
Endeca® Latitude
Data Ingest API Guide

Version 2.2.2 • December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...7
Contacting Endeca Customer Support...8

Chapter 1: Introduction..9
Overview of the Data Ingest Web Service..9
List of operations..10
Data Ingest logging...11
Generating client stubs...11

Chapter 2: Prerequisite Information..13
Data ingest namespaces..13
MDEX property types..14

string property...15
numeric properties...15
geocode property...16
boolean property..17
dateTime property...17
time property..19
duration property...19

Default values for new Endeca attributes..21
NCName format for Endeca attributes..22
Interaction with the Transaction Web Service...22
Troubleshooting connection timeouts..22

Chapter 3: Adding New Records...25
About primary-key attributes...25
Adding new records..27
Initial loading of records..29
Adding records after the initial load..30
Loading managed attribute values..31

Chapter 4: Updating Records..35
About updates...35
Adding key-value assignments...36
Removing record assignments...37
Deleting records..40

Chapter 5: Resetting the MDEX Engine..41
Removing all records from the MDEX Engine..41
Provisioning the MDEX Engine...42

iii

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® Latitude applications guide people to better decisions by combining the ease of search with
the analytic power of business intelligence. Users get self-service access to the data they need without
needing to specify in advance the queries or views they need. At the same time, the user experience
is data driven, continuously revealing the salient relationships in the underlying data for them to explore.

The heart of Endeca's technology is the MDEX Engine.™ The MDEX Engine is a hybrid between an
analytical database and a search engine that makes possible a new kind of Agile BI. It provides guided
exploration, search, and analysis on any kind of information: structured or unstructured, inside the firm
or from external sources.

Endeca Latitude includes data integration and content enrichment tools to load both structured and
unstructured data. It also includes Latitude Studio, a set of tools to configure user experience features
including search, analytics, and visualizations. This enables IT to partner with the business to gather
requirements and rapidly iterate a solution.

About this guide
This guide describes the Endeca Data Ingest Web Service, which enables loading and deleting records
in the MDEX Engine, as well as resetting the MDEX Engine. The Data Ingest Web Service is used by
the Latitude Data Integrator. It can also be used by any other ETL tool for loading and managing
records in the MDEX Engine.

The guide assumes that you are familiar with Endeca concepts and Endeca application development,
as well as the specifics of your ETL tool.

Who should use this guide
This guide is intended for developers who are responsible for using ETL utilities to load source data
into the MDEX Engine.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

| Preface8

http://eden.endeca.com

Chapter 1

Introduction

This chapter provides an introductory overview to the Endeca Data Ingest Web service and its API.

Overview of the Data Ingest Web Service
The Endeca Data Ingest Web Service loads data into a running MDEX Engine and can also update
existing records.

The Data Ingest Web Service therefore allows you to use a data integration platform, such the Latitude
Data Integrator, to load data into an Endeca application.

The Data Ingest Web Service is declared in ingest.wsdl. It enables performing these tasks:

• Provision the primordial schema records for an initial MDEX Engine configuration.
• Reset the MDEX Engine by removing its records and schema.
• Add new records to a running MDEX Engine. The service accepts batches of records to add. The

number of records in each batch is set by the client program. The records can be added to an
empty MDEX Engine (this operation is called an initial load) or to one that already has records.

• Add managed attribute values to a running MDEX Engine. If the managed values belong to a
managed attribute that is not currently in the MDEX Engine, the service will also create the managed
attribute.

• Modify existing records in a running MDEX Engine.You can add or remove standard attribute
values and managed values from Endeca records.

• Delete records or record data from a running MDEX Engine.

The Data Ingest Web Service is able to modify a record multiple times in a single transaction (any
combination of create, add assignments, delete assignments, and delete record).

The service returns a response indicating the number of records, standard attributes, or managed
attribute values that were added or removed as a result of the request. In addition, error messages
are returned via a fault mechanism.

The data is sent by an ETL client (such as the Latitude Data Integrator) via a program that is running
on the client.Typically, ETL client programs written by users use stubs generated from the Data Ingest
WSDL and calls from the ETL tool's SDK.

Interaction with transactions

Any request to the Data Ingest Web Service can contain an optional attribute outerTransactionId
that specifies the ID of an outer transaction (if it has been started by the Transaction Web Service).

This attribute must be specified only if a request made by the Data Ingest service is started after a
request to start a transaction has been made by the Transaction Web Service.

If no transactions have been started, the outerTransactionId should not be specified in the request,
or the value of this attribute should be empty. (If the attribute's value is empty, the request ignores the
attribute and interprets it as not specified.)

Latitude Data Integrator

Latitude Data Integrator (LDI) is a high-performance data integration platform that lets you extract
source records from a variety of source types (from flat files to databases) and send those records to
either the Data Ingest Web Service or the Bulk Load Interface, both of which in turn load the records
into the MDEX Engine.

The records are loaded into the MDEX Engine via one of the four Endeca-developed Latitude connectors
that communicate with the Data Ingest Web Service or a fifth Latitude connector that uses the MDEX
Engine's Bulk Load Interface.

For details on LDI, see the Latitude Data Integrator Designer Guide, Latitude Data Integrator Server
Guide, and LDI MDEX Engine Components Guide.

Data Ingest API

The Endeca Data Ingest API is a framework that provides ETL developers with a flexible mechanism
to load records from an ETL data source to a running MDEX Engine. Because it is defined by WSDL
documents, the Data Ingest API is language-agnostic. That is, it can be used with any programming
language that has Web services support. Thus, the API lets developers choose their favorite
development environment (Java, Visual Studio .NET, etc.) on which to write their components.

The MDEX Engine API Reference is the documentation generated from the WSDL and XSD files that
describe a Web service. This reference provides API-level information about Web services that are
packaged with the MDEX Engine. The MDEX Engine API Reference is located in the doc directory
of the MDEX Engine installation.

List of operations
This topic lists the operations available in the Data Ingest Web Service.

The operations are the following:

DescriptionOperation

Adds, modifies, and deletes records (including removing
managed value assignments).

ingestRecords

Adds and updates managed values.ingestDimensionValues

Deletes the data records and schema records from the MDEX
Engine, indicating the number of records deleted. This

clearMdex

operation must be followed by the provisionMdex
operation.

Unlike deleteRecords, clearMdex deletes all records
and does not require specifying record IDs.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Introduction | List of operations10

DescriptionOperation

In addition, this operation must specify the transaction ID of
the outer transaction if the transaction has been started by
the Transaction Web Service.

Provisions the primordial schema records in the MDEX
Engine. This operation is typically run after the clearMdex

provisionMdex

operation. It adds the primordial records (such as PDRs and
DDRs), and resets these records to their default values.

In addition, this operation must specify the transaction ID of
the outer transaction if the transaction has been started by
the Transaction Web Service.

Data Ingest logging
The Data Ingest Web Service writes its output to the Dgraph logs.

By default, each SOAP request for the Data Ingest Web Service is written to the Dgraph request log.

The Ingest SOAP response provides fault and summary information. If Dgraph verbose logging is
turned on (via the Dgraph -v flag), this information, as well as the entire SOAP request, is written to
the Dgraph standard-out log. The Dgraph stdout/stderr log is created with the Dgraph --out flag.

Generating client stubs
To create a client application that consumes the Data Ingest Web Service, you need the Web service's
WSDL file to generate client stubs.

A WSDL file specifies value types, exceptions, and available methods in a Web service in a
programmatic fashion.Typically, a client developer uses a tool that parses the WSDL file and generates
client-side stubs (also called proxy classes) and value types. These generated files include all the
code necessary to serialize and deserialize SOAP messages and make the SOAP layer transparent
to the client developer. The Data Ingest WSDL files can be used with any language that has Web
services support.

Tools that generate client stub code from the WSDLs that have been tested are the following:

• Apache CXF 2.2 or later.
• Apache Axis2 1.5.1 or later.
• Web Services Description Language Tool (wsdl.exe), available as part of the Microsoft .NET

Framework SDK.

For details on using a WSDL code-generation utility, refer to the utility's documentation.

Keep in mind that the exact syntax of a class member depends on the output of the WSDL tool that
you are using. Therefore, check the client stub classes that are generated by your WSDL tool for the
exact syntax of the class members.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

11Introduction | Data Ingest logging

Obtaining the WSDL from the deployed service

The Data Ingest Web Service has a unique URL associated with it. If you append ?wsdl to the service
endpoint URL, the service will automatically generate a service description for the deployed service
and return it as XML in your browser, as in this example URL:

http://localhost:5555/ws/ingest?wsdl

You can also use this URL in your WSDL tool to generate the stubs, as in this Apache Axis2 example:

wsdl2java -uri http://localhost:5555/ws/ingest?wsdl -d xmlbeans -s -p
com.endeca.dataingest.axis2.addrecords

You can insert the wsdl2java command in a batch or shell script, or in a build file.

Note: If the MDEX Engine is running over HTTPS, the ?wsdl operation will return an incorrect
URL. The work-around is to manually specify the service endpoint URL in your client.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Introduction | Generating client stubs12

Chapter 2

Prerequisite Information

This chapter provides overview information you need to know before using the Data Ingest Web
Service.

Data ingest namespaces
This topic describes the two namespaces used for data ingest operations.

XML namespaces provide a method for qualifying element and attribute names used in Extensible
Markup Language documents by associating them with namespaces identified by URI references.
The two namespaces used for data ingest are for the Data Ingest Web Service and the MDEX Web
Service.

Data Ingest Web Service namespace

The namespace for the Data Ingest Web Service (DIWS) is:

http://www.endeca.com/MDEX/ingest/2010

The xmlns attribute specifies this namespace for a DIWS prefix for a document, as in this example:

<ingest:ingestRecords
xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"

 ...
 <ingest:addAssignments>
 ...
 </ingest:addAssignments>
</ingest:ingestRecords>

After this declaration, all DIWS elements will use the same prefix, which will be associated with the
same namespace. In the example, the prefix ingest is defined for all DIWS elements, such as the
ingest:addAssignments element.

You can use a prefix of your own choosing, but it must be bound to the DIWS namespace listed above.
In this guide, the prefix ingest will be used in the examples.

mdex namespace

The namespace for mdex elements is:

http://www.endeca.com/MDEX/XQuery/2009/09

The important mdex elements used in data ingesting are mdex:record for Endeca records and the
nine property types, such as the mdex:string property type.

You must also use the xmlns attribute to set the mdex namespace in your XML documents:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"

xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>683</WineID>
 <Price type="mdex:double">29.99</Price>
 <NumInStock type="mdex:int">68</NumInStock>
 <Description type="mdex:string">Peach flavors</Description>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

MDEX property types
This topic describes the format of the Endeca property types supported by the MDEX Engine and the
Data Ingest Web Service.

The following table lists the property types that are used by the MDEX Engine to create standard
attributes:

Property typeMDEX property name

Represents XML-valid character strings.mdex:string

Represents a 32-bit signed integer.mdex:int

Represents a 64-bit signed integer.mdex:long

Represents a floating point.mdex:double

Represents a Boolean.mdex:boolean

Represents the time of day to a resolution of milliseconds.mdex:time

Represents the date and time to a resolution of milliseconds.mdex:dateTime

Represents a length of time with a resolution of milliseconds.mdex:duration

Represents latitude and longitude pairs.mdex:geocode

The type for properties is specified in the type attribute.The default type of created standard attributes
is mdex:string if not otherwise specified. Assignments for an existing standard attribute that specify
a type different from that of the associated standard attribute will succeed or fail as per the underlying
put-record functionality.

Errors from incorrect property values

You must ensure that you specify the appropriate value type for each MDEX property type. For example,
attempting to assign a double value (such as 19.99) to an mdex:int property will return an
ingestFault indication a parsing error:

<detail>
 <ingest:ingestFault xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010">

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Prerequisite Information | MDEX property types14

 <ingest:errorDetail>Error applying updates: Unable to parse
 property value "19.99" for property "NumInStock" with
 type "mdex:int" on record WineID:569
 </ingest:errorDetail>
 </ingest:ingestFault>
</detail>

The "Unable to parse property value" error should be returned for any mismatched property value,
including using an incorrect case for Boolean values (for example, specifying "FALSE" instead of
"false").

string property
mdex:string properties represent character strings.

An mdex:string property represents variable-length character strings.The characters should conform
to the specification for valid XML characters, as described in the W3C XML document at this URL:
http://www.w3.org/TR/REC-xml/#charsets

Keep in mind that mdex:string is the default property data type. That is, if you do not explicitly
specify the property type when creating a standard attribute, then mdex:string will be used as the
MDEX property type.

Example of ingesting string properties

This example shows how to use string property types for record assignments:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>568</WineID>
 <Description type="mdex:string">Peach flavors.</Description>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

numeric properties
The MDEX Engine supports three numeric properties.

The three numeric properties are:

• mdex:int

• mdex:long

• mdex:double

int properties

An mdex:int property represents a 32-bit signed integer. It has a minimum value of -2147483648
and a maximum value of 2147483647 (inclusive).

long properties

An mdex:long property represents a 64-bit signed integer. It has a minimum value of
-9223372036854775808 and a maximum value of 9223372036854775807 (inclusive).

Endeca® Latitude Data Ingest API GuideEndeca Confidential

15Prerequisite Information | MDEX property types

http://www.w3.org/TR/REC-xml/#charsets

double properties

An mdex:double property represents a floating point value.Values can be specified in a decimal-point
format (such as 20.0) or in a scientific notation format using "e" or "E" (such as 2.0E1).

Example of ingesting numeric properties

This example shows how to use the numeric property types for record assignments:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>504</WineID>
 <Price type="mdex:double">19.99</Price>
 <NumInStock type="mdex:int">45</NumInStock>
 <TotalSold type="mdex:long">92233720</TotalSold>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

geocode property
mdex:geocode properties represent latitude and longitude pairs.

mdex:geocode properties use the format:

latvalue lonvalue

where each is a double-precision floating-point value:

• latvalue is the latitude of the location in whole and fractional degrees. Positive values indicate north
latitude and negative values indicate south latitude.

• lonvalue is the longitude of the location in whole and fractional degrees. Positive values indicate
east longitude, and negative values indicate west longitude.

The latitude and longitude numbers may be separated by arbitrary white space or tab characters.
Values are always re-serialized with a single space character regardless of the form of the parsed
string.

For example, the following request updates Record 778 with a Location geocode property:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>778</WineID>
 <Location type="mdex:geocode">42.365615 -71.075647</Location>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

The value of the geocode property specifies a location at 42.365615 north latitude, 71.075647 west
longitude.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Prerequisite Information | MDEX property types16

boolean property
mdex:boolean property values are useful for tracking true/false conditions.

The valid Boolean values for the mdex:boolean property type are:

• true or 1 (i.e., 1 is a synonym for true)
• false or 0 (i.e., 0 is a synonym for false)

Note that true and false are case sensitive and must be specified in lower case.

For example, the following request updates Record 492 with two Boolean properties:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>492</WineID>
 <isInStock type="mdex:boolean">true</isInStock>
 <isActive type="mdex:boolean">1</isActive>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

In the example, both properties (isInStock and isActive) are set to true.

dateTime property
mdex:dateTime properties represents a single point in time.

An mdex:dateTime property represents the year, month, day, hour, minute, and seconds of a time
point, with the optional specification of fractional seconds.You can specify a datetime value as either
a universal (UTC) date time or as a local time plus a UTC timezone offset. Note that specifying just a
local time is not supported.

format for universal datetime

The mdex:dateTime format for a UTC date time is:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss {'.' s+} Z

where:

• yyyy represents a four-digit year.The year value may not be negative, which means that specifying
a year prior to 1 BCE is not supported.Year 0000 is not a valid year.

• The first mm is a two-digit numeral that represents the month. Numerals representing the first nine
months must have a leading zero, such as 07 for July.

• dd is a two-digit numeral that represents the day of the month, such as 03 for the third day of the
month or 30 for the thirtieth day.

• T is a literal separator indicating that time-of-day follows.
• hh is a two-digit numeral that represents the hour. Note that specifying 24 is not permitted (to

represent 24, use all zeros for the time portion).
• The second mm is a two-digit numeral that represents the minute.
• ss is a two-digit numeral that represents the whole seconds.
• '.' s+ is optional and, if present, represents the fractional seconds. The internal representation is

only precise to the millisecond, which means that a specification of four or more digits is truncated
to three digits.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

17Prerequisite Information | MDEX property types

• Z (added to the time without a space) is a literal indicator that this date time is Coordinated Universal
Time (UTC, sometimes called Greenwich Mean Time). Z is the zone designator for the zero UTC
offset.

Note that a hyphen ('-') is the separator between parts of the date portion, a colon (':') is the separator
between parts of the time-of-day portion, and a period ('.') is the separator for fractional seconds.

For example, to indicate noon on November 18, 2010 in New York City, you would specify:

2010-11-18T17:00:00Z

format for local time plus UTC offset

Alternatively, you can specify the value for an mdex:dateTime property as a local time plus a UTC
offset. The format for this representation is:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss {'.' s+} zzzzzz

The meanings of the date and time portions are the same as the universal datetime format. zzzzzz
represents the timezone.Timezones are durations of hours and minutes.Timezones may be specified
as positive or negative durations.

The format for a timezone is:

('+' | '-') hh ':' mm

where:

• hh is a two-digit numeral (with leading zeros as required) that represents the hours. The value for
hh cannot be greater than 14.

• mm is a two-digit numeral that represents the minutes. The value for mm cannot be greater than
59. However, if hh is 14, then mm must be 00.

• '+' indicates a non-negative duration.
• '-' indicates a non-positive duration.

For example, to indicate noon on November 18, 2010 in New York City, you would specify:

2010-11-18T12:00:00+05:00

Note that this time represented in this example is the same as the "2010-11-18T17:00:00Z" time in
the universal datetime format.

Example of ingesting dateTime properties

The following request updates Record 506 with two dateTime properties:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>506</WineID>
 <dT1 type="mdex:dateTime">2010-11-18T17:00:00Z</dT1>
 <dT2 type="mdex:dateTime">2010-11-18T12:00:00+05:00</dT2>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

The dateTime1 property uses the universal datetime format while the dateTime2 property specifies
the datetime as a local time plus a UTC offset.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Prerequisite Information | MDEX property types18

time property
mdex:time properties represent an instant of time that recurs every day.

An mdex:time property represents the hour and minutes of an instance of time, with the optional
specification of fractional seconds. A timezone is not allowed as part of the time representation.

The mdex:time format is:

hh ':' mm ':' ss {'.' s+}

where:

• hh is a two-digit numeral that represents the hour. Use a leading zero for a single-digit hour, such
as 04.

• The second mm is a two-digit numeral that represents the minute.
• ss is a two-digit numeral that represents the whole seconds.
• '.' s+ is optional and, if present, represents the fractional seconds. The internal representation is

only precise to the millisecond, which means that a specification of four or more digits is truncated
to three digits.

A colon (':') is the separator between hours, minutes, and whole seconds, while a period ('.') is the
separator for fractional seconds.

Be sure to use a leading zero for single-digit hours, minutes, and whole seconds.

Example of ingesting time properties

The following request updates Record 624 with two time properties:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>624</WineID>
 <time1 type="mdex:time">13:25:43.261</time1>
 <time2 type="mdex:time">09:14:52</time2>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

Note that the time2 property uses a leading zero (i.e., "09") to specify the hour. Omitting the leading
zero will cause the operation to fail, with a fault similar to this example:

<faultstring>Error applying updates: Unable to parse property
value "9:14:52" for property "time2" with type "mdex:time" on
record WineID:624</faultstring>

duration property
mdex:duration properties represent a duration of time.

An mdex:duration property represents a duration of the days, hours, and minutes of an instance
of time. A timezone is not allowed as part of the time representation.

The mdex:duration format is:

'P' {d 'D'} 'T' {h 'H'} {m 'M'} {s {'.' s+} 'S'}

where:

Endeca® Latitude Data Ingest API GuideEndeca Confidential

19Prerequisite Information | MDEX property types

• P is a mandatory literal that indicates that this is a period of time.
• For the d'D' parameter, d specifies the number of days while the literal D indicates that this is the

days field.
• T is a literal date/time separator that must be present if (and only if) any time fields are specified.
• For the h'H' parameter, h specifies the number of hours while the literal H indicates that this is

the hours field.
• For the m'M' parameter, m specifies the number of minutes while the literal M indicates that this

is the minutes field.
• For the s'S' parameter, s specifies the number of whole seconds while the literal S indicates that

this is the seconds field. '.' s+ is optional and, if present, represents the fractional seconds (the
internal representation is only precise to the millisecond, which means that a specification of four
or more digits is truncated to three digits).

Note that all time durations are optional, but at least one must be present. An optional preceding minus
sign ('-') is allowed to indicate a negative duration.

duration format examples

This example specifies a duration of 429 days, 1 hour, 2 minutes, and 3 seconds:

P429DT1H2M3S

This example specifies a duration of 429 days:

P429D

This example specifies a duration of 429 days, 2 minutes, and 3.25 seconds:

P429DT2M3.25S

This example specifies a 1 hour and 2 minutes:

PT1H2M

This example specifies a negative duration of 429 days and 3 seconds:

-P429DT3S

Example of ingesting duration properties

The following request updates Record 344 with five duration properties:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <WineID>344</WineID>
 <duration1 type="mdex:duration">P429DT1H2M3S</duration1>
 <duration2 type="mdex:duration">P429D</duration2>
 <duration3 type="mdex:duration">P429DT2M3.25S</duration3>
 <duration4 type="mdex:duration">PT1H2M</duration4>
 <duration5 type="mdex:duration">-P429DT3S</duration5>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

Note that the duration5 property has a negative duration value.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Prerequisite Information | MDEX property types20

Default values for new Endeca attributes
New standard attributes and managed attributes created during an ingest are given a set of default
values.

During any data ingest operation, if a non-existent standard attribute is specified for a record, the
specified standard attribute is automatically created by the Data Ingest Web Service. Likewise,
non-existent managed attributes specified for a record are also automatically created. Note that you
cannot disable this automatic creation of properties.

Default values for standard attributes

The PDR for a standard attribute that is automatically created will use the system default settings,
which (unless they have been changed by the data developer) are:

Default settingPDR property

Set to the standard attribute name specified in the
request.

mdex-property_Key

Set to the MDEX property type specified in the
request. If no property type was specified, defaults
to an mdex:string type.

mdex-property_Type

true (the standard attribute will be enabled for
value search)

mdex-property_IsPropertyValueSearchable

false (a record may have multiple value
assignments for the standard attribute)

mdex-property_IsSingleAssign

false (the standard attribute will be disabled for
record search)

mdex-property_IsTextSearchable

false (more than one record may have the same
value of this standard attribute)

mdex-property_IsUnique

false (wildcard search is disabled for this standard
attribute)

mdex-property_TextSearchAllowsWildcards

single (allows selecting only one refinement from
this standard attribute)

system-navigation_Select

true (record counts will be shown for a refinement)system-navigation_ShowRecordCounts

record-count (refinements are sorted in
descending order, by the number of records
available for each refinement)

system-navigation_Sorting

Default values for managed attributes

A managed attribute that is automatically created will have both a PDR and a DDR created by the
Data Ingest Web Service. The default values for the PDR are the same as listed in the table above,
except that mdex-property_IsPropertyValueSearchable will be false (i.e., the managed
attribute will be disabled for value search).

The DDR will use the system default settings, which (unless they have been changed by the data
developer) are:

Endeca® Latitude Data Ingest API GuideEndeca Confidential

21Prerequisite Information | Default values for new Endeca attributes

Default settingDDR property

Set to the managed attribute name specified in the
request.

mdex-dimension_Key

true (refinements will be displayed)mdex-dimension_EnableRefinements

false (hierarchical search is disabled during value
searches)

mdex-dimension_IsDimensionSearchHierarchical

false (hierarchical search is disabled during
record searches)

mdex-dimension_IsRecordSearchHierarchical

NCName format for Endeca attributes
The names of Endeca standard attributes and managed attributes must be in an NCName format.

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition),
located at this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

As defined in the W3C document, an NCName must start with either a letter or an underscore (but
keep in mind that the W3C definition of Letter includes many non-Latin characters). If the name has
more than one character, it must be followed by any combination of letters, digits, periods, dashes,
underscores, combining characters, and extenders. (See the W3C document for definitions of combining
characters and extenders.) The NCName cannot have colons or white space.

After creating the Endeca attribute, you can use the mdex-property_DisplayName property on
the PDR to specify a display name. The display name, which can use a non-NCName format, is
intended to serve as an easy-to-understand name for the Endeca attribute when it is displayed in the
application's front end (such as in the Latitude Studio's Results Table component).

Interaction with the Transaction Web Service
All requests made with the Data Ingest Web Service can optionally specify the outer transaction ID.

If you submit any request to the Data Ingest Web Service after a Transaction Web Service request
that starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

The outer transaction ID is issued by the Transaction Web Service, once a request is sent to it to start
a transaction. From that point on, all requests issued to the MDEX Engine must reference this ID, until
the transaction is committed.

The format of the request that has an outer transaction ID specified may be similar to the following:

<ingest:clearMdex outerTransactionId="ID"/>

Troubleshooting connection timeouts
You can use the Dgraph --net-timeout flag to help prevent timeout issues during data ingest
operations.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Prerequisite Information | NCName format for Endeca attributes22

http://www.w3.org/TR/REC-xml-names/#NT-NCName

The MDEX Engine has a default request timeout of 30 seconds.This setting determines the maximum
number of seconds that the MDEX Engine waits for the client to download data from queries across
the network. The client can be an end user sending a query to the MDEX Engine or, for data ingest
operations, an ETL client program that is loading records into the engine.

If the client opens a connection with the MDEX Engine, the engine will wait (for the length of the timeout
period) for the receipt of client data on that socket. If the client does not send data within the timeout
limit, then the MDEX Engine will drop the connection and log an HTTP 408 error in the Dgraph log.

For ingest operations, this timeout limit may pose problems if you have a DIWS client that takes longer
to send data. If the timeout limit is exceeded, the ingest request fails (because the MDEX Engine
closes the connection) and the record batch is not loaded into the MDEX Engine.

If you continually see HTTP 408 errors in the logs, first verify that your ETL client is working properly.
For example, make sure that the program is not spending an unusual amount of time in an operation
that would cause it to exceed the timeout limit.

If you believe that the ETL client is executing as expected but needs a longer request timeout period,
then you can try increasing the MDEX Engine's request timeout setting. Use the Dgraph
--net-timeout flag to set the request timeout to a number that works for the ETL client.You will
probably have to experiment with several settings to find the one that is optimal for your needs.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

23Prerequisite Information | Troubleshooting connection timeouts

Chapter 3

Adding New Records

This chapter describes how to initially load records into the MDEX Engine, as well as how to ingest
additional new records and managed values.

About primary-key attributes
A primary key is required in order to add, delete, or modify an Endeca record.

Each Endeca record is uniquely identified by a unique record identifier, which is a combination of a
unique standard attribute and a value that appears only on that record (that is, no other record in the
data set has the same key-value pair that is on this record). This unique standard attribute is called a
primary-key attribute.The primary-key attribute and a value assigned to a record becomes the primary
key of the record. Every Endeca record must have a primary key.

The primary-key attribute type can be any of the supported MDEX property types. The name of the
primary-key attribute must be in an NCName format.

Typically, you would use the mdex:string or mdex:int types for the primary-key attribute. When
you use the primaryKey element to create the primary-key attribute, the resulting MDEX property
type will be whatever type is specified by the record's primary key (which is in the addAssignments
element). Note that the primary-key attribute is created only if it is assigned to a record.

The PDR (Property Description Record) for the primary-key attribute must have these two properties
set:

• mdex-property_IsUnique must be set to true. This means that a value may be assigned to
at most one record.

• mdex-property_IsSingleAssign must be set to true.This means that this standard attribute
may be assigned at most once for a record.

For example, assume that the name of a primary-key attribute is partID. The value partID=P123
can be assigned to only one record in the data set and is the primary key for that record. No other
record can have this key-value pair. As a result, this primary key uniquely identifies this record in the
data set.

Note: Keep in mind that multiple primary key attributes can exist in the MDEX Engine's data
set. Each record must have one (and only one) primary key. That is, the primary key is a
single-assign attribute. The Data Ingest Web Service will throw an error if you attempt to add a
second primary-key attribute to a record that already has a primary key.

Using the primaryKey element

When adding a record, the primary-key attribute (that will be assigned on the record) must already
exist in the MDEX Engine or (if it does not exist) must be specified in the add-records request with the
primaryKey element. This example shows the primaryKeys section of a request:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:primaryKeys>
 <ingest:primaryKey name="partID"/>
 </ingest:primaryKeys>
 <ingest:addAssignments>
 <mdex:record>
 <partID type="mdex:string">P123</partID>
 <modelNum type="mdex:int">2562</modelNum>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

The example creates one primary-key attribute (partID), which is used to create a record whose primary
key is partID=P123.

Default values for primary-key attributes

If you specify a non-existent attribute as the primary key, the standard attribute is automatically created
by the Data Ingest Web Service. The PDR for the attribute will use the system default settings, which
(unless they have been changed by the data developer) are:

Default settingPDR property

Set to the name specified in the request.mdex-property_Key

Set to the MDEX property type specified in the
request. If no property type was specified, defaults
to an mdex:string type.

mdex-property_Type

true (the attribute will be enabled for value
search)

mdex-property_IsPropertyValueSearchable

true (a record may have at most one value for
the attribute)

mdex-property_IsSingleAssign

false (the attribute will be disabled for record
search)

mdex-property_IsTextSearchable

true (a value may be assigned to at most one
record)

mdex-property_IsUnique

false (wildcard search is disabled for this
attribute)

mdex-property_TextSearchAllowsWildcards

single (allows selecting only one refinement from
this attribute)

system-navigation_Select

true (record counts will be shown for a
refinement)

system-navigation_ShowRecordCounts

record-count (refinements are sorted in
descending order, by the number of records
available for each refinement)

system-navigation_Sorting

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Adding New Records | About primary-key attributes26

Adding new records
The addAssignments element of the ingestRecords operation allows you to add new records to
the MDEX Engine.

The records to be added are considered totally additive. That is, if a record with the same primary key
already exists in the MDEX Engine, the key-value pair list of the added record will be merged into the
existing record. If attribute values with the same name already exist, then the added key-value pairs
will be additional values for the same attribute (multi-assign).

Note: The addAssignments element is also used to extend (update) existing records. This
usage is described in the following chapter.

ingestRecords request

An add-records request uses the ingestRecords operation with the addAssignments element.
The record to be added must have a primary-key assignment. It can have other key-value pair
assignments as needed.

Note: If you submit the ingestRecords request after a Transaction Web Service request that
starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

The basic request format is:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <primaryKeyProp>primaryKeyValue</primaryKeyProp>
 <!-- List of other property assignments -->
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

For example, this request adds one record (with the primary key P123) to the MDEX Engine.

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <partID>P123</partID>
 <color type="mdex:string">red</color>
 <price type="mdex:double">19.99</price>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

The primary key of the record is the partID primary-key attribute (which in this case must already exist
in the MDEX Engine). The request also creates the color and price attributes, which previously did
not exist in the MDEX Engine.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

27Adding New Records | Adding new records

Success response

An ingestRecordsResponse for a successful add-records request looks like this example:

<ingest:ingestRecordsResponse
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010">
 <ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
 <ingest:numRecordsAffected>1</ingest:numRecordsAffected>
 <ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>
</ingest:ingestRecordsResponse>

The sample response shows that one record was created and that two attributes (the color and price
attributes) were also created. The partID attribute was not created because it already existed in the
MDEX Engine.

Failure response

On failure, a SOAP fault is returned. The ingestFault and errorDetail elements should contain
the error that caused the failure.

For example, assume that one of the record assignments contained a mismatched attribute element
that looked like this:

<partNum type="mdex:int">24869</price>

The errorDetail element would return an error similar to this:

'request' cannot be parsed as XML.
Reason: Unable to fetch resource:Expected end of tag 'partNum'

In this example, the reason for the error is that the </partNum> ending tag was not found (because
</price> was mistakenly used instead).

State of the data ingest process on failure

The Data Ingest Web Service uses an all-or-nothing insertion strategy for each batch of records. This
means that if at least one record in a batch is considered invalid by the MDEX Engine, then all of the
records are rejected. For example, if a batch of 1000 records contains 999 valid records and 1 invalid
record, then the 999 valid records (and the invalid record) are not loaded into the MDEX Engine.

If the data ingest process is interrupted (for example, by the ETL client or the MDEX Engine crashing),
then the current batch (i.e., the batch that was being processed when the interruption occurred) is not
loaded into the MDEX Engine. However, all previous valid batches have been loaded into the MDEX
Engine. For example, if 5000 batches are to be loaded and an interruption occurs during batch 3500,
then batch 3500 is not loaded into the MDEX Engine, but the previous 3499 batches will be present
in the MDEX Engine.

Standard attribute assignments and creations

When adding standard attributes, the operation works as follows for the new attribute (i.e., the attribute
to be added):

• If the new attribute already exists in the MDEX Engine but with a different type, an error is thrown
and the new attribute is not added.

• If the new attribute already exists in the MDEX Engine and is of the same type, no error is thrown
and nothing is done.

Standard attribute names must use an NCName format. The standard attribute name is used as the
element name for the assignment, in this format:

<propertyName type="propertyType">property value</propertyName>

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Adding New Records | Adding new records28

For example, assigning a standard attribute named ItemID would look like this:

<ItemID type="mdex:int">247</ItemID>

Standard attributes are created as needed when non-existent attributes are specified for a record.The
PDR for the attribute will use the system default settings, which is explained in the "Default values for
new Endeca attributes" topic in Chapter 2 of this guide. Note that you cannot disable this automatic
creation of attributes.

Initial loading of records
The initial load user case assumes that you are loading records into an empty MDEX Engine.

The initial load use case (also called a full index load) makes these assumptions:

• All of your source records will be loaded into the MDEX Engine.
• The MDEX Engine contains no primary-key attributes. Therefore, the initial load operation must

create the appropriate primary-key attributes by using the primaryKey element in the request.
• The initial data load is performed via one or more invocations of the Data Ingest Web service
ingestRecords operation specifying one or more mdex:record elements.

The request for an initial load should use one or more primaryKey elements to create the primary-key
attributes. An example of a full request would be:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:primaryKeys>
 <ingest:primaryKey name="partID"/>
 <ingest:primaryKey name="supplierID"/>
 </ingest:primaryKeys>
 <ingest:addAssignments>
 <mdex:record>
 <partID type="mdex:string">P123</partID>
 <modelNum type="mdex:int">2562</modelNum>
 </mdex:record>
 <mdex:record>
 <supplierID type="mdex:string">S456</supplierID>
 <location type="mdex:geocode">42.365615 -71.075647</location>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

The request first creates the partID and supplierID primary-key attributes, and then adds two new
records to the MDEX Engine.The primary key of the first record is partID=P123 while supplierID=S456
is the primary key of the second record.The request also creates two standard attributes (modelNum
and location) because they do not exist in the MDEX Engine.

Note: If you submit the ingestRecords request after a Transaction Web Service request that
starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

To load records into an empty MDEX Engine:

1. Use mkmdex to create an instance of the MDEX Engine, and then start the MDEX Engine.

See the Latitude Installation Guide for details.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

29Adding New Records | Initial loading of records

2. Create an ingest:ingestRecords request, similar to the example above, and send the request
to the Data Ingest service.

The request is typically created and managed by a ETL client.

3. After the request is made, check the ingestRecordsResponse to determine if the request
transaction was successful.

A successful ingestRecordsResponse returned from the above sample request should look like
this:

<ingest:ingestRecordsResponse xmlns:ingest="http://www.endeca.com/MDEX/in¬
gest/2010">
 <ingest:numPropertiesCreated>4</ingest:numPropertiesCreated>
 <ingest:numRecordsAffected>2</ingest:numRecordsAffected>
 <ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>
</ingest:ingestRecordsResponse>

Adding records after the initial load
You can add more records to the MDEX Engine any time after the initial loading of records is complete.

Adding more records after the MDEX Engine is up and running with the initially-loaded record set is
very similar to the initial-load scenario, which means:

• You use the ingestRecords operation with the addAssignments element and one or more
mdex:record elements.

• If you are adding new records with new primary keys, you must use the primaryKey element in
the request. Otherwise, do not use this element if the new records use an existing primary-key
attribute.

• As with an initial load operation, standard attributes are created as needed when non-existent
attributes are specified for a new record. The PDR for the standard attribute will use the system
default settings.

• If a standard attribute is configured as multi-assign, a record can have multiple assignments of
that attribute.

• You can add multiple records with the same request.You can also update other, existing records
with the same request.

In addition, the request can contain deleteRecords elements to delete records.

New record request

The format of the ingestRecords request to add new records is the same as documented in the
"Adding new records" topic in this chapter.

Note: If you submit the ingestRecords request after a Transaction Web Service request that
starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

For example, this request adds two records to the MDEX Engine data set.

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <partID>P247</partID>

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Adding New Records | Adding records after the initial load30

 <color>blue</color>
 <weight>3</weight>
 <price>19.99</price>
 </mdex:record>
 <mdex:record>
 <supplierID>S394</supplierID>
 <company>Acme Inc.</company>
 <phone>1-555-123-4567</phone>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

Note that none of the key-value assignments specify an MDEX property type. This is because all the
attributes already exist in the MDEX Engine and therefore do not need to be created. The type of the
assignment property value must match the type of the attribute.

Loading managed attribute values
The ingestDimensionValues operation allows you to load managed values into the MDEX Engine's
data set.

Within the ingestDimensionValues structure, the ingestDimensionValue element specifies
the managed attribute to which each managed value belongs. If the managed attribute does not exist
in the MDEX Engine, the service automatically creates the managed attribute. For the default values
of the managed attribute's PDR and DDR, see the "Default values for new Endeca attributes" topic in
Chapter 2.

You can use the ingestDimensionValues operation to load an externally managed taxonomy
(EMT) into the MDEX Engine. When loaded, externally managed taxonomies are added as managed
attributes and managed values.

ingestDimensionValues request

An ingestDimensionValues operation request uses this format:

<ingest:ingestDimensionValues
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <!--Zero or more repetitions:-->
 <ingest:dimensionValue dimension="dimName" displayName="dimValName"
 parentSpec="pSpec" spec="dimValId">
 <!--Zero or more repetitions:-->
 <ingest:synonym>synName</ingest:synonym>
 <!--Optional:-->
 <ingest:properties>
 <!--Zero or more repetitions:-->
 <propName type="mdex:string">propValue</propName>
 </ingest:properties>
 </ingest:dimensionValue>
</ingest:ingestDimensionValues>

Each DimensionValue element defines one managed value. The meanings of the attributes and
sub-elements are:

Endeca® Latitude Data Ingest API GuideEndeca Confidential

31Adding New Records | Loading managed attribute values

PurposeElement/Attribute

The name of the managed attribute to which the managed value belongs.
The name must use the NCName format.

dimension

The name for the managed value.displayName

Specifies the parent ID (managed attribute spec) for this managed value,
If this is a root managed value, use a forward slash (/) as the ID. If this is

parentSpec

a child managed value, specify the unique ID of the parent managed
value.

A unique string identifier for the managed value. It is the responsibility of
the client to provide the identifier for the request.

spec

Optionally defines the name of a synonym.You can add synonyms to a
managed value so that users can search for other text strings and still

synonym

get the same records as a search for the original managed value name.
Synonyms can be added to both root and child managed values.

Optionally defines a property for a managed value. Managed value
properties provide descriptive information about a given managed value
and are intended to be used for display purposes by the application.

properties

The following example creates the WineType managed attribute and adds three managed values
(Red, White, and Merlot) to it:

<ingest:ingestDimensionValues
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:dimensionValue
 dimension="WineType"
 displayName="White"
 parentSpec="/"
 spec="22">
 <ingest:synonym>Blanc</ingest:synonym>
 <ingest:synonym>Weisse</ingest:synonym>
 </ingest:dimensionValue>
 <ingest:dimensionValue
 dimension="WineType"
 displayName="Red"
 parentSpec="/"
 spec="47">
 <ingest:properties>
 <myStrProp type="mdex:string">source:CAS</myStrProp>
 </ingest:properties>
 </ingest:dimensionValue>
 <ingest:dimensionValue
 dimension="WineType"
 displayName="Merlot"
 parentSpec="47"
 spec="35" />
</ingest:ingestDimensionValues>

In the example, the Red and White managed values are at the root of the managed attribute, while
the Merlot managed value is a child of the Red managed value. Note also that two synonyms were
created for the White managed value and a string property (named myStrProp) was created for the
Red managed values.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Adding New Records | Loading managed attribute values32

ingestDimensionValuesResponse

An ingestDimensionValuesResponse for a successful operation would look like this example:

<ingest:ingestDimensionValuesResponse
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010">
 <ingest:numDimensionsCreated>1</ingest:numDimensionsCreated>
 <ingest:numDimensionValuesCreated>3</ingest:numDimensionValuesCreated>
</ingest:ingestDimensionValuesResponse>

In the sample response, the numDimensionsCreated element shows that one managed attribute
was created, while the numDimensionValuesCreated element shows that three managed values
were created.

Failure response

On failure, a SOAP fault is returned. The ingest:ingestFault and ingest:errorDetail
elements should contain the error that caused the failure.

For example, assume that the following request was made to create the Chablis child managed value:

<ingest:ingestDimensionValues>
 <ingest:dimensionValue dimension="WineType" displayName="Chablis"
 parentSpec="58" spec="39" />
</ingest:ingestDimensionValues>

The ingest:errorDetail element would return an error similar to this:

<soapenv:Fault>
 <faultcode>soapenv:Client</faultcode>
 <faultstring>Error applying updates: Dimension value put refers to parent
 spec "58",
 which does not exist in dimension "WineType"
 </faultstring>
 <detail>
 <ingest:ingestFault xmlns:ingest="http://www.endeca.com/MDEX/in¬
gest/2010">
 <ingest:errorDetail>Error applying updates: Dimension value put
refers to
 parent spec "58", which does not exist in dimension "WineType"

 </ingest:errorDetail>
 </ingest:ingestFault>
 </detail>
</soapenv:Fault>

In this example, the reason for the error is that the request refers to a non-existent parent managed
value (58 in the example).

Endeca® Latitude Data Ingest API GuideEndeca Confidential

33Adding New Records | Loading managed attribute values

Chapter 4

Updating Records

This chapter describes how you can incrementally modify the MDEX Engine's data set by updating
and deleting records.

About updates
The ingestRecords operation lets you incrementally update the data set in the MDEX Engine,
including adding additional records.

Using the Data Ingest Web Service, you can perform the following types of incremental updates:

• Add a brand-new record to the data set.
• Update an existing record by adding standard attribute and/or managed values.
• Update an existing record by removing standard attributes and/or managed values.

How updates are applied

The records to be added are considered totally additive. That is, if a record with the same primary key
already exists in the MDEX Engine, the key-value pair list of the added record will be merged into the
existing record.

If a standard attribute with the same name already exists (but has a different assigned value), then
the added attribute will be an additional value for the same attribute (multi-assign). For example, if the
existing record has one standard attribute named color with a value of "red" and the request adds a
color standard attribute with a value of "blue", then the resulting record will have two color attributes.

Keep in mind, however, that you cannot add a second value to a single-assign attribute. (That is, a
standard attribute whose PDR has the mdex-property_IsSingleAssign set to true. In the color
example, if color were a single-assign attribute and the record already had one color assignment,
then an attempt to add a second color assignment would fail.

When adding standard attributes, the operation works as follows for the new standard attribute (i.e.,
the standard attribute to be added):

• If the new standard attribute already exists in the MDEX Engine but with a different type, an error
is thrown and the new standard attribute is not added.

• If the new standard attribute already exists in the MDEX Engine and is of the same type, no error
is thrown and nothing is done.

• If the new standard attribute is a primary-key attribute and a managed attribute already exists with
the same name, an error is thrown and the new standard attribute is not added.

Note that updating a record can cause it to change place in the default order. That is, if you have
records ordered A, B, C, D, and you update record B, records A, C, and D remain ordered. However,
record B may move as a result of the update, which means the resulting order might end up as B,A,C,D
or A,C,B,D or another order.

Order of update operations

An ingestRecords request can contain all four types of updates. In this case, the order of processing
is:

1. deleteRecords requests are processed first.
2. wildcardDeletes requests are processed second.
3. deleteAssignments requests are processed third.
4. addAssignments requests are processed last.

If a record is included in the deleteRecords element and is also included in one or more of the other
elements, then the record is deleted and added again in the same transaction.

If a record attribute or attribute assignment is specified in the wildcardDeletes or
deleteAssignments list and is specified again in the addAssignments list, then the attribute
assignment is deleted and added again in the same transaction.

If identical records, standard attributes or assignments are specified in any of the elements, the
redundant entries are ignored.

Affected records with update operations

The numRecordsAffected element in the ingestRecordsResponse lists how many records were
affected (i.e., modified) by an ingestRecords operation.

However, it is possible that an "affected" record may not actually be changed by the operation. Any
operation that results in the output record being the same as the input record will mark the record as
"affected" but will leave it unchanged.These types of "unaffected" operations are adding an assignment
that already exists, deleting an assignment that does not exist, performing a wildcard delete on a
record property that has no assignments, and deleting an assignment and then adding the same
assignment.

Adding key-value assignments
Endeca records can be updated with new assignments for standard attributes and managed values.

The ingestRecords operation, when used with the addAssignments element, lets you update
existing records in the MDEX Engine by adding standard attribute values and/or managed values.The
element can also create a standard or managed attribute if the attribute to be added does not exist.
In this case, it is added with the defaults listed in the "Default values for new Endeca attributes" topic
in Chapter 2.

Because the MDEX Engine performs type-checking when adding standard attributes, keep the following
in mind:

• When adding a value for a pre-existing standard attribute, make sure that the new value is of the
proper type. An error will occur for type mismatches (for example, if you attempt to assign the
string "red" to an integer standard attribute).

• When creating and adding a new standard attribute, you should specify the MDEX property type.
• Any standard attribute that is not specifically typed will be treated by default as a string type.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Updating Records | Adding key-value assignments36

You can assign multiple values from a given standard attribute only if the attribute is configured as a
multi-assign standard attribute. That means that the PDR for the standard attribute has the
mdex-property_IsSingleAssign property set to true. If the addAssignments list attempts to
assign multiple values to a standard attribute that does not accept multiple values, an error is signaled.

Managed values can be added to records even if the managed attribute to which they belong does
not exist in the MDEX Engine. In this case, the Data Ingest Web Service automatically creates the
managed attribute.

addAssignments request

You use the addAssignments element in a request to add key-value pairs to an existing record. The
request must specify the primary key of the record to be updated, using this request format:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <primaryKeyProp>keyValue</primaryKeyProp>
 <propToAdd>keyValue</propToAdd>
 <!-- Other property assignments -->
 </mdex:record>
 </ingest:ingest:addAssignments>
</ingest:ingestRecords>

For example, this request updates a record (with the primary key P123) with three standard attributes
(color, price, and numInStock) and one managed value (the managed value with the managed value
spec of 4 in the Style managed attribute):

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:addAssignments>
 <mdex:record>
 <partID>P123</partID>
 <color>yellow</color>
 <price>18.99</price>
 <numInStock type="mdex:int">10</numInStock>
 <Style>4</Style>
 </mdex:record>
 </ingest:addAssignments>
</ingest:ingestRecords>

Note: If you submit the ingestRecords request after a Transaction Web Service request that
starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

Note that the MDEX property type of the numInStock standard attribute is specified, because the
standard attribute does not exist and therefore will be created as part of the request.The other standard
attributes and the Style managed attribute already exist in the MDEX Engine.

Removing record assignments
Endeca records in a running MDEX Engine can be updated by removing standard attribute and
managed value assignments.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

37Updating Records | Removing record assignments

The ingestRecords operation has two elements that delete assignments from Endeca records:

• deleteAssignments

• wildcardDeletes

Both elements can delete standard attribute assignments as well as managed value assignments.
Note that the standard attributes or managed values are not removed from the MDEX Engine; they
are removed only from the specified records.

You can use both elements in the same ingestRecords operation. In this case, the
wildcardDeletes request is processed before the deleteAssignments request.

Both elements are case sensitive, including the standard attribute and managed value names and
their assignment values.

Note: If you submit the ingestRecords request after a Transaction Web Service request that
starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

deleteAssignments request

The deleteAssignments element of the ingestRecords operation removes individual standard
attribute and/or managed value assignments from Endeca records, but does not otherwise affect the
record.You can remove one or more assignments in the same request.

The request must specify the primary key of the record to be updated. The deleteAssignments
request format is:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:deleteAssignments>
 <mdex:record>
 <primaryKeyProp>keyValue</primaryKeyProp>
 <propName>keyValueToRemove</propName>
 <!-- Other property or dimension value assignments to remove -->
 </mdex:record>
 </ingest:deleteAssignments>
</ingest:ingestRecords>

To remove an individual assignment, specify the key name (i.e., standard attribute name or managed
value name) and its value, as in this example:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:deleteAssignments>
 <mdex:record>
 <partID>P123</partID>
 <color>red</color>
 <color>blue</color>
 <WineType>White</WineType>
 </mdex:record>
 </ingest:deleteAssignments>
</ingest:ingestRecords>

The example removes two values ("red" and "blue") of the color standard attribute assignment and
one managed value ("White") from the WineType managed value assignment.

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Updating Records | Removing record assignments38

A successful ingestRecordsResponse returned from the above sample request should look like
this:

<ingest:ingestRecordsResponse
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010">
 <ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
 <ingest:numRecordsAffected>1</ingest:numRecordsAffected>
 <ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>
</ingest:ingestRecordsResponse>

The numRecordsAffected element in the response shows that one record was successfully modified.

wildcardDeletes request

The wildcardDeletes element of the ingestRecords operation removes all assignments from
the same standard attribute or managed value at once.

The request must specify the primary key of the record to be updated, using this request format:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:wildcardDeletes>
 <mdex:record>
 <primaryKeyProp>keyValue</primaryKeyProp>
 <propToRemove />
 <!-- Other property or dimension value assignments to remove -->
 </mdex:record>
 </ingest:wildcardDeletes>
</ingest:ingestRecords>

Note that unlike the deleteAssignments usage, the wildcardDeletes element requires that the
propToRemove specification cannot have an assignment value. Only the name of the standard attribute
or managed value can be specified.

To remove all assignments on the record from a specific standard attribute or managed value, use a
single tag with the attribute, as in this example that removes all assignments from the color standard
attribute:

<ingest:ingestRecords
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010"
 xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
 <ingest:wildcardDeletes>
 <mdex:record>
 <partID>P123</partID>
 <color/>
 <sizes/>
 </mdex:record>
 </ingest:wildcardDeletes>
</ingest:ingestRecords>

In the example, if record P123 had six assignments from the color standard attribute, then all six
assignments would be removed; if it had three assignments from the sizes standard attribute, all three
would be removed.

If successful, the operation returns the same ingestRecordsResponse as a deleteAssignments
request.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

39Updating Records | Removing record assignments

Deleting records
The Data Ingest service lets you delete records from a running MDEX Engine.

You use the deleteRecords element in a request to delete a record. The request must specify the
primary key of the record to be deleted, using this request format:

<ingest:ingestRecords>
 <ingest:deleteRecords>
 <mdex:record>
 <primaryKeyProp>keyValue</primaryKeyProp>
 </mdex:record>
 </ingest:deleteRecords>
</ingest:ingestRecords>

Multiple records can be deleted in the same request. Each record must be specified within an
mdex:record element.

Note: If you submit the ingestRecords request after a Transaction Web Service request that
starts a transaction, the request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request.

To delete a record from the MDEX Engine:

1. Make certain that both the MDEX Engine and the Data Ingest service are running.

2. Create a deleteRecords request, similar to the example below that deletes two records, and
send the request to the Data Ingest service.

<ingest:ingestRecords>
 <ingest:deleteRecords>
 <mdex:record>
 <partID>PK-123</partID>
 </mdex:record>
 <mdex:record>
 <supplierID>SV-789</supplierID>
 </mdex:record>
 </ingest:deleteRecords>
</ingest:ingestRecords>

3. After the request is made, check the ingestRecordsResponse to determine if the request
transaction was successful.

A successful ingestRecordsResponse returned from the above sample request should look like
this:

<ingest:ingestRecordsResponse
 xmlns:ingest="http://www.endeca.com/MDEX/ingest/2010">
 <ingest:numPropertiesCreated>0</ingest:numPropertiesCreated>
 <ingest:numRecordsAffected>0</ingest:numRecordsAffected>
 <ingest:numRecordsDeleted>2</ingest:numRecordsDeleted>
</ingest:ingestRecordsResponse>

Note that when specifying an invalid or missing primary key record, the deleteRecords operation
will not fail, but instead will ignore the record. In this case, the numRecordsDeleted element in the
response will have a value of 0 (zero) and an entry (similar to the following example) is made in the
Dgraph log:

Request: - fn:trace(, delete-records.xq: A record with specifier (partID =
 SV-352) does not exist.)

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Updating Records | Deleting records40

Chapter 5

Resetting the MDEX Engine

The clearMdex and provisionMdex operations of the Data Ingest Web Service are intended to be
used together for removing the data and configuration from the MDEX Engine while keeping the MDEX
Engine running. Running these operations implies that you have exported the configuration and will
import it, after clearing and provisioning the MDEX Engine.

Removing all records from the MDEX Engine
Use the clearMdex operation in the Data Ingest Web Service to remove all data records and also
the schema records (that define the MDEX Engine configuration).

Before using this operation, ensure that you export the configuration. Also, it is also assumed that you
intend to remove all data records by using this operation (for example, with the intent to populate the
MDEX Engine with a new set of records).

To remove all data and schema records, use the clearMdex element in a Data Ingest Web Service
request. The request should use this format:

<ingest:clearMdex outerTransactionId="ID"/>

Note: If you submit this request after a Transaction Web Service request that starts a transaction,
the clearMdex request must specify the outer transaction ID. If no transactions have been
started, the ID attribute must be omitted in the clearMdex element or the value of the attribute
should be empty (the attribute with an empty value is ignored by the request).

To remove all records from the MDEX Engine:

Create a clearMdex request, similar to the example below, and send the request to the Data
Ingest service:

<ingest:clearMdex outerTransactionId="myID"/>

where myID is the ID of the outer transaction, if the outer transaction has been started previously
with this ID by the Transaction Web Service. If you run this request and no transactions have been
started, the attribute should be omitted, or its value should be empty.

This request removes the data records and the schema records in the MDEX Engine.

A successful clearMdexResponse returned from the above sample request should return the number
of records deleted, and look like this:

<ingest:clearMdexResponse>
 <ingest:numRecordsDeleted>175</ingest:numRecordsDeleted>
</ingest:clearMdexResponse>

Note that if you specify an outer transaction ID that does not match the ID of the currently running
transaction, the clearMdex operation fails, notifying you of the transaction ID that is in progress. In
addition, if no outer transactions have been started with the Transaction Web Service, but you still
specify an attribute and the value for an ID, this request also fails.

After you have removed all the data and schema records from the MDEX Engine index, you want to
provision it again with the default configuration settings. To provision the MDEX Engine, run provi¬
sionMdex.

Provisioning the MDEX Engine
To provision the MDEX Engine, use the provisionMdex operation in the Data Ingest Web Service.
This operation creates the primordial records (such as PDRs and DDRs), and resets these records to
their default values.

It is assumed that you run this operation after running clearMdex. It is also assumed that you have
previously exported your configuration defined in the schema records and will import it after you run
the provisionMdex operation.

To provision the MDEX Engine and create PDRs and DDRs with their default values, use the provi¬
sionMdex element in a Data Ingest Web Service request. The request should use this format:

<ingest:provisionMdex outerTransactionId="ID"/>

Note: If you submit the provision request after a Transaction Web Service request that starts
a transaction, the provision request must specify the outer transaction ID. If no transactions have
been started, the ID attribute must be omitted in the request, or its value must be empty (the
attribute with an empty value is ignored by the request).

To provision the MDEX Engine:

Create a provisionMdex request, similar to the example below and send the request to the Data
Ingest service:

<ingest:provisionMdex outerTransactionId="myID"/>

where myID is the ID of the outer transaction, if the outer transaction has been started previously
with this ID by the Transaction Web Service.

This request adds the primordial schema records in the MDEX Engine and sets these schema
records to their defaults.

A successful provisionMdexResponse returned from the above sample request should look similar
to this example:

<ingest:provisionMdexResponse>
 <ingest:numPropertiesCreated>2</ingest:numPropertiesCreated>
 <ingest:numRecordsAffected>2</ingest:numRecordsAffected>

Endeca ConfidentialEndeca® Latitude Data Ingest API Guide

Resetting the MDEX Engine | Provisioning the MDEX Engine42

 <ingest:numRecordsDeleted>0</ingest:numRecordsDeleted>
</ingest:provisionMdexResponse>

Note that if you specify an invalid outer transaction ID, the provisionMdex operation fails and notifies
you of the transaction ID that is in progress. In addition, if no outer transactions have been started
with the Transaction Web Service, but you specify the attribute and the value for an ID, this request
fails.

After you have run the provisionMdex operation, you can import your configuration and run ad¬
min?op=updateaspell to update the spelling dictionary.

If you use Reset MDEX for running clearMDEX and provisionMDEX operations, then this connector
also updates the spelling dictionary.

Endeca® Latitude Data Ingest API GuideEndeca Confidential

43Resetting the MDEX Engine | Provisioning the MDEX Engine

Index

A

adding primordial schema records 42
assignments, removing record 38

B

boolean property type 17

C

client stubs, generating 11

D

Data Ingest
adding key-value pairs to records 36
adding new records 27
deleting all data records and schema records 41
deleting records 40
deleting records and provisioning the MDEX Engine
failure response 28
generating client stubs 11
ingestRecords request 27
initial record loading 29
logging 11
overview 9
provisioning the MDEX Engine 42
removing properties 38

Data Ingest Web Service
list of operations 10

dateTime property type 17
DDR default values 21
deleting records 40
deleting records and schema 41
dimension values, See managed values
double property type 16
duration property type 19

E

externally managed taxonomies, loading 31

G

geocode property type 16

I

incremental updates, performing 35
Ingest Web Service, See Data Ingest
initial loading of records 29

int property type 15

K

key-value pairs, adding 36

L

Latitude Data Integrator, about 10
logging for Data Ingest requests 11
long property type 15

M

managed attributes
default values 21
NCName format 22

managed values
adding to records 36
loading 31

MDEX property types
boolean 17
dateTime 17
double 16
duration 19
geocode 16
inclusive list of 14
int 15
long 15
string 15
time 19

N

namespaces for data ingest 13
NCName format for attribute names 22
network connection timeouts, troubleshooting 23
new records, adding 27

O

outer transaction ID 22

P

partial updates, performing 35
PDR default values 21
primary keys, creating 26
properties, See standard attributes
provisioning the MDEX Engine 42

R

records
adding 27
deleting 40

records and schema, deleting 41
rules for standard attribute creation 28

S

standard attributes
default values 21
NCName format 22
primary key 26

standard attributes (continued)
removing from records 38
rules for creation and assignments 28

string property type 15
stub generation tools 11

T

time property type 19
troubleshooting network connection timeouts 23

W

WSDL file, generating client stubs from 11

Endeca® Latitude46

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Introduction
	Overview of the Data Ingest Web Service
	List of operations
	Data Ingest logging
	Generating client stubs

	Prerequisite Information
	Data ingest namespaces
	MDEX property types
	string property
	numeric properties
	geocode property
	boolean property
	dateTime property
	time property
	duration property

	Default values for new Endeca attributes
	NCName format for Endeca attributes
	Interaction with the Transaction Web Service
	Troubleshooting connection timeouts

	Adding New Records
	About primary-key attributes
	Adding new records
	Initial loading of records
	Adding records after the initial load
	Loading managed attribute values

	Updating Records
	About updates
	Adding key-value assignments
	Removing record assignments
	Deleting records

	Resetting the MDEX Engine
	Removing all records from the MDEX Engine
	Provisioning the MDEX Engine

	Index

