
Endeca® Latitude
LDI MDEX Engine Components Guide

Version 2.2.2 • December 2011

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...9
Contacting Endeca Customer Support...10

Chapter 1: Latitude Data Integrator Overview.......................................11
LDI Designer...11
List of Latitude connectors..12
LDI Server...14

Chapter 2: Before You Begin..17
Data loading strategies and concepts...17

Which updates to run...17
When to use transactions..18

Configuration tips..19
Setting up the workspace.prm file...19
Recommended order of loading data..20
Creating mdexType Custom properties...20
Specifying multiple record delimiters...23

Supported data types..25
Latitude-specific parameters in workspace.prm...25
Default values for new attributes...27
SSL support..28
Additional documentation...29

Chapter 3: Working with Transaction Graphs..31
About transactions..31
Requirements for running graphs within a transaction..31
Wrapping existing graphs in a transaction..32
Transaction graphs in the Latitude Quick Start project...33
Creating a Transaction RunGraph graph..34

Format of the steps input file...35
Adding components to the transaction graph..35
Configuring the Reader for the transaction input file...36
Configuring the Edge for Reader component..36
Configuring the Transaction RunGraph connector...37
Running the transaction graph...38

Committing an outer transaction...39
Performance impact of transactions..40

Chapter 4: Full Initial Index Load of Records..41
Overview of the full initial index load...41
Creating a project...42
Source data format...43

Adding the source data to the project..44
Creating a graph...45
Adding components to the graph..46
Configuring the components...47

Configuring the Reader component...47
Configuring the Reformat component..50
Configuring the Bulk Add/Replace Records connector...53

Running the graph to load records..54

Chapter 5: Incremental Updates..55

iii

Overview of incremental updates..55
Adding components to the incremental updates graph...56
Configuring the Reader and the Edge for incremental updates..56
Configuring the Add/Update Records connector..57
Running the incremental updates graph...58

Chapter 6: Loading the Attribute Schema..61
About attribute schema files...61
Loading the standard attribute schema..61

Format of the PDR input file..62
Adding components to the standard attributes schema graph..63
Configuring the Reader for the PDR input file...64
Configuring the Reformat component for standard attributes..65
Configuring the Denormalizer component...69
Configuring the WebServiceClient component for standard attributes..72

Loading the managed attribute schema...75
Format of the DDR input file..75
Adding components to the managed attributes schema graph...76
Configuring the Reader and the Edge for DDRs...77
Configuring the Reformat component for managed attributes...77
Configuring the Denormalizer and the Edge for DDRs..80
Configuring the WebServiceClient component for managed attributes...81

Using a transaction graph to load the schemas..81

Chapter 7: Loading Configuration Files...83
Types of MDEX Engine configuration documents...83

Global Configuration Record...84
dimsearch_config document..85
recsearch_config document..86
relrank_strategies document...87
stop_words document..88
thesaurus document..89

Loading the configuration documents...90
Creating a graph..91
Adding components to the graph...91
Configuring the Reader for the configuration document..92
Configuring the FastSort component...94
Configuring the first Denormalizer component..95
Configuring the second Denormalizer component..97
Configuring the WebServiceClient component..99

Loading the GCR..101

Chapter 8: Loading Precedence Rules...103
About precedence rules..103
Schema for precedence rules...103
Format of the precedence rules input file...105
Adding components to the precedence rules graph...106
Configuring the precedence rules Reader..106

Configuring the Reader Edge..107
Configuring the Reformat component for precedence rules...107

Configuring the precedence rules Reformat Edge..109
Configuring the precedence rules WebServiceClient component...111
Deleting precedence rules..113

Chapter 9: Adding Key-Value Pairs...115
About key-value pair data...115
Format of the KVP input file..115
Configuring the Reader for the KVP input file...116
Configuring the Add KVPs connector...117
Configuring KVP metadata...118
Running the KVPs graph..119

Endeca® Latitudeiv

Chapter 10: Loading Taxonomies..121
Overview of loading a taxonomy...121
Format of the taxonomy input file..122
Creating a graph for the taxonomy...123
Adding components to the taxonomy graph...124
Configuring the Reader for the taxonomy input file...124
Configuring the Add Managed Values connector..125
Configuring taxonomy metadata...126
Running the taxonomy graph..127

Chapter 11: Importing and Exporting the Configuration....................129
About importing and exporting..129
Exporting the configuration...130

Adding components to the export graph..130
Configuring the Export Config connector..131
Configuring the UniversalDataWriter component..133

Importing the configuration...134
Adding components to the import graph..134
Configuring the Reader in the import graph..134
Configuring the Import Config connector...137

Running the configuration graphs with a transaction graph..138

Chapter 12: Deleting Data..139
Format of the delete input file...139
Adding components to the delete data graph...140
Configuring the Reader for the delete input file..140
Configuring the metadata for data deletes..141
Configuring the Delete Data connector...142
Running the delete data graph..143

Chapter 13: Latitude Connector Reference..145
Bulk Add/Replace Records connector..145
Add/Update Records connector..148
Add KVPs connector...150
Add Managed Values connector...152
Delete Data connector..154
Export Config connector...156
Import Config connector...157
Reset MDEX connector..159
Transaction RunGraph connector...161
Visual and Common configuration properties...164
Connector output ports...167

Chapter 14: Troubleshooting Problems...169
OutOfMemory errors...169
BufferOverflow errors..170
Transaction-related errors...172
Connection errors...173
Multi-assign delimiter error...174

Appendix A: MDEX Engine Index Configuration Reference...............175
XML elements...175

COMMENT..175
DIMNAME..176
PROP...176
PROPNAME..177
PVAL..177

Dimsearch_config elements...177
DIMSEARCH_CONFIG...178

Recsearch_config elements...178

v

Contents

RECSEARCH_CONFIG..178
Relrank_strategies elements..179

RELRANK_APPROXPHRASE..180
RELRANK_EXACT..180
RELRANK_FIELD...181
RELRANK_FIRST...181
RELRANK_FREQ..182
RELRANK_GLOM...182
RELRANK_INTERP..183
RELRANK_MAXFIELD..183
RELRANK_MODULE..184
RELRANK_NTERMS..184
RELRANK_NUMFIELDS...185
RELRANK_PHRASE...186
RELRANK_PROXIMITY..187
RELRANK_SPELL..187
RELRANK_STATIC..188
RELRANK_STRATEGIES...188
RELRANK_STRATEGY...189
RELRANK_WFREQ..191

Search_interface elements...192
MEMBER_NAME..192
PARTIAL_MATCH..193
SEARCH_INTERFACE..193

Stop_words elements...195
STOP_WORD..195
STOP_WORDS...196

Thesaurus elements...196
THESAURUS...197
THESAURUS_ENTRY...198
THESAURUS_ENTRY_ONEWAY...198
THESAURUS_FORM..199
THESAURUS_FORM_FROM..199
THESAURUS_FORM_TO...200

Endeca® Latitudevi

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

vii

Preface

Endeca® Latitude applications guide people to better decisions by combining the ease of search with
the analytic power of business intelligence. Users get self-service access to the data they need without
needing to specify in advance the queries or views they need. At the same time, the user experience
is data driven, continuously revealing the salient relationships in the underlying data for them to explore.

The heart of Endeca's technology is the MDEX Engine.™ The MDEX Engine is a hybrid between an
analytical database and a search engine that makes possible a new kind of Agile BI. It provides guided
exploration, search, and analysis on any kind of information: structured or unstructured, inside the firm
or from external sources.

Endeca Latitude includes data integration and content enrichment tools to load both structured and
unstructured data. It also includes Latitude Studio, a set of tools to configure user experience features
including search, analytics, and visualizations. This enables IT to partner with the business to gather
requirements and rapidly iterate a solution.

About this guide
This guide describes the components in the Endeca Latitude Data Integrator Designer that are used
to ingest data into the MDEX Engine.

The Latitude Data Integrator Designer is used to load records, taxonomies, and configuration documents
into the MDEX Engine.

The guide assumes that you are familiar with Endeca concepts and Endeca application development,
as well as the interface of the Data Ingest Web Service.

Who should use this guide
This guide is intended for developers who are responsible for loading source data into the MDEX
Engine.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

| Preface10

http://eden.endeca.com

Chapter 1

Latitude Data Integrator Overview

The Latitude Data Integrator (LDI) is a high-performance platform that lets you extract source records
from a variety of source types, and load them into the MDEX Engine. The LDI consists of the LDI
Designer, the Endeca Latitude connectors, and an LDI Server.

LDI Designer
Use the LDI Designer to create the graphs for loading and updating your data.

A graph is essentially a pipeline of components that processes the data. The simplest graph has one
Reader component to read in the source data and one of the Endeca components to write (send) the
data to the MDEX Engine. More complex graphs will use additional components, such as Transformer
and Joiner components.

The Designer, with its powerful graphical interface, provides an easy way to graphically lay out even
complex graphs.You drag and drop the components from the Palette and then configure them by
clicking on the component icon.

The Designer perspective consists of four panes and the Palette tool, as shown in this example:

These panes are:

• The Navigator pane lists your projects, their folders (including the graph folders), and files.
• The Outline pane lists all the components of the selected graph.
• The Tab pane consists of a series of tabs (such as the Properties tab and the Console tab) that

provide information about the components and the results of graph executions. The illustration
shows the Log tab listing the output of a successful record loading operation.

• The Graph Editor pane lets you create a graph and configure its components.
• The Palette lets you select a component and drag it to the Graph Editor.

For more information on the Designer user interface, see the Latitude Data Integrator Designer Guide.

List of Latitude connectors
The Endeca Latitude connectors are used to load records into the MDEX Engine, delete records,
export and import the MDEX Engine index and configuration, and start a transaction.

The Endeca-developed Latitude connectors a specifically designed to work with the records and
configuration stored in the MDEX Engine. They utilize the MDEX Engine web services and the Bulk
Load Interface.

Latitude connectors are grouped in the Designer Palette under the Latitude section:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Data Integrator Overview | List of Latitude connectors12

To use a specific Latitude connector, select it from the palette and drag it into your graph.

The following table provides a brief overview of all Latitude connectors:

DescriptionLatitude Connector

Adds new records to a running MDEX Engine.You can add records
to an empty MDEX Engine index (this operation is called a full index
initial load), or to one that already contains records.

You can also use this connector to load the records schema, by
loading the PDRs (Property Description Records) and DDRs
(Dimension Description Records).

Add/Update Records

If an Endeca standard attribute to be added does not exist, it is
created automatically.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

13Latitude Data Integrator Overview | List of Latitude connectors

DescriptionLatitude Connector

Adds new records to a running MDEX Engine.You can add records
to an empty MDEX Engine index (this operation is called a full index
initial load), or to one that already contains records.

If an Endeca standard attribute to be added does not exist, it is
created automatically.

Bulk Add/Replace Records

Updates existing records by adding new key-value pair (KVP)
assignments to those records.

The connector can also create new records for the key-value pairs,
as well as creating new standard attributes for KVP assignments for
non-existent standard attributes.

Add KVPs

Adds a taxonomy (managed values) to a running MDEX Engine.

If the managed values belong to a managed attribute that currently
does not exist in the MDEX Engine index, the managed attribute is
created automatically.

Add Managed Values

Removes KVP assignments from records in the MDEX Engine index,
or deletes entire records (that you specify for deletion).

Delete Data

Exports the schema and configuration stored in the MDEX Engine.Export Config

Imports the schema and configuration into the MDEX Engine.Import Config

Resets the MDEX Engine index back to the empty state by removing
all the records (including the schema) from the MDEX Engine,
provisioning the MDEX Engine and updating the spelling dictionary.

Reset MDEX

Runs other LDI graphs within it, similar to the standard RunGraph
component available with the LDI.

Unlike the standard RunGraph, Transaction RunGraph starts the
outer transaction and runs multiple sub-graphs within that transaction.

Transaction RunGraph

For a comprehensive reference of the connectors and their configuration properties, see the Latitude
Connector Reference section in this guide.

For information on how to build LDI Designer graphs with the connectors, see the corresponding
sections in this guide.

LDI Server
The LDI Server provides a runtime environment for the graphs.

The Latitude Data Integrator Server is not required in order to load data into the MDEX Engine. In
other words, the Data Integrator Designer clients can run independently, and do not require the Server
in order to do their work.

You use the Server only if you are running graphs in an enterprise-wide environment. In this
environment, different users and user groups can access and run the graphs. In addition, you can
schedule the graphs to run at designated times, and monitor their execution progress.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Data Integrator Overview | LDI Server14

The Server runs on an enterprise application server, such as Apache Tomcat or IBM Websphere.

Because the Server is not a mandatory component for loading data into the MDEX Engine, it is not
documented in this guide. For information on the setup and use of the Latitude Data Integrator Server,
see the Latitude Data Integrator Server Guide.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

15Latitude Data Integrator Overview | LDI Server

Chapter 2

Before You Begin

This section provides configuration tips, lists data types supported in the LDI with the MDEX Engine,
provides a reference for default values for newly added attributes, and discusses common ETL strategies
you can employ for loading and updating data and configuration in the MDEX Engine index.

Data loading strategies and concepts
Endeca recommends the following common approaches and strategies for loading data and conducting
other operational tasks.

Which updates to run
This topic discusses at a high-level which types of updates are typically run.This lets you decide which
types of graphs you need to create in LDI for your update purposes.

Typical data update strategies for the Latitude application include the following:

DescriptionType of update

This update is also known as initial baseline update. It's basic idea is simple loading
of data, without the need to preserve any previously configured settings. It includes
loading data into an empty MDEX Engine index.

This update assumes that the MDEX Engine index is empty, and that the
configuration and schema have only their default values acquired at the MDEX
Engine provisioning stage.

Initial index load

As an example, the Baseline graph from the Latitude Quick Start project performs
an initial data load.

This update is also known as a subsequent baseline or a re-baseline. It's basic idea
is to replace almost everything in the MDEX Engine index, and to avoid losing
configuration changes that you may have already made interactively.

This type of update is typically repeatable. It implies loading of the data into the
MDEX Engine index that already contains previously loaded data. Such an index

Baseline update

may also contain configuration that has been changed from its defaults. Similarly,
the attributes schema may have been modified.

DescriptionType of update

For a re-baseline, a typical graph would contain an Export Config connector to
export an existing configuration and schema, a Reset MDEX connector that removes
all records and schema and provisions a new MDEX Engine, an Import Config
connector that imports the previously exported configuration, and, finally, a set of
connectors that load data. This set of sub-graphs may be run inside a Transaction
RunGraph, in case you want to have control over the completeness of updates.

This update includes adding new records and making changes to the records and
configuration that already exist in the MDEX Engine index.

Partial update

For a partial update, a typical graph contains a UniversalDataReader and a
Add/Update Records connector.

When to use transactions
This topic discusses transactions and provides recommendations for when it is useful to run your LDI
graphs inside transactions as opposed to running graphs that do not utilize them.

Typically, LDI components load data and configuration into the MDEX Engine index by making web
service requests or requests to the Bulk Ingest interface. Each web service request represents its own
set of operations in the MDEX Engine, and succeeds or fails on its own.This means that, if some calls
to the MDEX Engine succeed and others fail, the resulting MDEX Engine index may reflect only a
partially updated data set (if, for example, some updates did not succeed).

In some cases, however, you may want to ensure that data changes from an entire data-updating
graph either complete or fail as a unit, so that the resulting MDEX Engine index represents an entirely
updated data set.You may also want to make sure that end users do not access intermediate states
of the data in Latitude Studio, but instead can only have access to the pre-update state of the index
(while the data-updating graph completes), and then seamlessly transition to the index after it has
been fully updated.

To guarantee that your updates either completely succeed or fail, use a graph that runs an outer
transaction.

An outer transaction (also known as transaction) is a set of operations performed in the MDEX Engine
that is viewed as a single unit. If a transaction is committed, this means that all of the data and
configuration changes made during the transaction have completed successfully and are committed
to the MDEX Engine index.

To run a transaction, use the Latitude connector Transaction RunGraph in the LDI. This connector
lets you create a graph that starts and commits an outer transaction in the MDEX Engine, utilizing
calls to the Transaction Web Service. Using this connector, you can add sub-graphs and components
that will run inside an outer transaction. Typically, a graph that runs a transaction is useful for running
updates. Once such a graph completes, an update to your records is guaranteed to be fully committed
to the MDEX Engine index.

Related Links
Working with Transaction Graphs on page 31

This chapter describes how to build an LDI transaction graph that can sub-graphs in a
transaction environment. It also provides information about starting, committing, and rolling
back transactions.

Wrapping existing graphs in a transaction on page 32

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Before You Begin | Data loading strategies and concepts18

You can wrap any of your existing graphs in a graph that uses Transaction RunGraph
connector.

Configuration tips
This section provides tips and general information for configuration tasks.

Setting up the workspace.prm file
If you start a new Latitude project and are planning to use transactions in it, ensure that the project's
workspace.prm file lists the MDEX_TRANSACTION_ID parameter with an empty ID value.

The MDEX_TRANSACTION_ID parameter is specific to the MDEX Engine and is used to control
transactions. The default workspace.prm file for a new project does not contain this parameter.

When you start a new Latitude project in LDI Designer, add the following line to your workspace.prm
file:

MDEX_TRANSACTION_ID=

where the actual value of the ID is left blank.

This line ensures that in this project, you can run graphs with and without transactions.

• Graphs that use transactions. To run a graph that starts and commits a transaction, use the
Transaction RunGraph connector. This connector automatically overrides the value of the ID
(which is not specified) with the value transaction for the duration of the transaction.

All Latitude components that you add to such a graph do not require any special configuration and
are designed to accept this ID, if it is provided by Transaction RunGraph.

Non-Latitude components that you add to this graph (those that use WebServiceClient or HTTP
Connector) must have "${MDEX_TRANSACTION_ID}" attribute specified in their request structure.
If such components are used within Transaction RunGraph, they automatically accept the
transaction ID provided by this graph, for the duration of the transaction.

• Graphs that do not use transactions. To run a graph that does not use transactions, you add any
components to it, and do not use Transaction RunGraph or any other graph associated with
transactions.

All Latitude components added to such a non-transaction graph accept the ID provided in
workspace.prm. Since the value of this ID is empty, the transaction ID attribute is ignored, which
allows these components to run outside of a transaction.

Non-Latitude components that you add to this graph must have "${MDEX_TRANSACTION_ID}"
attribute specified in their request structure. If such components are used within any graph that
does not use transactions, they accept the transaction ID provided in workspace.prm. If this ID
is empty, they ignore the attribute for the ID, which allows these components to run outside of a
transaction.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

19Before You Begin | Configuration tips

Recommended order of loading data
This topic provides a recommended order for loading your configuration information and source data
into the MDEX Engine.

Assuming that you are starting with an empty MDEX Engine (that is, only mkmdex has been run), the
recommended order of loading your data is the following:

1. Global Configuration Record (GCR), which sets the global configuration settings for the MDEX
Engine.

2. Attribute Schema Configuration, which creates the standard attributes and managed attributes, in
this order:

a. Standard attribute schema, which are the Property Description Records (PDRs)
b. Managed attribute schema, which are the Dimension Description Records (DDRs)
c. Managed attribute values (mvals)

3. Attribute Group Configuration, which consists of creating groups and adding attributes to them
4. Index Configuration, which consists of the index configuration documents in this order:

a. relrank_strategies document (necessary if a relevance ranking strategy is referenced by
the next two documents)

b. recsearch_config document
c. dimsearch_config document
d. stop_words document
e. thesaurus document

5. Application Source Records, which consist of the data on which user queries will be made.

You may alter the order to fit the needs of your Latitude application. For example, if you are satisfied
with the default settings of the GCR, then there is no need to load the GCR. Or, to use another example,
you do not need to load your attribute group configuration if you intend to create and manage attribute
groups with Latitude Studio's Attribute Settings component.

Creating mdexType Custom properties
LDI Designer allows you to create an mdexType Custom property that you can use to explicitly specify
the MDEX type to which a particular Endeca standard attribute should map.

The Custom Property feature can be used to specify MDEX types (such as mdex:duration,
mdex:time, and mdex:geocode) that are not natively supported in the Designer. In this case, the
ETL developer has to send a string through the Designer, making sure that the string value is formatted
in the way that the MDEX Engine expects. The new mdexType Custom property, in other words,
overrides the Designer native property type when the records are sent to the MDEX Engine.

This functionality is particularly useful for non-String multi-assign properties, because the Designer
natively has to treat the property as a string since it has to include a delimiter. Thus, you can include
delimiters in the multi-assign property (as though it were a String) but send the property to the MDEX
Engine with mdex:int (for example) as the MDEX property type.

Important: Although the property will be designated as Designer type String, you must make
sure that the string value is formatted according to the rules of the MDEX property type to which
it will be mapped. For example, if it will be created as an mdex:duration attribute in the MDEX
Engine, then the String value must use the mdex:duration format.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Before You Begin | Configuration tips20

You add Custom properties by invoking the Custom property editor from the Fields pane in the Metadata
Editor:

The Name field must be mdexType and the Value field must be one of the MDEX property types (such
as mdex:duration). The Name and Value are used by the Latitude connector to specify (to the
MDEX Engine) what MDEX property type should be used for when creating the standard attribute.

The source input file used as an example is a simple one:

ProductKey|ProductName|Duration|Location
95000|HL Mountain Rim|P429DT2M3.25S|42.365615 -71.075647

It creates only one record with four standard attributes:

• The ProductKey attribute is the primary key and is an Integer. Its value is 9500.
• The ProductName attribute is a String type with a value of "HL Mountain Rim".
• The Duration attribute will be a String property in the Designer metadata but will use a Custom

property of mdex:duration in order to create a Duration standard attribute. Its value is
"P429DT2M3.25S" (which specifies a duration of 429 days, 2 minutes, and 3.25 seconds).

• The Location attribute will be a String property in the Designer metadata but will use a Custom
property of mdex:geocode in order to create a Geocode standard attribute. Its value is "42.365615
-71.075647" (which specifies a location at 42.365615 north latitude, 71.075647 west longitude).

To create a Custom property:

1. Create a graph with at least one reader, a Latitude connector (such as the Add/Update Records
connector), and an Edge component.

2. Right-click on the Edge and select New metadata > Extract from flat file.

3. In the Flat File dialog, select the input file and then click Next to display the Metadata editor.

4. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

At this point, the Record pane of the Metadata editor should look like this:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

21Before You Begin | Configuration tips

5. In the Record pane of the Metadata editor, make these changes:

a) Click the Record:recordName1 Name field and change the recordName1 default value to a
more descriptive name.

b) Change the ProductKey Type to integer.
c) Leave the ProductName Type as string.

6. To create a Custom property type for the Duration property:

a) In the Record pane, click the Duration property to high-light it.

The Duration property is displayed in the Field pane on the right, as in this example:

b) In the Field pane, click the green + icon to bring up the Custom property editor.
c) Enter mdexType in the Name field and mdex:duration in Value field.

The Custom property editor should look like this:

d) Click OK in the Custom property editor.

As a result, a Custom section (with the new mdexType property) is added to the Duration
property in the Field pane:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Before You Begin | Configuration tips22

7. Repeat Step 6 if you want to create another mdexType Custom property type for another of your
source properties.
For example, for the Location attribute, you would create an mdexType Custom property with
mdex:geocode in the Value field.

8. Click OK to apply your changes and close the Metadata editor.

As mentioned above, when the graph is run to add records, the MDEX Engine will use the mdexType
Custom properties to create the standard attributes.

Keep in mind that you can create mdexType Custom properties for any of the MDEX property types,
by setting the Value field to:

• mdex:boolean for Booleans
• mdex:dateTime to represent the date and time to a resolution of milliseconds
• mdex:double for floating-point values
• mdex:duration to represent a length of time with a resolution of milliseconds
• mdex:geocode to represent latitude and longitude pairs
• mdex:int for 32-bit signed integers
• mdex:long for 64-bit signed integers
• mdex:string for XML-valid character strings
• mdex:time for time-of-day values to a resolution of milliseconds

Specifying multiple record delimiters
By using an OR operator, you can specifying multiple record delimiters in the metadata.

In the Edge metadata, the default record delimiter for a file depends on which operating system the
file was created. For example, the default record delimiter for a Windows file is \r\n while \n is typically
used for Linux files.

However, you may have files that were created on different platforms (for example, if you have input
files that you check out of a version control system, the files' line endings will vary according to the
platform). In this case, you would want the record delimiter to be set to both values, so that you could
use the same graph on Windows or Linux.You would then set the record delimiter to:

\r\n\\|\n

The | (pipe) character is an OR operator and the \\| syntax is a way to escape that OR operator in the
LDI interface.

To specify multiple record delimiters in the metadata:

1. In the Record pane of the Metadata Editor, click the first row (the Record row).

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

23Before You Begin | Configuration tips

In this example, you would click the Record:ProductCategory row.

2. In the Details pane (to the right of the Record pane), check the Record delimiter property to see
the default setting.

In this example, \r\n is set as the record delimiter.

3. Place the cursor in the Value field of the Record delimiter property and type in \r\n\\|\n as the
value.

The Details pane should now look like this:

4. Click OK to save your changes made in the Metadata Editor.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Before You Begin | Configuration tips24

Supported data types
This topic lists the Designer native data types and specifies which of them are supported in the MDEX
Engine.

The table also shows how the Designer supported data types are mapped to MDEX Engine data types
during an ingest operation.You will see the data types when you create the Metadata definition for
the Edge component connector.

Maps to MDEX Data TypeDesigner Data Types in Metadata

mdex:booleanboolean

Not supportedbyte

Not supportedcbyte

mdex:dateTimedate

mdex:doubledecimal

mdex:intinteger

mdex:longlong

mdex:doublenumber

mdex:stringstring

mdex:durationstring with an mdexType Custom
property set to mdex:duration

mdex:geocodestring with an mdexType Custom
property set to mdex:geocode

As the table notes, you can create an mdexType Custom property type for the input property's metadata
and the MDEX Engine will use that type when creating the standard attribute's PDR. For details, see
the "Creating mdexType Custom properties" topic in Chapter 10 of this guide.

Latitude-specific parameters in workspace.prm
The workspace.prm file contains parameters that define your project. Some parameters in this file
are specific to Latitude, and in particular, to the MDEX Engine. This topic lists these Latitude-specific
parameters.

The workspace.prm file is located under your project's directory, in the Navigator pane. Each
project contains its own workspace.prm file. To view it, open it with Text Editor.

This file lists parameters that must be frequently referenced by components in your project, such as
locations of the DATA IN and DATA OUT directories. Instead of referencing these values directly, you
can specify them once in the workspace.prm and then reference the parameters when configuring
your project's components.

A new project contains a workspace.prm file with default settings which you can modify to suit your
needs.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

25Before You Begin | Supported data types

The following table lists those parameters that affect the Latitude projects in which data is sent to the
MDEX Engine. (For information about the non-Latitude parameters in this file, see the LDI Designer
Guide.)

Note: While you can modify the parameter values, do not change the parameter names, because
these names are reserved in LDI.

The workspace.prm file contains the following parameters specific to Latitude and the MDEX Engine:

DescriptionParameter

The host name of the server on which the MDEX Engine is
running.

This parameter is optional, but is recommended to include.

MDEX_HOST

The port of the server on which the MDEX Engine is running.

This parameter is optional, but is recommended to include.

MDEX_PORT

For example, instead of specifying a specific port name, you
can specify ${MDEX_PORT} in the MDEX port field for any
connector that requires it.

The port for the Bulk Ingest Interface.

This parameter is optional, but is recommended to include.

MDEX_BULK_PORT

The ID of the outer transaction for the MDEX Engine.

In a new project, this parameter is not specified, and you must
add it as follows (with an empty value):

MDEX_TRANSACTION_ID=

MDEX_TRANSACTION_ID

This ensures that in your project, you can run components
within graphs that either use or do not use transactions:

• In a graph that uses transactions, Latitude-specific and
non-Latitude components rely on the ID provided to them
by the graph that runs a transaction (this graph overrides
the ID in this file, for the duration of the transaction).
Non-Latitude components must have outerTransac¬
tionId="${MDEX_TRANSACTION_ID}" specified in
their request structure.

• In a graph that does not use transactions, both
Latitude-specific and non-Latitude components ignore
this ID if it is empty, which allows them to run outside of
a transaction.

Note: If you have any of the sample Latitude projects loaded in the LDI Designer, a few additional
MDEX Engine-specific parameters may be listed in this file. These additional parameters are
optional and are created in this file for the purposes of the sample projects.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Before You Begin | Latitude-specific parameters in workspace.prm26

Example: How to specify an outer transaction ID parameter

This example illustrates how to specify an outer transaction ID parameter in the component's
configuration.

Note: Latitude-specific components automatically reference this ID, if it is specified in the
workspace.prm file for your project with an empty value. However, you need to configure
non-Latitude components that use MDEX Engine web services or bulk ingest interface to reference
this ID, if you plan to use these components in graphs that run transactions, in addition to using
them in graphs that do not run transactions.

For example, if you are using a WebServiceClient component for running any of the MDEX Engine
web services, and plan to use this component inside an outer transaction, the Request Structure
field for the component must include an attribute outerTransactionId with an ID of an outer
transaction.

Note: If you do not use transactions, then this component should still contain the outerTrans¬
actionID, however, because it's value is empty in workspace.prm, it is ignored when this
component runs outside of a transaction.

Specify the following request In the Request Structure field for your component:

<config-service:configTransaction
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"
outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putGroups
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
...
</config-service:putGroups>
</config-service:configTransaction>

where the string outerTransactionId="${MDEX_TRANSACTION_ID}" specifies the ID of the
outer transaction listed in the workspace.prm file for your project.

Default values for new attributes
New standard and managed attributes created during an ingest are given a set of default values.

During any data ingest operation, if a non-existent Endeca standard attribute is specified for a record,
the specified attribute is automatically created by the MDEX Engine. Likewise, non-existent Endeca
managed attributes specified for a record are also automatically created. Note that you cannot disable
this automatic creation of these attributes.

Standard attribute default values

The PDR for a standard attribute that is automatically created will use the system default settings,
which (unless they have been changed by the data developer) are:

Default settingPDR property

Set to the standard attribute name specified in the
request.

mdex-property_Key

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

27Before You Begin | Default values for new attributes

Default settingPDR property

Set to the standard attribute type specified in the
request. If no type was specified, defaults to the
mdex:string type.

mdex-property_Type

true (the standard attribute will be enabled for
value search)

mdex-property_IsPropertyValueSearchable

false (a record may have multiple value
assignments for the standard attribute)

mdex-property_IsSingleAssign

false (the standard attribute will be disabled for
record search)

mdex-property_IsTextSearchable

false (more than one record may have the same
value of this standard attribute)

mdex-property_IsUnique

false (wildcard search is disabled for this standard
attribute)

mdex-property_TextSearchAllowsWildcards

single (allows selecting only one refinement from
this standard attribute)

system-navigation_Select

true (record counts will be shown for a refinement)system-navigation_ShowRecordCounts

record-count (refinements are sorted in
descending order, by the number of records
available for each refinement)

system-navigation_Sorting

Managed attribute default values

A managed attribute that is automatically created will have both a PDR and a DDR created by the
MDEX Engine. The default values for the PDR are the same as listed in the table above, except that
mdex-property_IsPropertyValueSearchable will be false (i.e., the managed attribute will
be disabled for value search).

The DDR will use the system default settings, which (unless they have been changed by the data
developer) are:

Default settingDDR property

Set to the managed attribute name specified in the
request.

mdex-dimension_Key

true (refinements will be displayed)mdex-dimension_EnableRefinements

false (hierarchical search is disabled during value
searches)

mdex-dimension_IsDimensionSearchHierarchical

false (hierarchical search is disabled during
record searches)

mdex-dimension_IsRecordSearchHierarchical

SSL support
All Latitude connectors support SSL connections to an SSL-enabled MDEX Engine.You configure
SSL connections in the LDI Designer Edit component dialog.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Before You Begin | SSL support28

For example, this diagram shows the SSL Enabled field that you can configure for the Bulk
Add/Replace Records connector:

Additional documentation
Additional LDI Designer documentation is available online and as part of the Latitude documentation
set.

Latitude documentation set

The following PDF documents are shipped as part of the Latitude documentation set:

• Latitude Data Integrator Getting Started Guide – a guide for ETL developers and data architects
who want to explore the basics of the Designer.

• Latitude Data Integrator Designer Guide – a comprehensive user's guide for the Designer.
• Latitude Data Integrator Server Guide – a comprehensive user's guide for the LDI Server.

Documentation online

You can access online documentation from within the Designer by clicking Help Contents from the
Help menu. Doing so brings up three documents:

• CloverETL Designer User's Guide – the online version of the Latitude Data Integrator Designer
Guide.

• Workbench User Guide – describes the Eclipse Workbench development environment.
• Java Development User Guide – describes how to use the Java development tools.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

29Before You Begin | Additional documentation

Chapter 3

Working with Transaction Graphs

This chapter describes how to build an LDI transaction graph that can sub-graphs in a transaction
environment. It also provides information about starting, committing, and rolling back transactions.

About transactions
An outer transaction (also known as transaction) is a set of operations performed in the MDEX Engine
that is viewed as a single unit.

If a transaction is committed, this means that all of the data and configuration changes made during
the transaction have completed successfully and are committed to the MDEX Engine index.

If any of the changes made within a transaction fail to complete successfully, the transaction fails to
commit. In this case, you can choose to roll back the entire transaction, and the changes to the MDEX
Engine index do not occur.

In general, the best practice is to set up operations so that successful updates are automatically
committed (this is the default), but failed updates can be rolled back either automatically or manually.

The MDEX Engine Transaction Web Service is used for controlling outer transactions.

Requirements for running graphs within a transaction
If you would like to use outer transactions in your graphs, consider these requirements.

• Do not start more than one outer transaction at a time. If you have a graph that starts an outer
transaction, such as a graph built with the Transaction RunGraph connector, it is important not
to start another graph that attempts to start another outer transaction, otherwise, the MDEX Engine
issues a transaction fault error.

• You can run all Latitude components inside a graph that starts an outer transaction. In other words,
all Latitude components in LDI are transaction-friendly.When any Latitude component is run within
such a graph, the underlying update operations from the web services or Bulk Ingest interface will
reference the outer transaction ID in their calls to the MDEX Engine. This ID is provided to these
components by the Transaction RunGraph connector. For the duration of the transaction, the
connector sets the ID to transaction. In addition, the ID must be specified as MDEX_TRANSAC¬
TION_ID= in the worskpace.prm file for your project (notice the empty value). This allows the
same components to be used in graphs that do not use transactions, without having to modify
worskpace.prm.

Note: All Latitude components can also run in graphs that don't start a transaction. If you
have a simple implementation, or if a graph that you are creating is light-weight and is not
intended for heavy-duty data loading or configuration updates, it can run on its own and does
not necessarily need to be run inside an outer transaction.

• If you are using a WebServiceClient component in LDI that is configured to run any of the MDEX
Engine web services, the Request Structure field for the component must include an attribute
outerTransactionId with a value of an outer transaction. For example, the following request
specified in the Request Structure references the outer transaction ID as a parameter:

<config-service:configTransaction
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

outerTransactionId="${MDEX_TRANSACTION_ID}">
...
</config-service:configTransaction>

In this example, the string outerTransactionId="${MDEX_TRANSACTION_ID}" references
the ID of the outer transaction listed in the workspace.prm file for your project.

• Consider creating all your data-updating graphs inside a graph that starts and commits an outer
transaction:

• In a clustered environment, the best practice is to use an outer transaction.

When an outer transaction is started, it locks out all queries on the leader node for its duration.
Latitude Studio cannot send queries to the MDEX Engine node that is processing an outer
transaction.

In a cluster, the LDI graph sends updates to the leader node only. During an outer transaction,
the leader node responds to any queries, including the admin?op=ping command with an
HTTP 403 response code. This way, the load balancer can be configured to automatically
detect whether a transaction is in progress and remove the leader node from answering queries,
while other nodes in the cluster continue to respond to user requests in Latitude Studio.

• In a non-clustered environment (a single MDEX Engine node without the Cluster Coordinator),
you may still use an outer transaction. Such a graph lets you group a set of operations into a
single atomic unit that either succeeds or fails as a whole. Be aware, however, that while an
outer transaction is running, the node does not serve queries. That is, if you run a graph within
a transaction on a single MDEX Engine server, you benefit from an all-or-nothing data update
operation, but while the transaction is running, the MDEX Engine does not respond to queries.

Related Links
Transaction-related errors on page 172

You may receive various transaction-related errors if you attempt to overlap running graphs
wrapped in transactions with graphs that do not start an outer transaction.

Wrapping existing graphs in a transaction
You can wrap any of your existing graphs in a graph that uses Transaction RunGraph connector.

To wrap your existing graphs in a transaction:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Working with Transaction Graphs | Wrapping existing graphs in a transaction32

1. Create a parameter in your workspace parameters file workspace.prm with this line:

MDEX_TRANSACTION_ID=

where the value is empty.

2. Add the following line to the outermost request element to any standard component, (such as
WebServiceClient or HTTPConnector), that could be called from within a transaction:

outerTransactionId="${MDEX_TRANSACTION_ID}"

This ensures that the component behaves like a Latitude-specific component: when this value is
non-empty, the component will run within a transaction; when this value is empty, it will be ignored
and the component will run outside a transaction.

3. Modify any standard RunGraph components that may possibly run within a transaction by specifying
MDEX_TRANSACTION_ID in the Graph parameters to pass field (this field accepts a
semicolon-delimited list).

4. Finally, configure a Transaction RunGraph connector to reference one or more graphs, and run
it.

LDI will start a transaction named transaction (lowercase, case-sensitive) and run all sub-graphs
within this transaction.

Related Links
When to use transactions on page 18

This topic discusses transactions and provides recommendations for when it is useful to run
your LDI graphs inside transactions as opposed to running graphs that do not utilize them.

Transaction graphs in the Latitude Quick Start project
The Latitude Quick Start project provides three transaction graphs that you can use in your projects.

The Begin Transaction, Commit Transaction and Rollback Transaction graphs reference the string
transaction as the value of the transaction ID.

Begin Transaction graph

The Begin Transaction graph uses the Transaction Web Service's startTransactionOperation
to begin a transaction. The request structure of the graph's WebServiceClient component has the
following request:

<ns:request xmlns:ns="http://www.endeca.com/MDEX/transaction/2011">
 <ns:startTransactionOperation id="${MDEX_TRANSACTION_ID}"/>
</ns:request>

If the operation succeeds, then the MDEX Engine enters transaction mode. In transaction mode,
queries and updates that do not have the transaction ID are rejected and updates applied within the
transaction do not propagate across an MDEX Engine cluster.

Keep in mind that the transaction opened by the Begin Transaction graph must eventually be ended
by the Commit Transaction graph, or the Rollback Transaction graph.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

33Working with Transaction Graphs | Transaction graphs in the Latitude Quick Start project

Commit Transaction graph

The Commit Transaction graph uses the Transaction Web Service's commitTransactionOperation
to end a transaction. The request structure of the graph's WebServiceClient component has the
following request:

<ns:request xmlns:ns="http://www.endeca.com/MDEX/transaction/2011">
 <ns:commitTransactionOperation id="${MDEX_TRANSACTION_ID}"/>
</ns:request>

If a transaction of the given ID is in progress and if the operation succeeds, the MDEX Engine will exit
transaction mode. The MDEX Engine will once again accept unqualified queries and any updates
applied during the transaction will be pushed out across the MDEX Engine cluster.

Rollback Transaction graph

The Rollback Transaction graph uses the MDEX Engine admin?op=rollback operation to roll back
a transaction. In the event that a running transaction fails, this operation lets you roll back to the
previously-committed version of the MDEX Engine index and stop the transaction.

The URL field of the HTTP connector component has this value:

http://${MDEX_HOST}:${MDEX_PORT}/admin?op=rollback&outerTransaction¬
Id=${MDEX_TRANSACTION_ID}

The results of the admin?op=rollback operation are logged in the stdout/stderr log of the
MDEX Engine.

Creating a Transaction RunGraph graph
This section describes how to build an LDI graph that uses the Transaction RunGraph connector to
run a series of graphs within a single atomic transaction.

To run one ore more graphs within a transaction, create a master graph using the Transaction
RunGraph connector.

The Transaction RunGraph connector works as follows:

1. It starts an outer transaction using the Transaction Web Service.
2. It runs a series of defined sub-graphs within that transaction.
3. It commits the transaction when all the graphs have successfully finished.

For the duration of the transaction, Transaction RunGraph is designed to override the transaction
ID specified in workspace.prm with the string transaction. Components that run within this graph
automatically pick up this ID.

In addition, you can configure the Transaction RunGraph connector to react to unsuccessful runs,
such as it can roll back the transaction.

In this section, a sample Transaction RunGraph graph will be built to run the two graphs that load
the standard attribute and managed attribute schemas into the MDEX Engine.

Related Links
Transaction RunGraph connector on page 161

Use this connector to run LDI graphs, similar to the standard RunGraph component available
with the LDI. Unlike the standard RunGraph, Transaction RunGraph starts the outer
transaction and runs multiple sub-graphs within that transaction.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Working with Transaction Graphs | Creating a Transaction RunGraph graph34

Format of the steps input file
The input file for the Transaction RunGraph connector defines which graphs will be run by it.

The AttributeSteps.csv sample input file used to list the graphs looks like this:

The first line (the header row) of the sample file has two header properties:

Path,Argument

The actual names of the header properties can be different from the names used here.The properties
are delimited (for example, by the comma in the sample CSV file). After the header row, the second
and following rows in the input file contain the input values:

• The Path column lists the path names of the graphs to be run by the Transaction RunGraph
component. The order in which the graphs are listed is the order in which they are run.

• The Arguments column specifies any graph command-line arguments. No arguments are specified
in our example input file.

After creating the file, copy it into the data-in folder.

Transaction ID in the workspace.prm file

When running graphs in a transaction environment, specify an outer transaction ID in your
workspace.prm file by setting it in the MDEX_TRANSACTION_ID variable, as in this example:

MDEX_TRANSACTION_ID=

Leaving the value empty is important. It allows the sub-graphs to be run outside of transactions if
needed, as well as within a transaction.When the sub-graphs are run within a Transaction RunGraph,
the master graph overrides the ID with the string transaction for the duration of the transaction.
When the sub-graphs are run independently of the master graph and outside of a transaction, the
empty value from workspace.prm is used, which enables the graphs to ignore the ID attribute in the
request to the MDEX Engine.

Adding components to the transaction graph
This topic describes the two LDI components that must be added to the transaction graph.

This procedure assumes that you have created an empty graph (named RunLoadSchema in our
example).

To add components to the transaction graph:

1. In the Palette pane, drag the UniversalDataReader component from the Readers section.

2. In the Palette pane, drag the Transaction RunGraph component from the Latitude section.

3. In the Palette pane, click Edge and use it to connect the components.

4. Save the graph.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

35Working with Transaction Graphs | Creating a Transaction RunGraph graph

At this point, the Graph Editor with the connected components should look like this:

Configuring the Reader for the transaction input file
This task describes how to configure the UniversalDataReader component to read in the file that lists
the graphs to be run.

This procedure assumes that you have created the RunLoadSchema graph and added the
UniversalDataReader component. It also assumes that you have added the AttributeSteps.csv
input file to the project's data-in folder.

To configure the Reader component for the run-graphs input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the transaction input file (AttributeSteps.csv in our example) and click OK.

3. Change the Number of skipped records per source field set to 1.

The reason is that we do not want the first row (the header property row) to be read in as data.

4. Optionally, use the Component name field to provide your own name for the component.

5. Click OK to apply your configuration changes to the Reader component.

6. Save the graph.

The next step is to configure the Reader's Edge metadata.

Configuring the Edge for Reader component
The Edge for the Reader component must be configured with a Metadata definition.

This Metadata definition task will use the Metadata Editor. In the procedure, the column names will
be extracted from the input file via a reparsing operation.

To configure the Metadata definition for the Reader Edge in the transaction graph:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Working with Transaction Graphs | Creating a Transaction RunGraph graph36

3. In the URL Dialog:, browse for the PDR input file, select it, and click OK.

a) Double-click the data-in folder.
b) Select the transaction input file and click OK.

You are returned to the Flat File dialog.

4. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.
The input data is loaded into the Metadata Editor, with the properties named Field1, Field2, and
so forth.

5. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

The correct property names are now displayed in the upper and middle panes of the Metadata
Editor, which should look like this:

6. In the upper pane of the Metadata Editor:

a) Optionally, click the Record Name field and change the name of the metadata to a more
descriptive name.

b) Make sure that the Type field of all the properties is set to type string.
c) Verify that the fields have the correct delimiter character set (which is the comma for our

example).

7. When you have input all your changes, click Finish.

8. Save the graph.

The next step is to configure the Transaction RunGraph connector.

Configuring the Transaction RunGraph connector
This topic describes how to configure the Transaction RunGraph connector to run the graphs.

This procedure assumes that you have created a graph and added the Transaction RunGraph
connector.

To configure the Transaction RunGraph connector:

1. In the Graph editor, double-click the Transaction RunGraph component.

The Edit Component dialog is displayed.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

37Working with Transaction Graphs | Creating a Transaction RunGraph graph

2. In the Edit Component dialog, make these settings:

• MDEX Host: Enter the host name of the machine on which the MDEX Engine is running. lo¬
calhost can be used as the name.

• MDEX Port: Enter the number of the port on which the MDEX Engine is listening.
• Upon failure: Select the action that the component should take upon a transaction failure:

Rollback (roll back to the state before the transaction had started, and commit the transaction),
Commit (commit those changes that have been made successfully before the failure occurred,
and commit the transaction), or Do nothing (nothing is done, which means you may need to
manually stop the outer transaction).

• SSL Enabled: Toggle this field to true only if the MDEX Engine is SSL enabled.

You can leave the other settings at their defaults.

3. When you have input all your changes, click OK.

4. Save the graph.

The final step is to run the transaction graph.

Running the transaction graph
After creating the transaction graph and configuring its components, you can run the graph to run its
sub-graphs in a transaction environment.

To run the transaction graph:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Transaction RunGraph connector.

2. Run the graph by clicking the green circle with white triangle icon in the Tool bar:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Working with Transaction Graphs | Creating a Transaction RunGraph graph38

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see this final output message:

INFO [main] - Execution of graph successful !

Committing an outer transaction
To manually commit an outer transaction that failed to commit successfully, run the
RollBackTransaction or CommitTransaction graph from the Latitude Quick Start project, or issue
an /admin?op=rollback&outerTransactionId="ID" command on the MDEX Engine server,
specifying the transaction ID.

In some instances, you may have a graph that starts an outer transaction but fails to commit it. This
may happen, for example, when you are creating a new graph and troubleshooting its sub-graphs. If
any of the sub-graphs fail, the entire graph running a transaction may fail also.

Since only one outer transaction can be in progress at a time, if the graph running an outer transaction
fails, you cannot run any other graphs that start transactions until the transaction that is in progress
is committed. In such cases, it is useful to know how to commit an outer transaction manually.

Typically, you may need to close an already running transaction after you receive a transaction-related
error, when trying to run one of your graphs. To identify whether an outer transaction is currently
running, issue an http://mdex/admin?op=ping request. An HTTP code 403 means that a
transaction is open.

To commit an outer transaction:

Do one of the following:

• Run the RollBackTransaction graph that is included as part of the Latitude Quick Start project.
This graph rolls back all the changes from this transaction and commits the transaction. This
graph uses the transaction ID string transaction. If the ID of your transaction is different,
change the ID in the workspace.prm file for your project. Running this graph is equivalent to
running the /admin?op=rollback&outerTransactionId="myID" command. Note that
myID defaults to the transaction string when run within a Transaction RunGraph.

• Run the CommitTransaction graph that is included as part of the Latitude Quick Start project.
This graph commits those changes that succeeded within a transaction, and ignores the rest,
and then commits the transaction. If you choose to run this graph, examine which changes have
been applied and which have failed. This graph uses the ID string transaction. If the ID of
your transaction is different, change the ID in the workspace.prm file for your project.

• Issue an /admin?op=rollback&outerTransactionId="myID" command on the MDEX
Engine server that has a transaction open, where myID is the ID of the transaction.

Running any of these options allows you to commit a transaction that has failed to commit successfully.

Related Links
Transaction-related errors on page 172

You may receive various transaction-related errors if you attempt to overlap running graphs
wrapped in transactions with graphs that do not start an outer transaction.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

39Working with Transaction Graphs | Committing an outer transaction

Performance impact of transactions
Running an outer transaction does not affect performance of the MDEX Engine.

However, be aware that a transaction that is in progress (especially if it is running update operations
on a large amount of data), will increase the disk usage resulting in higher disk high-water mark values
(Linux).

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Working with Transaction Graphs | Performance impact of transactions40

Chapter 4

Full Initial Index Load of Records

This section describes how to create an LDI project and a graph that will perform a full initial index
load of records into the MDEX Engine.

Overview of the full initial index load
This section walks you through the various tasks involved in creating a graph that can perform initial
load of source records into the MDEX Engine.

The task that this section covers is how to perform an initial full index load of your source records
into the MDEX Engine. (Full index loads are also known as baseline updates .) As the source records
are ingested, they are converted into Endeca records and are indexed by the MDEX Engine.

This process assumes that:

• The MDEX Engine is empty of user source data.
• You have already loaded your attribute schema (PDRs and DDRs) into the MDEX Engine. The

load-schema procedure is documented in the section Loading the Attribute Schema in this guide.

Note: You can also initially your data without having to first load your attribute schema.
However, if you do so, you will not have control over the default values for the standard
attributes that are created. For this reason, it is recommended that you first load your attribute
schema data before loading your user source data.

Sample full index load graph

The Latitude Sample Application has an extensive graph (named LoadData) that uses the Bulk
Add/Replace Records connector. The LoadData graph inputs ten data source files and uses
ExtHashJoin joiner components to join all the source data.

In order to simplify the description of a bulk load graph, a subset of the LoadData graph is used in this
chapter. This sample subset graph (named LoadBulkData) uses three components:

The three components are:

• The Sales Facts component is a UniversalDataReader that reads in sales transaction records
from one source data file.

• The Create Spec component is a Reformat component that creates the primary-key attribute for
the records.

• The Bulk Load to MDEX component is a Bulk Add/Replace Records connector. This Endeca
Latitude connector sends the records to the Bulk Load Interface of the MDEX Engine.

The source data is sales transaction information stored in a CSV file, with each source record having
multiple columns that are delimited by the comma character.The format of the source data is explained
in a following topic.You can, of course, use other source formats, including reading from a database.
These other input formats may require other types of readers, such as the DBInputTable reader.

Creating a project
You must create an LDI project in which you will build your graph.

If you already have a project, you can re-use it for your graph. In other words, a project can have
multiple graphs configured in it.

To create a new LDI project:

1. From the File menu, select New > CloverETL Project.

2. In the New CloverETL project dialog, enter a name for the project in the Project name field.

You can leave the Use default location box checked.

3. Click Next and then click Finish.

Your new project is displayed in the Navigator pane, as in this example that shows the Endeca1 project
in an expanded format:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Creating a project42

Note that the Outline pane is empty, as is the Graph Editor.

Source data format
You can load source data from a variety of formats.

Your Endeca applications will most often read data directly from one or more database systems, or
from database extracts. Input components load records in a variety of formats including delimited,
JDBC, and XML. Each input component has its own set of configuration properties. One of the most
commonly used type of input component loads data stored in delimited format.

The format used as an example in this chapter is a two-dimensional format similar to the tables found
in database management systems. Database tables are organized into rows of records, with columns
that represent the source properties and property values for each record. (This type of format is often
called a rectangular data format.) The source records are stored in a CSV file named FactSales.csv
(the file is in the data-in folder of the Latitude Sample Application).

The following image, which shows the beginning lines of the FactSales.csv input file, illustrates
how the source data is organized in a two-dimensional format:

You specify the location and format of the source data to be loaded in the LDI reader component in
the graph. The reader component passes the data to the Endeca connector, which is configured to
connect to either the Data Ingest Web Service (DIWS) or the Bulk Load Interface, both of which reside

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

43Full Initial Index Load of Records | Source data format

on the MDEX Engine.The records are then loaded into the MDEX Engine in batches of a pre-configured
size. During the ingest operation, each source row is transformed into an Endeca record with a key-value
pair for each non-null source column. The MDEX Engine then indexes the records for use during
search queries.

Primary key attribute

You will be using one of the Endeca standard attributes as the primary-key attribute for the records.
(The primary-key property is also known as the record spec property.) The primary-key property must
be a unique, single-assign property. For more information on primary keys, see the Data Ingest API
Guide.

In our sample graph, the FactSales.csv input file does not have a field that contains unique values.
Therefore, the Create Spec component creates the FactSales_RecordSpec primary-key attribute by
concatenating two attributes. The name of the primary-key attribute will be specified in the Metadata
definition for the Edge component.

Use of hyphens in input property names

Although the MDEX Engine will accept attribute names with hyphens (because hyphens are valid
NCName characters), the Designer will not accept source property names with hyphens as metadata.
Therefore, if you have a source property name such as "Ship-Date", make sure you remove the hyphen
from the name.

Using multi-assign data

Your source data may have multi-assign properties, that is, a property that has more than one value.
For example, instead of having two properties (say, Color1 and Color2) in which each property has
only one value, you can instead have one property (say, Color) with multiple values, as in this simple
example:

ComponentID|Color|Size
123|Blue|Medium
456|Blue;Red|Small
789|Red;Black;Silver|Large

In the example, the pipe character (|) is the delimiter between the properties, while the semi-colon (;)
is the delimiter between multiple values in a given property. For example, the Color property for record
789 has values of "Red", "Black", and "Silver".

When configuring the Writer component, you can then specify (in the Writer Edit Component dialog)
that the semi-colon is to be used as the delimiter for multi-assign properties.

Keep in mind that an Endeca property that is multi-assign must have the
mdex-property_IsSingleAssign property set to false in its PDR. The default value of the
property is false, which means the property is enabled for multi-assign by default.

Adding the source data to the project
The easiest way to add your source data is to copy it into the project's data-in directory.

This procedure assumes that you are copying a CSV (comma-separated value) file named
FactSales.csv, which contains the delimited records. The comma character is the delimiter.You
can use other input file formats, such as a CSV (comma-separated value) file.The source records are
stored in a CSV file named FactSales.csv (the file is in the data-in folder of the Latitude Sample
Application).

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Source data format44

To add the source data file to your Data Integrator project:

1. Locate the project's data-in directory.

To find its location, right-click on data-in (in the Navigator pane) and select Properties.

2. Copy the source file into the data-in directory.

You use the Designer GUI to paste the file into the data-in folder in the Navigation pane.

3. In the Navigator pane, right-click on data-in and select Refresh.

After refreshing the Navigator pane, it should look like this example:

As the example shows, the FactSales.csv is now available to the project's graphs.

Creating a graph
This task describes how to create an empty graph.

An empty graph is one that does not have any transformation components. The only prerequisite for
this task is that you must have created a Data Integrator Designer project. A project can have multiple
graphs, but only one graph will be created for the project in this chapter.

To create an empty graph:

1. In the Navigator pane, right-click the graph folder.

2. Select New > ETL Graph.
The Create new graph dialog is displayed.

3. In the Create new graph dialog:

a) Type in the name of the graph, such as LoadBulkData.
b) Optionally, type in a description.
c) Leave the Allow inclusion of parameters from external file box checked.
d) Click Next when you finish.

After this step, the Create new graph dialog should look like this example:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

45Full Initial Index Load of Records | Creating a graph

4. In the Output dialog, click Finish.

As a result of creating the graph, the following changes appear in the perspective:

• The Graph window will have an empty graph, with the graph name as the name of the window.
• The Properties window (below the Graph window) will show the graph properties.
• The Outline pane will show a list of items (most of them are empty).
• The Palette pane will list the available graph components, including the Endeca components.

The next task is to add components to the graph.

Adding components to the graph
You need to add components to the empty graph in order for it to process the input source data and
output it to the MDEX Engine.

The components to be added are:

• A Reader is a graph component that reads in source data. In our example, the
UniversalDataReader component is used because it can read in data from CSV files.

• A Transformer component can transform the incoming data before it is sent to the next component.
In our example, the Reformat component is used to create a new primary-key attribute from two
existing attributes. Note that this component would not be necessary if you were using an existing
attribute as the primary-key attribute.

• A Writer is a graph component that is responsible for outputting data from the Transformation. The
Bulk Add/Replace Records connector is used because we are doing a bulk load of the data.

In addition, an Edge component will be added to connect the components. The configurations for all
components are covered in this chapter.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Adding components to the graph46

To add components to the graph:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Transformers section and drag the Reformat component into the
Graph Editor.

3. In the Palette pane, open the Latitude section and drag the Bulk Add/Replace Records component
into the Graph Editor.

4. In the Palette pane, click Edge and use it to connect the components.

After connecting the components, you can get out of Edge selection mode by hitting Escape on
your keyboard or clicking on Select in the Palette.

5. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the connected components should look like this:

The next tasks are to configure these components for the source data and for a connection to the
MDEX Engine.

Configuring the components
This section describes how to configure the UniversalDataReader, Reformat, and Bulk Add/Replace
Records components, as well as the metadata for the two Edge components.

The components will be configured in this order:

1. The UniversalDataReader component.
2. The metadata for the Edge component between the UniversalDataReader and Reformat

components.
3. The metadata for the Edge component between the Reformat and Bulk Add/Replace Records

components.
4. The Reformat component.
5. The Bulk Add/Replace Records component.

Configuring the Reader component
This task describes how to configure the Reader component to read in the source data.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the data source file to the project's data-in folder.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

47Full Initial Index Load of Records | Configuring the components

The Reader Edit Component dialog is where you configure the Reader as to how it should handle the
source data:

To configure the Reader component:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the source data file and click OK.

3. Check the Quoted strings box so that its value changes to true.

If set to true, delimiter characters inside the quoted strings are ignored (not treated as delimiters)
and the quotes are removed.

4. Leave the Number of skipped records field as 0.

5. Optionally, you can use the Component name field to provide a customized name (such as "Sales
Facts") for this component.

6. Click OK to apply your configuration changes to the Reader component.

7. Save the graph.

Configuring metadata for the Reader Edge

The Edge component (between the Reader and Reformat components) has to be associated with a
Metadata definition so it knows what fields of data are being passed from the Reader component to
the Reformat component.

By setting the Metadata definition, you are actually defining the properties that will be tagged on the
records.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Configuring the components48

Most of the metadata configuration will be done in the Metadata editor:

You will be using this editor in Steps 6 and 7 of this procedure.

To configure the Metadata definition for the Reader Edge:

1. Right-click on the Edge and select New metadata > Extract from flat file.

2. Select New metadata > Extract from flat file.
The Flat File dialog is displayed.

3. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

4. In the URL Dialog:, double-click the data-in folder, select the FactSales.csv data source file,
and click OK.
As a result, the Flat File dialog is populated with source data from the data file.

5. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.
The Metadata Editor is displayed, as in the example above.

6. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

49Full Initial Index Load of Records | Configuring the components

7. In the Record pane of the Metadata editor, make these changes:

a) Click the Record Name field and change the default value to a name that is appropriate for your
data, such as FactSales for the sales transactions data set. In this example, Record:FactSales
will be the resulting Name value.

b) If your source data has date properties, you should set their type to date (the type may be set
to string by the Designer). Then use the Format field (in the Field pane on the right) to set the
appropriate value, as in this example:

c) Verify that the other properties have their property type set correctly.

For example, change the FactSales_UnitPriceDiscountPct and FactSales_DiscountAmount
property types from integer to number in our sample metadata.

d) Verify that all properties have the correct delimiter character set (which is the comma character
in our source data).

e) When you have input all your changes, click Finish.

8. Save the graph.

The Metadata definition for the Reader Edge component is now set.

Configuring the Reformat component
Reformat components are used to transform incoming records and send them to the specified port.

The transformation is done by the CTL function in the Reformat component. Return values of the
transformation are the numbers of output port(s) to which data record will be sent.

As mentioned earlier, the FactSales.csv input file for the graph does not have a field that can be
used as the primary-key attribute.Therefore, this Reformat component creates a new attribute (named
FactSales_RecordSpec) by concatenating two existing attributes. After creation, the Fact¬
Sales_RecordSpec attribute is used in the Spec Attribute property of the Bulk Add/Replace Records
connector.

To configure the Reformat component:

1. In the Graph window, double-click the Reformat component.

The Reformat Edit Component dialog is displayed.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Configuring the components50

2. Single-click in the Transform field and then click the ... button.
The Transform editor is displayed.

3. Click the Source tab in the editor.

The CTL template for the transform function is shown.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

51Full Initial Index Load of Records | Configuring the components

4. Modify the CTL script so that it looks like the following example. Note that the final line of the CTL
transformation (just before the return ALL line) creates the FactSales_RecordSpec attribute.

//#CTL2
// Transforms input record into output record.
function integer transform() {
 $0.* = $0.*;
 $0.FactSales_RecordSpec = $0.FactSales_SalesOrderNumber+"-"+$0.Fact¬
Sales_SalesOrderLineNumber;

 return ALL;
}

You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

5. When you have finished your edits, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

6. Optionally, you can use the Component name field to provide a customized name (such as "Create
Spec") for this component.

7. Click OK to apply your configuration changes to the component.

8. Save the graph.

The two messages listed above should disappear once you configure the Reformat component Edge
metadata.

Configuring metadata for the Reformat Edge

The metadata for the Edge component (between the Writer and Reformat components) also has to
configured.

This task will use the same data source file (named FactSales_RecordSpec) as the Reader Edge.
The main difference is that an additional property will be manually added to the metadata.

To configure the Metadata definition for the Edge component:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the FactSales.csv data source file and click OK.

4. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

5. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

6. In the Record pane of the Metadata editor, make these settings:

a) Click the Record Name field and change the default value to a name that is appropriate for your
data, such as FactSalesRecSpec.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Configuring the components52

b) Make sure that the Type fields of these properties match those of the Reader Edge metadata
properties.

c) Create a new property (for the primary-key attribute) clicking the + button (which creates a new
field with a default name such as field25), typing the FactSales_RecordSpec name of the
new property, and leaving the Type field as string.

d) Verify that all properties have the correct delimiter character set (which is the comma character
for this source data).

e) When you have input all your changes, click Finish.

7. Save the graph.

Now the metadata for the two Edge components is set, the next step is to configure the Bulk
Add/Replace Records component.

Configuring the Bulk Add/Replace Records connector
This topic describes how to configure the Bulk Add/Replace Records connector for the bulk loading
of records.

This procedure assumes that you have created a graph and added the Bulk Add/Replace Records
connector.

Note: When using the Bulk Add/Replace Records connector, it is a good idea to use the
Dgraph --bulk_load_port flag when starting the MDEX Engine.

To configure the Bulk Add/Replace Records connector:

1. In the Graph editor, double-click the Bulk Add/Replace Records component.

The Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these settings:

• MDEX Host: Enter the host name of the machine on which the MDEX Engine is running.You
can specify ${MDEX_HOST} if you have the MDEX_HOST variable defined in the workspace.prm
file for your project.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

53Full Initial Index Load of Records | Configuring the components

• MDEX Bulk Load Port: Enter the bulk load port on which the MDEX Engine is listening.You
can specify ${MDEX_BULK_PORT} if you have the MDEX_BULK_PORT variable defined in the
workspace.prm file for your project.

Note that the MDEX Engine opens up the bulk load port on 5556 (when the Dgraph --port
command flag is not used) or at --port + 1 (if the --port flag is used). Make sure that you
do not specify the MDEX Engine's HTTP port (--port) because a network connection error
will be thrown by the connector.

• Spec Attribute: Enter the name of the standard attribute that is the primary key (record spec)
for the records.

• SSL Enabled: Toggle this field to true only if the MDEX Engine is SSL enabled.
• Stop after this many errors: Optionally, you can specify the maximum number of ingest errors

that can occur before the load operation is terminated.
• Multi-assign delimiter: Optionally, you can specify the character that separates multi-assign

values in an input property. Keep in mind that this delimiter is different from the delimiter that
separates properties.

3. When you have input all your changes, click OK.

4. Save the graph.

Running the graph to load records
Endeca recommends that you use a transaction graph to run the bulk load graph.

A transaction graph uses a Transaction RunGraph connector to safely run one or more graphs within
the transaction environment of the MDEX Engine. This connector can start an outer transaction, run
the set of graphs so that they succeed or fail as a unit, and finally commit the transaction (or roll it back
upon failure).

You can run a graph in one of three ways:

• You can select Run > Run As > CloverETL graph from the main menu.
• You can right-click in the Graph editor and select Run As > CloverETL graph from the context

menu.
• You can click the green circle with white triangle icon in the Tool bar:

To use a transaction graph to bulk load records:

1. Create a transaction graph as described in the section Working with Transaction Graphs.

2. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Bulk Add/Replace Records connector.

3. Run the transaction graph using of the methods listed above.

As the graph runs, the process of the graph execution is listed in the Console Tab. The output lists
the number of records that were read in by the UniversalDataReader component and the number of
records that were sent to the MDEX Engine by the Bulk Add/Replace Records connector.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Full Initial Index Load of Records | Running the graph to load records54

Chapter 5

Incremental Updates

This chapter describes how to create a Data Integrator graph that will perform an incremental update
of records into the MDEX Engine.

Overview of incremental updates
You can incrementally update the data set in the MDEX Engine, including adding new records.

Using the Add/Update Records connector, you can perform these types of incremental updates:

• Add a brand-new record to the data set in the MDEX Engine.
• Update an existing record by adding key-value pairs.

Note that the Add/Update Records connector cannot load managed attribute values, nor can it delete
records or record data.

Format of the incremental source input file

Because the assumption is that you are adding (or updating) records that are similar in format to what
is already in the MDEX Engine, the format of the input will be very similar to the format of the input file
for the full index load. For more information, see the topic titled "Source data format" in Chapter 2
("Full Initial Index Load of Records") of this guide.

How updates are applied

The records to be added are considered totally additive. That is, if a record with the same primary key
already exists in the MDEX Engine, the key-value pairs list of the added record will be merged into
the existing record.

If an Endeca attribute with the same name already exists (but has a different assigned value), then
the added key-value pair will be an additional value for the same property (multi-assign). For example,
if the existing record has one standard attribute named Color with a value of "red" and the request
adds a Color property with a value of "blue", then the resulting record will have two Color key-value
pair assignments.

Keep in mind, however, that you cannot add a second value to a single-assign attribute. (That is, an
attribute whose PDR has the mdex-property_IsSingleAssign set to true.) In the Color example,
if Color were a single-assign attribute and the record already had one Color assignment, then an
attempt to add a second Color assignment would fail.

When adding standard attributes, the operation works as follows for the new attribute:

• If the new attribute already exists in the MDEX Engine but with a different type, an error is thrown
and the new attribute is not added.

• If the new attribute already exists in the MDEX Engine and is of the same type, no error is thrown
and nothing is done.

• If the new attribute is supposed to be a primary-key attribute but a managed attribute already exists
with the same name, an error is thrown and the new standard attribute is not added.

Note that updating a record can cause it to change place in the default order. That is, if you have
records ordered A, B, C, D, and you update record B, records A, C, and D remain ordered. However,
record B may move as a result of the update, which means the resulting order might end up as B,A,C,D
or A,C,B,D or another order.

Adding components to the incremental updates graph
The graph for performing incremental updates requires a reader and the Add/Update Records
connector.

This procedure assumes that you have created an empty graph.

To add components to a graph for incremental updates:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Add/Update Records connector into
the Graph Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

The next tasks are to configure the components.

Configuring the Reader and the Edge for incremental
updates

The configuration of the incremental updates reader and edge components is almost identical to that
of fresh index load graph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Incremental Updates | Adding components to the incremental updates graph56

This procedure assumes that you have added the incremental updates source file to the project's
data-in folder.

To configure the UniversalDataReader and Edge components for incremental updates:

1. To configure the UniversalDataReader component for the incremental updates input file, use the
same procedure as described in the topic titled "Configuring the Reader component" in Chapter 4
("Full Initial Index Loads of Records") of this guide.

The only difference is that you will be using your incremental updates file as the input file.

2. To configure the Edge component, use the same procedure as described in the topic titled
"Configuring metadata for the Reader Edge" in Chapter 4 ("Full Initial Index Loads of Records") of
this guide.

3. When you have finished your configuration, save the graph.

Configuring the Add/Update Records connector
You must configure the Add/Update Records connector with the location and port of the MDEX
Engine, as well as the primary key for the records.

This procedure assumes that you have created a graph and added the Add/Update Records connector.

The Writer Edit Component dialog is where you configure the Add/Update Records connector:

To configure the Add/Update Records connector:

1. In the Graph window, double-click the Add/Update Records component.
The Writer Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these mandatory settings in the Basic section:

• MDEX Host: Enter the host name of the machine on which the MDEX Engine is running.You
can specify ${MDEX_HOST} if you have the MDEX_HOST variable defined in the workspace.prm
file for your project.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

57Incremental Updates | Configuring the Add/Update Records connector

• MDEX Port: Enter the port on which the MDEX Engine is listening for requests.You can specify
${MDEX_PORT} if you have the MDEX_PORT variable defined in the workspace.prm file for
your project.

• Spec Attribute: Enter the name of the property that is the primary key (record spec) for the
records.

3. Still in the Writer Edit Component dialog, you can make these optional settings in the Advanced
section:

• SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
• Batch Size (Bytes) : To change the default batch size (which is in bytes), enter a positive

integer. Specifying 0 or a negative number will disable batching.
• Multi-assign delimiter: Specify the character that separates multi-assign values in an input

property. Keep in mind that this delimiter is different from the delimiter that separates properties.
• Maximum number of failed batches: Enter a positive integer that sets the maximum number

of batches that can fail before the ingest operation is ended. Entering 0 allows no failed batches.

4. When you have input all your changes, click OK.

5. Save the graph.

Running the incremental updates graph
After creating the graph and configuring the components, you can run the graph to load the incremental
update records into the MDEX Engine.

To run the graph to load incremental updates:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Add/Update Records connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example of adding five new records:

INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 06/06/11 10:53:21
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 5
 3 5 3
INFO [WatchDog] - Incrementals ENDECA_ADD_OR_UPDATE_RECORDS0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 5
 3 5 3
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Incremental Updates | Running the incremental updates graph58

INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 4927
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

As the example shows, the Final Tracking Log lists the number of records that were read in by the
UniversalDataReader component and the number of records (5 in this example) that were sent to
the MDEX Engine by the Add/Update Records connector.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

59Incremental Updates | Running the incremental updates graph

Chapter 6

Loading the Attribute Schema

This chapter describes how to load your PDR and DDR configuration files into the MDEX Engine.

About attribute schema files
The attribute schema for your application is defined by the PDR and DDR files in the MDEX Engine.

Each Endeca standard attribute is defined by its PDR (Property Description Record). Each Endeca
managed attribute is defined by its own PDR and also by a DDR (Dimension Description Record).

If you are loading your source records without first loading your attribute schema, the MDEX Engine
will automatically create the PDRs for your standard attributes, using the system default settings.

However, it is recommended that you create your own PDR and DDR input records and then use the
Latitude Data Integrator Designer to load that schema into the MDEX Engine. This process uses the
UniversalDataReader component to read in the schema files and the WebServiceClient component
to load them into the MDEX Engine via the Configuration Web Service.

Loading the standard attribute schema
This topic provides an overview of the PDR load process.

From a high-level view, the steps you will follow to load your PDR schema into the MDEX Engine are:

1. Create the PDR input file. (Described in this chapter in the "Creating the PDR input file" topic.)
2. Either create a new project or re-use an existing one. (Not described in this chapter, as we will use

the same project that was created in the "Creating a project" topic in Chapter 2.)
3. Create a graph and add the UniversalDataReader, Reformat, Denormalizer, and the

WebServiceClient components. (Described in this chapter.)
4. Configure the components. (Described in this chapter.)
5. Run the graph. (Not described in this chapter, as this procedure is the same as described in the

"Running the graph" topic in Chapter 2.)

Keep in mind that if you are also loading DDR records, you should first load the PDRs that will be
associated with the DDRs (unless the appropriate PDRs have already been loaded into the MDEX
Engine).

Format of the PDR input file
The PDR input file defines one or more Endeca standard attributes, with the specific settings of some
PDR properties.

The sample input file used in this chapter looks like this:

The first line (the header row) of the sample file has these header properties:

Key,DisplayName,TextSearch,SortOrder

The actual names of the header properties in your input file can be different from the names used here
(for example, you can use AttrName instead of Key). The properties are delimited (for example, by
the comma in a CSV file or the pipe character in a text file).

After the header row, the second and following rows in the input file contain the values for the
configuration properties.

The header properties map to these PDR properties:

Maps to PDR PropertyInput Header Property

mdex-property_KeyKey

mdex-property_DisplayNameDisplayName

mdex-property_IsTextSearchableTextSearch

system-navigation_SortingSortOrder

The Reformat component will take these header properties and values and construct PDRs for the
standard attributes.

Keep in mind that you can add additional properties to the input file so that they can be set. As
mentioned, any PDR property that is not specified is added with its default value. See Chapter 1 of
this guide for the system default values used by the MDEX Engine when creating standard attributes.

Note: Standard attribute names also cannot use hyphens in their names. Although the MDEX
Engine will accept standard attribute names with hyphens, the Designer will not. Therefore, if
you have a standard attribute name such as "Sales-Type", make sure you remove the hyphen
from the name.

updateProperties operation

You can use the Configuration Service's updateProperties operation to load the PDR files into
the MDEX Engine.The operation creates the standard attributes or updates them if they already exist.
The PDR properties are listed in the topic "Default values for new attributes" in Chapter 2 of this guide.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema62

The following is an example of an updateProperties operation:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"
 outerTransactionId="${MDEX_TRANSACTION_ID}">
 <config-service:updateProperties
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 $xmlString
 </config-service:updateProperties>
</config-service:configTransaction>

This sample operation uses two variables:

• The MDEX_TRANSACTION_ID variable specifies the outer transaction ID for the request. The
variable and its value is stored in the workspace.prm file of the LDI Designer project.

• The $xmlString variable contains the various PDRs that have been constructed by a Reformat
component in the graph.

The operation would be specified in the request structure of a WebServiceClient connector, which
will then send the request to the Configuration Service on the MDEX Engine.

Adding components to the standard attributes schema graph
This topic describes the LDI components that must be added to the graph for your standard attributes
schema.

This procedure assumes that you have created an empty graph (our example is named
LoadAttributeSchema).

To add components to the graph that loads the standard attribute description files:

1. In the Palette pane, drag the following components into the Graph Editor:

a) Drag the UniversalDataReader component from the Readers section.
b) Drag the Reformat component from the Transformers section.
c) Drag the Denormalizer component from the Transformers section.
d) Drag the WebServiceClient component from the Others section.

2. In the Palette pane, click Edge and use it to connect the components.

3. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the connected components should look like this:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

63Loading the Attribute Schema | Loading the standard attribute schema

Configuring the Reader for the PDR input file
This task describes how to configure the UniversalDataReader component to read in the PDR source
data.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the PDR source file to the project's data-in folder.

To configure the Reader component for the PDR input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the source data file and click OK.

3. Click OK to apply your configuration changes to the Reader component.

4. Save the graph.

Configuring the Reader Edge

The Edge for the Reader component must be configured with a Metadata definition.

This Metadata definition task will use the Metadata Editor. In the procedure, the column names will
be extracted from the input file via a reparsing operation.

To configure the Metadata definition for the Reader Edge:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. In the Flat File dialog, browse for the PDR input file, select it, and click OK.

4. In the Flat File dialog, click Next.
The Metadata Editor is displayed.

5. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

The PDR data is loaded into the Metadata Editor, with the properties named Field1, Field2, and so
forth.

6. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

The correct property names are now displayed in the upper and middle panes of the Metadata
Editor, which should look like this example:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema64

7. In the upper pane of the Metadata Editor:

a) Optionally, click the Record Name field and change the name of the metadata to a more
descriptive name.

b) Make sure that the Type field of all the properties is set to type string.
c) Verify that the fields have the correct delimiter character set (which is the comma for our

example).

8. When you have input all your changes, click Finish.

9. Save the graph.

Configuring the Reformat component for standard attributes
A Reformat component is used to transform incoming configuration data into a Standard Attribute
Description Record.

The transformation is done by this CTL function in the Reformat component:

integer n = 1;
integer aggrKey = 0;

// Transforms input record into output record.
function integer transform() {
 string searchBool = "";
 string saRecord = "<mdex:record xmlns=\"\">";
 saRecord = saRecord + "<mdex-property_Key>" + $0.Key + "</mdex-proper¬
ty_Key>";
 saRecord = saRecord + "<mdex-property_DisplayName>" + $0.DisplayName +
"</mdex-property_DisplayName>";

 // Lower case the boolean in the CSV file
 searchBool = lowerCase($0.TextSearch);
 saRecord = saRecord + "<mdex-property_IsTextSearchable>" + searchBool +
"</mdex-property_IsTextSearchable>";

 saRecord = saRecord + "<system-navigation_Sorting>" + $0.SortOrder +
"</system-navigation_Sorting>";

 $0.xmlString = saRecord + "</mdex:record>";

 // Batch up the web service requests.
 $0.singleAggregationKey = aggrKey;
 n++;
 if (n % 15 == 0) {
 aggrKey++;
 }

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

65Loading the Attribute Schema | Loading the standard attribute schema

 return ALL;
}

The function builds each Standard Attribute Description Record (SADR) using the configuration data
in the input CSV file. Keep in mind that, if you wish, you can add more SADR property definitions; if
you do so, be sure to update the input file for the additional input values.

To configure the Reformat component in the standard attribute schema graph:

1. In the Graph window, double-click the Reformat component.

The Reformat Edit Component dialog is displayed.

2. Single-click in the Transform field and then click the ... button.
The Transform editor is displayed.

3. Click the Source tab in the editor.

The CTL template for the transform function is shown.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema66

4. Modify the CTL script so that it looks like the CTL example above.
You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

5. When you have finished your changes in the Transform editor, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

6. Optionally, you can change the Component name field to provide a customized name (such as
"Transform Attribute Metadata") for this component.

7. Click OK to apply your configuration changes.

8. Save the graph.

The two messages listed above should disappear once you configure the Reformat component Edge
metadata.

Configuring the Reformat Edge

This task describes how to configure the Edge component that connects the Reformat and
Denormalizer components.

To configure the Reformat component's Edge in the attribute schema graph:

1. Right-click on the Edge and select New metadata > User defined.

The Metadata editor is displayed with one default field.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

67Loading the Attribute Schema | Loading the standard attribute schema

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a name that is appropriate for your data.
b) Leave the Type field as delimited.
c) Set the Delimiter field to the delimiter character in your input file (which is the comma in our

example).

3. For the other fields:

a) Change the field1 name to xmlString and leave its Type as string.
b) Add a new field by using the + (plus sign control). Name the field singleAggregationKey

and set its Type as integer.

At this point, the Metadata editor should look like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema68

4. When you have input all your changes in the Metadata editor, click Finish.

5. Save the graph.

Configuring the Denormalizer component
A Denormalizer component is used to create a single output record for a group of input records defined
by the key.

The transformation is done by these CTL functions in the Denormalizer component:

integer n = 0;
string value = "";

function integer append() {
 value = value + $0.xmlString + "\n";
 n++;
 return n;
}

// This function is called once after the
// append() function was called for all records
// of a group of input records defined by the key.
// It creates a single output record for the whole group.
function integer transform() {
 $0.xmlString = value;
 value = "";
 return OK;
}

To configure the Denormalizer component in the attribute schema graph:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

69Loading the Attribute Schema | Loading the standard attribute schema

1. In the Graph window, double-click the Denormalizer component.

The Denormalizer Edit Component dialog is displayed.

2. Single-click in the Key field and then click the ... button.
The Edit Key dialog is displayed.

3. In the Fields pane of the Edit Key dialog, select singleAggregationKey and move it to the Key
parts pane by clicking the right-arrow button. Click OK to apply your change.

4. Single-click in the Denormalize field and then click the ... button.
The Transform editor is displayed.

5. In the Source tab of the editor, modify the CTL script so that it looks like the example above.
You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

6. When you have finished your edits, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

7. Optionally, you can use the Component name field to provide a customized name (such as "Load
Schema") for this component.

8. Click OK to apply your configuration changes.

9. Save the graph.

The two messages listed above should disappear once you configure the Denormalizer component
Edge metadata.

Configuring the Denormalizer Edge

This task describes how to configure the Edge component that connects the Denormalizer and
WebServiceClient components.

To configure the Denormalizer component's Edge in the attribute schema graph:

1. Right-click on the Edge and select New metadata > User defined.

The Metadata editor is displayed with one default field.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema70

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a name that is appropriate for your data.
b) Leave the Type field as delimited.
c) Set the Delimiter field to the delimiter character in your input file (which is the comma in our

example).

3. For the other fields:

a) Change the field1 name to xmlString and leave its Type as string.
b) Add a new field by using the + (plus sign control). Name the field singleAggregationKey

and set its Type as integer.

At this point, the Metadata editor should look like this:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

71Loading the Attribute Schema | Loading the standard attribute schema

4. When you have input all your changes in the Metadata editor, click Finish.

5. Save the graph.

Configuring the WebServiceClient component for standard attributes
This topic describes how to configure the WebServiceClient connector for loading standard attribute
metadata.

This procedure assumes that you have created a graph and added the WebServiceClient component.

The procedure also assumes that you are specifying an outer transaction ID with the request and that
your workspace.prm file has defined the ID in the MDEX_TRANSACTION_ID variable, as in this
example:

MDEX_TRANSACTION_ID=

To configure the WebServiceClient connector for standard attribute metadata:

1. Make sure that the MDEX Engine is running and the Configuration Web service is available by
issuing this URL command from your browser (be sure to use the correct port number for your
MDEX Engine):

http://localhost:5555/ws/config?wsdl

The URL command returns the WSDL of the Web service.

2. In the Graph window, double-click the WebServiceClient component.

The Writer Edit Component dialog is displayed.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema72

3. In the WSDL URL field, enter the same URL as in Step 1.

4. In the Operation name field, click the ... browse button, which displays the Choose WS operation
dialog:

5. In the Choose WS operation dialog, select DoConfigTransaction and then click OK.
The name of the Web service operation is entered in the Operation name field.

6. Click inside the Request structure field, which causes the ... browse button to be displayed. Then
click the browse button to display the Edit request structure dialog:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

73Loading the Attribute Schema | Loading the standard attribute schema

7. Add this text to the Generate request field:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
 <config-service:updateProperties
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 $xmlString
 </config-service:updateProperties>
</config-service:configTransaction>

At this point, the Edit request structure dialog should look like this example:

8. After adding the request text in the Edit request structure dialog, click OK.

9. Optionally, you can use the Component name field to provide a customized name for this
component.

10. When you have input all your changes, click OK.

11. Save the project.

Instead of running this graph directly, it is recommended that you create a transaction graph (with a
Transaction RunGraph connector) with this LoadAttributeSchema graph as its child graph, and then
run the transaction graph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the standard attribute schema74

Loading the managed attribute schema
This topic provides an overview of the DDR load process.

From a high-level view, the steps you take to load your DDR schema into the MDEX Engine are as
follows:

1. Create the managed attributes input file.
2. Either create a new project or re-use an existing one.
3. Create a graph and add the UniversalDataReader, Reformat, Denormalizer, and

WebServiceClient components.
4. Configure the components.
5. Run this graph as part of a transaction graph.

Keep in mind that before loading DDR records, you should first load the PDR records that are associated
with the DDRs (unless the appropriate PDRs have already been loaded into the MDEX Engine).

Format of the DDR input file
The DDR input file defines the Endeca managed attributes, with the specific settings of some DDR
properties.

The TaxonomyMetadata.csv sample input file used for the managed attributes looks like this:

The first line (the header row) of the sample file has these header properties:

Key,Refinement,DimSearch,RecHierarchy

The actual names of the header properties can be different from the names used here.The properties
are delimited (for example, by the comma in the sample CSV file). After the header row, the second
and following rows in the input file contain the values for the configuration properties.

The header properties map to these DDR properties:

Maps to PDR PropertyInput Header Property

mdex-dimension_KeyKey

mdex-dimension_EnableRefinementsRefinement

mdex-dimension_IsDimensionSearchHierarchicalDimHierarchy

mdex-dimension_IsRecordSearchHierarchicalRecHierarchy

The Reformat component will take these header properties and values and construct DDRs for the
managed attributes.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

75Loading the Attribute Schema | Loading the managed attribute schema

updateDimensions operation

The Configuration Service's updateDimensions operation can load the DDR files into the MDEX
Engine. The operation creates the standard attributes or updates them if they already exist. The DDR
properties are listed in the topic "Default values for new attributes" in Chapter 2 of this guide.

The following is an example of an updateDimensions operation:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"
 outerTransactionId="${MDEX_TRANSACTION_ID}">
 <config-service:updateDimensions
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 $xmlString
 </config-service:updateDimensions>
</config-service:configTransaction>

This sample operation uses two variables:

• The MDEX_TRANSACTION_ID variable specifies the outer transaction ID for the request. The
variable and its value is stored in the workspace.prm file of the LDI Designer project.

• The $xmlString variable contains the various DDRs that have been constructed by a Reformat
component in the graph.

The operation would be specified in the request structure of a WebServiceClient connector, which
will then send the request to the Configuration Service on the MDEX Engine.

Adding components to the managed attributes schema graph
This topic describes the LDI components that must be added to the graph for your managed attributes
schema.

This procedure assumes that you have created an empty graph for your managed attributes schema.
This graph will use the same components as the graph for the standard attributes schema.

To add components to the graph that loads the managed attribute description files:

1. In the Palette pane, drag the following components into the Graph Editor:

a) UniversalDataReader component
b) Reformat component
c) Denormalizer component
d) WebServiceClient component

2. In the Palette pane, click Edge and use it to connect the components.

3. Save the graph.

The resulting graph should like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the managed attribute schema76

Configuring the Reader and the Edge for DDRs
These two configurations are very similar to those for PDR loads.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added an Edge and also added the DDR source file to the
project's data-in folder.

To configure the UniversalDataReader and Edge components:

1. To configure the UniversalDataReader component for the DDR input file, use the same procedure
as described in the topic titled "Configuring the Reader for the PDR input file" in this chapter.

The only difference is that you will be using your DDR file as the input file.

2. To configure the Edge component, use the same procedure as described in the topic titled
"Configuring PDR metadata" in this chapter.

Be sure to use the Extract names and Reparse options on the Metadata Editor.

3. When you have finished your configuration, save the graph.

Configuring the Reformat component for managed attributes
A Reformat component is used to transform incoming configuration data into a Managed Attribute
Description Record.

The transformation is done by this CTL function in the Reformat component:

//#CTL2

integer n = 1;
integer aggrKey = 0;

// Transforms input record into output record.
function integer transform() {
 string maBool = "";
 string maRecord = "<mdex:record xmlns=\"\">";
 maRecord = maRecord + "<mdex-dimension_Key>" + $0.Key + "</mdex-dimen¬
sion_Key>";

 // Make sure to lower case the booleans in the CSV file
 maBool = lowerCase($0.Refinement);
 maRecord = maRecord + "<mdex-dimension_EnableRefinements>" + maBool +
"</mdex-dimension_EnableRefinements>";

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

77Loading the Attribute Schema | Loading the managed attribute schema

 maBool = lowerCase($0.DimHierarchy);
 maRecord = maRecord + "<mdex-dimension_IsDimensionSearchHierarchical>"
+ maBool + "</mdex-dimension_IsDimensionSearchHierarchical>";

 maBool = lowerCase($0.RecHierarchy);
 maRecord = maRecord + "<mdex-dimension_IsRecordSearchHierarchical>" +
maBool + "</mdex-dimension_IsRecordSearchHierarchical>";

 $0.xmlString = maRecord + "</mdex:record>";

 // Batch up the web service requests.
 $0.singleAggregationKey = aggrKey;
 n++;
 if (n % 15 == 0) {
 aggrKey++;
 }

 return ALL;
}

The function builds each Managed Attribute Description Record using the configuration data in the
input CSV file.

To configure the Reformat component in the managed attribute schema graph:

1. In the Graph window, double-click the Reformat component.

The Reformat Edit Component dialog is displayed.

2. Single-click in the Transform field and then click the ... button.
The Transform editor is displayed.

3. Click the Source tab in the editor.
The CTL template for the transform function is displayed.

4. Modify the CTL script so that it looks like the example above.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the managed attribute schema78

You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

5. When you have finished your changes in the Transform editor, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

6. Optionally, you can change the Component name field to provide a customized name (such as
"Transform Attribute Metadata") for this component.

7. Click OK to apply your configuration changes.

8. Save the graph.

The two messages listed above should disappear once you configure the Reformat component Edge
metadata.

Configuring the Reformat Edge

This task describes how to configure the Edge component that connects the Reformat and
Denormalizer components.

To configure the Reformat component's Edge in the attribute schema graph:

1. Right-click on the Edge and select New metadata > User defined.

The Metadata editor is displayed with one default field.

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a name that is appropriate for your data.
b) Leave the Type field as delimited.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

79Loading the Attribute Schema | Loading the managed attribute schema

c) Set the Delimiter field to the delimiter character in your input file (which is the comma in our
example).

3. For the other fields:

a) Change the field1 name to xmlString and leave its Type as string.
b) Add a new field by using the + (plus sign control). Name the field singleAggregationKey

and set its Type as integer.

At this point, the Metadata editor should look like this:

4. When you have input all your changes in the Metadata editor, click Finish.

5. Save the graph.

Configuring the Denormalizer and the Edge for DDRs
These two configurations are very similar to those for PDR loads.

To configure the Denormalizer and Edge components:

1. To configure the Denormalizer component for managed attributes, use the same procedure as
described in the topic titled "Configuring the Denormalizer component" in this chapter.

2. To configure the Edge component, use the same procedure as described in the topic titled
"Configuring the Denormalizer Edge" in this chapter.

3. When you have finished your configuration, save the graph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Loading the managed attribute schema80

Configuring the WebServiceClient component for managed attributes
This topic describes how to configure the WebServiceClient component for loading managed attribute
metadata.

This procedure assumes that you have created a graph and added the WebServiceClient component.

To configure the WebServiceClient connector for managed attribute metadata:

1. With one exception, the configuration procedure is the same as that described in the topic titled
"Configuring the WebServiceClient component for standard attributes" in this chapter. Therefore,
first follow Steps 1-6 in that topic.

2. Replace Step 7 in that topic by adding this text to the Generate request field in the Edit request
structure dialog:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
 <config-service:updateDimensions
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 $xmlString
 </config-service:updateDimensions>
</config-service:configTransaction>

At this point, the Basic section of the dialog should look like this example:

3. Continue with Steps 8-11 of the topic.

Instead of running this graph directly, it is recommended that you create a transaction graph (with a
Transaction RunGraph connector) with this LoadTaxonomySchema graph as its child graph, and
then run the transaction graph.

Using a transaction graph to load the schemas
You should run the two schema graphs with a transaction graph.

A transaction graph uses a Transaction RunGraph connector to safely run one or more graphs within
the transaction environment of the MDEX Engine. This connector can start an outer transaction, run

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

81Loading the Attribute Schema | Using a transaction graph to load the schemas

the set of graphs so that they succeed or fail as a unit, and finally commit the transaction (or roll it back
upon failure).

To use a transaction graph to load the two attribute schemas:

1. Create a transaction graph as described in the chapter titled "Working with Transaction Graphs".

Note that the chapter uses the two attribute schema graphs as examples.

2. Run the transaction graph as you would run any other graph.

The transaction graph will first run the standard attribute schema graph and then the managed attribute
schema graph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading the Attribute Schema | Using a transaction graph to load the schemas82

Chapter 7

Loading Configuration Files

This chapter describes how to load the Global Configuration Record and the index configuration
documents for the MDEX Engine.

Types of MDEX Engine configuration documents
The MDEX Engine offers a rich set of index configuration documents that allow you to customize your
Endeca implementation.

The index configuration is the mechanism for implementing a number of Endeca features such as
search and ranking. The index configuration documents are created automatically by the mkmdex
utility with a set of defaults that are described in the following topics.The index configuration documents
are stored in the MDEX indexes database and loaded into the MDEX Engine at startup.

The documents are as follows:

PurposeIndex Configuration Document

Configures attributes (both Standard Attributes and Managed
Attributes) for value search.

dimsearch_config

Configures record search, including search interfaces which
control record search behavior for groups of attributes. Some

recsearch_config

of the features that can be specified for a search interface
include relevance ranking, matching across multiple attributes,
and partial matching.

Sets relevance ranking, which is used to control the order of
results that are returned in response to a record search.

relrank_strategies

Sets stop words, which are words that are set to be ignored by
the MDEX Engine.

stop_words

The thesaurus allows the system to return matches for related
concepts to words or phrases contained in user queries.

thesaurus

Recommended order for loading the configuration documents

The recommended order of loading is:

1. Load the attribute schema (PDRs and DDRs) first. It does not matter if the actual data records are
loaded, but the PDRs and DDRs are important because they create the properties that should be
referenced by the configuration files.

2. relrank_strategies document (necessary if a relevance ranking strategy is referenced by the
next two documents)

3. recsearch_config document
4. dimsearch_config document
5. stop_words document
6. thesaurus document

Global Configuration Record
The Global Configuration Record (GCR) stores global configuration settings for the MDEX Engine.

The GCR sets the configuration for wildcard search enablement, search characters, merge policy, and
spelling correction settings. A full description of its properties and their default values is available in
the Latitude Developer's Guide.

When loading your changes for the GCR, keep these requirements in mind:

• The mdex-config_Key property must be unique and single-assign. The value must be global
for the property.

• The GCR must contain valid values for all of its properties. None of its properties can be omitted.
• The GCR cannot have any arbitrary, user-defined properties.

If you change any of the spelling settings, make sure you rebuild the aspell dictionary by running the
admin?op=updateaspell administrative operation.

Sample GCR input file

The following is a sample GCR:

<mdex:record>
 <mdex-config_Key>global</mdex-config_Key>
 <mdex-config_EnableValueSearchWildcard>true</mdex-config_EnableValueSearch¬
Wildcard>
 <mdex-config_MergePolicy>aggressive</mdex-config_MergePolicy>
 <mdex-config_SearchChars>+_</mdex-config_SearchChars>
 <mdex-config_SpellingRecordMinWordOccur>2</mdex-config_SpellingRecordMin¬
WordOccur>
 <mdex-config_SpellingRecordMinWordLength>4</mdex-config_SpellingRecordMin¬
WordLength>
 <mdex-config_SpellingRecordMaxWordLength>24</mdex-config_SpellingRecord¬
MaxWordLength>
 <mdex-config_SpellingDValMinWordOccur>5</mdex-config_SpellingDValMinWor¬
dOccur>
 <mdex-config_SpellingDValMinWordLength>3</mdex-config_SpellingDValMin¬
WordLength>
 <mdex-config_SpellingDValMaxWordLength>20</mdex-config_SpellingDValMax¬
WordLength>
</mdex:record>

This GCR:

• Enables wildcard search by setting the mdex-config_EnableValueSearchWildcard property
to true.

• Sets the merge policy to aggressive via the mdex-config_MergePolicy property.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Types of MDEX Engine configuration documents84

• Adds the plus (+) and underscore (_) characters as search characters for value search and record
search operations.

You can create the file in a text editor.

dimsearch_config document
This document sets the configuration for value search.

The default dimsearch_config document contains an empty configuration:

<DIMSEARCH_CONFIG/>

In the configuration document, you can use the RELRANK_STRATEGY attribute to specify a relevance
ranking strategy to use on the results. If you do so, you must first use the relrank_strategies
document to configure the relevance ranking strategy in the MDEX Engine.

Sample dimsearch_config document

To configure value search, you need to create an input file similar to this example:

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE" RELRANK_STRATEGY="ProductRel¬
Rank"/>

As mentioned above, the ProductRelRank strategy must have been configured previously with the
relrank_strategies document.

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putConfigDocuments
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="dimsearch_config">
<DIMSEARCH_CONFIG>
 $xmlString
</DIMSEARCH_CONFIG>
</mdex:configDocument>
</config-service:putConfigDocuments>
</config-service:configTransaction>

The name="dimsearch_config" attribute references the dimsearch_config document.

Run-time error

If the RELRANK_STRATEGY attribute in the document references a non-existent relevance ranking
strategy, the load operation will fail with an error similar to this example:

ERROR [WatchDog] - Graph execution finished with error
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT3 finished with
status: ERROR caused by: Error applying updates:
Invalid Relevance ranking strategy "ProductRelRank" in DIMSEARCH_CONFIG
element.
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT3 error details:
org.apache.axis2.AxisFault: Error applying updates: Invalid Relevance

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

85Loading Configuration Files | Types of MDEX Engine configuration documents

ranking strategy
"ProductRelRank" in DIMSEARCH_CONFIG element.

To correct this error, first use the relrank_strategies document to create the relevance ranking
strategy in the MDEX Engine before you attempt to load your dimsearch_config document.

recsearch_config document
This document configures record search, including search interfaces which control record search
behavior for groups of attributes.

Some of the features that can be specified for a search interface include relevance ranking, matching
across multiple Endeca attributes, partial matching, and enabling snippeting for one or more Endeca
attributes.

The default recsearch_config document contains an empty configuration:

<RECSEARCH_CONFIG/>

In the configuration document, you can use the RELRANK_STRATEGY attribute to specify a relevance
ranking strategy to use on the results. If you do so, you must first use the relrank_strategies
document to configure the relevance ranking strategy in the MDEX Engine.

Sample recsearch_config document

The following example shows a recsearch_config document with three search interfaces:

<RECSEARCH_CONFIG>
 <SEARCH_INTERFACE NAME="Surveys">
 <MEMBER_NAME RELEVANCE_RANK="1">SurveyResponse</MEMBER_NAME>
 </SEARCH_INTERFACE>
 <SEARCH_INTERFACE NAME="Resellers">
 <MEMBER_NAME RELEVANCE_RANK="1">DimReseller_BusinessType</MEMBER_NAME>

 <MEMBER_NAME RELEVANCE_RANK="2">DimReseller_ResellerName</MEMBER_NAME>

 </SEARCH_INTERFACE>
 <SEARCH_INTERFACE NAME="Employees">
 <MEMBER_NAME RELEVANCE_RANK="1">DimEmployee_FullName</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">DimEmployee_LastName</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">DimEmployee_FirstName</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="4">DimEmployee_Title</MEMBER_NAME>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

The example creates the Surveys, Resellers, and Employees search interfaces. All the configured
standard attributes (such as DimEmployee_FullName) must already exist in the MDEX Engine.

Note that if you include a relevance ranking strategy, it must have been configured previously with the
relrank_strategies document.

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Types of MDEX Engine configuration documents86

<config-service:putConfigDocuments
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="recsearch_config">
<RECSEARCH_CONFIG>
 $xmlString
</RECSEARCH_CONFIG>
</mdex:configDocument>
</config-service:putConfigDocuments>
</config-service:configTransaction>

The $xmlString variable contains the XML definition of the search interfaces and the name="rec¬
search_config" attribute references the recsearch_config document.

Run-time errors

If the RELRANK_STRATEGY attribute in the document references a non-existent relevance ranking
strategy, the load operation will fail with an error similar to this example:

ERROR [WatchDog] - Graph execution finished with error
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT0 finished with
status: ERROR caused by: Error applying updates:
Invalid Relevance Ranking Strategy "ProductRelRank" referenced
in SEARCH_INTERFACE "ProductSearch"
ERROR [WatchDog] - Node WEB_SERVICE_CLIENT0 error details:
org.apache.axis2.AxisFault: Error applying updates: Invalid
Relevance Ranking Strategy "ProductRelRank" referenced
in SEARCH_INTERFACE "ProductSearch"

To correct this error, first use the relrank_strategies document to create the relevance ranking
strategy (named ProductRelRank in this example) in the MDEX Engine before you attempt to load
your recsearch_config document.

In addition, the Endeca attributes referenced in the search interface must also exist in the MDEX
Engine. Otherwise, the load operation will fail with an error similar to this example:

Error applying updates: No property with the name "ProductType" exists for
 search interface "ProductSearch"

To correct this error, first load your standard attribute schema before loading the configuration
documents.

relrank_strategies document
This document configures the relevance ranking strategies for a Latitude application.

Relevance ranking is used to control the order of results that are returned in response to a record
search. An individual relevance ranking strategy is expressed in a RELRANK_STRATEGY element,
which in turn is made of individual relevance ranking modules such as RELRANK_EXACT,
RELRANK_FIELD, and so on.

The default relrank_strategies document does not define any relevance ranking strategies:

<RELRANK_STRATEGIES/>

Sample relrank_strategies document

This example creates a relevance ranking strategy named ProductRelRank that consists of the
RELRANK_INTERP and RELRANK_FIELD relevance ranking modules.

<RELRANK_STRATEGIES>
 <RELRANK_STRATEGY NAME="ProductRelRank">

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

87Loading Configuration Files | Types of MDEX Engine configuration documents

 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
 </RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putConfigDocuments
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="relrank_strategies">
<RELRANK_STRATEGIES>
 $xmlString
</RELRANK_STRATEGIES>
</mdex:configDocument>
</config-service:putConfigDocuments>
</config-service:configTransaction>

The name="relrank_strategies" attribute references the relrank_strategies document.

stop_words document
This document sets the stop words for queries.

Stop words are words that should be eliminated from a query before it is processed by the MDEX
Engine.

The default stop_words document does not define any stop words:

<STOP_WORDS/>

Sample stop_words document

This example sets the stop words for an application.

<STOP_WORDS>
 <STOP_WORD>bike</STOP_WORD>
 <STOP_WORD>component</STOP_WORD>
 <STOP_WORD>an</STOP_WORD>
 <STOP_WORD>of</STOP_WORD>
 <STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putConfigDocuments
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="stop_words">

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Types of MDEX Engine configuration documents88

<STOP_WORDS>
 $xmlString
</STOP_WORDS>
</mdex:configDocument>
</config-service:putConfigDocuments>
</config-service:configTransaction>

The name="stop_words" attribute references the stop_words document.

thesaurus document
This document configures the thesaurus for your application.

The thesaurus allows the system to return matches for related concepts to words or phrases contained
in user queries.

The default thesaurus document does not define any stop words:

<THESAURUS/>

Sample thesaurus document

This example sets two thesaurus entries:

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>italy</THESAURUS_FORM>
 <THESAURUS_FORM>italian</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

Request structure text

When you configure the WebServiceClient component, you add the following request text in the Edit
request structure dialog:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putConfigDocuments
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="thesaurus">
<THESAURUS>
 $xmlString
</THESAURUS>
</mdex:configDocument>
</config-service:putConfigDocuments>
</config-service:configTransaction>

The name="thesaurus" attribute references the thesaurus document.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

89Loading Configuration Files | Types of MDEX Engine configuration documents

Loading the configuration documents
This section describes how to create and configure a graph for loading the index configuration
documents.

The procedure is basically the same for all the index configuration documents. The only exceptions
are the format of the input file and the document name used in this element in the Edit request
structure dialog, as in this example:

<config-service:putConfigDocuments
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09
 outerTransactionId="${MDEX_TRANSACTION_ID}">
<mdex:configDocument name="recsearch_config">
<RECSEARCH_CONFIG>
 $xmlString
</RECSEARCH_CONFIG>
</mdex:configDocument>
</config-service:putConfigDocuments>

The example shows that the recsearch_config document is being loaded. The $xmlString
variable holds the actual definition of the search interface.

The individual topics for the configuration documents in this chapter describe details of these request
structures.

Graph components

The Latitude Sample Application (LSA) uses a graph named LoadIndexingConfiguration to create the
search configuration (including creating the search interfaces). The sample graph in this chapter uses
the same LSA components that create the search interfaces.

The sample graph in this chapter uses these components, in this order:

1. The UniversalDataReader component reads in the configuration document.
2. The FastSort transformer sorts the data before it is passed to the Denormalizer component (which

requires sorted data).
3. The first Denormalizer component creates the search interface.
4. The second Denormalizer component creates a single output record for the whole group of input

records.
5. The WebServiceClient writer component uses the Configuration Web Service's

config-service:putConfigDocuments operation to load the configuration document into the
MDEX Engine. The request structure is shown in the recsearch_config document example
above.

As noted above, the request structure in the WebServiceClient component will vary with each
configuration document type.

Source file

The sample graph uses the same input CSV file used by the Latitude QuickStart project. The file,
named AttributeSearchability.csv, looks like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the configuration documents90

The file provides inputs for three search interfaces:

• The Surveys search interface consists of only the SurveyResponse attribute.
• The Employees search interface consists of the DimEmployee_FullName, DimEmployee_LastName,

DimEmployee_FirstName, and DimEmployee_Title attributes.
• The Resellers search interface consists of the DimReseller_BusinessType and

DimReseller_ResellerName attributes.

Creating a graph
This task describes how to create an empty graph for loading a configuration document.

The only prerequisite for this task is that you must have created a Data Integrator Designer project.
Keep in mind that a project can have multiple graphs, which means that you can create this graph in
an existing project.

To create an empty graph for your configuration documents:

1. In the Navigator pane, right-click the graph folder.

2. Select New > ETL Graph.

3. In the Create new graph dialog:

a) Type in the name of the graph, such as LoadConfigDocs or LoadSearchInterfaces.
b) Optionally, type in a description.
c) You can leave the Allow inclusion of parameters from external file box checked.
d) Click Next when you finish.

4. In the Output dialog, click Finish.

Adding components to the graph
This tasks describes how to add the UniversalDataReader and WebServiceClient components to
the graph.

In addition, an Edge component will be added to connect the two components.

To add components to the graph:

1. In the Palette pane, drag the following components into the Graph Editor:

a) Drag the UniversalDataReader component from the Readers section.
b) Drag the FastSort component from the Transformers section.
c) Drag the Denormalizer component from the Transformers section.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

91Loading Configuration Files | Loading the configuration documents

d) Drag a second Denormalizer component from the Transformers section.
e) Drag the WebServiceClient component from the Others section.

2. In the Palette pane, click Edge and use it to connect the components.

3. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the connected components should look like this:

The next tasks are to configure these components.

Configuring the Reader for the configuration document
This task describes how to configure the UniversalDataReader component to read in the configuration
document.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the configuration document source file to the project's
data-in folder.

Important: The procedure also assumes that you have loaded your attribute schema (PDRs
and DDRs) into the MDEX Engine. This is because if the configuration document specifies an
attribute to use, that attribute should already exist in the MDEX Engine; if it does not exist, the
MDEX Engine may reject the configuration document and LDI will display a load error.

To configure the UniversalDataReader component for the configuration input document:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the input file folder (either config-in or

data-in).
d) Select the source data file and click OK.

3. Leave the Quoted strings box to its default value of false.

4. Optionally, you can use the Component name field to provide a customized name (such as "Read
Searchable Attributes") for this component.

5. Click OK to apply your configuration changes to the UniversalDataReader component.

6. Save the graph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the configuration documents92

After step 5, the Reader Edit Component dialog should look like this example:

The next task is to configure the Reader's Edge.

Configuring metadata for the Reader Edge

The Edge component must be configured with a Metadata definition for loading a configuration
document.

The prerequisite for this task is that an Edge component must connect the Reader and the following
component.

Note: This procedure will configure metadata for loading the recsearch_config configuration
document. The procedure for loading the other configuration documents is identical, with the
exception that at Step 3 you select the name of the appropriate input file.

To configure the Metadata definition for configuration documents:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. In the URL Dialog, double-click the input folder (such as config-in), select the source data file, and
click OK.
As a result, the Flat File dialog is populated with source data from the input file.

4. In the Flat File dialog, click Next.
The Metadata Editor is displayed.

5. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

93Loading Configuration Files | Loading the configuration documents

The correct property names are displayed in the upper and middle panes of the Metadata Editor,
which should look like this example:

6. In the Record pane, make these changes to the Record row:

a) Click the Record Name field and change its name to a more descriptive one, such as
SearchInterfaces.

b) Leave the Type and Delimiter fields to their default settings.

7. Change the name of the SearchInterfaceName property to be InterfaceName.

8. When you have input all your changes in the Metadata Editor, click Finish.

9. Save the graph.

Configuring the FastSort component
The FastSort component takes input records and sorts them using a sorting key.

This component is necessary because the Denormalizer component (the next component in the
graph) takes sorted data.

To configure the FastSort component:

1. In the Graph window, double-click the FastSort component.

The FastSort Edit Component dialog is displayed.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the configuration documents94

2. Single-click in the SortKey field and then click the ... button.
The Edit Key editor is displayed.

3. In the Edit Key editor:

a) In the Fields pane, select the InterfaceName attribute.
b) Click the right-arrow button to move the SearchInterfaceName attribute to the Key Parts pane.
c) In the Key Parts pane, toggle the Order field to Descending. At this point, the Edit Key editor

should look like this:

d) Click OK to exit the Edit Key editor.

4. Optionally, you can use the Component name field to provide a customized name (such as "Sort
by Interface Name") for this component.

5. In the FastSort Edit Component dialog, click OK to apply your changes and exit the component.

6. Save the graph.

Setting metadata for the FastSort component

The configuration of the Edge for the FastSort component is the same as for the UniversalDataReader
component.

This procedure assumes that SearchInterfaces is the name of the metadata of the
UniversalDataReader component.

To set the metadata for the FastSort Edge:

1. Right-click on the Edge and choose Select metadata > SearchInterfaces.

2. Save the graph.

Configuring the first Denormalizer component
The first Denormalizer component creates the search interface from the input data.

The transformation is done by these CTL functions in this Denormalizer component:

//#CTL2
// This transformation defines the way in which multiple input records
// (with the same key) are denormalized into one output record.
integer n = 0;
integer relRank = 1;
string value = "";
string nameOfInterface = "";

// This function is called for each input record from a group of records

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

95Loading Configuration Files | Loading the configuration documents

// with the same key.
function integer append() {
 n++;
 value =
 value + "<MEMBER_NAME RELEVANCE_RANK='" + num2str(relRank) + "'>" +
 $0.AttributeName + "</MEMBER_NAME>";

 nameOfInterface = $0.InterfaceName;
 relRank++;

 return n;
}

// This function is called once after the append() function was called for
 all records
// of a group of input records defined by the key.
// It creates a single output record for the whole group.
function integer transform() {
 $0.xmlString = "<SEARCH_INTERFACE NAME=\"" + nameOfInterface + "\">"
 + value
 + "</SEARCH_INTERFACE>";
 $0.singleAggregationKey = 0; // constant (aggregate everything into one
request)

 value = "";
 nameOfInterface = "";
 relRank = 1;

 return OK;
}

To configure the first Denormalizer component in the graph:

1. In the Graph editor, double-click the first Denormalizer component.

The Denormalizer Edit Component dialog is displayed.

2. Single-click in the Key field and then click the ... button.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the configuration documents96

The Edit Key dialog is displayed.

3. In the Fields pane of the Edit Key dialog, select InterfaceName and move it to the Key parts pane
by clicking the right-arrow button. Click OK to apply your change.

4. Single-click in the Denormalize field and then click the ... button.
The Transform editor is displayed.

5. In the Source tab of the editor, modify the CTL script so that it looks like the example above.
You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

6. When you have finished your edits, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

7. Optionally, you can use the Component name field to provide a customized name for this
component.

8. Click OK to apply your configuration changes.

9. Save the graph.

The two messages listed above should disappear once you configure the Denormalizer component
Edge metadata.

Configuring metadata for the first Denormalizer

This task describes how to configure the Edge component that connects the first and second
Denormalizer components.

To configure the metadata for the first Denormalizer component:

1. Right-click on the Edge and select New metadata > User defined.
The Metadata editor is displayed with one default field.

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a descriptive name. Our example will use
DenormEdge as the name.

b) Leave the Type field as delimited.
c) Set the Delimiter field to the delimiter character in your input file (which is the comma in our

example).

3. For the other fields:

a) Change the field1 name to xmlString and leave its Type as string.
b) Add a new field by using the + (plus sign control). Name the field singleAggregationKey and

set its Type as integer.

4. When you have input all your changes in the Metadata editor, click Finish.

5. Save the graph.

Later, we will use this DenormEdge metadata for the second Denormalizer component.

Configuring the second Denormalizer component
The second Denormalizer component builds a single request.

The transformation is done by these CTL functions in this Denormalizer component:

//#CTL2
// This transformation defines the way in which multiple input records

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

97Loading Configuration Files | Loading the configuration documents

// (with the same key) are denormalized into one output record.

// This function is called for each input record from a group of records
// with the same key.
integer n = 0;
string value = "";

function integer append() {
 value = value + $0.xmlString + "\n";
 n++;
 return n;
}

// This function is called once after the append() function was called for
 all records
// of a group of input records defined by the key.
// It creates a single output record for the whole group.
function integer transform() {
 $0.xmlString = value;
 value = "";
 return OK;
}

To configure the second Denormalizer component in the graph:

1. In the Graph editor, double-click the second Denormalizer component.
The Denormalizer Edit Component dialog is displayed.

2. Single-click in the Key field and then click the ... button.
The Edit Key dialog is displayed.

3. In the Fields pane of the Edit Key dialog, select singleAggregationKey and move it to the Key
parts pane by clicking the right-arrow button. Click OK to apply your change.

4. Single-click in the Denormalize field and then click the ... button.
The Transform editor is displayed.

5. In the Source tab of the editor, modify the CTL script so that it looks like the example above.
You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

6. When you have finished your edits, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

7. Optionally, you can use the Component name field to provide a customized name for this
component.

8. Click OK to apply your configuration changes.

9. Save the graph.

The two messages listed above should disappear once you configure this Denormalizer component
Edge metadata.

The configuration of the Edge for this second Denormalizer component is the same as for the first
Denormalizer component. In fact, you can use the same metadata that you created for the first one.

Setting metadata for the second Denormalizer

The configuration of the Edge for the second Denormalizer component is the same as for the first
one.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the configuration documents98

This procedure assumes that DenormEdge is the name of the metadata of the first Denormalizer
component. We will re-use that metadata for this second Denormalizer component.

To set the metadata for the Edge that connects the second Denormalizer component and the
WebServiceClient component:

1. Right-click on the Edge and choose Select metadata > DenormEdge.

2. Save the graph.

Configuring the WebServiceClient component
You must configure the WebServiceClient component to communicate with the Endeca Configuration
Web service.

This procedure will configure metadata for loading the recsearch_config configuration document,
and therefore assumes that you have added the configuration document source file to the project's
data-in folder.The procedure for loading the other configuration documents with the WebServiceClient
component is identical, with the exception that at Step 7 you specify the name of the appropriate
configuration document in the mdex:configDocument element:

<mdex:configDocument name="recsearch_config">

The Writer Edit Component dialog is where you configure the WebServiceClient component:

To configure the WebServiceClient component:

1. Make sure that the MDEX Engine is running and the Configuration Web service is available by
issuing this URL command from your browser (be sure to use the correct port number for your
MDEX Engine):

http://localhost:5555/ws/config?wsdl

The URL command returns the WSDL of the Web service.

2. In the Graph window, double-click the WebServiceClient component.
The Writer Edit Component dialog is displayed.

3. In the WSDL URL field, enter the same URL as in Step 1.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

99Loading Configuration Files | Loading the configuration documents

4. In the Operation name field, click the ... browse button, which displays the Choose WS operation
dialog:

5. In the Choose WS operation dialog, select DoConfigTransaction and then click OK.
The name of the Web service operation is entered in the Operation name field.

6. Click inside the Request structure field, which causes the ... browse button to be displayed. Then
click the browse button to display the Edit request structure dialog:

7. Add this text to the Generate request field:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putConfigDocuments
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<mdex:configDocument name="recsearch_config">
<RECSEARCH_CONFIG>
 $xmlString
</RECSEARCH_CONFIG>
</mdex:configDocument>
</config-service:putConfigDocuments>
</config-service:configTransaction>

At this point, the Edit request structure dialog should look like this example:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the configuration documents100

8. After adding the request text in the Edit request structure dialog, click OK.

9. Optionally, you can use the Component name field to provide a customized name (such as "Load
Configs") for this component.

10. When you have entered all your changes in the Edit Component dialog, click OK.

11. Save the graph.

Instead of running this graph directly, it is recommended that you create a transaction graph (with a
Transaction RunGraph connector) with this LoadSearchInterfaces graph as its child graph, and then
run the transaction graph. For details on transaction graphs, see Chapter 3 ("Working with Transaction
Graphs").

Loading the GCR
This topic provides an overview of how to load the GCR into the MDEX Engine.

Loading the Global Configuration Record (GCR) into the MDEX Engine is very similar to loading the
index configuration documents. The only difference is the format of the request text that you add to
the Edit request structure dialog. This GCR-specific request text is shown in Step 6 below.

To load the GCR:

1. Create a graph, as described in the "Creating a graph" topic in this chapter.

2. Add your GCR input file to the project's data-in folder.

3. Add the UniversalDataReader and WebServiceClient components to the graph.You can build
the GCR output xmlString with Reformat and Denormalizer components, similar to the graph that
loads the standard attribute schema (described in Chapter 6, "Loading the Attribute Schema").

4. Configure the Reader and Transformation components and their metadata.

5. Configure the WebServiceClient component, as described in the "Configuring the WebServiceClient
component" topic in this chapter. The only difference is that you add this text to the Generate
request field:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 outerTransactionId="${MDEX_TRANSACTION_ID}">

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

101Loading Configuration Files | Loading the GCR

<config-service:putGlobalConfigRecord
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 $xmlString
</config-service:putGlobalConfigRecord>
</config-service:configTransaction>

6. Make sure you save the graph.

Note that if you changed the spelling settings, you should rebuild the aspell dictionary by running the
admin?op=updateaspell administrative operation.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Configuration Files | Loading the GCR102

Chapter 8

Loading Precedence Rules

This chapter describes how to load your precedence rules into the MDEX Engine.

About precedence rules
A precedence rule allows your application to suppress refinements for an Endeca attribute until some
condition is met. This makes navigation through the data easier and is essential to avoid information
overload problems.

Precedence rules allow your application to delay the display of Endeca standard or managed attributes
the user triggers the display. In other words, precedence rules are triggers that cause attributes that
were not previously displayed to now be available. This makes navigation through the data easier,
and is essential to avoid information overload problems.

For example, suppose the records in an application have separate City and State attributes. It would
make sense to hide the City attribute until the user has narrowed down to a specific State, because it
doesn't make sense to pick a City before a State. (For example, choosing "Portland" would select
records in both Portland, OR and Portland, ME.) To accomplish this, create a precedence rule with
State as the trigger and City as the target.

The standard and/or managed attributes referenced in precedence rules do not have to exist in the
MDEX Engine at ingest time. That is, no error checking is done for the existence of the attributes (this
allows the rules to be created even before the data they reference is loaded). For this reason, you
must make sure that the attributes are spelled correctly in the input file.

Note that if the trigger attribute in a precedence rule does not exist in the MDEX Engine but its target
attribute does exist, then the precedence rule will never be triggered. This behavior effectively hides
the target attribute from refinements. To correct this behavior, either remove the rule or create the
trigger attribute in the MDEX Engine.

Schema for precedence rules
Each precedence rule is represented as a single record in the MDEX Engine.

The config-service:putPrecedenceRules operation creates each of the given precedence
rules or updates them if they already exist. Each precedenceRule element uses this schema syntax:

<mdex:precedenceRule
 key="ruleName"

 triggerAttributeKey="triggerAttrName"
 triggerAttributeValue="mval|sval"
 targetAttributeKey="targetAttrName"
 isLeafTrigger="true|false"/>

The meanings of the precedenceRule attributes are as follows:

MeaningprecedenceRule attribute

Specifies a unique identifier for the precedence rule (that is, it is
the name of the rule).The identifier is a string, which does not have
to follow the NCName format.

key

Specifies the name of the Endeca standard attribute or managed
attribute that will trigger the precedence rule. That is, the specified

triggerAttributeKey

attribute must be selected before the user can see the target
attribute.

Optional. If used, specifies the attribute value (either managed
value spec or standard attribute value) that must be selected before

triggerAttributeValue

the user can see the target attribute. If not used, then any value in
the trigger attribute will trigger the rule. Use of
triggerAttributeValue in effect further refines the trigger to
a specific standard or managed value.

Specifies the name of the Endeca standard or managed attribute
that appears after the trigger attribute value is selected.

targetAttributeKey

If the trigger is a managed attribute, isLeafTrigger specifies a
Boolean value (that must be in lower case) that denotes the type
of the trigger attribute value:

isLeafTrigger

• If true, the trigger attribute is a leaf type, which means that
the precedence rule will fire only if a leaf value is selected.That
is, querying any leaf managed value from the trigger managed
attribute will cause the target managed value to be displayed
(many triggers, one target).

• If false (the default), the trigger attribute is a non-leaf type,
which means that the precedence rule will fire when any value
is selected.That is, if the managed value specified as the trigger
or any of its descendants are in the navigation state, then the
target is presented (one trigger, one target).

Note that isLeafTrigger does not apply to Endeca standard
attributes.You must specify it when you create a precedence rule,
but whichever value you use is ignored by the MDEX Engine when
the precedence rule is run.

Precedence rule example

The following is an example of a config-service:putPrecedenceRules operation that creates
a precedence rule named ProvinceRule:

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <config-service:putPrecedenceRules>

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Precedence Rules | Schema for precedence rules104

 <mdex:precedenceRule
 key="ProvinceRule"
 triggerAttributeKey="DimGeography_StateProvinceName"
 triggerAttributeValue="Queensland"
 targetAttributeKey="DimGeography_City"
 isLeafTrigger="true"/>
 </config-service:putPrecedenceRules>
</config-service:configTransaction>

Note that this example does not use the optional outerTransactionId attribute for the operation.
This operation can be placed in a request structure of a WebServiceClient component.

Format of the precedence rules input file
The input configuration file should contain five configuration properties and a corresponding set of
value data.

The first line (the header row) of a precedence rules input file should have these header properties:

Key|TriggerAttribute|TriggerValue|TargetAttribute|isLeafTrigger

The actual names of the header properties in your input file can be different from the names used here
(for example, you can use RuleName instead of Key). The properties are delimited (for example, by
the comma in a CSV file or the pipe character in a text file).

The header properties map to the precedenceRule attributes as follows:

DescriptionMaps to precedenceRule
attribute

Input Header Property

Name of the precedence rule.keyKey

Name of the standard or managed
attribute trigger.

triggerAttributeKeyTriggerAttribute

Standard or managed attribute value
for the trigger. Optional, so the value in
the input file can be blank.

triggerAttributeValueTriggerValue

Name of the standard or managed
attribute target.

targetAttributeKeyTargetAttribute

For managed attributes, specifies if the
trigger attribute is a leaf.

isLeafTriggerisLeafTrigger

After the header row, the second and following rows in the input file contain configuration data for the
precedence rules. The following image shows a CSV configuration file for two precedence rules:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

105Loading Precedence Rules | Format of the precedence rules input file

Note that the TriggerValue for the second precedence rule is blank, which means that any value
in the DimGeography_StateProvinceName attribute will trigger the rule.

Adding components to the precedence rules graph
You must add the UniversalDataReader, Reformat, and WebServiceClient components to the graph.

This procedure assumes that you have created an empty graph.

To add components to the graph:

1. In the Palette pane, drag the following components into the Graph Editor:

a) Drag the UniversalDataReader component from the Readers section.
b) Drag the Reformat component from the Transformers section.
c) Drag the WebServiceClient component from the Others section.

2. In the Palette pane, click Edge and use it to connect the components.

3. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the connected components should look like this:

The next tasks are to configure these components.

Configuring the precedence rules Reader
This task describes how to configure the UniversalDataReader component to read in the configuration
file for creating precedence rules.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the precedence rule configuration file to the project's
data-in (or config-in) folder.

To configure the UniversalDataReader component for the precedence rules configuration input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Precedence Rules | Adding components to the precedence rules graph106

Click inside its Value field, which displays a ... browse button.a)
b) Click the browse button.
c) Click the Workspace view tab and then double-click the input file folder (either config-in or

data-in).
d) Select the configuration input file and click OK.

3. Optionally, you can use the Component name field to provide a customized name (such as "Read
Rules Metadata") for this component.

4. Click OK to apply your configuration changes to the UniversalDataReader component.

5. Save the graph.

The next task is to configure the Reader's Edge.

Configuring the Reader Edge
This task describes how to configure the Reader Edge component for the Metadata definition.

To configure the Reader Edge component:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. In the URL Dialog:

a) Double-click the input folder.
b) Select the configuration source file and click OK.

4. In the Flat File dialog, click Next.
The Metadata Editor is displayed.

5. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

6. In the Record pane, you should change the recordName1 default value to a name that is appropriate
for your data.

7. When you have input all your changes, click Finish

8. Save the graph.

Configuring the Reformat component for precedence rules
A Reformat component is used to transform incoming configuration data into a precedenceRule
record.

The transformation is done by this CTL function in the Reformat component:

function integer transform() {
 string prRecord = "";
 string isLeaf = "";

 // Begin building the precedenceRule record
 prRecord = "<mdex:precedenceRule ";
 // Add the name of the rule.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

107Loading Precedence Rules | Configuring the Reformat component for precedence rules

 prRecord = prRecord + "key='" + $0.Key + "' ";
 // Add the name of the trigger attribute
 prRecord = prRecord + "triggerAttributeKey='" + $0.TriggerAttribute +
"' ";

 // Add mval or pval trigger value only if present in the input file
 if ($0.TriggerValue != null && !$0.TriggerValue.isBlank()) {
 prRecord = prRecord + "triggerAttributeValue='" + $0.TriggerValue +
"' ";
 }

 // Add the name of the target attribute
 prRecord = prRecord + "targetAttributeKey='" + $0.TargetAttribute + "'
";

 // Add the boolean that specifies if the trigger is a leaf
 // Lower case the boolean in the CSV file
 isLeaf = lowerCase($0.isLeafTrigger);
 prRecord = prRecord + "isLeafTrigger='" + isLeaf + "'/>";

 // Append the record to the xmlString variable, which stores all the
rules
 $0.xmlString = prRecord;

 return ALL;
}

When it runs, the component will build one or more precedenceRule elements and send them in
the xmlString property to the WebServiceClient component in the graph.

To configure the Reformat component in the precedence rules graph:

1. In the Graph window, double-click the Reformat component.

The Reformat Edit Component dialog is displayed.

2. Single-click in the Transform field and then click the ... button.
The Transform editor is displayed.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Precedence Rules | Configuring the Reformat component for precedence rules108

3. Click the Source tab in the editor.

The CTL template for the transform function is shown.

4. Modify the CTL script so that it looks like the example above.

You may see the message "Cannot write to output port '0'" at the bottom of the editor. Assuming
you have not made any coding errors, you may disregard the message for now.

5. When you have finished your edits, click OK.
If you see the error "Transformation contains syntax errors! Accept it anyway?" in a pop-up message,
click Yes.

6. Optionally, you can use the Component name field to provide a customized name (such as
"Transform Precedence Rules") for this component.

7. Click OK to apply your configuration changes.

8. Save the graph.

The two messages listed above should disappear once you configure the Reformat component Edge
metadata.

Configuring the precedence rules Reformat Edge
This task describes how to configure the Edge component that connects the Reformat and
WebServiceClient components.

To configure the Reformat component's Edge in the precedence rules graph:

1. Right-click on the Edge and select New metadata > User defined.

The Metadata editor is displayed with one default field.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

109Loading Precedence Rules | Configuring the Reformat component for precedence rules

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a name that is appropriate for your data, such as
FormatRules.

b) Leave the Type field as delimited.
c) Set the Delimiter field to the delimiter character in your input file (which is the comma in our

example).

3. Change the field1 name to xmlString and leave its Type as string.

You can leave the Delimiter field unchanged.

At this point, the Metadata editor should look like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Precedence Rules | Configuring the Reformat component for precedence rules110

4. When you have input all your changes in the Metadata editor, click Finish.

5. Save the graph.

Configuring the precedence rules WebServiceClient
component

The WebServiceClient component must be configured with the WSDL of the MDEX Engine's
Configuration Web service.

In addition, you must add a config-service:putPrecedenceRules operation to the request
structure of the component.

To configure the WebServiceClient component in the precedence rules graph:

1. Make sure that the MDEX Engine is running and the Configuration Web service is available by
issuing this URL command from your browser (be sure to use the correct port number for your
MDEX Engine):

http://localhost:5555/ws/config?wsdl

The URL command returns the WSDL of the Web service.

2. In the Graph window, double-click the WebServiceClient component.

The Writer Edit Component dialog is displayed.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

111Loading Precedence Rules | Configuring the precedence rules WebServiceClient component

3. In the WSDL URL field, enter the same URL as in Step 1.

4. In the Operation name field, click the ... browse button, which displays the Choose WS operation
dialog:

5. In the Choose WS operation dialog, select DoConfigTransaction and then click OK.
The name of the Web service operation is entered in the Operation name field.

6. Click inside the Request structure field, which causes the ... browse button to be displayed. Then
click the browse button to display the Edit request structure dialog:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Precedence Rules | Configuring the precedence rules WebServiceClient component112

7. Add this text to the Generate request field:

<config-service:putPrecedenceRules
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
$xmlString
</config-service:putPrecedenceRules>

At this point, the Edit request structure dialog should look like this example:

8. After adding the request text in the Edit request structure dialog, click OK.

9. Optionally, you can use the Component name field to provide a customized name (such as "Load
Precedence Rules") for this component.

10. When you have entered all your changes in the Edit Component dialog, click OK.

11. Save the graph.

After creating the graph and configuring the components, you can run the graph to send the configuration
data to the MDEX Engine.You can run the graph by clicking the green circle with white triangle icon

in the Tool bar:

Deleting precedence rules
The config-service:deletePrecedenceRules operation lets you remove an existing precedence
rule from the MDEX Engine.

The Configuration Web Service's putPrecedenceRules operation takes one or more
precedenceRule elements that will be deleted. Because precedence rules are stored as records in
the MDEX Engine, you need to specify only the key attribute of the precedence rule, as in this example
that deletes a precedence rule named "ProvinceRule":

<config-service:configTransaction
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <config-service:deletePrecedenceRules>
 <mdex:precedenceRule key="ProvinceRule"/>
 </config-service:deletePrecedenceRules>
</config-service:configTransaction>

To delete precedence rules from the MDEX Engine:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

113Loading Precedence Rules | Deleting precedence rules

1. Create an input file that contains one column, with a Key header name and with one or more rows
of precedence rule names, as in this simple CSV example:

2. Create a graph and add the components described in the "Adding components to the precedence
rules graph" topic in this chapter.

3. Configure the UniversalDataReader component as described in the "Configuring the precedence
rules Reader" topic in this chapter.

Make sure you use the file created in Step 1 as the input file and that the Number of skipped
records per source field is set to 1.

4. Use the "Configuring the precedence rules Reader Edge" topic in this chapter to configure the
Reader Edge.
Note that the Record field's Delimiter field will be empty, as there is only one column.

5. Configure the Reformat component so that the CTL in the Source tab looks like this:

function integer transform() {
 string prRecord = "";

 prRecord = "<mdex:precedenceRule key='" + $0.Key + "'/>";

 $0.xmlString = prRecord;

 return ALL;
}

6. Use the "Configuring the precedence rules Reformat Edge" topic in this chapter to configure the
Reformat Edge.
Note that the Record field's Delimiter field will be empty, as there is only one column.

7. Use the "Configuring the precedence rules WebServiceClient component" topic in this chapter to
configure the WebServiceClient component. The major difference is that you will add this text to
the Generate request field:

<config-service:deletePrecedenceRules
 xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
$xmlString
</config-service:deletePrecedenceRules>

8. Save the graph.

After creating the graph and configuring the components, run the graph to delete the precedence rules
listed in the input file.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Precedence Rules | Deleting precedence rules114

Chapter 9

Adding Key-Value Pairs

This chapter describes how to add key-value pairs to Endeca records.

About key-value pair data
The Add KVPs connector can add key-value pair data to MDEX Engine records.

The two main use cases for the Add KVPs connector are:

• To ingest source data that is stored in a key-value pair format instead of the more traditional
rectangular data model.

• When you do not what the schema is ahead of time.

With either case, you have the option of loading data in rows (with the Add/Update Records connector)
that will be faster than loading the same data as key-value pairs.

Format of the KVP input file
The metadata schema of the Add KVPs connector is fixed and uses a specific ordering.

The first row of the data source input file is the record header row and must use this schema:

specKey|specValue|kvpKey|kvpValue|mdexType

The meanings of these schema properties are as follows:

MeaningSchema property

The name of the primary key (record spec) of the record to which the
key-value pair will be added.

specKey

The value of the record's primary key.specValue

The name (key) of the Endeca standard attribute to be added to the
record. If the standard attribute does not exist in the MDEX Engine, it is
automatically created by DIWS with system default values.

kvpKey

The value of the standard attribute to be added to the record.kvpValue

Specifies the mdex type (such as mdex:int or mdex:dateTime) for
the kvpKey standard attribute. This parameter is intended for use when

mdexType

MeaningSchema property

you want to create a new standard attribute and want to specify its
property type. If a new PDR for the standard attribute is created and
mdexType is not specified, then the type of the new standard attribute
will be mdex:string. If the standard attribute already exists, you can
specify an empty value for mdexType.

The following is a simple example of an input file for the Add KVPs connector:

specKey|specValue|kvpKey|kvpValue|mdexType
ProductID|51841|Designation|Professional use|
ProductID|48191|Color|Crimson|
ProductID|48191|Color|Sea Blue|
ProductID|48197|Component|road rim|
ProductID|48197|Location|42.365615 -71.075647|mdex:geocode

The example adds a Designation assignment to Record 51841, two Color assignments to Record
48191 (Color is a multi-assign attribute), and a Component assignment to Record 48197. In addition,
a new geocode standard attribute named Location is created in the MDEX Engine and added to Record
48197.

Configuring the Reader for the KVP input file
This task describes how to configure the UniversalDataReader component to read in the KVP data.

This procedure assumes that you have created a graph for the KVP components and that you have
copied the input file (named NewProductInfo.csv in our example) into the data-in folder in the
Navigation pane of the project. The procedure also assumes that you will be using the
UniversalDataReader component to read in the KVP input data.

To configure the UniversalDataReader component for the KVP input file:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

3. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the KVP input file and click OK.

4. Check the Quoted strings box so that its value changes to true.

5. Leave the Number of skipped records field set to 0.

6. Optionally, you can use the Component name field to provide a customized name (such as "Read
KVPs") for this component.

7. Click OK to apply your configuration changes to the UniversalDataReader component.

8. Save the graph.

After the component is configured, the Reader Edit Component dialog should look like this example:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Adding Key-Value Pairs | Configuring the Reader for the KVP input file116

Configuring the Add KVPs connector
You must configure the Add KVPs connector to properly connect to your MDEX Engine.

This procedure assumes that you have created a graph for the Add KVPs connector.

To configure the Add KVPs connector:

1. In the Palette pane, open the Latitude section and drag the Add KVPs connector into the Graph
Editor.

2. In the Graph window, double-click the Add KVPs connector.
The Writer Edit Component dialog is displayed.

3. In the Writer Edit Component dialog, enter these settings:

a) MDEX Host: The host name of the machine on which the MDEX Engine is running.You can
specify ${MDEX_HOST} if you have the MDEX_HOST variable defined in the workspace.prm
file for your project.

b) MDEX Port: The port on which the MDEX Engine is listening for requests.You can specify
${MDEX_PORT} if you have the MDEX_PORT variable defined in the workspace.prm file for
your project.

c) SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
d) Batch Size (Bytes): To change the default batch size, enter a positive integer. Specifying 0 or

a negative number will disable batching.
e) Maximum number of failed batches: Enter a positive integer that sets the maximum number

of batches that can fail before the ingest operation is ended. Entering 0 allows no failed batches.

4. When you have input all your changes, click OK.

5. Save the graph.

After configuration, the Writer Edit Component dialog should look like this example:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

117Adding Key-Value Pairs | Configuring the Add KVPs connector

Configuring KVP metadata
The Edge component must be configured with a Metadata definition for loading the key-value pair
data.

This procedure assumes that you have created a graph and added a reader component and the Add
KVPs connector to it. It also assumes that you have added the key-value pair source file to the project's
data-in folder.

To configure the Metadata definition for the KVP Edge:

1. In the Palette pane, click Edge and use it to connect the reader and the Add KVPs connector.

2. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

3. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

4. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the key-value pair source file and click OK.

5. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

6. In the middle pane of the Metadata editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

7. In the Record pane of the Metadata editor, make these changes:

a) Click the Record Name field and change the default value to a name such as KVPs.
b) Make sure that the Type field of all properties is set to type string. For example if the specKey

property is set to integer, change it to string.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Adding Key-Value Pairs | Configuring KVP metadata118

c) Verify that all properties have the correct delimiter character set (which is the comma character
in our example).

At this point, the pane should look like this example:

d) When you have input all your changes, click Finish.

8. Save the graph.

The Metadata definition for the Edge component is now set.

Running the KVPs graph
After creating the graph and configuring the components, you can run the graph to add the key-value
pair record assignments to the MDEX Engine.

To run the graph to add key-value pairs to the MDEX Engine:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Add KVPs connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example that adds five key-value pair
assignments to the MDEX Engine:

INFO [WatchDog] - Successfully started all nodes in phase!
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
WARN [Consumer-0] - Unrecognized assignment type "". Using "mdex:string"
 instead.
INFO [WatchDog] - [Clover] Post-execute phase finalization: 0
INFO [WatchDog] - [Clover] phase: 0 post-execute finalization successfully.
INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 08/06/11 14:30:39
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

119Adding Key-Value Pairs | Running the KVPs graph

 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 5
 0 5 0
INFO [WatchDog] - Add KVPs ENDECA_ADD_KVPS0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 5
 0 5 0
INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 7146
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

The example also shows four occurrences of this benign message:

Unrecognized assignment type "". Using "mdex:string" instead.

The message is simply informing you that the fifth input schema field (the mdexType field) is empty
on four of the KVP entries and that the connector will use the mdex:string property type when
ingesting the data.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Adding Key-Value Pairs | Running the KVPs graph120

Chapter 10

Loading Taxonomies

This chapter describes how to load an externally managed taxonomy (EMT) into the MDEX Engine.

Overview of loading a taxonomy
This chapter will walk you through the various tasks in creating a graph that can load a taxonomy into
the MDEX Engine.

The Add Managed Values connector allows you to load an externally managed taxonomy (EMT) into
the MDEX Engine. When loaded, externally managed taxonomies are added as managed values to
a managed attribute.You must create a graph and add the Add Managed Values connector and a
reader component (such as the UniversalDataReader component) to the graph.

Keep the following two items in mind when adding a taxonomy:

• Managed values can be added to only one managed attribute in a taxonomy load operation. That
is, you can specify the name of only one managed attribute in the Add Managed Values connector.
This means that all the managed values in the taxonomy input file will be added to the same
managed attribute.

• If the managed attribute (to which the taxonomy is being added) does not exist in the MDEX Engine,
it will be created automatically by the Data Ingest Web Service. That is, the appropriate PDR and
DDR for the managed attribute will be created with system default values. For these default values,
see Chapter 1 in this guide.

For the procedure documented in this chapter, the definitions of the managed values to be added are
in a flat file. However, the definitions can use other formats that are supported by the LDI reader
components. The format of the source data is explained in a following topic.

Sample taxonomy graph

In the Latitude Sample Application, the LoadIndexingConfiguration graph has a step (named Load
Externally Managed Taxonomy) that is used as the example for the load-taxonomy procedure:

The graph reads in a CSV file (named ProductCategoryTaxonomy.csv) and uses an Add Managed
Values connector to load the data into the MDEX Engine.

Format of the taxonomy input file
The input must contain four mandatory configuration properties and a corresponding set of managed
value data.

The first line of a taxonomy input file must have these managed value header properties, and in this
order:

MvalSpec|Displayname|ParentKey|Synonym

The actual names of the header properties in your input file can be different from the names used here
(for example, you can use CategoryKey instead of MvalSpec). However, the order (positions) of
the header properties and their values is crucial. For example, the third position signifies the managed
value's parent ID, regardless of the name used for that header property.

The meanings of these header properties are as follows:

PurposeProperty

A unique string identifier for the managed value. This is the managed
value spec.

MvalSpec

The name for the managed value.Displayname

Specifies the parent ID for this managed value, If this is a root managed
value, use a forward slash (/) as the ID. If this is a child managed value,
specify the unique ID of the parent managed value.

ParentKey

Optionally defines the name of a synonym.You can add synonyms to a
managed value so that users can search for other text strings and still

Synonym

get the same records as a search for the original managed value name.
Synonyms can be added to both root and child managed values. If you
add multiple synonyms for a managed value, the synonyms are separated
by a delimiter that you specify in the configuration of the Add Managed
Values connector.

After the header row, the second and following rows in the input file contain managed value data for
the managed value properties.

The following image shows the beginning lines of the ProductCategoryTaxonomy.csv input file
for the taxonomy graph:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Taxonomies | Format of the taxonomy input file122

In this example:

• Four root managed values are created. Their managed value specs are CAT_BIKES,
CAT_COMPONENTS, CAT_CLOTHING, and CAT_ACCESSORIES and they all have a ParentKey
of a forward slash (/) because they are root managed values. Their CategoryDisplayName
values set the names that will be displayed in the application UI.

• Seven child managed values are created. Three are children of the CAT_BIKES managed value
and the other four are children of the CAT_COMPONENTS managed value.

Note that more child managed values are created from the ProductCategoryTaxonomy.csv
specifications. The file is stored in the config-in folder of the project.

Creating a graph for the taxonomy
This task describes how to create an empty graph for loading a taxonomy.

The only prerequisite for this task is that you must have created a Data Integrator Designer project.
Keep in mind that a project can have multiple graphs, which means that you can create this graph in
an existing project.

Note: In the Latitude Sample Application, the taxonomy loader is a step in the
LoadIndexingConfiguration graph. However, to simplify this description of loading taxonomies,
we will create a taxonomy-only graph.

To create an empty graph for your taxonomy:

1. In the Navigator pane, right-click the graph folder.

2. Select New > ETL Graph.
The Create new graph dialog is displayed.

3. In the Create new graph dialog:

a) Type in the name of the graph, such as LoadTaxonomy.
b) Optionally, type in a description.
c) You can leave the Allow inclusion of parameters from external file box checked.
d) Click Next when you finish.

4. In the Output dialog, click Finish.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

123Loading Taxonomies | Creating a graph for the taxonomy

Adding components to the taxonomy graph
The process requires that you add the UniversalDataReader component and the Add Managed
Values connector to the graph.

In addition, an Edge component will be added to connect the two components.

To add components to the graph:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Add Managed Values connector into
the Graph Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

The next tasks are to configure these components.

Configuring the Reader for the taxonomy input file
This task describes how to configure the UniversalDataReader component to read in the taxonomy
data.

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the taxonomy source file to the project's config-in
folder (or alternatively, to the data-in folder).

To configure the UniversalDataReader component for the taxonomy input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the config-in folder.
d) Select the taxonomy input file and click OK.

3. Check the Quoted strings box so that its value changes to true.

4. Leave the Number of skipped records field to its default of 0.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Taxonomies | Adding components to the taxonomy graph124

5. Optionally, you can use the Component name field to provide a customized name (such as "Read
Taxonomy") for this component.

6. Click OK to apply your configuration changes to the UniversalDataReader component.

7. Save the graph.

After the component is configured, the Reader Edit Component dialog should look like this example:

The next task is to configure the Add Managed Values connector.

Configuring the Add Managed Values connector
You must configure the Add Managed Values component with the location and port of the MDEX
Engine, as well as the managed attribute name.

This procedure assumes that you have created a graph and added the Add Managed Values connector.

To configure the Add Managed Values connector:

1. In the Graph window, double-click the Add Managed Values connector.
The Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these settings:

a) MDEX Host: The host name of the machine on which the MDEX Engine is running.You can
specify ${MDEX_HOST} if you have the MDEX_HOST variable defined in the workspace.prm
file for your project.

b) MDEX Port: The port on which the MDEX Engine is listening for requests.You can specify
${MDEX_PORT} if you have the MDEX_PORT variable defined in the workspace.prm file for
your project.

c) Managed Attribute Name: The name of the dimension to which the dimension values will be
added.

d) SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

125Loading Taxonomies | Configuring the Add Managed Values connector

e) Synonym Delimiter: Optionally, you can specify the character that separates multiple synonyms
for a managed value. Keep in mind that this delimiter is different from the delimiter that separates
the property fields.

f) Optionally, you can use the Component name field to provide a customized name (such as
"Load Taxonomy") for this component.

3. When you have input all your changes, click OK.

4. Save the graph.

After configuration, the Edit Component dialog should look like this example:

In this sample Add Managed Values connector, the managed values will be added to the
ProductCategory managed attribute.

Configuring taxonomy metadata
The Edge component must be configured with a Metadata definition for loading the taxonomy.

The prerequisite for this task is that an Edge component must exist in the graph.

To configure the Metadata definition for the taxonomy Edge:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the taxonomy source file and click OK.

4. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.
The taxonomy data is loaded into the Metadata Editor.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Loading Taxonomies | Configuring taxonomy metadata126

5. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

6. In the upper pane of the Metadata Editor:

a) Click the Record Name field and change the default value to a name such as Taxonomy.
b) Make sure that the Type field of all the properties is set to type string.
c) Verify that all properties have the correct delimiter character set (which is the comma in our

example).
d) When you have input all your changes, click Finish.

7. Save the graph.

The Metadata definition for the Edge component is now set.

Running the taxonomy graph
Endeca recommends that you use a transaction graph to run the load taxonomy graph.

To run the transaction graph to load a taxonomy:

1. Create a transaction graph as described in Chapter 3 (titled "Working with Transaction Graphs").

2. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Add Managed Values connector.

3. Run the transaction graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The output lists
the number of records that were read in by the UniversalDataReader component and the number of
records that were sent to the MDEX Engine by the Add Managed Values connector.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

127Loading Taxonomies | Running the taxonomy graph

Chapter 11

Importing and Exporting the Configuration

This chapter discusses how to import and export the MDEX Engine configuration and schema using
the Latitude connectors.

About importing and exporting
Use the Export Config and Import Config connectors in the LDI to export and import the schema
and configuration.

The configuration of your index and the schema for your records are created once you initially load
the data, the schema, and the configuration into the MDEX Engine.

Use cases for exporting and importing schema and configuration

You may need to import and export your schema and configuration in several typical scenarios:

• As part of the baseline update process, when only updates to the data are required but the MDEX
Engine index configuration and the schema must remain the same.

• If you have an implementation running in the development environment, it typically should match
the implementation running in the production environment in terms of index configuration and the
schema for your records. (Although the development application may contain a subset of data).
You can use export and import connectors for sharing the configuration and schema between
these environments.

What is being exported and imported

The following aspects of your configuration and schema are being exported and imported when you
use the Export Config or Import Config connectors in the LDI:

• The schema for your records. The schema is represented by PDRs and DDRs that describe the
behavior of attributes on your records, such as whether they are searchable, or have hierarchy.

• The configuration, which includes:

• The indexed configuration — the XML configuration documents, such as documents describing
your record search configuration and search interfaces, or thesaurus configuration.

• All additional configuration information, such as display names or attribute groups, the
configuration captured in the GCR, and precedence rules.

Note: The export and import connectors do not export or import the file that stores all word
forms used for stemming dictionaries in the MDEX Engine. This file is created automatically

when you provision the MDEX Engine, and is typically not modified. In rare cases when you may
need to make changes to this file, use a custom component in LDI that can export and re-import
this file using the Configuration Web Service operations.

Memory considerations for the configuration graphs

Graphs that manipulate large amounts of data may result in BufferOverflow errors when running
the graph. Exporting and importing a MDEX Engine configuration typically requires more memory than
is allocated in the default LDI defaultProperties configuration file.

You can use these settings for your configuration graphs:

• Record.MAX_RECORD_SIZE = 524188
• DataParser.FIELD_BUFFER_LENGTH = 1048376
• DataFormatter.FIELD_BUFFER_LENGTH = 262144
• DEFAULT_INTERNAL_IO_BUFFER_SIZE = 524288

You will have to further increase these settings if they are not high enough for your configuration needs.

For details on increasing memory allocation, see the "BufferOverflow errors" topic in the
"Troubleshooting Problems" chapter in this guide.

Exporting the configuration
You can export the configuration from the MDEX Engine by using the Export Config connector.

Adding components to the export graph
This topic describes the LDI components that must be added to the export graph.

This procedure assumes that you have created an empty graph (our example is named ExportConfig).

To add components to the graph that exports the configuration from an MDEX Engine:

1. In the Palette pane, drag the Export Config component from the Latitude section.

2. In the Palette pane, drag the UniversalDataWriter component from the Writers section.

3. In the Palette pane, click Edge and use it to connect the components.

4. Save the graph.

At this point, the Graph Editor with the connected components should look like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Importing and Exporting the Configuration | Exporting the configuration130

Configuring the Export Config connector
You must configure the Export Config connector with the location and port of the MDEX Engine.

To configure the Export Config connector:

1. In the Graph window, double-click the Export Config component.

The Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these mandatory settings in the Basic section:

a) MDEX Host: Enter the host name of the machine on which the MDEX Engine is running.
b) MDEX Port: Enter the port on which the MDEX Engine is listening for requests.

3. Still in the Writer Edit Component dialog, you should toggle the SSL Enabled field to true if the
MDEX Engine is SSL-enabled.

4. When you have input all your changes, click OK.

5. Save the graph.

Configuring the Edge in the export graph

This topic describes how to configure the metadata for the Export Config Edge.

The metadata must be configured to have only one string field and no record delimiter. Therefore, the
metadata of the Edge must be manually modified to remove the record and field delimiters from the
metadata. This will leave the EOF as delimiter property as the sole delimiter.

To configure the Edge Metadata definition for exporting the configuration from the MDEX Engine:

1. Right-click on the Edge and select New metadata > User defined.

The Metadata editor is displayed with one default field.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

131Importing and Exporting the Configuration | Exporting the configuration

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a more descriptive name (such as Export).
b) Leave the Type field as delimited.
c) Leave the Delimiter field as-is for now. (You will delete it in Step 5.)

3. In the Record pane, make these changes to the field1 property:

a) Change the field1 default name to xmlString.
b) Leave the Type field set to String.
c) In the Field Details pane, set the EOF as delimiter property to true, as in this example:

4. When you have input all your changes in the Metadata Editor, click Finish.

5. Now you must manually remove the record and field delimiters from the metadata:

a) In the Graph Editor, click the Source icon (which is next to the Graph icon).
b) In the Record element (which is a child of the Metadata element), find the fieldDelimiter and

recordDelimiter attributes, as shown in this example:

<Metadata id="Metadata0">
<Record fieldDelimiter="|" name="Export" recordDelimiter="\r\n"

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Importing and Exporting the Configuration | Exporting the configuration132

type="delimited">
<Field eofAsDelimiter="true" name="xmlString" type="string"/>
</Record>
</Metadata>

c) Delete the fieldDelimiter and recordDelimiter attributes, so that the Record element now looks
like this:

<Metadata id="Metadata0">
<Record name="Export" type="delimited">
<Field eofAsDelimiter="true" name="xmlString" type="string"/>
</Record>
</Metadata>

d) While still within the Source view, right-click and select Save to save the graph.

6. Click the Graph icon to return to the Graph Editor.

Configuring the UniversalDataWriter component
This task describes how to configure the UniversalDataWriter component to write out the configuration
file.

You can configure the UniversalDataWriter to write out the exported configuration to file within the
project or externally. (See the Latitude Data Integrator Designer Guide for more information on this
component.) This procedure assumes that you are writing the output to a text file named config.out
which is located in the project's data-out folder.

To configure the UniversalDataReader component to read the semantic entities configuration input
file:

1. In the Graph Editor, double-click the UniversalDataWriter component to bring up the Reader Edit
Component dialog.

The Writer Edit Component dialog is displayed.

2. For the File URL property:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

133Importing and Exporting the Configuration | Exporting the configuration

Click inside its Value field, which displays a ... browse button.a)
b) Click the browse button, which brings up the URL Dialog screen.

3. In the URL Dialog:

a) Click the Workspace view tab and then double-click the data-out folder.
b) Select the config.out file and click OK.

4. In the Writer Edit Component dialog, click OK.

5. Save the graph.

Instead of running this graph directly, it is recommended that you create a transaction graph (with a
Transaction RunGraph connector) with this ExportConfig graph as its child graph, and then run the
transaction graph.

Importing the configuration
You can import the configuration to the MDEX Engine using the Import Config connector.

Adding components to the import graph
This topic describes the LDI components that must be added to the import graph.

This procedure assumes that you have created an empty graph (our example is named ImportConfig).

To add components to the graph that imports the configuration into a running MDEX Engine:

1. In the Palette pane, drag the UniversalDataReader component from the Readers section.

2. In the Palette pane, drag the Import Config component from the Latitude section.

3. In the Palette pane, click Edge and use it to connect the components.

4. Save the graph.

At this point, the Graph Editor with the connected components should look like this:

Configuring the Reader in the import graph
This task describes how to configure the UniversalDataReader component to read the configuration
file.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Importing and Exporting the Configuration | Importing the configuration134

This procedure assumes that the MDEX Engine's configuration was written to a text file named
config.out which is located in the project's data-out folder. This reader will use that file as its input
file.

To configure the Reader component in the import graph:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button, which brings up the URL Dialog screen.

3. In the URL Dialog:

a) Click the Workspace view tab and then double-click the data-out folder.
b) Select the config.out file and click OK.

4. In the Reader Edit Component dialog, click OK.

5. Save the graph.

Configuring the Edge in the import graph

This topic describes how to configure the metadata for the Reader Edge.

The configuration of the Edge in the import graph is similar to that of the export graph. That is, the
Edge metadata must be configured to have only one string field and no record delimiter. Therefore,
the metadata of the Edge must be manually modified to remove the record and field delimiters from
the metadata. This will leave the EOF as delimiter property as the sole delimiter.

To configure the Edge Metadata definition for importing the configuration from a disk file to the MDEX
Engine:

1. Right-click on the Edge and select New metadata > User defined.

The Metadata editor is displayed with one default field.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

135Importing and Exporting the Configuration | Importing the configuration

2. In the Record:recordName1 field:

a) Change the recordName1 default value to a more descriptive name (such as Import).
b) Leave the Type field as delimited.
c) Leave the Delimiter field as-is for now. (You will delete it in Step 5.)

3. In the Record pane, make these changes to the field1 property:

a) Change the field1 default name to xmlString.
b) Leave the Type field set to String.
c) In the Field Details pane, set the EOF as delimiter property to true, as in this example:

4. When you have input all your changes in the Metadata Editor, click Finish.

5. Now you must manually remove the record and field delimiters from the metadata:

a) In the Graph Editor, click the Source icon (which is next to the Graph icon).

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Importing and Exporting the Configuration | Importing the configuration136

b) In the Record element (which is a child of the Metadata element), find the fieldDelimiter and
recordDelimiter attributes, as shown in this example:

<Metadata id="Metadata0">
<Record fieldDelimiter="|" name="Import" recordDelimiter="\r\n"
type="delimited">
<Field eofAsDelimiter="true" name="xmlString" type="string"/>
</Record>
</Metadata>

c) Delete the fieldDelimiter and recordDelimiter attributes, so that the Record element now looks
like this:

<Metadata id="Metadata0">
<Record name="Import" type="delimited">
<Field eofAsDelimiter="true" name="xmlString" type="string"/>
</Record>
</Metadata>

d) While still within the Source view, right-click and select Save to save the graph.

6. Click the Graph icon to return to the Graph Editor.

Configuring the Import Config connector
You must configure the Import Config connector with the location and port of the MDEX Engine.

To configure the Import Config connector:

1. In the Graph window, double-click the Import Config component.

The Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these mandatory settings in the Basic section:

a) MDEX Host: Enter the host name of the machine on which the MDEX Engine is running.
b) MDEX Port: Enter the port on which the MDEX Engine is listening for requests.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

137Importing and Exporting the Configuration | Importing the configuration

3. Still in the Writer Edit Component dialog, you should toggle the SSL Enabled field to true if the
MDEX Engine is SSL-enabled.

4. When you have input all your changes, click OK.

5. Save the graph.

Instead of running this graph directly, it is recommended that you create a transaction graph (with a
Transaction RunGraph connector) with this ImportConfig graph as its child graph, and then run the
transaction graph.

Running the configuration graphs with a transaction graph
You should run the export and import configuration graphs with a transaction graph.

A transaction graph uses a Transaction RunGraph connector to safely run one or more graphs within
the transaction environment of the MDEX Engine. This connector can start an outer transaction, run
the set of graphs so that they succeed or fail as a unit, and finally commit the transaction (or roll it back
upon failure). It is therefore recommended that instead of running each of the configuration graphs in
standalone mode, you instead build two transaction graphs (one for each configuration graph).

To use a transaction graph to run a configuration graph:

1. Create a transaction graph that runs the ExportConfig graph.

The procedure is described in the chapter titled "Working with Transaction Graphs".

2. Run the transaction graph as you would run any other graph.

3. Repeat the procedure to create a second transaction graph that runs the ImportConfig graph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Importing and Exporting the Configuration | Running the configuration graphs with a transaction graph138

Chapter 12

Deleting Data

This chapter describes how to delete records from the MDEX Engine data set. It also describes how
to key/value pairs from individual records.

Format of the delete input file
The format of the delete input file uses a fixed schema and a specific ordering of the input fields.

The Delete Data connector can perform the following deletions of data in the MDEX Engine:

• Delete a full record.
• Delete a specific key/value pair from a record. All other key/value pairs on the record are not

affected.
• Delete all key/value pairs (from the same standard attribute) from a record.This is a wildcard delete

of the values from a specific standard attribute on the record. All other key/value pairs (on the
record) from other standard attributes are not affected.

You can specify all three types of delete operations in the same input file.

The two restrictions of this connector are:

• It cannot delete managed values on the record.
• When deleting records, it cannot do wildcard deletes (for example, delete Records 50*) and it

cannot delete ranges of records (for example, delete Records 5000 to 5100).You must specify
each record explicitly by its primary key.

The format of the input file is fixed and uses a specific ordering:

• The first row of the input file is the record header row and must use a fixed schema.
• The second and following lines specify information about the records and/or record data to be

deleted.

The schema of the record header row is:

specKey|specValue|kvpKey|kvpValue

where:

• specKey is the primary key (record spec) of the record.
• specValue is the primary key value.
• kvpKey is the name (key) of the Endeca standard attribute to which the assignment belongs. If

both kvpKey and kvpValue are blank, the entire record is deleted.

• kvpValue is the assigned value to be removed. If this field is blank but kvpKey is not, then all
assignments of kvpKey are deleted.

An example of a text input file for the Delete Data connector is:

specKey|specValue|kvpKey|kvpValue
ProductID|3000|Colors|green
ProductID|4000|Handling|
ProductID|5000||

When the connector is run with this input file:

• The assignment "green" from the Colors standard attribute is removed from Record 3000.
• All assignments from the Handling standard attribute are removed from Record 4000.
• Record 5000 is deleted from the MDEX Engine.

After creating the input file, you should add it to the project's data-in folder.

Adding components to the delete data graph
Building a graph to delete data requires that you add the Delete Data connector to the graph.

This procedure assumes that you have added the delete input file to the data-in folder of the project
and have also created an empty graph.

To add components to a graph for deleting records:

1. In the Palette pane, open the Readers section and drag the UniversalDataReader component
into the Graph Editor.

2. In the Palette pane, open the Latitude section and drag the Delete Data connector into the Graph
Editor.

3. In the Palette pane, click Edge and use it to connect the two components.

4. From the File menu, click Save to save the graph.

At this point, the Graph Editor with the two connected components should look like this:

The next tasks are to configure the components.

Configuring the Reader for the delete input file
This task describes how to configure the UniversalDataReader component to read in the file that
specifies what record data to delete.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Deleting Data | Adding components to the delete data graph140

This procedure assumes that you have created a graph and added the UniversalDataReader
component. It also assumes that you have added the delete input file to the project's data-in folder.

To configure the UniversalDataReader component for the data delete input file:

1. In the Graph Editor, double-click the UniversalDataReader component to bring up the Reader Edit
Component dialog.

2. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the data delete input file and click OK.

3. Check the Quoted strings box so that its value changes to true.

4. Leave the Number of skipped records field set to the default of 0.

5. Click OK to apply your configuration changes to the UniversalDataReader component.

6. Save the graph.

Configuring the metadata for data deletes
The Edge component must be configured with a Metadata definition.

The prerequisite for this task is that an Edge component must exist in the graph.

To configure the Metadata definition for the data delete Edge:

1. Right-click on the Edge and select New metadata > Extract from flat file.
The Flat File dialog is displayed.

2. In the Flat File dialog, click the Browse button, which brings up the URL Dialog.

3. For the File URL property:

a) Click inside its Value field, which displays a ... browse button.
b) Click the browse button.
c) Click the Workspace view tab and then double-click the data-in folder.
d) Select the data delete input file and click OK.

4. In the Flat File dialog, make sure that the Record type field is set to Delimited and then click Next.

5. In the middle pane of the Metadata Editor:

a) Check the Extract names box.
b) Click Reparse.
c) Click Yes in the Warning message.

6. In the upper pane of the Metadata Editor:

a) Click the Record:recordName1 Name field and change the recordName1 default value to a
name such as DeleteRecs.

b) Make sure that the Type field of all properties is set to type string. For example if the
specKey property is set to integer, change it to string.

c) Verify that all properties have the correct delimiter character set (which is the pipe character in
our example). The final property should have a new-line as the delimiter (\n on Linux and \r\n
on Windows).

At this point, the pane should look like this example:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

141Deleting Data | Configuring the metadata for data deletes

d) When you have input all your changes, click Finish.

7. Save the graph.

The Metadata definition for the Edge component is now set.

Configuring the Delete Data connector
You must configure the Delete Data component with the location and port of the MDEX Engine.

This procedure assumes that you have created a graph and added the Delete Data connector.

To configure the Delete Data connector:

1. In the Graph window, double-click the Delete Data component.
The Writer Edit Component dialog is displayed.

2. In the Writer Edit Component dialog, enter these settings:

a) MDEX Host: The host name of the machine on which the MDEX Engine is running.You can
specify ${MDEX_HOST} if you have the MDEX_HOST variable defined in the workspace.prm
file for your project.

b) MDEX Port: The port on which the MDEX Engine is listening for requests.You can specify
${MDEX_PORT} if you have the MDEX_PORT variable defined in the workspace.prm file for
your project.

c) SSL Enabled: Toggle this field to true if the MDEX Engine is SSL-enabled.
d) Batch Size (Bytes) : Enter an integer greater than 0 to set the batch size in bytes. Specifying

0 or a negative number will disable batching.
e) Maximum number of failed batches: Enter a positive integer that sets the maximum number

of batches that can fail before the operation is ended. Entering 0 allows no failed batches.

3. When you have input all your changes, click OK.

4. Save the graph.

After configuration, the Writer Edit Component dialog should look like this example:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Deleting Data | Configuring the Delete Data connector142

Running the delete data graph
After creating the graph and configuring the components, you can run the graph to delete the specified
records and/or record assignments from the MDEX Engine.

To run the graph to delete data from the MDEX Engine:

1. Make sure that you have an MDEX Engine running on the host and port that are configured in the
Delete Data connector.

2. Run the graph using one of the run methods.

For example, you can click the green circle with white triangle icon in the Tool bar:

As the graph runs, the process of the graph execution is listed in the Console Tab. The execution is
completed successfully when you see final output similar to this example of deleting three records
and/or record assignments:

INFO [WatchDog] - Starting up all nodes in phase [0]
INFO [WatchDog] - Successfully started all nodes in phase!
INFO [ENDECA_DELETE_DATA0_0] - Sending in the last batch of deletes
INFO [WatchDog] - [Clover] Post-execute phase finalization: 0
INFO [WatchDog] - [Clover] phase: 0 post-execute finalization successfully.
INFO [WatchDog] - ----------------------** Final tracking Log for phase
[0] **---------------------
INFO [WatchDog] - Time: 27/05/11 10:17:39
INFO [WatchDog] - Node ID Port #Records
 #KB aRec/s aKB/s
INFO [WatchDog] - ---

INFO [WatchDog] - UniversalDataReader DATA_READER0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. Out:0 3
 0 3 0
INFO [WatchDog] - Delete Data ENDECA_DELETE_DATA0
 FINISHED_OK
INFO [WatchDog] - %cpu:.. In:0 3
 0 3 0

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

143Deleting Data | Running the delete data graph

INFO [WatchDog] - ---------------------------------** End of Log **------

INFO [WatchDog] - Execution of phase [0] successfully finished - elapsed
time(sec): 1
INFO [WatchDog] - -----------------------** Summary of Phases execution
**---------------------
INFO [WatchDog] - Phase# Finished Status RunTime(sec)
 MemoryAllocation(KB)
INFO [WatchDog] - 0 FINISHED_OK 1
 6119
INFO [WatchDog] - ------------------------------** End of Summary **-----

INFO [WatchDog] - WatchDog thread finished - total execution time: 1 (sec)
INFO [main] - Freeing graph resources.
INFO [main] - Execution of graph successful !

As the example shows, the Final Tracking Log lists the number of records that were read in by the
UniversalDataReader component and the number of records that were sent to the MDEX Engine by
the Delete Data connector.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Deleting Data | Running the delete data graph144

Chapter 13

Latitude Connector Reference

This chapter provides a reference for the Endeca Latitude connectors available in the LDI Designer
palette.

Bulk Add/Replace Records connector
This connector adds new records or replaces existing records in the MDEX Engine.

The Bulk Add/Replace Records connector adds or replaces records via the MDEX Engine's bulk
ingest interface (that is, it does not use the Data Ingest Web Service).

The characteristics of this connector are:

• The connector can load data source records only.
• Existing records in the MDEX Engine are replaced, not updated. That is, the replace operation is

not additive. Therefore, the key/value pair list of the incoming record will completely replace the
key/value pair list of the existing record.

• The connector cannot load PDRs, DDRs, managed attribute values, the GCR, nor the MDEX
Engine index configuration files.

• A primary-key attribute (also called the record spec) is required for each record to be added or
replaced.

• If an assignment is for a standard attribute (property) that does not exist in the MDEX Engine, the
new standard attribute is automatically created with system default values for the PDR (see Chapter
1 in this guide for a list of these values).

• No client-side batching is used and there is only a single, streaming connection to the MDEX
Engine.

• You can run this connector in a sub-graph within a top-level graph that starts an outer transaction.
For the bulk records operations to run successfully within an outer transaction, the connector relies
on an outer transaction ID.You should specify this ID in the MDEX_TRANSACTION_ID parameter
in the workspace.prm file in your project.

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema for the Bulk Add/Replace Records connector is not fixed. Therefore, each
LDI field represents a property on an MDEX record.

The metadata type of the LDI field (as shown in the LDI Metadata Editor) translates to the mdex
property type. For example, the LDI integer data type translates to the mdex:int data type. Note
that this behavior can be overridden to support LDI non-native types (such as mdex:duration,
mdex:time, and mdex:geocode).

Use cases

The Bulk Add/Replace Records connector is intended to be used with bulk data when delayed update
visibility and compromised concurrent query performance are acceptable.

Some of the use cases for this connector are:

• Full index initial load of records, with no loaded schema. In this scenario, the MDEX Engine has
no data records and also has no user-created schema (such as no existing PDRs). In this case,
all new properties (including the primary-key properties) are created by DIWS with system default
values (see Chapter 1 in this guide for a list of these values).

• Full index initial load of records, with your record schema already loaded.You can load the record
schema (PDRs and DDRs) with the Add/Update Records connector.

• Adding more new records to the MDEX Engine any time after the initial loading of records. As in
the initial load case, new standard attributes that do not exist in the MDEX Engine are automatically
created with default system values.

• Replacing existing records in the MDEX Engine any time after the initial loading of records. In this
case, all the key/value pairs of the existing record are replaced with the key/value pairs of the input
file.

Configuration properties

The configuration for the Bulk Add/Replace Records connector is set via the Designer Edit component:

The Basic and Advanced configuration properties that you can set are listed in the following table.
For the other properties, see the "Visual and Common configuration properties" topic in this chapter.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Bulk Add/Replace Records connector146

Valid ValuesPurposeConfiguration
Property

The name or IP address of the
machine. localhost can be used as
the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The bulk load port is determined in one
of two ways:

Identifies the bulk load port on which
the MDEX Engine is listening. Note that
this port is different from the HTTP port
used by the all the other connectors.

MDEX Bulk Load
Port

• The Dgraph --bulk_load_port
flag is used when the MDEX
Engine is started.

• If --bulk_load_port flag is not
used, then the default bulk load
port is the standard Dgraph port
plus one. This means that the bulk
load port is either 5556 (if the
Dgraph --port flag is not used)
or is the value of the --port flag
plus one.

The name of the primary key. If the
primary-key property does not exist in

Sets the primary key (record spec) for
the records to be added or updated.

Spec Attribute

the MDEX Engine, the property is
automatically created with the system
default values.

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for
connections to the MDEX Engine.
In this case, the MDEX Engine
must also be SSL-enabled.

Either 0 (which means no failures are
allowed) or a positive integer.

Sets the maximum number of ingest
errors that can occur. The ingest
operation is ended after this number of
errors is reached.

Stop after this
many errors

A single character that is the
multi-assign delimiter.You do not have

Sets the character that separates
multi-assign values in a property in a

Multi-assign
delimiter

to use this field if your source does not
have multi-assign properties.

source record. Keep in mind that this
delimiter is different from the delimiter
that separates property fields on the
source record.

MDEX Engine status after a failed ingest operation

When a bulk load ingest operation is terminated because of an error, records that were ingested before
the error should be in the MDEX Engine. Although the MDEX Engine may accept queries on the
ingested records, you should consider the MDEX Engine to be in an inconsistent state.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

147Latitude Connector Reference | Bulk Add/Replace Records connector

Add/Update Records connector
This connector adds new records or updates existing records in the MDEX Engine.

The Add/Update Records connector adds or updates records via the Data Ingest Web Service (DIWS).

The characteristics of this connector are:

• The connector can load data source records, PDRs (Property Description Records), and DDRs
(Dimension Description Records).

• The connector cannot load managed attribute values, the GCR (Global Configuration Record), nor
the MDEX Engine index configuration files (such as the search interface configuration).

• A primary-key attribute (also called the record spec) is required for each record to be added or
updated.

• If an assignment is for a standard attribute that does not exist in the MDEX Engine, the new standard
attribute is automatically created with system default values for the PDR (see Chapter 1 for a list
of these values).

• Updates are batched on the client-side with multiple concurrent connections to the MDEX Engine.

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema for the Add/Update Records connector is not fixed. Therefore, each LDI field
represents a property on an MDEX record.

The metadata type of the LDI field (as shown in the LDI Metadata Editor) translates to the mdex
property type. For example, the LDI integer data type translates to the mdex:int property type.
Note that this behavior can be overridden to support LDI non-native types (such as mdex:duration,
mdex:time, and mdex:geocode).

Use cases

The Add/Update Records connector is intended to be used for non-bulk data when immediate update
visibility is desired and/or high concurrent query performance is important.

Some of the use cases for this connector are:

• Full index initial load of records, with no loaded schema. In this scenario, the MDEX Engine has
no data records and also has no user-created schema (such as no existing PDRs). In this case,
all new properties (including the primary-key properties) are created by DIWS with system default
values (see the Chapter 1 in this guide for a list of these values).

• Loading of the record schema before an initial load. In this case, you load your PDR schema
records (and, optionally, your DDR schema) before loading your data records.

• Full index initial load of records, with your record schema already loaded.
• Incremental updates involving the addition of new records to the MDEX Engine any time after the

initial loading of records. As in the initial load case, new standard attributes that do not exist in the
MDEX Engine are automatically created with default system values.

• Incremental updates to existing records, which means adding key-value pairs. If a standard attribute
is configured as multi-assign, a record can have multiple assignments of that attribute.The records
to be updated are considered totally additive. That is, the key-value pair list of the update record
will be merged into the existing record. If attribute values with the same name already exist, then

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Add/Update Records connector148

the new values will be additional values for the same standard attribute (multi-assign). Keep in
mind that this operation can also be performed by the Add KVPs connector.

Configuration properties

The configuration for the Add/Update Records connector is set via the Designer Edit component:

The Basic and Advanced configuration properties that you can set are listed in the following table.
For the other properties, see the "Visual and Common configuration properties" topic in this chapter.

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the MDEX
Engine is listening.

MDEX Port

The name of the primary key. If the
primary-key property does not exist in

Sets the primary key (record spec) for
the records to be added or updated.

Spec Attribute

the MDEX Engine, the property is
automatically created with the system
default values.

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case,
the MDEX Engine must also be
SSL-enabled.

Sets the batch size for the ingest
operation. Each record size is

Batch Size (Bytes) • A number equal to or greater than
1 sets the batch size. If the batch

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

149Latitude Connector Reference | Add/Update Records connector

Valid ValuesPurposeConfiguration
Property

size is too small to fit in a record,
then it is reset to the size to
accommodate that record.

calculated in bytes. A batch consists of
one or more records.

• Specifying 0 (zero) or a negative
number will turn off batching. This
means that all records are placed
into one batch and sent to the
MDEX Engine at the end of the
ingest operation.

A single character that is the
multi-assign delimiter.You do not have

Sets the character that separates
multi-assign values in a property in a

Multi-assign
delimiter

to use this field if your source does not
have multi-assign properties.

source record. Keep in mind that this
delimiter is different from the delimiter
that separates property fields on the
source record.

Either 0 (which allows no failed batches)
or a number greater than 0.

Sets the maximum number of batches
that can fail before the ingest operation
is ended.

Maximum number
of failed batches

Batch size adjustments by the connector

Regardless of the batch size you have specified (assuming it is a non-zero, non-negative number),
the Add/Update Records connector will adjust the batch size on the fly in order to ensure that all the
assignments for a given record will fit in the batch. This ensures that assignments for a given record
are not split between different batches.

Add KVPs connector
This connector updates Endeca records in the MDEX Engine by adding new key-value pairs to the
records.

The Add KVPs connector is intended to update records by adding new key-value pair (KVP)
assignments to those records.The connector updates records via the Data Ingest Web Service (DIWS).

The characteristics of this connector are:

• The connector can load a new key-value pair for a record.
• Only Endeca standard attribute values can be loaded. Adding managed attribute values is not

supported.
• The key-value pairs can only be added. Existing key-value pairs on records cannot be deleted or

replaced.
• Multi-assign properties cannot be added. To do this, you need to add separate rows in the input

file for multiple assignments of a given property.
• If an assignment is for a standard attribute (property) that does not exist in the MDEX Engine, the

new standard attribute is created by DIWS with system default values for the PDR (see Chapter
1 for a list of these values).You can, however, specify a property type for the new standard attribute.

• The main use case is one where your source data is stored in a key-value pair format, as opposed
to something like a rectangular data model.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Add KVPs connector150

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema of the Add KVPs connector is fixed and uses a specific ordering. The first row
of the data source input file is the record header row and must use this schema:

specKey|specValue|kvpKey|kvpValue|mdexType

where:

• specKey is the primary key (record spec) of the record to which the key-value pair will be added.
• specValue is the value of the record's primary key.
• kvpKey is the name (key) of the Endeca standard attribute to be added to the record. If the standard

attribute does not exist in the MDEX Engine, it is automatically created by DIWS with system default
values.

• kvpValue is the value of the standard attribute to be added.
• mdexType specifies the mdex property type (such as mdex:int or mdex:dateTime). This

parameter is intended for use when you want to create a new standard attribute and want to specify
its property type. If a new PDR for the standard attribute is created and mdexType is not specified,
then the type of the new standard attribute will be mdex:string. If the standard attribute already
exists, you can specify an empty value for mdexType.

Configuration properties

The configuration for the Add KVPs connector is set via the Designer Edit component:

The configuration properties that you can set are:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

151Latitude Connector Reference | Add KVPs connector

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Sets the batch size for the ingest
operation. Each record size is

Batch Size (Bytes) • A number equal to or greater than 1
sets the batch size. If the batch size

calculated in bytes. A batch consists
of one or more records.

is too small to fit in a record, then it
is reset to the size to accommodate
that record.

• Specifying 0 (zero) or a negative
number will turn off batching. This
means that all records are placed into
one batch sent to the MDEX Engine
at the end of the ingest operation.

Either 0 (which allows no failed batches)
or a positive integer.

Sets the maximum number of
batches that can fail before the ingest
operation is ended.

Maximum number
of failed batches

Add Managed Values connector
This connector loads a taxonomy into the MDEX Engine's data set.

The Add Managed Values connector is intended to load a taxonomy (Endeca managed attribute
values) into the MDEX Engine. The taxonomy is loaded via the Data Ingest Web Service (DIWS).

The characteristics of this connector are:

• The connector loads only managed values (mvals). It does not load standard values (svals).
• All the managed values must belong to only one managed attribute.
• If the managed attribute does not exist in the MDEX Engine, the managed attribute is created by

DIWS with system default values for the DDR and (if does not already exist) for the PDR. See
Chapter 1 in this guide for a list of the default values.

• Optionally, synonyms can be created for managed values.

When added to a graph, the connector icon looks like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Add Managed Values connector152

Metadata schema

The metadata schema of the Add Managed Values connector is fixed and uses a specific ordering.
The first row of the data source input file is the record header row and must use this schema:

spec|displayname|parent|synonym

where:

• spec is a unique string identifier for the managed value. This is the managed value spec.
• displayname is the name of the managed value.
• parent is the parent ID for this managed value, If this is a root managed value, use a forward slash

(/) as the ID. If this is a child managed value, specify the unique ID of the parent managed value.
• synonym optionally defines the name of a synonym. Synonyms can be added to both root and

child managed values.You can add multiple synonyms to a single managed value, with the
synonyms separated by a delimiter that you specify in the configuration dialog.

Configuration properties

The configuration for the Add Managed Values connector is set via the Designer Edit component:

The configuration properties that you can change in the Edit component are:

Valid ValuesPurposeConfiguration Property

The name or IP address of the
machine. localhost can be used
as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

The name of a managed attribute.The
name must use the NCName format.

Sets the name of the managed
attribute to which the managed
values will be added.

Managed Attribute
Name

If the managed attribute does not exist
in the MDEX Engine, DIWS
automatically creates the managed
attribute with system default values.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

153Latitude Connector Reference | Add Managed Values connector

Valid ValuesPurposeConfiguration Property

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for
connections to the MDEX Engine.
In this case, the MDEX Engine
must also be SSL-enabled.

A single character that is the synonym
delimiter.

Sets the delimiter for specifying
multiple synonyms.

Synonym delimiter

Delete Data connector
This connector performs delete operations on Endeca records.

The Delete Data connector performs these delete operations via the Data Ingest Web Service (DIWS):

• Deletes an entire record.
• Deletes a specific value assignment from a specific Endeca standard attribute on a specific record.
• Deletes all value assignments from a specific standard attribute on a specific record.

Note that the connector cannot remove managed values from records.

When added to a graph, the connector icon looks like this:

Metadata schema

The metadata schema of the Delete Data connector is fixed and uses a specific ordering. The first
row of the data source input file is the record header row and must use this schema:

specKey|specValue|kvpKey|kvpValue

where:

• specKey is the name of the primary key (record spec) of the record on which the delete operation
will be performed.

• specValue is the value of the record's primary key.
• kvpKey is the name (key) of the Endeca standard attribute to which the assignment belongs. If

kvpValue is blank, then all assignments of kvpKey are deleted. If both kvpKey and kvpValue are
blank, then the entire record is deleted.

• kvpValue is the assigned value to be removed.

The following is a simple example of an input file for the Delete Data connector:

specKey|specValue|kvpKey|kvpValue
ProductID|3000|Color|purple
ProductID|4000|Availability|
ProductID|5000||

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Delete Data connector154

Configuration properties

The configuration for the Delete Data connector is set via the Designer Edit component:

The configuration properties that you can set are:

Valid ValuesPurposeConfiguration Property

The name or IP address of the
machine. localhost can be
used as the name.

Identifies the machine on which
the MDEX Engine is running.

MDEX Host

The port number on which the
MDEX Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for
connections to the MDEX
Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Sets the batch size for the delete
ingest operation. Each record

Batch Size (Bytes) • A number equal to or greater
than 1 sets the batch size. If

size is calculated in bytes. A the batch size is too small to
batch consists of one or more fit in a record, then it is reset
records to be sent to the MDEX
Engine for deletion.

to the size to accommodate
that record.

• Specifying 0 (zero) or a
negative number will turn off
batching. This means that all
records are placed into one
batch sent to the MDEX
Engine at the end of the
ingest operation.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

155Latitude Connector Reference | Delete Data connector

Valid ValuesPurposeConfiguration Property

Either 0 (which allows no failed
batches) or a positive integer.

Sets the maximum number of
batches that can fail before the
ingest operation is ended.

Maximum number of failed
batches

Export Config connector
This connector lets you export the schema and configuration stored in the MDEX Engine.

The Export Config connector exports the schema and configuration using the Configuration Web
Service requests. The characteristics of this connector are:

• The connector lets you export your configuration and schema by pointing to an output port. This
port can be connected to another component, such as any writer component that would write the
exported configuration and schema into a file. This file can later be used for importing.

• You can run this connector in a sub-graph within a top-level graph that starts an outer transaction.
For the export operation to run successfully within an outer transaction, the connector relies on an
outer transaction ID.You should specify this ID in the MDEX_TRANSACTION_ID parameter in the
workspace.prm file in your project.

• The connector exports all configuration and schema but it does not export the file that stores all
word forms used for stemming dictionaries in the MDEX Engine. This file is created automatically
when you provision the MDEX Engine, and is typically not modified. In rare cases when you may
need to make changes to this file, use a custom component in LDI that can export and re-import
this file using the Configuration Web Service operations.

When added to a graph, the connector icon looks like this:

Use cases

The Export Config and Import Config connectors are intended to be used in the following cases:

• Both of these connectors support cases where, after loading the default configuration, you change
portions of it in Latitude Studio, such as attribute groups, or attribute group names. From this point
on, you may want to keep using this changed configuration, even if you run subsequent data
updates. The connectors allow you to do this.

• The Export Config should also be used as part of the graph in which you run a baseline update
for loading data (although, it is not intended to be used with the initial baseline update).

In a typical scenario of a repeatable baseline update, you create a graph in which you start a
transaction using the Transaction RunGraph component, export all configuration and schema
using Export Config, run the Reset MDEX to remove all records and provision a new MDEX
Engine, import the previously saved configuration and schema with Import Config, and then reload
the records. At this point, the transaction can close and the node on which the baseline update
was run can resume answering queries.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Export Config connector156

Metadata schema

The metadata schema for the Export Config connector is not fixed.

Configuration properties

The configuration for the Export Config connector is set via the Designer Edit component:

The configuration properties that you can set are:

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Import Config connector
This connector lets you import the schema and configuration into the MDEX Engine.

The Import Config connector imports schema and configuration using the Configuration Web Service
operations. The characteristics of this connector are:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

157Latitude Connector Reference | Import Config connector

• This connector lets you import schema and configuration that was previously exported to a file.
The UniversalDataReader component can read the file that stores all the previously exported
configuration and schema. The reader's output port can point to the input port on Import Config
connector which imports this file.

• You can run this connector in a sub-graph within a top-level graph that starts an outer transaction.
For the import operation to run successfully within an outer transaction, the connector relies on an
outer transaction ID that you must specify in the MDEX_TRANSACTION_ID parameter in the
workspace.prm file in your project.

• When importing, be aware that only basic XML validation takes place. Since the Import Config
connector uses the Configuration Web Service operations, the configuration that is sent to the
MDEX Engine must be the one that the Configuration Web Service is designed to accept. Thus,
the file that you are importing must comply with the requirements of the Configuration Web Service
WSDL document, and contain only valid records describing the configuration and schema.

When added to a graph, the connector icon looks like this:

Use cases

The Import Config and Export Config connectors are intended to be used in the following cases:

• Both of these connectors support cases where, after loading the default configuration, you change
portions of it in Latitude Studio, such as attribute groups, or attribute group names. From this point
on, you may want to keep using this changed configuration, even if you run subsequent data
updates. The connectors allow you to do this.

• The Import Config should be used as part of the graph in which you run a baseline update for
loading data (although, it is not intended to be used with the initial baseline update).

In a typical scenario of a repeatable baseline update, you create a graph in which you start a
transaction using the Transaction RunGraph component, export all configuration and schema
using Export Config, run the Reset MDEX to remove all records provision a new MDEX Engine,
import the previously saved configuration and schema with Import Config, and then reload the
records. At this point, the transaction can close and the node on which the baseline update was
run can resume answering queries.

Metadata schema

The metadata schema for the Import Config connector is not fixed.

Configuration properties

The configuration for the Import Config connector is set via the Designer Edit component:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Import Config connector158

The configuration properties that you can set are:

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Reset MDEX connector
This connector lets you reset the MDEX Engine index back to the empty state.

The connector does this by removing all the records (including the schema) from the MDEX Engine,
provisioning the MDEX Engine and updating the spelling dictionary.

The characteristics of this connector are:

• The Reset MDEX connector utilizes operations from the Data Ingest Web Service.These operations
delete all records (including schema records) and configuration, and provision the MDEX Engine.
Next, this connector utilizes an administrative command for updating the spelling dictionary (ad¬
min?op=updateaspell).

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

159Latitude Connector Reference | Reset MDEX connector

• You can run this connector in its own graph, or within a graph that starts an outer transaction. In
particular, Endeca recommends to run the Reset MDEX connector within a Transaction RunGraph.
Note that only one outer transaction can be open at a time.

• You can run this connector in a sub-graph within a top-level graph that starts an outer transaction.
For the reset operations to run successfully, the connector relies on an outer transaction ID.You
should specify this ID in the MDEX_TRANSACTION_ID parameter in the workspace.prm file in
your project.

When added to a graph, the connector icon looks like this:

Use cases

The Reset MDEX should be used as part of the graph in which you run a baseline update (although,
it is not intended to be used with the initial baseline update).

• In a typical scenario of a repeatable baseline update, you create a graph in which you start a
transaction using the Transaction RunGraph component, export all configuration and schema
using Export Config, run the Reset MDEX to remove all records and provision a new MDEX
Engine, import the previously saved configuration and schema with Import Config, and then reload
the records. At this point, the transaction can close and the node can resume answering queries.

Metadata schema

The metadata schema for the Reset MDEX connector is not fixed.

Configuration properties

The configuration for the Reset MDEX connector is set via the Designer Edit component:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Reset MDEX connector160

The configuration properties that you can set are:

Valid ValuesPurposeConfiguration
Property

The name or IP address of the machine.
localhost can be used as the name.

Identifies the machine on which the
MDEX Engine is running.

MDEX Host

The port number on which the MDEX
Engine was started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is
disabled.

• If true, SSL is used for connections
to the MDEX Engine. In this case, the
MDEX Engine must also be
SSL-enabled.

Transaction RunGraph connector
Use this connector to run LDI graphs, similar to the standard RunGraph component available with
the LDI. Unlike the standard RunGraph, Transaction RunGraph starts the outer transaction and runs
multiple sub-graphs within that transaction.

The Transaction RunGraph connector has the following characteristics:

• It is similar to the RunGraph component in LDI — it runs one or more LDI graphs. If one sub-graph
will be run inside Transaction RunGraph, you specify its name in the component's Graph URL
attribute.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

161Latitude Connector Reference | Transaction RunGraph connector

If more than one sub-graph will be run, you can include names of all sub-graphs in a single file
and send this file through the UniversalDataReader to the input port of the Transaction RunGraph
connector.

• The Transaction RunGraph starts and commits an outer transaction using the Transaction Web
Service. Only one outer transaction can be open at a time.

•
• In case of transaction failure, the connector rolls back to the state before the transaction had

started, and commits the transaction. (This is the default behavior in case of a transaction failure,
but you can configure other options, Commit and Do nothing, described below.)

• Because this connector starts an outer transaction, it uses the outer transaction ID as follows: The
Transaction RunGraph overrides the transaction ID with the string transaction, for the duration
of the transaction. This assumes that the project uses the empty string value for the ID in
workspace.prm, specified as follows:MDEX_TRANSACTION_ID=.When Transaction RunGraph
runs, the empty ID string is overwritten by the string transaction.

• All connectors or sub-graphs that:

• Utilize a request to the MDEX Engine through a web service or Bulk Ingest Interface, and
• Run inside Transaction RunGraph

must reference the outer transaction ID.You should specify this ID as an empty string as follows:
MDEX_TRANSACTION_ID= in the workspace.prm file for your project. All Latitude-specific
connectors that utilize MDEX Engine web services or the Bulk Interface automatically reference
this ID. Additionally, if these components are run within Transaction RunGraph, they use the ID
transaction.

• If you are using a WebServiceClient component in LDI that is configured to run any of the MDEX
Engine web services, and plan to use this component inside Transaction RunGraph, the Request
Structure field for the component must include an attribute outerTransactionId with a value
of an outer transaction.

Note: If you do not use transactions, then your web service-based components should still
use the outerTransactionID referencing the value in workspace.prm. If the value is
empty, the transaction ID attribute is ignored by the MDEX Engine.This allows e components
to run outside of transactions, without having to modify workspace.prm.

For example, the following request specified in the Request Structure references the outer
transaction ID as a parameter:

<config-service:configTransaction
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

outerTransactionId="${MDEX_TRANSACTION_ID}">
<config-service:putGroups
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types"

xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
...
</config-service:putGroups>
</config-service:configTransaction>

In this example, the string outerTransactionId="${MDEX_TRANSACTION_ID}" specifies the
ID of the outer transaction listed in the workspace.prm file for your project.

When added to a graph, the connector icon looks like this:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Transaction RunGraph connector162

Use cases

The Transaction RunGraph should be used as part of the graph in which you run a baseline update:

• In a typical scenario of an initial baseline update, you create a graph in which you start an outer
transaction using the Transaction RunGraph component, provision the MDEX Engine using the
Reset MDEX component, and then use one or more sub-graphs to load data and configuration.

• In a typical scenario of a repeatable baseline update, you create a graph in which you start an
outer transaction using the Transaction RunGraph component, export all configuration and
schema using Export Config, run Reset MDEX to remove all records and provision a new MDEX
Engine, import the previously saved configuration and schema with Import Config, and then reload
the records and the record attribute values. At this point, the outer transaction can close and the
node on which the baseline update was run resumes processing query requests.

Metadata schema

The metadata schema for the Transaction RunGraph connector is not fixed.

The metadata type of the LDI field (as shown in the LDI Metadata Editor) translates to the mdex attribute
type. For example, the LDI integer data type translates to the mdex:int data type. Note that this
behavior can be overridden to support LDI non-native types (such as mdex:duration, mdex:time,
and mdex:geocode).

Configuration properties

The configuration for the Transaction RunGraph connector is set via the Designer Edit component:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

163Latitude Connector Reference | Transaction RunGraph connector

The Basic and Advanced configuration properties that you can set are listed in the following table.
For the other properties, see the "Visual and Common configuration properties" topic in this chapter.

Valid ValuesPurposeConfiguration
Property

Any of the Latitude graphs, or other graphs can be
used. If non-Latitude graphs are used that call any

Identifies the name of one graph,
including path, that should be
executed by the component.

Graph URL

of the MDEX Engine web services, they should
reference the outer transaction ID in their Request
Structure: outerTransaction¬
Id="${MDEX_TRANSACTION_ID}

The name or IP address of the machine.localhost
can be used as the name.

Identifies the machine on which
the MDEX Engine is running.

MDEX Host

The port number on which the MDEX Engine was
started.

Identifies the port on which the
MDEX Engine is listening.

MDEX Port

Enables or disables SSL for the
connector.

SSL Enabled • If false (the default), SSL is disabled.
• If true, SSL is used for connections to the MDEX

Engine. In this case, the MDEX Engine must also
be SSL-enabled.

Enables selecting one of the
three options in case of failure:
commit, rollback, and do nothing.

Upon failure • Rollback. This is the default. In case of
transaction failure, enables to roll back to the
state before the transaction had started, and
commit the transaction.

• Commit. In case of transaction failure, enables
to commit those changes that have been made
successfully before the failure had occurred, and
commit the transaction.

• Do nothing. In case of failure, does nothing. In
this case, you may need to investigate the logs,
and decide whether you want to apply any of the
actions that are configured within the transaction
manually. Note that in this case you may also
need to manually stop the outer transaction by
using a graph that runs the "commit transaction"
operation.

Related Links
Creating a Transaction RunGraph graph on page 34

This section describes how to build an LDI graph that uses the Transaction RunGraph
connector to run a series of graphs within a single atomic transaction.

Visual and Common configuration properties
This topic describes the meanings of the Visual and Common configuration properties of connectors.

All Latitude connectors have Visual and Common properties in their configuration dialogs. Because
the functionality of these properties is the same across all the connectors, an overview of these

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Visual and Common configuration properties164

properties can be described in a common topic. For more information on the purpose of these properties,
see the Latitude Data Integrator Designer Guide.

Visual properties

Visual properties can be seen in the graph. The Visual section looks like this in the Edit component:

The Visual configuration properties are:

Valid valuesPurposeVisual property

You can change the default name
to a more descriptive one.

Displays the component name when
the component is placed on a graph.

Component name

Do not edit this field. Instead, use
your cursor to move the component
in the graph to the desired position.

Describes the location (using an
X-axis and Y-axis) of the component
icon within the graph.

Location

Do not edit this field.Describes the dimensions (size) of
the component icon within the
graph.

Size

Text describing what this
component does (for example, text

Located in the header of the
component, this field lets you add

Click here to edit
component description

that best describes what this
component does in the graph).

some descriptive text that is
displayed in the component icon in
the graph.

Common properties

Common properties are common to all components. The Common section looks like this in the Edit
component:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

165Latitude Connector Reference | Visual and Common configuration properties

The Common configuration properties are:

Valid valuesPurposeCommon property

Do not edit this field.Identifies the component among all of
the other components within the same
component type.

ID

Do not edit this field.Describes the type of the component.
By adding a number to this component
type, you can get a component ID.

Component type

Do not edit this field.Describes what this component can
do.

Specification

An integer number of the phase to
which the component belongs.

Sets the phase number for the
component. Because each graph runs
in parallel within the same phase

Phase

number, all components and edges
that have the same phase number run
simultaneously.

Enables or disables the component for
parsing data.

Enabled • enabled (the default) means
the component can parse data.

• disabled means the
component does not parse
data.

• passThrough puts the
component in passThrough
mode, in which data records
will pass through the
component from input to
output ports and the
component will not change
them.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Visual and Common configuration properties166

Valid valuesPurposeCommon property

Select the input port from the list
of all input ports.

If the component runs in passThrough
mode, you can specify which input port
should receive the data records.

Pass Through Input Port

Select the output port from the list
of all output ports.

If the component runs in passThrough
mode, you can specify which output
port should send the data records out.

Pass Through Output
Port

For information on this property,
see the Latitude Data Integrator
Designer Guide.

If the graph is executed by a Cluster
of LDI Servers, this attribute must be
specified in the graph.

Allocation

Connector output ports
The Latitude connectors that deal with ingest have two output ports each.

The two output ports are:

• Port 0 returns status information. That is, it describes how many batches of records were
successfully ingested.

• Port 1 returns error information. That is, it describes the batches of records that failed to ingest.
Note that each record corresponds to a failed batch, not individual records.

Port 0 metadata

Field 5Field 4Field 3Field 2Field 1Connector

n/aTime Taken in
Seconds
(Numeric)

Number of
Records
Affected (Long)

End Row
(Long)

Start
Row
(Long)

Add/Update Records

n/aTime Taken in
Seconds
(Numeric)

Number of
Records
Affected (Long)

End Row
(Long)

Start
Row
(Long)

Add KVPs

Time Taken in
Seconds
(Numeric)

Number of
Managed
Values Added
(Long)

Number of
Managed
Attributes
Added (Long)

End Row
(Long)

Start
Row
(Long)

Add Managed Values

Time Taken in
Seconds
(Numeric)

Number of
Records
Affected (Long)

Number of
Records
Deleted (Long)

End Row
(Long)

Start
Row
(Long)

Delete Data

n/aState (String)Records
Rejected
(Long)

Records
Queued
(Long)

Records
Added
(Long)

Bulk Add/Replace
Records

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

167Latitude Connector Reference | Connector output ports

Port 1 metadata

Field 3Field 2Field 1Connector

Fault Message (String)End Row (Long)Start Row (Long)All DIWS connectors

n/an/aFault Message (String)Bulk Add/Replace Records

Writing the output to a file

You can write the output port information to a file by connecting a Writer component to the output port
of the Latitude connector. This sample graph has one UniversalDataWriter component writing out
data from port 0 of the Add/Update Records connector and a second one attached to Port 1 of the
connector:

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Latitude Connector Reference | Connector output ports168

Chapter 14

Troubleshooting Problems

This section provides information and solutions to problems you may encounter when working with
connectors and graphs.

OutOfMemory errors
If the Java process has insufficient memory allocated, you may get OutOfMemory errors when running
the graph.

In an unsuccessful run, the Console Tab will show an OutOfMemory error similar to this example:

ERROR [DataIngestBatchConsumer-0] - Failed with the following exception:
 java.lang.OutOfMemoryError: Java heap space
Exception in thread "DataIngestBatchConsumer-0" java.lang.OutOfMemoryError:
 Java heap space

You can avoid these errors by increasing the memory allocated to the Java process running the service.
The Edit JRE menu lets you increase the memory size on a global basis.

To avoid OutOfMemory errors:

1. Select Preferences from the Window menu.

2. From the Preferences menu, select Java > Installed JREs.

3. In the Installed JREs menu, click on the checked JRE and then click Edit.
The Edit JRE menu is displayed.

4. In the Default VM Arguments field, specify a Java option to set the heap size, such as -Xmx1024M.
The Edit JRE menu should look like the example above.

5. Click Finish to apply your change and close the Edit JRE menu.

6. Click OK to close the Preferences menu.

BufferOverflow errors
If the size of the data buffer is too small, you may get BufferOverflow errors when running the
graph.

In an unsuccessful run, the Console Tab will show a BufferOverflowException error similar to
this example:

ERROR [WatchDog] - Node DATA_READER0 error details:
java.lang.RuntimeException: The size of data buffer is only 131072.
Set appropriate parameter in defautProperties file.
 at org.jetel.data.StringDataField.serialize(StringDataField.java:285)
 at org.jetel.data.DataRecord.serialize(DataRecord.java:466)
 at org.jetel.graph.DirectEdge.writeRecord(DirectEdge.java:234)
 at org.jetel.graph.Edge.writeRecord(Edge.java:371)
 at org.jetel.component.DataReader.execute(DataReader.java:264)
 at org.jetel.graph.Node.run(Node.java:425)
 at java.lang.Thread.run(Thread.java:619)
Caused by: java.nio.BufferOverflowException
 at java.nio.Buffer.nextPutIndex(Buffer.java:501)
 at java.nio.DirectByteBuffer.putChar(DirectByteBuffer.java:465)
 at org.jetel.data.StringDataField.serialize(StringDataField.java:282)
 ... 6 more

You can avoid these errors by increasing the buffer settings in the defaultProperties configuration
file, copying the file into your LDI project, and then specifying the file to be used in the run configuration
of a graph. The defaultProperties configuration file is located in the cloveretl.engine.jar
JAR file, whose default location is:

DataIntegrator\plugins\com.cloveretl.gui_3.1.0\lib\lib\cloveretl.engine.jar

To modify the defaultProperties configuration file and add it to your LDI project:

1. Copy the cloveretl.engine.jar JAR file to a temporary location (for example, a temp directory).

2. Extract the file org\jetel\data\defaultProperties from the JAR file into the temp directory.

3. Open the defaultProperties in a text editor.

4. Increase the sizes of one or more of these properties:

• Record.MAX_RECORD_SIZE (default is 131072)
• DataParser.FIELD_BUFFER_LENGTH (default is 65536)
• DataFormatter.FIELD_BUFFER_LENGTH (default is 65536; this property is typically set to

the same size as DataParser.FIELD_BUFFER_LENGTH)
• DEFAULT_INTERNAL_IO_BUFFER_SIZE (default is 262144)

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Troubleshooting Problems | BufferOverflow errors170

The size of your final settings depend on the characteristics of your data set, which could mean
that you may have to make several runs of the graph and keep increasing these settings until your
ingest operations no longer fail due to memory problems.

5. Place the defaultProperties configuration file in your LDI project folder, by copying it into the
Navigator pane.

6. From the Designer tool bar, choose Run > Run Configurations.

7. From the left pane of the Run Configurations menu, select a graph to edit and then click the
Arguments tab in the run configuration.

If the graph you want to edit is not listed, you can either run the graph (so that its name will be
listed) or create a new configuration for the graph.

8. Enter the following text in the Program arguments field:

-config defaultProperties

At this point, the Arguments tab should look like this example:

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

171Troubleshooting Problems | BufferOverflow errors

9. Click Apply to save your changes.

10. Click either Run (to run the graph with the modified run configuration) or Close (to close the Run
Configurations menu).

Transaction-related errors
You may receive various transaction-related errors if you attempt to overlap running graphs wrapped
in transactions with graphs that do not start an outer transaction.

In general, only one outer transaction can be open and running at a time.

The following examples illustrate a few possible scenarios in which transaction-related errors may
occur:

• Suppose you have two LDI projects, one without a transaction (A), and one with it (B). Project A
runs successfully until project B starts (and opens an outer transaction). If project A is half-way
through its run and project B starts, the remaining steps in the project A will begin to fail because
their components do not reference the outer transaction ID.

• Suppose you have two projects containing Transaction RunGraph connectors. They will run
successfully if you run them serially, but any attempt to run them in parallel will result in the second
project failing.

• Suppose you have a Transaction RunGraph set to Do Nothing as its failure action. If this graph
fails the first time, it will also fail the second time you try to run it, because it is trying to open an
outer transaction that has already been started. Therefore, if such a graph fails, to troubleshoot it,
run the inner graphs separately, without running the Transaction RunGraph. Alternatively, you
can manually commit the transaction after each failure, using the /admin?op=rollback&outer¬
TransactionId="myID" command, where myID is the ID of the transaction. Note that myID
defaults to the transaction string when run with a Transaction RunGraph.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Troubleshooting Problems | Transaction-related errors172

Consider implementing one of the following recommendations (depending on your use case):

• Identify whether an outer transaction is currently running by issuing an http://mdex/ad¬
min?op=ping request. An HTTP code 403 means that a transaction is open.

• Before running a graph that is configured to open its own outer transaction, verify that an already
running transaction commits successfully.

• In some instances, when an already running transaction fails to commit, you may need to manually
commit it. One of the ways to do so is to issue an /admin?op=rollback operation on the MDEX
Engine server referencing the outer transaction ID. This operation rolls back all the changes from
that transaction, and then commits it. Once one transaction is closed, you can start a new
transaction, if needed.

• Instead of running a new graph that starts a transaction separately, add a component that was
previously part of this graph to any existing graph that starts an outer transaction.

For example, you can run a graph for importing or exporting configuration and schema inside a
Transaction RunGraph, or any other sample graph for running a baseline update (for subsequent
data loading). Similarly, Endeca recommends that you run the Reset MDEX connector inside a
graph that starts an outer transaction.

To summarize, to avoid transaction-related errors, ensure that projects containing transactions do not
overlap. Errors are avoided if at any given time, only one outer transaction is open.

Related Links
Committing an outer transaction on page 39

To manually commit an outer transaction that failed to commit successfully, run the
RollBackTransaction or CommitTransaction graph from the Latitude Quick Start project,
or issue an /admin?op=rollback&outerTransactionId="ID" command on the MDEX
Engine server, specifying the transaction ID.

Requirements for running graphs within a transaction on page 31
If you would like to use outer transactions in your graphs, consider these requirements.

Connection errors
This topic illustrates connection errors that may occur between your Endeca connectors and the MDEX
Engine.

If the MDEX Engine is not running, this error will result when an Endeca Latitude connector attempts
to make a connection to the MDEX Engine:

ERROR [ENDECA_ADD_KVPS0_0] - Connection refused: connect Error connecting
to the dgraph.
If applicable, ensure your SSL settings are correct.
ERROR [ENDECA_ADD_KVPS0_0] - Failed with the following exception:
 java.rmi.RemoteException: Connection refused: connect Error connecting to
 the dgraph.
 If applicable, ensure your SSL settings are correct.; nested exception is:

 org.apache.axis2.AxisFault: Connection refused: connect
ERROR [WatchDog] - Graph execution finished with error
...
ERROR [WatchDog] - !!! Phase finished with error - stopping graph run !!!

The error will also occur if the connector is incorrectly configured as to the MDEX Engine's host name
and/or port number, or if a connector that is not enabled for SSL attempts to connect to an SSL-enabled
MDEX Engine.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

173Troubleshooting Problems | Connection errors

Multi-assign delimiter error
A multi-assign delimiter must be specified when loading multi-assign data.

When loading multi-assign attribute data with either the Bulk Add/Replace Records connector or the
Add/Update Records connector, you must remember to specify the multi-assign delimiter character
when configuring the connector.

If you do not specify the delimiter (or specify the wrong one), the ingest operation should fail with an
error like the following:

ERROR [SocketReader] - Received error message from server: Attempt to
 add/replace record ProductID:34699 with unknown dimension value
 "Red;Green" within dimension "ProductType"
ERROR [WatchDog] - Graph execution finished with error
ERROR [WatchDog] - Node ENDECA_BULK_ADD_OR_REPLACE_RECORDS0 finished
 with status: ERROR

In this example, the multi-assign source is "Red;Green" (with the semi-colon being the delimiter). To
correct the problem, specify the correct multi-assign delimiter in the Multi-assign delimiter field of
the connector's configuration screen.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

Troubleshooting Problems | Multi-assign delimiter error174

Appendix A

MDEX Engine Index Configuration
Reference

This reference describes the XML elements in the MDEX Engine configuration documents. The
reference describes each element's format, attributes, and sub-elements, and provides an example
of its usage.

XML elements
These common elements are available for use in multiple Endeca index configuration files.

COMMENT
The COMMENT element associates a comment with a pipeline component and preserves the comment
when the file is rewritten. This element provides an alternative to using inline XML comments of the
form <!-- ... -->.

Format

<!ELEMENT COMMENT (#PCDATA)>

Attributes

The COMMENT element has no attributes.

Sub-elements

The COMMENT element has no sub-elements.

Example

This example includes an informational comment.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"
 <COMMENT>Displays ancestor managed values.</COMMENT>
/DIMSEARCH_CONFIG>

DIMNAME
The DIMNAME element specifies the name of a managed attribute.

Format

<!ELEMENT DIMNAME (#PCDATA)>

Attributes

The DIMNAME element has no attributes.

Sub-elements

The DIMNAME element has no sub-elements.

Example

This example shows the name of a managed attribute.

<RECORD>
 <DIMNAME="ProductType">
 ...
</RECORD>

PROP
The PROP element represents an Endeca standard attribute. it can optionally contain a PVAL element.

Format

<!ELEMENT PROP (PVAL?)>
<!ATTLIST PROP
 NAME CDATA #REQUIRED
>

Attributes

The PROP element has the following attributes.

NAME

Identifies the name of the standard attribute.

Sub-elements

The PROP element can optionally contain a PVAL element (or it can have no PVAL elements).

Example

This example shows a standard attribute name.

<RECORD>
 <PROP NAME="Endeca.Title">
 <PVAL>The Simpsons Archive</PVAL>
 </PROP>
 ...
</RECORD>

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | XML elements176

PROPNAME
The PROPNAME element represents an Endeca standard attribute.

Format

<!ELEMENT PROPNAME (#PCDATA)>

Attributes

The PROPNAME element has no attributes.

Sub-elements

The PROPNAME element has no sub-elements.

Example

This example shows a standard attribute name.

<RECORD>
 <PROPNAME="P_Price">
 ...
</RECORD>

PVAL
The PVAL element represents a standard attribute value.

Format

<!ELEMENT PVAL (#PCDATA)>

Attributes

The PVAL element has no attributes.

Sub-elements

The PVAL element has no sub-elements.

Example

This example shows a standard attribute value.

<PROP NAME="Endeca.Title">
 <PVAL>The Simpsons Archive</PVAL>
</PROP>

Dimsearch_config elements
The Dimsearch_config element controls how value searches behave.

This file configures search matching, spelling correction, filtering, and relevance ranking for value
search. These options are configured in the file's DIMSEARCH_CONFIG root element.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

177MDEX Engine Index Configuration Reference | Dimsearch_config elements

DIMSEARCH_CONFIG
A DIMSEARCH_CONFIG element sets up the configuration of standard and managed attributes for
value searches. Value searches search against the text collection that consists of the names of all the
attribute values in the data set.

Format

<!ELEMENT DIMSEARCH_CONFIG (COMMENT?, PARTIAL_MATCH?)>
<!ATTLIST DIMSEARCH_CONFIG
 FILTER_FOR_ANCESTORS (TRUE | FALSE) "FALSE"
 RELRANK_STRATEGY CDATA #IMPLIED
>

Attributes

The DIMSEARCH_CONFIG element has the following attributes.

FILTER_FOR_ANCESTORS

When set to TRUE, the results of a value search return only the highest ancestor attribute value. This
means that if both red zinfandel and red wine match a search query for "red" and
FILTER_FOR_ANCESTORS is set to true, only the red wine attribute value is returned. When set to
FALSE, then both attribute values are returned. The default value is FALSE.

RELRANK_STRATEGY

Specifies the name of a relevance ranking strategy for value search.

Sub-elements

The following table provides a brief overview of the DIMSEARCH_CONFIG sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Specifies if partial query matches should be supported for the
dimension.

PARTIAL_MATCH

Example

This example shows a configuration that displays ancestor attribute values.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"/>

Recsearch_config elements
The Recsearch_config element configures record search.

RECSEARCH_CONFIG
A RECSEARCH_CONFIG element sets up the configuration of attributes for record searches.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Recsearch_config elements178

Record searches search against the text collection that consists of the names of all the attribute values
in the data set.

Format

<!ELEMENT RECSEARCH_CONFIG
 (COMMENT?
 , SEARCH_INTERFACE*
)
>
<!ATTLIST RECSEARCH_CONFIG
 WORD_INTERP (TRUE | FALSE) "FALSE"
>

Attributes

The RECSEARCH_CONFIG element has the following attributes.

WORD_INTERP

Specifies whether to enable word interpretation forms (see-also suggestions) of user query terms
considered by the text search engine while processing record search requests. The default value is
FALSE.

Sub-elements

The following table provides a brief overview of the RECSEARCH_CONFIG sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Represents a named collection of dimensions and/or properties.SEARCH_INTERFACE

Example

This example shows the configuration for a business implementation.

<RECSEARCH_CONFIG>
 <SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="All" NAME="All">
 <MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">Region</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 </SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Relrank_strategies elements
The Relrank_strategies elements contain the relevance ranking strategies for an application.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

179MDEX Engine Index Configuration Reference | Relrank_strategies elements

The strategies are grouped in the root element RELRANK_STRATEGIES. Each strategy is expressed
in a RELRANK_STRATEGY element, which in turn is made of individual relevance ranking modules
such as RELRANK_EXACT, RELRANK_FIELD, and so on.

For more information about relevance ranking, see the Latitude Developer's Guide.

RELRANK_APPROXPHRASE
The RELRANK_APPROXPHRASE element implements the Approximate Phrase relevance ranking
module.

This module is similar to RELRANK_PHRASE, except that in the higher stratum, only the first instance
of an exact match of the user's phrase is considered, which improves system performance.

Note: The RELRANK_APPROXPHRASE element is no longer supported. Use the
RELRANK_PHRASE element with the APPROXIMATE attribute instead.

Format

<!ELEMENT RELRANK_APPROXPHRASE EMPTY>

Attributes

The RELRANK_APPROXPHRASE element has no attributes.

Sub-elements

The RELRANK_APPROXPHRASE element has no sub-elements.

RELRANK_EXACT
The RELRANK_EXACT element implements the Exact relevance ranking module.

This module groups results into strata based on how well they match a query string, with the highest
stratum containing results that match the user's query exactly. For details, see the Latitude Developer's
Guide.

Format

<!ELEMENT RELRANK_EXACT EMPTY>

Attributes

The RELRANK_EXACT element has no attributes.

Sub-elements

The RELRANK_EXACT element has no sub-elements.

Example

In this example, the ranking strategy MyStrategy includes the RELRANK_EXACT element.

<RELRANK_STRATEGY NAME="MyStrategy">
 <RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
 <RELRANK_EXACT/>

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Relrank_strategies elements180

 <RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>
</RELRANK_STRATEGY>

RELRANK_FIELD
The RELRANK_FIELD element implements the Field relevance ranking module.

This module assigns a score to each result based on the static rank of the standard attribute or managed
attribute member of the search interface that caused the document to match the query. For details,
see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FIELD EMPTY>

Attributes

The RELRANK_FIELD element has no attributes.

Sub-elements

The RELRANK_FIELD element has no sub-elements.

Example

In this example, the field module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
 <RELRANK_EXACT/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_FIRST
The RELRANK_FIRST element implements the First relevance ranking module.

This module ranks documents by how close the query terms are to the beginning of the document.
This module takes advantage of the fact that the closer something is to the beginning of a document,
the more likely it is to be relevant. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FIRST EMPTY>

Attributes

The RELRANK_FIRST element has no attributes.

Sub-elements

The RELRANK_FIRST element has no sub-elements.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

181MDEX Engine Index Configuration Reference | Relrank_strategies elements

Example

In this example, the ranking strategy All includes the First relevance ranking module.

<RELRANK_STRATEGY NAME="All">
 <RELRANK_FIRST/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_FREQ
The RELRANK_FREQ element implements the Frequency relevance ranking module.

This module provides result scoring based on the frequency (number of occurrences) of the user's
query terms in the result text. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FREQ EMPTY>

Attributes

The RELRANK_FREQ element has no attributes.

Sub-elements

The RELRANK_FREQ element has no sub-elements.

Example

This example implements a strategy called Frequency.

<RELRANK_STRATEGY NAME="Frequency">
 <RELRANK_FREQ/>
</RELRANK_STRATEGY>

RELRANK_GLOM
The RELRANK_GLOM element implements the Glom relevance ranking module.

This module ranks single-field matches ahead of cross-field matches. For details, see the Latitude
Developer's Guide.

Format

<!ELEMENT RELRANK_GLOM EMPTY>

Attributes

The RELRANK_GLOM element has no attributes.

Sub-elements

The RELRANK_GLOM element has no sub-elements.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Relrank_strategies elements182

Example

This example implements a strategy called Single_Field.

<RELRANK_STRATEGY NAME="Single_Field">
 <RELRANK_GLOM/>
</RELRANK_STRATEGY>

RELRANK_INTERP
The RELRANK_INTERP element implements the Interpreted (Interp) relevance ranking module.

This module provides a general-purpose strategy that assigns a score to each result document based
on the query processing techniques used to obtain the match. Matching techniques considered include
partial matching, cross-attribute matching, spelling correction, thesaurus, and stemming matching.
For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_INTERP EMPTY>

Attributes

The RELRANK_INTERP element has no attributes.

Sub-elements

The RELRANK_INTERP element has no sub-elements.

Example

In this example, the Interpreted module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
 <RELRANK_EXACT/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_MAXFIELD
The RELRANK_MAXFIELD element implements the Maximum Field (Maxfield) relevance ranking
module.

This module is similar to the Field strategy module, except it selects the static field-specific score of
the highest-ranked field that contributed to the match. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_MAXFIELD EMPTY>

Attributes

The RELRANK_MAXFIELD element has no attributes.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

183MDEX Engine Index Configuration Reference | Relrank_strategies elements

Sub-elements

The RELRANK_MAXFIELD element has no sub-elements.

Example

This example implements a strategy called High_Rank.

<RELRANK_STRATEGY NAME="High_Rank">
 <RELRANK_MAXFIELD/>
</RELRANK_STRATEGY>

RELRANK_MODULE
The RELRANK_MODULE element is used to refer to and compose other relevance ranking modules
into strategies.

Format

<!ELEMENT RELRANK_MODULE (RELRANK_MODULE_PARAM*)>
<!ATTLIST RELRANK_MODULE
 NAME CDATA #REQUIRED
>

Attributes

The RELRANK_MODULE element has the following attribute.

NAME

NAME refers to another defined relevance ranking module.

Sub-elements

The RELRANK_MODULE element has no supported sub-elements. RELRANK_MODULE_PARAM
is not supported.

Example

In this example, a strategy called Best Price is defined. Later, this strategy is included in another
strategy definition using the RELRANK_MODULE element.

<RELRANK_STRATEGY NAME="Best Price">
 <RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>
</RELRANK_STRATEGY>
<RELRANK_STRATEGY NAME="MyStrategy">
 <RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
 <RELRANK_EXACT/>
 <RELRANK_MODULE NAME="Best Price"/>
</RELRANK_STRATEGY>

RELRANK_NTERMS
The RELRANK_NTERMS element implements the Number of Terms (Nterms) relevance ranking
module.

This module assigns a score to each result record based on the number of query terms that the result
record matches. For example, in a three-word query, results that match all three words are ranked

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Relrank_strategies elements184

above results that match only two words, which are ranked above results that match only one word.
For details, see the Latitude Developer's Guide.

This module applies only to search modes where the number of results can vary in how many query
terms they match. These search modes include matchpartial, matchany, matchallpartial, and
matchallany. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_NTERMS EMPTY>

Attributes

The RELRANK_NTERMS element has no attributes.

Sub-elements

The RELRANK_NTERMS element has no sub-elements.

Example

In this example, the Nterms module is included in a strategy called NumberOfTerms.

<RELRANK_STRATEGY NAME="NumberOfTerms">
 <RELRANK_NTERMS/>
</RELRANK_STRATEGY>

RELRANK_NUMFIELDS
The RELRANK_NUMFIELDS element implements the Number of Fields (Numfields) relevance ranking
module.

This module ranks results based on the number of fields in the associated search interface in which
a match occurs. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_NUMFIELDS EMPTY>

Attributes

The RELRANK_NUMFIELDS element has no attributes.

Sub-elements

The RELRANK_NUMFIELDS element has no sub-elements.

Example

This example implements the Numfields relevance ranking module.

<RELRANK_STRATEGY NAME="NumFields">
 <RELRANK_NUMFIELDS/>
</RELRANK_STRATEGY>

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

185MDEX Engine Index Configuration Reference | Relrank_strategies elements

RELRANK_PHRASE
The RELRANK_PHRASE element implements the Phrase relevance ranking module.

This module states that results containing the user’s query as an exact phrase, or a subset of the exact
phrase, should be considered more relevant than matches simply containing the user’s search terms
scattered throughout the text. Note that records that have the phrase are ranked higher than records
which do not contain the phrase. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_PHRASE EMPTY>
<!ATTLIST RELRANK_PHRASE
 SUBPHRASE (TRUE | FALSE) "FALSE"
 APPROXIMATE (TRUE | FALSE) "FALSE"
 QUERY_EXPANSION (TRUE | FALSE) "FALSE"
>

Attributes

The RELRANK_PHRASE element has the following attributes.

SUBPHRASE

If set to TRUE, enables subphrasing, which ranks results based on the length of their subphrase
matches.

If set to FALSE (the default), subphrasing is not enabled, which means that results are ranked into
two strata: those that matched the entire phrase and those that did not.

APPROXIMATE

If set to TRUE, approximate matching is enabled. In this case, the Phrase module looks at a limited
number of positions in each result that a phrase match could possibly exist, rather than all the positions.
Only this limited number of possible occurrences is considered, regardless of whether there are later
occurrences that are better, more relevant matches.

QUERY_EXPANSION

If set to TRUE, enables query expansion, in which spelling correction, thesaurus, and stemming
adjustments are applied to the original phrase. With query expansion enabled, the Phrase module
ranks results that match a phrase’s expanded forms in the same stratum as results that match the
original phrase.

Sub-elements

The RELRANK_PHRASE element has no sub-elements.

Example

This example of the Phrase module enables approximate matching and query expansion, and disables
subphrasing.

<RELRANK_STRATEGY NAME="PhraseMatch">
 <RELRANK_PHRASE APPROXIMATE="TRUE"
 QUERY_EXPANSION="TRUE" SUBPHRASE="FALSE"/>
</RELRANK_STRATEGY>

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Relrank_strategies elements186

RELRANK_PROXIMITY
The RELRANK_PROXIMITY element implements the Proximity relevance ranking module.

This module ranks how close the query terms are to each other in a document by counting the number
of intervening words. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_PROXIMITY EMPTY>

Attributes

The RELRANK_PROXIMITY element has no attributes.

Sub-elements

The RELRANK_PROXIMITY element has no sub-elements.

Example

This example implements a strategy called All that includes the Proximity module.

<RELRANK_STRATEGY NAME="All">
 <RELRANK_PROXIMITY/>
 <RELRANK_INTERP/>
 <RELRANK_FIELD/>
</RELRANK_STRATEGY>

RELRANK_SPELL
The RELRANK_SPELL element implements the Spell relevance ranking module.

This module ranks matches that do not require spelling correction ahead of spelling-corrected matches.
For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_SPELL EMPTY>

Attributes

The RELRANK_SPELL element has no attributes.

Sub-elements

The RELRANK_SPELL element has no sub-elements.

Example

This example implements a strategy called TrueMatch.

<RELRANK_STRATEGY NAME="TrueMatch">
 <RELRANK_SPELL/>
</RELRANK_STRATEGY>

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

187MDEX Engine Index Configuration Reference | Relrank_strategies elements

RELRANK_STATIC
The RELRANK_STATIC element implements the Static relevance ranking module.

This module assigns a constant score to each result, depending on the type of search operation
performed. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_FREQ EMPTY>
<!ATTLIST RELRANK_STATIC
 NAME CDATA #REQUIRED
 ORDER (ASCENDING|DESCENDING) #REQUIRED
>

Attributes

The RELRANK_STATIC element has the following attributes.

NAME

Specifies the name of a standard or managed attribute that is used for static relevance ranking.

ORDER

Specifies how records should be sorted with respect to the specified standard or managed attribute.

Sub-elements

The RELRANK_STATIC element has no sub-elements.

Example

In this example, the BestPrice strategy consists of the Price managed attribute sorted from lowest to
highest.

<RELRANK_STRATEGY NAME="BestPrice">
 <RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>
</RELRANK_STRATEGY>

RELRANK_STRATEGIES
A RELRANK_STRATEGIES element contains any number of relevance ranking strategies for an
application.

Each strategy is specified in a RELRANK_STRATEGY element.

Format

<!ELEMENT RELRANK_STRATEGIES
 (COMMENT?
 , RELRANK_STRATEGY*
)
>

Attributes

The RELRANK_STRATEGIES element has no attributes.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Relrank_strategies elements188

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGIES sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Contains a list of relevance ranking strategies that affect the order
in which search results are returned to a user.

RELRANK_STRATEGY

Example

This example shows several strategies grouped under the root element RELRANK_STRATEGIES.

<RELRANK_STRATEGIES>
 <RELRANK_STRATEGY NAME="Bestseller Strategy">
 <RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>
 </RELRANK_STRATEGY>
 <RELRANK_STRATEGY NAME="Electronics Strategy">
 <RELRANK_FIELD/>
 <RELRANK_EXACT/>
 <RELRANK_INTERP/>
 <RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>
 <RELRANK_STATIC NAME="Product_Name" ORDER="ASCENDING"/>
 </RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

RELRANK_STRATEGY
The RELRANK_STRATEGY element contains a list of relevance ranking strategies that affect the
order in which search results are returned to a user.

Each sub-element of RELRANK_STRATEGY represents a specific type of strategy. If you want several
relevance ranking strategies to affect search result, then the order of the sub-elements, which represent
the strategies, is significant. The order of the sub-elements defines the order in which the strategies
are applied to the search results. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_STRATEGY (
 RELRANK_STATIC
 | RELRANK_EXACT
 | RELRANK_PHRASE
 | RELRANK_APPROXPHRASE
 | RELRANK_GLOM
 | RELRANK_SPELL
 | RELRANK_FIELD
 | RELRANK_MAXFIELD
 | RELRANK_INTERP
 | RELRANK_FREQ
 | RELRANK_WFREQ
 | RELRANK_NTERMS
 | RELRANK_PROXIMITY
 | RELRANK_FIRST
 | RELRANK_NUMFIELDS
 | RELRANK_MODULE

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

189MDEX Engine Index Configuration Reference | Relrank_strategies elements

)+>
<!ATTLIST RELRANK_STRATEGY
 NAME CDATA #REQUIRED
>

Attributes

The RELRANK_STRATEGY element has the following attribute.

NAME

Specifies the name of the strategy.

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGY sub-elements.

Brief descriptionSub-element

Assigns a constant score to each result, depending on the type of
search operation perform.

RELRANK_STATIC

Groups results into strata based on how well they match the query
string, with the highest stratum containing results that match the
user's query exactly.

RELRANK_EXACT

Considers results containing the user’s query as an exact phrase, or
a subset of the exact phrase, to be more relevant than matches

RELRANK_PHRASE

simply containing the user’s search terms scattered throughout the
text.

Not supported.RELRANK_APPROXPHRASE

Ranks single-field matches ahead of cross-field matches.RELRANK_GLOM

Ranks true matches ahead of spelling-corrected matches.RELRANK_SPELL

Assigns a score to each result based on the static rank of the
dimension or property member of the search interface that caused
the document to match the query.

RELRANK_FIELD

Similar to the Field strategy, except it selects the static field-specific
score of the highest-ranked field that contributed to the match.

RELRANK_MAXFIELD

A general-purpose strategy that assigns a score to each result
document based on the query processing techniques used to obtain

RELRANK_INTERP

the match. Matching techniques considered include partial matching,
cross-attribute matching, spelling correction, thesaurus, and stemming
matching.

Provides result scoring based on the frequency (number of
occurrences) of the user's query terms in the result text.

RELRANK_FREQ

Scores results based on the frequency of user query terms in the
result, while weighing the individual query term frequencies for each

RELRANK_WFREQ

result by the information content (overall frequency in the complete
data set) of each query term.

Assigns a score to each result record based on the number of query
terms that the result record matches.

RELRANK_NTERMS

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Relrank_strategies elements190

Brief descriptionSub-element

Ranks how close the query terms are to each other in a document
by counting the number of intervening words.

RELRANK_PROXIMITY

Ranks documents by how close the query terms are to the beginning
of the document.

RELRANK_FIRST

Ranks results based on the number of fields in the associated search
interface in which a match occurs.

RELRANK_NUMFIELDS

Used to refer to other RELRANK elements and compose them into
cohesive strategies.

RELRANK_MODULE

Example

This example presents a ranking strategy called Product_Search_Rank, which itself is composed of
multiple strategies.

<RELRANK_STRATEGY NAME="Product_Search_Rank">
 <RELRANK_MODULE NAME="IsAvailable"/>
 <RELRANK_FIELD/>
 <RELRANK_PHRASE/>
 <RELRANK_MODULE NAME="BestPrice"/>
</RELRANK_STRATEGY>

RELRANK_WFREQ
The RELRANK_WFREQ element implements the Weighted Frequency (Wfreq) relevance ranking
module.

This module scores results based on the frequency of user query terms in the result, while weighing
the individual query term frequencies for each result by the information content (overall frequency in
the complete data set) of each query term. For details, see the Latitude Developer's Guide.

Format

<!ELEMENT RELRANK_WFREQ EMPTY>

Attributes

The RELRANK_WFREQ element has no attributes.

Sub-elements

The RELRANK_WFREQ element has no sub-elements.

Example

This example implements a strategy called Term_Freq.

<RELRANK_STRATEGY NAME="Term_Freq">
 <RELRANK_WFREQ/>
</RELRANK_STRATEGY>

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

191MDEX Engine Index Configuration Reference | Relrank_strategies elements

Search_interface elements
The Search_interface elements are used to build and configure search interfaces.

The file's root element is SEARCH_INTERFACE. Search interfaces control record search behavior
for groups of standard and managed attributes.

MEMBER_NAME
The MEMBER_NAME element specifies the name of an Endeca standard or managed attribute that
is part of a SEARCH_INTERFACE.

For information on search interfaces, see the Latitude Developer's Guide.

Format

<!ELEMENT MEMBER_NAME (#PCDATA)>
<!ATTLIST MEMBER_NAME
 RELEVANCE_RANK CDATA #IMPLIED
 SNIPPET_SIZE CDATA "0"
>

Attributes

The MEMBER_NAME element has the following attributes.

RELEVANCE_RANK

RELEVANCE_RANK is an unsigned integer that specifies the relevance rank of a match on the
specified Endeca standard or managed attribute.

SNIPPET_SIZE

The presence of SNIPPET_SIZE enables snippeting for a MEMBER_NAME and the value of
SNIPPET_SIZE specifies maximum number of words a snippet can contain. Omitting this attribute or
setting its value equal to zero disables snippeting. For more information, see "Using Snippeting in
Record Searches" in the Latitude Developer's Guide.

Sub-elements

The MEMBER_NAME element has no sub-elements.

Example

In the following example for a search interface named ProductSearch, four Endeca attributes are listed
in MEMBER_NAME elements, each with its own relevance rank. A fifth MEMBER_NAME element
enables snippeting for the Description attribute.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="ProductRelRank" NAME="ProductSearch">
 <MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 <MEMBER_NAME SNIPPET_SIZE="10">Description</MEMBER_NAME>
</SEARCH_INTERFACE>

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Search_interface elements192

PARTIAL_MATCH
The PARTIAL_MATCH element specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

For details about searching and search modes, see the Latitude Developer's Guide.

Format

<!ELEMENT PARTIAL_MATCH EMPTY>
<!ATTLIST PARTIAL_MATCH
 MIN_WORDS_INCLUDED CDATA #IMPLIED
 MAX_WORDS_OMITTED CDATA #IMPLIED
>

Attributes

The PARTIAL_MATCH element has the following attributes.

MIN_WORDS_INCLUDED

Specifies that search results match at least this number of terms in the search query. This value must
be an integer greater than zero. The default value of this attribute is one.

MAX_WORDS_OMITTED

Specifies the maximum number of query terms that may be ignored in the search query. This value
must be a non-negative integer. If set to zero or left unspecified, any number of words may be omitted
(i.e., there is no maximum). The default value of this attribute is two.

Sub-elements

The PARTIAL_MATCH element has no sub-elements.

Example

In this example, the search interface is subject to partial matching in which at least two of the words
in the search query are included, and no more than one is omitted.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="WineRelRank" NAME="WinePartSearch">
 <MEMBER_NAME RELEVANCE_RANK="2">Body</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
 <PARTIAL_MATCH MAX_WORDS_OMITTED="1" MIN_WORDS_INCLUDED="2"/>
</SEARCH_INTERFACE>

SEARCH_INTERFACE
The SEARCH_INTERFACE element is a named collection of Endeca standard attributes and/or
managed attributes.

Both standard attributes and managed attributes can co-exist in a SEARCH_INTERFACE.The Endeca
attributes in the group are specified in MEMBER_NAME elements.

If a standard attribute or managed attribute is not included in any SEARCH_INTERFACE element,
then an implicit SEARCH_INTERFACE element is created with the same name as the standard attribute
or managed attribute and that single standard attribute or managed attribute as its only member. The
value for the CROSS_FIELD_RELEVANCE_RANK is set to 0.

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

193MDEX Engine Index Configuration Reference | Search_interface elements

Format

<!ELEMENT SEARCH_INTERFACE
 (MEMBER_NAME+
 , PARTIAL_MATCH?
)
>
<!ATTLIST SEARCH_INTERFACE
 NAME CDATA #REQUIRED
 DEFAULT_RELRANK_STRATEGY CDATA #IMPLIED
 CROSS_FIELD_RELEVANCE_RANK CDATA #IMPLIED
 CROSS_FIELD_BOUNDARY (ALWAYS
 |ON_FAILURE
 |NEVER) "NEVER"
 STRICT_PHRASE_MATCH (TRUE|FALSE) #IMPLIED
>

Attributes

The SEARCH_INTERFACE element has the following attributes.

NAME

A unique name for this search interface.

DEFAULT_RELRANK_STRATEGY

For record search, a default relevance scoring function assigned to a SEARCH_INTERFACE. For
example, if your search interface is called Flavors, the DEFAULT_RELRANK_STRATEGY attribute
has the value "Flavors_strategy".

CROSS_FIELD_RELEVANCE_RANK

Specifies the relevance rank score for cross-field matches. The value should be an unsigned 32-bit
integer. The default value for CROSS_FIELD_RELEVANCE_RANK is 0.

CROSS_FIELD_BOUNDARY

Specifies when the search engine should try to match search queries across standard attribute/managed
attribute boundaries, but within the members of the SEARCH_INTERFACE. If its value is set to
ON_FAILURE, then the search engine will only try to match queries across standard attribute/managed
attribute boundaries if it fails to find any match within a single standard attribute/managed attribute. If
its value is set to ALWAYS, then the engine will always look for matches across standard
attribute/managed attribute boundaries, in addition to matches within a standard attribute/managed
attribute.

By default, the MDEX Engine will not look across boundaries for matches.

STRICT_PHRASE_MATCH

Specifies that the MDEX Engine should interpret a query strictly when comparing white space in the
query with punctuation in the source text. If set to FALSE, partial word tokens connected in the source
text by punctuation can be matched to a phrase query where the partial tokens are separated by
spaces instead of matching punctuation. The default value of this attribute is TRUE.

Sub-elements

The following table provides a brief overview of the SEARCH_INTERFACE sub-elements.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Search_interface elements194

Brief descriptionSub-element

Specifies the name of a property or dimension that is part of a
SEARCH_INTERFACE.

MEMBER_NAME

Specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

PARTIAL_MATCH

Example

This example establishes a search interface called AllFields, which contains four members.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
 CROSS_FIELD_RELEVANCE_RANK="0"
 DEFAULT_RELRANK_STRATEGY="All" NAME="AllFields">
 <MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="3">ProductName</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
 <MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
</SEARCH_INTERFACE>

Stop_words elements
The Stop_words elements contain words that should be eliminated from a query before it is processed
by the MDEX Engine.

Each stop is specified in a STOP_WORD element.

STOP_WORD
The STOP_WORD element identifies words that should be eliminated from a query before it is
processed.

Examples of common stop words include the words "the" and "of".

Format

<!ELEMENT STOP_WORD (#PCDATA)>

Attributes

The STOP_WORD element has no attributes.

Sub-elements

The STOP_WORD element has no sub-elements.

Example

This example shows a common set of stop words.

<STOP_WORDS>
 <STOP_WORD>a</STOP_WORD>
 <STOP_WORD>an</STOP_WORD>
 <STOP_WORD>of</STOP_WORD>

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

195MDEX Engine Index Configuration Reference | Stop_words elements

 <STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

STOP_WORDS
A STOP_WORDS element specifies the stop words enabled in your application.

Each stop word is represented by a STOP_WORD element.

Format

<!ELEMENT STOP_WORDS
 (COMMENT?
 , STOP_WORD*
)
>

Attributes

The STOP_WORDS element has no attributes.

Sub-elements

The following table provides a brief overview of the STOP_WORDS sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Identifies words that should be eliminated from a query before it is
processed.

STOP_WORD

Example

This example shows a common set of stop words.

<STOP_WORDS>
 <STOP_WORD>a</STOP_WORD>
 <STOP_WORD>an</STOP_WORD>
 <STOP_WORD>of</STOP_WORD>
 <STOP_WORD>the</STOP_WORD>
</STOP_WORDS>

Thesaurus elements
The Thesaurus elements contain thesaurus entries for your application.

Thesaurus entries provide a means to account for alternate forms of a user's query. These entries
provide concept-level mappings between words and phrases. For details, see the Latitude Developer's
Guide.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Thesaurus elements196

THESAURUS
A THESAURUS element contains the term equivalence mappings for an application.

THESAURUS is the root element for all thesaurus entries.

Note that the order of sub-elements within THESAURUS is significant.You should add sub-elements
in the order in which they are listed in the format section.

For example, THESAURUS_ENTRY sub-elements appear before THESAURUS_ENTRY_ONEWAY.
See the example below.

Format

<!ELEMENT THESAURUS
 (COMMENT?
 , THESAURUS_ENTRY*
 , THESAURUS_ENTRY_ONEWAY*
)
>

Attributes

The THESAURUS element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS sub-elements.

Brief descriptionSub-element

Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

COMMENT

Indicates a set of word forms (contained in THESAURUS_FORM
elements) that are equivalent.

THESAURUS_ENTRY

Specifies single-direction equivalency mappings.THESAURUS_ENTRY_ONEWAY

Example

This example shows the thesaurus entries for an application.

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
 <THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>Red wine</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>Merlot</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Shiraz</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Bordeaux</THESAURUS_FORM_TO>
 </THESAURUS_ENTRY_ONEWAY>
</THESAURUS>

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

197MDEX Engine Index Configuration Reference | Thesaurus elements

THESAURUS_ENTRY
The THESAURUS_ENTRY element indicates a set of word forms that are equivalent.

The word forms are contained in THESAURUS_FORM elements. A search for any of these forms
(including stemming-matched versions) returns hits for all of the forms.

Format

<!ELEMENT THESAURUS_ENTRY (THESAURUS_FORM+)>

Attributes

The THESAURUS_ENTRY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY sub-element.

Brief descriptionSub-element

Indicates a set of word forms that are equivalent.THESAURUS_ENTRY

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

THESAURUS_ENTRY_ONEWAY
A THESAURUS_ENTRY_ONEWAY element specifies a single-direction mapping.

Searches for any of the "from" forms (THESAURUS_FORM_FROM elements) also return hits for all
of the "to" forms (THESAURUS_FORM_TO elements). The other direction is not enabled; that is,
searches for the "to" forms do not return results for either the "from" forms or the other "to" forms.

Format

<!ELEMENT THESAURUS_ENTRY_ONEWAY
 (THESAURUS_FORM_FROM
 , THESAURUS_FORM_TO+
)
>

Attributes

The THESAURUS_ENTRY_ONEWAY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY_ONEWAY sub-elements.

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Thesaurus elements198

Brief descriptionSub-element

Specifies the "from" form in a one-way word mapping.THESAURUS_FORM_FROM

Specifies the "to" form in a one-way word mapping.THESAURUS_FORM_TO

Example

In this example, searches for Red wine would return hits for Red wine as well as for Merlot,
Shiraz, and Bordeaux. Since the equivalence is one-way, more specific searches such as Shiraz
or Bordeaux would not return results for the more general concept Red wine.

<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>Red wine</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>Merlot</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Shiraz</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>Bordeaux</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

THESAURUS_FORM
The THESAURUS_FORM element contains a word form that is used by the THESAURUS_ENTRY
element to set an equivalence.

Format

<!ELEMENT THESAURUS_FORM (#PCDATA)>

Attributes

The THESAURUS_FORM element has no attributes.

Sub-elements

The THESAURUS_FORM element has no sub-elements.

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
 <THESAURUS_ENTRY>
 <THESAURUS_FORM>france</THESAURUS_FORM>
 <THESAURUS_FORM>french</THESAURUS_FORM>
 </THESAURUS_ENTRY>
</THESAURUS>

THESAURUS_FORM_FROM
The THESAURUS_FORM_FROM element provides the "from" form within a
THESAURUS_ENTRY_ONEWAY element.

Format

<!ELEMENT THESAURUS_FORM_FROM (#PCDATA)>

Endeca® Latitude LDI MDEX Engine Components GuideEndeca Confidential

199MDEX Engine Index Configuration Reference | Thesaurus elements

Attributes

The THESAURUS_FORM_FROM element has no attributes.

Sub-elements

The THESAURUS_FORM_FROM element has no sub-elements.

Example

In this example, searches for home theater would return hits for home theater as well as for
stereo and television. Because the equivalence is one-way, more specific searches such as
stereo or television would not return results for the more general concept home theater.

<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>home theater</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>stereo</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>television</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

THESAURUS_FORM_TO
The THESAURUS_FORM_TO element provides the "to" form within a THESAURUS_ENTRY_ONEWAY
element.

Format

<!ELEMENT THESAURUS_FORM_TO (#PCDATA)>

Attributes

The THESAURUS_FORM_TO element has no attributes.

Sub-elements

The THESAURUS_FORM_TO element has no sub-elements.

Example

In this example, searches for home theater would return hits for home theater as well as for
stereo and television. Because the equivalence is one-way, more specific searches such as
stereo or television would not return results for the more general concept home theater.

<THESAURUS_ENTRY_ONEWAY>
 <THESAURUS_FORM_FROM>home theater</THESAURUS_FORM_FROM>
 <THESAURUS_FORM_TO>stereo</THESAURUS_FORM_TO>
 <THESAURUS_FORM_TO>television</THESAURUS_FORM_TO>
</THESAURUS_ENTRY_ONEWAY>

Endeca ConfidentialEndeca® Latitude LDI MDEX Engine Components Guide

MDEX Engine Index Configuration Reference | Thesaurus elements200

Index

A

Add KVPs connector
configuration properties 151
configuring for key-value pair loads 117
enabling SSL 152
reference details 150

Add Managed Values connector
adding to graph 124
configuration properties 153
configuring for taxonomy loads 125
enabling SSL 154
reference details 152

Add/Update Records connector
adding to graph 56
configuration properties 149
configuring for incremental updates 57
configuring for PDR output 72
enabling SSL 149
reference details 148

attribute schema
configuration input file 62
managed attributes input file 75

attribute schema load
about 61
loading DDRs 75
loading PDRs 61

B

baseline update, See full index load
Begin Transaction graph 33
BufferOverflow errors, avoiding 170
Bulk Add/Replace Records connector

adding to graph 46
configuration properties 146
configuring for full index load 53
enabling SSL 147
reference details 145

C

COMMENT element 175
Commit Transaction graph 34
Common configuration properties for Latitude connectors
165
configuration and schema

importing and exporting 129
configuration document loads, See index configuration
loads
Custom properties, creating 20

D

data types, supported 25
DDRs, loading, See loading DDRs
Delete Data connector

adding to graph 140
configuration properties 155
configuring for delete operation 142
enabling SSL 155
reference details 154
types of delete operations 139

deleting data
adding components to graph 140
configuring Delete Data connector 142
configuring metadata 141
configuring Reader component 141
running the graph 143
source data format 139

Designer GUI overview, LDI 11
DIMNAME element 176
Dimsearch_config

about 177
DIMSEARCH_CONFIG element 178

DIMSEARCH_CONFIG element 178

E

Edge component
configuring for deleting data 141
configuring for full index load 48
configuring for loading index configuration 93
configuring for loading PDRs 64
configuring for loading taxonomy 126
configuring for transaction graph 36

Enabled configuration property for Latitude connectors
167
enabling SSL 29
Export Config connector

configuration properties 157
configuring in a graph 131
reference details 156

exporting
configuration and schema 129

externally managed taxonomies, loading 121

F

full index load
configuring Bulk Add/Replace Records connector
53
configuring Edge component 48
configuring Reader component 47
creating graph 45

full index load (continued)
overview 41
running graph 54
source data format 43

G

Global Configuration Record, loading 101
graph

adding Add Managed Values connector 124
adding Add/Update Records connector 56
adding Bulk Add/Replace Records connector 46
adding Delete Data connector 140
adding UniversalDataReader component 46
adding WebServiceClient component 91
creating empty 45
running for full index load 54
running to add key-value pairs 119
running to delete data 143
running to load incremental updates 58
running to load taxonomy 127

I

Import Config connector
configuration properties 158
configuring in a graph 137
reference details 157

importing
configuration and schema 129

incremental updates
overview 55
running graph 58
using the Add/Update Records connector 57

index configuration loads
about 90
adding components to graph 91
configuring Reader component 92
configuring the Edge component 93
creating graph 91
using WebServiceClient component 99

J

Java heap space errors, avoiding 169

K

key-value pair loads
about 115
configuring Add KVPs connector 117
configuring Edge metadata for graph 118
configuring Reader for graph 116
input format 115
running graph 119

KVP loads, See key-value pair loads

L

Latitude connectors
Add KVPs 150
Add Managed Values 152
Add/Update Records 148
Bulk Add/Replace Records 145
Delete Data 154
Export Config 156
Import Config 157
overview 12
Reset MDEX 159
TransactionRunGraph 161
Visual and Common configuration properties 165

Latitude Data Integrator
about the Server 14
additional documentation 29
creating empty graph 45
creating projects 42
overview of Designer 11
product overview

LDI, See Latitude Data Integrator
loading DDRs

configuring Reader and Edge components 77
overview 75

loading managed attribute metadata
configuring WebServiceClient component 81

loading PDRs
configuring Add/Update Records connector 72
configuring Edge component 64
configuring Reader component 64
overview 61

M

managed attribute name for taxonomy, specifying 125
managed attributes, default values for 28
managed values, loading 121
mdexType Custom properties, creating 20
MEMBER_NAME element 192
metadata

configuring for deleting data 141
configuring for full index load 48
configuring for loading index configuration 93
configuring for loading PDRs 64
configuring for loading taxonomy 126
configuring for transaction graph 36
supported data types 25

multi-assign data
about 44
configuring for Add/Update Records connector 58
configuring for Bulk Add/Replace Records connector
54
errors from misconfiguration 174

O

order of loading data 20

Endeca® Latitude202

Index

outer transaction
about 31
when to use in the LDI project 18

OutOfMemory errors, avoiding 169

P

PARTIAL_MATCH element 193
PDRs, loading 61
Phase configuration property for Latitude connectors 166
precedence rules

configuration input file 105
configuring Reader component 106

precedence_rules
about 103

primary key
about 44
configuring for Add/Update Records connector 58
configuring for Bulk Add/Replace Records connector
54

project, creating 42
PROP element 176
PROPNAME element 177
PVAL element 177

R

record schema load, See attribute schema load
record spec property, See primary key
Recsearch_config

about 178
RECSEARCH_CONFIG element 179

RECSEARCH_CONFIG element 179
RELRANK_APPROXPHRASE element 180
RELRANK_EXACT element 180
RELRANK_FIELD element 181
RELRANK_FIRST element 181
RELRANK_FREQ element 182
RELRANK_GLOM element 182
RELRANK_INTERP element 183
RELRANK_MAXFIELD element 183
RELRANK_MODULE element 184
RELRANK_NTERMS element 184
RELRANK_NUMFIELDS element 185
RELRANK_PHRASE element 186
RELRANK_PROXIMITY element 187
RELRANK_SPELL element 187
RELRANK_STATIC element 188
Relrank_strategies

about 180
RELRANK_APPROXPHRASE element 180
RELRANK_EXACT element 180
RELRANK_FIELD element 181
RELRANK_FIRST element 181
RELRANK_FREQ element 182
RELRANK_GLOM element 182
RELRANK_INTERP element 183
RELRANK_MAXFIELD element 183
RELRANK_MODULE element 184

Relrank_strategies (continued)
RELRANK_NTERMS element 184
RELRANK_NUMFIELDS element 185
RELRANK_PHRASE element 186
RELRANK_PROXIMITY element 187
RELRANK_SPELL element 187
RELRANK_STATIC element 188
RELRANK_STRATEGIES element 188
RELRANK_STRATEGY element 189
RELRANK_WFREQ element 191

RELRANK_STRATEGIES element 188
RELRANK_STRATEGY element 189
RELRANK_WFREQ element 191
Reset MDEX connector

configuration properties 160
reference details 159

Rollback Transaction graph 34

S

Search_interface
about 192
MEMBER_NAME element 192
PARTIAL_MATCH element 193
SEARCH_INTERFACE element 193

SEARCH_INTERFACE element 193
Server, overview of Latitude Data Integrator 14
source data format

attribute schema 62
deleting data 139
full index load 43
incremental updates 55
key-value pair loads 115
managed attribute schema 75
precedence rules 105
taxonomy loads 122
transaction graph 35

SSL enablement 29
Add KVPs connector 152
Add Managed Values connector 154
Add/Update Records connector 149
Bulk Add/Replace Records connector 147
Delete Data connector 155
Export Config connector 157
Import Config connector 159
Reset MDEX connector 161
Transaction RunGraph connector 164

standard attributes, default values for 27
STOP_WORD element 195
Stop_words

about 195
STOP_WORD element 195
STOP_WORDS element 196

STOP_WORDS element 196

T

taxonomy loads
configuring Add Managed Values connector 125

203

Index

taxonomy loads (continued)
configuring Reader component 124
creating graph 123
metadata configuration 126
overview 121
running graph 127
source input file 122
specifying managed attribute name 125

Thesaurus
about 196
THESAURUS element 197
THESAURUS_ENTRY element 198
THESAURUS_ENTRY_ONEWAY element 198
THESAURUS_FORM element 199
THESAURUS_FORM_FROM element 200
THESAURUS_FORM_TO element 200

THESAURUS element 197
THESAURUS_ENTRY element 198
THESAURUS_ENTRY_ONEWAY element 198
THESAURUS_FORM element 199
THESAURUS_FORM_FROM element 200
THESAURUS_FORM_TO element 200
transaction

about 31
performance impact 40
requirements 31

transaction errors, avoiding 172
transaction graph

creating 34
steps input file 35

Transaction RunGraph connector
configuration properties 163
configuring 37

TransactionRunGraph connector 161
transactions

configuring Edge for transaction graph 36
configuring Reader component for transaction graph
36
making existing graphs run within them 32
manually committing 39

U

UniversalDataReader component
adding to full index load graph 46
configuring for DDR input 77
configuring for deleting data 141
configuring for full index load 47
configuring for index configuration input 92
configuring for PDR input 64
configuring for precedence rules 106
configuring for taxonomy loads 124
configuring for transaction graph input 36

V

Visual configuration properties for Latitude connectors
165

W

WebServiceClient component
adding to graph 91
configuring for managed attributes 81
using for index configuration loads 99

workspace.prm
MDEX_TRANSACTION_ID 25
parameters specific to the MDEX Engine 25
specifying an outer transaction ID 19

X

XML elements
COMMENT 175
DIMNAME 176
PROP 176
PROPNAME 177
PVAL 177

Endeca® Latitude204

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Latitude Data Integrator Overview
	LDI Designer
	List of Latitude connectors
	LDI Server

	Before You Begin
	Data loading strategies and concepts
	Which updates to run
	When to use transactions

	Configuration tips
	Setting up the workspace.prm file
	Recommended order of loading data
	Creating mdexType Custom properties
	Specifying multiple record delimiters

	Supported data types
	Latitude-specific parameters in workspace.prm
	Default values for new attributes
	SSL support
	Additional documentation

	Working with Transaction Graphs
	About transactions
	Requirements for running graphs within a transaction
	Wrapping existing graphs in a transaction
	Transaction graphs in the Latitude Quick Start project
	Creating a Transaction RunGraph graph
	Format of the steps input file
	Adding components to the transaction graph
	Configuring the Reader for the transaction input file
	Configuring the Edge for Reader component
	Configuring the Transaction RunGraph connector
	Running the transaction graph

	Committing an outer transaction
	Performance impact of transactions

	Full Initial Index Load of Records
	Overview of the full initial index load
	Creating a project
	Source data format
	Adding the source data to the project

	Creating a graph
	Adding components to the graph
	Configuring the components
	Configuring the Reader component
	Configuring metadata for the Reader Edge

	Configuring the Reformat component
	Configuring metadata for the Reformat Edge

	Configuring the Bulk Add/Replace Records connector

	Running the graph to load records

	Incremental Updates
	Overview of incremental updates
	Adding components to the incremental updates graph
	Configuring the Reader and the Edge for incremental updates
	Configuring the Add/Update Records connector
	Running the incremental updates graph

	Loading the Attribute Schema
	About attribute schema files
	Loading the standard attribute schema
	Format of the PDR input file
	Adding components to the standard attributes schema graph
	Configuring the Reader for the PDR input file
	Configuring the Reader Edge

	Configuring the Reformat component for standard attributes
	Configuring the Reformat Edge

	Configuring the Denormalizer component
	Configuring the Denormalizer Edge

	Configuring the WebServiceClient component for standard attributes

	Loading the managed attribute schema
	Format of the DDR input file
	Adding components to the managed attributes schema graph
	Configuring the Reader and the Edge for DDRs
	Configuring the Reformat component for managed attributes
	Configuring the Reformat Edge

	Configuring the Denormalizer and the Edge for DDRs
	Configuring the WebServiceClient component for managed attributes

	Using a transaction graph to load the schemas

	Loading Configuration Files
	Types of MDEX Engine configuration documents
	Global Configuration Record
	dimsearch_config document
	recsearch_config document
	relrank_strategies document
	stop_words document
	thesaurus document

	Loading the configuration documents
	Creating a graph
	Adding components to the graph
	Configuring the Reader for the configuration document
	Configuring metadata for the Reader Edge

	Configuring the FastSort component
	Setting metadata for the FastSort component

	Configuring the first Denormalizer component
	Configuring metadata for the first Denormalizer

	Configuring the second Denormalizer component
	Setting metadata for the second Denormalizer

	Configuring the WebServiceClient component

	Loading the GCR

	Loading Precedence Rules
	About precedence rules
	Schema for precedence rules
	Format of the precedence rules input file
	Adding components to the precedence rules graph
	Configuring the precedence rules Reader
	Configuring the Reader Edge

	Configuring the Reformat component for precedence rules
	Configuring the precedence rules Reformat Edge

	Configuring the precedence rules WebServiceClient component
	Deleting precedence rules

	Adding Key-Value Pairs
	About key-value pair data
	Format of the KVP input file
	Configuring the Reader for the KVP input file
	Configuring the Add KVPs connector
	Configuring KVP metadata
	Running the KVPs graph

	Loading Taxonomies
	Overview of loading a taxonomy
	Format of the taxonomy input file
	Creating a graph for the taxonomy
	Adding components to the taxonomy graph
	Configuring the Reader for the taxonomy input file
	Configuring the Add Managed Values connector
	Configuring taxonomy metadata
	Running the taxonomy graph

	Importing and Exporting the Configuration
	About importing and exporting
	Exporting the configuration
	Adding components to the export graph
	Configuring the Export Config connector
	Configuring the Edge in the export graph

	Configuring the UniversalDataWriter component

	Importing the configuration
	Adding components to the import graph
	Configuring the Reader in the import graph
	Configuring the Edge in the import graph

	Configuring the Import Config connector

	Running the configuration graphs with a transaction graph

	Deleting Data
	Format of the delete input file
	Adding components to the delete data graph
	Configuring the Reader for the delete input file
	Configuring the metadata for data deletes
	Configuring the Delete Data connector
	Running the delete data graph

	Latitude Connector Reference
	Bulk Add/Replace Records connector
	Add/Update Records connector
	Add KVPs connector
	Add Managed Values connector
	Delete Data connector
	Export Config connector
	Import Config connector
	Reset MDEX connector
	Transaction RunGraph connector
	Visual and Common configuration properties
	Connector output ports

	Troubleshooting Problems
	OutOfMemory errors
	BufferOverflow errors
	Transaction-related errors
	Connection errors
	Multi-assign delimiter error

	MDEX Engine Index Configuration Reference
	XML elements
	COMMENT
	DIMNAME
	PROP
	PROPNAME
	PVAL

	Dimsearch_config elements
	DIMSEARCH_CONFIG

	Recsearch_config elements
	RECSEARCH_CONFIG

	Relrank_strategies elements
	RELRANK_APPROXPHRASE
	RELRANK_EXACT
	RELRANK_FIELD
	RELRANK_FIRST
	RELRANK_FREQ
	RELRANK_GLOM
	RELRANK_INTERP
	RELRANK_MAXFIELD
	RELRANK_MODULE
	RELRANK_NTERMS
	RELRANK_NUMFIELDS
	RELRANK_PHRASE
	RELRANK_PROXIMITY
	RELRANK_SPELL
	RELRANK_STATIC
	RELRANK_STRATEGIES
	RELRANK_STRATEGY
	RELRANK_WFREQ

	Search_interface elements
	MEMBER_NAME
	PARTIAL_MATCH
	SEARCH_INTERFACE

	Stop_words elements
	STOP_WORD
	STOP_WORDS

	Thesaurus elements
	THESAURUS
	THESAURUS_ENTRY
	THESAURUS_ENTRY_ONEWAY
	THESAURUS_FORM
	THESAURUS_FORM_FROM
	THESAURUS_FORM_TO

	Index

