions

194

Initialization Functions

The following functions initialize the calling method:

®m scds_initialize(3HA) - Allocates resources and initializes the DSDL environment.
= scds_close(3HA) - Frees resources that are allocated by scds_initialize().

Retrieval Functions

The following functions retrieve information about zones, resource types, resources, resource
groups, and extension properties:

® scds_get_current_method_name(3HA) - Retrieves the last element of the path name by
which a data service method was called.

®m scds_get zone name(3HA) - Retrieves the name of the zone on whose behalf a method is
running.

= scds_get_resource_type_name(3HA) — Retrieves the name of the resource type for the
calling program.

® scds_get_resource_name(3HA) - Retrieves the name of the resource for the calling
program.

= scds_get_resource_group_name(3HA) — Retrieves the name of the resource group for the
calling program.

® scds_get_ext_property(3HA) - Retrieves the value of the specified extension property.
= scds_free_ext_property(3HA) - Frees the memory that is allocated by
scds get ext property().

The following function retrieves status information about the SUNW.HAStoragePlus resources
that are used by a resource:

scds_hasp_check(3HA) - Retrieves status information about SUNW.HAStoragePlus resources
that are used by a resource. This information is obtained from the state (online or otherwise) of
all SUNW.HAStoragePlus resources on which the resource depends by using the
Resource_dependencies or Resource_dependencies_weak system properties that are defined
for the resource. See the SUNW.HAStoragePlus(5) man page for more information.

Failover and Restart Functions

The following functions fail over or restart a resource or resource group:

® scds_failover rg(3HA) - Fails over a resource group.
= scds_restart_rg(3HA) - Restarts a resource group.
®m scds restart resource(3HA) - Restarts a resource.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-initialize-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-close-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-current-method-name-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-zone-name-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-resource-type-name-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-resource-name-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-resource-group-name-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-ext-property-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-free-ext-property-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-hasp-check-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMsunw.hastorageplus-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-failover-rg-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-restart-rg-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-restart-resource-3ha

Network Resource Access Functions

Execution Functions

The following functions execute a command under a timeout and convert an error code to an
error message:

®m scds_timerun(3HA) - Executes a command under a timeout value.

®m scds error_string(3HA)and scds_error_string i18n(3HA) - Translates an error code
to an error string. Strings that are returned by scds_error_string() are displayed in
English. Strings that are returned by scds_error_string_i18n() are displayed in the
native language that is specified by the LC_MESSAGES locale category.

= scds_svc wait(3HA) - Waits for the specified timeout period for a monitored process to
die.

Property Functions

These functions provide convenience APIs for accessing specific properties of the relevant
resource type, resource, and resource group, including some commonly used extension
properties. The DSDL provides the scds_initialize() function to parse the command-line
arguments. The library caches the various properties of the relevant resource type, resource, and
resource group.

The scds_property_functions(3HA) man page describes these functions, which include the
following:

® scds_get_ext_property-name
® scds_get_rg_property-name
® scds_get_rs_property-name
® scds_get rt_property-name

Network Resource Access Functions

The functions listed in this section retrieve, print, and free the network resources that are used
by resources and resource groups. The scds_get_ functions in this section provide a
convenient way of retrieving network resources without using the RMAPI functions to query
specific properties, such as Network_resources_used,Resource_dependencies, and

Port list.Thescds print name() functions print values from the data structures that are
returned by the scds_get_name() functions. The scds_free_name() functions free the
memory that is allocated by the scds_get_name() functions.

Chapter 11 - DSDL API Functions 195

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-timerun-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-error-string-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-error-string-i18n-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-svc-wait-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-property-functions-3ha

Network Resource Access Functions

196

Host Name Functions

The following functions handle host names:

= scds_get_rs_hostnames(3HA) - Retrieves a list of host names that is used by the resource.

® scds_get rg_hostnames(3HA) - Retrieves a list of host names that is used by the network
resources in a resource group.

®m scds _print_net list(3HA) - Writes the contents of the host name list to sys1og(3C).
You typically use this function for debugging.

= scds_free_net_list(3HA) - Frees the memory that is allocated by
scds get rs hostnames() or scds get rg hostnames().

Port List Functions

The following functions handle port lists:

® scds_get_port_list(3HA) - Retrieves a list of port-protocol pairs that is used by a
resource.

® scds_print port list(3HA) - Writes the contents of the port-protocol list to
syslog(3C). You typically use this function for debugging.

= scds_free_port_list(3HA) - Frees the memory that is allocated by
scds get port list().

Network Address Functions

The following functions handle network addresses:

® scds_get_netaddr_list(3HA) - Retrieves a list of network addresses that is used by a
resource.

® scds print netaddr list(3HA) - Writes the contents of the network address list to
syslog(3C). You typically use this function for debugging.

= scds_free_netaddr_list(3HA) - Frees the memory that is allocated by
scds get netaddr list().

Fault Monitoring Using TCP Connections Functions

The functions in this section enable TCP-based monitoring. Typically, a fault monitor uses
these functions to establish a simple socket connection to a service, read and write data to the
service to ascertain its status, and disconnect from the service.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-rs-hostnames-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-rg-hostnames-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-print-net-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-free-net-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-port-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-print-port-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-free-port-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-get-netaddr-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-print-netaddr-list-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-free-netaddr-list-3ha

PMF Functions

These functions include the following:

®m scds fm tcp connect(3HA) - Establishes a TCP connection to a process that uses IPv4

addressing only.

= scds_fm_net_connect(3HA) - Establishes a TCP connection to a process that uses either
IPv4 or IPv6 addressing.

® scds_fm_tcp_read(3HA) - Uses a TCP connection to read data from the process that is
being monitored.

= scds_fm_tcp_write(3HA) - Uses a TCP connection to write data to a process that is being
monitored.

= scds_simple_probe(3HA) - Probes a process by establishing and terminating a TCP
connection to the process. This function handles only IPv4 addresses.

= scds_simple_net_probe(3HA) - Probes a process by establishing and terminating a TCP
connection to the process. This function handles either IPv4 or IPv6 addresses.

= scds_fm_tcp_disconnect(3HA) - Terminates the connection to a process that is being
monitored. This function handles only IPv4 addresses.

= scds_fm_net_disconnect(3HA) - Terminates the connection to a process that is being
monitored. This function handles either IPv4 or IPv6 addresses.

PMF Functions

These functions encapsulate the Process Monitor Facility (PMF) functionality. The DSDL
model for monitoring through the PMF creates and uses implicit tag values for pmfadm. See the
pmfadm(1M) man page for more information.

The PMF facility also uses implicit values for the Restart_interval,Retry_count, and
action_script (the -t, -n, and -a options to pmfadm). Most important, the DSDL ties the
process failure history, as determined by the PME into the application failure history as
detected by the fault monitor to compute the restart or failover decision.

The set includes the following functions:

= scds_fm_sleep(3HA) - Waits for a message on a fault monitor control socket.

= scds_pmf_get status(3HA) - Determines if the specified instance is being monitored
under the PMF's control.

® scds pmf restart fm(3HA) - Uses the PMF to restart the fault monitor.

= scds_pmf_signal(3HA) - Sends the specified signal to a process tree that is running under
the PMF's control.

= scds_pmf_start(3HA)and scds_pmf_start_env(3HA) - Executes a specified program
(including a fault monitor) under the PMF's control. In addition to performing the same
operations as the scds_pmf_start() function, the scds_pmf_start_env() function also
passes a provided environment to the executed program.

Chapter 11 - DSDL APl Functions 197

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-tcp-connect-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-net-connect-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-tcp-read-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-tcp-write-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-simple-probe-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-simple-net-probe-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-tcp-disconnect-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-net-disconnect-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMpmfadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-sleep-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-get-status-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-restart-fm-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-signal-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-start-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-start-env-3ha

Fault Monitor Functions

= scds_pmf_stop(3HA) - Terminates a process that is running under the PMF's control.

= scds_pmf_stop_monitoring(3HA) - Stops monitoring a process that is running under the
PMF's control.

Fault Monitor Functions

The functions in this section provide a predetermined model of fault monitoring by keeping the
failure history and evaluating it in conjunction with the Retry_count and Retry_interval
properties.

This set includes the following functions:

® scds_fm_sleep(3HA) - Waits for a message on a fault monitor control socket.
m scds_fm_action(3HA) - Takes action after a probe completes.
m scds_fm_print_probes(3HA) - Writes probe status information to the system log.

Utility Functions

The following functions enable you to write messages and debugging messages to the system
log:

= scds_syslog(3HA) - Writes messages to the system log.
= scds_syslog_debug(3HA) - Writes debugging messages to the system log.

198 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-stop-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-pmf-stop-monitoring-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-sleep-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-action-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-fm-print-probes-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-syslog-3ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscds-syslog-debug-3ha

L R 2 4 CHAPTER 12

Cluster Reconfiguration Notification Protocol

This chapter provides information about the Cluster Reconfiguration Notification Protocol
(CRNP). The CRNP enables failover and scalable applications to be “cluster aware.” More
specifically, the CRNP provides a mechanism that enables applications to register for, and
receive subsequent asynchronous notification of, Oracle Solaris Cluster reconfiguration events.
Data services that run within the cluster and applications that run outside the cluster can
register for notification of events. Events are generated when membership in a cluster changes
and when the state of a resource group or a resource changes.

Note - The SUNW. Event resource type implementation provides highly available CRNP services
on Oracle Solaris Cluster. The implementation of this resource type is described in more detail
in the SUNW. Event(5) man page.

This chapter covers the following topics:

= “CRNP Concepts” on page 199

= “How a Client Registers With the Server” on page 203

= “How the Server Replies to a Client” on page 205

= “How the Server Delivers Events to a Client” on page 207

= “How the CRNP Authenticates Clients and the Server” on page 209

= “Example of Creating a Java Application That Uses the CRNP” on page 210

CRNP Concepts

The CRNP defines the Application, Presentation, and Session layers of the standard seven-layer
Open System Interconnect (OSI) protocol stack. The Transport layer must be TCP, and the
Network layer must be IP. The CRNP is independent of the Data Link and Physical layers. All
Application layer messages that are exchanged in the CRNP are based on XML 1.0.

199

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMsunw.event-5

CRNP Concepts

200

Note - You can run the CRNP only on a global-cluster node.

How the CRNP Works

The CRNP provides mechanisms and daemons that generate cluster reconfiguration events,
route the events through the cluster, and send them to interested clients.

The cl_apid daemon interacts with the clients. The Oracle Solaris Cluster Resource Group
Manager (RGM) generates cluster reconfiguration events. This daemon uses syseventd to
transmit events on each local node. The c1_apid daemon uses Extensible Markup Language
(XML) over TCP/IP to communicate with interested clients.

The following diagram shows the flow of events between the CRNP components. In this
diagram, one client is running on cluster node 2, and the other client is running on a computer
that is not part of the cluster.

FIGURE 12-1 Flow of Events Between CRNP Components

Host 1 Host 2
Resource Group
Manager (RGM)
President Event CRNP
> subsystem server
A
Events
XML
) 4 over TCP
Event
subsystem)= XML over TCP
4—

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

CRNP Concepts

CRNP Semantics

Clients initiate communication by sending a registration message (SC_CALLBACK_RG) to the
server. This registration message specifies the event types for which the clients want to receive
notification as well as a port to which the events can be delivered. The source IP of the
registration connection and the specified port, taken together, form the callback address.

Whenever an event of interest to a client is generated within the cluster, the server contacts the
client on its callback address (IP and port) and delivers the event (SC_EVENT) to the client. The
server is highly available, running within the cluster itself. The server stores client registrations
in storage that persists even after the cluster is rebooted.

Clients unregister by sending a registration message (SC_CALLBACK_RG, which contains a
REMOVE_CLIENT message) to the server. After the client receives an SC_REPLY message from the
server, the client closes the connection.

The following diagram shows the flow of communication between a client and a server.

FIGURE 12-2 Flow of Communication Between a Client and a Server

Time
Client Server
Client registration
(callback port and event types of interest) -
P Event deliveries
il
<
Client unregistration R
Ll
v

CRNP Message Types

The CRNP uses three types of XML-based messages. Use of these messages is described in the
following table. These message types are described in more detail later in this chapter.

Chapter 12 - Cluster Reconfiguration Notification Protocol 201

CRNP Concepts

202

CRNP Message Type

Description

SC_CALLBACK_REG

This message takes four forms: ADD_CLIENT, REMOVE_CLIENT,ADD_EVENTS, and
REMOVE_EVENTS.

Each of these forms contains the following information:

® Protocol version

® Callback port in ASCII format (not binary format)

ADD_CLIENT,ADD_EVENTS, and REMOVE_EVENTS also contain an unbounded list of
event types.

Each of these forms includes the following information:

® Eventclass

® Eventsubclass (optional)

® List of the name and value pairs (optional)

Together, the event class and event subclass define a unique “event type” The
document type definition (DTD) from which the classes of SC_CALLBACK_REG are
generated is SC_CALLBACK_REG. This DTD is described in more detail in Appendix D,
“Document Type Definitions for the CRNP”

SC_REPLY This message contains the following information:
® Protocol version
® Error code
® Error message
The DTD from which the classes of SC_REPLY are generated is SC_REPLY. This DTD is
described in more detail in Appendix D, “Document Type Definitions for the CRNP”
SC_EVENT This message contains the following information:

= Protocol version

® Eventclass

= Eventsubclass

® Vendor

® Publisher

® Name and value pairs list (0 or more name and value pair data structures)

= Name (string)
B Value (string or string array)
The values in an SC_EVENT are not typed. The DTD from which the classes of

SC_EVENT are generated is SC_EVENT. This DTD is described in more detail in
Appendix D, “Document Type Definitions for the CRNP”

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

How a Client Registers With the Server

How a Client Registers With the Server

This section describes how a cluster administrator sets up the server, how clients are identified,
how information is sent over the Application and Session layers, and error conditions.

Assumptions About How Administrators Set Up the
Server

The cluster administrator must configure the server with a highly available IP address (one that
is not tied to a particular machine in the cluster) and a port number. The cluster administrator
must publish this network address to prospective clients. The CRNP does not define how this
server name is made available to clients. The cluster administrator either uses a naming service,
which enables clients to find the network address of the server dynamically, or adds the network
name to a configuration file for the client to read. The server runs within the cluster as a failover
resource type.

How the Server Identifies a Client

Each client is uniquely identified by its callback address, that is, its IP address and port number.
The port is specified in the SC_CALLBACK_REG messages, and the IP address is obtained from the
TCP registration connection. The CRNP assumes that subsequent SC_CALLBACK_REG messages
with the same callback address come from the same client, even if the source port from which
the messages are sent is different.

How SC_CALLBACK_REG Messages Are Passed
Between a Client and the Server

A client initiates a registration by opening a TCP connection to the server's IP address and port
number. After the TCP connection is established and ready for writing, the client must send its
registration message. The registration message must be one correctly formatted

SC_CALLBACK_REG message that does not contain extra bytes either before or after the message.

After all the bytes have been written to the stream, the client must keep its connection open to
receive the reply from the server. If the client does not format the message correctly, the server
does not register the client, and sends an error reply to the client. However, if the client closes
the socket connection before the server sends a reply, the server registers the client as usual.

A client can contact the server at any time. Every time a client contacts the server, the client
must send an SC_CALLBACK_REG message. If the server receives a message that is malformed, out
of order, or invalid, the server sends an error reply to the client.

Chapter 12 - Cluster Reconfiguration Notification Protocol 203

How a Client Registers With the Server

A client cannot send an ADD_EVENTS, REMOVE_EVENTS, or REMOVE_CLIENT message before that
client sends an ADD_CLIENT message. A client cannot send a REMOVE_CLIENT message before
that client sends an ADD_CLIENT message.

Ifa client sends an ADD_CLIENT message and the client is already registered, the server might
tolerate this message. In this situation, the server silently replaces the old client registration with
the new client registration that is specified in the second ADD_CLIENT message.

In most situations, a client registers with the server once, when the client starts, by sending an
ADD_CLIENT message. A client unregisters once by sending a REMOVE_CLIENT message to the
server. However, the CRNP provides more flexibility for those clients that need to modify their
event type list dynamically.

Contents of an SC_CALLBACK_REG Message

Each ADD_CLIENT,REMOVE CLIENT,ADD EVENTS,and REMOVE EVENTS message contains a list of
events. The following table describes the event types that the CRNP accepts, including the
required name and value pairs.

If a client performs one of the following actions, the server silently ignores these messages:

= Sends a REMOVE_EVENTS message that specifies one or more event types for which the client
has not previously registered

= Registers for the same event type twice

Class and Subclass Name and Value Pairs Description
EC_Cluster Required: none Registers for all cluster membership change events (node
) . death or join cluster)
ESC_cluster_membership Optional: none
EC_Cluster One required, as follows: Registers for all state change events for resource group
name
ESC cluster rg state rg_name
Value type: string
Optional: none
EC_Cluster One required, as follows: Registers for all state change events for resource name
ESC cluster_r_state r_name
Value type: string
Optional: none
EC_Cluster Required: none Registers for all Oracle Solaris Cluster events

None Optional: none

204 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

How the Server Replies to a Client

How the Server Replies to a Client

After processing the registration, the server that received the registration request sends the
SC_REPLY message on the TCP connection that the client opened. The server closes the
connection. The client must keep the TCP connection open until it receives the SC_REPLY
message from the server.

For example, the client carries out the following actions:

Opens a TCP connection to the server

Waits for a connection to be “writable”

Sends an SC_CALLBACK_REG message (which contains an ADD_CLIENT message)
Waits for an SC_REPLY message from the server

Receives an SC_REPLY message from the server

A A o

Receives an indicator that the server has closed the connection (reads 0 bytes from the
socket)

7. Closes the connection

Atalater point in time, the client carries out the following actions:

Opens a TCP connection to the server

Waits for a connection to be “writable”

Sends an SC_CALLBACK_REG message (which contains a REMOVE_CLIENT message)
Waits for an SC_REPLY message from the server

Receives an SC_REPLY message from the server

A o

Receives an indicator that the server has closed the connection (reads 0 bytes from the
socket)

7. Closes the connection

Each time that the server receives an SC_CALLBACK_REG message from a client, the server sends
an SC_REPLY message on the same open connection. This message specifies whether the
operation succeeded or failed. “sC_REPLY XML DTD” on page 288 contains the XML document
type definition of an SC_REPLY message, and the possible error messages that this message can
include.

Contents of an SC_REPLY Message

An SC_REPLY message specifies whether an operation succeeded or failed. This message
contains the version of the CRNP message, a status code, and a status message, which describes
the status code in more detail. The following table describes the possible values for the status
code.

Chapter 12 - Cluster Reconfiguration Notification Protocol 205

How the Server Replies to a Client

Status Code Description
0K The message was processed successfully.
RETRY The registration of the client was rejected by the server due to a transient

error. The client should try to register again, with different arguments.

LOW_RESOURCE Cluster resources are low, and the client can only try again at a later time.
The cluster administrator for the cluster can also increase the resources in
the cluster.

SYSTEM_ERROR A serious problem occurred. Contact the cluster administrator for the
cluster.

FAIL Authorization failed or another problem caused the registration to fail.

MALFORMED The XML request was malformed and could not be parsed.

INVALID The XML request was invalid , that is, it does not meet the XML
specification.

VERSION_TOO_HIGH The version of the message was too high to process the message successfully.

VERSION_TOO_LOW The version of the message was too low to process the message successfully.

How a Client Is to Handle Error Conditions

Under normal conditions, a client that sends an SC_CALLBACK_REG message receives a reply that
indicates that the registration succeeded or failed.

However, the server can experience an error condition when a client is registering that prohibits
the server from sending an SC_REPLY message to the client. In this case, the registration could
either have succeeded before the error condition occurred, could have failed, or could not yet
have been processed.

Because the server must function as a failover, or highly available, server in the cluster, this error
condition does not mean an end to the service. In fact, the server could soon begin sending
events to the newly registered client.

To remedy these conditions, your client should perform the following actions:

= Impose an application-level timeout on a registration connection that is waiting for an
SC_REPLY message, after which the client needs to retry registering.

= Begin listening on its callback IP address and port number for event deliveries before it
registers for the event callbacks. The client should wait for a registration confirmation
message and for event deliveries in parallel. If the client begins to receive events before the
client receives a confirmation message, the client should silently close the registration
connection.

206 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

How the Server Delivers Events to a Client

How the Server Delivers Events to a Client

As events are generated within the cluster, the CRNP server delivers them to each client that
requested events of those types. The delivery consists of sending an SC_EVENT message to the
client's callback address. The delivery of each event occurs on a new TCP connection.

Immediately after a client registers for an event type, through an SC_CALLBACK_REG message
that contains an ADD_CLIENT message or an ADD_EVENT message, the server sends the most
recent event of that type to the client. The client can determine the current state of the system
from which the subsequent events come.

When the server initiates a TCP connection to the client, the server sends exactly one SC_EVENT
message on the connection. The server issues a full-duplex close.

For example, the client carries out the following actions:
Waits for the server to initiate a TCP connection
Accepts the incoming connection from the server
Waits for an SC_EVENT message from the server

Reads an SC_EVENT message from the server

N A

Receives an indicator that the server has closed the connection (reads 0 bytes from the
socket)

6. Closes the connection

When all clients have registered, they must listen at their callback address (the IP address and
port number) at all times for an incoming event delivery connection.

If the server fails to contact the client to deliver an event, the server tries again to deliver the
event the number of times and at the interval that you define. If all attempts fail, the client is
removed from the server's list of clients. The client also needs to reregister by sending another
SC_CALLBACK_REG message that contains an ADD_CLIENT message before the client can receive
more events.

How the Delivery of Events Is Guaranteed

There is a total ordering of event generation within the cluster that is preserved in the order of
delivery to each client. In other words, if event A is generated within the cluster before event B,
client X receives event A before that client receives event B. However, the total ordering of event
delivery to all clients is not preserved. That is, client Y could receive both events A and B before
client X receives event A. In this way, slow clients do not hold up delivery to all clients.

All events that the server delivers (except the first event for a subclass and events that follow
server errors) occur in response to the actual events that the cluster generates, except if the
server experiences an error that causes it to miss cluster-generated events. In this case, the

Chapter 12 - Cluster Reconfiguration Notification Protocol 207

How the Server Delivers Events to a Client

server generates an event for each event type that represents the current state of the system for
that type. Each event is sent to clients that registered interest in that event type.

Event delivery follows the “at least once” semantics. That is, the server can send the same event
to a client more than once. This allowance is necessary in cases in which the server goes down
temporarily, and when it comes back up, cannot determine whether the client has received the
latest information.

Contents of an SC_EVENT Message

The SC_EVENT message contains the actual message that is generated within the cluster,
translated to fit into the SC_EVENT XML message format. The following table describes the event
types that the CRNP delivers, including the name and value pairs, publisher, and vendor.

Note - The positions of the array elements for state_list are synchronized with those of the
node_list. Thatis, the state for the node that is listed first in the node_1list array is listed first
inthe state_list array.

Additional names starting with ev_ and their associated values might be present, but are not
intended for client use.

Class and Subclass

Publisher and Vendor Name and Value Pairs

EC_Cluster

Publisher: rgm Name: node_list

ESC_cluster_membership Vendor: ORCL Value type: string array

Name: state list

The state_list contains only numbers that are represented in
ASCIL. Each number represents the current incarnation number
for that node in the cluster. If the number is the same as the
number that was received in a previous message, the node has
not changed its relationship to the cluster (departed, joined, or
rejoined). If the incarnation number is -1, the node is not a
member of the cluster. If the incarnation number is a number
other than a negative number, the node is a member of the
cluster.

Value type: string array

208

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

How the CRNP Authenticates Clients and the Server

Class and Subclass Publisher and Vendor Name and Value Pairs
EC Cluster Publisher: rgm Name: rg_name
ESC cluster rg state Vendor: ORCL Value type: string

Name: node list
Value type: string array
Name: state list

The state_list contains string representations of the state of
the resource group. Valid values are those values that you can
retrieve with the scha cmds(1HA) commands.

Value type: string array

EC_Cluster Publisher: rgm Name: r_name

ESC cluster r state Vendor: ORCL Value type: string
Name: node_list
Value type: string array
Name: state list

The state_list contains string representations of the state of
the resource. Valid values are those values that you can retrieve
with the scha_cmds(1HA) commands.

Value type: string array

How the CRNP Authenticates Clients and the Server

The server authenticates a client by using a form of TCP wrappers. The source IP address of the
registration message, which is also used as the callback IP address on which events are
delivered, must be in the list of allowed clients on the server. The source IP address and
registration message cannot be in the denied clients list. If the source IP address and registration
are not in the list, the server rejects the request and issues an error reply to the client.

When the server receives an SC_CALLBACK_REG ADD_CLIENT message, subsequent
SC_CALLBACK_REG messages for that client must contain a source IP address that is the same as
the source IP address in the first message.

If the CRNP server receives an SC_CALLBACK REG that does not meet this requirement, the
server performs one of the following actions:

= Ignores the request and sends an error reply to the client

= Assumes that the request comes from a new client, depending on the contents of the
SC_CALLBACK_REG message

Chapter 12 - Cluster Reconfiguration Notification Protocol 209

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cmds-1ha
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cmds-1ha

Example of Creating a Java Application That Uses the CRNP

This security mechanism helps to prevent denial of service attacks, where someone attempts to
unregister a legitimate client.

Clients should also similarly authenticate the server. Clients need only accept event deliveries
from a server whose source IP address and port number are the same as the registration IP
address and port number that the client used.

Because clients of the CRNP service are supposed to be located inside a firewall that protects the
cluster, the CRNP does not include additional security mechanisms.

Example of Creating a Java Application That Uses the CRNP

210

The following example illustrates how to develop a simple Java application named CrnpClient
that uses the CRNP. The application registers for event callbacks with the CRNP server in the
cluster, listens for the event callbacks, and processes the events by printing their contents.
Before terminating, the application unregisters its request for event callbacks.

Note the following points when reviewing this example:

= The sample application generates and parses XML with the JAXP (Java API for XML
Processing). This example does not show you how to use the JAXP. The JAXP is described in
more detail at https://jaxp.dev.java.net/.

= This example presents pieces of an application, which can be found in its entirety in
Appendix E, “CrnpClient. java Application” To illustrate particular concepts more
effectively, the example in this chapter differs slightly from the complete application that is
presented in Appendix E, “CrnpClient.java Application”

= For brevity, comments are excluded from the sample code in this chapter. The complete
application in Appendix E, “CrnpClient. java Application,” includes comments.

= The application that is shown in this example handles most error conditions by simply
exiting the application. Your actual application needs to handle errors more robustly.

How to Set Up Your Environment

Download and install JAXP and the correct version of the Java compiler and virtual machine.

You can find instructions at https://jaxp.dev.java.net/.

Note - This example requires at least Java 1.3.1.

From the directory in which your source file is located, type the following:

% javac -classpath jaxp-root/dom.jar:jaxp-rootjaxp-api. \
jar:jaxp-rootsax.jar:jaxp-rootxalan.jar:jaxp-root/xercesImpl \
.jar:jaxp-root/xsltc.jar -sourcepath . source-filename.java

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

https://jaxp.dev.java.net/
https://jaxp.dev.java.net/

Example of Creating a Java Application That Uses the CRNP

where jaxp-root is the absolute or relative path to the directory in which the JAXP jar files are
located and source-filename is the name of your Java source file.

A classpath in your compilation command line ensures that the compiler can find the JAXP
classes.

When you run the application, specify the classpath so that the application can load the
correct JAXP class files.

Note that the first path in the classpath is the current directory.

% java -cp .:jaxp-root/dom.jar:jaxp-rootjaxp-api. \
jar:jaxp-rootsax.jar:jaxp-rootxalan.jar:jaxp-root/xercesImpl \
.jar:jaxp-root/xsltc.jar source-filename arguments

Now that your environment is configured, you can develop your application.

How to Start Developing Your Application

In this part of the example, you create a basic class called CrnpClient, with a main method that
parses the command-line arguments and constructs a CrnpClient object. This object passes the
command-line arguments to the class, waits for the user to terminate the application, calls
shutdown on the CrnpClient, and exits.

The constructor of the CrnpClient class needs to execute the following tasks:

= Setup the XML processing objects.
= Create a thread that listens for event callbacks.
= Contact the CRNP server and register for event callbacks.

Create the Java code that implements the preceding logic.

The following example shows the skeleton code for the CrnpClient class. The implementations
of the four helper methods that are referenced in the constructor and shutdown methods are
shown later in this chapter. Note that the code that imports all the packages that you need is
shown.

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.w3c.dom.*;

import java.net.*;

import java.io.*;

import java.util.*;

class CrnpClient

{

public static void main(String []args)

{

Chapter 12 - Cluster Reconfiguration Notification Protocol 211

Example of Creating a Java Application That Uses the CRNP

}

}

InetAddress regIp = null;

int regPort = 0, localPort = 0;

try {
regIp = InetAddress.getByName(args[0]);
regPort = (new Integer(args[1])).intValue();
localPort = (new Integer(args[2])).intValue();

} catch (UnknownHostException e) {
System.out.println(e);
System.exit(1);

}

CrnpClient client = new CrnpClient(regIp, regPort,

localPort, args);

System.out.println("Hit return to terminate demo...");

try {
System.in.read();

} catch (IOException e) {
System.out.println(e.toString());

}

client.shutdown();

System.exit(0);

public CrnpClient(InetAddress regIpIn, int regPortIn,

{

}

int localPortIn, String []1clArgs)

try {
regIp = regIpln;
regPort = regPortln;
localPort = localPortIn;
regs = clArgs;
setupXmlProcessing();
createEvtRecepThr();
registerCallbacks();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(1);

public void shutdown()

{

}

try {
unregister();

} catch (Exception e) {
System.out.println(e);
System.exit(1);

private InetAddress reglIp;

private int regPort;

private EventReceptionThread evtThr;
private String regsl[];

public int localPort;

public DocumentBuilderFactory dbf;

Member variables are discussed in more detail later in this chapter.

212 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Example of Creating a Java Application That Uses the CRNP

v How to Parse the Command-Line Arguments

® To parse the command-line arguments, see the code in Appendix E,“CrnpClient. java
Application.”

v How to Define the Event Reception Thread

In the code, you need to ensure that event reception is performed in a separate thread so that
your application can continue to do other work while the event thread blocks and waits for
event callbacks.

Note - Setting up the XML is discussed later in this chapter.

1 Inyourcode, define a Thread subclass called EventReceptionThread that creates a
ServerSocket and waits for events to arrive on the socket.

In this part of the example code, events are neither read nor processed. Reading and processing
events are discussed later in this chapter. The EventReceptionThread creates a ServerSocket
on a wildcard internet-working protocol address. EventReceptionThread also keeps a
reference to the CrnpClient object so that EventReceptionThread can send events to the
CrnpClient object to process.

class EventReceptionThread extends Thread

{
public EventReceptionThread(CrnpClient clientIn) throws IOException
{
client = clientln;
listeningSock = new ServerSocket(client.localPort, 50,
InetAddress.getLocalHost());
}
public void run()
{
try {
DocumentBuilder db = client.dbf.newDocumentBuilder();
db.setErrorHandler(new DefaultHandler());
while(true) {
Socket sock = listeningSock.accept();
// Construct event from the sock stream and process it
sock.close();
}
// UNREACHABLE
} catch (Exception e) {
System.out.println(e);
System.exit(1);
}
}

Chapter 12 - Cluster Reconfiguration Notification Protocol 213

Example of Creating a Java Application That Uses the CRNP

214

/* private member variables */
private ServerSocket listeningSock;
private CrnpClient client;

}

Construct a createEvtRecepThr object.

private void createEvtRecepThr() throws Exception
{

evtThr = new EventReceptionThread(this);
evtThr.start();

How to Register and Unregister Callbacks

The registration task involves the following actions:

= Opening a basic TCP socket to the registration internet-working protocol and port
= Constructing the XML registration message

= Sending the XML registration message on the socket

= Reading the XML reply message off the socket

= Closing the socket

Create the Java code that implements the preceding logic.

The following example code shows the implementation of the registerCallbacks method of
the CrnpClient class (which is called by the CrnpClient constructor). The calls to
createRegistrationString() and readRegistrationReply() are described in more detail
later in this chapter.

regIpand regPort are object members that are set up by the constructor.

private void registerCallbacks() throws Exception

{
Socket sock = new Socket(regIp, regPort);
String xmlStr = createRegistrationString();
PrintStream ps = new

PrintStream(sock.getOutputStream());

ps.print(xmlStr);
readRegistrationReply(sock.getInputStream();
sock.close();

}

Implement the unregister method.
This method is called by the shutdown method of CrnpClient. The implementation of
createUnregistrationString is described in more detail later in this chapter.

private void unregister() throws Exception

{
Socket sock = new Socket(regIp, regPort);
String xmlStr = createUnregistrationString();

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Example of Creating a Java Application That Uses the CRNP

PrintStream ps = new PrintStream(sock.getOutputStream());
ps.print(xmlStr);
readRegistrationReply(sock.getInputStream());
sock.close();

v How to Generate the XML

Now that you have set up the structure of the application and have written all the networking
code, you need to write the code that generates and parses the XML. Start by writing the code
that generates the SC_CALLBACK_REG XML registration message.

An SC_CALLBACK_REG message consists of a registration type (ADD_CLIENT, REMOVE_CLIENT,
ADD_EVENTS, or REMOVE_EVENTS), a callback port, and a list of events of interest. Each event
consists of a class and a subclass, followed by a list of name and value pairs.

In this part of the example, you write a CallbackReg class that stores the registration type,
callback port, and list of registration events. This class also can serialize itself to an
SC_CALLBACK_REG XML message.

An interesting method of this class is the convertToXml method, which creates an
SC_CALLBACK_REG XML message string from the class members. The JAXP documentation at
https://jaxp.dev.java.net/ describes the code in this method in more detail.

The implementation of the Event class is shown in the following example code. Note that the
CallbackReg class uses an Event class that stores one event and can convert that event to an
XML Element.

1 Create the Java code thatimplements the preceding logic.

class CallbackReg
{

public static final int ADD_CLIENT = 0
public static final int ADD_EVENTS = 1;
public static final int REMOVE_EVENTS = 2;
public static final int REMOVE_CLIENT =

public CallbackReg()

{

port = null;

regType = null;

regEvents = new Vector();
}
public void setPort(String portIn)
{

port = portln;
}

public void setRegType(int regTypeln)
{

Chapter 12 - Cluster Reconfiguration Notification Protocol 215

https://jaxp.dev.java.net/

Example of Creating a Java Application That Uses the CRNP

switch (regTypelIn) {
case ADD_CLIENT:
regType = "ADD CLIENT"
break;
case ADD_EVENTS:
regType
break;
case REMOVE CLIENT:
regType = "REMOVE CLIENT"
break;
case REMOVE_EVENTS:
regType = "REMOVE EVENTS"

"ADD_EVENTS"

break;
default:
System.out.println("Error, invalid regType " +
regTypeln);
regType = "ADD CLIENT"
break;
}
}
public void addRegEvent(Event regEvent)
{
regEvents.add(regEvent);
}

public String convertToXml()
{
Document document = null;
DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.newDocument();
} catch (ParserConfigurationException pce) {
// Parser with specified options can’t be built
pce.printStackTrace();
System.exit(1);
}

// Create the root element
Element root = (Element) document.createElement("SC CALLBACK REG")

// Add the attributes
root.setAttribute("VERSION", "1.0")
root.setAttribute("PORT", port);
root.setAttribute("regType", regType);

// Add the events
for (int i = 0; i < regEvents.size(); i++) {
Event tempEvent = (Event)
(regEvents.elementAt(i));
root.appendChild(tempEvent.createXmlElement (document));
}
document.appendChild(root);

// Convert the whole thing to a string

DOMSource domSource = new DOMSource(document);
StringWriter strWrite = new StringWriter();

216 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Example of Creating a Java Application That Uses the CRNP

StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {
Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);
} catch (TransformerException e) {
System.out.println(e.toString());
return ("");
}
return (strWrite.toString());

}

private String port;
private String regType;
private Vector regEvents;

}

Implement the Event and NVPair classes.
Note that the CallbackReg class uses an Event class, which itself uses an NVPair class.

class Event

{
public Event()
{
regClass = regSubclass = null;
nvpairs = new Vector();
}
public void setClass(String classIn)
{
regClass = classIn;
}
public void setSubclass(String subclassIn)
{
regSubclass = subclassIn;
}
public void addNvpair(NVPair nvpair)
{
nvpairs.add(nvpair);
}

public Element createXmlElement(Document doc)
{
Element event = (Element)
doc.createElement ("SC_EVENT REG")
event.setAttribute("CLASS", regClass);
if (regSubclass != null) {
event.setAttribute("SUBCLASS", regSubclass);
}
for (int i = 0; i < nvpairs.size(); i++) {
NVPair tempNv = (NVPair)
(nvpairs.elementAt(i));
event.appendChild(tempNv.createXmlElement(doc));
}

return (event);

Chapter 12 - Cluster Reconfiguration Notification Protocol 217

Example of Creating a Java Application That Uses the CRNP

}

private String regClass, regSubclass;
private Vector nvpairs;

}
class NVPair
{
public NVPair()
{
name = value = null;
}
public void setName(String nameIn)
{
name = nameln;
}
public void setValue(String valueln)
{
value = valueln;
}
public Element createXmlElement(Document doc)
{
Element nvpair = (Element)
doc.createElement ("NVPAIR");
Element eName = doc.createElement("NAME")
Node nameData = doc.createCDATASection(name);
eName.appendChild(nameData) ;
nvpair.appendChild(eName);
Element eValue = doc.createElement("VALUE")
Node valueData = doc.createCDATASection(value);
eValue.appendChild(valueData);
nvpair.appendChild(eValue);
return (nvpair);
}
private String name, value;
}

v How to Create the Registration and Unregistration

Messages

218

Now that you have created the helper classes that generate the XML messages, you can write the
implementation of the createRegistrationString method. This method is called by the

registerCallbacks method, which is described in “How to Register and Unregister Callbacks
on page 214.

»

createRegistrationString constructsa CallbackReg object and sets its registration type and
port. Then, createRegistrationString constructs various events, by using the
createAllEvent, createMembershipEvent, createRgEvent, and createREvent helper

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Example of Creating a Java Application That Uses the CRNP

methods. Each event is added to the CallbackReg object after this object is created. Finally,
createRegistrationString calls the convertToXml method on the CallbackReg object to
retrieve the XML message in String form.

Note that the regs member variable stores the command-line arguments that a user provides to
the application. The fifth and subsequent arguments specify the events for which the
application should register. The fourth argument specifies the type of registration, but is
ignored in this example. The complete code in Appendix E, “CrnpClient. java Application,”
shows how to use this fourth argument.

Create the Java code that implements the preceding logic.

private String createRegistrationString() throws Exception
{
CallbackReg cbReg = new CallbackReg();
cbReg.setPort (" + localPort);

cbReg.setRegType(CallbackReg.ADD CLIENT);

// add the events
for (int i = 4; i < regs.length; i++) {
if (regs[i].equals("M")) {
cbReg.addRegEvent (createMembershipEvent());
} else if (regs[i].equals("A")) {
cbReg.addRegEvent (createAllEvent());
} else if (regs[i].substring(®,2).equals("RG")) {
cbReg.addRegEvent (createRgEvent(regs[i].substring(3)));
} else if (regs[i].substring(@,1).equals("R")) {
cbReg.addRegEvent(createREvent(regs[i].substring(2)));
}
}

String xmlStr = cbReg.convertToXml();
return (xmlStr);

}

private Event createAllEvent()

{
Event allEvent = new Event();
allEvent.setClass("EC Cluster");
return (allEvent);

}

private Event createMembershipEvent()

{
Event membershipEvent = new Event();
membershipEvent.setClass("EC_Cluster")
membershipEvent.setSubclass("ESC_cluster membership")
return (membershipEvent);

}

private Event createRgEvent(String rgname)

{
Event rgStateEvent = new Event();
rgStateEvent.setClass("EC_Cluster")
rgStateEvent.setSubclass("ESC cluster rg state");

Chapter 12 - Cluster Reconfiguration Notification Protocol 219

Example of Creating a Java Application That Uses the CRNP

NVPair rgNvpair = new NVPair();
rgNvpair.setName("rg name");
rgNvpair.setValue(rgname);
rgStateEvent.addNvpair(rgNvpair);

return (rgStateEvent);

}

private Event createREvent(String rname)

{
Event rStateEvent = new Event();
rStateEvent.setClass("EC_Cluster")
rStateEvent.setSubclass("ESC cluster r state")

NVPair rNvpair = new NVPair();
rNvpair.setName("r name");
rNvpair.setValue(rname);
rStateEvent.addNvpair(rNvpair);

return (rStateEvent);
}
2 Create the unregistration string.

Creating the unregistration string is easier than creating the registration string because you do
not need to accommodate events.

private String createUnregistrationString() throws Exception

{
CallbackReg cbReg = new CallbackReg();
cbReg.setPort("" + localPort);
cbReg.setRegType(CallbackReg.REMOVE CLIENT);
String xmlStr = cbReg.convertToXml();
return (xmlStr);

}

v How to Set Up the XML Parser

You have now created the networking and XML generation code for the application. The
CrnpClient constructor calls a setupXmlProcessing method. This method creates a
DocumentBuilderFactory object and sets various parsing properties on that object. The JAXP
documentation describes this method in more detail. See https://jaxp.dev.java.net/.

® Create the Java code thatimplements the preceding logic.

private void setupXmlProcessing() throws Exception
{

dbf = DocumentBuilderFactory.newInstance();
// We don’t need to bother validating
dbf.setValidating(false);
dbf.setExpandEntityReferences(false);

// We want to ignore comments and whitespace

220 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

https://jaxp.dev.java.net/

Example of Creating a Java Application That Uses the CRNP

dbf.setIgnoringComments(true);
dbf.setIgnoringElementContentWhitespace(true);

// Coalesce CDATA sections into TEXT nodes.
dbf.setCoalescing(true);

v How to Parse the Registration Reply

To parse the SC_REPLY XML message that the CRNP server sends in response to a registration
or unregistration message, you need a RegReply helper class. You can construct this class from
an XML document. This class provides accessors for the status code and status message. To
parse the XML stream from the server, you need to create a new XML document and use that
document's parse method. The JAXP documentation at https://jaxp.dev.java.net/
describes this method in more detail.

1 Create the Java code thatimplements the preceding logic.
Note that the readRegistrationReply method uses the new RegReply class.

private void readRegistrationReply(InputStream stream) throws Exception
{
// Create the document builder
DocumentBuilder db = dbf.newDocumentBuilder();
db.setErrorHandler(new DefaultHandler());

//parse the input file
Document doc = db.parse(stream);

RegReply reply = new RegReply(doc);
reply.print(System.out);
}

2 Implementthe RegReply class.

Note that the retrieveValues method walks the DOM tree in the XML document and pulls
out the status code and status message. The JAXP documentation at https://
jaxp.dev.java.net/ contains more detail.

class RegReply

¢ public RegReply(Document doc)
t retrieveValues(doc);
}
public String getStatusCode()
i return (statusCode);

public String getStatusMsg()
{

return (statusMsg);

Chapter 12 - Cluster Reconfiguration Notification Protocol 221

https://jaxp.dev.java.net/
https://jaxp.dev.java.net/
https://jaxp.dev.java.net/

Example of Creating a Java Application That Uses the CRNP

222

public void print(PrintStream out)
{
out.println(statusCode + ": " +
(statusMsg != null ? statusMsg : ""));

b

private void retrieveValues(Document doc)
{

Node n;

NodelList nl;

String nodeName;

// Find the SC REPLY element.
nl = doc.getElementsByTagName("SC _REPLY");
if (nl.getLength() != 1) {
System.out.println("Error in parsing: can’t find
+ "SC_REPLY node.");
return;

}
n =nl.item(0);

// Retrieve the value of the statusCode attribute
statusCode = ((Element)n).getAttribute("STATUS CODE")

// Find the SC_STATUS MSG element
nl = ((Element)n).getElementsByTagName("SC_STATUS MSG");
if (nl.getLength() != 1) {
System.out.println("Error in parsing: can’t find
+ "SC_STATUS MSG node.");
return;

}

// Get the TEXT section, if there is one.

n =nl.item(0Q).getFirstChild();

if (n == null || n.getNodeType() '= Node.TEXT NODE) {

// Not an error if there isn’t one, so we just silently return.
return;

}

// Retrieve the value
statusMsg = n.getNodeValue();
}

private String statusCode;
private String statusMsg;

v How to Parse the Callback Events

The final step is to parse and process the actual callback events. To aid in this task, you modify
the Event class that you created in “How to Generate the XML’ on page 215 so that this class can
construct an Event from an XML document and create an XML Element. This change requires
an additional constructor (that takes an XML document), a retrieveValues method, the
addition of two member variables (vendor and publisher), accessor methods for all fields, and
finally, a print method.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Example of Creating a Java Application That Uses the CRNP

Create the Java code that implements the preceding logic.

Note that this code is similar to the code for the RegReply class that is described in “How to
Parse the Registration Reply” on page 221.

public Event(Document doc)
{
nvpairs = new Vector();
retrieveValues(doc);

public void print(PrintStream out)
{
out.println("\tCLASS=" + regClass);
out.println("\tSUBCLASS=" + regSubclass);
out.println("\tVENDOR=" + vendor);
out.println("\tPUBLISHER=" + publisher);
for (int 1 = 0; i < nvpairs.size(); i++) {
NVPair tempNv = (NVPair)
(nvpairs.elementAt(i));
out.print("\t\t")
tempNv.print(out);

}

private void retrieveValues(Document doc)
{

Node n;

NodeList nl;

String nodeName;

// Find the SC_EVENT element.
nl = doc.getElementsByTagName("SC_EVENT");
if (nl.getLength() '= 1) {
System.out.println("Error in parsing: can’t find
+ "SC_EVENT node.");
return;

}

n =nl.item(0);

//

// Retrieve the values of the CLASS, SUBCLASS,

// VENDOR and PUBLISHER attributes.

//

regClass = ((Element)n).getAttribute("CLASS");
regSubclass = ((Element)n).getAttribute("SUBCLASS");
publisher = ((Element)n).getAttribute("PUBLISHER");
vendor = ((Element)n).getAttribute("VENDOR");

// Retrieve all the nv pairs

for (Node child = n.getFirstChild(); child != null;
child = child.getNextSibling())

{

}

nvpairs.add(new NVPair((Element)child));

}

public String getRegClass()
{

Chapter 12 - Cluster Reconfiguration Notification Protocol 223

Example of Creating a Java Application That Uses the CRNP

return (regClass);

}
public String getSubclass()
{

return (regSubclass);
}
public String getVendor()
{

return (vendor);
}
public String getPublisher()
{

return (publisher);
}
public Vector getNvpairs()
{

return (nvpairs);
}

private String vendor, publisher;

2 Implement the additional constructors and methods for the NVvPair class that support the XML
parsing.
The changes to the Event class that are shown in Step 1 require similar changes to the NVPair
class.

public NVPair(Element elem)
{

retrieveValues(elem);

public void print(PrintStream out)

{
out.println("NAME=" + name + " VALUE=" + value);
}
private void retrieveValues(Element elem)
{

Node n;
NodelList nl;
String nodeName;

// Find the NAME element
nl = elem.getElementsByTagName ("NAME")
if (nl.getLength() '= 1) {
System.out.println("Error in parsing: can’t find "
+ "NAME node.");
return;
}
// Get the TEXT section
n =nl.item(0Q).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT NODE) {
System.out.println("Error in parsing: can’t find "
+ "TEXT section.");
return;

224 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Example of Creating a Java Application That Uses the CRNP

3

}

// Retrieve the value
name = n.getNodeValue();

// Now get the value element
nl = elem.getElementsByTagName ("VALUE")
if (nl.getLength() !'= 1) {
System.out.println("Error in parsing: can’t find
+ "VALUE node.");
return;

}
// Get the TEXT section
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT NODE) {
System.out.println("Error in parsing: can’t find "
+ "TEXT section.");
return;

b

// Retrieve the value
value = n.getNodeValue();

}
public String getName()
{ return (name);
}
public String getValue()
i return (value);

}

Implement thewhile loop in EventReceptionThread, which waits for event callbacks.

EventReceptionThread is described in “How to Define the Event Reception Thread” on
page 213.

while(true) {
Socket sock = listeningSock.accept();
Document doc = db.parse(sock.getInputStream());
Event event = new Event(doc);
client.processEvent(event);
sock.close();

How to Run the Application

Assume the root role that provides solaris. cluster.modify RBAC authorization.

Run your application.
java CrnpClient crnpHost crnpPort localPort ...

Chapter 12 - Cluster Reconfiguration Notification Protocol 225

Example of Creating a Java Application That Uses the CRNP

The complete code for the CrnpClient application is listed in Appendix E, “CrnpClient.java
Application”

226 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L K R 4 CHAPTER 13

Security for Data Services

Oracle Solaris Cluster enables you to enhance the security of your data service using the features
described in this chapter.

= “Storing Application Passwords in Private Strings” on page 227
= “Invoking Application Programs with Least Privilege” on page 229

Storing Application Passwords in Private Strings

Oracle Solaris Cluster provides the clpstring command to enable you to securely store and
retrieve private character strings in the cluster file system. These private strings can be used for
any purpose, but might typically be used to store a password. For example, a data service agent
might retrieve the private string to log in as a privileged user to perform an orderly shut down of
the managed application running in the cluster. The private string capability might also be
useful for other aspects of the cluster framework, such as to interact with an external storage
device.

You create the private string by using the clpstring command to assign a unique name to
reference the string. The value of the string can be specified in several different ways at the time
of creation, and changed at a later time if necessary. The private string is encoded and stored in
a protected location that is readable only by root. You can use the clpstring command to list
the names and other information about private strings that have been created, but the encoded
value can only be obtained by using the scha_cluster_get(1HA) command.

Use the clpstring command for the following administrative tasks:

= Create a private string that is intended to be used by a cluster object instance that may or
may not yet exist, using the create subcommand.

= Update the value of private string, using the set subcommand.
= Delete private strings from the cluster configuration, using the delete subcommand.

= Display the specifications of private strings, using the show subcommand.

227

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-cluster-get-1ha

Storing Application Passwords in Private Strings

= List the names of private strings, using the list subcommand.

You must have solaris.cluster.modify role-based access control (RBAC) authorization to
use the clpstring command to create, update, or delete private strings. You must have
solaris.cluster.read authorization to show or list information about private strings.

Typical usage of private strings might be similar to the following:

1. On one of the cluster nodes, create the private string name with the clpstring create
command.

For example, in the following command you are prompted to enter the value of a string you
have named pw_string. The -b option indicates that a resource instance named resourcel
is going to use this private string. The - t option indicates that the instance's type is resource,
which is the default. The -v option provides verbose output.

clpstring create -b resourcel -t resource -v pw_string
Enter string value:

Enter string value again:

Private string "pw string" is created for the global cluster.

When you enter the private string value in this way, the characters are not echoed to the
screen for increased security.

You can also provide the value of the string by creating a plain text file containing the value
and specifying the path to the file by using the - f option with the create subcommand.

2. The data service agent runs a script to retrieve the private string value using the
scha_cluster_get command.

The following is a simple example to show how to retrieve a private string for an application:

'myapp’ is an application program that requires a password, which it

reads from standard input. The cluster administrator has been

instructed to create a private string ’'pw string’ containing the password.
We use scha cluster get to retrieve the password and pipe it into the

'myapp’ program. The program’s output is captured in a file.

scha cluster get -0 pstring pw string | myapp > myapp output file

Note - If you want to change the name of the private string, you must delete the string with
clpstring command, and then create a new private string.

For more information about the clpstring command, see the clpstring(1CL) man page.

228 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMclpstring-1cl

Invoking Application Programs with Least Privilege

Invoking Application Programs with Least Privilege

A data service can invoke an application following the concept of least privilege to decrease the
possibility of a security breach. With this approach, you require the application to be executed
with the minimal privileges required to perform its tasks.

See the manual Developer’s Guide to Oracle Solaris 11 Security in the Oracle Solaris 11
documentation library for more information about developing privileged applications in
Oracle Solaris 11.

As good security practice, application programs should not be run as root. Executables
generally should be owned by root and run as non-root. If an executable binary or script owned
by a non-root user can be executed as root, it would be possible for the non-root user to insert
malicious operations into that executable, which could be executed with full privileges.

Cluster agent methods should run all external programs using a wrapper to ensure that the
external program is executed with the correct username and privilege.

Oracle Solaris Cluster provides the application_user and resource_security properties and
the scha_check_app_user command to enable data services to ensure that the application is
executed securely. The scha_check_app_user command can be called in scripts to verify the
username against the configured application_userand resource_security settings.

See the following sections for information about using resource properties and commands to
set up a data service to run with the least privileges required.

= “Using the resource_security Property” on page 229
= “Using the application_user Property” on page 230
= “Using the scha_check_app_user Command” on page 230

Using the resource_security Property

In the current Oracle Solaris Cluster release, the execution of a cluster resource is controlled by
the setting of a global cluster property called resource_security, which is set to SECURE by
default. This setting ensures that the execution of resource methods is secure.

Resource methods such as Start and Validate always run as root. If the method executable file is
owned by a username other than root or allows write permission for the UNIX group or world,
an insecurity exists. In this case, if the resource_security property is set to SECURE, execution
of the resource method fails at run time and an error is returned. If resource_security hasany
other setting, the resource method is allowed to execute with a warning message. Permissible
values of resource_security are SECURE, WARN, OVERRIDE, or COMPATIBILITY.

A cluster administrator can set the resource_security property for a cluster by using the
cluster command, and for a zone cluster by using the clzonecluster command. The clsetup
utility can also be used.

Chapter 13 - Security for Data Services 229

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=GSSAPIPG
http://docs.oracle.com/cd/E23824_01/index.html
http://docs.oracle.com/cd/E23824_01/index.html

Invoking Application Programs with Least Privilege

230

If a cluster is upgraded from an earlier release which does not include this property, the
resource_security property is set to COMPATIBILITY to ensure that executables can run.
However, the administrator should change the setting to SECURE.

For example, the following command sets the property to SECURE on a cluster:

cluster set -p resource_security=SECURE

The resource_security setting also modifies the behavior of resource types that declare the
application_user resource property, as described in the following section.

Using the application_user Property

A data service can declare the application_user resource property to provide a way for the
cluster administrator to specify a non-root Solaris user name to be used for execution of
application programs by the data service.

If your agent declares the application_user property, it is expected to set the user ID for
execution of application programs according to the settings of the application_user resource
property and the resource_security cluster property. You can use the scha_check_app_user
command to help with this task. See “Using the scha_check_app_user Command” on page 230
for more information.

If resource_security is set to COMPATIBILITY, the setting of the application_user resource
property is ignored and the application user will be the user ID of the caller (usually root). This
behavior is compatible with previous releases of Oracle Solaris Cluster.

If resource_security is set to OVERRIDE, the application_user property is ignored and the
application user will be the owner of the application program executable file.

If resource_security is set to SECURE or WARN, the application user will be the value of the
application_user resource property; however, if application_user is unset or empty, the
application user will be the owner of the application program executable file.

Using the scha_check_app_user Command

You can use the scha_check_app_user command to obtain the configured application user
name for a resource that is under the control of the RGM, and check the ownership and
permissions on an executable file. The executable file is typically an application program that is
intended to be executed by a method or monitor of the resource, using a wrapper such as
su(1M) to set the user ID to the configured user. The resource method or monitor should
invoke scha_check_app_user prior to execution of the application program. Depending on the
output of scha_check_app_user, the method or monitor should return an error or output a
warning message if security-related problems are detected.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Msu-1m

Invoking Application Programs with Least Privilege

See the scha_check_app_user(1HA) man page for more information.

Chapter 13 - Security for Data Services 231

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMscha-check-app-user-1ha

232

L K R 4 APPENDIX A

Sample Data Service Code Listings

This appendix provides the complete code for each method in the sample data service. It also
lists the contents of the resource type registration (RTR) file.

This appendix covers the following topics:

“Resource Type Registration File Listing” on page 233
“Start Method Code Listing” on page 236

“Stop Method Code Listing” on page 238

“gettime Utility Code Listing” on page 241

“PROBE Program Code Listing” on page 241
“Monitor_start Method Code Listing” on page 246
“Monitor_stop Method Code Listing” on page 248
“Monitor_check Method Code Listing” on page 249
“Validate Method Code Listing” on page 251
“Update Method Code Listing” on page 254

Resource Type Registration File Listing

The RTR file contains resource and resource type property declarations that define the initial
configuration of the data service at the time that the cluster administrator registers the data
service.

EXAMPLEA-1 ORCL.Sample RTRFile

#

Copyright (c) 1998, 2011, Oracle and/or its affiliates.
ALl rights reserved.

#

Registration information for Domain Name Service (DNS)
#

#pragma ident “@(#)ORCL.sample 1.1 12/01/24"

233

Resource Type Registration File Listing

EXAMPLE A-1 ORCL.Sample RTR File (Continued)

Resource type = “sample”;
Vendor id = ORCL;
RT description = “Domain Name Service on Oracle Solaris Cluster”;

RT version ="1.0";
Failover = TRUE;

RT basedir=/opt/ORCLsample/bin;
Pkglist = ORCLsample;

Start = dns_svc_start;
Stop = dns_svc_stop;
Validate = dns_validate;
Update = dns_update;
Monitor start = dns _monitor start;
Monitor stop = dns _monitor stop;
Monitor_check = dns_monitor_check;
#$upgrade

A list of bracketed resource property declarations follows the
resource type declarations. The property-name declaration must be
the first attribute after the open curly bracket of each entry.
#
The <method> timeout properties set the value in seconds after which
the RGM concludes invocation of the method has failed.
The MIN value for all method timeouts is set to 60 seconds. This
prevents administrators from setting shorter timeouts, which do not
improve switchover/failover performance, and can lead to undesired
RGM actions (false failovers, node reboot, or moving the resource group
to ERROR STOP_FAILED state, requiring operator intervention). Setting
too-short method timeouts leads to a *decrease* in overall availability
of the data service.
{
PROPERTY = Start timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Stop timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Validate timeout;
MIN=60;
DEFAULT=300;
}
{
PROPERTY = Update timeout;
MIN=60;
DEFAULT=300;
}
{

234 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Resource Type Registration File Listing

EXAMPLEA-1 ORCL.Sample RTR File (Continued)

-

-~ FH

-~ HH R R

HH

~HHHH

PROPERTY = Monitor_Start timeout;
MIN=60;
DEFAULT=300;

PROPERTY = Monitor Stop timeout;
MIN=60;
DEFAULT=300;

PROPERTY = Thorough Probe Interval;
MIN=1;

MAX=3600;

DEFAULT=60;

TUNABLE = ANYTIME;

The number of retries to be done within a certain period before concluding
that the application cannot be successfully started on this node.

PROPERTY = Retry count;
MIN=0;

MAX=10;

DEFAULT=2;

TUNABLE = ANYTIME;

Set Retry interval as a multiple of 60 since it is converted from seconds
to minutes, rounding up. For example, a value of 50 (seconds)

is converted to 1 minute. Use this property to time the number of

retries (Retry count).

PROPERTY = Retry interval;
MIN=60;

MAX=3600;

DEFAULT=300;

TUNABLE = ANYTIME;

PROPERTY = Network resources used;
TUNABLE = AT _CREATION;
DEFAULT = ““;

Extension Properties

The cluster administrator must set the value of this property to point to the
directory that contains the configuration files used by the application.

For this application, DNS, specify the path of the DNS configuration file on
PXFS (typically named.conf).

PROPERTY = Confdir;
EXTENSION;

Appendix A - Sample Data Service Code Listings

235

Start Method Code Listing

EXAMPLE A-1 ORCL.Sample RTR File (Continued)

STRING;
TUNABLE = AT CREATION;
DESCRIPTION = “The Configuration Directory Path”;

}
Time out value in seconds before declaring the probe as failed.
{
PROPERTY = Probe timeout;
EXTENSION;
INT;
DEFAULT = 30;
TUNABLE = ANYTIME;
DESCRIPTION = “Time out value for the probe (seconds)”;
}

Start Method Code Listing

The RGM runs the Start method on a cluster node when the resource group that contains the

data service resource is brought online on that node. The RGM also does so when the resource

is enabled. In the sample application, the Start method activates the in.named (DNS) daemon
on that node.

EXAMPLEA-2 dns_svc_start Method

#1/bin/ksh
#
Start Method for HA-DNS.

#

#

This method starts the data service under the control of PMF. Before starting
the in.named process for DNS, it performs some sanity checks. The PMF tag for
the data service is $RESOURCE NAME.named. PMF tries to start the service a

specified number of times (Retry count) and if the number of attempts exceeds
this value within a specified interval (Retry interval) PMF reports a failure
to start the service. Retry count and Retry interval are both properties of the
resource set in the RTR file.

#pragma ident “@(#)dns_svc_start 1.1 12/01/24"

HAHHHHHHHHHHHH R R R R R R R R R R R
Parse program arguments.
#
function parse args # [args ...]
{
typeset opt

while getopts ‘R:G:T:’ opt
do
case “$opt” in
R)
Name of the DNS resource.
RESOURCE_NAME=$0PTARG

236 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Start Method Code Listing

EXAMPLEA-2 dns_svc_start Method (Continued)

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP NAME=$0PTARG

1

T
Name of the resource type.
RESOURCETYPE_ NAME=$0PTARG
*)
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac

done

B e S e
MAIN
#

L L L B L L L L L L B b L L p L R R e

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG _FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method
parse args “$@”

PMF_TAG=$RESOURCE_NAME . named
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME , $RESOURCE_NAME

Get the value of the Confdir property of the resource in order to start

DNS. Using the resource name and the resource group entered, find the value of
Confdir value set by the cluster administrator when adding theresource.

config info=scha resource get -0 Extension -R $RESOURCE NAME \

-G $RESOURCEGROUP NAME Confdi'r

scha resource get returns the “type” as well as the “value” for the extension
properties. Get only the value of the extension property.

CONFIG DIR'=echo $config info | awk ‘{print $2}"’

Check if $CONFIG DIR is accessible.
if [! -d $CONFIG DIR]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVO} Directory $CONFIG DIR missing or not mounted”
exit 1

Appendix A - Sample Data Service Code Listings

Stop Method Code Listing

EXAMPLEA-2 dns_svc_start Method (Continued)

fi

Change to the $CONFIG DIR directory in case there are relative
path names in the data files.
cd $CONFIG DIR

Check that the named.conf file is present in the $CONFIG DIR directory.
if [! -s named.conf]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVO} File $CONFIG DIR/named.conf is missing or empty”
exit 1
fi

Get the value for Retry count from the RTR file.
RETRY CNT =scha resource get -0 Retry count -R $RESOURCE NAME \
-G $RESOURCEGROUP_NAME

Get the value for Retry interval from the RTR file. Convert this value, which is in
seconds, to minutes for passing to pmfadm. Note that this is a conversion with

round-up, for example, 50 seconds rounds up to one minute.

((RETRY_INTRVAL =" scha resource get -0 Retry interval -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME 60))

Start the in.named daemon under the control of PMF. Let it crash and restart
up to $RETRY COUNT times in a period of $RETRY INTRVAL; if it crashes
more often than that, PMF will cease trying to restart it. If there is a
process already registered under the tag <$PMF TAG>, then, PMF sends out
an alert message that the process is already running.
echo “Retry interval is “$RETRY_INTRVAL
pmfadm -c $PMF _TAG.named -n $RETRY CNT -t $RETRY INTRVAL \
/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.
if [$? -eq 0]; then
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“${ARGVO} HA-DNS successfully started”
fi
exit 0

Stop Method Code Listing

The RGM runs the Stop method on a cluster node when the resource group that contains the
HA-DNS resource is brought offline on that node. The RGM also does so when the resource is
disabled. This method stops the in.named (DNS) daemon on that node.

EXAMPLEA-3 dns_svc_stop Method

#!/bin/ksh

#

Stop method for HA-DNS

#

Stop the data service using PMF. If the service is not running the

238 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Stop Method Code Listing

EXAMPLEA-3 dns_svc_stop Method (Continued)

method exits with status @ as returning any other value puts the resource
in STOP_FAILED state.
#pragma ident “@(#)dns _svc stop 1.1 12/01/24"

A S R R A R R R S B Ry
Parse program arguments.

#
function parse args # [args ...]
{
typeset opt
while getopts ‘R:G:T:' opt
do
case “$opt” in
R)
Name of the DNS resource.
RESOURCE NAME=$0PTARG
G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP NAME=$0PTARG
T
Name of the resource type.
RESOURCETYPE NAME=$0PTARG
“ H
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac
done
}

HHH AR
MAIN

#

A R I S B A S R

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method
parse args “$@”

PMF_TAG=$RESOURCE_NAME . named
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME, $RESOURCE_NAME

Appendix A - Sample Data Service Code Listings

239

Stop Method Code Listing

EXAMPLE A-3 dns_svc_stop Method (Continued)

Obtain the Stop timeout value from the RTR file.
STOP_TIMEOUT =scha_resource_get -0 STOP_TIMEOUT -R $RESOURCE_NAME -G \
$RESOURCEGROUP NAME

Attempt to stop the data service in an orderly manner using a SIGTERM

signal through PMF. Wait for up to 80% of the Stop_ timeout value to

see if SIGTERM is successful in stopping the data service. If not, send SIGKILL
to stop the data service. Use up to 15% of the Stop timeout value to see

if SIGKILL is successful. If not, there is a failure and the method exits with
non-zero status. The remaining 5% of the Stop timeout is for other uses.
(SMOOTH_TIMEOUT=$STOP TIMEOUT * 80/100))

~ # FH B H HH

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

See if in.named is running, and if so, kill it.
if pmfadm -q $PMF_TAG.named; then
Send a SIGTERM signal to the data service and wait for 80% of the
total timeout value.
pmfadm -s $PMF_TAG.named -w $SMOOTH TIMEOUT TERM
if [$? -ne @]1; then
logger -p ${SYSLOG FACILITY}.info -t [SYSLOG TAG] \
“${ARGVO} Failed to stop HA-DNS with SIGTERM; Retry with \
SIGKILL"”

Since the data service did not stop with a SIGTERM signal, use
SIGKILL now and wait for another 15% of the total timeout value.
pmfadm -s $PMF TAG.named -w $HARD TIMEOUT KILL
if [$? -ne 0]; then

logger -p ${SYSLOG FACILITY}.err -t [SYSLOG TAG] \

“${ARGVO} Failed to stop HA-DNS; Exiting UNSUCCESSFUL"”

exit 1
fi

fi
else

The data service is not running as of now. Log a message and

exit success.

logger -p ${SYSLOG FACILITY}.info -t [SYSLOG TAG] \

“HA-DNS is not started”

Even if HA-DNS is not running, exit success to avoid putting
the data service in STOP_FAILED State.
exit 0

fi

Successfully stopped DNS. Log a message and exit success.

logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“HA-DNS successfully stopped”

exit 0

240 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

PROBE Program Code Listing

gettime Utility Code Listing

The gettime utility is a C program that is used by the PROBE program to track the elapsed time
between restarts of the probe. You must compile this program and place it in the same directory

as the callback methods, that is, the directory pointed to by the RT_basedir property.

EXAMPLEA-4 gettime.c Utility Program

This utility program, used by the probe method of the data service, tracks

the elapsed time in seconds from a known reference point (epoch point). It

must be compiled and placed in the same directory as the data service callback
methods (RT basedir).

#pragma ident “@(#)gettime.c 1.1 12/01/24"

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()

{
printf(“%d\n”, time(0));
exit(0);

PROBE Program Code Listing

The PROBE program checks the availability of the data service by using nslookup commands
(see the nslookup(1M) man page). TheMonitor_start callback method starts this program,
and theMonitor_stop callback method stops it.

EXAMPLEA-5 dns_probe Program

#!/bin/ksh
#pragma ident “@(#)dns_probe 1.1 12/01/19”
#

Probe method for HA-DNS.

#
#
This program checks the availability of the data service using nslookup, which
queries the DNS server to look for the DNS server itself. If the server

does not respond or if the query is replied to by some other server,

then the probe concludes that there is some problem with the data service

and fails the service over to another node in the cluster. Probing is done

at a specific interval set by THOROUGH PROBE INTERVAL in the RTR file.

#pragma ident “@(#)dns_probe 1.1 00/05/24 SMI”

HHHH I
Parse program arguments.
function parse args # [args ...]

{
typeset opt

Appendix A - Sample Data Service Code Listings

241

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mnslookup-1m

PROBE Program Code Listing

EXAMPLEA-5 dns_probe Program (Continued)

while getopts ‘R:G:T:’ opt

do
case “$opt” in
R)
Name of the DNS resource.
RESOURCE_NAME=$0PTARG
G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$0PTARG
T)
Name of the resource type.
RESOURCETYPE_NAME=$0PTARG
o HH
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac
done

}

HAHHHHHHHHHHHHH R R R R R R R R R R
restart service ()

#

#

This function tries to restart the data service by calling the Stop method
followed by the Start method of the dataservice. If the dataservice has

already died and no tag is registered for the dataservice under PMF,

then this function fails the service over to another node in the cluster.
#
fu
{

nction restart service

To restart the dataservice, first, verify that the
dataservice itself is still registered under PMF.
pmfadm -q $PMF_TAG
if [[$? -eq @ 11; then
Since the TAG for the dataservice is still registered under
PMF, first stop the dataservice and start it back up again.
Obtain the Stop method name and the STOP TIMEOUT value for
this resource.
STOP_TIMEOUT =scha_resource get -0 STOP_TIMEOUT \
-R $RESOURCE NAME -G $RESOURCEGROUP NAME
STOP_METHOD =scha resource get -0 STOP \
-R $RESOURCE_NAME -G $RESOURCEGROUP NAME
/usr/cluster/bin/hatimerun -t $STOP TIMEOUT $RT BASEDIR/$STOP METHOD \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne @ 11; then
logger-p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV0Q} Stop method failed.”
return 1

242 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

PROBE Program Code Listing

EXAMPLEA-5 dns_probe Program (Continued)

fi

Obtain the Start method name and the START TIMEOUT value for
this resource.
START TIMEOUT =scha resource get -0 START TIMEOUT \
-R $RESOURCE NAME -G $RESOURCEGROUP NAME
START METHOD =scha resource get -0 START \
-R $RESOURCE_NAME -G $RESOURCEGROUP NAME
/usr/cluster/bin/hatimerun -t $START TIMEOUT $RT BASEDIR/$START METHOD \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne @0 11; then
logger-p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVO} Start method failed.”
return 1
fi

else
The absence of the TAG for the dataservice
implies that the dataservice has already
exceeded the maximum retries allowed under PMF.
Therefore, do not attempt to restart the
dataservice again, but try to failover
to another node in the cluster.
scha_control -0 GIVEOVER -G $RESOURCEGROUP_NAME \
-R $RESOURCE NAME
fi

return 0

decide restart or failover ()

#

This function decides the action to be taken upon the failure of a probe:

restart the data service locally or fail over to another node in the cluster.
#

function decide restart or failover

{

Check if this is the first restart attempt.
if [$retries -eq @]; then
This is the first failure. Note the time of
this first attempt.
start time =$RT BASEDIR/gettime
retries =expr $retries + "1
Because this is the first failure, attempt to restart
the data service.
restart_service
if [$? -ne @]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV0Q} Failed to restart data service.”
exit 1
fi
else

Appendix A « Sample Data Service Code Listings 243

PROBE Program Code Listing

EXAMPLEA-5 dns_probe Program (Continued)

This is not the first failure
current_time’ =$RT_BASEDIR/gettime
time diff =expr $current_time - $start time
if [$time diff -ge $RETRY INTRVAL]; then
This failure happened after the time window
elapsed, so reset the retries counter,
slide the window, and do a retry.
retries=1
start_time=$current_time
Because the previous failure occurred more than
Retry interval ago, attempt to restart the data service.
restart_service
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG \
“${ARGVO} Failed to restart HA-DNS.”
exit 1
fi
elif [$retries -ge $RETRY COUNT]; then
Still within the time window,
and the retry counter expired, so fail over.
retries=0
scha control -0 GIVEOVER -G $RESOURCEGROUP NAME \
-R $RESOURCE NAME
if [$? -ne @]; then
logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV0O} Failover attempt failed.”
exit 1
fi
else
Still within the time window,
and the retry counter has not expired,
so do another retry.
retries =expr $retries + "1
restart service
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVQ} Failed to restart HA-DNS.”
exit 1
fi

fi

MAIN
B R S S i

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method
parse args “$@”

PMF_TAG=$RESOURCE_NAME . named

244 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

PROBE Program Code Listing

EXAMPLEA-5 dns_probe Program (Continued)

SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME, $RESOURCE_NAME

The interval at which probing is to be done is set in the system defined
property THOROUGH PROBE INTERVAL. Obtain the value of this property with
scha resource get

PROBE_INTERVAL=scha resource get -0 THOROUGH PROBE INTERVAL \

-R $RESOURCE_NAME -G $RESOURCEGROUP NAME

Obtain the timeout value allowed for the probe, which is set in the

PROBE_TIMEOUT extension property in the RTR file. The default timeout for
nslookup is 1.5 minutes.

probe timeout info'=scha resource get -0 Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Probe timeou"t

PROBE TIMEOUT =echo $probe timeout info | awk ‘{print $2}°’

Identify the server on which DNS is serving by obtaining the value

of the NETWORK RESOURCES USED property of the resource.

DNS HOST =scha resource get -0 NETWORK RESOURCES USED -R $RESOURCE NAME \
-G $RESOURCEGROUP_NAME

Get the retry count value from the system defined property Retry count
RETRY_COUNT “=scha_resource_get -0 RETRY_COUNT -R $RESOURCE_NAME \
-G $RESOURCEGROUP NAME

Get the retry interval value from the system defined property
Retry interval

RETRY INTRVAL=scha resource get -O RETRY INTRVAL -R $RESOURCE NAME \
-G $RESOURCEGROUP_NAME

Obtain the full path for the gettime utility from the

RT_basedir property of the resource type.

RT BASEDIR=scha resource get -O RT basedir -R $RESOURCE NAME \
-G $RESOURCEGROUP_NAME

The probe runs in an infinite loop, trying nslookup commands.
Set up a temporary file for the nslookup replies.
DNSPROBEFILE=/tmp/.$RESOURCE NAME.probe

probefail=0

retries=0

while :
do
The interval at which the probe needs to run is specified in the
property THOROUGH PROBE INTERVAL. Therefore, set the probe to sleep for a
duration of <THOROUGH_ PROBE_INTERVAL>
sleep $PROBE_INTERVAL

Run the probe, which queries the IP address on

which DNS is serving.

/usr/cluster/bin/hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS _HOST $DNS_HOST \
> $DNSPROBEFILE 2>&1

retcode=$?
if [retcode -ne 0]; then
probefail=1
fi

Appendix A « Sample Data Service Code Listings 245

Monitor_start Method Code Listing

EXAMPLEA-5 dns_probe Program (Continued)

Make sure that the reply to nslookup command comes from the HA-DNS

server and not from another name server listed in the

/etc/resolv.conf file.

if [$probefail -eq @]; then

Get the name of the server that replied to the nslookup query.
SERVER' = awk ‘ $1=="Server:” {print $2 }’ \
$DNSPROBEFILE | awk -F. ‘ { print $1 } ©
if [-z “$SERVER”];

then
probefail=1
else
if [$SERVER != $DNS HOST]; then
probefail=1
fi
fi

fi

If the probefail variable is not set to @, either the nslookup command

timed out or the reply to the query was came from another server

(specified in the /etc/resolv.conf file). In either case, the DNS server is
not responding and the method calls decide restart or failover,

which evaluates whether to restart the data service or to fail it over

to another node.

if [$probefail -ne @]; then
decide restart or failover

else
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“${ARGV0O} Probe for resource HA-DNS successful”
fi
done

Monitor_start Method Code Listing

This method starts the PROBE program for the data service.

EXAMPLEA-6 dns_monitor_start Method

#!/bin/ksh
#
Monitor start Method for HA-DNS.

#

#

This method starts the monitor (probe) for the data service under the

control of PMF. The monitor is a process that probes the data service

at periodic intervals and if there is a problem restarts it on the same node
or fails it over to another node in the cluster. The PMF tag for the

monitor is $RESOURCE_NAME.monitor.

#pragma ident “@(#)dns_monitor start 1.1 12/01/24"

B B B st
Parse program arguments.

246 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Monitor_start Method Code Listing

EXAMPLEA-6 dns_monitor_start Method (Continued)
#

function parse args # [args ...]

{

typeset opt

while getopts ‘R:G:T:’ opt

do

case “$opt” in

R)
Name of the DNS resource.
RESOURCE_NAME=$0PTARG

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$0PTARG

T)
Name of the resource type.
RESOURCETYPE_NAME=$0PTARG

o HH

logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE_NAME, $RESOURCEGROUP NAME, $RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac
done

MAIN
#
HHHHHH AR

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method
parse args “$@”

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME, $RESOURCE_NAME

Find where the probe method resides by obtaining the value of the
RT_basedir property of the data service.

RT BASEDIR =scha resource get -O RT basedir -R $RESOURCE NAME \

-G $RESOURCEGROUP_NAME

Start the probe for the data service under PMF. Use the infinite retries

option to start the probe. Pass the resource name, group, and type to the
probe method.

Appendix A - Sample Data Service Code Listings

247

Monitor_stop Method Code Listing

EXAMPLEA-6 dns_monitor_start Method (Continued)

pmfadm -c $PMF TAG.monitor -n -1 -t -1\
$RT BASEDIR/dns probe -R $RESOURCE NAME -G $RESOURCEGROUP NAME \
-T $RESOURCETYPE_NAME

Log a message indicating that the monitor for HA-DNS has been started.
if [$7 -eq 0]; then
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG TAG] \
“${ARGV0O} Monitor for HA-DNS successfully started”
fi
exit 0

Monitor_stop Method Code Listing

This method stops the PROBE program for the data service.

EXAMPLEA-7 dns_monitor_stop Method

#!/bin/ksh
Monitor stop method for HA-DNS
Stops the monitor that is running using PMF.

#pragma ident “@(#)dns_monitor stop 1.1 12/01/24 "

Parse program arguments.
#
function parse args # [args ...]
{
typeset opt

while getopts ‘R:G:T:’ opt

do
case “$opt” in
R)
Name of the DNS resource.
RESOURCE_NAME=$0PTARG
G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP NAME=$0PTARG
T)
Name of the resource type.
RESOURCETYPE_NAME=$0PTARG
o HH
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE_ NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac

248 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Monitor_check Method Code Listing

EXAMPLEA-7 dns_monitor_stop Method (Continued)

done

MAIN
#
HHHHHH AR

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method
parse args “$@”

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME, $RESOURCE_NAME

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG.monitor; then
pmfadm -s $PMF TAG.monitor KILL
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVO} Could not stop monitor for resource “ \
$RESOURCE_NAME
exit 1
else
Could successfully stop the monitor. Log a message.
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“${ARGVO} Monitor for resource “ $RESOURCE_NAME \
“ successfully stopped”
fi
fi
exit 0

Monitor_check Method Code Listing

This method verifies the existence of the directory that is pointed to by the Confdir property.
The RGM callsMonitor check when the PROBE method fails over the data service to a new
node. The RGM also does so to check nodes that are potential masters.

EXAMPLEA-8 dns_monitor_check Method

#1/bin/ksh#

Monitor check Method for DNS.

#

The RGM calls this method whenever the fault monitor fails the data service
over to a new node. Monitor check calls the Validate method to verify

that the configuration directory and files are available on the new node.

#pragma ident “@(#)dns_monitor check 1.1 12/01/24"

Appendix A - Sample Data Service Code Listings

249

Monitor_check Method Code Listing

EXAMPLEA-8 dns_monitor_check Method (Continued)

Parse program arguments.
function parse args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do
case “$opt” in

R)
Name of the DNS resource.
RESOURCE NAME=$0PTARG

r

G)

Name of the resource group in which the resource is
configured.

RESOURCEGROUP_NAME=$0PTARG

r

T)
Name of the resource type.
RESOURCETYPE_NAME=$0PTARG

r

*)
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE_ NAME, $RESOURCEGROUP NAME, $RESOURCE NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac
done

MAIN
HHAHHH AR

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method.
parse args “$@”

PMF_TAG=$RESOURCE_NAME . named
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME , $RESOURCE_NAME

Obtain the full path for the Validate method from

the RT basedir property of the resource type.
RT BASEDIR =scha resource get -O RT basedir -R $RESOURCE NAME \

250 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Validate Method Code Listing

EXAMPLE A-8 dns_monitor_check Method (Continued)

-G $RESOURCEGROUP_NAME

Obtain the name of the Validate method for this resource.
VALIDATE_METHOD =scha_resource_get -0 VALIDATE -R $RESOURCE_NAME \
-G $RESOURCEGROUP NAME

Obtain the value of the Confdir property in order to start the

data service. Use the resource name and the resource group entered to
obtain the Confdir value set at the time of adding the resource.
config info =scha resource get -0 Extension -R $RESOURCE NAME \

-G $RESOURCEGROUP _NAME Confdi'r

scha resource get returns the type as well as the value for extension
properties. Use awk to get only the value of the extension property.
CONFIG DIR'=echo $config info | awk ‘{print $2} "’

Call the validate method so that the dataservice can be failed over
successfully to the new node.

$RT BASEDIR/$VALIDATE METHOD -R $RESOURCE NAME -G $RESOURCEGROUP NAME \
-T $RESOURCETYPE NAME -x Confdir=$CONFIG DIR

Log a message indicating that monitor check was successful.
if [$? -eq 0]; then
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“${ARGVO} Monitor check for DNS successful.”
exit 0
else
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV@} Monitor check for DNS not successful.”
exit 1
fi

Validate Method Code Listing

This method verifies the existence of the directory that is pointed to by the Confdir property.
The RGM calls this method when the data service is created. The RGM also calls this method
when the cluster administrator updates the data service properties. The Monitor_check method
calls this method whenever the fault monitor fails over the data service to a new node.

EXAMPLEA-9 dns_validate Method

#!/bin/ksh

Validate method for HA-DNS.

This method validates the Confdir property of the resource. The Validate

method gets called in two scenarios. When the resource is being created and

when a resource property is getting updated. When the resource is being

created, this method gets called with the -c flag and all the system-defined
and extension properties are passed as command-line arguments. When a resource
property is being updated, the Validate method gets called with the -u flag,

and only the property/value pair of the property being updated is passed as a
command-line argument.

#

Appendix A « Sample Data Service Code Listings 251

Validate Method Code Listing

EXAMPLEA-9 dns_validate Method (Continued)

ex: When the resource is being created command args will be

dns validate -c¢ -R <..> -G <...> -T <..> -r <sysdef-prop=value>...
-x <extension-prop=value>.... -g <resourcegroup-prop=value>....

dns validate -u -R <..> -G <...> -T <..> -r <sys-prop being updated=value>
OR

#

#

#

#

#

when the resource property is being updated

#

#

#

dns validate -u -R <..> -G <...> -T <..> -x <extn-prop being updated=value>

#pragma ident “@(#)dns_validate 1.1 12/01/24 "

B
Parse program arguments.

#

function parse args # [args ...]

{
typeset opt

while getopts ‘cur:x:g:R:T:G:X:’ opt

do

case “$opt” in

R)
Name of the DNS resource.
RESOURCE_NAME=$0PTARG

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$0PTARG

T
Name of the resource type.
RESOURCETYPE_NAME=$0PTARG

X)
Per-node extension property setting. The format of the
option argument is "propertyname{nodeid}=propertyvalue".
For example, there might be two -X options with the following
arguments:
myprop{1}=myvalue
myprop{2}=othervalue
representing the setting of property 'myprop’ on nodes 1
and 2.
In most cases, the -X arguments can be ignored. Instead
use the -x argument to get the property setting for the
local node.

r)
#The method is not accessing any system defined
#properties, so this is a no-op.

g)

The method is not accessing any resource group
properties, so this is a no-op.

252 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Validate Method Code Listing

EXAMPLEA-9 dns_validate Method (Continued)

c)
Indicates the Validate method is being called while
creating the resource, so this flag is a no-op.
u)
Indicates the updating of a property when the
resource already exists. If the update is to the
Confdir property then Confdir should appear in the

command-line arguments. If it does not, the method must

look for it specifically using scha resource get.
UPDATE_PROPERTY=1

X)
Extension property list. Separate the property and
value pairs using “=" as the separator.
PROPERTY =echo $OPTARG | awk -F= ‘{print $1}"’
VAL=echo $OPTARG | awk -F= ‘{print $2}"’

If the Confdir extension property is found on the
command line, note its value.
if [$PROPERTY == “Confdir” 1];
then
CONFDIR=$VAL
CONFDIR FOUND=1
fi

*) "
logger -p ${SYSLOG FACILITY}.err \
-t [$SYSLOG TAG] \
“ERROR: Option $OPTARG unknown”
exit 1

I

esac

MAIN
#
HHH AR

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Set the Value of CONFDIR to null. Later, this method retrieves the value
of the Confdir property from the command line or using scha resource get.
CONFDIR=""

UPDATE PROPERTY=0

CONFDIR FOUND=0

Parse the arguments that have been passed to this method.
parse _args “$@”

Appendix A - Sample Data Service Code Listings

253

Update Method Code Listing

EXAMPLEA-9 dns_validate Method (Continued)

If the validate method is being called due to the updating of properties
try to retrieve the value of the Confdir extension property from the command
line. Otherwise, obtain the value of Confdir using scha resource get.
if ((($UPDATE_PROPERTY == 1)) & ((CONFDIR FOUND == @))); then

config info=scha resource get -0 Extension -R $RESOURCE NAME \

-G $RESOURCEGROUP_NAME Confdi'r

CONFDIR=echo $config info | awk ‘{print $2}’

fi

Verify that the Confdir property has a value. If not there is a failure
and exit with status 1.
if [[-z $CONFDIR 1]; then
logger -p ${SYSLOG FACILITY}.err \
“${ARGV0} Validate method for resource “$RESOURCE NAME “ failed”
exit 1
fi

Now validate the actual Confdir property value.

Check if $CONFDIR is accessible.
if [! -d $CONFDIR]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGV0O} Directory $CONFDIR missing or not mounted”
exit 1
fi

Check that the named.conf file is present in the Confdir directory.
if [! -s $CONFDIR/named.conf]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVO} File $CONFDIR/named.conf is missing or empty”
exit 1
fi

Log a message indicating that the Validate method was successful.
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \

“${ARGVO} Validate method for resource “$RESOURCE NAME \

“ completed successfully”

exit 0

Update Method Code Listing

The RGM calls the Update method to notify a running resource that its properties have been
changed.

EXAMPLEA-10 dns_update Method

#1/bin/ksh

Update method for HA-DNS.

The actual updates to properties are done by the RGM. Updates affect only
the fault monitor so this method must restart the fault monitor.

254 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Update Method Code Listing

EXAMPLEA-10 dns_update Method (Continued)

#pragma ident “@(#)dns_update 1.1 12/01/24"

HARRHH AR R H AR R AR AR R R AR R R R RRHH AR R H A AR R HA AR R AR RS
Parse program arguments.

#
function parse args # [args ...]
{
typeset opt
while getopts ‘R:G:T:’ opt
do
case “$opt” in
R)
Name of the DNS resource.
RESOURCE_NAME=$0PTARG
G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$0PTARG
T
Name of the resource type.
RESOURCETYPE NAME=$0PTARG
o HH
logger -p ${SYSLOG FACILITY}.err \
-t [$RESOURCETYPE NAME, $RESOURCEGROUP_ NAME, $RESOURCE NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
esac
done
}

MAIN

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG FACILITY =scha cluster get -0 SYSLOG FACILIT'Y

Parse the arguments that have been passed to this method
parse args “$@”

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME, $RESOURCEGROUP_NAME, $RESOURCE_NAME

Find where the probe method resides by obtaining the value of the
RT_basedir property of the resource.

RT BASEDIR'=scha resource get -O RT basedir -R $RESOURCE NAME \

-G $RESOURCEGROUP_NAME

When the Update method is called, the RGM updates the value of the property

being updated. This method must check if the fault monitor (probe)
is running, and if so, kill it and then restart it.

Appendix A - Sample Data Service Code Listings

255

Update

Method Code Listing

EXAMPLE A-10 dns_update Method (Continued)

if pmfadm -q $PMF_TAG.monitor; then

Kill the monitor that is running already

pmfadm -s $PMF_TAG.monitor TERM
if [$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVO} Could not stop the monitor”

exit 1
else
Could successfully stop DNS. Log a message.
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“Monitor for HA-DNS successfully stopped”
fi

Restart the monitor.
pmfadm -c $PMF TAG.monitor -n -1 -t -1 $RT BASEDIR/dns probe \

if

els

fi
fi
exit 0

256

-R $RESOURCE_NAME -G $RESOURCEGROUP NAME -T $RESOURCETYPE_NAME
[$? -ne 0]; then
logger -p ${SYSLOG FACILITY}.err -t [$SYSLOG TAG] \
“${ARGVQ} Could not restart monitor for HA-DNS *“
exit 1
e
logger -p ${SYSLOG FACILITY}.info -t [$SYSLOG TAG] \
“Monitor for HA-DNS successfully restarted”

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L K R 4 APPENDIX B

DSDL Sample Resource Type Code Listings

This appendix lists the complete code for each method in the ORCL. xfnts resource type. It
includes the listing for xfnts. ¢, which contains code for the subroutines that are called by the
callback methods. Chapter 8, “Sample DSDL Resource Type Implementation,” describes the
sample resource type ORCL . xfnts in more detail.

This appendix covers the following topics:

“xfnts. c File Listing” on page 257

“xfnts_monitor_check Method Code Listing” on page 268
“xfnts_monitor_start Method Code Listing” on page 269
“xfnts_monitor_stop Method Code Listing” on page 270
“xfnts_probe Method Code Listing” on page 271
“xfnts_start Method Code Listing” on page 274
“xfnts_stop Method Code Listing” on page 275
“xfnts_update Method Code Listing” on page 276
“xfnts_validate Method Code Listing” on page 277

xfnts.cFile Listing

This file implements the subroutines that are called by the ORCL. xfnts methods.

EXAMPLEB-1 xfnts.c

/*

*
*
*
*
*
*
*
*
*

Copyright (c) 1998, 2012, by Oracle and/or its affilities.
All rights reserved.

xfnts.c - Common utilities for HA-XFS
This utility has the methods for performing the validation, starting and
stopping the data service and the fault monitor. It also contains the method

to probe the health of the data service. The probe just returns either
success or failure. Action is taken based on this returned value in the

257

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

* method found in the file xfnts probe.c
*

*/
#pragma ident “@(#)xfnts.c 1.47 12/01/18"

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <scha.h>
#include <rgm/libdsdev.h>
#include <errno.h>
#include “xfnts.h”

/*
* The initial timeout allowed for the HAXFS data service to
* be fully up and running. We will wait for 3 % (SVC WAIT PCT)
* of the start_timeout time before probing the service.
*/
#define SVC WAIT PCT 3

/*
* We need to use 95% of probe timeout to connect to the port and the
* remaining time is used to disconnect from port in the svc_probe function.

*/

#define SVC CONNECT TIMEOUT PCT 95

/*
* SVC_WAIT TIME is used only during starting in svc wait().
* In svc_wait() we need to be sure that the service is up
* before returning, thus we need to call svc probe() to
* monitor the service. SVC _WAIT TIME is the time between
* such probes.
*/

#define SVC WAIT TIME 5

/*

* This value will be used as disconnect timeout, if there is no
* time left from the probe timeout.

*/
#define SVC_DISCONNECT TIMEOUT SECONDS 2
/*
* svc_validate():
*
* Do HA-XFS specific validation of the resource configuration.
*
* svc_validate will check for the following
*k

1. Confdir list extension property

258 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)
* 2. fontserver.cfg file

* 3. xfs binary

* 4. port list property

* 5. network resources

* 6. other extension properties
*

* If any of the above validation fails then, Return > 0@ otherwise return 0 for
* success

*/
int

svc_validate(scds handle t scds handle)

{

char xfnts conf[SCDS ARRAY SIZE];
scha_str_array t *confdirs;
scds_net resource list t *snrip;
int rc;

struct stat statbuf;

scds port list t *portlist;
scha_err t err;

/*

* Get the configuration directory for the XFS dataservice from the
* confdir list extension property.

*/

confdirs = scds_get ext confdir list(scds handle);

/* Return an error if there is no confdir list extension property */
if (confdirs == NULL || confdirs->array cnt != 1) {
scds_syslog(LOG ERR,
“Property Confdir_ list is not set properly.”);
return (1); /* Validation failure */

}

/*
* Construct the path to the configuration file from the extension
* property confdir list. Since HA-XFS has only one configuration
* we will need to use the first entry of the confdir list property.
*/
(void) sprintf(xfnts_conf, “%s/fontserver.cfg”, confdirs->str array[0]);

/*
* Check to see if the HA-XFS configuration file is in the right place.
* Try to access the HA-XFS configuration file and make sure the
* permissions are set properly
*/
if (stat(xfnts conf, &statbuf) != 0) {
/*
* suppress lint error because errno.h prototype
* is missing void arg
*/
scds syslog(LOG ERR,
“Failed to access file <%s> : <%s>",
xfnts conf, strerror(errno)); /*lint 'e746 */
return (1);

Appendix B « DSDL Sample Resource Type Code Listings

259

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

* Make sure that xfs binary exists and that the permissions
* are correct. The XFS binary are assumed to be on the local
* File system and not on the Global File System
*/
if (stat(“/usr/bin/xfs”, &statbuf) != 0) {

scds syslog(LOG ERR,

“Cannot access XFS binary : <%s> “, strerror(errno));
return (1);

}

/* HA-XFS will have only port */
err = scds get port list(scds handle, &portlist);
if (err != SCHA ERR NOERR) {
scds_syslog(LOG ERR,
“Could not access property Port list: %s.”,
scds error _string(err));
return (1); /* Validation Failure */
}

#ifdef TEST
if (portlist->num ports != 1) {
scds syslog(LOG ERR,
“Property Port list must have only one value.”);
scds_free port list(portlist);
return (1); /* Validation Failure */
}
#endif

/*
* Return an error if there is an error when trying to get the
* available network address resources for this resource
*/
if ((err = scds_get rs hostnames(scds_handle, &snrlp))
= SCHA ERR_NOERR) {
scds _syslog(LOG ERR,
“No network address resource in resource group: %s.”,
scds error_string(err));
return (1); /* Validation Failure */

/* Return an error if there are no network address resources */
if (snrlp == NULL || snrlp->num netresources == 0) {
scds_syslog(LOG _ERR,
“No network address resource in resource group.”);
rc = 1;
goto finished;

/* Check to make sure other important extension props are set */
if (scds get ext monitor retry count(scds handle) <= 0)
scds syslog(LOG ERR,

“Property Monitor retry count is not set.”);
rc = 1; /* Validation Failure */

260 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

f

}
/

goto finished;

if (scds get ext monitor retry interval(scds handle) <= 0) {
scds_syslog(LOG_ERR,
“Property Monitor retry interval is not set.”);
rc = 1; /* Validation Failure */
goto finished;

b

/* A1l validation checks were successful */
scds_syslog(LOG INFO, “Successful validation.”);
rc = 0;

inished:
scds _free net list(snrlp);
scds _free port list(portlist);

return (rc); /* return result of validation */

*
svc_start():

Start up the X font server
Return @ on success, > 0 on failures.

/usr/bin/xfs -config <fontserver.cfg file> -port <port to listen>

XFS will be started under PMF. XFS will be started as a single instance

service. The PMF tag for the data service will be of the form

<resourcegroupname, resourcename,instance_number.svc>. In case of XFS, since

there will be only one instance the instance number in the tag will be 0.
*/

*
*
*
*
*
* The XFS service will be started by running the command
*
*
*
*
*

int

S

{

vc_start(scds handle t scds handle)

char xfnts conf[SCDS ARRAY SIZE]
char cmd[SCDS_ARRAY_SIZE];
scha_str _array t *confdirs;

scds port list t *portlist;

scha err t err;

/* get the configuration directory from the confdir list property */
confdirs = scds_get ext confdir list(scds_handle);

(void) sprintf(xfnts conf, “%s/fontserver.cfg”, confdirs->str array[0]);

/* obtain the port to be used by XFS from the Port list property */
err = scds_get _port_list(scds handle, &portlist);
if (err != SCHA ERR NOERR) {
scds syslog(LOG ERR,
“Could not access property Port list.”);
return (1);

Appendix B « DSDL Sample Resource Type Code Listings 261

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

/*

* X X X X X ¥

*/
int

Construct the command to start HA-XFS.

“/usr/bin/xfs notice: terminating”
In order to suppress the daemon message,
the output is redirected to /dev/null.

* X X X X

*/

(void) sprintf(cmd,
“/usr/bin/xfs -config %s -port %d 2>/dev/null”,
xfnts conf, portlist->ports[@].port);

/*
* Start HA-XFS under PMF. Note that HA-XFS is started as a single
* instance service. The last argument to the scds pmf start function
* denotes the level of children to be monitored. A value of -1 for
* this parameter means that all the children along with the original
* process are to be monitored.
*/
scds syslog(LOG INFO, “Issuing a start request.”);
err = scds_pmf_start(scds _handle, SCDS PMF _TYPE SVC,
SCDS PMF_SINGLE INSTANCE, cmd, -1);

if (err == SCHA ERR NOERR) {
scds syslog(LOG INFO,
“Start command completed successfully.”);
} else {
scds syslog(LOG ERR,
“Failed to start HA-XFS “);
}

scds_free port list(portlist);
return (err); /* return Success/failure status */

svc_stop():

Stop the XFS server
Return @ on success, > 0 on failures.

svc_stop will stop the server by calling the toolkit function:
scds pmf stop.

svc_stop(scds handle t scds handle)

{

262

scha err t err;

/*
* The timeout value for the stop method to succeed is set in the
* Stop Timeout (system defined) property
*/
scds syslog(LOG ERR, “Issuing a stop request.”);
err = scds_pmf_stop(scds_handle,
SCDS PMF_TYPE SVC, SCDS PMF SINGLE INSTANCE, SIGTERM,

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

NOTE: XFS daemon prints the following message while stopping the XFS

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

scds get rs stop timeout(scds handle));

if (err != SCHA ERR_NOERR) {

}

scds syslog(LOG ERR,
“Failed to stop HA-XFS.”);
return (1);

scds _syslog(LOG INFO,

“Successfully stopped HA-XFS.”);

return (SCHA ERR NOERR); /* Successfully stopped */

/*

* *

svc_wait():

* wait for the data service to start up fully and make sure it is running
* healthy

*/

int

svc wait(scds handle t scds handle)

{

int rc, svc_start timeout, probe timeout;
scds netaddr list t *netaddr;

/%
if

/*
if

}
/*

*
*

*/

obtain the network resource to use for probing */
(scds get netaddr list(scds handle, &netaddr)) {
scds_syslog(LOG _ERR,

“No network address resources found in resource group.”);
return (1);

Return an error if there are no network resources */
(netaddr == NULL || netaddr->num_netaddrs == 0) {
scds syslog(LOG ERR,

“No network address resource in resource group.”);
return (1);

Get the Start method timeout, port number on which to probe,
the Probe timeout value

svc_start_timeout = scds get rs start timeout(scds handle);
probe timeout = scds get ext probe timeout(scds handle);

/*

*
*
*
*
*
*
*
*

sleep for SVC WAIT PCT percentage of start timeout time
before actually probing the dataservice. This is to allow
the dataservice to be fully up in order to reply to the
probe. NOTE: the value for SVC WAIT PCT could be different
for different data services.

Instead of calling sleep(),

call scds svc wait() so that if service fails too

many times, we give up and return early.

Appendix B - DSDL Sample Resource Type Code Listings 263

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

*/
if (scds svc wait(scds handle, (svc start timeout * SVC WAIT PCT)/100)
!= SCHA ERR NOERR) {

scds syslog(LOG ERR, “Service failed to start.”);

return (1);
}
do {

/*

* probe the data service on the IP address of the
* network resource and the portname
*/
rc = svc_probe(scds handle,
netaddr->netaddrs[0].hostname,
netaddr->netaddrs[@].port proto.port, probe timeout);
if (rc == SCHA ERR NOERR) {
/* Success. Free up resources and return */
scds free netaddr list(netaddr);
return (0);

* Dataservice is still trying to come up. Sleep for a while
* before probing again. Instead of calling sleep(),
* call scds_svc wait() so that if service fails too
* many times, we give up and return early.
*/
if (scds svc wait(scds handle, SVC WAIT TIME)
!= SCHA ERR_NOERR) {
scds_syslog(LOG ERR, “Service failed to start.”);
return (1);

}

/* We rely on RGM to timeout and terminate the program */
} while (1);

/*

This function starts the fault monitor for a HA-XFS resource.

This is done by starting the probe under PMF. The PMF tag

is derived as <RG-name,RS-name,instance number.mon>. The restart option
of PMF is used but not the “infinite restart”. Instead
interval/retry_time is obtained from the RTR file.

* X X X ¥

*/

int
mon_start(scds handle t scds handle)

{

scha err t err;
scds syslog debug(DBG LEVEL HIGH,

“Calling MONITOR START method for resource <%s>.",
scds_get resource name(scds handle));

264 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

*/

int

The probe xfnts probe is assumed to be available in the same
subdirectory where the other callback methods for the RT are
installed. The last parameter to scds pmf start denotes the
child monitor level. Since we are starting the probe under PMF
we need to monitor the probe process only and hence we are using
a value of 0.

* X X X X X

*/
err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_MON,
SCDS_PMF_SINGLE_ INSTANCE, “xfnts_probe”, 0);

if (err != SCHA ERR NOERR) {
scds syslog(LOG ERR,
“Failed to start fault monitor.”);
return (1);

}

scds syslog(LOG INFO,
“Started the fault monitor.”);

return (SCHA ERR NOERR); /* Successfully started Monitor */

This function stops the fault monitor for a HA-XFS resource.
This is done via PMF. The PMF tag for the fault monitor is
constructed based on <RG-name_RS-name,instance_number.mon>.

mon_stop(scds handle t scds handle)

/*

scha_err t err;

scds_syslog debug(DBG LEVEL HIGH,
“Calling scds pmf stop method”);

err = scds_pmf_stop(scds_handle, SCDS PMF TYPE_ MON,
SCDS_PMF_SINGLE INSTANCE, SIGKILL,
scds get rs monitor stop timeout(scds handle));

if (err != SCHA ERR NOERR) {
scds_syslog(LOG_ERR,
“Failed to stop fault monitor.”);
return (1);

}

scds_syslog(LOG_INFO,
“Stopped the fault monitor.”);

return (SCHA ERR NOERR); /* Successfully stopped monitor */

Appendix B « DSDL Sample Resource Type Code Listings

265

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

* svc_probe(): Do data service specific probing. Return a float value

* between 0 (success) and 100(complete failure).

*

* The probe does a simple socket connection to the XFS server on the specified
* port which is configured as the resource extension property (Port list) and
* pings the dataservice. If the probe fails to connect to the port, we return
* a value of 100 indicating that there is a total failure. If the connection
* goes through and the disconnect to the port fails, then a value of 50 is

* returned indicating a partial failure.

*/

int

svc_probe(scds handle t scds handle, char *hostname, int port, int
timeout)

{
int rc;
hrtime t t1l, t2;
int sock;
char testcmd[2048];
int time used, time remaining;
time_t connect_timeout;
/*

* probe the dataservice by doing a socket connection to the port

* specified in the port list property to the host that is

* serving the XFS dataservice. If the XFS service which is configured
* to listen on the specified port, replies to the connection, then

* the probe is successful. Else we will wait for a time period set

* in probe timeout property before concluding that the probe failed.

* Use the SVC CONNECT TIMEOUT PCT percentage of timeout
* to connect to the port

*/

connect timeout = (SVC CONNECT TIMEOUT PCT * timeout)/100;
tl = (hrtime_t) (gethrtime()/1E9);

/*
* the probe makes a connection to the specified hostname and port.
* The connection is timed for 95% of the actual probe timeout.
*/
rc = scds fm tcp connect(scds handle, &sock, hostname, port,
connect timeout);
if (rc) {
scds syslog(LOG ERR,
“Failed to connect to port <%d> of resource <%s>.",
port, scds get resource name(scds handle));
/* this is a complete failure */
return (SCDS_PROBE_COMPLETE_FAILURE);
}

t2 = (hrtime t) (gethrtime()/1E9);

/*
* Compute the actual time it took to connect. This should be less than

266 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts. cFile Listing

EXAMPLEB-1 xfnts.c (Continued)

* or equal to connect timeout, the time allocated to connect.

* If the connect uses all the time that is allocated for it,

* then the remaining value from the probe timeout that is passed to
* this function will be used as disconnect timeout. Otherwise, the
* the remaining time from the connect call will also be added to

* the disconnect timeout.

*

*/
time used = (int)(t2 - t1);

/*
* Use the remaining time(timeout - time took to connect) to disconnect
*/

time remaining = timeout - (int)time used;

/*
* If all the time is used up, use a small hardcoded timeout
* to still try to disconnect. This will avoid the fd leak.
*/
if (time remaining <= 0) {
scds syslog debug(DBG LEVEL LOW,
“svc_probe used entire timeout of “
“%d seconds during connect operation and exceeded the
“timeout by %d seconds. Attempting disconnect with timeout”
“owd “,
connect_timeout,
abs(time used),
SVC_DISCONNECT TIMEOUT SECONDS);

u“

time remaining = SVC_DISCONNECT TIMEOUT SECONDS;

* Return partial failure in case of disconnection failure.

* Reason: The connect call is successful, which means

* the application is alive. A disconnection failure

* could happen due to a hung application or heavy load.

* If it is the later case, don’t declare the application

* as dead by returning complete failure. Instead, declare

* it as partial failure. If this situation persists, the

* disconnect call will fail again and the application will be
* restarted.

rc = scds_fm tcp disconnect(scds handle, sock, time remaining);
if (rc != SCHA ERR NOERR) {
scds_syslog(LOG_ERR,
“Failed to disconnect to port %d of resource %s.”,
port, scds _get resource_name(scds_handle));
/* this is a partial failure */
return (SCDS PROBE COMPLETE FAILURE/2);
}

t2 = (hrtime_t) (gethrtime()/1E9);
time used = (int)(t2 - t1);

Appendix B « DSDL Sample Resource Type Code Listings 267

xfnts_monitor_check Method Code Listing

EXAMPLEB-1 xfnts.c (Continued)

time remaining = timeout - time_used;

* If there is no time left, don’t do the full test with
* fsinfo. Return SCDS PROBE COMPLETE FAILURE/2
* instead. This will make sure that if this timeout
* persists, server will be restarted.
*/
if (time remaining <= 0) {
scds syslog(LOG ERR, “Probe timed out.”);
return (SCDS PROBE COMPLETE FAILURE/2);

The connection and disconnection to port is successful,
Run the fsinfo command to perform a full check of
server health.

Redirect stdout, otherwise the output from fsinfo

ends up on the console.

* K X X ¥

*/
(void) sprintf(testcmd,
“/usr/openwin/bin/fsinfo -server %s:%d > /dev/null”,
hostname, port);
scds syslog debug(DBG LEVEL HIGH,
“Checking the server status with %s.”, testcmd);
if (scds timerun(scds handle, testcmd, time remaining,
SIGKILL, &rc) != SCHA ERR NOERR || rc != 0) {

scds_syslog(LOG ERR,
“Failed to check server status with command <%s>"
testcmd) ;

return (SCDS PROBE COMPLETE FAILURE/2);

return (0);

xfnts_monitor_check Method Code Listing

This method verifies that the basic resource type configuration is valid.

EXAMPLEB-2 xfnts _monitor check.c

/*
* Copyright (c) 1998, 2012, Oracle and/or its affilities.
All rights reserved.

* *

* xfnts_monitor _check.c - Monitor Check method for HA-XFS
*/

#pragma ident “@(#)xfnts monitor check.c 1.11 01/01/18"
#include <rgm/libdsdev.h>

#include “xfnts.h”

268 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_monitor_start Method Code Listing

EXAMPLEB-2 xfnts monitor check.c (Continued)

/*
* just make a simple validate check on the service
*/

int

main(int argc, char *argv[])

{

scds handle t scds handle;
int rc;

/* Process the arguments passed by RGM and initialize syslog */
if (scds initialize(&scds handle, argc, argv) != SCHA ERR NOERR)

scds syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);

b

rc = svc validate(scds handle);

scds syslog debug(DBG LEVEL HIGH,
“monitor_check method “
“was called and returned <%d>.", rc);

/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);

/* Return the result of validate method run as part of monitor check */
return (rc);

xfnts_monitor_start Method Code Listing

This method starts the xfnts_probe method.

EXAMPLEB-3 xfnts monitor start.c

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
All rights reserved.

* ¥

* xfnts monitor start.c - Monitor Start method for HA-XFS
*/

#pragma ident “@(#)xfnts_monitor start.c 1.10 12/01/18"

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* This method starts the fault monitor for a HA-XFS resource.
* This is done by starting the probe under PMF. The PMF tag
* is derived as RG-name,RS-name.mon. The restart option of PMF
* is used but not the “infinite restart”. Instead

Appendix B « DSDL Sample Resource Type Code Listings

269

xfnts_monitor_stop Method Code Listing

EXAMPLEB-3 xfnts monitor start.c (Continued)

* interval/retry_time is obtained from the RTR file.
*/

int

main(int argc, char *argv[])

{
scds_handle t scds_handle;
int rc;

/* Process arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA ERR_NOERR)

{
scds_syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);
}
rc = mon_start(scds handle);
/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);
/* Return the result of monitor_start method */
return (rc);
}

xfnts_monitor_stop Method Code Listing

This method stops the xfnts_probe method.

EXAMPLEB-4 xfnts monitor stop.c

/*

* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
* ALl rights reserved.

*

* xfnts_monitor stop.c - Monitor Stop method for HA-XFS
*/

#pragma ident “@(#)xfnts monitor stop.c 1.9 12/01/18"

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* This method stops the fault monitor for a HA-XFS resource.
* This is done via PMF. The PMF tag for the fault monitor is
* constructed based on RG-name_RS-name.mon.
*/

int

main(int argc, char *argv[])

{

270 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_probe Method Code Listing

EXAMPLEB-4 xfnts monitor stop.c (Continued)

scds handle t scds handle;
int rc;

/* Process arguments passed by RGM and initialize syslog */
if (scds initialize(&scds handle, argc, argv) != SCHA ERR NOERR)

scds syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);
}

rc = mon_stop(scds handle);

/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);

/* Return the result of monitor stop method */
return (rc);

xfnts_probe Method Code Listing

The xfnts_probe method checks the availability of the application and determines whether to
fail over or restart the data service. The xfnts_monitor start callback method starts this
program, and the xfnts_monitor_stop callback method stops it.

EXAMPLEB-5 xfnts probe.c

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
All rights reserved.

* ¥

* xfnts probe.c - Probe for HA-XFS
*/

#pragma ident “@(#)xfnts probe.c 1.26 01/01/18 SMI”

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <strings.h>
#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* main():
* Just an infinite loop which sleep()s for sometime, waiting for
* the PMF action script to interrupt the sleep(). When interrupted
* It calls the start method for HA-XFS to restart it.

Appendix B « DSDL Sample Resource Type Code Listings 271

xfnts_probe Method Code Listing

EXAMPLEB-5 xfnts probe.c (Continued)
*
*/
int
main(int argc, char *argv[])
{
int timeout;
int port, ip, probe result;
scds _handle t scds_handle;
hrtime t htl, ht2;
unsigned long dt;

scds netaddr list t *netaddr;
char *hostname;

if (scds initialize(&scds handle, argc, argv) != SCHA ERR NOERR)

scds syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);

/* Get the ip addresses available for this resource */
if (scds get netaddr list(scds handle, &netaddr)) {
scds_syslog(LOG_ERR,
“No network address resource in resource group.”);
scds close(&scds handle);
return (1);

/* Return an error if there are no network resources */
if (netaddr == NULL || netaddr->num netaddrs == 0) {
scds_syslog(LOG_ERR,
“No network address resource in resource group.”);
return (1);

* Set the timeout from the X props. This means that each probe
* iteration will get a full timeout on each network resource

* without chopping up the timeout between all of the network

* resources configured for this resource.

*/

timeout = scds get ext probe timeout(scds handle);

for (;;) {

/*
* sleep for a duration of thorough probe interval between
* successive probes.
*/
(void) scds fm sleep(scds handle,
scds _get rs thorough probe interval(scds handle));

/*
* Now probe all ipaddress we use. Loop over

272 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_probe Method Code Listing

EXAMPLEB-5 xfnts probe.c (Continued)

* 1. All net resources we use.
* 2. All ipaddresses in a given resource.
* For each of the ipaddress that is probed,
* compute the failure history.
*/
probe result = 0;
/*
* Iterate through the all resources to get each
* IP address to use for calling svc_probe()
*/
for (ip = 0; ip < netaddr->num netaddrs; ip++) {
/*
* Grab the hostname and port on which the
* health has to be monitored.
*/
hostname = netaddr->netaddrs[ip].hostname;
port = netaddr->netaddrs[ip].port proto.port;
/*
* HA-XFS supports only one port and
* hence obtain the port value from the
* first entry in the array of ports.
*/
htl = gethrtime(); /* Latch probe start time */
scds _syslog(LOG _INFO, “Probing the service on “
“port: %d.”, port);

probe result =
svc_probe(scds handle, hostname, port, timeout);

/*
* Update service probe history,
* take action if necessary.
* Latch probe end time.
*/
ht2 = gethrtime();

/* Convert to milliseconds */
dt = (ulong t)((ht2 - htl) / 1le6);

/*
* Compute failure history and take
* action if needed
*/
(void) scds fm action(scds handle,
probe result, (long)dt);
} /* Each net resource */
} /* Keep probing forever */

Appendix B « DSDL Sample Resource Type Code Listings

273

xfnts_start Method Code Listing

xfnts_start Method Code Listing

The RGM runs the Start method on a cluster node when the resource group that contains the
data service resource is brought online on that node. The RGM also does so when the resource
isenabled. The xfnts_start method activates the xfs daemon on that node.

EXAMPLEB-6 xfnts start.c

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
* A1l rights reserved.

* xfnts_svc_start.c - Start method for HA-XFS
*/
#pragma ident “@(#)xfnts svc start.c 1.13 01/01/18 SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* The start method for HA-XFS. Does some sanity checks on
* the resource settings then starts the HA-XFS under PMF with
* an action script.

*/
int
main(int argc, char *argv[])
{
scds _handle t scds handle;
int rc;
/*

* Process all the arguments that have been passed to us from RGM
* and do some initialization for syslog
*/

if (scds initialize(&scds handle, argc, argv) != SCHA ERR NOERR)

scds syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);

/* Validate the configuration and if there is an error return back */
rc = svc_validate(scds handle);
if (rc 1= 0) {
scds_syslog(LOG ERR,
“Failed to validate configuration.”);
return (rc);

/* Start the data service, if it fails return with an error */
rc = svc_start(scds handle);
if (rc !'=0) {

goto finished;

274 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_stop Method Code Listing

EXAMPLEB-6 xfnts_start.c (Continued)

/* Wait for the service to start up fully */
scds_syslog debug(DBG LEVEL HIGH,
“Calling svc wait to verify that service has started.”);

rc = svc_wait(scds handle);

scds_syslog debug(DBG LEVEL HIGH,
“Returned from svc wait”);

if (rc == 0) {

scds syslog(LOG INFO, “Successfully started the service.”);
} else {

scds syslog(LOG ERR, “Failed to start the service.”);
}

finished:
/* Free up the Environment resources that were allocated */
scds close(&scds handle);

return (rc);

xfnts_stop Method Code Listing

The RGM runs the Stop method on a cluster node when the resource group that contains the
HA-XFS resource is brought offline on that node. The RGM also does so when the resource is
disabled. This method stops the xfs daemon on that node.

EXAMPLEB-7 xfnts stop.c

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
All rights reserved.

* ¥

* xfnts svc stop.c - Stop method for HA-XFS
*/

#pragma ident “@(#)xfnts_svc stop.c 1.10 01/01/18 SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*

* Stops the HA-XFS process using PMF
*/

int

main(int argc, char *argv[])

{

scds handle t scds handle;

Appendix B - DSDL Sample Resource Type Code Listings 275

xfnts_update Method Code Listing

EXAMPLEB-7 xfnts stop.c (Continued)

int rc;

/* Process the arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA ERR_NOERR)

scds syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);

}
rc = svc_stop(scds handle);

/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);

/* Return the result of svc stop method */
return (rc);

xfnts_update Method Code Listing

The RGM calls the Update method to notify a running resource that its properties have been
changed. The RGM runs Update after an administrative action succeeds in setting properties of
aresource or its group.

EXAMPLEB-8 xfnts update.c

#pragma ident "@(#)xfnts update.c 1.10 01/01/18 SMI"

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
* A1l rights reserved.

* xfnts_update.c - Update method for HA-XFS
*/

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <rgm/libdsdev.h>

/*
* Some of the resource properties might have been updated. All such
* updatable properties are related to the fault monitor. Hence, just
* restarting the monitor should be enough.
*/

int

main(int argc, char *argv[])

{
scds handle t scds handle;
scha err t result;

276 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

xfnts_validate Method Code Listing

EXAMPLEB-8 xfnts update.c (Continued)

/* Process the arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds handle, argc, argv) != SCHA ERR_NOERR)

{
scds _syslog(LOG _ERR, “Failed to initialize the handle.”);
return (1);
}
/*
* check if the Fault monitor is already running and if so stop and
* restart it. The second parameter to scds pmf restart fm() uniquely
* identifies the instance of the fault monitor that needs to be
* restarted.
*/
scds syslog(LOG INFO, “Restarting the fault monitor.”);
result = scds pmf restart fm(scds handle, 0);
if (result != SCHA ERR NOERR) {
scds_syslog(LOG_ERR,
“Failed to restart fault monitor.”);
/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);
return (1);
}
scds syslog(LOG INFO,
“Completed successfully.”);
/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);
return (0);
}

xfnts_validate Method Code Listing

This method verifies the existence of the directory that is pointed to by the Confdir_list
property. The RGM calls this method when the data service is created and when data service
properties are updated by the cluster administrator. The Monitor_check method calls this
method whenever the fault monitor fails over the data service to a new node.

EXAMPLEB-9 xfnts validate.c

/*
* Copyright (c) 1998, 2012, Oracle and/or its affiliates.
All rights reserved.

* ¥

* xfnts validate.c - validate method for HA-XFS
*/

#pragma ident “@(#)xfnts validate.c 1.9 01/01/18 SMI”

#include <rgm/libdsdev.h>

Appendix B « DSDL Sample Resource Type Code Listings 277

xfnts_validate Method Code Listing

EXAMPLEB-9 xfnts validate.c (Continued)

#include “xfnts.h”

/*

*

*/

int

Check to make sure that the properties have been set properly.

main(int argc, char *argv[])

{

278

scds handle t scds handle;
int rc;

/* Process arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds handle, argc, argv) != SCHA ERR NOERR)

scds_syslog(LOG ERR, “Failed to initialize the handle.”);
return (1);

}

rc = svc_validate(scds handle);

/* Free up all the memory allocated by scds initialize */
scds close(&scds handle);

/* Return the result of validate method */
return (rc);

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

L K R 4 APPENDIX C

Requirements for Non-Cluster-Aware
Applications

An ordinary, non-cluster-aware application must meet particular requirements to be a
candidate for high availability (HA). The section “Analyzing the Application for Suitability” on
page 29 lists these requirements. This appendix provides additional details about particular
items in that list.

An application is made highly available by configuring its resources into resource groups. The
application's data is placed on a highly available cluster file system, making the data accessible
by a surviving server in the event that one server fails. See information about cluster file systems
in the Oracle Solaris Cluster Concepts Guide.

For network access by clients on the network, a logical network IP address is configured in
logical host name resources that are contained in the same resource group as the data service
resource. The data service resource and the network address resources fail over together,
causing network clients of the data service to access the data service resource on its new host.

This appendix covers the following topics:

“Multihosted Data” on page 279

“Host Names” on page 281

“Multihomed Hosts” on page 281

“Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses” on page 282
“Client Retry” on page 283

Multihosted Data

The highly available cluster file systems' devices are multihosted so that when a physical host
crashes, one of the surviving hosts can access the device. For an application to be highly
available, its data must be highly available. Therefore, the application's data must be located in
file systems that can be accessed from multiple cluster nodes. Local file systems that you can
make highly available with Oracle Solaris Cluster include UNIX File System (UFS) and Oracle
Solaris ZFS.

279

http://www.oracle.com/pls/topic/lookup?ctx=E19680&id=CLUSTCONCEPTS

Multihosted Data

280

The cluster file system is mounted on device groups that are created as independent entities.
You can choose to use some device groups as mounted cluster file systems and others as raw
devices for use with a data service, such as HA for Oracle.

An application might have command-line switches or configuration files that point to the
location of the data files. If the application uses hard-wired path names, you could change the
path names to symbolic links that point to a file in a cluster file system, without changing the
application code. See “Using Symbolic Links for Multihosted Data Placement” on page 280 for a
more detailed discussion about using symbolic links.

In the worst case, the application's source code must be modified to provide a mechanism for
pointing to the actual data location. You could implement this mechanism by creating
additional command-line arguments.

The Oracle Solaris Cluster software supports the use of UNIX UFS and ZFS file systems and HA
raw devices that are configured in a volume manager. When installing and configuring the
Oracle Solaris Cluster software, the cluster administrator must specify which disk resources to
use for UFS or ZFS file systems and which disk resources to use for raw devices. Typically, raw
devices are used only by database servers and multimedia servers.

Using Symbolic Links for Multihosted Data Placement

Occasionally, the path names of an application's data files are hard-wired, with no mechanism
for overriding the hard-wired path names. To avoid modifying the application code, you can
sometimes use symbolic links.

For example, suppose the application names its data file with the hard-wired path name
/etc/mydatafile. You can change that path from a file to a symbolic link that has its value
pointing to a file in one of the logical host's file systems. For example, you can make the path a
symbolic link to /global/phys-schost-2/mydatafile.

A problem can occur with this use of symbolic links if the application, or one of its
administrative procedures, modifies the data file name as well as its contents. For example,
suppose that the application performs an update by first creating a new temporary file
/etc/mydatafile.new. Then, the application renames the temporary file to have the real file
name by using the rename () system call (or the mv command). By creating the temporary file
and renaming it to the real file name, the data service is attempting to ensure that its data file
contents are always well formed.

Unfortunately, the rename () action destroys the symbolic link. The name /etc/mydatafileis
now a regular file and is in the same file system as the /etc directory, not in the cluster's cluster
file system. Because the /etc file system is private to each host, the data is not available after a
failover or switchover.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Multihomed Hosts

The underlying problem is that the existing application is not aware of the symbolic link and
was not written to handle symbolic links. To use symbolic links to redirect data access into the
logical host's file systems, the application implementation must behave in a way that does not
obliterate the symbolic links. So, symbolic links are not a complete remedy for the problem of
placing data in the cluster's file systems.

Host Names

You must determine whether the data service ever needs to know the host name of the server on
which it is running. If so, the data service might need to be modified to use a logical host name,
rather than the physical host name. In this sense, a logical host name is a host name that is
configured into a logical host name resource that is located in the same resource group as the
application resource.

Occasionally, in the client-server protocol for a data service, the server returns its own host
name to the client as part of the contents of a message to the client. For such protocols, the client
could be depending on this returned host name as the host name to use when contacting the
server. For the returned host name to be usable after a failover or switchover, the host name
should be a logical host name of the resource group, not the name of the physical host. In this
case, you must modify the data service code to return the logical host name to the client.

Multihomed Hosts

The term multihomed host describes a host that is located on more than one public network.
Such a host has multiple host names and IP addresses. It has one host name-IP address pair for
each network. Oracle Solaris Cluster is designed to permit a host to appear on any number of
networks, including just one (the non-multihomed case). Just as the physical host name has
multiple host name-IP address pairs, each resource group can have multiple host name-IP
address pairs, one for each public network. When Oracle Solaris Cluster moves a resource
group from one physical host to another physical host, the complete set of host name-IP
address pairs for that resource group is moved.

The set of host name-IP address pairs for a resource group is configured as logical host name
resources contained in the resource group. These network address resources are specified by the
cluster administrator when the resource group is created and configured. The Oracle Solaris
Cluster Data Service API contains facilities for querying these host name-IP address pairs.

Most off-the-shelf data service daemons that have been written for the Oracle Solaris Operating
System already handle multihomed hosts correctly. Many data services do all their network
communication by binding to the Oracle Solaris wildcard address INADDR_ANY. This binding
automatically causes the data services to handle all the IP addresses for all the network
interfaces. INADDR_ANY effectively binds to all IP addresses that are currently configured on the
machine. A data service daemon that uses INADDR_ANY generally does not need to be changed to
handle the Oracle Solaris Cluster logical network addresses.

Appendix C « Requirements for Non-Cluster-Aware Applications 281

Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses

Binding to INADDR_ANY as Opposed to Binding to SpecificIP

Addresses

282

Even when non-multihomed hosts are used, the Oracle Solaris Cluster logical network address
concept enables the machine to have more than one IP address. The machine has one IP address
for its own physical host, and additional IP addresses for each network address (logical host
name or shared address) resource that it currently masters. When a machine becomes the
master of a network address resource, it dynamically acquires additional IP addresses. When it
gives up mastery of a network address resource, it dynamically relinquishes IP addresses.

Some data services cannot work correctly in an Oracle Solaris Cluster environment if they bind
to INADDR_ANY. For example, if an application needs to use the logical address as the source for
outbound traffic, the deprecated flag set by the network address resource will prevent this if the
application calls bind (3SOCKET) with INADDR_ANY as the address. For such an application to
work properly in a clustered environment, it must be able to be configured to explicitly

bind (3SOCKET) to the logical address, which overrides the deprecated flag when the source
address for outbound traffic is selected. The application must implement this feature, because
the cluster framework cannot alter application behavior.

When the application resource and the network address resource reside in different resource
groups, the Resource_dependencies property lets you ensure a specific set of network address
resources are available when the application resource eventually calls bind (3SOCKET). When
the application resource declares a dependency upon the network address resource, Oracle
Solaris Cluster starts the network address before starting the application, so that the application
that is binding to the network address will not fail to find it. The resource dependency also
ensures that when the resource group is going offline, the application is stopped before stopping
the network address.

Without a resource dependency declared, the order in which the application and network
address resources are started or stopped is nondeterministic.

Network address resource types include SUNW. LogicalHostname and SUNW. SharedAddress.

To force the application resource group and the network address resource group to always start
on the same node, declare a strong positive affinity with delegated failover (a +++ affinity) of the
application resource group upon the network address resource group. For more information,
see the “RG_affinities” section in the rg_properties(5) man page.

If the application resource and the network address resource are configured in the same
resource group, then it is usually not necessary to declare an explicit resource dependency. By
default there will be an implicit resource dependency of the application upon the network
address. For more information, see the “Implicit_network_dependencies” section in the
rg_properties(5) man page.

Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrg-properties-5
http://www.oracle.com/pls/topic/lookup?ctx=E29086&id=CLCRMrg-properties-5

Client Retry

Client Retry

To a network client, a failover or switchover appears to be a crash of the logical host followed by
afast reboot. Ideally, the client application and the client-server protocol are structured to do
some amount of retrying. If the application and protocol already handle the case of a single
server crashing and rebooting, they can also handle the case of the resource group being taken
over or switched over. Some applications might elect to retry endlessly. More sophisticated
applications notify the user that along retry is in progress and enable the user to choose
whether to continue.

Appendix C « Requirements for Non-Cluster-Aware Applications 283

284

L K R 4 APPENDIX D

Document Type Definitions for the CRNP

This appendix includes the following document type definitions (DTDs) for the Cluster
Reconfiguration Notification Protocol (CRNP):

“SC_CALLBACK_REG XML DTD” on page 285
“NVPAIR XML DTD” on page 287
“SC_REPLY XML DTD” on page 288
“SC_EVENT XML DTD” on page 288

SC_CALLBACK_REG XML DTD

Note - The NVPAIR data structure that is used by both SC_CALLBACK_REG and SC_EVENT is defined
only once.

<!— SC CALLBACK REG XML format specification
Copyright 2001, 2012, Oracle and/or its affiliates. All rights reserved.
Use is subject to license terms.

Intended Use:

A client of the Cluster Reconfiguration Notification Protocol should use this xml format
to register initially with the service, to subsequently register for more events, to
subsequently remove registration of some events, or to remove itself from the service
entirely.

A client is uniquely identified by its callback IP and port. The port is defined in the
SC CALLBACK REG element, and the IP is taken as the source IP of the registration
connection. The final attribute of the root SC CALLBACK REG element is either an

ADD CLIENT, ADD EVENTS, REMOVE CLIENT, or REMOVE EVENTS, depending on which form of the
message the client is using.

The SC CALLBACK REG contains @ or more SC EVENT REG sub-elements.

One SC _EVENT REG is the specification for one event type. A client may specify only the

285

SC_CALLBACK_REG XML DTD

CLASS (an attribute of the SC_EVENT REG element), or may specify a SUBCLASS (an optional
attribute) for further granularity. Also, the SC EVENT REG has as subelements @ or more
NVPAIRs, which can be used to further specify the event.

Thus, the client can specify events to whatever granularity it wants. Note that a client
cannot both register for and unregister for events in the same message. However a client
can subscribe to the service and sign up for events in the same message.

Note on versioning: the VERSION attribute of each root element is marked "fixed", which
means that all message adhering to these DTDs must have the version value specified. If a
new version of the protocol is created, the revised DTDs will have a new value for this
fixed" VERSION attribute, such that all message adhering to the new version must have the
new version number.

—>

<!— SC_CALLBACK REG definition

The root element of the XML document is a registration message. A registration message
consists of the callback port and the protocol version as attributes, and either an

ADD CLIENT, ADD EVENTS, REMOVE CLIENT, or REMOVE EVENTS attribute, specifying the
registration type. The ADD CLIENT, ADD EVENTS, and REMOVE EVENTS types should have one or
more SC EVENT REG subelements. The REMOVE CLIENT should not specify an SC EVENT REG
subelement.

ATTRIBUTES:
VERSION The CRNP protocol version of the message.
PORT The callback port.
REG TYPE The type of registration. One of:
ADD CLIENT, ADD EVENTS, REMOVE CLIENT, REMOVE EVENTS
CONTENTS:
SUBELEMENTS: SC EVENT REG (@ or more)

-
<!ELEMENT SC_CALLBACK REG (SC_EVENT REG*)>
<!ATTLIST SC_CALLBACK_REG

VERSION NMTOKEN #FIXED
PORT NMTOKEN #REQUIRED
REG_TYPE (ADD_CLIENT|ADD EVENTS|REMOVE CLIENT|REMOVE_EVENTS) #REQUIRED

>
<!— SC_EVENT REG definition

The SC EVENT REG defines an event for which the client is either registering or
unregistering interest in receiving event notifications. The registration can be for any
level of granularity, from only event class down to specific name/value pairs that must be
present. Thus, the only required attribute is the CLASS. The SUBCLASS attribute, and the
NVPAIRS sub-elements are optional, for higher granularity.

Registrations that specify name/value pairs are registering interest in notification of
messages from the class/subclass specified with ALL name/value pairs present.
Unregistrations that specify name/value pairs are unregistering interest in notifications
that have EXACTLY those name/value pairs in granularity previously specified.
Unregistrations that do not specify name/value pairs unregister interest in ALL event
notifications of the specified class/subclass.

ATTRIBUTES:
CLASS: The event class for which this element is registering
or unregistering interest.
SUBCLASS: The subclass of the event (optional).
CONTENTS:

286 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

NVPAIR XML DTD

SUBELEMENTS: @ or more NVPAIRs.
—
<!ELEMENT SC EVENT REG (NVPAIR*)>
<!ATTLIST SC_EVENT REG
CLASS CDATA #REQUIRED
SUBCLASS CDATA #IMPLIED

NVPAIR XML DTD

<!— NVPAIR XML format specification

Copyright 2001, 2012, Oracle and/or its affiliates. All rights reserved.

Use is subject to license terms.

Intended Use:
An nvpair element is meant to be used in an SC_EVENT or
element.
—>

<!— NVPAIR definition

SC_CALLBACK_REG

The NVPAIR is a name/value pair to represent arbitrary name/value combinations.
It is intended to be a direct, generic, translation of the Oracle Solaris nvpair t
structure used by the sysevent framework. However, there is no type information

associated with the name or the value (they are both arbitrary
element.

text) in this xml

The NVPAIR consists simply of one NAME element and one or more VALUE elements.
One VALUE element represents a scalar value, while multiple represent an array

VALUE.
ATTRIBUTES:

CONTENTS:
SUBELEMENTS: NAME(1), VALUE(1 or more)
—>
<!ELEMENT NVPAIR (NAME,VALUE+)>
<!— NAME definition

The NAME is simply an arbitrary length string.
ATTRIBUTES:
CONTENTS:
Arbitrary text data. Should be wrapped with <![CDATA[
parsing inside.
—

<!ELEMENT NAME (#PCDATA)>

<!— VALUE definition
The VALUE is simply an arbitrary length string.

ATTRIBUTES:

CONTENTS:
Arbitrary text data. Should be wrapped with <![CDATA[

AppendixD « Document Type Definitions for the CRNP

...1]> to prevent XML

...]1]> to prevent XML

287

SC_REPLY XML DTD

parsing inside.
e

<!ELEMENT VALUE (#PCDATA)>

SC_REPLY XML DTD

<!— SC_REPLY XML format specification

Copyright 2001, 2012, Oracle and/or its affiliates. All rights reserved.
Use is subject to license terms.
—>

<!— SC_REPLY definition

The root element of the XML document represents a reply to a message. The reply
contains a status code and a status message.

ATTRIBUTES:
VERSION: The CRNP protocol version of the message.
STATUS CODE: The return code for the message. One of the
following: OK, RETRY, LOW RESOURCES, SYSTEM ERROR, FAIL,
MALFORMED, INVALID XML, VERSION_TOO HIGH, or
VERSION_TOO LOW.
CONTENTS:

SUBELEMENTS: SC_STATUS MSG(1)
—>
<!ELEMENT SC_REPLY (SC_STATUS MSG)>
<!ATTLIST SC_REPLY
VERSION NMTOKEN #FIXED "1.0"
STATUS_CODE OK|RETRY | LOW_RESOURCE|SYSTEM ERROR|FAIL|MALFORMED |INVALID,\
VERSION TOO HIGH, VERSION TOO LOW) #REQUIRED
>
<!— SC_STATUS MSG definition
The SC STATUS MSG is simply an arbitrary text string elaborating on the status
code. Should be wrapped with <![CDATA[...]]> to prevent XML parsing inside.

ATTRIBUTES:
CONTENTS:
Arbitrary string.

—>

<!ELEMENT SC_STATUS_MSG (#PCDATA)>

SC_EVENT XML DTD

Note - The NVPAIR data structure that is used by both SC_CALLBACK_REG and SC_EVENT is defined
only once.

<!— SC_EVENT XML format specification

Copyright 2001, 2012, Oracle and/or its affiliates. All rights reserved.

288 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

SC_EVENT XMLDTD

Use is subject to license terms.

The root element of the XML

document is intended to be a direct, generic,

translation of the Oracle Solaris syseventd message format. It has attributes to
represent the class, subclass, vendor, and publisher, and contains any number of

NVPAIR elements.

ATTRIBUTES:
VERSION: The
CLASS: The
SUBCLASS: The
VENDOR: The
PUBLISHER: The
CONTENTS:

SUBELEMENTS: NVPAIR
—
<!ELEMENT SC EVENT (NVPAIR*)>
<!ATTLIST SC_EVENT

VERSION NMTOKEN
CLASS CDATA
SUBCLASS CDATA
VENDOR CDATA
PUBLISHER CDATA

CRNP protocol version of the message.
sysevent class of the event

subclass of the event

vendor associated with the event
publisher of the event

(0 or more)

#FIXED "1.0"
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED

AppendixD « Document Type Definitions for the CRNP

289

290

L K R 4 APPENDIX E

CrnpClient.java Application

This appendix shows the complete CrnpClient. java application that is discussed in more
detail in Chapter 12, “Cluster Reconfiguration Notification Protocol”

Contents of CrnpClient.java

/*

*

*

¥ OX X X X K X X K K K K K K K X K X X X X X X X X X X ¥ *

CrnpClient.java

Note regarding XML parsing:

This program uses the Sun Java Architecture for XML Processing (JAXP) API.
See http://java.sun.com/webservices/jaxp/ for API documentation and
availability information.

This program was written for Java 1.3.1 or higher.
Program overview:

The main thread of the program creates a CrnpClient object, waits for the
user to terminate the demo, then calls shutdown on the CrnpClient object
and exits the program.

The CrnpClient constructor creates an EventReceptionThread object,

opens a connection to the CRNP server (using the host and port specified
on the command line), constructs a registration message (based on the
command-line specifications), sends the registartion message, and reads
and parses the reply.

The EventReceptionThread creates a listening socket bound to

the hostname of the machine on which this program runs, and the port
specified on the command line. It waits for an incoming event callback,
at which point it constructs an XML Document from the incoming socket
stream, which is then passed back to the CrnpClient object to process.

The shutdown method in the CrnpClient just sends an unregistration
(REMOVE_CLIENT) SC CALLBACK REG message to the crnp server.

291

Contents of CrnpClient.java

*

* Note regarding error handling: for the sake of brevity, this program just

* exits on most errors. Obviously, a real application would attempt to handle
* some errors in various ways, such as retrying when appropriate.

*/

// JAXP packages

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.w3c.dom.*;

// standard packages
import java.net.*;
import java.io.*;
import java.util.*;

/*
* class CrnpClient
*

* See file header comments above.

*/

class CrnpClient

{

/*
* main
X oo
* The entry point of the execution, main simply verifies the
* number of command-line arguments, and constructs an instance
* of a CrnpClient to do all the work.
*/

public static void main(String []args)

{

InetAddress regIp = null;
int regPort = 0, localPort = 0;

/* Verify the number of command-line arguments */
if (args.length < 4) {
System.out.println(
"Usage: java CrnpClient crnpHost crnpPort "
+ "localPort (-ac | -ae | -re) "
+ "[(M | A | RG=name | R=name) [...11");
System.exit(1);

/*
* We expect the command line to contain the ip/port of the
* crnp server, the local port on which we should listen, and
* arguments specifying the type of registration.
*/
try {
regIp = InetAddress.getByName(args[0]);
regPort = (new Integer(args[1])).intValue();
localPort = (new Integer(args[2])).intValue();
} catch (UnknownHostException e) {

292 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

System.out.println(e);
System.exit(1);
}

// Create the CrnpClient
CrnpClient client = new CrnpClient(regIp, regPort, localPort,
args);

// Now wait until the user wants to end the program
System.out.println("Hit return to terminate demo...");

// read will block until the user enters something
try {
System.in.read();
} catch (IOException e) {
System.out.println(e.toString());
}

// shutdown the client
client.shutdown();
System.exit(0);

}
/*
*
* public methods
*
*/
/*
* CrnpClient constructor
K o e e e e e e e e e — . —— -
* Parses the command line arguments so we know how to contact
* the crnp server, creates the event reception thread, and starts it
* running, creates the XML DocumentBuilderFactory obect, and, finally,
* registers for callbacks with the crnp server.
*/
public CrnpClient(InetAddress regIpIn, int regPortIn, int localPortIn,

{

Ap

String []clArgs)

try {

regIp = regIpln;
regPort = regPortln;
localPort = localPortIn;
regs = clArgs;

/*

* Setup the document builder factory for
* xml processing.

*/

setupXmlProcessing();

/*

* Create the EventReceptionThread, which creates a
* ServerSocket and binds it to a local ip and port.
*/

createEvtRecepThr();

pendixE « CrnpClient,java Application

293

Contents of CrnpClient.java

/*

* Register with the crnp server.
*/

registerCallbacks();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(1);

}

}

/*
* processEvent
*

* Callback into the CrnpClient, used by the EventReceptionThread
* when it receives event callbacks.
*/
public void processEvent(Event event)
{
/*
* For demonstration purposes, simply print the event
* to System.out. A real application would obviously make
* use of the event in some way.
*/
event.print(System.out);

}

/*

* shutdown

* Unregister from the CRNP server.

*/

public void shutdown()
{

try {

/* send an unregistration message to the server */
unregister();

} catch (Exception e) {
System.out.println(e);
System.exit(1);

}

}

/*

*

* private helper methods
*

*/

/*
* setupXmlProcessing

* Create the document builder factory for

* parsing the xml replies and events.

*/

private void setupXmlProcessing() throws Exception

dbf = DocumentBuilderFactory.newInstance();

294 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

// We don’t need to bother validating
dbf.setValidating(false);
dbf.setExpandEntityReferences(false);

// We want to ignore comments and whitespace
dbf.setIgnoringComments(true);
dbf.setIgnoringElementContentWhitespace(true);

// Coalesce CDATA sections into TEXT nodes.
dbf.setCoalescing(true);

* createEvtRecepThr

* Creates a new EventReceptionThread object, saves the ip
* and port to which its listening socket is bound, and

* starts the thread running.

*/

private void createEvtRecepThr() throws Exception

{

/* create the thread object */

evtThr = new EventReceptionThread(this);

/*
* Now start the thread running to begin listening
* for event delivery callbacks.
*/

evtThr.start();

}

*
/* registerCallbacks
* &;éééé;_;_;é;kéihéonnection to the crnp server and sends
* an event registration message.
*
private void registerCallbacks() throws Exception
{System.out.println("About to register")

/*

* Create a socket connected to the registration ip/port

* of the crnp server and send the registration information.
*/

Socket sock = new Socket(regIp, regPort);

String xmlStr = createRegistrationString();

PrintStream ps = new PrintStream(sock.getOutputStream());
ps.print(xmlStr);

/*

* Read the reply

*/
readRegistrationReply(sock.getInputStream());

/*
* Close the socket connection.

Appendix E « CrnpClient.java Application 295

Contents of CrnpClient.java

*/
sock.close();

}

/*

* unregister

X oo -

* As in registerCallbacks, we create a socket connection to
* the crnp server, send the unregistration message, wait for
* the reply from the server, then close the socket.

*/

private void unregister() throws Exception

{

System.out.println("About to unregister")

/*
* Create a socket connected to the registration ip/port
* of the crnp server and send the unregistration information.
*/
Socket sock = new Socket(regIp, regPort);
String xmlStr = createUnregistrationString();
PrintStream ps = new PrintStream(sock.getOutputStream());
ps.print(xmlStr);

/*
* Read the reply
*/
readRegistrationReply(sock.getInputStream());
/*
* Close the socket connection.
*/
sock.close();
}
/*

* createRegistrationString
*

* Constructs a CallbackReg object based on the command line arguments
* to this program, then retrieves the XML string from the CallbackReg

* object.
*/
private String createRegistrationString() throws Exception
{
/*
* create the actual CallbackReg class and set the port.
*/

CallbackReg cbReg = new CallbackReg();
cbReg.setPort (" + localPort);

// set the registration type

if (regs[3].equals("-ac")) {
cbReg.setRegType(CallbackReg.ADD CLIENT);

} else if (regs[3].equals("-ae")) {
cbReg.setRegType(CallbackReg.ADD EVENTS);

} else if (regs[3].equals("-re")) {
cbReg.setRegType(CallbackReg.REMOVE EVENTS);

} else {

System.out.println("Invalid reg type: " + regs[3]);

296 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

System.exit(1);
}

// add the events
for (int i = 4; i < regs.length; i++) {
if (regs[i].equals("M")) {
cbReg.addRegEvent (createMembershipEvent());
} else if (regs[i].equals("A")) {
cbReg.addRegEvent (createAllEvent());
} else if (regs[i].substring(@,2).equals("RG")) {
cbReg.addRegEvent (createRgEvent(regs[i].substring(3)));
} else if (regs[i].substring(@,1).equals("R")) {
cbReg.addRegEvent (createREvent(regs[i].substring(2)));
}
}

String xmlStr = cbReg.convertToXml();
System.out.println(xmlStr);
return (xmlStr);

}

* createAllEvent

* Creates an XML registartion event with class EC Cluster, and no
* subclass.

*/
private Event createAllEvent()
{

Event allEvent = new Event();

allEvent.setClass("EC_Cluster")

return (allEvent);

}

* createMembershipEvent

* Creates an XML registration event with class EC Cluster, subclass
* ESC cluster memberhip.

*/
private Event createMembershipEvent()
{

Event membershipEvent = new Event();
membershipEvent.setClass("EC_Cluster")
membershipEvent.setSubclass("ESC_cluster membership")

return (membershipEvent);

}

* createRgEvent
* Creates an XML registration event with class EC Cluster,
* subclass ESC cluster rg state, and one "rg name" nvpair (based
* on input parameter).
*/
private Event createRgEvent(String rgname)
{
/*
* Create a Resource Group state change event for the

Appendix E « CrnpClient.java Application 297

Contents of CrnpClient.java

* rgname Resource Group. Note that we supply

* a name/value pair (nvpair) for this event type, to

* specify in which Resource Group we are interested.

*/
/*

* Construct the event object and set the class and subclass.
*/
Event rgStateEvent = new Event();
rgStateEvent.setClass("EC_Cluster")
rgStateEvent.setSubclass("ESC cluster rg state")

/*
* Create the nvpair object and add it to the Event.
*/
NVPair rgNvpair = new NVPair();
rgNvpair.setName("rg name");
rgNvpair.setValue(rgname);
rgStateEvent.addNvpair(rgNvpair);

return (rgStateEvent);

/*
* createREvent
*

* Creates an XML registration event with class EC Cluster,
* subclass ESC cluster r state, and one "r_name" nvpair (based
* on input parameter).

*/

private Event createREvent(String rname)

{

/*
* Create a Resource state change event for the
* rgname Resource. Note that we supply
* a name/value pair (nvpair) for this event type, to
* specify in which Resource Group we are interested.
*/

Event rStateEvent = new Event();
rStateEvent.setClass("EC_Cluster")
rStateEvent.setSubclass("ESC cluster r state")

NVPair rNvpair = new NVPair();
rNvpair.setName("r name");
rNvpair.setValue(rname);
rStateEvent.addNvpair(rNvpair);

return (rStateEvent);

/*
* createUnregistrationString
*

* Constructs a REMOVE CLIENT CallbackReg object, then retrieves
* the XML string from the CallbackReg object.
*/
private String createUnregistrationString() throws Exception
{
/*
* Crate the CallbackReg object.

298 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

*/

CallbackReg cbReg = new CallbackReg();
cbReg.setPort("" + localPort);
cbReg.setRegType(CallbackReg.REMOVE CLIENT);

/*

* we marshall the registration to the OutputStream
*/

String xmlStr = cbReg.convertToXml();

// Print the string for debugging purposes
System.out.println(xmlStr);
return (xmlStr);

/*
* readRegistrationReply

*

* Parse the xml into a Document, construct a RegReply object
* from the document, and print the RegReply object. Note that
* a real application would take action based on the status code
* of the RegReply object.
*/
private void readRegistrationReply(InputStream stream)
throws Exception
{
// Create the document builder
DocumentBuilder db = dbf.newDocumentBuilder();

//

// Set an ErrorHandler before parsing

// Use the default handler.

//

db.setErrorHandler(new DefaultHandler());

//parse the input file
Document doc = db.parse(stream);

RegReply reply = new RegReply(doc);
reply.print(System.out);
}

/* private member variables */
private InetAddress reglp;

private int regPort;

private EventReceptionThread evtThr;
private String regsl[];

/* public member variables */
public int localPort;
public DocumentBuilderFactory dbf;

/*
* class EventReceptionThread
K e e e e e e e e e e e e m e m— -

* See file header comments above.
*/

Appendix E « CrnpClient.java Application 299

Contents of CrnpClient.java

class EventReceptionThread extends Thread
{
/*
* EventReceptionThread constructor
K L L e e e e e e e e e e e e e e e e mmmmm oo
* Creates a new ServerSocket, bound to the local hostname and
* a wildcard port.
*/
public EventReceptionThread(CrnpClient clientIn) throws IOException
{
/*
* keep a reference to the client so we can call it back
* when we get an event.
*/
client = clientln;

/*
* Specify the IP to which we should bind. It's
* simply the local host ip. If there is more
* than one public interface configured on this
* machine, we’ll go with whichever one
* InetAddress.getLocalHost comes up with.

*/

listeningSock = new ServerSocket(client.localPort, 50,
InetAddress.getLocalHost());
System.out.println(listeningSock);

}
/*
* run
* .
* Called by the Thread.Start method.
*
* Loops forever, waiting for incoming connections on the ServerSocket.
*
* As each incoming connection is accepted, an Event object
* is created from the xml stream, which is then passed back to
* the CrnpClient object for processing.
*/
public void run()
{
/*
* Loop forever.
*/
try {
//

// Create the document builder using the document
// builder factory in the CrnpClient.

//
DocumentBuilder db = client.dbf.newDocumentBuilder();

//

// Set an ErrorHandler before parsing

// Use the default handler.

//

db.setErrorHandler(new DefaultHandler());

while(true) {

300 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

/* wait for a callback from the server */
Socket sock = listeningSock.accept();

// parse the input file
Document doc = db.parse(sock.getInputStream());

Event event = new Event(doc);
client.processEvent(event);

/* close the socket */
sock.close();

}
// UNREACHABLE

} catch (Exception e) {
System.out.println(e);
System.exit(1);

}

}

/* private member variables */
private ServerSocket listeningSock;
private CrnpClient client;

}

/*
* class NVPair
*

* This class stores a name/value pair (both Strings). It knows how to

* construct an NVPAIR XML message from its members, and how to parse

* an NVPAIR XML Element into its members.

*

* Note that the formal specification of an NVPAIR allows for multiple values.
* We make the simplifying assumption of only one value.

*/

class NVPair

{

/*

* Two constructors: the first creates an empty NVPair, the second
* creates an NVPair from an NVPAIR XML Element.
*/

public NVPair()

{

name = value = null;

}

public NVPair(Element elem)
{

retrieveValues(elem);

}

/*

* Public setters.

*/

public void setName(String nameln)

{

name = nameln;

}

Appendix E « CrnpClient.java Application 301

Contents of CrnpClient.java

public void setValue(String valueln)

{

value = valueln;

}
/*

* Prints the name and value on a single line.
*/

public void print(PrintStream out)

{

out.println("NAME=" + name + " VALUE=" + value);
}
/*

* createXmlElement
*

* Constructs an NVPAIR XML Element from the member variables.
* Takes the Document as a parameter so that it can create the
* Element.

*/
public Element createXmlElement(Document doc)
{

// Create the element.

Element nvpair = (Element)

doc.createElement ("NVPAIR");

//

// Add the name. Note that the actual name is
// a separate CDATA section.

//

Element eName = doc.createElement ("NAME")

Node nameData = doc.createCDATASection(name);
eName.appendChild(nameData) ;
nvpair.appendChild(eName);

//

// Add the value. Note that the actual value is
// a separate CDATA section.

//

Element eValue = doc.createElement("VALUE");
Node valueData = doc.createCDATASection(value);
eValue.appendChild(valueData);
nvpair.appendChild(eValue);

return (nvpair);

/*
* retrieveValues
K e e e e e e e e mm— - -
* Parse the XML Element to retrieve the name and value.
*/
private void retrieveValues(Element elem)
{
Node n;
NodeList nl;

//

// Find the NAME element

//

nl = elem.getElementsByTagName ("NAME")

302 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "

+ "NAME node.");
return;

}

//
// Get the TEXT section
//

n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType()

!= Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "

+ "TEXT section.");
return;

}

// Retrieve the value
name = n.getNodeValue();

//
// Now get the value element

//

nl = elem.getElementsByTagName ("VALUE")

if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "

+ "VALUE node.");
return;

}

//
// Get the TEXT section

//

n =nl.item(0Q).getFirstChild();
if (n == null || n.getNodeType()

!= Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "

+ "TEXT section.");
return;

}

// Retrieve the value
value = n.getNodeValue();

}

/*

* Public accessors

*/
public String getName()
{

return (name);
}
public String getValue()
{

return (value);
}

// Private member vars
private String name, value;

Appendix E « CrnpClient.java Application

303

Contents of CrnpClient.java

/*

* class Event
This class stores an event, which consists of a class, subclass, vendor,
publisher, and list of name/value pairs. It knows how to

construct an SC_EVENT REG XML Element from its members, and how to parse
an SC EVENT XML Element into its members. Note that there is an assymetry
here: we parse SC_EVENT elements, but construct SC_EVENT REG elements.
That is because SC_EVENT REG elements are used in registration messages
(which we must construct), while SC EVENT elements are used in event
deliveries (which we must parse). The only difference is that SC_EVENT_ REG
elements don’t have a vendor or publisher.

*

* X X X X X X X ¥

*/
class Event

{

/*
* Two constructors: the first creates an empty Event; the second
* creates an Event from an SC EVENT XML Document.
*/
public Event()
{
regClass = regSubclass = null;
nvpairs = new Vector();

}

public Event(Document doc)

{

nvpairs = new Vector();

//
// Convert the document to a string to print for debugging
// purposes.
//
DOMSource domSource = new DOMSource(doc);
StringWriter strWrite = new StringWriter();
StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {
Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);
} catch (TransformerException e) {
System.out.println(e.toString());
return;
}
System.out.println(strWrite.toString());

// Do the actual parsing.
retrieveValues(doc);

}

/*
* Public setters.
*/
public void setClass(String classIn)

304 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

{
regClass = classIn;
}
public void setSubclass(String subclassIn)
{
regSubclass = subclassIn;
}
public void addNvpair(NVPair nvpair)
{
nvpairs.add(nvpair);
}
/*

* createXmlElement

* Constructs an SC_EVENT REG XML Element from the member variables.
* Takes the Document as a parameter so that it can create the
* Element. Relies on the NVPair createXmlElement ability.

*/
public Element createXmlElement(Document doc)
{

Element event = (Element)

doc.createElement ("SC_EVENT REG");

event.setAttribute("CLASS", regClass);

if (regSubclass != null) {

event.setAttribute("SUBCLASS", regSubclass);

}

for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

(nvpairs.elementAt(i));
event.appendChild(tempNv.createXmlElement(doc));

return (event);

}

/*
* Prints the member vars on multiple lines.
*/

public void print(PrintStream out)

{

out.println("\tCLASS=" + regClass);
out.println("\tSUBCLASS=" + regSubclass);
out.println("\tVENDOR=" + vendor);
out.println("\tPUBLISHER=" + publisher);
for (int i = 0; i < nvpairs.size(); i++) {
NVPair tempNv = (NVPair)
(nvpairs.elementAt(i));
out.print("\t\t");
tempNv.print(out);

}

/*
* retrieveValues

* Parse the XML Document to retrieve the class, subclass, vendor,
* publisher, and nvpairs.

Appendix E « CrnpClient.java Application 305

Contents of CrnpClient.java

*/

private void retrieveValues(Document doc)
{

Node n;

NodeList nl;

//
// Find the SC_EVENT element.
//
nl = doc.getElementsByTagName("SC_EVENT");
if (nl.getLength() !'= 1) {
System.out.println("Error in parsing: can’t find "
+ "SC_EVENT node.");
return;

}
n =nl.item(0);

//

// Retrieve the values of the CLASS, SUBCLASS,

// VENDOR and PUBLISHER attributes.

//

regClass = ((Element)n).getAttribute("CLASS")
regSubclass = ((Element)n).getAttribute("SUBCLASS")
publisher = ((Element)n).getAttribute("PUBLISHER")
vendor = ((Element)n).getAttribute("VENDOR");

//

// Retrieve all the nv pairs

//

for (Node child = n.getFirstChild(); child != null;
child = child.getNextSibling())

{
nvpairs.add(new NVPair((Element)child));
}
}
/*
* Public accessor methods.
*/
public String getRegClass()
{
return (regClass);
}
public String getSubclass()
{
return (regSubclass);
}
public String getVendor()
{
return (vendor);
}
public String getPublisher()
{
return (publisher);
}

306 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

public Vector getNvpairs()
{
return (nvpairs);

}

// Private member vars.

private String regClass, regSubclass;
private Vector nvpairs;

private String vendor, publisher;

/*
* class CallbackReg

E
*
*
*
*
*
*

messages.
*/
class CallbackReg

// Useful defines for the setRegType method

public static final int ADD CLIENT = 0;
public static final int ADD EVENTS = 1;
public static final int REMOVE EVENTS
public static final int REMOVE CLIENT

public CallbackReg()
{

port = null;

regType = null;

regEvents = new Vector();

}

/*

* Public setters.

*/

public void setPort(String portIn)
{

port = portln;

}

public void setRegType(int regTypeln)
{
switch (regTypeIn) {
case ADD CLIENT:
regType = "ADD CLIENT"
break;
case ADD EVENTS:
regType = "ADD EVENTS"
break;
case REMOVE CLIENT:
regType = "REMOVE CLIENT"
break;
case REMOVE EVENTS:

Appendix E « CrnpClient.java Application

This class stores a port and regType (both Strings), and a list of Events.
It knows how to construct an SC_CALLBACK REG XML message from its members.

Note that this class does not need to be able to parse SC CALLBACK REG
messages, because only the CRNP server must parse SC CALLBACK REG

307

Contents of CrnpClient.java

regType = "REMOVE EVENTS";

break;

default:

System.out.println("Error, invalid regType " +

regTypeln);

regType = "ADD CLIENT"

break;

}
}
public void addRegEvent(Event regEvent)
{

regEvents.add(regEvent);
}
/*

* convertToXml
*

* Constructs an SC CALLBACK REG XML Document from the member
* variables. Relies on the Event createXmlElement ability.
*/

public String convertToXml()

{

Document document = null;

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.newDocument();

} catch (ParserConfigurationException pce) {
// Parser with specified options can’t be built
pce.printStackTrace();
System.exit(1);

}

Element root = (Element) document.createElement("SC CALLBACK REG");
root.setAttribute("VERSION", "1.0");
root.setAttribute("PORT", port);
root.setAttribute("REG_TYPE", regType);

for (int i = 0; i < regEvents.size(); i++) {
Event tempEvent = (Event)

(regEvents.elementAt(i));

root.appendChild(tempEvent.createXmlElement (document));

}

document.appendChild(root);

//
// Now convert the document to a string.
//
DOMSource domSource = new DOMSource(document);
StringWriter strWrite = new StringWriter();
StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {
Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);
} catch (TransformerException e) {
System.out.println(e.toString());
return ("");

308 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Contents of CrnpClient.java

return (strWrite.toString());

}

// private member vars
private String port;
private String regType;
private Vector regEvents;

* class RegReply

* This class stores a status code and status msg (both Strings).
* It knows how to parse an SC_REPLY XML Element into its members.
*/

class RegReply

{

/*

* The only constructor takes an XML Document and parses it.
*/
public RegReply(Document doc)

{

//

// Now convert the document to a string.

//

DOMSource domSource = new DOMSource(doc);

StringWriter strWrite = new StringWriter();

StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {

Transformer transformer = tf.newTransformer();

transformer.transform(domSource, streamResult);

} catch (TransformerException e) {

System.out.println(e.toString());

return;
}
System.out.println(strWrite.toString());

retrieveValues(doc);

}
/*

* Public accessors

*/
public String getStatusCode()
{

return (statusCode);
}
public String getStatusMsg()
{

return (statusMsg);
}
/*

* Prints the info on a single line.
*/

Appendix E « CrnpClient.java Application 309

Contents of CrnpClient.java

public void print(PrintStream out)
{
out.println(statusCode + ": " +
(statusMsg != null ? statusMsg : "));
}

/*

* retrieveValues

* Parse the XML Document to retrieve the statusCode and statusMsg.
*/

private void retrieveValues(Document doc)

{

Node n;

NodeList nl;

//
// Find the SC_REPLY element.
//
nl = doc.getElementsByTagName("SC_REPLY");
if (nl.getLength() !'= 1) {
System.out.println("Error in parsing: can’t find "
+ "SC_REPLY node.");
return;

}
n =nl.item(0);

// Retrieve the value of the STATUS CODE attribute
statusCode = ((Element)n).getAttribute("STATUS CODE")

//
// Find the SC STATUS MSG element
//
nl = ((Element)n).getElementsByTagName("SC_STATUS MSG")
if (nl.getLength() !'= 1) {

System.out.println("Error in parsing: can’t find "

+ "SC_STATUS MSG node.");
return;

}

//
// Get the TEXT section, if there is one.
//
n =nl.item(0Q).getFirstChild();
if (n == null || n.getNodeType() '= Node.TEXT NODE) {
// Not an error if there isn’t one, so we

// just silently return.

return;

}

// Retrieve the value
statusMsg = n.getNodeValue();
}

// private member vars
private String statusCode;
private String statusMsg;

310 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Index

Numbers and Symbols
#$upgrade directive, 77
#$upgrade_from directive, 77
ANYTIME, 77
AT CREATION, 78
tunability values, 77
WHEN DISABLED, 78
WHEN_ OFFLINE, 78
WHEN UNMANAGED, 78
WHEN UNMONITORED, 77
(Resource Type Registration)
file
upgrading, 76

A
accessing network address, with DSDL, 120
administration commands, using to create a service that
uses GDS, 187
administrative interface, RGM (Resource Group
Manager), 26
Agent Builder
analyzing the application, 155
binary files, 169
cloning existing resource type, 166
command-line version, 167
Configure screen, 161
configuring, 156
Create screen, 159
creating a service that uses GDS with command-line
version of, 189

Agent Builder (Continued)
description, 20,25
directory structure, 168
editing generated source code, 167
installing, 156
man pages, 171
navigating in, 157
Browse, 158
Edit menu, 159
File menu, 159
menus, 159
output, 186
package directory, 172
reusing code, 166
rtconfigfile, 173
scripts, 171
source files, 169
starting, 157,183
support files, 172
using, 155
using to create a service that uses GDS, 183
using to create GDS, 177
ANYTIME, #$upgrade_from directive, 77
API, Resource Management, See RMAPI
application environment, Oracle Solaris Cluster, 19
arguments, RMAPI method, 69
arraymax, resource type upgrade, 75
arraymin, resource type upgrade, 75
AT _CREATION, #$upgrade_from directive, 78
attributes, resource property, 35

311

Index

B

binary files, Agent Builder, 169
bind (3SOCKET), 282

Binding to INADDR_ANY, 282
Boot method, using, 50,72
Browse, Agent Builder, 158

C
C program functions, RMAPI, 65
callback methods
control, 70
description, 23
initialization, 70
Monitor check, 74
Monitor start, 74
Monitor stop, 74
naming conventions, 135
overview, 20
Postnet start, 73
Prenet start, 73
RMAPI, 68
Update, 73
using, 53
Validate, 73
checks, validating for scalable services, 57
client, CRNP, 203
cloning existing resource type, Agent Builder, 166
clsetup, description, 26
cluster commands, RMAPI, 65
cluster functions, RMAPI, 67
cluster properties, 34
Concentrate load, 34
Cluster Reconfiguration Notification Protocol, See
CRNP
code
changing method, 81
changing monitor, 81
codes, RMAPI exit, 69
command line
Agent Builder, 167
commands on, 27
commands
clsetup, 26

commands (Continued)

halockrun, 53

hatimerun, 53

Oracle Solaris Cluster, 27

RMAPI resource type, 64

using to create a service that uses GDS, 187

using to create GDS, 177
components, RMAPI, 25
Concentrate_load, resource property, 34
concepts, CRNP, 199
Configure screen, Agent Builder, 161
configuring, Agent Builder, 156
conventions

callback method names, 135

function names, 135
Create screen, Agent Builder, 159
CRNP (Cluster Reconfiguration Notification Protocol)

authentication, 209

client, 203

client identification process, 203

communication, 201

concepts, 199

description, 200

error conditions, 206

example Java application, 210

function of, 200

message types, 201

registration of client and server, 203

SC_CALLBACK_REG messages, 203

SC_EVENT, 207,208

SC_REPLY, 205

semantics of protocol, 201

server, 203

server event delivery, 207

server reply, 205

D
daemon, designing the fault monitor, 130
data service
creating
analyzing suitability, 29
determining the interface, 31
sample, 85

312 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Index

data service, sample (Continued)
common functionality, 92-96
controlling the data service, 96
defining a fault monitor, 101
extension properties in RTR file, 91
generating error messages, 95
handling property updates, 110
Monitor check method, 109
Monitor start method, 107
Monitor stop method, 108
obtaining property information, 95
probe program, 102
resource properties in RTR file, 88
RTR file, 87
Start method, 96
Stop method, 99
Update method, 114
Validate method, 110
setting up development environment, 32
transferring to cluster for testing, 34
Data Service Development Library, See DSDL
data services
testing, 58
testing HA, 58
writing, 58
debugging resource types with DSDL, 120
default property values
new value for upgrade, 79
when inherited, 79
dependencies, coordinating between resources, 59
description values, rules, 62
directive
#$upgrade, 61,77
#$upgrade from, 77
default tunability, 78
placement in RTR file, 77
RT version, 77
tunability constraints, 77
directories, Agent Builder, 172
directory structure, Agent Builder, 168
distinguishing between multiple registered versions,
rt-version, 76
distinguishing between vendors, vendor-id, 76

documentation requirements

for upgrade, 82-84
tunability constraints, 82

DSDL (Data Service Development Library)

accessing network address, 120
components, 25
debugging resource types, 120
description, 117,118
enabling HA local file systems, 121
fault monitor functions, 198
fault monitoring, 196
general purpose functions, 193
implementing a fault monitor, 119
libdsdev.so, 20
network resource access functions, 195
overview, 20
Process Monitor Facility (PMF) functions, 197
property functions, 195
sample resource type implementation
determining the fault monitor action, 148
ORCL.xfnts fault monitor, 143
ORCL.xfnts RTR file, 134
returning from svc_start(), 138
scds_initialize() function, 135
starting the service, 136
svc_probe() function, 145
TCP port number, 134
validating the service, 136
X font server, 133
X font server configuration file, 134
xfnts_monitor check method, 143
xfnts monitor start method, 141
xfnts monitor stop method, 142
xfnts_probe mainloop, 144
xfnts_start method, 136
xfnts_stop method, 140
xfnts_update method, 151
xfnts validate method, 148
starting a data service, 119
stopping a data service, 119
utility functions, 198
where implemented, 20

313

Index

E
editing generated Agent Builder source code, 167
enabling HA local file systems with DSDL, 121
enumeration literal names, rules, 60
error conditions, CRNP, 206
events, guaranteed delivery, 207
examples
data service, 85
Java application that uses CRNP, 210
exit codes, RMAPI, 69
extension properties, declaring, 42

F

failover resource, implementing, 54
fault monitor
daemon
designing the, 130
functions, DSDL, 198
ORCL.xfnts, 143
files
binary in Agent Builder, 169
rtconfig, 173
source in Agent Builder, 169
support in Agent Builder, 172
Fini method, guidelines for implementing, 49
Fini method, using, 49-50,71
format, resource type names, 61
tully qualified resource type name, how obtained, 76
functions
DSDL fault monitor, 198
DSDL network resource access, 195
DSDL Process Monitor Facility (PMF), 197
DSDL property, 195
DSDL utility, 198
general purpose DSDL, 193
naming conventions, 135
RMAPI C program, 65
RMAPI cluster, 67
RMAPI resource, 65
RMAPI resource group, 67
RMAPI resource type, 66
RMAPI utility, 68
scds_initialize(), 135

functions (Continued)
svc_probe(), 145

G

GDS (generic data service)

Child_mon_level property, 179

creating a service with command-line version of
Agent Builder, 189

definition, 45

description, 175

Failover_enabled property, 179

Log_level property, 180

Monitor_retry_count property, 180

Monitor_retry_interval property, 180

Network_aware property, 180

Network_ resources_used property, 181

Port_list property, 178

Probe command property, 181

Probe_timeout property, 181

required properties, 178

Start_command extension property, 178

Start_timeout property, 182

Stop_command property, 182

Stop_signal property, 182

Stop_timeout property, 182

SUNW. gds resource type, 176

using commands to create service that uses, 187

using Oracle Solaris Cluster Agent Builder to create
service that uses, 183

using with Oracle Solaris Cluster administration
commands, 177

using with Oracle Solaris Cluster Agent Builder, 177

Validate_command property, 182

Validate_ timeout property, 182

ways touse, 177

when to use, 176

why use, 176

generic data service
See GDS

314 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Index

H

HA data services, testing, 58
halockrun, description, 53
hatimerun, description, 53
help, 17-18

|
idempotence, methods, 44
implementing
fault monitor with DSDL, 119
RMAPI, 20
INADDR_ANY, 282
Init method, using, 48,71
installation requirements, resource type packages, 80
installing Agent Builder, 156
interface, RGM (Resource Group Manager), 26
interfaces
command-line, 27
programming, 24

J
Java, sample application that uses CRNP, 210

K

keep-alives, using, 58

L
legal names
Resource Group Manager (RGM), 60-62
libdsdev.so, DSDL, 20
libscha.so, RMAPI, 20
logging, adding to a resource, 52

M
man pages, Agent Builder, 171

master, description, 22
max, resource type upgrade, 75
menus
Agent Builder, 159
Agent Builder Edit, 159
Agent Builder File, 159
message logging, adding to a resource, 52
messages
SC_CALLBACK_REG CRNP, 203,204-205
SC_EVENT CRNP, 207,208
SC_REPLY CRNP, 205
method arguments, RMAPI, 69
method code, changing, 81
methods
Boot, 50,72,130
callback, 53
control, 70
initialization, 70
Fini, 49-50,71,130
Fini, guidelines for implementing, 49
idempotence, 44
Init, 48,71,130
Monitor_ check, 74,129
Monitor_check callback, 74
Monitor start, 74,128
Monitor start callback, 74
Monitor stop, 74,128
Monitor_ stop callback, 74
Postnet start, 73
Postnet start callback, 73
Prenet _start, 73
Prenet_start callback, 73
Start, 46,70,126
Stop, 46,70,127
Update, 53,73,129
Update callback, 73
Validate, 53,73,124
Validate callback, 73
xfnts monitor check, 143
xfnts monitor start, 141
xfnts_monitor_stop, 142
xfnts_start, 136
xfnts stop, 140
xfnts update, 151

315

Index

methods (Continued)
xfnts validate, 148
min, resource type upgrade, 75
modifying resource types, 75
Monitor check method
compatibility, 78
using, 74
monitor code, changing, 81
Monitor start method, using, 74
Monitor stop method, using, 74

N
naming conventions
callback methods, 135
functions, 135
navigating Agent Builder, 157
network resource access functions, DSDL, 195

(0]
options, tunability, 77
Oracle Solaris, publisher, 33
Oracle Solaris Cluster
application environment, 19
commands, 27
publisher, 33
using with GDS, 176
Oracle Solaris Cluster Agent Builder, See Agent Builder
ORCL.xfnts
fault monitor, 143
RTRfile, 134

P
package directory, Agent Builder, 172
PMF (Process Monitor Facility)
functions, DSDL, 197
overview, 20
purpose, 52
Postnet_start method, using, 73
Postnet_stop, compatibility, 78

Prenet_start method, using, 73
primary nodes, 22
process management, 52
Process Monitor Facility, See PMF
programming architecture, 20
programming interfaces, 24
properties
changing resource, 53
Child_mon_level, 179
cluster, 34
declaring extension, 42
declaring resource, 38
declaring resource type, 36
Failover enabled, 179
GDS, required, 179
Log level, 180
Monitor retry count, 180
Monitor retry interval, 180
Network aware, 180
Network resources used, 181
Port list, 178
Probe command, 181
Probe timeout, 181
resource, 35
resource group, 35
setting resource, 35,53
setting resource type, 35
Start command extension, 178
Start timeout, 182
Stop command, 182
Stop signal, 182
Stop timeout, 182
Validate command, 182
Validate timeout, 182
property attributes, resource, 35
property functions, DSDL, 20
property names, rules, 60
property values
default, 79
rules, 62
property variables, 163
how Agent Builder substitutes types of, 165
list of, 164
list of resource, 164

316 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Index

property variables (Continued)
list of resource group, 164
list of resource type, 164
syntax of, 165

publisher
Oracle Solaris, 33
Oracle Solaris Cluster, 33

R

registering CRNP clients and servers, 203
resource

adding message logging toa, 52

implementing a failover, 54

implementing a scalable, 54

monitoring, 50

starting, 45

stopping, 45
resource commands, RMAPI, 64
resource dependencies, coordinating, 59
resource functions, RMAPI, 65
resource group commands, RMAPI, 64
resource group functions, RMAPI, 67
Resource Group Manager, See RGM
Resource Group Manager (RGM)

legal names, 60-62

values, 62
resource group names, rules, 60
resource group properties, 35

accessing information about, 44
resource groups

description, 22

failover, 23

properties, 22

scalable, 23
Resource Management API, See RMAPI
resource names, rules, 60
resource properties, 35

accessing information about, 44

changing, 53

declaring, 38

setting, 35,53
resource property attributes, 35
resource-type, upgrading, 76

resource type, what happens when upgrading, 79
resource type names
obtaining fully qualified, 76
restrictions, 79, 160
rules, 61
version suffix, 76
resource type packages, installation requirements, 80
resource type properties
declaring, 36
setting, 35
resource type registration, See RTR
resource types
commands
RMAPI, 64
debugging with DSDL, 120
description, 21
functions
RMAPI, 66
modifying, 75
multiple versions, 75
upgrading requirements, 75
resources
coordinating dependencies between, 59
description, 22
reusing code, Agent Builder, 166
RGM (Resource Group Manager)
administrative interface, 26
description, 23
handling of resource groups, 21
handling of resource types, 21
handling of resources, 21
purpose, 20
RMAPI (Resource Management API), 20
C program functions, 65
callback methods, 68
cluster commands, 65
cluster functions, 67
components, 25
exit codes, 69
libscha.so, 20
method arguments, 69
resource commands, 64
resource functions, 65
resource group commands, 64

317

Index

RMAPI (Resource Management API) (Continued)

resource group functions, 67
resource type commands, 64
resource type functions, 66
shell commands, 63

utility functions, 68

where implemented, 20

rt-version, upgrading, 76
RT version

sample data service (Continued)

Update method, 114
Validate method, 110

sample DSDL code
determining the fault monitor action, 148

ORCL.xfnts fault monitor, 143
ORCL.xfnts RTRfile, 134
returning from svc_start(), 138
scds_initialize() function, 135

purpose, 78
when to change, 78
rtconfigfile, 173
RTR (Resource Type Registration)
description, 24
file
changing, 80
description, 124
ORCL.xfnts, 134
rules
description values, 62
enumeration literal names, 60
property names, 60
property values, 62
resource group names, 60
resource names, 60

starting the service, 136
svc_probe() function, 145
TCP port number, 134
validating the service, 136
X font server, 133
X font server configuration file, 134
xfnts_monitor_check method, 143
xfnts_monitor start method, 141
xfnts monitor stop method, 142
xfnts_probe mainloop, 144
xfnts start method, 136
xfnts stop method, 140
xfnts update method, 151
xfnts validate method, 148
SC_CALLBACK_REG, contents, 204-205
SC_EVENT, contents, 208
SC_REPLY, contents, 205
scalable resource, implementing, 54
S scalable services, validating, 57

sample data service scds_initialize() function, 135

common functionality, 92-96 screens
controlling the data service, 96 Configure, 161
Create, 159

defining a fault monitor, 101
extension properties in RTR file, 91 scripts

generating error messages, 95 Agent Builder, 171
handling property updates, 110 configuring, 184
Monitor check method, 109 creating, 183

Monitor start method, 107 server

Monitor stop method, 108 CRNP, 203

obtaining property information, 95 X font

probe program, 102 configuration file, 134
RTR file, 87 definition, 133
sample properties in RTR file, 88 xfs

Start method, 96
Stop method, 99

portnumber, 134
shell commands, RMAPI, 63

318 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

Index

source code, editing generated Agent Builder, 166
source files, Agent Builder, 169
Start method, using, 46,70
starting a data service with DSDL, 119
Stop method

compatibility, 78

using, 46,70
stopping a data service with DSDL, 119
support files, Agent Builder, 172
svc_probe() function, 145
syntax

description values, 62

enumeration literal names, 60

property names, 60

property values, 62

resource group names, 60

resource names, 60

resource type names, 61

T
TCP connections, using DSDL fault monitoring, 196
technical support, 17-18
testing

data services, 58

HA data services, 58
tunability constraints, documentation

requirements, 82
tunability options, 77

ANYTIME, 77

AT _CREATION, 78

WHEN_DISABLED, 78

WHEN_OFFLINE, 78

WHEN_UNMANAGED, 78

WHEN_UNMONITORED, 77

U
Update method
compatibility, 78
using, 53,73
upgrade aware, defined, 76
upgrade directive, 61

upgrades, documentation requirements, 82-84
upgrading resource types, 75
utility functions

DSDL, 198

RMAPI, 68

'}
Validate method
using, 53,73
validation checks, scalable services, 57
values
default property, 79
Resource Group Manager (RGM), 62
variables
how Agent Builder substitutes types of
property, 165
list of property, 164
list of resource group property, 164
list of resource property, 164
list of resource type property, 164
property, 163
syntax of property, 165
vendor-id
distinguishing between, 76
upgrading, 76

w

WHEN_DISABLED, #$upgrade_from directive, 78
WHEN_OFFLINE, #$upgrade from directive, 78
WHEN_UNMANAGED, #$upgrade_from directive, 78
WHEN_UNMONITORED, #$upgrade_from directive, 77
writing data services, 58

X
X font server
configuration file, 134
definition, 133
xfnts monitor check, 143
xfnts monitor start, 141

319

Index

xfnts monitor stop, 142
xfnts start, 136

xfnts stop, 140

xfnts update, 151
xfnts_validate, 148

xfs server, port number, 134

320 Oracle Solaris Cluster Data Services Developer's Guide « October 2012, E29471-01

	Oracle® Solaris Cluster Data Services Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Using UNIX Commands
	Typographic Conventions
	Shell Prompts in Command Examples
	Related Documentation
	Access to Oracle Support
	Getting Help

	Overview of Resource Management
	Oracle Solaris Cluster Application Environment
	Resource Group Manager Model
	Description of a Resource Type
	Description of a Resource
	Description of a Resource Group

	Resource Group Manager
	Callback Methods
	Programming Interfaces
	Resource Management API
	Data Service Development Library
	Oracle Solaris Cluster Agent Builder

	Resource Group Manager Administrative Interface
	clsetup Utility
	Administrative Commands

	Developing a Data Service
	Analyzing the Application for Suitability
	Determining the Interface to Use
	Setting Up the Development Environment for Writing a Data Service
	How to Set Up the Development Environment
	Transferring a Data Service to a Cluster

	Setting Standard Properties
	Cluster Properties
	Resource Type Properties
	Resource Properties
	Resource Group Properties
	Resource Property Attributes

	Node List Properties
	Setting Resource and Resource Type Properties
	Declaring Resource Type Properties
	Declaring Resource Properties
	Declaring Extension Properties

	Implementing Callback Methods
	Accessing Resource and Resource Group Property Information
	Idempotence of Methods
	How Methods Are Invoked in Zones

	Generic Data Service
	Controlling an Application
	Starting and Stopping a Resource
	Using Start and Stop Methods
	Deciding Which Start and Stop Methods to Use

	Using the Optional Init, Fini, and Boot Methods
	Using the Init Method
	Using the Fini Method
	Guidelines for Implementing a Fini Method

	Using the Boot Method

	Monitoring a Resource
	Implementing Monitors and Methods That Execute Exclusively in the Global Zone

	Adding Message Logging to a Resource
	Providing Process Management
	Providing Administrative Support for a Resource
	Implementing a Failover Resource
	Implementing a Scalable Resource
	Validation Checks for Scalable Services

	Writing and Testing Data Services
	Using TCP Keep-Alives to Protect the Server
	Testing HA Data Services
	Coordinating Dependencies Between Resources

	Legal RGM Names
	RGM Legal Names
	Rules for Names Except Resource Type Names
	Format of Resource Type Names

	RGM Values

	Resource Management API Reference
	RMAPI Access Methods
	RMAPI Shell Commands
	RMAPI Resource Commands
	Resource Type Command
	Resource Group Commands
	Cluster Command

	C Functions
	Resource Functions
	Resource Type Functions
	Resource Group Functions
	Cluster Functions
	Utility Function

	RMAPI Callback Methods
	Arguments That You Can Provide to Callback Methods
	Callback Method Exit Codes
	Control and Initialization Callback Methods
	Administrative Support Methods
	Net-Relative Callback Methods
	Monitor Control Callback Methods

	Modifying a Resource Type
	Overview of Modifying a Resource Type
	Setting Up the Contents of the Resource Type Registration File
	Resource Type Name
	Specifying the #$upgrade and #$upgrade_from Directives
	Changing the RT_version in an RTR File

	What Happens When a Cluster Administrator Upgrades
	Determining Installation Requirements and Packaging
	Before You Change the RTR File
	Changing Monitor Code
	Changing Method Code
	Determining the Packaging Scheme to Use

	Documentation to Provide for a Modified Resource Type
	Information About What to Do Before Installing an Upgrade
	Information About When to Upgrade Resources
	Information About Changes to Resource Properties

	Sample Data Service
	Overview of the Sample Data Service
	Defining the Resource Type Registration File
	Overview of the RTR File
	Resource Type Properties in the Sample RTR File
	Resource Properties in the Sample RTR File
	System-Defined Properties in the RTR File
	Extension Properties in the RTR File

	Providing Common Functionality to All Methods
	Identifying the Command Interpreter and Exporting the Path
	Declaring the PMF_TAG and SYSLOG_TAG Variables
	Parsing the Function Arguments
	Generating Error Messages
	Obtaining Property Information

	Controlling the Data Service
	How the Start Method Works
	What the Start Method Does
	Verifying the Configuration
	Starting the Application
	Start Exit Status

	How the Stop Method Works
	What the Stop Method Does
	Stopping the Application
	Stop Exit Status

	Defining a Fault Monitor
	How the Probe Program Works
	What the Probe Program Does
	Obtaining Property Values
	Checking the Reliability of the Service
	Comparing Restart With Failover
	Restarting the Data Service
	Probe Exit Status

	How the Monitor_start Method Works
	What the Monitor_start Method Does
	Starting the Probe

	How the Monitor_stop Method Works
	What the Monitor_stop Method Does
	Stopping the Monitor
	Monitor_stop Exit Status

	How the Monitor_check Method Works

	Handling Property Updates
	How the Validate Method Works
	What the Validate Method Does
	Validate Method Parsing Function
	Validating Confdir
	Validate Exit Status

	How the Update Method Works
	What the Update Method Does
	Stopping the Monitor With Update
	Restarting the Monitor
	Update Exit Status

	Data Service Development Library
	DSDL Overview
	Managing Configuration Properties
	Starting and Stopping a Data Service
	Implementing a Fault Monitor
	Accessing Network Address Information
	Debugging the Resource Type Implementation
	Enabling Highly Available Local File Systems

	Designing Resource Types
	Resource Type Registration File
	Validate Method
	Start Method
	Stop Method
	Monitor_start Method
	Monitor_stop Method
	Monitor_check Method
	Update Method
	Description of Init, Fini, and Boot Methods
	Designing the Fault Monitor Daemon

	Sample DSDL Resource Type Implementation
	X Font Server
	X Font Server Configuration File
	TCP Port Number

	ORCL.xfnts RTR File
	Naming Conventions for Functions and Callback Methods
	scds_initialize() Function
	xfnts_start Method
	Validating the Service Before Starting the X Font Server
	Starting the Service With svc_start()
	Returning From svc_start()

	xfnts_stop Method
	xfnts_monitor_start Method
	xfnts_monitor_stop Method
	xfnts_monitor_check Method
	ORCL.xfnts Fault Monitor
	xfonts_probe Main Loop
	svc_probe() Function
	Determining the Fault Monitor Action

	xfnts_validate Method
	xfnts_update Method

	Oracle Solaris Cluster Agent Builder
	Agent Builder Overview
	Before You Use Agent Builder
	Using Agent Builder
	Analyzing the Application
	Installing and Configuring Agent Builder
	Agent Builder Screens
	Starting Agent Builder
	Navigating Agent Builder
	Browse Command
	Agent Builder Menus
	Agent Builder File Menu
	Agent Builder Edit Menu

	Using the Create Screen
	Using the Configure Screen
	Using the Agent Builder Korn Shell-Based $hostnames Variable
	Using Property Variables
	List of Property Variables
	Resource Property Variables
	Resource Type Property Variables
	Resource Group Property Variables

	Syntax of Property Variables
	How Agent Builder Substitutes Property Variables

	Reusing Code That You Create With Agent Builder
	How to Clone an Existing Resource Type
	Editing the Generated Source Code

	How to Use the Command-Line Version of Agent Builder

	Directory Structure That Agent Builder Creates
	Agent Builder Output
	Source and Binary Files
	Utility Scripts and Man Pages That Agent Builder Creates
	Support Files That Agent Builder Creates
	Package Directory That Agent Builder Creates
	rtconfig File

	Generic Data Service
	Generic Data Service Concepts
	Precompiled Resource Type
	Advantages and Disadvantages of Using the GDS
	Ways to Create a Service That Uses the GDS
	GDS and Agent Builder
	GDS and Oracle Solaris Cluster Administration Commands
	Selecting the Method to Use to Create a GDS-Based Service

	How the GDS Logs Events
	GDS Log Files

	Required GDS Properties
	Port_list Property
	Start_command Property

	Optional GDS Properties
	Child_mon_level Property
	Failover_enabled Property
	Log_level Property
	Monitor_retry_count Property
	Monitor_retry_interval Property
	Network_aware Property
	Network_resources_used Property
	Probe_command Property
	Probe_timeout Property
	Start_timeout Property
	Stop_command Property
	Stop_signal Property
	Stop_timeout Property
	Validate_command Property
	Validate_timeout Property

	Using Agent Builder to Create a Service That Uses the GDS
	Creating and Configuring GDS-Based Scripts
	How to Start Agent Builder and Create the Scripts
	How to Configure the Scripts

	Output From Agent Builder

	Using Oracle Solaris Cluster Administration Commands to Create a Service That Uses the GDS
	How to Use Oracle Solaris Cluster Administration Commands to Create a Highly Available Service That Uses the GDS
	How to Use Oracle Solaris Cluster Administration Commands to Create a Scalable Service That Uses the GDS

	Command-Line Interface for Agent Builder
	How to Use the Command-Line Version of Agent Builder to Create a Service That Uses GDS

	DSDL API Functions
	General-Purpose Functions
	Initialization Functions
	Retrieval Functions
	Failover and Restart Functions
	Execution Functions

	Property Functions
	Network Resource Access Functions
	Host Name Functions
	Port List Functions
	Network Address Functions
	Fault Monitoring Using TCP Connections Functions

	PMF Functions
	Fault Monitor Functions
	Utility Functions

	Cluster Reconfiguration Notification Protocol
	CRNP Concepts
	How the CRNP Works
	CRNP Semantics
	CRNP Message Types

	How a Client Registers With the Server
	Assumptions About How Administrators Set Up the Server
	How the Server Identifies a Client
	How SC_CALLBACK_REG Messages Are Passed Between a Client and the Server
	Contents of an SC_CALLBACK_REG Message

	How the Server Replies to a Client
	Contents of an SC_REPLY Message
	How a Client Is to Handle Error Conditions

	How the Server Delivers Events to a Client
	How the Delivery of Events Is Guaranteed
	Contents of an SC_EVENT Message

	How the CRNP Authenticates Clients and the Server
	Example of Creating a Java Application That Uses the CRNP
	How to Set Up Your Environment
	How to Start Developing Your Application
	How to Parse the Command-Line Arguments
	How to Define the Event Reception Thread
	How to Register and Unregister Callbacks
	How to Generate the XML
	How to Create the Registration and Unregistration Messages
	How to Set Up the XML Parser
	How to Parse the Registration Reply
	How to Parse the Callback Events
	How to Run the Application

	Security for Data Services
	Storing Application Passwords in Private Strings
	Invoking Application Programs with Least Privilege
	Using the resource_security Property
	Using the application_user Property
	Using the scha_check_app_user Command

	Sample Data Service Code Listings
	Resource Type Registration File Listing
	Start Method Code Listing
	Stop Method Code Listing
	gettime Utility Code Listing
	PROBE Program Code Listing
	Monitor_start Method Code Listing
	Monitor_stop Method Code Listing
	Monitor_check Method Code Listing
	Validate Method Code Listing
	Update Method Code Listing

	DSDL Sample Resource Type Code Listings
	xfnts.c File Listing
	xfnts_monitor_check Method Code Listing
	xfnts_monitor_start Method Code Listing
	xfnts_monitor_stop Method Code Listing
	xfnts_probe Method Code Listing
	xfnts_start Method Code Listing
	xfnts_stop Method Code Listing
	xfnts_update Method Code Listing
	xfnts_validate Method Code Listing

	Requirements for Non-Cluster-Aware Applications
	Multihosted Data
	Using Symbolic Links for Multihosted Data Placement

	Host Names
	Multihomed Hosts
	Binding to INADDR_ANY as Opposed to Binding to Specific IP Addresses
	Client Retry

	Document Type Definitions for the CRNP
	SC_CALLBACK_REG XML DTD
	NVPAIR XML DTD
	SC_REPLY XML DTD
	SC_EVENT XML DTD

	CrnpClient.java Application
	Contents of CrnpClient.java

	Index

