
Endeca® Latitude

Administrator's Guide

Version 2.2.2 Rev. A • June 2014



Copyright and disclaimer
Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Table of Contents

Copyright and disclaimer ..........................................................2

Preface..........................................................................6
About this guide ................................................................6
Who should use this guide.........................................................6
Conventions used in this guide......................................................6
Contacting Oracle Support.........................................................7

Chapter 1: Introduction ............................................................8
Taking ownership of your Latitude implementation........................................8
Overview of administrator tasks .....................................................9

Chapter 2: Using the Administration Web Service ....................................11
About the Administration Web Service ...............................................11
Accessing the Administration Web Service ............................................11
Using the Administration Web Service ...............................................11

Chapter 3: Job Monitoring ........................................................14
About job monitoring ............................................................14
About jobs....................................................................14
Requesting a list of jobs..........................................................15

Chapter 4: Capturing Snapshots ...................................................16
About snapshots ...............................................................16
Restrictions for taking a snapshot...................................................17
Creating a snapshot ............................................................17
Restoring an MDEX Engine from a snapshot ..........................................18
cpmdex syntax ................................................................18

Chapter 5: Dgraph Administrative Tasks ............................................20
Checking the Dgraph with the ping command ..........................................20
About connecting Web browsers to your MDEX Engine...................................20
Managing Dgraph core dump files ..................................................21

Managing Dgraph crash dump files on Windows ....................................21
Managing Dgraph core dump files on Linux .......................................21

Collecting debugging information ...................................................22
Logs created by the Dgraph...................................................22

Troubleshooting socket and port errors with Dgraph .....................................23
Running multiple Dgraphs on the same Windows machine ................................23
Troubleshooting baseline update failures .............................................24
Identifying connection errors ......................................................24

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Table of Contents 4

Chapter 6: Administrative Operations and Logging Variables ..........................25
About administrative and configuration operations.......................................25

List of administrative operations ................................................26
exit .................................................................27
flush ................................................................29
help ................................................................29
logroll ...............................................................29
merge...............................................................29
ping ................................................................29
reload-services ........................................................30
rollback..............................................................30
stats ................................................................31
statsreset ............................................................31
updateaspell ..........................................................31

About MDEX Engine logging variables ...............................................32
Logging variable operation syntax ..............................................32
List of configuration operations.................................................33
List of supported logging variables ..............................................33

log-enable............................................................34
log-disable ...........................................................34
log-status ............................................................34
help ................................................................35

Chapter 7: Managing the Merge Policy ..............................................36
Using a merge policy for incremental updates..........................................36
Types of merge policies..........................................................36
Setting or changing the merge policy ................................................37

Setting the merge policy with the Configuration Service API............................37
Getting the merge policy programmatically ....................................37
Setting the merge policy programmatically ....................................38

Changing the merge policy of a running MDEX Engine ...................................39
Forcing a merge ...............................................................39

Chapter 8: MDEX Engine Process Management ......................................40
Running the MDEX Engine as a Windows service.......................................40

SC Create command syntax ..................................................40
Creating the MDEX Engine Windows service ......................................43
Setting a service description ..................................................44
Modifying the service configuration..............................................44
Deleting the MDEX Engine Windows service ......................................45
Using the Windows Services utility ..............................................46
Logging in service mode .....................................................47

Starting the MDEX Engine from inittab ...............................................48

Chapter 9: Deploying Latitude in a Cluster ..........................................49
Cluster overview ...............................................................49
Latitude cluster architecture .......................................................51

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Table of Contents 5

Important cluster concepts ........................................................53
Before you begin...............................................................54

System and hardware requirements .............................................54
Operating system requirements ............................................54
Shared file system requirements ...........................................54
Load balancer requirements...............................................55
Load balancer and outer transactions........................................56

About the Cluster Coordinator .................................................56
Starting and stopping the Cluster Coordinator service ............................57
The configuration file for the Cluster Coordinator................................57

Planning cluster nodes.......................................................59
Cluster behavior ...........................................................59

Building a cluster...............................................................61
Starting the MDEX Engine as the leader node .....................................61
Adding a follower node ......................................................62
Summary of operations handled by the leader node and any node.......................63
Connecting the leader node with the Data Integrator .................................64
Connecting a cluster with Latitude Studio .........................................64

Connecting a cluster with a load balancer.....................................65
Examples of data sources ................................................65
Configuring a data source for cluster access ..................................66

Maintaining a cluster ............................................................67
Removing a follower node ....................................................67
Changing the name of the leader node...........................................67

Chapter 10: Using Endeca SSL Certificate Utilities....................................68
Certificate files used by Endeca components ..........................................68
Generating SSL certificates .......................................................69

Generating standard SSL certificates on UNIX .....................................69
Generating standard SSL certificates on Windows ..................................69
Generating custom certificates .................................................70
Copying the SSL certificates to other machines.....................................71

Configuring the MDEX Engine for SSL mutual authentication...............................71
Converting PEM-format keys to JKS format ...........................................72

Chapter 11: Latitude Studio Administrative Tasks ....................................75
About Latitude Studio administrative tasks ............................................75
About the Latitude Studio Control Panel ..............................................75

Overview of the Control Panel sections...........................................75
Accessing the Control Panel ..................................................76
Installing a new theme.......................................................76
Setting up the email server for Bookmarks support ..................................77

Appendix A: Endeca Flag Reference................................................79
Dgraph flags ..................................................................79

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Preface
Endeca® Latitude applications guide people to better decisions by combining the ease of search with the
analytic power of business intelligence. Users get self-service access to the data they need without needing to
specify in advance the queries or views they need. At the same time, the user experience is data driven,
continuously revealing the salient relationships in the underlying data for them to explore.

The heart of Endeca's technology is the MDEX Engine.™ The MDEX Engine is a hybrid between an analytical
database and a search engine that makes possible a new kind of Agile BI. It provides guided exploration,
search, and analysis on any kind of information: structured or unstructured, inside the firm or from external
sources.

Endeca Latitude includes data integration and content enrichment tools to load both structured and
unstructured data. It also includes Latitude Studio, a set of tools to configure user experience features
including search, analytics, and visualizations. This enables IT to partner with the business to gather
requirements and rapidly iterate a solution.

About this guide
This guide describes the administrative tasks related to Endeca Latitude.

Who should use this guide
This guide is intended for system administrators who administer and maintain an Endeca Latitude
implementation.

This guide assumes that the Latitude software is already installed on a development server. It may be already
installed in a production environment. It also assumes that you, or your Endeca Services representatives,
have already configured the application on the development server.

You can choose to read specific topics from this guide individually as needed while maintaining your Latitude
implementation after it has been initially deployed.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Preface 7

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014

https://support.oracle.com


Chapter 1

Introduction

This section describes the stage at which you take control of the operation and maintenance of your Endeca
implementation.

Taking ownership of your Latitude implementation

Overview of administrator tasks

Taking ownership of your Latitude implementation
As a system administrator, you take ownership of the Latitude implementation at a certain stage. This topic
describes the context in which you will perform administrative tasks to maintain the stable operation of a
properly functioning Latitude implementation.

This guide assumes that by this point in using the Endeca Latitude software, you or your team have done the
following:

• Planned and provisioned the hardware needed for the staging and production environments.

• Installed the Endeca components, including the MDEX Engine, Latitude Studio, and Latitude Data
Integrator.

• Read the Latitude Quick Start Guide.

Planned the user-facing details of your application, such as the Endeca attributes that will be displayed in
Latitude Studio, the search interfaces to be used in the Latitude Search Box component, and so on. The
Latitude Studio User's Guide is especially useful in helping you plan your user interface.

In addition, the guide assumes that you have performed the following application-building tasks:

• You have completed the process of extracting source information from your incoming data sources.

• You have completed the process of using Latitude Data Integrator to load your configuration schema and
your source the data into the MDEX Engine, thus creating the Endeca index files.

• You have created a working prototype of your Latitude Studio front-end application for your end users.
This front-end application can be used to issue requests to the running MDEX Engine in a production
environment.

• You have deployed your Endeca Latitude solution in a staging environment, and are either preparing to
deploy it in production, or have already deployed it in production.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Introduction 9

Overview of administrator tasks
This topic provides a brief overview of the administrator tasks described in this guide.

This guide assumes that you are performing administrator tasks on both the MDEX Engine and Latitude
Studio. The types of task that are described in this guide are the following (as grouped by their chapter):

Chapter Tasks

Using the Administration Web Use the Administration Web Service for MDEX Engine administrative
Service tasks.

Job Monitoring Obtain information about the jobs that are being currently processed
by the MDEX Engine.

Capturing Snapshots Create snapshots of a running MDEX Engine and use them as a part
of your backup and archiving strategy.

Dgraph Administrative Tasks
• Check the Dgraph with the ping command.

• Manage Dgraph core dump files.

• Collect debugging information to help solve problems.

• Troubleshoot Dgraph socket and port errors.

• Identify Dgraph connection errors.

Administrative Operations and
• Shut down a running MDEX Engine.

Logging Variables
• Flush the dynamic cache.

• Force a query log roll.

• Merge update generations and sets the system's merge policy.

• Roll back a transaction that is in progress.

• Check the MDEX Engine Statistics page.

• Rebuild the aspell dictionary for spelling correction.

• Modify the logging configuration for the MDEX Engine.

Managing the Merge Policy
• Merge update generations.

• Set and manage the merge policy for the MDEX Engine.

MDEX Engine Process
• Create a Windows service for running the MDEX Engine in service

Management
mode.

• Add an inittab entry so that init can start the MDEX Engine
on a Linux machine.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Introduction 10

Chapter Tasks

Deploying Latitude in a Clustered Set up and manage a cluster of MDEX Engine nodes.
Environment

Using Endeca SSL Certificate
• Generate standard and custom SSL certificate files to be used for

Utilities
SSL connections to the MDEX Engine.

• Convert PEM-format certificates to the standard Java KeyStore
(JKS) format.

• Configure the MDEX Engine for SSL mutual authentication.

Latitude Studio Administrative
• Perform administrative functions of Latitude Studio from the

Tasks
Control Panel.

• Install a new theme.

• Set up the email server for Bookmarks support.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Chapter 2

Using the Administration Web Service

This section describes how to use the Administration Web Service with the MDEX Engine.

About the Administration Web Service

Accessing the Administration Web Service

Using the Administration Web Service

About the Administration Web Service
The Administration Web Service enables IT engineers to administer and maintain the MDEX Engine server.

Accessing the Administration Web Service
The Administration Web Service is declared in admin.wsdl.

You can access the Administration Web Service at the following URL:

http://localhost:<port>/ws/admin

Version 2.2.2 Rev. A • June 2014

Using the Administration Web Service
The Administration Web Service contains administrative operations for creating a snapshot and listing running
jobs.

For example createSnapshotOperation($name, $path) creates a snapshot of the MDEX Engine state
as a tree of hard links under $name in directory $path.

Operation description

The Administration Web Service takes as its input parameters to the functions it contains and performs the
requested operations.

Request

The input to the Administration Web Service depends on the function. For example:

• To create the MDEX Engine snapshot, specify a name and a directory path to the snapshot file.

• To list jobs, use the operation for listing jobs.

Endeca® Latitude : Administrator's Guide



Using the Administration Web Service 12

Response

The Administration Web Service returns:

• An <operation successful> response element if there are no problems.

• A <fault> element if an exception was thrown internally.

Operations

The Administration Web Service contains the following operations:

Operation Description

createSnapshotOperation Create a snapshot representing a consistent view of the state of
the MDEX Engine at a specific point in time. As an argument,
specify the name for a snapshot, such as NewSnapshot, and
an absolute path to the snapshot directory in the URI format,
such as file:///mydirectory/home/snapshots/.

listJobsOperation List the jobs that are currently running in the MDEX Engine,
such as queries, updating operations or administrative services.

Example

The following examples show the Administration Web Service request and response bodies for creating a
snapshot.

To access the Administration Web Service, send a SOAP request to the following URL:

http://localhost:<port>/ws/admin

Version 2.2.2 Rev. A • June 2014

This example shows the Post body of the Administration Web Service request that creates a snapshot:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:admin="http://www.endeca.com/XQuery/admin/lib/2010">

<soapenv:Header/>
<soapenv:Body>

<admin:Request>
<admin:createSnapshotOperation path=

"file:///mydirectory/home/snapshots/" name="NewSnapshot"
outerTransactionId="25"/>

</admin:Request>
</soapenv:Body>
</soapenv:Envelope>

This example shows the response body of the Administration Web Service request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<admin:Response xmlns:admin="http://www.endeca.com/XQuery/admin/lib/2010">
<admin:createSnapshotSuccess/>

</admin:Response>
</soapenv:Body>

</soapenv:Envelope>

Note: For more information about the functions used in the Administration Web Service, see the
Administration API section of the MDEX Engine API Reference.

Endeca® Latitude : Administrator's Guide



Using the Administration Web Service 13

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Chapter 3

Job Monitoring

This section describes how you, as a system administrator, can use the Administration Web Service to obtain
information about, monitor, and control long-running jobs in the MDEX Engine - for example, updates or long-
running queries.

About job monitoring

About jobs

Requesting a list of jobs

About job monitoring
In many instances, it is useful to have more information about the jobs that are being currently processed by
the MDEX Engine.

When the MDEX Engine processes record updates, all other operations are temporarily stopped, waiting for
the update operations to complete, and then restarted after the updates are finished. In such instances a
system administrator needs to have more information about which operations are currently being processed
by the MDEX Engine.

When administering an MDEX Engine, it is useful to manage long-running jobs in the following scenarios:

• The data architect updates the configuration, for example by issuing a request to make an attribute (in
your records schema) value searchable, and the MDEX Engine becomes unresponsive because it is
running an update operation. The data architect can make a request to see when the MDEX Engine had
started running the update.

• An administrator of the Endeca application sends a query to the MDEX Engine and the MDEX Engine
becomes unresponsive because it is already running a long-running query. The administrator can make a
request to see when the MDEX Engine had started processing the query.

• An administrator of the Endeca application would like to send an update and needs to verify whether any
other updates are already being processed or are queued up before submitting a new update. Making an
Administration Web Service request allows the administrator to understand whether a new update will
begin processing immediately.

• An administrator of the Endeca application wants to check which updates have been submitted recently.

About jobs
You can monitor several types of jobs.

You can monitor the following types of jobs:

• A query. This can be any type of a web service request that submits a query to the MDEX Engine.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Job Monitoring 15

• An update. This is an update to the records sent by any MDEX Engine web services (and not the Bulk
Ingest Interface).

• An administrative operation. This can be a request for any administrative operation.

Requesting a list of jobs
Using the listJobsOperation of the Administration Web Service, you can make a job monitoring request
for a list of jobs that are currently being processed by the MDEX Engine or are waiting in the queue.

To issue a job monitoring request:

1. Specify the listJobsOperation to the Administration Web Service, as in the following example:

<admin:request xmlns:admin="http://www.endeca.com/MDEX/admin/2010>
<admin:listJobsOperation/>

</admin:request>

Version 2.2.2 Rev. A • June 2014

The response contains a list of currently running jobs, and includes the following information:

• The job ID. This is an internal ID assigned by the MDEX Engine.

• The job start time. It indicates the time at which the MDEX Engine received a request for this job, and has
an outstanding request for processing it. The start time does not indicate that the job had actually started
at that time.

• Job type. The job type indicates the type of job that is being monitored. It can be Admin, Query, or
Update.

Example

In this example of the Administration Web Service response, you can see that a query with the job ID 10 is
currently running. You can also observe its start time. In addition, the response indicates that a request of type
Admin has been issued as well, with the Job ID 11 (this job represents the job monitoring request itself).

<admin:response xmlns:admin="http://www.endeca.com/MDEX/admin/2010">
<admin:jobs>
<admin:job jobId="10">

<admin:startTime>2011-04-18T10:26:41.449Z</admin:startTime>
<admin:jobType>Query</admin:jobType>

</admin:job>
<admin:job jobId="11">

<admin:startTime>2011-04-18T10:26:41.449Z</admin:startTime>
<admin:jobType>Admin</admin:jobType>

</admin:job>
</admin:jobs>

</admin:response>

Endeca® Latitude : Administrator's Guide



Chapter 4

Capturing Snapshots

You can create snapshots of a running MDEX Engine and use them as a part of your backup and archiving
strategy. This section describes the snapshot process.

About snapshots

Restrictions for taking a snapshot

Creating a snapshot

Restoring an MDEX Engine from a snapshot

cpmdex syntax

About snapshots
A snapshot represents a consistent view of the state of the MDEX Engine index at a specific point in time. By
taking a snapshot, you can capture the state of the index without shutting down the MDEX Engine.

Snapshots operate at the data layer level of the MDEX Engine index. The data layer implements a versioned
data store in the MDEX Engine index, which includes a collection of files such as data structures and indices.
When you create a snapshot, the data layer identifies the set of files that comprise a version, and captures the
state of the system as it exists at that moment.

A backup operation without taking the snapshot would involve the need to stop the MDEX Engine and copy its
index, which can take a long time. In contrast, you can create a snapshot while the MDEX Engine is handling
updates and queries, without downtime. After a snapshot is complete, you can plan and create a backup at
your convenience.

A snapshot contains all the files needed to restore the MDEX Engine to a specific state.

To create a snapshot, you issue a request to the MDEX Engine through createSnapshotOperation in the
Administration Web Service. In a cluster of MDEX Engine nodes, this operation should be performed on the
leader node only.

After you take the snapshot, you can back up the state in a manner compatible with your archiving strategy,
whether you have an elaborate backup infrastructure or a simpler solution based on CIFS or NFS protocols.

If the need arises, you can restore an MDEX Engine from a snapshot with the cpmdex command.

Important: Because snapshots represent internal files needed to restore the MDEX Engine data
structures, they are not human-readable and should be treated as read-only. Modifying a snapshot
can corrupt the MDEX Engine.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Capturing Snapshots 17

Restrictions for taking a snapshot
The following restrictions apply when taking snapshots.

• The createSnapshotOperation cannot be combined with other operations in the same Web service
request.

• Do not submit snapshot requests when the MDEX Engine is running updates.

• Do not submit snapshot requests when the MDEX Engine is running a transaction request issued by the
Transaction Web Service (or a component in LDI for starting a transaction).

• The createSnapshotOperation requires a URI absolute path indicating where the snapshot should be
recorded; it should have the following format: file:///localdisk/username/dir. Specifying a
relative path causes the operation to fail.

• If you are running a cluster of MDEX Engine nodes (as opposed to running the MDEX Engine on a single
server that is not part of the cluster), run the createSnapshotOperation on the leader node.

• Do not modify snapshot files. Because snapshots represent internal files needed to restore the MDEX
Engine data structures, they are not human-readable and should be treated as read-only. Modifying a
snapshot can corrupt the MDEX Engine.

Creating a snapshot
You create a snapshot with the createSnapshotOperation interface in the Administration Web Service.

Before taking the snapshot, ensure that you have reviewed the list of restrictions.

To create a snapshot:

1. Run the client application that will invoke the Administration Web Service.

2. Specify the snap_URI and the snap_name in the following XML snippet:

<admin:createSnapshotOperation path="${snap_URI}" name="${snap_name}"/>

Version 2.2.2 Rev. A • June 2014

• snap_URI represents an absolute URI path to the file system location, and is located on the
same file system as the MDEX Engine. It should be of the format
file:///localdisk/username/dir.

• snap_name represents the name of the snapshot.

The Web service returns a confirmation message if the snapshot was successfully captured.

Note: You should treat snapshots as read-only. Modifying a snapshot could corrupt your
running MDEX Engine.

After you capture the snapshot, copy it to a safe location using the archiving method of your choice. Deleting a
snapshot does not affect the MDEX Engine.

Endeca® Latitude : Administrator's Guide



Capturing Snapshots 18

Restoring an MDEX Engine from a snapshot
You can restore an MDEX Engine from an archived snapshot using the cpmdex command. The command
copies files from the archived snapshot into the index of the MDEX Engine.

The MDEX Engine bin directory contains cpmdex.cmd (Windows) and cpmdex.sh (Linux) versions of this
command.

The cpmdex command takes as input the path to the archived snapshot and the path to the MDEX Engine
instance which will be restored.

Important: Before running the cpmdex command, use dgraph --version to ensure that the version
of MDEX Engine index to which you are restoring from the snapshot matches the version of the
MDEX Engine index from which the snapshot was captured.

To restore the MDEX Engine index from a snapshot:

1. Stop the MDEX Engine that are you are about to restore using /admin?op=exit.

If you are running multiple MDEX Engine instances in a cluster, stop all MDEX Engine nodes.

2. From a command prompt, run the cpmdex command.

If you are restoring the MDEX Engine index in a cluster, run this command on a leader node.

An example on Windows is:

cpmdex -a backup\2010-07-20 -m endeca\myapp\my_mdex

Version 2.2.2 Rev. A • June 2014

An example on Linux is:

$ cpmdex.sh -a mnt/backup/2010-07-20 -m home/endeca/myapp/my_mdex

3. Start the MDEX Engine.

cpmdex syntax
This topic contains syntax for the cpmdex command.

The syntax for the cpmdex command is as follows:

cpmdex -a <archive_path> -m <mdex_path> -t <transfer_path>

The cpmdex command uses the following parameters:

Options Description

-a <archive_path> Required. The absolute file path to the directory containing the archived
snapshot.

-m <mdex_path> Required. The absolute file path to the directory where the snapshot
should be restored.

The end of this path should match the value passed to the Dgraph
executable when it is started.

Endeca® Latitude : Administrator's Guide



Capturing Snapshots 19

Options Description

-t <transfer_path> The file path to a directory to which the snapshot should be moved.

This option uses a move operation, instead of a copy, to restore the
files to the MDEX Engine.

You may want to use this option if the backup has already been copied
from the archive to the local file system and you want to save
considerable I/O bandwidth.

-h The help for this command.

In this example, the cpmdex command copies the snapshot from the backup\2011-03-20 directory and
restores it to the endeca\myapp\my_mdex directory on Windows:

cpmdex -a backup\2011-03-20 -m endeca\myapp\my_mdex

Version 2.2.2 Rev. A • June 2014Endeca® Latitude : Administrator's Guide



Chapter 5

Dgraph Administrative Tasks

This section describes some basic administrative tasks for the Dgraph. In addition, it contains Dgraph
troubleshooting tips and describes the Dgraph logs.

Checking the Dgraph with the ping command

About connecting Web browsers to your MDEX Engine

Managing Dgraph core dump files

Collecting debugging information

Troubleshooting socket and port errors with Dgraph

Running multiple Dgraphs on the same Windows machine

Troubleshooting baseline update failures

Identifying connection errors

Checking the Dgraph with the ping command
A quick way of checking the health of a Dgraph is to ping it.

To check the aliveness of a Dgraph:

1. Issue the following command:

http://<DgraphServerNameOrIP:DgraphPort>/admin?op=ping

Version 2.2.2 Rev. A • June 2014

It returns a lightweight HTML response page with the following content:

dgraph <host:port> responding at <date/time>

Note: You can also view the MDEX Engine Statistics page to check whether the MDEX Engine is
running and accepting queries.

About connecting Web browsers to your MDEX Engine
For security reasons, you should never allow user Web browsers to connect directly to your MDEX Engine
server (although an administrator may choose to connect directly to the MDEX Engine server using proper
precautions).

Browsers started by non-administrators should always connect to your application through an application
server.

Endeca® Latitude : Administrator's Guide



Dgraph Administrative Tasks 21

IPv4 and IPv6 address support

The MDEX Engine supports both IPv4 (Internet Protocol Version 4) and IPv6 (Internet Protocol Version 6)
addressing schemes for connections. This IPv4 and IPv6 addressing support is configured automatically in the
MDEX Engine, so there is no need for the administrator to do any explicit addressing configuration.

Managing Dgraph core dump files
In the rare case of a Dgraph crash, the Dgraph writes its core dump files on disk.

When the Dgraph runs on a very large data set, its in-memory representation of the index size may exceed
the size of the physical RAM. If such a Dgraph process fails, it may need to write out potentially very large
core dump files on disk.

To troubleshoot the Dgraph, it is often useful to preserve the entire set of core files written out as a result of
such failures. When there is not enough disk space, only a portion of the files is written to disk until this
process stops. Since the most valuable troubleshooting information is contained in the last portion of core
files, to make these files meaningful for troubleshooting purposes, it is important to provision enough disk
space to capture the files in their entirety.

Two situations are possible, depending on your goal:

• To troubleshoot a Dgraph crash, provision enough disk space to capture the entire set of core files. In this
case, the files will be saved at the expense of potentially filling up the disk.

• To prevent filling up the disk, you can limit the size of these files on the operating system level. In this
case, with large Dgraph applications, only a portion of core files is saved on disk. This may limit their
usefulness for debugging purposes.

Managing Dgraph crash dump files on Windows

Managing Dgraph core dump files on Linux

Managing Dgraph crash dump files on Windows

On Windows, all Dgraph crash dump files are saved on disk by default.

The MDEX Engine uses the MiniDump function from the Microsoft DbgHelp library.

Provision enough disk space to accommodate core files based on this estimate:

• The projected upper limit for the size of these files is equal, at a maximum, to the size of the physical
memory used by the MDEX Engine plus index size. Often the files take up less space than that.

Managing Dgraph core dump files on Linux
Endeca recommends using the ulimit -c unlimited setting for Dgraph core dump files. Non-limited core
files contain all Dgraph data that is resident in memory (RSS of the Dgraph).

Since large MDEX applications may take up the entire amount of available RAM, the core dump files can also
grow large and take up the space equal to the size of the physical RAM on disk plus index size.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Dgraph Administrative Tasks 22

Provision enough disk space to accommodate core files based on this estimate:

• The projected upper limit for the size of these files should be equal, at a maximum, to the size of the
physical RAM. Often the files take up less space than that.

Note: If you are not setting ulimit -c unlimited, you could be seeing the MDEX Engine crashes
that do not write any core files to disk, since on some Linux installations the default for ulimit -c is
set to 0.

Alternatively, it is possible to limit the size of core files with the ulimit -c <size> command, although this is
not recommended. If you set the limit size in this way, the core files cannot be used for debugging, although
their presence will confirm that the Dgraph had crashed. To be able to troubleshoot the crash, change this
setting to ulimit -c unlimited, and reproduce the crash while capturing the entire core file. Similarly, to
enable Endeca Support to troubleshoot the crash, you will need to reproduce the crash while capturing the full
core file.

Collecting debugging information
Before attempting to debug an issue with the MDEX Engine, collect the following information.

• Hardware specifications and configuration.

• Description of the Endeca topology (servers, number of Dgraphs).

• The data from the MDEX Engine Statistics page.

• The contents of the pipeline directory.

• Dgraph input.

• Partial update files.

• Description of typical partial updates.

• Description of which Dgraphs are affected.

Logs created by the Dgraph

Logs created by the Dgraph

The Dgraph creates several logs, although some of these logs depend on your implementation and the
Endeca components that you may be using. This topic provides a summary of these logs.

You can use these Dgraph logs to troubleshoot MDEX Engine queries, or to track performance of particular
queries or updates.

Dgraph request log

The Dgraph request log is always created. You can use it to debug both requests and update processing. It
contains one entry for each request processed. The requests are sorted by their timestamp.

If you are using the Dgraph from the command line, create the path to the request log in the Dgraph working
directory with the filename dgraph.reqlog.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Dgraph Administrative Tasks 23

By default, the Dgraph truncates the contents of the body for POST requests at 64K. This default setting
saves disk space in the log, especially during the process of adding large numbers of records to the MDEX
Engine. If you need to review the log for the full contents of the POST request body, contact Endeca Support.

Dgraph error log
The Dgraph error log is created only if you redirect stderr to a file, using a command line or a dgraph --
out flag. Otherwise, error messages appear in stderr.

The Dgraph error log includes startup messages as well as warning and error messages. It can be configured
via Dgraph flags (such as -v). Also, the /admin?op=logroll command forces a query log roll, with the side
effect of remapping stdout.

Troubleshooting socket and port errors with Dgraph
The Dgraph cannot start if its process cannot bind to a socket and its port cannot initialize. This error tends to
occur when you upgrade the MDEX Engine and attempt to use a port that is already occupied by another
process on your server.

The following errors appear in the Dgraph log:

ERROR (date and time)
DGRAPH {dgraph,baseline}: Unable to bind
to socket [err=`Result too large',errno=34]
FATAL (date and time)
DGRAPH {dgraph,baseline}: Unable to initialize the
main server port: 8000

Version 2.2.2 Rev. A • June 2014

The "Unable to bind to socket" errors usually indicate that the port in question is already in use by
another process.

The Windows command-line utility netstat -ano lists all ports in use along with the process ID of the
process using them. Use this utility to identify the process ID occupying port 8000, and locate that process in
the Windows Task Manager to confirm that it is used by another process. This prevents the Dgraph from
starting.

To identify ports in use on your Windows system:

1. Run netstat -ano

This command lists ports and process IDs of all processes that are running.

2. Examine which process occupies the port that the Dgraph is trying to use. In this example, it is port
8000.

3. Run the Dgraph on another port, or ensure that the previously occupied port can be freed to be used
by the MDEX Engine.

Running multiple Dgraphs on the same Windows machine
If you have more than one Dgraph starting on a single Windows machine, each Dgraph constructs its port in
isolation.

This prevents multiple Dgraphs running on a single machine from presenting inconsistent behavior.

Endeca® Latitude : Administrator's Guide



Dgraph Administrative Tasks 24

Troubleshooting baseline update failures
To debug baseline update failures, examine the Dgraph request log.

Review the logs around the time of the baseline update failure, to rule out issues in the Dgraph.

Notice the times when health checks were sent to the Dgraph, the Dgraph was restarted, the partial updates
were issued, and the last query was issued. For example, this modified abstract from the Dgraph request log
shows activity for a period of time:

12096521815/1/09 14:29 last search query
12096522265/1/09 14:30 health check
12096526095/1/09 14:36 last health check for x time
12096571605/1/09 15:52 health checks resume
12096574435/1/09 15:57 last empty health check
12096601195/1/09 16:41 Dgraph startup
12096601435/1/09 16:42 first query

Version 2.2.2 Rev. A • June 2014

Notice that the Dgraph did not receive any requests besides health checks for a period of time from 14:29 to
15:57. The log does not include error messages. The Dgraph was not restarted during this time. These
observations indicate that the problem that led to the baseline update failure in this example possibly occurred
outside of the Dgraph.

Identifying connection errors
If the Dgraph standard out log contains connection broken messages, although it may look like the
problem occurred with the Dgraph, the actual cause of the problem is usually a broken connection between
the server that hosts the front-end application and the server that hosts the Dgraph.

In the case of connection errors, various parts of the Endeca implementation issue the following error and
warning messages:

• The Dgraph standard out log contains warnings similar to the following:

WARN [DATE TIME] UTC (1239830549803)
DGRAPH {dgraph}: Aborting request: connection broken: client 10.10.21.21

• And finally, the Dgraph request log contains an abnormal status 0 message similar to the following:

1239830549803 10.6.35.35 - 349 0 19.35 0.00 0 - 0 0 - -

Typically, the connection broken message means that the Dgraph encountered an unexpected failure in
the connection between the client and the Dgraph. This type of error may occur outside the Dgraph, such as
in the network, or be caused by the timeout of the client application session.

Investigate the connection between the client and the Dgraph. For example, to prevent timeouts of the client
application sessions, you may decide to implement front-end application retries.

Endeca® Latitude : Administrator's Guide



Chapter 6

Administrative Operations and Logging
Variables

The MDEX Engine supports many administrative and configuration operations that you can access through
simple URLs. You can use these operations and their logging variables to control the behavior of the MDEX
Engine cleanly from within the system.

About administrative and configuration operations

About MDEX Engine logging variables

About administrative and configuration operations
Administrative and configuration operations make it possible to check Dgraph statistics, and enable or disable
diagnostic flags without having to stop a running Dgraph. They also let you stop and restart the Dgraphs. This
section lists URLs exposed by the Dgraph, describes the functions of each URL, and defines the syntax of
those URLs.

The syntax of administrative and configuration operations
In the following listings, <host> refers to the hostname or IP address of the MDEX Engine and <port> refers
to the port on which the MDEX Engine is listening. Queries to these URLs are handled in the MDEX Engine's
request queue like any other request—that is, they are handled on a first-come, first-served basis. They are
also reported in the MDEX Engine request log like any other request.

For administrative operations, the syntax is:

http://<host>:<port>/admin?op=<supported-operation>

Version 2.2.2 Rev. A • June 2014

For configuration operations, the syntax is:

http://<host>:<port>/config?op=<supported-operation>

Note: If you are using HTTPS mode, use https in the URL.

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 26

List of administrative operations

Administrative (or admin) operations listed in this topic allow you to control the behavior of the MDEX Engine
from within the system.

The MDEX Engine recognizes the following admin operations:

Admin operation Description

/admin?op=exit Shuts down a running MDEX Engine after completing all in-
progress requests and background merges.

You can also specify an optional timeout limit that
immediately shuts down the MDEX Engine if the shutdown
operation takes longer than the specified timeout limit.

/admin?op=flush Specifies when the MDEX Engine should flush its dynamic
cache.

/admin?op=help Returns the usage page for all of the admin operations.

/admin?op=logroll Forces a query log roll, with the side effect of remapping
stdout.

/admin?op=merge Merges update generations and sets the system's merge
policy.

/admin?op=ping Checks the aliveness of an MDEX Engine and returns a
lightweight message.

/admin?op=reload-services A Web services operation that reloads the application's main
and library modules.

admin?op=rollback&outerTransactio In case a running transaction with the specified ID fails, this
nId="myID"ID operation lets you roll back to the previously committed

version of the MDEX Engine index and stop the transaction.

/admin?op=stats Returns the MDEX Engine Statistics page.

/admin?op=statsreset Resets the MDEX Engine Statistics page.

/admin?op=updateaspell Rebuilds the aspell dictionary for spelling correction from the
data corpus while continuing to issue queries and partial
updates to the MDEX Engine and without stopping and
restarting it.

exit

flush

help

logroll

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Administrative Operations and Logging Variables 27

merge

ping

reload-services

rollback

stats

statsreset

updateaspell

exit

/admin?op=exit gracefully shuts down a running MDEX Engine.

The /admin?op=exit command has two formats:

• The base version does not use the timelimit option.

• The timeout version uses the timelimit option.

Using the base version

The format of the base version is:

/admin?op=exit

Version 2.2.2 Rev. A • June 2014

The exit operation works as follows:

• Any new non-admin request will get an HTTP response code 503 (Service Unavailable).

• Any in-progress request will finish normally (including updates).

• The MDEX Engine will wait to exit until the following conditions have been met:

• All requests have finished (including updates).

• All background merging has been completed.

The exit operation's output to the browser looks similar to the following:

Dgraph admin, OK
Dgraph shutting down at Thu Feb 17 13:12:54 2011

The command also writes shutdown information to the Dgraph error log, as in this example:

Shutdown request with received at Thu Feb 17 13:12:54 2011.
Shutdown will complete when all outstanding jobs are complete.
All dgraph transactions completed at Thu Feb 17 13:12:54 2011, exiting normally (pid=4128)

The base exit operation is the recommended way to shut down the MDEX Engine because it gracefully
completes all transactions and exits cleanly. However, note that because the MDEX Engine waits until all
background merging has completed, the shutdown process could potentially take several hours if the request
occurs during a major merge. Therefore, if the speed of the shutdown is more important than the completing a
merge, you should consider using the timelimit option to set a time limit for the shutdown operation.

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 28

Using the timelimit option

The timeout version lets you specify a time limit, in seconds, of the shutdown procedure. The format of the
timeout version is:

/admin?op=exit&timelimit=seconds

Version 2.2.2 Rev. A • June 2014

where seconds is a positive integer.

This example uses a time limit of 30 seconds:

/admin?op=exit&timelimit=30

The exit&timelimit operation works as follows:

• A time limit of 0 (zero) will shut down the MDEX Engine immediately.

• Any queries still in progress when the time limit is reached will not return a result to the client (i.e., the
client will observe a closed connection).

• Any queries still in progress when the time limit is reached will not be logged in the Dgraph log.

• Any updates still in progress when the time limit is reached will not be applied.

• Any background merges still in progress when the time limit is reached will be aborted at the end of the
timeout.

• The number of in-progress queries is written to the Dgraph error log just before exiting, along with a
message stating that the shutdown time limit was reached.

Issuing an exit command with a time limit ensures that the MDEX Engine shuts down within that time limit,
regardless of prior or following exit queries (i.e., exit commands with a time limit can only shorten the
MDEX Engine's time to live). These examples demonstrate what happens when successive exit commands
are issued:

• If exit&timelimit=30 is issued and 10 seconds later exit&timelimit=0 is issued, the MDEX
Engine will exit immediately when the second request is issued (if it hasn't already exited).

• If exit&timelimit=30 is issued and 10 seconds later exit&timelimit=5 is issued, the MDEX
Engine will exit 5 seconds after the second request, or when all queries are drained (whichever comes
first).

• If exit&timelimit=30 is issued and 10 seconds later exit&timelimit=30 is issued, the MDEX
Engine will exit 30 seconds after the first request, or when all queries are drained (whichever comes first).

• If exit&timelimit=30 is issued and 10 seconds later the base exit command is issued, the MDEX
Engine will exit 30 seconds after the first request, or when all queries are drained (whichever comes first).

• If exit is issued and 10 seconds later exit&timelimit=30 is issued, the MDEX Engine will exit 30
seconds after the second request, or when all queries are drained (whichever comes first).

An exit&timelimit=30 operation's output to the browser looks like this:

Dgraph admin, OK
Dgraph shutting down within 30 seconds at Thu Feb 17 14:09:38 2011

The command also writes shutdown information to the Dgraph error log, as in this example for an
exit&timelimit=30 command:

Shutdown request with time limit of 30 seconds received at Thu Feb 17 14:09:38 2011.
Shutdown will complete when all outstanding jobs are complete, or within 30 seconds, whichever
happens earlier.
All dgraph transactions completed at Thu Feb 17 13:12:54 2011, exiting normally (pid=4128)

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 29

If command were for an immediate shutdown (exit&timelimit=0) and queries were still in progress, the
Dgraph error log would contain a message similar to this example:

Shutdown request with time limit of 0 seconds received at Thu Feb 17 14:18:46 2011.
Shutdown will complete when all outstanding jobs are complete, or within 0 seconds, whichever
happens earlier.
Shutdown time limit reached at Thu Feb 17 14:18:46 2011, exiting with jobs still in progress:
1 request is still active or queued, and will not be logged to the request log
1 job is currently executing, and will be killed.
0 jobs are queued, and will not be executed.

Version 2.2.2 Rev. A • June 2014

flush

/admin?op=flush flushes the Dgraph cache.

The flush operation clears all entries from the Dgraph cache. It returns the following message:

flushing cache...

help

/admin?op=help returns the usage page for all of the administrative operations.

logroll

/admin?op=logroll forces a query log roll, with the side effect of remapping stdout.

The logroll command returns a message similar to the following:

rolling log... Successfully remapped stdout/stderr to specified
path "C:\Endeca\apps\JanWine\logs\dgraphs\Dgraph2\Dgraph2.log".
Successfully rolled log file.

merge

/admin?op=merge forces a merge, and (optionally) changes the merge policy of a running MDEX Engine. In
a cluster of MDEX Engine nodes, this command should be used on the leader node only.

Managing the Merge Policy

ping

/admin?op=ping checks the aliveness of an MDEX Engine and returns a lightweight message.

You can view the MDEX Engine Statistics page to check whether the MDEX Engine is running and accepting
queries, but that comes with some overhead. A quicker way to check the aliveness of a Dgraph is by running
the ping command.

Because ping requests are given the highest priority and are processed synchronously (as they are received),
a ping response time is independent of the number of outstanding requests in the MDEX Engine.

The ping command returns a lightweight page that lists the MDEX Engine, the current date and time, such as
the following:

dgraph example.endeca.com:8000 responding at Wed Oct 27 15:35:27 2010

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 30

You can use this operation to monitor the health or heartbeat of the MDEX Engine, and as a health check for
load balancers.

reload-services

/admin?op=reload-services is a Web services operation that reloads the application's main and library
modules.

The admin?op=reload-services operation causes the Dgraph to process all existing preceding queries,
temporarily stop processing other queries and begin to process admin?op=reload-services. After it
finishes processing this operation, the Dgraph resumes processing queries that queued up temporarily behind
this request.

In a cluster of MDEX Engine nodes, this command should be run on the leader node only.

Note: admin?op=reload-services can be a time-consuming operation.

rollback

The admin?op=rollback operation is useful in operational environments that use transactions. In case a
running transaction fails, this operation lets you roll back to the previously committed version of the MDEX
Engine index and commit the transaction.

Since transactions are recommended when you run updates in a cluster, the admin?op=rollback operation
is a useful tool for using on the leader node in the cluster, in the context of controlling the results of an outer
transaction that may be running on the leader node.

Instead of running this command directly, the most convenient way to utilize this command is through a
Latitude connector in LDI, Transaction RunGraph. This connector starts an outer transaction, and allows
adding sub-graphs or other connectors inside this outer transaction. In case of failures, you can specify
options to the Transaction RunGraph connector. One of the options is Rollback. This option runs the
admin?op=rollback command on the node on which a transaction is open, referencing the transaction ID.
This ensures that all actions from all sub-graphs or components that were part of the Transaction RunGraph
project are rolled back and not committed to the MDEX Engine index, and that the transaction is committed.

The following statements describe the admin?op=rollback command:

• Use this command only if an outer transaction has been started on the node, referencing a transaction ID,
as in the following example:

admin?op=rollback&outerTransactionId=43

Version 2.2.2 Rev. A • June 2014

Note: The transaction ID can be either specified to the Transaction Web Service when you start a
transaction, or, if you don't specify it, the Web Service generates the ID automatically. Also, if you
are using the Transaction RunGraph connector for running transactions, this connector
automatically uses the ID string "transaction".

• If you issue this command with the transaction ID that does not match the ID of the currently running
transaction, the error message notifies you of the transaction ID that is in progress.

• If you issue this command and no outer transaction has been started, the command issues an error but
not a fatal one — it returns with an HTTP 200 code (success), with an error message similar to the
following example:

Dgraph admin, OK. Dgraph Cannot roll back outer transaction

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 31

My_transaction at Mon Sep 19 11:16:09 2011
(11:17:21 AM)

Version 2.2.2 Rev. A • June 2014

• If you are not using this command in the context of LDI and are using it directly, you can issue it at any
point during a running outer transaction on the node on which the transaction is open. Once issued, this
command ensures operations running within the transaction are rolled back to the index state prior to
when the transaction was started. This command also stops the transaction.

• If you are running a cluster of MDEX Engine nodes, issue this command on the leader node only. This
command is rejected if you attempt to run it on any other node.

Once the command completes, it stops the outer transaction, and the leader resumes serving queries on
the last version of the index available before the start of the outer transaction.

• Only one admin?op=rollback operation can be processed at a time.

stats

/admin?op=stats returns the MDEX Engine Statistics page.

The MDEX Engine Statistics page provides a detailed breakdown of what the Dgraph is doing, and is a useful
source of information about your Endeca implementation’s configuration and performance. It provides
information such as startup time, last data indexing time, and indexing data path. This lets you focus your
tuning and load-balancing efforts. By examining this page, you can see where the Dgraph is spending its time.
Begin your tuning efforts by identifying the features on the Details tab Hotspots section with the highest totals.

statsreset

/admin?op=statsreset resets the MDEX Engine Statistics page.

The statsreset operation returns the following message:

resetting server stats...

updateaspell

The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for spelling
correction from the data corpus while continuing to issue queries and updates to the MDEX Engine and
without stopping and restarting it.

Run this command after you have added data records to the MDEX Engine, to enable spelling correction in
the MDEX Engine.

During the data ingest process, you can run the admin?op=updateaspellcommand periodically to update
the spelling dictionary used by the MDEX Engine for Automatic Spelling Correction and DYM.

In a cluster of MDEX Engine nodes, this command should be run on the leader node only.

The admin?op=updateaspell operation performs the following actions:

• Crawls the text search index for all terms which meet the constraint settings.

The constraint settings include minimum word occurrences and maximum and minimum number of
characters, for records and attribute values. The MDEX Engine uses these constraints to update the
spelling dictionary. You can change them in the Global Configuration Record.

• Compiles a temporary text version of the aspell word list, <db_prefix>.worddat.

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 32

• Converts this word list to the binary format required by aspell

• Writes the generated binary file into the current index representation in the MDEX Engine.

• Makes the updated aspell spelling dictionary available in the MDEX Engine for processing of all queries
arriving after this index update. The MDEX Engine uses this updated dictionary when processing all future
queries.

Note: Because of the nature of continuous query, once the MDEX Engine processes this
administrative request, it will start using the updated spelling dictionary after a certain point in its
processing, and all newly incoming queries will be answered against the updated spelling
dictionary. However, it is not possible to identify after which particular partial update or after which
query the MDEX Engine will start using the newly updated spelling dictionary.

The Dgraph applies the updated settings while continuing to run queries and without needing to restart.

Only one admin?op=updateaspell operation can be processed at a time.

Note: If admin?op=updateaspell is started within a transaction, it must reference a transaction ID,
as in the following example:

admin?op=updateaspell&outerTransactionId=42

Version 2.2.2 Rev. A • June 2014

The admin?op=updateaspell operation returns output similar to the following in the Dgraph error log:

...
spellengine aspell ran successfully.

If you start the Dgraph with the -v flag, the output also contains a line similar to the following:

Time taken for updateaspell, including wait time on any
previous updateaspell, was 290.378174 ms.

About MDEX Engine logging variables
You can use logging variables with config operations. This lets you obtain detailed information about Dgraph
processing, to help diagnose unexpected application behavior or performance problems, without stopping and
restarting the Dgraph or requiring a configuration update.

Although you can also specify general verbose logging at the Dgraph command line with the -v flag, it
requires a Dgraph restart to take effect.

Logging variable operation syntax

List of configuration operations

List of supported logging variables

Logging variable operation syntax
MDEX Engine logging variables are toggled using the /config?op=log-enable&name=<variable-
name> and /config?op=log-disable&name=<variable-name> operations.

You can include multiple logging variables in a single request. Unrecognized logging variables generate
warnings.

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 33

For example, this operation:

/config?op=log-enable&name=requestverbose

Version 2.2.2 Rev. A • June 2014

turns on verbose logging for queries, while this operation:

config?op=log-enable&name=textsearchrelrankverbose&name=textsearchspellverbose

turns on verbose logging for both the text search relevance ranking and spelling features.

However, this operation:

config?op=log-enable&name=allmylogs

returns an unsupported logging setting message.

In addition, the following operations are supported:

• /config?op=log-status returns a list of all logging variables with their values (true or false).

• The special name all can be used with /config?op=log-enable or /config?op=log-disable to
set all logging variables.

List of configuration operations

Configuration (or config) operations listed in this topic allow you to modify configuration and logging
information for the MDEX Engine from within the system.

The Dgraph recognizes the following config operations:

Config operation Description

/config?op=help Returns the usage page for all of the config operations.

/config?op=log-enable Enables verbose logging for one or more specified variables.

/config?op=log-disable Disables verbose logging for one or more specified variables.

/config?op=log-status Returns verbose logging status.

List of supported logging variables

The following table describes the supported logging variables that you can use with related config operations
to toggle logging verbosity for specified features.

Logging variable names are not case sensitive.

Variable Description

verbose Enables verbose mode.

requestverbose Prints information about each request to stdout.

updateverbose Show verbose messages while processing updates.

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 34

Variable Description

recordfilterperfverbose Enables verbose information about record filter performance.

textsearchrelrankverbose Enables verbose information about relevance ranking during
search query processing.

textsearchspellverbose Enables verbose output for spelling correction features.

dgraphperfverbose Enables verbose performance debugging messages during core
Dgraph navigation computations.

dgraphrefinementgroupverbose Enables refinement verbose/debugging messages.

log-enable

log-disable

log-status

help

log-enable

The log-enable operation lets you turn on verbose logging.

You can include multiple logging variables in a single request. Unrecognized logging variables generate
warnings.

For example, this operation:

/config?op=log-enable&name=requestverbose

Version 2.2.2 Rev. A • June 2014

turns on verbose logging for queries, while this operation:

config?op=log-enable&name=textsearchrelrankverbose&name=textsearchspellverbose

turns on verbose logging for both the text search relevance ranking and spelling features.

However, this operation:

config?op=log-enable&name=allmylogs

returns an "Unsupported logging setting" message.

log-disable

The log-disable operation turns off verbose logging.

/config?op=log-disable with no arguments returns the same output as log-status.

log-status

The log-status operation returns a list of all logging variables with their values (true or false).

For example, if you have enabled verbose logging on two of the features, you would see a message similar to
the following:

Endeca® Latitude : Administrator's Guide



Administrative Operations and Logging Variables 35

Logging settings:

verbose - FALSE
requestverbose - TRUE
updateverbose - FALSE
recordfilterperfverbose - FALSE
textsearchrelrankverbose - TRUE
textsearchspellverbose - FALSE
dgraphperfverbose - FALSE
dgraphrefinementgroupverbose - FALSE

Version 2.2.2 Rev. A • June 2014

help

/config?op=help returns the usage page for all of the config operations.

Endeca® Latitude : Administrator's Guide



Chapter 7

Managing the Merge Policy

This chapter describes how to set and manage an MDEX Engine's merge policy.

Using a merge policy for incremental updates

Types of merge policies

Setting or changing the merge policy

Changing the merge policy of a running MDEX Engine

Forcing a merge

merge

Using a merge policy for incremental updates
A merge policy for the MDEX Engine determines how frequently it merges incremental update generations in
its index.

The data layer that stores the index of the MDEX Engine as a versioning data store. As a result:

• Old versions can be accessed while new versions are created.

• Old versions are garbage-collected when no longer needed.

A version is persisted as a sequence of generation files. A new version appends a new generation file to the
sequence. Query latency depends, in part, on the number and size of generation files used to store the index.

Generation files are combined through a process called merging. Merging is a background task that does not
affect MDEX Engine functionality, but may affect its performance. Because of this, you can set a merge policy
that dictates the aggressiveness of the merges. In a clustered environment, merge policy can be set on the
leader node only.

Types of merge policies
You can set the merge policy to one of two settings: balanced or aggressive.

• Balanced: This policy strikes a balance between low latency and high throughput. This is the default
policy of the MDEX Engine.

• Aggressive: This policy merges frequently and completely to keep query latency low at the expense of
average throughput.

The balanced policy is recommended for the majority of applications. However, aggressive merging may help
those applications that meet the following criteria:

• Query latency is the primary concern.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Managing the Merge Policy 37

• A large fraction of the records (for example, 20%) are either modified or deleted by incremental updates
before re-baselines.

• The time to perform an aggressive merge is less than the time between incremental updates.

Note: Under normal conditions, you do not need to change the default balanced policy. However, you
may need to change to an aggressive policy based on a recommendation from Endeca Support.

Setting or changing the merge policy
The mdex-config_MergePolicy attribute in the system's Global Configuration Record (or GCR) sets the
merge policy for the MDEX Engine.

You can set the merge policy with the Configuration Web Service API.

In addition, you can use the URL merge command to change the merge policy of a running MDEX Engine or
to force a merge.

If you are running a cluster of MDEX Engine nodes, changing the merge policy (either through a Configuration
Web Service request or with the merge command) can be performed on the leader node only.

Both of these methods are discussed in the following topics.

Setting the merge policy with the Configuration Service API

You can get and set the merge policy with API calls.

The following two topics describe how to use the Configuration Web Service to programmatically get and set
the merge policy in the GCR.

Getting the merge policy programmatically

You can retrieve the MDEX Engine's Global Configuration Record to see the current setting for the merge
policy.

To programmatically retrieve the Global Configuration Record:

1. Use a URL command similar to the following example to make certain that the Configuration Web
Service is running on the MDEX Engine. You should see config as one of the available Web
services.

http://localhost:5555/ws

Version 2.2.2 Rev. A • June 2014

2. Use the getGlobalConfigRecord function retrieve the Global Configuration Record via the
Configuration Web Service, as in this example:

In a cluster of MDEX Engine nodes, this request should be sent to the leader node only.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<config:configTransaction outerTransactionId="42"
xmlns:config="http://www.endeca.com/MDEX/config/services/types"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<config:getGlobalConfigRecord />

</config:configTransaction>
</soap:Body>

</soap:Envelope>

Endeca® Latitude : Administrator's Guide



Managing the Merge Policy 38

Note: This request also specifies the outerTransactionId="42". This is required only if a
request is run once the outer transaction with this ID has been started. If no transaction has
been started, the attribute for specifying the ID should be omitted from the request.

The results response from the Conversation Web Service should look like this example (the SOAP
elements have been removed):

<config-service:results
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types">
<mdex:globalConfigRecord xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<mdex:record xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...
<mdex-config_Key type="mdex:string">global</mdex-config_Key>
<mdex-config_MergePolicy type="mdex:string">balanced</mdex-config_MergePolicy>
...

</mdex:record>
</mdex:globalConfigRecord>

</config-service:results>

Version 2.2.2 Rev. A • June 2014

In this example, the merge policy is set to balanced for this MDEX Engine.

Setting the merge policy programmatically

You can programmatically set the merge policy for the MDEX Engine by updating the Global Configuration
Record.

To set the merge policy in the Global Configuration Record:

1. Use a URL command (similar to the following example) to make certain that the Configuration Web
Service is running on the MDEX Engine. You should see config as one of the available Web
services.

http://localhost:5555/ws

2. Use the putGlobalConfigRecord function to set the value of the mdex-config_MergePolicy
attribute in the Global Configuration Record, as in this example that changes the merge policy to
aggressive (note that all attributes must be put, but the example omits most of them for the sake of
clarity):

In a cluster of MDEX Engine nodes, this request should be sent to the leader node only.

<config:configTransaction outerTransactionId="42"
xmlns:config="http://www.endeca.com/MDEX/config/services/types"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<config:putGlobalConfigRecord>
<mdex:record xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

...
<mdex-config_Key type="mdex:string">global</mdex-config_Key>
<mdex-config_MergePolicy type="mdex:string">aggressive</mdex-config_MergePolicy>

...
</mdex:record>

</config:putGlobalConfigRecord>
</config:configTransaction>

Note: This request also specifies the outerTransactionId="42". This is required only if a
request is run once the outer transaction with this ID has been started. If no transaction has
been started, the attribute for specifying the ID should be omitted from the request.

Endeca® Latitude : Administrator's Guide



Managing the Merge Policy 39

The results response from the Configuration Web Service should look like this example (the SOAP
elements have been removed):

<config-service:results
xmlns:config-service="http://www.endeca.com/MDEX/config/services/types>

Version 2.2.2 Rev. A • June 2014

Changing the merge policy of a running MDEX Engine
The URL merge command can be used to change the merge policy of a running MDEX Engine.

The sticky version of the merge command is intended to change the merge policy of a running MDEX Engine.
The duration of the policy change is for the life of the current Dgraph process (that is, until the MDEX Engine
is restarted) or until another sticky change is performed during the current Dgraph process.

The format of the sticky version of the command is:

/admin?op=merge&mergepolicy=<policy>&stickymergepolicy

where policy is either balanced or aggressive.

The command also performs a merge operation if warranted.

This example:

http://localhost:8000/admin?op=merge&mergepolicy=aggressive&stickymergepolicy

forces a merge operation (if one is needed) and changes the current merge policy to an aggressive policy.

Forcing a merge
The URL merge command can also be used to force a merge.

Manually forcing a merge is considered a one-time version, because after the merge operation is performed
(via a temporary aggressive change to the merge policy), the merge policy reverts to its previous setting.

The one-time version of the merge command is used to perform a complete merge of all generations without
making a change to the default merge policy.

In a cluster of nodes, you can use this command on the leader node only.

The format of the one-time version of the command is:

/admin?op=merge&mergepolicy=<version>

The following example assumes that the MDEX Engine is using a balanced merge policy, and you want to
temporarily apply an aggressive policy so that the merging can be performed.

http://localhost:8000/admin?op=merge&mergepolicy=aggressive

When you issue the command, the resulting Web page will look like this example:

Dgraph admin, OK.
Dgraph Manual merge started at Sat March 26 09:52:47 2011

After the merging is performed, the merge policy reverts to its previous setting.

Endeca® Latitude : Administrator's Guide



Chapter 8

MDEX Engine Process Management

This chapter describes how to control the MDEX Engine process from the Windows Services utility or the
Linux inittab.

Running the MDEX Engine as a Windows service

Starting the MDEX Engine from inittab

Running the MDEX Engine as a Windows service
You can create a Windows service for running the MDEX Engine in service mode.

The Windows SC tool (sc.exe) communicates with the Windows Service Controller and installed Windows
services. The SC tool allows you to create a Windows service for the MDEX Engine. You can then start and
stop the MDEX Engine from the Windows Services utility, as well as make configuration changes (such as
configuring the service to automatically restart in case of a failure).

Note: The SC tool (sc.exe) is case-insensitive.

For more information, refer to these Web pages on the Microsoft site:

• For more information on creating Windows services: http://support.microsoft.com/kb/251192

• For more information on the sc.exe command: http://technet.microsoft.com/en-us/library/bb490995.aspx

SC Create command syntax
This topic describes the various options of the SC command with the Create command option.

The SC command communicates with the Windows Service Controller and installed services. When used with
its create command option, you can use it to create a Windows service under which the MDEX Engine will
run.

The SC Create command uses the following format:

sc [remoteServername] create Servicename
binpath= "path\to\dgraph.exe dgraphFlags path\to\mdex_db"
[Optionname= Optionvalue...]

Version 2.2.2 Rev. A • June 2014

where:

• remoteServername is an optional parameter that specifies the name of the server if you want to run the
command on a remote computer. The name must start with two backslash (\) characters. Do not use this
parameter if you are running SC on the local computer.

Endeca® Latitude : Administrator's Guide

http://support.microsoft.com/kb/251192
http://technet.microsoft.com/en-us/library/bb490995.aspx


MDEX Engine Process Management 41

• create is the command to be run by SC (this command name is mandatory to create a service).

• Servicename is the name of the Windows service to be created. This is the name given to the service key
in the registry. Note that this name is different from the display name.

• binpath is a mandatory parameter that specifies information for the dgraph.exe command.

• Optionname specifies optional parameters, which are described in the table below.

The binpath parameter specifies this information for the dgraph.exe command:

• The absolute path to the dgraph.exe command.

• The Dgraph flags used when the MDEX Engine is started. Note that you must use the Dgraph --out flag
when the MDEX Engine is run in service mode.

• The absolute path to the Dgraph database (that is, the database created by the mkmdex utility). Be sure to
use the same database name that was supplied to mkmdex (that is, do not use the "_indexes" suffix that
was added by mkmdex).

A space must be used between the binpath parameter and its argument. You should also use double quotes
around the argument.

SC Create options
You can use these SC Create options to further customize the Windows service. Note that the option name
includes the equal sign, and a space is required between the equal sign and the option value.

Option Name/Values Meaning

type= <serviceType> The type of service to be created. Use the own parameter value,
which means the service runs in its own process. It does not share
an executable file with other services. This is the default for the sc
create command. Note that other service types are available, but
you should use the own value.

start= <startType> The start type for the service:

• auto – A service that automatically starts each time the
computer is restarted.

• demand – A service that must be manually started. This is the
default value if start= is not specified. demand maps to
Manual in the Services Control Manager.

• delayed-auto – The SCM supports delayed auto-start
services to improve system performance at boot time without
affecting the user experience. The SCM makes a list of delayed
auto-start services during boot and starts them one at a time
after the delay has passed, honoring dependencies. There is no
specific time guarantee as to when the service will be started.

• disabled – A service that cannot be started. To start a
disabled service, change the start type to another start value.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



MDEX Engine Process Management 42

Option Name/Values Meaning

error= <errorSeverity> The severity of error if the service does not start during boot:

• normal – The error is logged and a message box is displayed
informing the user that a service has failed to start. System
startup will continue. This is the default setting.

• severe – The error is logged (if possible). The computer
attempts to restart with the last-known-good configuration. This
could result in the computer being able to restart, but the service
may still be unable to run.

• critical – The error is logged (if possible). The computer
attempts to restart with the last-known-good configuration. If the
last-known-good configuration fails, system startup also fails,
and the boot process halts with a Stop error.

• ignore – The error is logged and startup continues. No
notification is given to the user beyond recording the error in the
Event Log.

group= <loadOrderGroup> Name of group of which this service is a member. The list of groups
are stored in the registry under the ServiceGroupOrder key. Default
is null.

tag= yes|no Do not use this parameter as tags are used only for device driver
service types.

depend= <dependencies> Names of services or groups that must start before this service.
Each name is separated by / (forward slash).

obj= <accountName> Name of the account under in the service will run. The specified
account must exist and must be a valid account. Default is
LocalSystem.

password= <password> Password of the obj account. A password is required if an account
other than the LocalSystem account is used.

displayname= <displayName> A friendly, meaningful name that can be used in user-interface
programs to identify the service to users. For example, if the service
name is MService, you can specify Endeca MDEX Engine as the
display name so that will be more meaningful when shown in the
Windows Services Control Manager.

SC Create example
The following SC Create example creates a Windows service for the MDEX Engine (note that the command
is on one line, but is indented here for ease of reading):

sc create MDEXService displayname= "Endeca MDEX Engine"
type= own error= severe obj= "CORPDEV\EndecaUser" password= banx912
binpath= "c:\endeca\latitude\2.2.2\mdex\bin\dgraph.exe --port 5555
--threads 4

Version 2.2.2 Rev. A • June 2014Endeca® Latitude : Administrator's Guide



MDEX Engine Process Management 43

--pidfile c:\mdex_db\dgraph.pid
--log c:\mdex_db\dgraph.log
--out c:\mdex_db\dgraph.out c:\mdex_db\mdexdb"

Version 2.2.2 Rev. A • June 2014

The sample command does the following:

• Creates a Windows service named MDEXService.

• Uses Endeca MDEX Engine as the display name for the service.

• Sets the service type as own (which means the service runs in its own process).

• Sets severe as the severity of error if the service does not start during the boot process.

• Specifies that the service run under the CORPDEV\EndecaUser user account, which has banx912 as its
password.

• Sets the binary path of the dgraph.exe executable and specifies c:\mdex_db\mdexdb as the MDEX
Engine database prefix. Also specifies the locations of the query and error logs and the Dgraph PID file.

For ease of use, you can place the command in a batch script.

Creating the MDEX Engine Windows service
Use the SC command's Create option to create the MDEX Engine Windows service.

Before running this create-service procedure, make sure that you have Administrator rights.

When creating the service, you must specify the Dgraph --out flag as part of the SC Create command's
binpath parameter. Failure to do so will result in the MDEX Engine not being able to start.

To create a Windows service for the MDEX Engine:

1. Click on the Start button in the Windows taskbar.

2. Locate the Command Prompt menu item and right-click on the Command Prompt.

3. On the pop-up right click context menu, select Run as administrator.

4. In the Command Prompt, enter the SC Create command with the appropriate options.

If the command was successful, the SCM will return this message:

[SC] CreateService SUCCESS

If the command was not successful, the SCM may return this message:

[SC] OpenSCManager FAILED 5:

Access is denied.

If you do receive this error, verify that you are a member of the Administrators group on the machine (for
example, by using the Microsoft Management Console). If you do have Administrator rights, check that you
are opening the Command Prompt with the Run as administrator option.

After the service has been created, you can use the SC Config command to change any parameter set by
the SC Create command.

Endeca® Latitude : Administrator's Guide



MDEX Engine Process Management 44

Setting a service description
Use the SC command's Description option to set a description for the MDEX Engine Windows service.

Before adding a description to the service, make sure that you have Administrator rights.

When you create a service with the SC Create command, you cannot set a service description. However,
after creating the service, you can use the SC command's Description option to add a new description or to
modify an existing description.

The format of the SC Description command is:

sc description Servicename descriptionText

Version 2.2.2 Rev. A • June 2014

where Servicename is the name of the service to modify and descriptionText is the new description within
double quotes. There is no limit to the number of characters that can be contained in the service description.

To add or modify the description of the MDEX Engine Windows service:

1. Stop the MDEX Engine Windows service.

2. Click the Start button in the Windows taskbar.

3. In the menu, right-click Command Prompt.

4. On the pop-up right click context menu, select Run as administrator.

5. At the command prompt, enter the sc description command with the service name and new
description, as in this example, which sets a description for the MDEXService:

sc description MDEXService "Provides search and analytics functions."

If the command was successful, the SCM will return this message:

[SC] ChangeServiceConfig2 SUCCESS

Modifying the service configuration
Use the SC command's Config option to modify the configuration of the MDEX Engine service.

Before attempting to modify the service configuration, make sure that you have Administrator rights.

After you create the MDEX Engine service with the SC Create command, you can use the SC Config
command to modify the service configuration. Because both commands use the exact same set of
parameters, any parameter that you set with SC Create can be modified with SC Config. The command is
especially useful when you want to add or remove Dgraph flags from the current binpath setting.

The format of the SC Config command is:

sc [remoteServername] config Servicename Optionname= Optionvalue...

where Servicename is the name of the existing MDEX Engine Windows service to be modified.

When using the SC Config command, you specify only the parameter settings that will be changed. Any
parameter setting that is not specified will remain as-is in the service configuration. Note that to change the
service description, you must use the SC Description command.

To modify the MDEX Engine Windows service:

1. Stop the MDEX Engine Windows service.

2. Click the Start button in the Windows taskbar.

Endeca® Latitude : Administrator's Guide



MDEX Engine Process Management 45

3. In the menu, right-click Command Prompt.

4. On the pop-up right click context menu, select Run as administrator.

5. At the command prompt, enter the SC Config command with the service name to be modified and
the parameters to be changed, as in this example that adds a Dgraph flag to the binpath
configuration:

sc config MDEXService binpath= "c:\endeca\latitude\2.2.2\mdex\bin\graph.exe
--port 5555 --ancestor_counts --pidfile c:\mdex_db\dgraph.pid --threads 4
--log c:\mdex_db\dgraph.log --out c:\mdex_db\dgraph.out c:\mdex_db\mdexdb"

Version 2.2.2 Rev. A • June 2014

If the command was successful, the SCM will return this message:

[SC] ChangeServiceConfig SUCCESS

Deleting the MDEX Engine Windows service
Use the SC command's Delete option to remove the MDEX Engine Windows service.

Before deleting the service, make sure that you have Administrator rights.

The format of the SC Delete command is:

sc delete Servicename

where Servicename is the name of the service to be deleted.

To delete the MDEX Engine Windows service:

1. Stop the MDEX Engine Windows service.

2. Click the Start button in the Windows taskbar.

3. In the menu, right-click Command Prompt.

4. On the pop-up right click context menu, select Run as administrator.

5. At the command prompt, enter the SC Delete command with the service name to be deleted, as in
this example:

sc delete MDEXService

If the command was successful, the SCM will return this message:

[SC] DeleteService SUCCESS

If the command was not successful, the SCM may return this message:

[SC] OpenService FAILED 5:

Access is denied.

If you do receive this error, first verify that you are a member of the Administrators group on the machine. If
you do have Administrator rights, check that you are opening the Command Prompt with the Run as
administrator option.

Endeca® Latitude : Administrator's Guide



MDEX Engine Process Management 46

Using the Windows Services utility

The Windows Services utility allows you to control and configure the MDEX Engine service.

The MDEX Engine service, when selected in the Windows Services utility, looks like this example:

General tab

The General tab allows you to start and stop the MDEX Engine service. Either operation will log an
appropriate message to the MDEX Engine's stdout/stderr log.

Clicking the Stop button sends a shutdown request (with time limit of 120 seconds) to the MDEX Engine. The
shutdown will complete when all outstanding jobs are complete, or within 120 seconds, whichever happens
first. Unfinished jobs are handled as follows:

• A query still in progress when the time limit is reached will not return a result to the client and will not be
logged in the Dgraph log.

• An update still in progress when the time limit is reached will not be applied.

• A background merge still in progress when the time limit is reached will be aborted at the end of the
timeout.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



MDEX Engine Process Management 47

• The number of in-progress queries is written to the Dgraph error log just before exiting, along with a
message stating that the shutdown time limit was reached.

You can use the Startup type drop-down menu to change the startup type to Automatic, Automatic (Delayed
Start), Manual, or Disabled. Clicking the help link displays usage information for this option.

Note that the Start parameters field has no effect on the service.

Log On tab

The Log On tab allows you to change the account under which the MDEX Engine service runs. This option is
especially useful if you created the service to run under the Local System account and want to change to a
user account. The tab has a help link that provides detailed information on configuring the user account log on
options.

Recovery tab

The Recovery tab is used to configure recovery actions when a service fails. You can configure the MDEX
Engine service for automatic restart. That is, the MDEX Engine service will restart in the case of a crash or
machine reboot.

To obtain information on how to configure the computer's response if the MDEX Engine fails, click the "Help
me set up recovery actions" link on the tab.

Logging in service mode

MDEX Engine logging is supported in service mode.

When the MDEX Engine is run in service mode, it will log startup and shutdown messages to its stdout/stderr
log, which is specified by the Dgraph --out flag.

When the service is started:

INFO 03/01/11 20:55:44.578 UTC (1299012944577) DGRAPH {dgraph,baseline,
service} Starting in service mode.

Version 2.2.2 Rev. A • June 2014

When the service is stopped by the user (such as from the Windows Services utility):

INFO 03/01/11 21:32:14.500 UTC (1299015134500) DGRAPH {dgraph,service}
Stopping on user request.
Shutdown request with time limit of 120 seconds received at Tue Mar 01
16:32:14 2011.
Shutdown will complete when all outstanding jobs are complete, or within
120 seconds, whichever happens earlier.

When the service is stopped as part of a system shutdown:

INFO 03/01/11 21:53:41.469 UTC (1299016421469) DGRAPH {dgraph,service}
Stopping on system shutdown.
Shutdown request with time limit of 15 seconds received at Tue Mar 01
16:53:41 2011.
Shutdown will complete when all outstanding jobs are complete, or within
15 seconds, whichever happens earlier.

If Dgraph stdout/stderr is not redirected to a file in service mode, all log messages will be lost. Therefore,
when the MDEX Engine is run in service mode, the Dgraph --out flag is required. If the Dgraph --out flag is
not supplied, the service will not start. If you try to start it from the Windows Services utility, Windows displays
this error message:

Endeca® Latitude : Administrator's Guide



MDEX Engine Process Management 48

To recover from this situation, use the SC Config command to modify the binpath parameter of the service
and add the --out flag.

Starting the MDEX Engine from inittab
In a Linux production environment, the MDEX Engine can be started by init from inittab.

In a Linux development environment, the MDEX Engine can be started from the command line. In a Linux
production environment, however, Endeca recommends that it be started by init from inittab. If the
service crashes or is terminated, init automatically restarts it.

The inittab entry should be formatted like this:

dg:2345:respawn:/bin/su - <dgraph_user> -c "/absolute/path/to/bin
/dgraph <dgraph_flags> <mdex_indices>"

Version 2.2.2 Rev. A • June 2014

where:

• dg is the inittab entry identifier.

• 2345 lists the runlevels for which the specified action should be taken.

• respawn is the action to be taken, which is that the process will be restarted whenever it terminates.

• /bin/su specifies the process to be executed. In this case, a non-root user will run the dgraph command.
It is a best practice to run the Dgraph as a user other than root.

• -c dgraph <dgraph_flags> <mdex_indices> specifies that the dgraph command will be run with the
specified Dgraph flags, using the absolute path to the Dgraph database (that is, the database created by
the mkmdex utility).

Note that you must use the Dgraph --out flag to direct stdout/stderr output to a log file.

Endeca® Latitude : Administrator's Guide



Chapter 9

Deploying Latitude in a Cluster

This section discusses how to deploy a Latitude application in a cluster with multiple nodes hosting the MDEX
Engine instances.

Cluster overview

Latitude cluster architecture

Important cluster concepts

Before you begin

Building a cluster

Maintaining a cluster

Cluster overview
This topic introduces the cluster of MDEX Engine nodes and describes its capabilities.

About the cluster

A cluster is composed of a set of MDEX Engine nodes. All nodes can serve query requests. Only one node is
identified as the leader node; All other nodes are follower nodes. All of the MDEX Engine nodes share and
use one copy of the on-disk representation of the MDEX Engine index.

The Cluster Coordinator provides communication between the nodes in the cluster. The Cluster Coordinator is
also used to notify the follower nodes about index updates and updates to the configuration.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 50

Cluster capabilities

A cluster of MDEX Engine nodes provides the following capabilities:

• Enhanced availability of query processing by the MDEX Engine. In a cluster, if one of the nodes fails,
queries continue to be processed by other nodes in the cluster.

• Increased throughput by the MDEX Engine. In a cluster, you change throughput capacity by adding or
removing nodes. By adding nodes you can spread the query load across multiple MDEX Engine instances
without the need to increase storage requirements at the same rate. You can add or remove nodes
dynamically, without having to stop the cluster.

In a cluster, you can perform the following administrative tasks:

• Add one or more MDEX Engine instances to a cluster.

• Remove MDEX Engine instances while allowing the cluster to continue running.

• Identify a single node to which you can send data during an initial index data load and subsequent
updates. (The administration and configuration updates must also be sent to this node.) All types of
updates are automatically propagated to all MDEX Engine nodes while one or more MDEX Engine nodes
continue to process queries.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 51

Latitude cluster architecture
This topic discusses cluster architecture in the development and production environments.

In the development environment, you can start with a simple single-node cluster configuration and expand it
by adding more nodes. When you move to a production environment, you can duplicate a multi-node
development cluster.

A single-node cluster in the development environment

In a development environment, the simplest version of a cluster may consist of just one node hosting an
instance of the MDEX Engine. This node is by definition the leader node — in a single-node cluster, the only
node is considered the leader node by default.

Note: You are not required to run a single instance of the MDEX Engine in a cluster. Without the
cluster services, having a single running MDEX Engine instance is a valid configuration for starting in
the development environment.

This diagram represents a single-node cluster in a development environment:

In this diagram:

• The leader node is hosting an MDEX Engine and is receiving query requests from Latitude Studio.

• The leader node's host and port are included in the configuration for connectors from the Latitude Data
Integrator, which can send various kinds of data and updates to the MDEX Engine index.

• The leader node must have write access to a shared file system on which the MDEX Engine index is
stored. All other follower nodes that you add later must have read access to this file system.

• Finally, the cluster is managed by the MDEX Engine Cluster Coordinator. In a single-node cluster, the
Cluster Coordinator service runs on the same server on which the MDEX Engine is running.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 52

A multiple-node cluster in the development environment

In the development environment, many cluster configurations are possible; they depend on the requirements
for your application. For example, while a single leader node is always required, the number of additional
follower nodes hosting the MDEX Engine instances may vary.

This diagram represents a possible multiple-node cluster in a production environment:

In this diagram, starting from the top, the following actions take place:

• The queries are sent to the load balancer that is configured in front of several servers hosting Latitude
Studio instances.

• The instances of Latitude Studio point to a second load balancer between Latitude Studio and the MDEX
Engine cluster. This load balancer is configured to recognize the leader node and all follower nodes.

• The Latitude Data Integrator is configured to communicate with the host and port of the leader node to
ensure a point of communication for sending data and updates.

• All nodes in the cluster communicate with each other through the MDEX Engine Cluster Coordinator. The
Cluster Coordinator service must be running on the leader node.

• All nodes in the cluster have access to a shared file system on which a shared index is stored.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 53

Important cluster concepts
This topic introduces the leader and follower nodes and the Cluster Coordinator.

In a cluster composed of nodes, each of which hosts an MDEX Engine instance, the following definitions are
used:

• Leader node

• Follower node

• Cluster Coordinator

Leader node

A single node in the cluster responsible for processing queries and for receiving updates to the index and to
the configuration. This node is responsible for obtaining information about the latest index and propagating this
information to the follower nodes through the Cluster Coordinator.

When you create a new cluster, you start the leader node first and then add follower nodes. The leader node
has the following characteristics:

• Each cluster must have one and only one leader node.

• The leader node must have write access to the same shared file system on which the MDEX Engine index
is stored and to which all follower nodes also have access.

• The Cluster Coordinator service must be running on the leader node.

• The entities outside the cluster of MDEX Engine nodes (such as connectors in the Latitude Data Integrator
and components of Latitude Studio) must be able to access the leader node.

The leader node periodically receives full or incremental index updates from the Latitude Data Integrator. It
also receives administration or configuration updates. It is the only node in the cluster that has access with
write permissions to the on-disk representation of the MDEX Engine index.

Once the leader node acquires access to the new version of the MDEX Engine index, it updates the index,
adding new information to it and deleting information that has become obsolete. The Cluster Coordinator
notifies all follower nodes, alerting them to start using the updated index. The follower nodes acquire read-only
access to an updated index.

Follower node

A node in the cluster responsible for processing queries. The follower node does not update the index,
although it has read-only access to its latest copy.

You can start a follower node after you have started the leader node and the Cluster Coordinator. The follower
node has the following characteristics:

• Each cluster can have more than one follower node.

• In a single-node cluster, a leader is also a follower.

• Each follower node must have a unique name across the cluster. The name also must be a valid directory
name (characters such as slashes (/) are not allowed).

• All follower nodes must reference the host name and port of the Cluster Coordinator service.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 54

• All follower nodes must have read-only access to the same shared file system on which the MDEX Engine
index is stored. (The leader node must have write access to the file system.)

During the process of acquiring access to the recently updated index, both the follower and the leader nodes
continue to serve queries. Each query is processed against a specific version of the index that is available to a
cluster node at any given time. Query processing performance may slow down as the follower nodes acquire
read-only access to the updated index.

Cluster Coordinator

An entity that provides a mechanism for the MDEX Engine nodes to communicate with each other.

The Cluster Coordinator controls the heartbeat function, the file sharing function between the cluster nodes,
and the propagation of updates to the follower nodes once the leader node acquires access to an updated
MDEX Engine index.

Before you begin
This section discusses requirements for installation related to deploying a cluster, as well as tips for planning
your cluster architecture.

System and hardware requirements

This section outlines the operating system and hardware requirements for deploying Latitude in a clustered
environment.

Operating system requirements

A cluster of MDEX Engine nodes can be deployed on either Windows or Linux.

You cannot create a cluster in which some nodes are running on Windows while other nodes are running on
Linux.

Shared file system requirements

This topic describes the requirements for the shared file system in a cluster.

• All nodes in the cluster must have access to a shared file system on which the index is stored. The leader
node must have write access, and the follower nodes must have read access.

• File system size. You can start a cluster with a single node that serves both as the leader and a follower
node. As you add additional follower nodes, file system size requirements (as measured by the high-water
mark parameters for shared storage) increase modestly and do not increase proportionally to the number
of follower nodes.

• Performance. Even in a single-node cluster, using an index on remote storage affects node startup time
and performance associated with processing of index updates. In a multi-node cluster, all MDEX Engine
nodes are accessing the index at the same time. This coordinated access may affect performance for the
network or shared file system, especially when large updates are accessed for the first time.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 55

Load balancer requirements

In most production deployments, it is desirable to configure a load balancer between Latitude Studio and a
cluster of the MDEX Engine nodes. This topic discusses the load balancer considerations associated with the
Latitude cluster.

The following diagram of a typical multi-node cluster shows two load balancers:

• A load balancer in front of a number of servers hosting Latitude Studio

• A load balancer between Latitude Studio servers and the cluster of MDEX Engine nodes

This topic discusses the load balancer between Latitude Studio instances and the MDEX Engine cluster. In
the diagram, it is the load balancer with the callout:

The following considerations apply to this load balancer:

• Include host names and ports of all nodes into the load balancer configuration. This ensures that regular
query-type (non-updating) requests from Latitude Studio are sent to any of the nodes in the cluster.

Note: Latitude Studio data sources that send both updating and non-updating requests to a
cluster should include not only the load balancer's host name and port, but also an update host
name and update port that reference the leader node. If the leader node changes, the
configuration of the data source must be updated, but the load balancer's configuration does not
need to change.

• If you add nodes to the cluster, you must update the configuration of the load balancer with the host
names and ports of the added nodes.

• You may optionally configure the load balancer to use session affinity. In this case, all MDEX Engine
queries from a given Latitude Studio session end up on the same MDEX Engine. This allows the MDEX
Engine to use its cache to avoid redundant processing on related queries from one page view. A series of
page views also benefits from cache contents. For instance, a record search that remains in the filter state
through multiple page views will not have to be calculated repeatedly for each click.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 56

Configuring session affinity also helps minimize consistency problems as updates propagate from the
leader to the follower nodes in the cluster (if you are not using transactions to run updates).

Connecting a cluster with a load balancer

Load balancer and outer transactions

In a cluster, updates are sent to the leader node only. During an outer transaction, the leader node responds
to any queries, including the admin?op=ping command, with an HTTP status code 403. This way, the load
balancer can be configured to automatically detect whether a transaction is in progress and remove the leader
node from answering queries, while other nodes in the cluster continue to respond to user requests in Latitude
Studio.

The following bullets describe the logic behind this requirement:

• In a cluster, updates to the records in the index (or any other updates) are sent to the leader node only. In
general, it is best to wrap updates in an outer transaction operation.

Such updates can be configured in LDI, with the use of the Transaction RunGraph Latitude connector.
This connector lets you create a graph that starts an outer transaction, runs one or more sub-graphs, and
if they complete successfully, commits an outer transaction. If any of the sub-graphs fail, the changes
made within a transaction are rolled back and the transaction is committed.

• While an outer transaction is open, the leader node returns an HTTP status code 403 ("request
forbidden") to any queries that are issued outside of the transaction. In this way the load balancer must be
able to identify when the leader node runs a transaction, so that requests can be directed to other nodes
in the cluster.

• To identify whether a leader node is still processing an outer transaction, issue an /admin?op=ping
request. An HTTP status code 403 means that the transaction is in progress.

For more information on running transactions, see the LDI MDEX Engine Components Guide.

Connecting a cluster with a load balancer

About the Cluster Coordinator

The cluster coordinator provides a mechanism for the MDEX Engine nodes to communicate with each other
while ensuring increased availability of the MDEX Engine.

The Cluster Coordinator has the following characteristics:

• It is a shared information repository that provides a set of distributed coordination services.

It ensures that all systems in the cluster coordinate their actions relative to all other systems running in
your environment. If one of the nodes communicates any cluster information, all other nodes recognize it
and react to it in manner that ensures synchronization, event notification, and coordination between the
nodes.

The communication and coordination mechanisms continue to work in the case when connections or
cluster nodes fail.

• The Cluster Coordinator logs messages using the log4j file included with its installation in the /conf
directory. When the Cluster Coordinator service is running on a node, log messages can be logged to the
console (default) and/or a log file depending on the log4j configuration.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 57

Deployment strategy for the Cluster Coordinator service and MDEX Engine nodes

To create a cluster, the Cluster Coordinator service must be running on at least one node. Endeca
recommends that you start a single Cluster Coordinator service on the node that will be designated as the
leader node, and then start the MDEX Engine on all nodes by referencing the host and port of the Cluster
Coordinator.

Note: The port for the Cluster Coordinator is a dedicated port used for cluster node communication.

Starting and stopping the Cluster Coordinator service

To ensure that MDEX Engine nodes can function together in a cluster, the Cluster Coordinator service must
be running on the leader node and all the nodes must be started with references to the host name and port of
the Cluster Coordinator service.

You start the Cluster Coordinator service on the leader node only.

It is assumed that the Cluster Coordinator package has been downloaded and installed on the leader node.

To start or stop the Cluster Coordinator service:

1. On the server that will serve as the leader node, go to the
Latitude\<version>\ClusterCoordinator\bin directory and locate the
clusterCoordinator script.

The script has a different extension for Windows and Linux.

2. From this directory, run the script as follows:

• To start, run:

clusterCoordinator start

Version 2.2.2 Rev. A • June 2014

• To stop, run:

clusterCoordinator stop

Note: If you provide a full path to the script on the command line, you can also run it from
another directory. In this case, the Cluster Coordinator creates its dataDir in the path from
which you run the script.

When the Cluster Coordinator is started on a server, it uses the host name of this server, and the port
2181. (You can change the Cluster Coordinator configuration to use another port, using its
configuration file.)

After the Cluster Coordinator service has been started on a node, you can start the MDEX Engine on this
node. This will be the leader node.

The configuration file for the Cluster Coordinator

The Cluster Coordinator service uses a configuration file which specifies the settings for it.

Note: This topic provides reference information about this file. For the cluster to work, this file does
not require any modifications.

Endeca® Latitude : Administrator's Guide



Deploying Latitude in a Cluster 58

After the installation of the Cluster Coordinator, the configuration file is placed in the
Latitude\<version>\ClusterCoordinator\conf directory. When you run the clusterCoordinator
script, it detects the configuration file.

Format

The configuration file should have the following format:

# Modified and renamed from source by
# Endeca Technologies

# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgment
syncLimit=5
# the directory where the Cluster Coordinator snapshot is stored.
dataDir=.
# the port at which the clients will connect
clientPort=2181

Version 2.2.2 Rev. A • June 2014

Where:

Entry Description

tickTime The basic time unit in milliseconds used by the Cluster Coordinator. It is used for
heartbeats.

For example, tickTime can be 2000 milliseconds. The minimum session
timeout is twice the tickTime.

initLimit The number of ticks that the initial synchronization phase can take.

This number specifies the length of time the nodes have to connect to the leader
node.

syncLimit The number of ticks that can take place between one node sending a request for
an update and receiving an acknowledgment from the leader node.

dataDir The directory where the in-memory database snapshots for the Cluster
Coordinator and the transaction log of updates to its database are stored.

This directory is created in the same file system location from which you run the
Cluster Coordinator script.

You can specify to store the log of updates to the database in another directory,
using the log4j file stored in the /conf directory of the Cluster Coordinator
installation.

clientPort The port at which clients should connect to the Cluster Coordinator service.

As configured after the initial installation, this port is 2181.

Endeca® Latitude : Administrator's Guide



Deploying Latitude in a Cluster 59

Planning cluster nodes

To plan cluster nodes, you specify which ones will serve as follower nodes. The one node in a cluster that is
not a follower is the leader node.

To plan your cluster nodes:

1. Write down each node's host and port.

You will need this information to identify which of your nodes should serve as a leader node and to
designate other nodes as follower nodes.

2. Provision a shared file system on which the MDEX Engine index will be stored.

When you will install and start MDEX Engine instances, they should each point to the index on this file
system and have access to it. (Read-only access is sufficient for follower nodes; write access is
required for the leader node.)

3. On the node you would like to designate as the leader node, reserve the port 2181.

This port is used by the Cluster Coordinator service (unless you configure it to use another port). You
will also specify this port when starting all nodes in your cluster.

Cluster behavior

The Cluster Coordinator ensures that the MDEX Engine nodes in the cluster provide query processing that is
stable in the face of individual follower node failures. This topic discusses cluster behavior in various
scenarios, such as cluster startup, updates to the index, and response to a node failure.

Bringing a cluster online

On startup, the following actions take place:

• Any MDEX Engine node can be started in either a leader or follower mode. The leader node must be
started first. Any number of follower nodes and exactly one leader node can be added to a cluster.

• If you attempt to start two leader nodes in the same cluster, you will receive an error.

• If you attempt to start a follower node before the leader node has been started, the follower node will issue
an error and will not start until the leader node is started.

• Once started, each node registers with the Cluster Coordinator that manages the distributed state of the
cluster.

One node for which you do not specify that it must be a follower is the leader; you identify all other nodes
as follower nodes.

• The leader node determines the current version of the index and informs the Cluster Coordinator.

• Once the leader node has been started, the follower nodes can be started.

• After all follower nodes have started, each of them acquires read-only access to the current version of the
index.

• Follower nodes do not alter the index files in any way; they continue answering queries based on the
index version to which they have read-only access at startup, even if the leader node is in the process of
updating, merging or deleting index files on disk.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 60

Follower nodes refuse all updating web service and HTTP requests (such as admin?op=updateaspell)
with a 403 HTTP status code (forbidden).

Processing an update

In a cluster, updates to the records in the index (or any other updates) are sent to the leader node only.

The leader node processes the update and commits it to the on-disk index. The Cluster Coordinator informs
all follower nodes that a new index version is available. The leader node and all follower nodes can continue
to use files from the previous version of the index to finish query processing that had started against that
version.

As each node finishes processing queries on the previous version, it releases references to it. Once the
follower nodes are notified of the new version, they acquire read-only access to it and start using it.

Endeca recommends to wrap updates in the cluster in an outer transaction operation, although you may run
updates on the leader node with or without using transactions.

• Updates that run without using an outer transaction take time to propagate across the nodes in the cluster.
Some of them may succeed and some of them may fail. Because of this, at any given time while updates
are running, portions of page views in Latitude Studio could be processed against different versions of the
index and thus may be inconsistent.

• Updates that run within an outer transaction succeed or fail as a unit. As a result, page views in Latitude
Studio reflect either the pre-update state of the index, or the state after all updates have been committed.

The following statements describe how updates run within an outer transaction:

• When an outer transaction is started, it locks out all queries on the leader node for its duration. The
leader node starts processing updates that run within the transaction, and stops processing any
queries that are issued outside of this transaction. It returns an HTTP status code 403 ("request
forbidden") to any such queries. Until the transaction is committed, the follower nodes respond to
queries against the previously available version of the index. You can configure the load balancer to
identify when the leader node runs a transaction, so that it directs all requests to other nodes in the
cluster for the duration of the outer transaction.

• If all updates from a transaction are processed successfully, the transaction is committed. In this case,
all updates are committed to the MDEX Engine index as a unit. All nodes in the cluster are informed of
the updated index and start using it. The leader node resumes responding to queries from Latitude
Studio.

• If any of the updates within a transaction fail, all updates from the transaction are rolled back, and the
transaction is committed. All nodes continue using the previously available version of the index. This is
the default behavior that you can change in your LDI graph that runs updates, if needed.

You can use the Transaction RunGraph Latitude connector in the LDI Designer to create a graph
that starts and commits an outer transaction. Within this graph, you can run one or more graphs that
perform updates. For information on how to run graphs that utilize transactions, see the LDI MDEX
Engine Components Guide.

Responding to a node failure

In a cluster, a follower or a leader node may fail:

• Failure of the leader node. Responding to the expected or unexpected leader node failure is critical for
system availability and data consistency. When the leader node goes offline, the Cluster Coordinator

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 61

detects this event, and the follower nodes stop receiving notifications about the new versions of the index.
You need to restart the node.

• Failure of a follower node. When one of the follower nodes goes offline, it is removed from the cluster. The
other nodes do not need to keep track of this event. If the follower node is restarted, it joins the cluster.
The follower node should be restarted with the same name.

Responding to network failures of the Cluster Coordinator service

If a network connection fails between the nodes in the cluster that connect to the Cluster Coordinator service,
the MDEX Engine on those nodes will shut down.

A node will rejoin the cluster once the MDEX Engine on the node is restarted (this will happen automatically if
it is run as a service) and is able to establish a connection with the Cluster Coordinator service.

Building a cluster
This section discusses how to build a cluster by starting the leader node and adding follower nodes.

Starting the MDEX Engine as the leader node

When you start any MDEX Engine without specifying that it is a follower node, this node serves as the leader
node.

The leader node must be started first (before any of the follower nodes have been started).

Before starting the leader node, ensure that the Cluster Coordinator service is running on this node. Note the
host name and port of your Cluster Coordinator service, so that you can specify them when starting the MDEX
Engine as the leader node.

You configure one and only one leader node in a cluster. Therefore, if you want to start the MDEX Engine as
the leader, do not specify the --follower flag for it. The MDEX Engine instance that is started without the -
-follower flag becomes the leader node. You also do not have to specify a name for the leader node.

To start the MDEX Engine as the leader node:

1. Start the MDEX Engine on the node with the dgraph command as in the following example:

dgraph
--port 5555
--coordinator_port 2181
--coordinator_host My_cluster_coordinator_server.com
--threads 16
--log c:\mdex_db\dgraph1.log
--out c:\mdex_db\dgraph1.out
z:\shared_mdex_db\mdexdbdgraph

Version 2.2.2 Rev. A • June 2014

In this example:

• z:\shared_mdex_db\mdexdbdgraph is the location of the MDEX Engine index, which resides
on a shared file system. All nodes in your cluster must point to the same location of the index on a
shared file system and have access to it (with the leader node having write access, and follower
nodes having read access).

Endeca® Latitude : Administrator's Guide



Deploying Latitude in a Cluster 62

• 2181 is the port used by the Cluster Coordinator (if you haven't changed it after installing the
Cluster Coordinator).

• My_cluster_coordinator_server.com is the host name used by the Cluster Coordinator.
This is the host name of the leader node.

Once the MDEX Engine is running on the leader node, this node receives updates to the index and
configuration. The Cluster Coordinator propagates updates to the follower nodes.

2. Note the leader node's port and host name.

You will need to reference this information in the configuration for the Latitude Data Integrator, so that
the Integrator can send data and updates to the leader node. This information should be also useful
when configuring the data sources in Latitude Studio.

Now that you have started the leader node, you can add one or more follower nodes.

Adding a follower node

You can add a follower node to the cluster after the leader node has been started, by starting the MDEX
Engine with the --follower <node_name> flag.

Before starting an MDEX Engine that will serve as a follower node, ensure that the leader node has been
started and the Cluster Coordinator service is running on the leader node. Note the host name and port of
your Cluster Coordinator service, so that you can specify them when starting the MDEX Engine as a follower
node.

The Dgraph flag --follower <node_name> specifies the follower node, where <node_name> is the name
of the follower node. This name must be unique across the cluster. The name must also be a valid directory
name (characters such as slashes (/) are not allowed).

Note: If you start a node without this flag, the Cluster Coordinator assumes this is the leader node.
Since there can be only one leader node in the cluster, it is important to start just one node without the
--follower <node_name> flag. In fact, the MDEX Engine will not start if it is asked to be the leader
node when a leader node already exists.

To start an MDEX Engine as a follower node:

1. Issue the command as in the following example, specifying a unique name of the follower node in the
--follower flag:

dgraph
--port 5556
--threads 16
--follower FollowerNode1
--coordinator_port 2181
--coordinator_host My_cluster_coordinator_server.com
--log c:\mdex_db\dgraph2.log
--out c:\mdex_db\dgraph2.out
z:\shared_mdex_db\mdexdbdgraph

Version 2.2.2 Rev. A • June 2014

In this example:

• z:\shared_mdex_db\mdexdbdgraph is the location of the MDEX Engine index, which resides
on a shared file system.

Endeca® Latitude : Administrator's Guide



Deploying Latitude in a Cluster 63

All follower nodes in your cluster must point to the same location of the index on a shared file
system and have read access to it.

• The --coordinator_host and --coordinator_port reference the host name and port of
the Cluster Coordinator service.

This service uses the host name of the leader node, and the port 2181 (unless you configure the
Cluster Coordinator to use another port).

The node FollowerNode1 is now known to the Cluster Coordinator as a follower node — when
changes occur to the on-disk MDEX Engine index, the Cluster Coordinator notifies this node to start
using the new version of the index.

2. Proceed by adding additional follower nodes if needed.

For each follower node:

• Specify a different name.

• Reference the host name and port of the Cluster Coordinator service.

• Ensure that the index is referenced in the same location on a shared file system as for other
nodes in the cluster.

Note: Since there is one Cluster Coordinator service running on the leader node, you can add
more than one follower node, all referencing the same Cluster Coordinator service host name
and port.

If a follower node fails, the cluster continues to run. Once you identify a follower node failure, restart the
follower node with the same name and the node will join the cluster.

Summary of operations handled by the leader node and any node

This topic summarizes which specific requests to the MDEX Engine should be directed to the leader node and
which can be handled by any node.

Operations on the leader node only

These operations should be directed to the leader node only:

• Updates to data records. If you are adding more records to the MDEX Engine cluster, they should be sent
to the leader node.

This means that operations from the Data Ingest Web Service and the bulk load interface should be
directed to the leader node only.

• Snapshot operations from the Administrative Web Service. Operations for taking and applying a snapshot
should be directed to the leader node only.

• Updating operations from the Configuration Web Service. All requests to the MDEX Engine that require
changing schema for the MDEX Engine records or the configuration of the MDEX Engine features should
be directed to the leader node.

If such requests are sent by Latitude Studio components, this requirement is achieved by configuring data
sources that include the update host name and update port that reference the leader node.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 64

• Administrative operations for the MDEX Engine. The following administrative operations should be
directed to the leader node:

• /admin?op=merge

• /admin?op=reload-services

• /admin?op=updateaspell

Operations on any node

The following operations can be directed to any node in the cluster (including any of the follower nodes):

• Any request from the Conversation Web Service (this means any request from Latitude Studio asking for
read-only queries against the data).

• Any request from the Administrative Web Service other than snapshot-related operations.

• Any request utilizing the read-only version of the Configuration Web Service.

• Some administrative operations for the MDEX Engine. The following administrative operations can be
directed to any node in the cluster:

• /admin?op=exit

• /admin?op=flush

• /admin?op=logroll

• /admin?op=stats

• /admin?op=statsreset

Connecting the leader node with the Data Integrator

The connectors in the Latitude Data Integrator that send data to the MDEX Engine must be configured to
reference the host name and port of the leader node.

The MDEX Engine instance running on this node is capable of receiving updates, since it has write
permissions to the MDEX Engine index.

It is assumed that by this point, you have configured a leader node in the cluster.

To reference the leader node in the Data Integrator configuration:

1. In the connector's configuration, specify the host name and port of the leader node.

Connecting a cluster with Latitude Studio

In a typical implementation, a cluster of MDEX Engine nodes is connected to one or more Latitude Studio
servers through a load balancer. The host and port of this load balancer must be referenced in the data

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Deploying Latitude in a Cluster 65

sources for Latitude Studio components. In addition, for any updating operations or queries, Latitude Studio
data sources need to include an update host name and update port that reference the leader node.

Connecting a cluster with a load balancer

The load balancer between a cluster and one or more Latitude Studio servers must be aware of all nodes in
the cluster. In addition, all data sources in Latitude Studio must reference the host name and port of the load
balancer server.

Configuration of the load balancer involves taking care of these high-level tasks:

• To connect the load balancer with a cluster of MDEX Engine nodes, reference the host names and ports
of all nodes in the load balancer configuration.

• To connect the load balancer with Latitude Studio servers, each data source in Latitude Studio must
specify the host name and port of the load balancer.

Load balancer requirements

Load balancer and outer transactions

Examples of data sources

Latitude Studio supports two different scenarios for integration with the MDEX Engine cluster: read-only
access, and read-only access with a specified host and port name for a leader node in the cluster (to enable
updating operations). This topic contains examples of data sources for each scenario.

Note: The examples in this topic are specific to the cluster requirements. For complete information on
how to configure data sources, see the Latitude Studio User's Guide.

Example of a read-only data source

A component may have a backing data source that allows read-only access to a cluster of MDEX Engine
nodes.

If a data source allows read-only access to a cluster, all viewing actions are enabled for a component, along
with editing of component's preferences. However, you cannot edit attribute groups for a read-only data
source using the Attribute Settings component in the Control Panel. This is because the Attribute Settings
component only lets you edit attribute groups for data sources that have update operations enabled.

Here is an example of a data source with read-only access to a cluster:

{
"server":"cluster_loadbalancer_server.company.com",
"port":"15000",
"name":"cluster read-only",

}

Version 2.2.2 Rev. A • June 2014

Note that this configuration looks identical to a standard non-clustered data source definition file. However,
since the MDEX Engine is read-only, only read operations will be enabled in Latitude Studio.

Example of a read-only data source with updating access

A component may have a backing data source with read-only access to a cluster that also has an updating
access (leader node) host name and port specified.

Endeca® Latitude : Administrator's Guide



Deploying Latitude in a Cluster 66

In this case, all viewing actions are enabled for a component, along with editing of component's preferences.
In addition, you can change attribute settings for this data source the Attribute Settings component. Because
the data source references the leader node that is responsible for handling updates, these changes are sent
to the leader node. The index changes from the leader node are propagated to the other nodes in the cluster,
but this may not happen immediately.

Here is an example of a read-only data source with the leader's node host name and port specified:

{
"server":"cluster_loadbalancer_server.company.com",
"port":"15000",
"name":"cluster updatable",
"updateServer":"leaderNode.company.com",
"updatePort":"18000",

}

Version 2.2.2 Rev. A • June 2014

Configuring a data source for cluster access

This procedure describes the format of the data source that allows both the read-only access to any node in
the cluster through a load balancer and the updating access to the leader node.

Before configuring data sources so that they can connect to your cluster, ensure that you have already
configured a load balancer between the Latitude Studio servers and the cluster. You will need to specify the
load balancer's host name and port in the data sources.

In a non-clustered environment, after you install Latitude Studio and the MDEX Engine, the default data
source references the port and host name of the server on which the MDEX Engine must be running once it
has been installed. In particular, the endeca-portal\data\endeca-data-sources directory in Latitude
Studio includes a default.json data source file, which has an implicit id of default. This file includes host
and port information for the default installation of a single MDEX Engine server.

In a clustered environment, which type of data source you should configure for a Latitude Studio component
depends on the type of information that will be sent from this component to the MDEX Engine:

• Latitude Studio components that make standard read-only queries (without sending any updating
requests) can send requests to any node in the cluster.

Data sources for such components must reference only the host and port of the load balancer configured
between the Latitude Studio servers and the cluster of MDEX Engine nodes. This is achieved by
configuring in the data source the host name and port of the load balancer:
"server":"loadBalancerHost", "port":"loadBalancerPort".

• Those components that in addition to read-only queries must make updating requests for changing the
configuration should direct their updating queries to the leader node.

Data sources for such components must reference the host and port of the leader node, in addition to
referencing the load balancer server. This is achieved by configuring in the data source the host name and
port of the leader node:"updateServer":"leaderNodeHost",
"updatePort":"leaderNodePort".

To configure a data source that allows both read-only and updating access to a cluster:

1. Specify in the data sources the host name and port of the load balancer, as well as the host name and
port of the leader node, as shown in this example:

{
"server":"loadBalancerHost",

Endeca® Latitude : Administrator's Guide



Deploying Latitude in a Cluster 67

"port":"loadBalancerPort",
"name":"cluster loadbalanced datasource",
"updateServer":"leaderNodeHost",
"updatePort":"leaderNodePort"

}

Version 2.2.2 Rev. A • June 2014

This configuration allows instances of Latitude Studio to distribute all of the normal queries across all
MDEX Engine nodes in the cluster, while sending all update operations to the leader node only.

Note: When the leader node changes, you should update the data source definition file in
Latitude Studio to specify a host name and port of the new leader node, but the load balancer
configuration does not need to be changed.

Maintaining a cluster
This section contains tasks you need to perform for cluster maintenance.

Removing a follower node
To remove a follower node, stop the MDEX Engine on this node with the /admin?op=exit command. This
command gracefully shuts down a running MDEX Engine.

When you stop the MDEX Engine on one of the follower nodes, this node is removed from the cluster.

exit

Changing the name of the leader node

To change the leader node, stop the existing cluster, start the Cluster Coordinator on another node, and
recreate the cluster with the new leader node.

To change which node is the leader node:

1. Stop the existing cluster by stopping the nodes and the Cluster Coordinator service.

2. Start the Cluster Coordinator service on another node.

3. Recreate the cluster with another node as the leader, by referencing the new location of the Cluster
Coordinator to all nodes.

Endeca® Latitude : Administrator's Guide



Chapter 10

Using Endeca SSL Certificate Utilities

This section describes how to use the Endeca enecerts utility to generate standard and custom SSL
certificate files to be used for SSL connections to the MDEX Engine. It also documents how to convert PEM-
format certificates to the standard Java KeyStore (JKS) format.

Certificate files used by Endeca components

Generating SSL certificates

Configuring the MDEX Engine for SSL mutual authentication

Converting PEM-format keys to JKS format

Certificate files used by Endeca components
You configure SSL among the standard Endeca components by using a set of certificate files.

The certificate files are listed in the following table:

Certificate file Description

eneCert.pem Certificate file used by all Endeca clients and servers to specify their identity
when using SSL. This certificate should be thought of as the identity of the
Endeca system, or as the identity of all components of the Endeca system.

eneCA.pem Certificate authority file used by all Endeca clients and servers to
authenticate the other endpoint of a communication channel.

eneCA.key Private key that is used by the enecerts certificate authority program to sign
the eneCert.pem certificate.

eneCA.cer Certificate authority file.

eneCert.p12 Personal Information Exchange (PKCS12-format) key file.

Because these certificate files are not provided in the Endeca Latitude packages, you must use the Endeca-
provided enecerts utility (documented in the next topic) to generate them.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Using Endeca SSL Certificate Utilities 69

Generating SSL certificates
You can use the enecerts utility program to generate new SSL certificate files.

The two typical scenarios for generating SSL certificates are:

• You are setting up SSL for the first time and need to generate the set of standard certificates.

• You want to generate custom certificates, such as those with a private key size greater than the default
1024 bits.

The enecerts utility resides in the bin directory (located in the MDEX Engine root directory) under the name
enecerts (enecerts.exe on Windows).

Generating standard SSL certificates on UNIX

This procedure shows how to generate the set of standard certificates with a 1024-bit private key size on
UNIX platforms.

To generate the SSL certificates on a UNIX machine:

1. Make sure that the bin directory (located in the MDEX Engine root directory) is in your $PATH
environment variable.

2. Change to the directory in which the certificate files should reside.

3. Run the enecerts utility that creates the certificates.

4. Enter an export password of your choice.

If the programs finishes successfully, it displays the list of certificates that it generated.

Generating standard SSL certificates on Windows

This procedure shows how to generate the set of standard certificates with a 1024-bit private key size on
Windows platforms.

To generate the SSL certificates on a Windows machine:

1. Open a command prompt.

Note: Make sure you are using a new command prompt window, not one that is left over from
earlier tasks.

2. To ensure that the MDEX Engine environment variables are set for this user process, change to the
MDEX Engine root directory, and then run the mdex_setup.bat script.

3. Change to the directory in which the certificate files should reside.

4. Run the enecerts utility that creates the certificates:

enecerts

Version 2.2.2 Rev. A • June 2014

5. Enter an export password of your choice.

If the programs finishes successfully, it displays the list of certificates that it generated.

Endeca® Latitude : Administrator's Guide



Using Endeca SSL Certificate Utilities 70

Generating custom certificates
You can use the enecerts utility to generate customized certificates.

You can generate two types of customized certificates by:

• Specifying a private key size larger or smaller than the default 1024-bit size.

• Using your own CA file and private key to generate the eneCert.pem certificate.

The next two sections describe these operations.

Specifying a different certificate key size
The --keysize flag of the enecerts utility lets users specify the size of the generated private key.
The flag syntax is:

--keysize bits

Version 2.2.2 Rev. A • June 2014

where bits is the private key size in bits (default value is 1024).

For example, the following Windows command creates certificates with a private key size of 2048 bits:

enecerts --keysize 2048

Using your CA file to generate certificates
By default, the enecerts utility produces the eneCert.pem certificate (used by all clients and servers to
specify their identity when using SSL) and the eneCA.pem CA certificate (used by all clients and servers that
wish to authenticate the other endpoint of a communication channel).

If you have your own CA certificate and private-key files, you can use the --CAkey and --CAcert flags to
generate the eneCert.pem certificate. The private-key file (.key extension) is used to digitally sign the public
key that is generated by the enecerts utility. Both flags must be used for this operation.

The syntax for the --CAkey flag is:

--CAkey private-key

where private-key is your own .key file with the private key for the CA that should be used to sign the
generated certificate.

The syntax for the --CAcert flag is:

--CAcert cert-pem

where cert-pem is your CA certificate (.pem extension). This file is the same type of file as the default
eneCA.pem CA certificate.

For example, the following Windows command creates a signed certificate file using your own CA certificate
and private-key files:

enecerts --CAkey myCA.key --CAcert myCA.pem

You would then use the resulting eneCert.pem certificate and your CA file (myCA.pem in the example) to
configure SSL for your Endeca components. If you have multiple machines in your deployment, you must also
copy these files to the other machines.

Endeca® Latitude : Administrator's Guide



Using Endeca SSL Certificate Utilities 71

Copying the SSL certificates to other machines

All machines that are running your deployment must use the same SSL certificates.

If you have multiple machines in your deployment, the standard or custom SSL certificates should be created
only once, on one machine. You must then copy them to the directories (on all other machines) from which the
MDEX Engine is started. All of the machines must use the same SSL certificates.

Configuring the MDEX Engine for SSL mutual authentication
This topic describes high level steps required to configure an SSL mutual authentication between the MDEX
Engine server and an external server. The authentication uses certificates signed by a certificate authority
(CA). This setup may apply if your MDEX Engine and external servers are hosted outside the firewall, or if a
two-way authentication is required between them.

When using Web services and XQuery with the MDEX Engine, client servers running non-Endeca software
may need to access the MDEX Engine server securely. In such cases, a secure connection may need to be
established between these servers by configuring the MDEX Engine server for authentication with SSL
certificates.

This procedure is an example of how you can establish a mutual (two-way) authentication. Treat this
procedure as a high-level recommendation rather than the only way to establish a secure connection. Other
steps may be required depending on your specific security requirements.

In this procedure, you create two signed certificates. First, you create a private key and send a Certificate
Signing Request (CSR) to a CA from the external server. Next, you create a private key and send a CSR from
the server hosting the MDEX Engine. You can then start the MDEX Engine referencing the sslcertfile
which contains the MDEX Engine private key and the signed certificate.

To configure an SSL mutual authentication between the MDEX Engine and an external server:

1. Create a private key and send a Certificate Signing Request (CSR) from the external server. You can
create a private key and issue a CSR by using one of these methods:

• Use the server's certificate management utility (if applicable)
• Use openssl commands

• Consult your security and server administrator for assistance.

Note: Some CA vendors require that the CSR be generated from 2046-bit length private keys
and not from 1024-bit length keys. Please confirm with your CA vendor before issuing the
CSR.

2. Send the CSR to a CA for signing.

A CA provides a bundled key file (including intermediate keys) along with a signed certificate.
Note: You will need the bundled key file for the Dgraph --sslcafile startup flag later on in
this procedure.

3. Add the signed certificate to the keystore of the external server.

For information, refer to the server's documentation or your security administrator.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Using Endeca SSL Certificate Utilities 72

4. Create a private key and certificate for the MDEX Engine server using the openssl utility.

For example, the following command creates a 2048-bit RSA key that is valid for a year:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout MDEXCert.pem -out MDEXCert.pem

Version 2.2.2 Rev. A • June 2014

The resulting MDEXCert.pem file stores both the private key and the certificate.

5. Create a Certificate Signing Request (CSR) from the MDEXCert.pem file, as follows:

openssl req -new -key MDEXCert.pem -out MDEXCertCSR.pem

6. Send the MDEXCertCSR.pem file to the CA for signing.

7. Obtain from the CA a bundled key file (including intermediate keys) along with a signed certificate.

8. Create an empty file, such as MDEXSSLCert.pem to store the combination of the MDEX Engine
private key and the signed certificate.

You can do this by copying the entry for the private key (step 4) into the empty file, and appending the
contents of the signed certificate (Step 7) underneath the private key entry in the new file.

9. Reference the file MDEXSSLCert.pem created in the previous step in the --sslcertfile startup
flag for the Dgraph.

10. Add both the sslcafile and sslcertfile flags to your Dgraph startup options, as follows:

--sslcafile <full_path_to_location_of_bundled_key_file_in_step2>

--sslcertfile <full_path_to_location_of_MDEXSSLCert.pem>

11. (Optional) If the external server requires the bundled keys for the MDEX Engine that you obtained in
step 7, add them accordingly to its keystore.

Converting PEM-format keys to JKS format
This topic describes how to convert PEM-format certificates to the standard Java KeyStore (JKS) format.

The Java KeyStores can be used for communication between Endeca components that are configured for SSL
(for example, between Latitude Studio and the MDEX Engine, if both are SSL-enabled).

Two utilities are referenced in the instructions below:

• openssl, which is located in the bin directory of the MDEX Engine distribution.

• keytool, which is located in the bin directory of the JDK distribution.

This procedure assumes the following:

• You have run the appropriate version of the mdex_setup script for your operating system.

This script adds the utilities directory and the MDEX Engine binaries to the search path, and allows
you to run the openssl utility from the directory of your choice.

It is documented as part of the MDEX Engine installation in the Latitude Installation Guide.

• Your path will allow you to use the keytool utility from the directory of your choice.

• You have already generated the set of standard SSL certificates with the enecerts command, as
documented earlier in this section.

• All of the input files are located in the local directory.

Endeca® Latitude : Administrator's Guide



Using Endeca SSL Certificate Utilities 73

To convert the PEM-format keys to Java KeyStores:

1. Convert the certificate from PEM to PKCS12, using the following command:

openssl pkcs12 -export -out eneCert.pkcs12 -in eneCert.pem

Version 2.2.2 Rev. A • June 2014

You may ignore the warning message this command issues.

2. Enter and repeat the export password (endeca).

3. Create and then delete an empty truststore for Tomcat, using the following commands:

keytool -genkey -keyalg RSA -alias "endeca" -keystore truststore.ks
keytool -delete -alias endeca -keystore truststore.ks

The -genkey command creates the default certificate shown below. (This is a temporary certificate
that is subsequently deleted by the -delete command, so it does not matter what information you
enter here.)

Enter keystore password:
Re-enter new password:
What is your first and last name?
[Unknown]:

What is the name of your organizational unit?
[Unknown]:

What is the name of your organization?
[Unknown]:

What is the name of your City or Locality?
[Unknown]:

What is the name of your State or Province?
[Unknown]:

What is the two-letter country code for this unit?
[Unknown]:

Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct?
[no]: yes

Enter key password for <endeca>
(RETURN if same as keystore password):

Re-enter new password:

4. Import the CA into the truststore, using the following command:

keytool -import -v -trustcacerts -alias endeca-ca -file eneCA.pem -keystore truststore.ks

5. Enter the keystore password (endeca).

6. At the prompt, "Trust this certificate?" type yes.

7. Create an empty Java KeyStore, using the following commands:

keytool -genkey -keyalg RSA -alias "endeca" -keystore keystore.ks
keytool -delete -alias endeca -keystore keystore.ks

The -genkey command creates the default certificate shown below. (This is a temporary certificate
that is subsequently deleted by the -delete command, so it does not matter what information you
enter here.)

Enter keystore password:
Re-enter new password:
What is your first and last name?
[Unknown]:

What is the name of your organizational unit?
[Unknown]:

What is the name of your organization?
[Unknown]:

What is the name of your City or Locality?
[Unknown]:

Endeca® Latitude : Administrator's Guide



Using Endeca SSL Certificate Utilities 74

What is the name of your State or Province?
[Unknown]:

What is the two-letter country code for this unit?
[Unknown]:

Is CN="Unknown", OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct?
[no]: yes

Version 2.2.2 Rev. A • June 2014

8. Import your private key into the empty JKS, using the following command:

keytool -v -importkeystore -srckeystore eneCert.pkcs12 -srcstoretype PKCS12 -destkeystore
keystore.ks -deststoretype JKS

Endeca® Latitude : Administrator's Guide



Chapter 11

Latitude Studio Administrative Tasks

This section describes some of the administrative tasks performed in Latitude Studio.

About Latitude Studio administrative tasks

About the Latitude Studio Control Panel

About Latitude Studio administrative tasks
The Latitude Studio administrator generally controls the installation and setup of Latitude Studio and manages
its users.

For full documentation on administering the underlying Liferay Portal, see the Liferay Portal Administrator's
Guide version 5.2.

About the Latitude Studio Control Panel
You use the Latitude Studio Control Panel to perform administrative functions in Latitude Studio.

The Control Panel contains configuration options such as layout controls, attribute group settings, portal
settings, and server settings.

It also provides access to a wide range of administrative controls, including managing accounts, adding new
users, and monitoring performance.

Overview of the Control Panel sections

The Control Panel consists of five sections, each of which contains a number of tools.

User: The logged-in user's personal space.

It allows users to manage their accounts and pages.

Latitude: Provides access to Latitude Studio administrative components, including:

• Data Sources

• Data Source Bindings

• Attribute Settings

• Framework Settings

• Performance Metrics

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Latitude Studio Administrative Tasks 76

Portal: Intended for portal administrators to manage the user community.

Server: Provides access to server administration tools such as resource usage, logging,
and server shutdown

It also allows administrators to manage instances of Latitude Studio and to install
plugins (including custom components and themes).

Layout Control: Allows the administrator to manage the integration of Web content into Latitude
Studio applications.

Accessing the Control Panel

The Latitude Studio Control Panel is available from the Dock menu.

After logging in to Latitude Studio, to display the Control Panel:

1. Point the cursor at the Dock in the upper-right corner of the page.

The Dock is labeled "Welcome <user name>!"

2. From the drop-down menu, choose Control Panel.

Installing a new theme

Themes define the look and feel of a Latitude Studio application. A Web developer can create a new theme
for your application.

For more information about developing themes, see http://www.liferay.com/web/guest/community/wiki/-
/wiki/Main/Themes.

To install a new theme:

1. In the Dock, click Control Panel.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014

http://www.liferay.com/web/guest/community/wiki/-/wiki/Main/Themes
http://www.liferay.com/web/guest/community/wiki/-/wiki/Main/Themes


Latitude Studio Administrative Tasks 77

2. In the Server section of the Control Panel, click Plugins Installation.

3. In the Plugins Installation panel, click the Theme Plugins tab.

4. Click the Install More Themes button.

5. In the Plugin Installer panel, click Upload File.

6. Browse to select the theme's .war file, and then click Open.

7. Click Install.

Setting up the email server for Bookmarks support

The Latitude Studio contains a Bookmarks component. Before end users email bookmarks to other users, the
Latitude Studio administrator must configure the mail server in the Control Panel.

To set up the mail server:

1. In the Dock, click Control Panel.

2. In the Server section of the Control Panel Portal menu, click Server Administration.

3. In the Server Administration panel, click the Mail tab.

4. On the Mail panel, fill out the following outgoing email settings:

• Outgoing SMTP Server

• Outgoing Port

• User Name

• Password

For example:

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Latitude Studio Administrative Tasks 78

5. Click Save.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Appendix A

Endeca Flag Reference

This appendix provides a description of the flags (options) used by the Dgraph program.

Dgraph flags

Dgraph flags
The Dgraph program starts the MDEX Engine.

You start the MDEX Engine by running a program called Dgraph, which you point at a set of indices loaded
into the MDEX Engine by the Data Ingest Web Service. The Dgraph has a number of options that allow you to
adjust the MDEX Engine.

The usage of Dgraph is as follows:

dgraph [-?Adv] [--flags] <db_prefix>

Version 2.2.2 Rev. A • June 2014

where <db_prefix> specifies the path to the directory, and the prefix used for the files in your Endeca
application.

Flag Description

? Print the help message and exit.

-v Verbose mode.

Print information about each request to stdout.

--ancestor_counts Compute counts for root managed attribute values and any
intermediate managed attribute value selections.

By default, the Dgraph only computes refinement counts for
proper refinements (in other words, for actual managed attribute
values).

It does not compute counts for root managed attribute values or
for any intermediate managed attribute value selections.

--backlog-timeout <seconds> Specify the wait limit (in seconds) for a query that has been
read and queued for processing.

This is the maximum number of seconds that a query is allowed
to spend waiting in the processing queue before the Dgraph
responds with a timeout message.

The default value is 0 seconds.

Endeca® Latitude : Administrator's Guide



Endeca Flag Reference 80

Flag Description

--bulk_load_port <num> Specify the port for bulk load ingest operations.

This port number must be different from the port specified by
the --port flag.

If this flag is not used when starting the MDEX Engine, then the
default bulk load port is either:

• 5556 (if the --port flag is not used)

• The number specified by the --port flag plus one

--cmem <MB> Specify an absolute value in MB for the MDEX Engine cache.

When an absolute value is not specified with the --cmem flag,
the default Dgraph cache size is computed as 10% of the
amount of RAM available in the system.

--coordinator_host <host name> Specify the host name of the server on which the Cluster
Coordinator service is running.

You specify this flag along with the --coordinator_port flag
when you start the MDEX Engine as one of the nodes in the
cluster.

--coordinator_port <num> Specify the port of the server on which the Cluster Coordinator
service is running.

The Cluster Coordinator expects that you specify the port 2181
(if you specify another port, changes to the Cluster Coordinator
configuration file are required).

You specify this flag along with the --coordinator_host flag
when you start the MDEX Engine as one of the nodes in the
cluster.

--disable_fast_aspell Disable fast mode for the aspell spelling module. If you disable
fast mode, it decreases the performance of the spelling
correction, but may allow additional queries to be corrected.

When the fast mode is enabled, it can significantly speed up
applications that use spelling correction features with the aspell
module. The fast mode is used by default.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Endeca Flag Reference 81

Flag Description

--esampmin <num> Specify the minimum number of records to sample during
refinement computation. The default is 0.

Tuning recommendations:

• For most applications, larger values reduce performance
without improving dynamic refinement ranking quality.

• For some applications with extremely large, non-hierarchical
managed attributes (if they cannot be avoided), larger
values can meaningfully improve dynamic refinement
ranking quality with minor performance cost.

--follower <name> Specify the name of the MDEX Engine node that should serve
as one of the follower nodes in the cluster.

This name must be unique across the cluster, and must also be
a valid directory name (characters such as slashes (/) are not
allowed).

You can start more than one node in the cluster with this
command, thus designating more than one follower node.

Before starting the MDEX Engine with this command flag,
ensure that the Cluster Coordinator service is running on the
server that serves as the leader node.

All nodes must be able to connect to the Cluster Coordinator.
Therefore, when you specify a follower node with the --
follower flag, also specify for the follower node the host name
and port of the Cluster Coordinator service using the --
coordinator_host and --coordinator_port commands.

Note: If you start a node without the --follower flag,
the Cluster Coordinator assumes this is the leader
node. Since there could be one and only one leader
node in the cluster, the MDEX Engine will not start if it is
asked to be the leader node when a leader node
already exists.

--help Print the help message and exit.

--implicit_exact Disable approximate computation of implicit refinements.

Use of this option is not recommended.

If this option is not enabled, managed attribute values without
full coverage of the current result record set may sometimes be
returned as implicit refinements, although the probability of such
"false" implicit refinements is minuscule.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Endeca Flag Reference 82

Flag Description

--implicit_sample <num> Set the maximum number of records to sample when computing
implicit refinements (which are a performance tuning
parameter).

The default value is 1024.

--latin1 Ignore character accents when handling search requests, and
use ISO Latin 1 character mappings when processing search
requests.

--log <path> Specify the path for the Dgraph request log file.

The default log file is named dgraph.reqlog.

--net-timeout <num> Specify the maximum number of seconds the Dgraph waits for
the client to download data from queries across the network.

The default network timeout value is 30 seconds.

--out <stdout/stderr file> Specify file path to which stdout/stderr should be remapped.

The default is to use default stdout/stderr for the process.

--pidfile <pidfile-path> Specify the file to which to write the process ID (pid).

If unspecified, the default name of the pid file depends on how
the Dgraph starts.

Running the Dgraph from the command line creates a default
named dgraph.pid.

--port <num> Specify the port to use in server (non-interactive) mode.

The default is 5555.

--search_max <num> Specify the maximum number of terms for text search. Default is
10.

--snip_cutoff <num> Limit the number of words in an attribute that the MDEX Engine
evaluates to identify the snippet.

If a match is not found within <num> words, the MDEX Engine
does not return a snippet, even if a match occurs later in the
attribute value.

If the flag is not specified, or <num> is not specified, the default
is 500.

--snip_disable Globally disable snippeting.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Endeca Flag Reference 83

Flag Description

--sslcafile <CA-certfile-path> Specify the path of the eneCA.pem Certificate Authority file that
the Dgraph will use to authenticate SSL communications with
other Endeca components.

If not given, SSL mutual authentication is not performed.

--sslcertfile <certfile-path> Specify the path of the eneCert.pem certificate file that will be
used by the Dgraph to present to any client for SSL
communications.

If not given, SSL is not enabled for Dgraph communications.

--sslcipher <cipher-list> Set one or more cipher names (such as RC4-SHA) that specify
the minimum cryptographic algorithm that the Dgraph will use
during the SSL negotiation.

If multiple ciphers are specified, the names must be separated
by colons.

--stat-all Enable all available dynamic attribute value characteristics.

Note that this option has performance implications and is not
intended for production use.

--stat-brel Create dynamic record attributes indicating the relevance rank
assigned to full-text search result records.

--syslog Direct all output to syslog.

--thesaurus_cutoff <limit> Set a limit on the number of words in a user’s search query that
are subject to thesaurus replacement. If more terms than this
number match thesaurus entries, none of the terms are
thesaurus expanded.

The default value of <limit> is 3. This means that up to 3 words
in a user’s search query can be replaced with thesaurus entries.

This option is intended as a performance guard against very
expensive thesaurus queries. Lower values improve thesaurus
engine performance.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Endeca Flag Reference 84

Flag Description

--thesaurus_multiword_nostem Specify that words in a multiple-word thesaurus form should be
treated like phrases and should not be stemmed, which
increases performance for some query loads.

Single-word terms are subject to stemming regardless of
whether this flag is specified.

This flag prevents the Dgraph from expanding multi-word
thesaurus forms by stemming. Thesaurus entries continue to
match any stemmed form in the query, but multi-word
expansions only include explicitly listed forms. To get the multi-
word stemmed thesaurus expansions, the various forms must
be listed explicitly in the thesaurus.

--threads <num> Specify the number of threads in the MDEX Engine threading
pool.

The value of <num> must be a positive integer (that is, 1 or
greater).

The default for num is 2.

The recommended number of threads for the MDEX Engine is
typically equal to the number of cores on the MDEX Engine
server.

--unctrct Specify to the Dgraph not to compute implicit managed
attributes, and to only compute and present explicitly specified
managed attributes, when displaying refinements in navigation
results.

Specifying this flag does not reduce the size of the resulting
record set that is being displayed; however, it improves run-time
performance of the MDEX Engine.

Be aware that if you use this flag, in order to receive meaningful
navigation refinements, you need to make top-level precedence
rules work for ALL outbound queries.

--validate_data Validate that all indexed data loads and then exit.

--version Print version information and exit.

This includes both the Latitude version and the internal MDEX
Engine identifier and index format version.

--wildcard_max <count> Specify the maximum number of terms that can match a
wildcard term in a wildcard query that contains punctuation,
such as ab*c.def*.

The default is 100.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Endeca Flag Reference 85

Flag Description

--whymatch Enable computation of "Why Did It Match" dynamic record
attributes returned as results of full-text search queries.

These dynamic attributes contain a copy of the attribute key and
value that caused the match, along with query interpretation
notes (spelling, thesaurus, and so on).

--whymatchConcise Similar to --whymatch, but produces more concise dynamic
attribute values containing only the attribute key and query
interpretation notes.

This is useful when the attribute value might include large
amounts of text, such as document contents.

--wordinterp Enable computation of word interpretation dynamic supplement
(or see-also) objects, which report on alternate forms of user
query terms considered by the text search engine while
processing full-text (record) search requests.

--xquery_fndoc <mode> Specifies the handling of the fn:doc() function within XQuery.

The following values are supported:

• none causes all calls to fn:doc() to fail.

• sandbox allows fn:doc(), but interprets its argument as a
relative path within the XML subdirectory of the XQuery
service directory.

• open allows fn:doc() and interprets its argument as a
URL. Note that open is not supported for use in deployed
applications.

If not specified, defaults to sandbox.

--xquery_path <path> Specify the directory in which XQuery Web service resources
are located. XQuery main modules and WSDL files are loaded
from this directory.

Library modules are loaded from the lib subdirectory.

If not specified, a user XQuery path is not used.

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Index

for logging verbosity 32A
log-enable 34

Administration Web Service logging variables 33
about 11

configuration fileaccessing 11
cluster 57using 11

connecting a Web browser to your MDEX Engine 20administrative tasks
connecting Latitude Studio with cluster nodes 66admin and config operations 25

Latitude Studio 75 connection errors
overview 9 MDEX Engine and client 24

admin operations Control Panel
about 25 about 75
list of 26 parts of 75
rollback 30 core dump files

aggressive merge policy 36 in the Dgraph 21
managing 21architecture

of a cluster of MDEX Engine nodes 51

D
B Dgraph

checking aliveness of 20balanced merge policy 36
flags 79
what to collect for debugging 22C

Certificate Authority file EeneCA.pem 68
eneCA.cercertificates

description 68copying to other machines 71
eneCA.key, description of 68eneCA.cer 68

eneCA.key 68 eneCA.pem
eneCA.pem 68 description 68
eneCert.p12 68 eneCert.p12eneCert.pem 68 description 68generating from own private key 70

eneCert.pemchanging the merge policy of the MDEX Engine 37, description 6839 generating with own private key 70
cluster 53 enecerts utilityabout 49 changing key size 70and Latitude Data Integrator configuration 64 generating certificates with own private key 70and Latitude Studio configuration 66 overview 69architecture 51

behavior 59
examples of data sources 65 F
file system requirements 54 flags, Dgraph 79
leader node 53

follower node 53load balancer configuring 65
adding, to a cluster 62load balancer requirements 55

operating systems requirements 54 forcing a merge 39
planning nodes 59
sending data updates 64 G

Cluster Coordinator
Global Configuration Recordconfiguration file 57

retrieving with API 37
config operations setting merge policy 38

about 25

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Index 87

IPv4 and IPv6 address support 21H
logging as a Windows service 47

high availability 49 logging variables for 32
logs 22
modifying Windows service 44I
running multiple instances on a single

incremental updates, merge policy for 36 machine 23
inittab, starting MDEX Engine from 48 setting description for Windows service 44

started from inittab on Linux 48IPv4 and IPv6 address support in MDEX Engine 21
starting or stopping from Services utility 46

merge policyJ
changing in a running MDEX Engine 39

Java keystore forcing a merge 39
converting to 72 for incremental updates 36

getting programmatically 37Java KeyStores
setting 37converting PEM-format keys to 72
setting programmatically 38job monitoring
types of 36job start time 15

multiple-node clusterlisting jobs 15
development environment 52types 14

when to use 14 mutual authentication for MDEX Engine 71

K O
key size, changing private 70 operation syntax for MDEX Engine logging

variables 32
outer transactionL

load balancer configuration 56Latitude Studio
cluster integration 65
Control Panel 75 P
installing a new theme 76 pinging components 20Liferay documentation 75

private key for certificatessetting up the mail server for 77
changing size of 70leader node 53 description 68adding, to a cluster 61

changing name 67
list of updating operations to send to it 63 R

load balancer rollback admin operation 30
configuring in a cluster with transactions 56
in a cluster, configuring 65 S

log-enable config operation 34
security

logging variables mutual authentication for MDEX Engine 71
MDEX Engine 32

single-node clusteroperation syntax 32, 34
development environment 51supported variables for 33

snapshot
about 16M cpmdex command 18

mail server for Latitude Studio, setting up 77 creating 17
deleting 17MDEX Engine
restoring an MDEX Engine 18admin operations 26
restrictions 17configuring automatic restart 47

connecting Web browsers to 20 spelling, enabling 31
crash dump files on Linux 21 SSL certificates
crash dump files on Windows 21 converting PEM-format keys to JKS format 72
creating as a Windows service 43 mutual authentication 71
deleting Windows service 45
flags 79
identifying connection errors 24

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014



Index 88

T V
themes, installing Latitude Studio 76 variables for MDEX Engine logging 33
transaction

load balancer configuration 56 W
troubleshooting Who should use this guide 6

baseline updates 24
Windows serviceDgraph port and socket 23

creating MDEX Engine as 43, 47
truststore conversion from eneCA.pem 72 deleting MDEX Engine 45

modifying MDEX Engine configuration 44
setting description 44U

URL operations, about 25

Endeca® Latitude : Administrator's Guide Version 2.2.2 Rev. A • June 2014


	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Chapter 1: Introduction
	Taking ownership of your Latitude implementation
	Overview of administrator tasks

	Chapter 2: Using the Administration Web Service
	About the Administration Web Service
	Accessing the Administration Web Service
	Using the Administration Web Service

	Chapter 3: Job Monitoring
	About job monitoring
	About jobs
	Requesting a list of jobs

	Chapter 4: Capturing Snapshots
	About snapshots
	Restrictions for taking a snapshot
	Creating a snapshot
	Restoring an MDEX Engine from a snapshot
	cpmdex syntax

	Chapter 5: Dgraph Administrative Tasks
	Checking the Dgraph with the ping command
	About connecting Web browsers to your MDEX Engine
	Managing Dgraph core dump files
	Managing Dgraph crash dump files on Windows
	Managing Dgraph core dump files on Linux

	Collecting debugging information
	Logs created by the Dgraph

	Troubleshooting socket and port errors with Dgraph
	Running multiple Dgraphs on the same Windows machine
	Troubleshooting baseline update failures
	Identifying connection errors

	Chapter 6: Administrative Operations and Logging Variables
	About administrative and configuration operations
	List of administrative operations
	exit
	flush
	help
	logroll
	merge
	ping
	reload-services
	rollback
	stats
	statsreset
	updateaspell


	About MDEX Engine logging variables
	Logging variable operation syntax
	List of configuration operations
	List of supported logging variables
	log-enable
	log-disable
	log-status
	help



	Chapter 7: Managing the Merge Policy
	Using a merge policy for incremental updates
	Types of merge policies
	Setting or changing the merge policy
	Setting the merge policy with the Configuration Service API
	Getting the merge policy programmatically
	Setting the merge policy programmatically


	Changing the merge policy of a running MDEX Engine
	Forcing a merge

	Chapter 8: MDEX Engine Process Management
	Running the MDEX Engine as a Windows service
	SC Create command syntax
	Creating the MDEX Engine Windows service
	Setting a service description
	Modifying the service configuration
	Deleting the MDEX Engine Windows service
	Using the Windows Services utility
	Logging in service mode

	Starting the MDEX Engine from inittab

	Chapter 9: Deploying Latitude in a Cluster
	Cluster overview
	Latitude cluster architecture
	Important cluster concepts
	Before you begin
	System and hardware requirements
	Operating system requirements
	Shared file system requirements
	Load balancer requirements
	Load balancer and outer transactions

	About the Cluster Coordinator
	Starting and stopping the Cluster Coordinator service
	The configuration file for the Cluster Coordinator

	Planning cluster nodes
	Cluster behavior

	Building a cluster
	Starting the MDEX Engine as the leader node
	Adding a follower node
	Summary of operations handled by the leader node and any node
	Connecting the leader node with the Data Integrator
	Connecting a cluster with Latitude Studio
	Connecting a cluster with a load balancer
	Examples of data sources
	Configuring a data source for cluster access


	Maintaining a cluster
	Removing a follower node
	Changing the name of the leader node


	Chapter 10: Using Endeca SSL Certificate Utilities
	Certificate files used by Endeca components
	Generating SSL certificates
	Generating standard SSL certificates on UNIX
	Generating standard SSL certificates on Windows
	Generating custom certificates
	Copying the SSL certificates to other machines

	Configuring the MDEX Engine for SSL mutual authentication
	Converting PEM-format keys to JKS format

	Chapter 11: Latitude Studio Administrative Tasks
	About Latitude Studio administrative tasks
	About the Latitude Studio Control Panel
	Overview of the Control Panel sections
	Accessing the Control Panel
	Installing a new theme
	Setting up the email server for Bookmarks support


	Appendix A: Endeca Flag Reference
	Dgraph flags

	Index

