

Oracle® WebCenter Sites
Developer’s Guide for Customizing the Contributor Interface

11g Release 1 (11.1.1) Bundled Patch 1

October 2012

Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface, 11g Release 1 (11.1.1)
Bundled Patch 1

Copyright © 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Promila Chitkara, Tatiana Kolubayev

Contributor: Vijayalakshmi Rajan, Patrice Palau, Ravi Khanuja, Kannan Appachi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

List of Tables

Preface .. vii

Audience.. vii
Related Documents .. vii
Conventions .. vii

1 About Customizing the WebCenter Sites Contributor Interface

1.1 Before You Begin .. 1-1
1.2 What Can You Customize in the Contributor Interface? .. 1-1
1.3 Where to Find Sample Code? ... 1-1
1.4 Where to Begin? ... 1-1

2 Contributor Interface Framework

2.1 Overview of the Contributor Framework ... 2-1
2.2 UI Controller .. 2-2
2.2.1 How the UI Controller Processes Requests .. 2-2
2.2.2 Example: UI Controller Processing an Element Request .. 2-4
2.3 Custom Elements ... 2-4
2.3.1 Element Storage ... 2-4
2.3.2 How the UI Controller Locates Elements ... 2-5
2.3.3 Element Naming Conventions in This Guide .. 2-6

3 Customizing the Dashboard

3.1 Overview of Dashboard Customization ... 3-1
3.2 Customizing the Dashboard ... 3-2
3.3 Examples of Customizing the Dashboard .. 3-3
3.3.1 Adding a ‘Hello World’ Widget ... 3-4
3.3.2 Adding a Widget that Shows Recently Modified Assets ... 3-5

4 Customizing Search Views

4.1 Overview of Search View Customization ... 4-1
4.1.1 Types of Search Views ... 4-1
4.1.2 What You Can Customize in Search Views ... 4-2
4.1.3 View-Rendering Process .. 4-3

iv

4.1.4 Configuration Elements for Search Views ... 4-5
4.2 Customization Processes .. 4-6
4.3 Customizing Undocked Views ... 4-7
4.3.1 Basic Steps for Customizing Undocked Views .. 4-7
4.3.2 Setting the Default Undocked View to List or Thumbnail ... 4-8
4.3.3 Customizing the Undocked List View ... 4-9
4.3.4 Customizing the Undocked Thumbnail View ... 4-11
4.3.4.1 More About the <assettypes> Section in the ThumbnailViewConfig Element 4-14
4.4 Customizing Docked Views ... 4-17
4.5 Customizing Sort Menus, Context Menus, and Tooltips .. 4-17
4.5.1 Customizing Sort Menus ... 4-17
4.5.2 Customizing Context Menus ... 4-18
4.5.3 Customizing Tooltips for Search Results ... 4-19

5 Customizing Global Properties, Toolbar, and Menu Bar

5.1 Customizing Global Configuration Properties ... 5-1
5.1.1 Overview of the Configuration Properties ... 5-1
5.1.2 Modifying Default Configuration Properties ... 5-2
5.1.3 Adding Custom Configuration Properties .. 5-3
5.1.3.1 Adding Custom Global Properties .. 5-3
5.1.3.2 Adding Site-Specific Properties ... 5-4
5.2 Customizing the Toolbar .. 5-5
5.2.1 Overview of Toolbar Customization ... 5-5
5.2.2 Examples of Toolbar Customization .. 5-6
5.2.2.1 Customizing the Toolbar with Standard Actions for Web Mode 5-6
5.2.2.2 Customizing the Toolbar with Standard Actions for Asset Type and Subtype ... 5-6
5.2.2.3 Customizing the Toolbar with Custom Actions .. 5-7
5.3 Customizing the Menu Bar .. 5-8
5.3.1 Overview of Menu Bar Customization .. 5-9
5.3.2 Adding a Custom Action to the Menu Bar .. 5-10

6 Customizing Asset Forms

6.1 Overview of Asset Forms Customization ... 6-1
6.2 Modifying the Header of Asset Forms ... 6-1
6.3 Building an Attribute Editor .. 6-1
6.3.1 Creating a Dojo Widget and its Template .. 6-2
6.3.1.1 Create a Template for the Dojo Widget ... 6-2
6.3.1.2 Creating a Dojo Widget ... 6-3
6.3.2 Defining the Attribute Editor as a Presentation Object .. 6-5
6.3.3 Creating the Attribute Editor Element .. 6-5
6.3.4 Creating the Attribute Editor ... 6-8
6.3.5 Implementing a Multi-Valued Attribute Editor ... 6-9

v

List of Tables

3–1 Properties in UI/Layout/CenterPane/DashBoardContentsConfig.jsp............................ 3-3
4–1 Configuration Elements for Undocked Search Views.. 4-5
4–2 Configuration Elements for Docked Search Views... 4-5
4–3 Configuration and Presentation Elements for Other Features in Search Views............... 4-6
4–4 Custom Sample Elements for Search Views .. 4-6
4–5 Properties in UI/Layout/CenterPane/Search/SearchResultsConfig 4-8
4–6 Properties in UI/Layout/CenterPane/Search/View/ListViewConfig 4-9
4–7 Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig................. 4-12
4–8 Customizing Other Features for Search Views... 4-17
4–9 Properties in UI/Layout/CenterPane/Search/View/SearchTopBarConfig................... 4-18
4–10 Properties in UI/Layout/CenterPane/Search/View/ContextMenuConfig..................... 4-19
5–1 Configuration Properties in UI/Config/GlobalHtml.. 5-2

vi

vii

Preface

This guide begins with an overview of the development environment for customizing
the WebCenter Sites Contributor interface. Later chapters provide information about
customizable interface components, customization methods, and supporting code.

The Oracle WebCenter Sites application, discussed in this guide, is a former FatWire
product. Oracle WebCenter Sites is the current name of the application previously
known as FatWire Content Server. In this guide, Oracle WebCenter Sites is also called
WebCenter Sites.

Audience
This document is intended for developers with a working knowledge of the Oracle
WebCenter Sites Contributor interface and its development environment.

Related Documents
For more information, see the following documents in the Oracle WebCenter Sites
11gR1 Bundled Patch 1 documentation set:

■ Oracle WebCenter Sites User’s Guide

■ Oracle WebCenter Sites Developer’s Guide

■ Oracle WebCenter Sites Developer Tools

■ Oracle WebCenter Sites Tag Reference

■ Oracle WebCenter Sites Javadoc

■ Oracle WebCenter Sites Administrator’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

About Customizing the WebCenter Sites Contributor Interface 1-1

1About Customizing the WebCenter Sites
Contributor Interface

This guide describes procedures for customizing components of the WebCenter Sites
Contributor interface. This chapter summarizes the customizable components and
guides you to the location of sample code provided with WebCenter Sites.

1.1 Before You Begin
Developers using this guide are required to have a working knowledge of the
Contributor interface; experience with Java, JavaScript, and HTML; and solid
familiarity with WebCenter Sites development tools.

Information about the Contributor interface is available in the WebCenter Sites User’s
Guide. Information about the development environment and functionality supporting
content management operations is available in the WebCenter Sites Developer’s Guide
and WebCenter Sites Developer Tools.

1.2 What Can You Customize in the Contributor Interface?
The following list summarizes the components you can customize in the Contributor
interface:

■ Dashboard. See Chapter 3, "Customizing the Dashboard."

■ Search views. See Chapter 4, "Customizing Search Views."

■ Global and site-specific configuration properties, toolbar, and menu bar. See
Chapter 5, "Customizing Global Properties, Toolbar, and Menu Bar."

■ Asset forms. See Chapter 6, "Customizing Asset Forms."

1.3 Where to Find Sample Code?
Some of the sample code for illustrating interface customization is provided in this
guide. Other code is either packaged in WebCenter Sites, or available independently,
in the zip file containing this guide. Paths to such code are listed in the individual
chapters of this guide.

1.4 Where to Begin?
The Contributor interface framework contains a component called the UI Controller,
which handles most of the interface-related requests, except for those pertaining to

Where to Begin?

1-2 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

asset forms. The UI Controller is described in Chapter 2, "Contributor Interface
Framework."

■ If you are customizing any of the following components: dashboard, search views,
configuration properties, toolbars, or menu bars, we recommend starting with
Chapter 2 to obtain basic information about the concepts and code you will be
using in most of this guide and your customization process.

■ If you are customizing asset forms, you can skip to Chapter 6, "Customizing Asset
Forms" for information about modifying asset form headers and building an
attribute editor.

2

Contributor Interface Framework 2-1

2Contributor Interface Framework

This chapter describes the framework of the WebCenter Sites Contributor interface,
particularly the UI Controller, which handles all requests pertaining to the interface.
This chapter also discusses elements that are executed by the UI Controller. The
concepts introduced here are basic to customizing the Contributor interface. They are
used throughout this guide.

This chapter contains the following topics:

■ Section 2.1, "Overview of the Contributor Framework"

■ Section 2.2, "UI Controller"

■ Section 2.3, "Custom Elements"

2.1 Overview of the Contributor Framework
The framework of the WebCenter Sites Contributor interface sits on top of the Services
Layer and handles client requests. As shown in Figure 2–1, the framework consists of
the Presentation Layer and UI Controller.

Figure 2–1 Contributor Interface Framework

UI Controller

2-2 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

The Presentation Layer consists of elements that render views and elements that
generate a response. The UI Controller is used to process the requests it receives from
the Contributor interface, as explained in Section 2.2, "UI Controller."

2.2 UI Controller
The UI Controller, shown in Figure 2–1, is the entity that processes the requests it
receives from the Contributor interface. This section describes the UI Controller’s
request processing phases, conventions for naming the elements in each phase, and
the process by which the UI Controller checks for custom elements.

This section contains the following topics:

■ Section 2.2.1, "How the UI Controller Processes Requests"

■ Section 2.2.2, "Example: UI Controller Processing an Element Request"

2.2.1 How the UI Controller Processes Requests
The UI Controller can be reached by invoking the fatwire/ui/controller SiteCatalog
entry. The UI Controller requires the incoming request to provide at least one
parameter, elementName, which determines the controller element to be executed. For
example, the following URL invokes the controller element Foo/Bar:

http://localhost:7001/sites/ContentServer?pagename=fatwire/ui/
controller/controller&elementName=Foo/Bar

A controller element is processed in the following three phases:

1. Configuration phase

2. Action phase

3. Presentation phase

where each phase consists of running a distinct element. For each phase, the
corresponding element name is determined by a naming convention, described below.

1. Configuration Phase
This phase consists of evaluating the configuration element. The configuration element
is meant to contain configuration settings used by the controller element being
invoked. The expected element name is <controllerElementName>Config, where
<controllerElementName> is the value of the elementName parameter. For instance, in
our example, where the controller element name is assumed to be Foo/Bar, the
expected name of the configuration element is Foo/BarConfig.

Note: The UI Controller is not used to process requests pertaining to
asset forms, given that asset forms exist outside the Contributor
framework. Asset forms are discussed in Chapter 6, "Customizing
Asset Forms."

Note: A controller element is any element that can be invoked
through the UI Controller.

In each of the phases described above, the UI Controller first tests for
the custom element specific to that phase. The process flow is
illustrated in the steps of Section 2.2.2, "Example: UI Controller
Processing an Element Request."

UI Controller

Contributor Interface Framework 2-3

The Configuration phase is based on Apache Commons Configuration and requires
configuration data to be formatted as a valid XML document. For example:

<myconfig>
<foo>123</foo>
<bar>foobar</bar>
</myconfig>

The XML configuration data is evaluated into a configuration object, that is, an
instance of org.apache.commons.configuration.beanutils.ConfigurationDynaBean,
which is kept in the request scope, where it is identified by the name of the XML root
element. In our example, the configuration object can be accessed in the Action phase
or Presentation phase as follows:

ConfigurationDynaBean configBean =
(ConfigurationDynaBean)request.getAttribute("myconfig");

where myconfig matches the name of the top-level XML element in the configuration
element. More information about Apache commons configuration can be obtained at
the following URL: http://commons.apache.org/configuration.

2. Action Phase
In this phase, the UI Controller evaluates the action element. The expected name of the
action element is <controllerElementName>Action. In our example, the action
element name is Foo/BarAction.

The action element is meant to contain arbitrary business logic. It typically builds java
objects in the request scope, in order to be consumed by the next phase.

3. Presentation Phase
In this last phase, the UI Controller evaluates the presentation element, whose name
depends on the content type of the generated output. The UI Controller can serve
either HTML (the default behavior) or JSON. The element name would then be
<controllerElementName>Html or <controllerElementName>Json.

In our example, the UI Controller would attempt to evaluate Foo/BarHtml, because
HTML is the default content type. If you wish to generate JSON data instead, you
must explicitly specify a response type as follows:

Note: About Configuration Elements in the Configuration Phase:

1. The Configuration phase is conditional. If the element
<controllerElementName>Config does not exist, the UI Controller
skips this phase and moves on to the next phase without creating
a configuration object.

2. Unlike in the other two phases, the configuration element is not
evaluated directly (using, for example, ics.callElement). Instead,
it is invoked through the
fatwire/ui/controller/readConfiguration SiteCatalog entry,
using ics.ReadPage(), allowing to capture its output.

Note: The Action phase is conditional. If the element
<controllerElementName>Action does not exist, the UI Controller
skips this phase and moves on to the Presentation phase.

Custom Elements

2-4 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

http://localhost:7001/sites/ContentServer?pagename=fatwire/ui/
controller/controller&elementName=Foo/Bar&responseType=json

In this case, the UI Controller will attempt to evaluate the presentation element called
Foo/BarJson.

2.2.2 Example: UI Controller Processing an Element Request
When the UI Controller processes any element request, it tests for the custom element
as follows: In each phase (Configuration, Action, and Presentation), the UI Controller
first looks for the custom element specific to that phase (for more information, see
Section 2.3.2, "How the UI Controller Locates Elements"). If the custom element is not
found, the UI Controller looks for the default element. If the default element is not
found, the UI Controller skips the phase and moves on to the next phase.

The steps below explain, by example, how the UI Controller processes an element
request. In this example, the request is for an existing element named
UI/Layout/LeftNavigation, and the response type is Html:

1. Configuration Phase. The UI Controller looks for the LeftNavigation element’s
configuration. That is, the UI Controller looks for the element named
LeftNavigationConfig.jsp under CustomElements (in the ElementCatalog). If the
element exists, the UI Controller reads this element. Otherwise, it reads the default
element LeftNavigationConfig.jsp (in UI/Layout/). The UI Controller then
generates the configuration object and keeps this object in the request scope.

An alternative is to pass the configuration file name as an argument to the
UI Controller call. The passed parameter is named configName. If configName is
passed, the UI Controller looks for the element specified in that parameter.

2. Action Phase. The UI Controller now looks for the element
LeftNavigationAction.jsp. If it finds the element under CustomElements, the
UI Controller executes this element. Otherwise, it executes the default
LeftNavigationAction.jsp element (in UI/Layout/).

3. Presentation Phase. In the current example, the response type is Html. Therefore,
the UI Controller looks for the element LeftNavigationHtml.jsp. If it finds the
element under CustomElements, the UI Controller executes this element to
generate an Html response. Otherwise, it executes the default
LeftNavigationHtml.jsp element (in UI/Layout/).

2.3 Custom Elements
When customizing the Contributor interface, store your custom elements in the
recommended location as discussed in this section, and ensure you have a clear
understanding of how they are located by the UI Controller.

This section contains the following topics:

■ Section 2.3.1, "Element Storage"

■ Section 2.3.2, "How the UI Controller Locates Elements"

■ Section 2.3.3, "Element Naming Conventions in This Guide"

2.3.1 Element Storage
The framework of the Contributor interface allows developers to keep their custom
elements separate from the system default elements, in accordance with best practices.

Custom Elements

Contributor Interface Framework 2-5

The path to a custom element depends on whether the element is global, site-specific,
site- and asset type- specific, or just asset type-specific. For an example, see Figure 2–2.

Figure 2–2 Paths to Custom Elements

2.3.2 How the UI Controller Locates Elements
When the UI Controller looks for an element:

1. The UI Controller first looks for the customized version of the element by
traversing all paths under CustomElements in the following order:

a. Site-specific and asset type-specific paths

b. Asset type-specific paths

c. Site-specific paths

d. Global paths

Note: We recommend not modifying the system’s default
configurations. Instead, create your own custom elements and store
them under CustomElements of the ElementCatalog to ensure their
preservation during upgrades.

Custom Elements

2-6 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

(For an example of paths, see Figure 2–2.)

2. If the custom element is not found, the UI Controller uses the system-defined
element.

2.3.3 Element Naming Conventions in This Guide
When referring to a system-defined element or sample element packaged with
WebCenter Sites, this guide provides the full path to the element. The full path always
begins with UI/Layout/. For example, the system-defined element
DashBoardContentsConfig.jsp is presented as follows in this guide:

 UI/Layout/CenterPane/DashBoardContentsConfig

When referring to a custom-defined element that you create, this guide provides only
the name of the element (JSP), given that its path is unknown. For example:

 DashBoardContentsConfig.jsp

It is assumed that the custom element is stored under CustomElements.

Note: For the UI Controller to use the asset type-specific element, the
assetTypeParam parameter must be passed with a valid asset type as
its value.

3

Customizing the Dashboard 3-1

3Customizing the Dashboard

This chapter describes how to customize the dashboard of the WebCenter Sites
Contributor interface. It familiarizes you with the dashboard configuration and
provides sample code, which you can use while you perform the procedures described
in this chapter.

This chapter contains the following topics:

■ Section 3.1, "Overview of Dashboard Customization"

■ Section 3.2, "Customizing the Dashboard"

■ Section 3.3, "Examples of Customizing the Dashboard"

3.1 Overview of Dashboard Customization
When you log in to the Contributor interface, the dashboard is displayed. By default,
the dashboard displays the following out-of-the-box widgets: “Bookmarks”,
“SmartLists”, “Checkouts” and “Assignments”, as shown in Figure 3–1.

Figure 3–1 Dashboard with Default Widgets

Customizing the Dashboard

3-2 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

You can customize the following portions of the dashboard and its widgets:

■ Number of columns

■ Column width

■ Widget’s display name, height, and position on the dashboard

■ You can also add new widgets.

3.2 Customizing the Dashboard
The system-defined dashboard is generated by the controller element
UI/Layout/CenterPane/DashboardContentsConfig. You can override this element.

Your dashboard configuration can be global or site-specific. You can customize the
default widgets, add new widgets, and delete the ones not required.

To customize the dashboard
Override the element UI/Layout/CenterPane/DashBoardContentsConfig by creating
your own DashBoardContentsConfig.jsp under CustomElements and customizing its
properties.

The UI/Layout/CenterPane/DashBoardContentsConfig element is shown next,
followed by property descriptions in Table 3–1.

Element UI/Layout/CenterPane/DashboardContentsConfig:
<dashboardconfig>
 <dashboardlayout>
 <numberofcolumns></numberofcolumns>
 <columnwidths></columnwidths>
 </dashboardlayout>
 <components>
 <component id="widgetId">
 <name>widgetName</name>
 <url>widgetURL</url>
 <height>height_in_px</height>
 <dragRestriction>true | false </dragRestriction>
 <column>number_of_column_in_which_to_display_widget</column>
 </component>
 …
 …
 …
 </components>
</dashboardconfig>

Note: You must flush the browser cookies for the changes to take
place.

Examples of Customizing the Dashboard

Customizing the Dashboard 3-3

3.3 Examples of Customizing the Dashboard
You can add new widgets to the WebCenter Sites Contributor dashboard. Adding a
new widget involves two basic steps:

1. Creating the widget element.

2. Registering the new widget in your custom DashBoardContentsConfig.jsp
element.

This section illustrates the process of adding a widget to the dashboard. This section
contains the following examples:

■ Section 3.3.1, "Adding a ‘Hello World’ Widget"

■ Section 3.3.2, "Adding a Widget that Shows Recently Modified Assets"

Table 3–1 Properties in UI/Layout/CenterPane/DashBoardContentsConfig.jsp
Property Description Value

<numberofcolumns> Number of columns in the
dashboard display.

Integer greater than 0.

The system default is 2.

<columnwidths> Comma-separated widths of
columns.

For example, if there are 3 columns in
<numberofcolumns> then the
<columnwidths> can be 30,30,40.

<components> This section is used to define
dashboard widgets.

N/A

 <component> Used to define a single widget. N/A

 <id> ID of the widget. Alpha-numeric value unique across
widgets. Special characters are not
allowed.

 <name> Displayed name of the widget. Arbitrary string.

 <url> Controller URL. The file location of the widget in the
UI/Layout/CenterPane/DashBoard/
<Your_Element>/ directory.

 <height> Height of the widget. Height in pixels. For example, 300px.

 <dragRestriction> Restricts dragging of the widget. true | false

 <column> The column in which the widget is
displayed.

1 to n , where n is the value specified in
<numberofcolumns>.

Examples of Customizing the Dashboard

3-4 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

3.3.1 Adding a ‘Hello World’ Widget
In this section, you will create and register a simple widget, shown in Figure 3–2.

Figure 3–2 ’Hello World’ Widget

To add your widget to the dashboard
1. Create your widget:

a. Create a JSP element under CustomElements. In this example, we name the
element HelloWorldHtml.

b. For widget code, you can navigate to the sample file provided with this guide
and copy its content.

2. Register your widget (add it to the dashboard):

a. Open your custom DashBoardContentsConfig.jsp, locate the <components>
section, and add the newly created widget’s specifications. For example:

<component id="helloworld">
 <name>Hello World</name>
 <url>Path_to_your_widget_under_CustomElements</url>
 <height>300px</height>
 <closable>false</closable>
 <open>true</open>
 <dragRestriction>true</dragRestriction>
 <style>checkoutPortlet</style>
 <column>2</column>
</component>

b. Go to the <applicationServer_install_directory>/webapps/<cs_
context>/WEB-INF/classes/ReqAuthConfig.xml file and add the path to the
sample element, under the excludedControllerElements list. In our example,
the path is:

<property name="excludedControllerElements">
 <list>Hello World</name>
 <value>/UI/Layout/CenterPane/DashBoard/HelloWorld</value>

Examples of Customizing the Dashboard

Customizing the Dashboard 3-5

 </list>
</property>

c. Refresh the home page of your Contributor interface. The new widget is
displayed on your dashboard (Figure 3–2).

3.3.2 Adding a Widget that Shows Recently Modified Assets
In this section, you will create a widget that shows which assets were modified in the
past week. After completing the steps in this section, your dashboard will display a
widget similar to the one in Figure 3–3.

Figure 3–3 ’Recently Modified Assets’ Widget

To add your widget to the dashboard
1. Create your widget:

a. Create an Action JSP element under CustomElements. In this example, we
name the element RecentlyModifiedAssetsAction.jsp. For the widget code,
you can navigate to the sample file provided with this guide and copy its
content.

b. Create a Json JSP element for the Action element created in the previous step.
In this example, we name the element RecentlyModifiedAssetsJson.jsp. For
the code, you can navigate to the sample file provided with this guide and
copy its content. Place the element in the same location as the
RecentlyModifiedAssetsAction.jsp element.

c. Create a presentation element under CustomElements for your widget. Name
the element after the widget element. In this example, we name the display
element RecentlyModifiedAssetsHtml.jsp. For the code, you can navigate to
the sample file provided with this guide and copy its content.

Note: The presentation element will call the
RecentlyModifiedAssetsAction.jsp element. Enter the path to that
element.

Examples of Customizing the Dashboard

3-6 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

2. Register your widget (add it to the dashboard):

a. Open your custom DashBoardContentsConfig.jsp, locate the <components>
section, and add the newly created widget’s specifications. For example:

<component id="myrecent">
<!-- a unique identifier for the component. This must be unique among all
the components. It can be alpha numeric but no special characters allowed
-->
 <name>Recently Modified Assets</name>
 <url>Path_to_your_custom_widget’s presentation_element</url>
 <height>300px</height>
 <closable>false</closable>
 <open>true</open>
 <dragRestriction>false</dragRestriction>
 <style>checkoutPortlet</style>
 <column>2</column>
</component>

b. Go to the <applicationServer_install_directory>/webapps/<cs_
context>/WEB-INF/classes/ReqAuthConfig.xml file and add the path to the
sample element, under the excludedControllerElements list. In our example,
the path is:

<property name="excludedControllerElements">
 <list>Hello World</name>
 <value>/UI/Layout/CenterPane/DashBoard/RecentlyModifiedAssets</value>
 </list>
</property>

c. Refresh the dashboard to see the newly configured widget. For example, see
Figure 3–3.

4

Customizing Search Views 4-1

4Customizing Search Views

This chapter describes how to customize the List and Thumbnail search views of the
WebCenter Sites Contributor interface.

This chapter contains the following topics:

■ Section 4.1, "Overview of Search View Customization"

■ Section 4.2, "Customization Processes"

■ Section 4.3, "Customizing Undocked Views"

■ Section 4.5, "Customizing Sort Menus, Context Menus, and Tooltips"

4.1 Overview of Search View Customization
When users log in to the WebCenter Sites Contributor interface and access their sites,
they can perform a simple or advanced search to locate the required assets. Search
results are then presented in either List view or Thumbnail view. This section
describes the different search views, which of their features can be customized, and
which elements control the configuration of search views. If you need information
about search functionality and views, see the Oracle WebCenter Sites User’s Guide.

This section contains the following topics:

■ Section 4.1.1, "Types of Search Views"

■ Section 4.1.2, "What You Can Customize in Search Views"

■ Section 4.1.3, "View-Rendering Process"

■ Section 4.1.4, "Configuration Elements for Search Views"

4.1.1 Types of Search Views
The search results panel can be either undocked or docked and displayed as a List
view or Thumbnail view. Thus, the Contributor interface displays the following views:

■ List Undocked

■ List Docked

■ Thumbnail Undocked

■ Thumbnail Docked

An undocked view opens only when no assets are open for editing. A docked view is
attached to assets in edit mode and therefore opens only when an asset is open in edit
mode.

Overview of Search View Customization

4-2 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

4.1.2 What You Can Customize in Search Views
Figure 4–1 summarizes the features you can customize in List view. Figure 4–2
summarizes the features you can customize in Thumbnail view. For more information,
see Section 4.3, "Customizing Undocked Views," which also applies to docked views.

Sort menus, context menus, and tooltips, are customized separately. For more
information, see Section 4.5.

Which view opens by default for a given mode depends on your configuration settings
and the user’s search habits. For example, if you set Thumbnail view as the default
view for undocked mode, Thumbnail view will open when the user first runs search in
undocked mode and will continue to open until the user switches to List view (search
remembers the user’s choice until browser cookies are cleared).

Figure 4–1 Customizable Features in List View

Customizable features for List view include:

■ Maximum number of items to return

■ Number of rows per page

■ Fields (columns) to display

■ Column display name

■ Column width

■ Format of date and other fields

■ Default sort field and sort order

■ Sort menu (docked mode)

Overview of Search View Customization

Customizing Search Views 4-3

■ Context (right-click) menu

■ Tooltip (docked mode)

Figure 4–2 Customizable Features in Thumbnail View

Customizable features for Thumbnail view include:

■ Maximum number of items to return

■ Number of rows per page

■ Asset types for which special thumbnails will be shown

■ Fields to display

■ Format of date and other fields

■ Default sort field and sort order

■ Sort menu

■ Context (right-click) menu

■ Tooltip (docked mode)

4.1.3 View-Rendering Process
System-defined and custom-defined views are rendered by similar processes. To
illustrate, we begin with system-defined views.

Overview of Search View Customization

4-4 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

System-defined views are rendered by the following elements (JSPs), whose names for
undocked and docked views differ only by the Docked prefix.

When undocked:

■ List view is rendered by the element:
UI/Layout/CenterPane/Search/View/ListViewHtml

■ Thumbnail view is rendered by the element:
UI/Layout/CenterPane/Search/View/ThumbnailViewHtml

When docked:

■ List view is rendered by the element:
UI/Layout/CenterPane/Search/View/DockedListViewHtml

■ Thumbnail view is rendered by the element:
UI/Layout/CenterPane/Search/View/DockedThumbnailViewHtml

Rendering of undocked and docked views is similar (except that the names of
elements for docked views start with Docked). The steps below illustrate the rendering
of undocked views.

1. When a user runs a search routine, the search functionality determines the user’s
current view, which is either the default view or a subsequently chosen view.

2. Search functionality reads UI/Layout/CenterPane/Search/SearchResultsConfig
to obtain the path to the element that will initiate the rendering of the view:

■ If the user is running search for the first time, or continues using the default
view, search reads the value of the <defaultview> property.

■ If the user’s view is other than the default view, search reads the value of
either the <listview> or <thumbnailview> property (depending on which
view was determined in step 1).

3. If search determines that List view must be rendered, it reads the element
UI/Layout/CenterPane/Search/View/ListViewConfig and invokes
UI/Layout/CenterPane/Search/View/ListViewHtml, which then renders the list
view. If search determines that the Thumbnail view must be rendered, it reads the
element UI/Layout/CenterPane/Search/View/ThumbnailViewConfig and invokes
UI/Layout/CenterPane/Search/View/ThumbnailViewHtml, which then renders the
Thumbnail view.

You can override all of the above system-defined elements by customizing your own
identically named elements and placing them under CustomElements to actualize the
changes shown in Figure 4–1 and Figure 4–2. You can also customize individual
features, such as context (right-click) menus, sort menus, and tooltips by using the
elements UI/Layout/CenterPane/Search/View/SearchTopBarConfig,
UI/Layout/CenterPane/Search/View/ContextMenuConfig, and
UI/Layout/CenterPane/Search/View/SearchToolTipHtml.

For a comprehensive list of elements, see Section 4.1.4, "Configuration Elements for
Search Views."

Note: “Default view” is the view that the system renders the first
time search is run. (List view is the system-defined default view for
both undocked and docked modes.) If the user switches to a different
view, search remembers and continues to display the user’s choice
until browser cookies are cleared.

Overview of Search View Customization

Customizing Search Views 4-5

4.1.4 Configuration Elements for Search Views
This section summarizes the JSP elements you will use to customize search views.

■ System-defined configuration elements: You will be configuring identically
named elements to customize search views and searches that are global or specific
to a site, asset type(s), or site and asset type(s). All of your customized elements
should be stored under CustomElements (for an example, see Figure 4–3). For a
summary of the elements, see the following tables:

– Table 4–1 lists system-defined configuration elements that define
out-of-the-box undocked views (all of the element names end with Config).

– Table 4–2 lists system-defined configuration elements that define
out-of-the-box docked views (all of the element names end with Config).

– Table 4–3 lists system-defined elements for customizing a search view’s
individual features, such as sort menus, context menus, and tooltips (element
names end with either Config or Html).

■ Custom elements: Table 4–4 lists sample custom elements that are packaged with
WebCenter Sites to help illustrate customization code.

Table 4–1 Configuration Elements for Undocked Search Views
Path to Configuration Element (JSP) Description See …

UI/Layout/CenterPane/Search/Search
ResultsConfig

Element for setting the default search
view (List view or Thumbnail view) in
undocked mode.

Section 4.3.2, "Setting the
Default Undocked View
to List or Thumbnail"

UI/Layout/CenterPane/Search/View/
ListViewConfig

Element for configuring the undocked
List view.

Section 4.3.3,
"Customizing the
Undocked List View"

UI/Layout/CenterPane/Search/View/
ThumbnailViewConfig

Element for configuring the undocked
Thumbnail view.

Section 4.3.4,
"Customizing the
Undocked Thumbnail
View"

Table 4–2 Configuration Elements for Docked Search Views
Path to Configuration Element (JSP) Description See …

UI/Layout/CenterPane/Search/Docked
SearchResultsConfig

Element for setting the default search
view (List view or Thumbnail view) in
docked mode.

Section 4.2,
"Customization Processes"

UI/Layout/CenterPane/Search/View/
DockedListViewConfig

Element for configuring the docked List
view.

Section 4.2,
"Customization Processes"

UI/Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Element for configuring the docked
Thumbnail view.

Section 4.2,
"Customization Processes"

Customization Processes

4-6 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

4.2 Customization Processes
When customizing views in undocked and docked mode, you will follow similar
procedures. The main differences are the following:

■ Customizing undocked and docked views:

When customizing undocked views, you will follow instructions in Section 4.3,
"Customizing Undocked Views" and name your configuration elements (JSPs) as
shown in that section (also in Table 4–1). When customizing docked views, you
will also follow instructions in Section 4.3, "Customizing Undocked Views," but
name your configuration elements as shown in Table 4–2 (that is, include the
Docked prefix).

■ Customizing sort menus, context menus, and tooltips for search views:

Elements for creating sort menus, context menus, and tooltips apply to both
undocked and docked mode. You will name the elements exactly as shown in
Table 4–3 (and Section 4.5, "Customizing Sort Menus, Context Menus, and
Tooltips," regardless of mode. For example, context menus for all views are

Table 4–3 Configuration and Presentation Elements for Other Features in Search Views
Path to Configuration Element (JSP) Description See …

UI/Layout/CenterPane/Search/View/
SearchTopBarConfig

Element for configuring fields as sort
options in the sort drop-down menus for
docked List, undocked Thumbnail, and
docked Thumbnail views.

Section 4.5.1,
"Customizing Sort
Menus"

UI/Layout/CenterPane/Search/View/
ContextMenuConfig

Element for configuring context
(right-click) menus. This element is valid
for all search views.

Section 4.5.2,
"Customizing Context
Menus"

UI/Layout/CenterPane/Search/View/
SearchToolTipHtml

Element for configuring tooltips for
docked views (List and Thumbnail). This
element enables you to configure tooltip
appearance and custom messages.

Section 4.5.3,
"Customizing Tooltips for
Search Results"

Table 4–4 Custom Sample Elements for Search Views
Path to Sample Element Description

CustomElements/avisports/AVIArticle
/UI/Layout/CenterPane/Search/View/
ThumbnailViewConfig

Configuration element for undocked Thumbnail view for the
AVIArticle asset type in the avisports sample site.

CustomElements/avisports/AVIArticle
/UI/Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Configuration element for docked Thumbnail view for AVIArticle
asset type in avisports site.

CustomElements/avisports/AVIImage/
UI/Layout/CenterPane/Search/View/
ThumbnailViewConfig

Configuration element for undocked Thumbnail view for the
AVIImage asset type in the avisports sample site.

CustomElements/avisports/AVIImage/
UI/Layout/CenterPane/Search/View/
DockedThumbnailViewConfig

Configuration element for docked Thumbnail view for the AVIImage
asset type in the avisports sample site.

CustomElements/avisports/UI/Layout
/CenterPane/Search/View/Thumbnail
ViewConfig

Configuration element for undocked Thumbnail view for the
avisports sample site.

CustomElements/avisports/UI/Layout/
CenterPane/Search/View/DockedThumb
nailViewConfig

Configuration element for docked Thumbnail view for the avisports
sample site.

Customizing Undocked Views

Customizing Search Views 4-7

created via UI/Layout/CenterPane/Search/View/ContextMenuConfig
(ContextMenuConfig.jsp does not have a counterpart
DockedContextMenuConfig.jsp).

■ If you wish to display a field in docked List view or docked Thumbnail view:

By default, the UI/Layout/CenterPane/Search/View/DockedListViewConfig
element points to the UI/Layout/CenterPane/Search/View/ListViewConfig
element to get only the first listed field and display its name in docked List view.
The field is defined in the first <field> property, as follows:

<field>
 <fieldname>fieldname</fieldname>
 <displayname>DisplayName</displayname>

If you want to display any other field name in the docked List view, you will have
to specify that name in your custom DockedListViewConfig.jsp element. The
same logic applies to displaying a field name in docked Thumbnail view (except
that your configuration elements are named ThumbnailViewConfig and
DockedThumbnailViewConfig).

4.3 Customizing Undocked Views
Customizing the undocked List and Thumbnail views involves overriding the
system-defined elements shown in Table 4–1 by configuring your own identically
named elements and placing them under CustomElements.

This section contains the following topics:

■ Section 4.3.1, "Basic Steps for Customizing Undocked Views"

■ Section 4.3.2, "Setting the Default Undocked View to List or Thumbnail"

■ Section 4.3.3, "Customizing the Undocked List View"

■ Section 4.3.4, "Customizing the Undocked Thumbnail View"

4.3.1 Basic Steps for Customizing Undocked Views
To customize an undocked view, you can take any combination of the following steps:

■ Set the default undocked view to be List or Thumbnail for all asset types or your
choice of asset types. To set the view(s), you will override the element
UI/Layout/CenterPane/Search/SearchResultsConfig, as shown in Section 4.3.2,
"Setting the Default Undocked View to List or Thumbnail."

■ Configure the undocked List and/or Thumbnails views. You can specify the
number of columns to be displayed in the view(s), configure column names and
column widths, specify the sort order of returned items, and more (see Figure 4–1
and Figure 4–2).

– To configure the List view, you will override the element
UI/Layout/CenterPane/Search/View/ListViewConfig, described in
Section 4.3.3, "Customizing the Undocked List View."

– To configure the Thumbnail view, you will override the element
UI/Layout/CenterPane/Search/View/ThumbnailViewConfig, described in
Section 4.3.4, "Customizing the Undocked Thumbnail View."

■ Configure additional features, such as context menus for the views. In this step,
you will be configuring JSP elements that are specific to the features of the view

Customizing Undocked Views

4-8 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

(such as a context menu), rather than the view itself. For more information, see
Section 4.5, "Customizing Sort Menus, Context Menus, and Tooltips."

4.3.2 Setting the Default Undocked View to List or Thumbnail
When setting the default search view (List or Thumbnail), you can set it globally for all
asset types. You can also specify a default search view for selected asset types of your
choice.

To set the default search view(s)
Override the element UI/Layout/CenterPane/Search/SearchResultsConfig by
creating your own SearchResultsConfig.jsp under CustomElements and customizing
its properties.

The UI/Layout/CenterPane/Search/SearchResultsConfig element is shown next,
followed by property descriptions in Table 4–5.

Element UI/Layout/CenterPane/Search/SearchResultsConfig:
<searchconfig>
 <listview>UI/Layout/CenterPane/Search/View/ListView</listview>
 <thumbnailview>UI/Layout/CenterPane/Search/View/ThumbnailView</thumbnailview>
 <defaultview>listview</defaultview>
 <assettypeviews>
 <assettype id="Page" name="Page">listview</assettype>
 …
 …
 …
 </assettypeviews>
</searchconfig>

Table 4–5 Properties in UI/Layout/CenterPane/Search/SearchResultsConfig
Property Description Value

<listview> Path to the ListView controller element. UI/Layout/CenterPane/Search/View/
ListView

Note: Do not change the value of this
property.

<thumbnailview> Path to the ThumbnailView controller element. UI/Layout/CenterPane/Search/View/
ThumbnailView

Note: Do not change the value of this
property.

<defaultview> Specifies whether List or Thumbnail is the
default view.

Note: The default view is the view that opens
the first time search is run. If the user switches
the view, search remembers the user’s choice
until browser cookies are cleared.

listview | thumbnailview

Note: The value of this property is case
sensitive.

<assettypeviews> Used to selectively configure a default view
for one or more asset types.

N/A

 <assettype id=
name= >

Used to specify the asset type and its default
view (which remains until the user either
switches to a different view or clears browser
cookies).

You can specify as many asset types as
necessary (one per <assettype>).

<assettype id="unique_identifier"
name="AssetTypeName"> listview |
thumbnailview </assettype>

Customizing Undocked Views

Customizing Search Views 4-9

4.3.3 Customizing the Undocked List View
When customizing the List view, you can set the type of content to be returned and its
presentation.

To customize the undocked List view
Override the UI/Layout/CenterPane/Search/View/ListViewConfig element by
creating your own ListViewConfig.jsp under CustomElements and customizing its
properties.

The UI/Layout/CenterPane/Search/View/ListViewConfig element is shown next,
followed by property descriptions in Table 4–6.

Element UI/Layout/CenterPane/Search/View/ListViewConfig:
<listviewconfig>
 <numberofitems>1000</numberofitems>
 <numberofitemsperpage>100</numberofitemsperpage>
 <defaultsortfield> </defaultsortfield>
 <defaultsortorder> </defaultsortorder>
 <fields>
 <field id="name">
 <fieldname>name</fieldname>
 <displayname>Name</displayname>
 <width>350px</width>
 <formatter>fw.ui.GridFormatter.nameFormatter</formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 <field id="updateDate">
 <fieldname>updateddate</fieldname>
 <displayname>Modified</displayname>
 <!-- <dateformat>MM/dd/yyyy hh:mm a z </dateformat> -->
 <javadateformat>SHORT</javadateformat>
 <width>auto</width>
 <formatter></formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 …
 …
 …
 </fields>
</listviewconfig>

Table 4–6 Properties in UI/Layout/CenterPane/Search/View/ListViewConfig
Property Description Value

<numberofitems> Maximum number of items returned by
search.

Integer greater than 0.

Note: If -1 is entered for instance,
then all results matching the
search criteria are returned.

<numberofitemsperpage> Number of rows per page needed in the
search results.

100 is the default.

<defaultsortfield> Default field that search should sort when
fetching search results.

The default is empty. Therefore,
search results are displayed by
relevance. Configure this element
if any other field should be set as
the default for sorting.

Customizing Undocked Views

4-10 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

<defaultsortorder> Sort order used by search. ascending | descending

Required only when
<defaultsortfield> is specified.

<fields> Columns that will be shown in List view.
These columns will be shown in the same
order as listed under <fields>.

Note: If you are creating an asset
type-specific configuration and you wish to
display asset type-specific attributes in the
search results, you will have to enable the
asset type index and attribute search. For
more information, see the following sections
of the WebCenter Sites Administrator’s Guide:

■ "Adding Asset Types to the Search
Index"

■ "Configuring Attributes for Asset
Types"

If you skip this procedure, search will use
the global index.

N/A

 <field id= > Defines a column to be shown in List view. <field id="unique_identifier">

 <fieldname> Asset’s field name to render in the column. This name must match the
column name in the Lucene
index.

Note: If locale is added as the
field name, it will be displayed
only if the site dimension is
enabled.

 <displayname> Display name shown in the column header. Alphanumeric string

 <width> Width of the column in pixels. Width in units of px (e.g., 350px).

Note: We recommend setting the
width to auto for the last field.

 <formatter> Dojo formatter function to display column
values in your preferred format.

The formatter must be made
available in a dojo module. See
the modules property in
UI/Config/GlobalHtml.

Table 4–6 (Cont.) Properties in UI/Layout/CenterPane/Search/View/ListViewConfig
Property Description Value

Customizing Undocked Views

Customizing Search Views 4-11

4.3.4 Customizing the Undocked Thumbnail View
When customizing the Thumbnail view, you can set the type of content to be returned
and its presentation.

To customize the undocked Thumbnail view
Override the element UI/Layout/CenterPane/Search/View/ThumbnailViewConfig by
creating your own ThumbnailViewConfig.jsp under CustomElements and customizing
its properties.

The UI/Layout/CenterPane/Search/View/ThumbnailViewConfig element is shown
below, followed by property descriptions in Table 4–7.

Element UI/Layout/CenterPane/Search/View/ThumbnailViewConfig:
<thumbnailviewconfig>

 <displayintooltip> Indicates whether the associated field must
be listed in the tooltip for docked List view.

Note: The element
UI/Layout/CenterPane/Search/View/
SearchToolTipHtml renders tooltips and
uses the value of this property to determine
whether to list the associated field name in
the tooltip (the field value will also be
listed). Tooltips can be customized only for
docked views. For instructions, see
Section 4.5.3, "Customizing Tooltips for
Search Results."

true | false

 <dateformat> Applies to date fields only. This is an option
to specify a custom date format if the date
needs to be displayed in a format other than
javadateformat.

A valid date format string.

Note: If <dateformat> is used, it
takes precedence over
<javadateformat>.

 <javadateformat> Applies to date fields only. Valid values are SHORT, MEDIUM,
LONG, and FULL.

Note: If <javadateformat> is
omitted or left blank, the system
uses SHORT by default. If
<dateformat> is used, it takes
precedence over
<javadateformat>.

Note: Pay particular attention to the following properties:
<formatter> and <assettypes>. While the element
UI/Layout/CenterPane/Search/View/ThumbnailViewConfig is mostly
the same as UI/Layout/CenterPane/Search/View/ListViewConfig,
the <formatter> property is defined differently. Also, the
<assettypes> property is exclusive to ThumbnailViewConfig, where it
is used to render thumbnails.

The <assettypes> property is described in detail in Section 4.3.4.1,
where its usage is illustrated with examples. One of the examples
shows you how to supplement video assets with a custom element
that displays a video player.

Table 4–6 (Cont.) Properties in UI/Layout/CenterPane/Search/View/ListViewConfig
Property Description Value

Customizing Undocked Views

4-12 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

 <numberofitems>1000</numberofitems>
 <defaultsortfield></defaultsortfield>
 <defaultsortorder></defaultsortorder>
 <numberofitemsperpage>12</numberofitemsperpage>
 <formatter>fw.ui.GridFormatter.thumbnailFormatter</formatter>
 <fields>
 <field id="name">
 <fieldname>name</fieldname>
 <displayname>Name</displayname>
 <displayintooltip>true</displayintooltip>
 </field>
 <field id="updateDate">
 <fieldname>updateddate</fieldname>
 <displayname>Modified</displayname>
 <!-- <dateformat>MM/dd/yyyy hh:mm a z </dateformat> -->
 <javadateformat>SHORT</javadateformat>
 <displayintooltip>true</displayintooltip>
 </field>
 …
 …
 …
 </fields>
 <assettypes>
 <assettype id="unique_identifier">
 <type>AVIImage</type>
 <subtype>Image</subtype>
 <element>UI/Layout/CenterPane/Search/View/ImageThumbnail</element>
 <attribute>imageFile</attribute>
 </assettype>
 …
 …
 …
 </assettypes>
</thumbnailviewconfig>

Table 4–7 Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig
Property Description Value

<numberofitems> Maximum number of items to be
returned by search.

Integer greater than 0.

Note: If -1 is entered for instance, then all
results matching the search criteria are
returned.

<numberofitemsperpage> Number of rows per page needed in the
search results.

100 is the default value.

<formatter> Dojo formatter function to display
values in your preferred format.

The formatter must be made available in a
dojo module. See the modules property in
UI/Config/GlobalHtml.

<defaultsortfield> Default sort field that search should sort
when fetching search results.

The default is empty. Therefore, search
results are displayed by relevance.
Configure this element if any other field
should be set as a default for sorting.

<defaultsortorder> Sort order used by search. ascending | descending

This is required only when
<defaultsortfield> is specified.

Customizing Undocked Views

Customizing Search Views 4-13

<fields> Fields that will be shown below the
thumbnails in Thumbnail view. These
fields will be shown in the same order as
listed under <fields>.

Note: If you are creating an asset
type-specific configuration and you wish
to display asset type-specific attributes
in the search results, you will have to
enable the asset type index and attribute
search. For more information, see the
following sections of the WebCenter Sites
Administrator’s Guide:

■ "Adding Asset Types to the Search
Index"

■ "Configuring Attributes for Asset
Type Index"

If you skip this procedure, search will
use the global index.

N/A

 <field id=> Describes a field under the thumbnail. <field id="unique_identifier">

 <fieldname> Asset’s field name to render below the
thumbnail.

This name must match the column name
in the Lucene index.

Note: If locale is added as the field name,
it will be displayed only if the site
dimension is enabled.

 <displayname> Display name to render below the
thumbnail.

Alphanumeric string

 <dateformat> Applies to date fields only. This is an
option to specify a custom date format if
the date needs to be displayed in a
format other than javadateformat.

A valid date format string.

Note: If <dateformat> is used, it takes
precedence over <javadateformat>.

 <javadateformat> Applies to date fields only. Valid values are SHORT, MEDIUM, LONG, and
FULL.

Note: If <javadateformat> is omitted or
left blank, the system uses SHORT by
default. If <dateformat> is used, it takes
precedence over <javadateformat>.

 <displayintooltip> Indicates whether the associated field
must be listed in the tooltip for docked
Thumbnail view.

Note: The element
UI/Layout/CenterPane/Search/View/Se
archToolTipHtml renders tooltips. It
uses the value of the
<displayintooltip> property to
determine whether to list the associated
field in the tooltip (the field value will
also be listed). Tooltips can be
customized only for docked views. For
instructions, see Section 4.5.3,
"Customizing Tooltips for Search
Results."

true | false

Table 4–7 Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig
Property Description Value

Customizing Undocked Views

4-14 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

4.3.4.1 More About the <assettypes> Section in the ThumbnailViewConfig
Element
Table 4–7 contains the <assettypes> section, which may need to be configured,
depending on which features you choose to customize. Various <assettypes>
configuration scenarios are discussed below in the context of the most commonly
performed customizations.

This section contains the following topics:

■ Section 4.3.4.1.1, "If You Wish to Use Static Icons"

■ Section 4.3.4.1.2, "If You Wish to Re-use the System-Defined Image Thumbnail
Element"

■ Section 4.3.4.1.3, "If You Wish to Use a Custom Thumbnail-Rendering Element"

4.3.4.1.1 If You Wish to Use Static Icons

If you plan to use your own static thumbnails (stored in the file system), there is no
need to customize the <assettypes> section of the

<assettypes> This section specifies the asset types for
which special thumbnails will be shown.
Each asset type must have an attribute
whose content will be rendered as a
thumbnail.

For more information as to when this
section must be customized, see the
following sections:

■ Section 4.3.4.1.1, "If You Wish to Use
Static Icons"

■ Section 4.3.4.1.2, "If You Wish to
Re-use the System-Defined Image
Thumbnail Element"

■ Section 4.3.4.1.3, "If You Wish to Use
a Custom Thumbnail-Rendering
Element"

N/A

 <assettype id= > Describes the asset type for which a
special thumbnail will be shown.

<assettype id="unique_identifier">

 <type> Name of the asset type for which a
thumbnail will be rendered.

For more information, see Section 4.3.4.1.2
and Section 4.3.4.1.3.

 <subtype> Subtype of the asset type. For more information, see Section 4.3.4.1.2
and Section 4.3.4.1.3.

 <element> Path to the controller element that
renders the content specified in
<attribute> as a thumbnail.

For more information, see Section 4.3.4.1.2
and Section 4.3.4.1.3.

Note: If you do not specify an
element, the system-defined element
UI/Layout/CenterPane/Search/View
/GlobalThumbnail will be used to
render static icons, stored in the
images/search directory. For more
information, see Section 4.3.4.1.1.

 <attribute> Attribute whose content will be shown
as a thumbnail.

For more information, see Section 4.3.4.1.2
and Section 4.3.4.1.3.

Table 4–7 Properties in UI/Layout/CenterPane/Search/View/ThumbnailViewConfig
Property Description Value

Customizing Undocked Views

Customizing Search Views 4-15

UI/Layout/CenterPane/Search/View/ThumbnailViewConfig element, as long as you
observe the following conventions:

■ The name of the thumbnail icon should not contain spaces (they will be replaced
with underscores). The name must be in one of the following formats, depending
on the size of the thumbnail:

– <assettypename>.png or <assettypename>-<subtype>.png
(small thumbnail, 96x96, docked view)

– <assettypename>_large.png or <assettypename>-<subtype>_large.png
(large thumbnail, 170x170, undocked view)

■ The storage location of the icon is the /images/search directory of the file system.

If the above conventions are followed, the icon will be automatically rendered as a
thumbnail by the UI/Layout/CenterPane/Search/View/ThumbnailViewConfig
element, which is coded to look for icons in the /images/search directory. Naming the
icon after the asset type and subtype automatically associates the icon with assets of
that type and subtype.

4.3.4.1.2 If You Wish to Re-use the System-Defined Image Thumbnail Element

Customizing the <assettypes> section of the ThumbnailViewConfig.jsp element is a
requirement if you wish to dynamically render custom images as thumbnails by
re-using the system-defined element ImageThumbnailHtml.jsp. This element processes
images that are associated with image attributes belonging to specific asset types
and/or subtypes.

To re-use the System-Defined ImageThumbnailHtml.jsp
In your custom ThumbnailViewConfig.jsp, do the following:

1. Specify the asset types that require a custom image thumbnail. Each asset type
must have an image attribute.

<assettypes>
 <assettype>
 <type>Name_of_AssetType_containing_the_image_attribute</type>
 <subtype>Name_of_subtype_containing_the_image_attribute</subtype>
 <element>UI/Layout/CenterPane/Search/View/ImageThumbnail</element>
 <attribute>Name_of_imageAttribute_containing_the_image</attribute>
 </assettype>
 …
 …
 </assettypes>

2. For <element>, specify the path to the system-defined element
ImageThumbnailHtml.jsp, exactly as shown in the sample code above.

4.3.4.1.3 If You Wish to Use a Custom Thumbnail-Rendering Element

Customizing the <assettypes> section of the ThumbnailViewConfig.jsp is a
requirement if you plan to use a custom element that dynamically renders the content
of an asset type’s (or subtype’s) blob attribute as a thumbnail.

In the example below, you will create elements that work together to render video
thumbnails. Figure 4–3 displays a sample video thumbnail view, which you can
reproduce by following the steps in this section.

Customizing Undocked Views

4-16 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

Figure 4–3 Sample Video Thumbnail View

The steps below provide guidelines for (1) creating elements that work together to
dynamically render video thumbnails, and (2) customizing the <assettypes> section
of the ThumbnailViewConfig element.

To create elements that render video thumbnails
1. Write a video thumbnail Action element that uses the AssetAPI and gets the URL

of the blob using BlobUtil for the video attribute specified in the element. (The
element can be named as you wish, but it must end in Action. The element should
be stored in a directory under CustomElements.)

A sample element named VideoThumbnailAction.jsp is available in the zip file
containing this guide.

2. Write a video thumbnail Html element, which takes the URL built in the previous
step and renders the video and other asset details below the thumbnail. (The
element can be named as you wish, but it must end in Html. The element should be
stored in a directory under CustomElements.) This Html element calls the Action
element in step 1.

A sample element named VideoThumbnailHtml.jsp is available in the zip file
containing this guide.

3. To use the video thumbnail Html element, configure the <assettype> property in
your custom ThumbnailViewConfig.jsp element as shown below:

<assettype>
 <type>Name_of_AssetType_containing_blob_attribute</type>
 <subtype>Name_of_asset_subtype</subtype>
 <element>CustomElements/path_to_your_element/Element</element>
 <attribute>Name_of_attribute_containing_video</attribute>
</assettype>

A sample element named ThumbnailViewConfig.jsp is available in the zip file
containing this guide.

Note: To make this sample work, ensure that you have assets with a
blob attribute and video files for that blob attribute are uploaded to
your site’s directory.

Customizing Sort Menus, Context Menus, and Tooltips

Customizing Search Views 4-17

4.4 Customizing Docked Views
Methods for customizing docked views are similar to those for undocked views. The
main differences are outlined in Section 4.2, "Customization Processes."

4.5 Customizing Sort Menus, Context Menus, and Tooltips
Features discussed in this section can be customized for undocked views, docked
views, or both, as shown in Table 4–8.

This section contains the following topics:

■ Section 4.5.1, "Customizing Sort Menus"

■ Section 4.5.2, "Customizing Context Menus"

■ Section 4.5.3, "Customizing Tooltips for Search Results"

4.5.1 Customizing Sort Menus
Sort menus can be customized only for the views listed in Table 4–8. You can specify
which sort fields to display in a sort menu. You can also specify sort order for each
field.

To customize a sort menu
Override the element UI/Layout/CenterPane/Search/View/SearchTopBarConfig by
creating your own SearchTopBarConfig.jsp under CustomElements and customizing
its properties.

The UI/Layout/CenterPane/Search/View/SearchTopBarConfig element is shown
next, followed by property descriptions in Table 4–9.

Element UI/Layout/CenterPane/Search/View/SearchTopBarConfig:
<sortconfig>
 <sortfields>
 <sortfield id="unique_identifier">
 <fieldname>name</fieldname>
 <displayname>Name(A-Z)</displayname>
 <sortorder>ascending</sortorder>
 </sortfield>
 <sortfield id="unique_identifier">
 <fieldname>name</fieldname>
 <displayname>Name(Z-A)</displayname>
 <sortorder>descending</sortorder>
 </sortfield>
 <sortfield id="unique_identifier">
 <fieldname>AssetType_Description</fieldname>
 <displayname>Asset Type</displayname>
 <sortorder>ascending</sortorder>
 </sortfield>

Table 4–8 Customizing Other Features for Search Views

Customization Option
Undocked

List
Undocked
Thumbnail

Docked
List View

Docked
Thumbnail See …

Sort Menus No Yes Yes Yes Section 4.5.1

Context Menus Yes Yes Yes Yes Section 4.5.2

Tooltips for Search Results No No Yes Yes Section 4.5.3

Customizing Sort Menus, Context Menus, and Tooltips

4-18 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

 …
 …
 …
 </sortfields>
</sortconfig>

4.5.2 Customizing Context Menus
Context menus can be customized for all views. A context menu is a right-click menu
of actions (such as Edit, Preview, and Bookmark) to be performed on items that are
returned as search results

To customize a context menu
Override UI/Layout/CenterPane/Search/View/ContextMenuConfig by creating your
own ContextMenuConfig.jsp under CustomElements and customizing its properties.

The UI/Layout/CenterPane/Search/View/ContextMenuConfig element is shown next,
followed by property descriptions in Table 4–10.

Element UI/Layout/CenterPane/Search/View/ContextMenuConfig:
<contextmenuconfig>
 <contextmenus>
 <menu id="unique_identifier">
 <label>Edit</label>
 <functionid>edit</functionid>
 </menu>
 <menu id="unique_identifier">
 <label>Preview</label>
 <functionid>preview</functionid>
 </menu>
 <menu id="unique_identifier">
 <label>Bookmark</label>
 <functionid>bookmark</functionid>
 <bulkoperation>yes</bulkoperation>
 </menu>
 …
 …
 …
 </contextmenus>
</contextmenuconfig>

Table 4–9 Properties in UI/Layout/CenterPane/Search/View/SearchTopBarConfig
Property Description Value

<sortfield id= > Describes the search index field by which to
sort search results.

id="unique_identifier"

 <fieldname> Name of the search index field.

Note: The same field can be repeated
multiple times to provide multiple sort
orders.

For example, name in the code
above.

 <displayname> Display name of the user-readable field. For example, Name in the code
above.

 <sortorder> Sort order. ascending | descending

Customizing Sort Menus, Context Menus, and Tooltips

Customizing Search Views 4-19

4.5.3 Customizing Tooltips for Search Results
Tooltips can be customized only for docked views. Docked views are displayed in a
limited space and therefore provide a limited amount of information about the assets
that are returned as search results. Tooltips are a way of displaying more information
about the returned assets. For example, you can customize tooltips to display field
names and values in addition to those already displayed in docked mode, as shown in
Figure 4–4. You can also customize tooltips to display custom messages, and you can
modify the appearance of tooltips.

Figure 4–4 Tooltip in Undocked List View

The default tooltip for docked search results is rendered by the element
UI/Layout/CenterPane/Search/View/SearchToolTipHtml. This element renders the
tooltip as a box (as shown in Figure 4–4). Within the box, it renders the name of each
field in the <fields> section of UI/Layout/CenterPane/Search/View/ListViewConfig
(or UI/Layout/CenterPane/Search/View/ThumbnailViewConfig), but only if the
field’s <displayintooltip> property is set to true. For example, the Name, Type,
and Modified fields in the ListViewConfig.jsp below are displayed as part of the
tooltip in Figure 4–4, given that <displayintooltip> is set to true:

<fields>
 <field>
 <fieldname>name</fieldname>
 <displayname>Name</displayname>
 <width>350px</width>

Table 4–10 Properties in UI/Layout/CenterPane/Search/View/ContextMenuConfig
Property Description Value

<menu id= > Describes the context menu item. id="unique_identifier"

 <label> Display name of the menu item. A name that suggests the action to
perform on the asset. For example:
Edit

 <functionid> Action name as defined in the
fw.ui.document.AssetDocument section of
the UI/Config/GlobalHtml element.

A value (action) that applies to the
asset.

Customizing Sort Menus, Context Menus, and Tooltips

4-20 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

 <formatter>fw.ui.GridFormatter.nameFormatter</formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 <field>
 <fieldname>type</fieldname>
 <displayname>Type</displayname>
 <width>auto</width>
 <formatter></formatter>
 <displayintooltip>true</displayintooltip>
 </field>
 <field>
 <fieldname>updateddate</fieldname>
 <displayname>Modified</displayname>
 <javadateformat>SHORT</javadateformat>
 <width>auto</width>
 <formatter></formatter>
 <displayintooltip>true</displayintooltip>
 </field>

To create a tooltip or add fields to the tooltip
1. To create a tooltip, override the element

UI/Layout/CenterPane/Search/View/SearchToolTipHtml by creating your own
SearchToolTipHtml.jsp under CustomElements.

2. To add fields to the tooltip, add the fields to your custom ListViewConfig.jsp or
ThumbnailViewConfig.jsp and set each field’s <displayintooltip> property to
true.

3. To display a custom message in the tooltip (custom or system-defined) or to
change the appearance of the tooltip, code your custom SearchToolTipHtml.jsp
element. For example:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"
%><%@ taglib prefix="ics" uri="futuretense_cs/ics.tld"
%><cs:ftcs>
<style>
.customSearchTooltip {
 font-weight: bold;
 color: #333;
 font-style: italic;
}
</style>

<div class='customSearchTooltip'>
 You are Viewing a Custom Tooltip
</div>
</cs:ftcs>

Note: The UI/Layout/CenterPane/Search/View/SearchToolTipHtml
element also renders field values. However, customized messages and
changes to tooltip appearance must be coded in the custom
SearchToolTipHtml.jsp element.

5

Customizing Global Properties, Toolbar, and Menu Bar 5-1

5Customizing Global Properties, Toolbar, and
Menu Bar

This chapter describes UI/Config/GlobalHtml, the global configuration element. This
chapter also shows you how to customize the features the global element defines for
the WebCenter Sites Contributor interface.

This chapter contains the following topics:

■ Section 5.1, "Customizing Global Configuration Properties"

■ Section 5.2, "Customizing the Toolbar"

■ Section 5.3, "Customizing the Menu Bar"

5.1 Customizing Global Configuration Properties
Global configuration properties are used to set display conditions for the Contributor
interface across all content management sites.

This section contains the following topics:

■ Section 5.1.1, "Overview of the Configuration Properties"

■ Section 5.1.2, "Modifying Default Configuration Properties"

■ Section 5.1.3, "Adding Custom Configuration Properties"

5.1.1 Overview of the Configuration Properties
The client-side framework retrieves its main configuration settings from the
server-side controller element UI/Config/GlobalHtml. This presentation element
serves JavaScript code, which is executed by the client-side application at startup. The
JavaScript code defines a JavaScript function, whose name is given as a request
parameter by the client-side application:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld"%>
<cs:ftcs>
webcenter.sites['${param.namespace}'] = function (config) {
 config.maxTabCount = 50;
 config.defaultView = …;
 … merge
}
</cs:ftcs>

The config object is then manipulated as needed in the function body, by setting the
properties expected by the client-side application.

Customizing Global Configuration Properties

5-2 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

In addition, as explained below, the client-side application is capable of retrieving
additional configuration properties from the server-side, which allows to merge
settings from multiple sources, without having to duplicate the global properties in
multiple locations.

5.1.2 Modifying Default Configuration Properties
Table 5–1 describes the system-defined configuration properties and indicates which
properties can be modified.

Table 5–1 Configuration Properties in UI/Config/GlobalHtml
Property Name Description Values and Examples

maxTabCount Maximum number of tabs that can remain
open simultaneously. A tab is the tab of an
open asset.

Any integer greater than 0.

Ex: config.maxTabCount = 30;

enableContextMenu Indicates whether the default browser context
(right-click) menu should be enabled when
users work in web mode.

true | false

Ex: config.enableContextMenu =
true;

enableWebMode Indicates whether web mode should be
enabled. When this property is set to false,
users are able to work only with assets in form
mode and use the preview functionality.

By default, this property takes the value of the
xcelerate.enableinsite property, found in
futuretense_xcel.ini.

true | false

Ex: config.enableWebMode = true;

enableDatePreview Indicates whether date-based preview should
be enabled.

By default, this property takes the value of the
cs.sitepreview property, found in
futuretense_xcel.ini.

true | false

Ex: config.enableDatePreview =
false;

enablePreview Indicates whether preview is allowed.

By default, this property takes the value of the
"Preview method" attribute in the "Edit Site"
screen (accessible from the Administrator
interface: Select Admin tab, expand Sites,
double-click SampleSite, and select Edit).

true | false

Ex: config.enablePreview = true;

defaultView Defines the preferred view for working with
assets (i.e., whether assets will be viewed, by
default, in form mode or web mode).

Note: An asset will be opened in web mode
only if the asset is associated with a default
template.

The expected value is one of the
following:

■ "default": "form" | "web"

■ "assetType" : "form" | "web"

■ "assetType/subtype": "form" |
"web"

where assetType is a valid asset
type name, and subtype is a valid
subtype or definition name.

Ex:

config.defaultView = {
 "default": "form",
 "AVIArticle": "web",
 "Page/AVISection": "web"
}

Customizing Global Configuration Properties

Customizing Global Properties, Toolbar, and Menu Bar 5-3

5.1.3 Adding Custom Configuration Properties
In addition to retrieving the global properties, stored in UI/Config/GlobalHtml, the
Contributor application will attempt to retrieve additional settings in
UI/Config/SiteConfig and any element present in UI/Config. Depending on the
requirement, this allows you to set global properties, or site-specific properties,
without having to replicate all the properties defined in UI/Config/GlobalHtml, but
only the properties that actually change.

This section contains the following topics:

■ Section 5.1.3.1, "Adding Custom Global Properties"

■ Section 5.1.3.2, "Adding Site-Specific Properties"

5.1.3.1 Adding Custom Global Properties
Custom global properties are meant to be shared across all sites on a given content
management system. The recommended approach consists of creating a custom
configuration element defined as follows:

■ The presentation element name must start with UI/Config/.

■ The element code must follow the pattern shown in Section 5.1.1, "Overview of the
Configuration Properties."

For example, you may want to:

■ Override the value of maxTabCount for all sites.

toolbars For each type of view, this property defines the
list of available toolbar actions.

See Section 5.2, "Customizing the
Toolbar."

toolbarButtons Used to define the behavior of specific toolbar
buttons.

See Section 5.2.2.3, "Customizing the
Toolbar with Custom Actions."

menubar Defines the list of available actions in the menu
bar.

See Section 5.3, "Customizing the
Menu Bar."

documents Registers available implementations of
documents.

Do not modify the value of this
property.

The only supported value is asset.

views Registers view implementations. Do not modify the value of this
property.

controllers Registers controller implementations and the
set of actions supported by each controller.

Do not modify the value of this
property.

roles Contains the list of roles for the currently
logged in user.

Do not modify the value of this
property.

supportedTypes Contains the list of asset types that can be
edited from the Contributor interface.

Do not modify the value of this
property.

searchableTypes Contains the list of asset types that can be
searched from the Contributor interface.

Do not modify the value of this
property.

token Used for security when uploading binary file. Do not modify the value of this
property.

sessionid Used for security when uploading binary file. Do not modify the value of this
property.

Table 5–1 Configuration Properties in UI/Config/GlobalHtml
Property Name Description Values and Examples

Customizing Global Configuration Properties

5-4 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

■ Override the default view for Page assets.

■ And, define an additional custom property called foo.

To do this, you could create an element called UI/Config/MyConfigHtml, containing
the following code:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<cs:ftcs>
webcenter.sites['${param.namespace}'] = function (config) {
 // override existing properties
 config.maxTabCount = 60;
 config.defaultView.Page = "form";

 // add custom properties
 config.foo = "bar";

}
</cs:ftcs>

5.1.3.2 Adding Site-Specific Properties
In some cases, the Contributor interface must be configured differently for each
content management site. The recommended approach consists of overriding the core
controller element called UI/Config/SiteConfig by creating an element as follows:

CustomElements/siteName/UI/Config/SiteConfigHtml

where siteName is the name of the content management site (for instance, avisports).

For example, the avisports demo site enforces web mode as the default mode for assets
of type Page and AVIArticle. This is done by defining the JSP element
CustomElements/avisports/UI/Config/SiteConfigHtml, and providing the following
settings:

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<cs:ftcs>
webcenter.sites['${param.namespace}'] = function (config) {
 // default view modes for avisports
 config.defaultView.Page = "web";
 config.defaultView.AVIArticle = "web";
}
</cs:ftcs>

Loading of Configuration Elements
The global configuration element is always loaded first. Additional configuration
elements are loaded in alphabetical order. For instance, using the examples above,
configuration properties would be loaded in the following order:

1. UI/Config/GlobalHtml

2. UI/Config/MyConfigHtml

3. UI/Config/SiteConfigHtml

Property Values
The value of some properties is, in some cases, an object. That is:

config.someProperty = {

Customizing the Toolbar

Customizing Global Properties, Toolbar, and Menu Bar 5-5

 foo: "bar",
 x: 123
};

When partially overriding this property, it is important to distinguish between the
following types of code:

config.someProperty = {
 x: 3456
};

vs.

config.someProperty.x = 3456;

In the first case, the property foo is overridden as "undefined", whereas in the second
case, the original value of foo is preserved.

5.2 Customizing the Toolbar
The toolbar can be customized to list actions for operating on assets in web mode or
form mode. The toolbar can be further customized per asset type and subtype.

This section contains the following topics:

■ Section 5.2.1, "Overview of Toolbar Customization"

■ Section 5.2.2, "Examples of Toolbar Customization"

5.2.1 Overview of Toolbar Customization
The global configuration element (UI/Config/GlobalHtml) describes for each type of
view (such as web mode inspect, web mode edit, form mode edit, and form mode
inspect), the list of actions to display in the toolbar to the user. This is done through
the toolbars property. Its value is an object with the following syntax:

config.toolbars = {
 "viewAlias": [action_1, action_2, …],
 or:
 "viewAlias": {
 "view_mode_1": [action_1, action_2, …],
 "view_mode_2": [action_1, action_2, …]
 }
 …
}

where:

viewAlias indicates for which type of view this toolbar must be used. The alias must
match one of the view aliases defined in the config.views section.

action_i is an action name. For standard actions, such as save and approve, the
action name is automatically mapped to a given icon, title, alternate text, and so on.
For more information about standard actions, custom actions, or customizing the
appearance of a custom button, see Section 5.2.2, "Examples of Toolbar
Customization."

view_mode_i is one of the modes supported by the view (typically, edit or view).

Customizing the Toolbar

5-6 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

5.2.2 Examples of Toolbar Customization
This section contains the following topics:

■ Section 5.2.2.1, "Customizing the Toolbar with Standard Actions for Web Mode"

■ Section 5.2.2.2, "Customizing the Toolbar with Standard Actions for Asset Type
and Subtype"

■ Section 5.2.2.3, "Customizing the Toolbar with Custom Actions"

5.2.2.1 Customizing the Toolbar with Standard Actions for Web Mode
The following configuration determines which toolbar actions are available in web
mode for all asset types:

config.toolbars = {
 (…)

 "web": {
 "edit": ["form-mode", "inspect", "separator", "save", "preview",
 "approve", "delete", "separator", "changelayout",
 "separator", "checkincheckout", "refresh"],
 "view": ["form-mode", "edit", "separator", "preview", "approve",
 "delete", "separator", "checkincheckout", "refresh"]

 (…)

}

The above configuration defines two lists of actions (edit and view), corresponding to
the asset’s views: Edit and Inspect.

5.2.2.2 Customizing the Toolbar with Standard Actions for Asset Type and Subtype
Each toolbar configuration can be customized by asset type and subtype by adding a
property named:

■ viewAlias/assetType

■ viewAlias/assetType/assetSubtype

For example, we can add the bookmark/unbookmark buttons for Page assets in web
mode. In a custom configuration element (such as
CustomElements/avisports/UI/Config/SiteConfigHtml), we can add the following
property:

config.toolbars["web/Page/AVISection"] = {
 "edit": config.toolbars.web.edit, // reuse default for edit mode
 "view": ["form-mode", "edit", "separator", "preview", "approve", "delete",
 "bookmark", "unbookmark", "separator",
 "checkincheckout", "refresh"]
}

Note: To find the set of standard actions, refer to the list of actions
specified in the following properties under the controllers property:

■ fw.ui.document.AssetDocument (all actions supported by assets)

■ fw.ui.controller.InsiteController (all actions supported by
the view controller).

Customizing the Toolbar

Customizing Global Properties, Toolbar, and Menu Bar 5-7

Inspecting the “Surfing” Page asset now shows the following toolbar:

5.2.2.3 Customizing the Toolbar with Custom Actions
Custom actions can be defined by adding new entries to the config.toolbarButtons
property, as follows:

config.toolbarButtons.<customActionName> = {
 src: <path_to_icon>,
 onClick: <click_handler>
}

For example, let's define the following helloWorld custom action:

config.toolbarButtons.helloWorld = {
 src: 'js/fw/images/ui/ui/toolbarButton/smartlist.png",
 onClick: function () {
 alert('Hello World!!');
 }
}

The helloWorld action can now be referenced from a toolbar configuration as follows
(we will reuse our example from the previous section):

config.toolbars["web/Page/AVISection"] = {
 "view":
 ["form-mode", "edit", "separator", "preview", "approve",
 "bookmark", "unbookmark", "separator",
 "checkincheckout", "separator", "helloWorld", "refresh"],

 "edit": config.toolbar.web.edit // reuse default web mode toolbar
}

Note: Keep in mind the following:

■ We are customizing only the view mode. When a
Page/AVISection asset is being edited in web mode, the standard
toolbar will be shown.

■ The "Bookmark" and "Unbookmark" buttons are not shown
simultaneously, since they both depend on the asset's current state
(whether it is already bookmarked or not).

Customizing the Menu Bar

5-8 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

A more elaborate example would involve, for instance, retrieving the id and type of
the current asset, and giving some feedback in the message area:

config.toolbarButtons.helloWorld = {
 src: 'js/fw/images/ui/ui/toolbarButton/smartlist.png",
 onClick: function () {
var doc = SitesApp.getActiveDocument(), // the document in the active tab
 asset = doc.get('asset'), // the asset object
 view = SitesApp.getActiveView(); // the active view

view.info('Hello World!! The asset is a ' + asset.type + ' with id: '
+ asset.id);

 }
}

5.3 Customizing the Menu Bar
The menu bar can be customized to support menus for operating on assets of a certain
type. or type/subtype. Submenus can be actionable items, additional menus, or menu
separators.

Note: In this example, we have added a separator (a vertical line)
and the custom button at the end of the toolbar:

Customizing the Menu Bar

Customizing Global Properties, Toolbar, and Menu Bar 5-9

This section contains the following topics:

■ Section 5.3.1, "Overview of Menu Bar Customization"

■ Section 5.3.2, "Adding a Custom Action to the Menu Bar"

5.3.1 Overview of Menu Bar Customization
The menu bar configuration is defined by the config.menubar property:

config.menubar = {
 "key_i": [
 //menu_i
 {
 "id": "menu_id",
 "label": "menu_label",
 "children": [
 //submenus
 //- actionable menu item
 {
 label: 'menu_item_label',
 action: 'action_name' | click_handler
 },
 //- deferred pop-up menu
 {
 label: 'menu_item_label',
 deferred: 'controller_element',
 cache: true|false
 },
 //- pop-up menu
 {
 label: 'menu_item_label',
 children: [
 // submenu_1
 {
 label: 'menu_item_label',
 action: 'action_name' | click_handler
 }'
 // submenu_2
 {
 label: 'menu_item_label',
 action: 'action_name' | click_handler
 },
 …
 …
 …
]
 },
 //- menu item separator
 {separator: true}

 //additional menu_i
 …
 …
 …
]
 }

where:

key_i is one of the following:

Customizing the Menu Bar

5-10 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

■ default – Defines the default menu bar.

■ assetType – Defines the customized menu bar for all assets of type assetType.

■ assetType/subtype – Defines the customized menu bar for all assets of type
assetType and subtype subtype.

//menu_i starts a section that describes each top menu, where:

■ menu_id is the identifier of the menu.

■ menu_label is the display name of the menu.

■ submenus can be any of the following:

– An actionable menu item (clicking the menu item produces an action), where:

– label specifies the display name of the menu item.

– action can be any action supported by a controller, such as edit and
inspect, or a custom click handler (see the customization example in
Section 5.3.2, "Adding a Custom Action to the Menu Bar").

For instance, a menu item triggering a save action is defined as follows:

{
 label: "Save",
 action: "save"
}

– A deferred pop-up menu (the pop-up menu is determined dynamically by
running a controller element on the server-side), where:

– label specifies the display name of the menu item.

– deferred specifies a controller element name, such as
UI/Data/StartMenu/New.

– cache is a boolean indicating whether the output of the controller element
should be cached or not.

For instance, the "New" pop-up menu, which reads all available start menu
items for the current site/user is defined as follows:

{
 label: "New",
 deferred: "UI/Data/StartMenu/New",
 cache: true
}

– A pop-up menu (the child menu items are hard wired in the configuration
itself).

– A menu item separator (a horizontal line), which is used to group menu
entries together.

5.3.2 Adding a Custom Action to the Menu Bar
In this example, we want to add the helloWorld custom action defined in
Section 5.2.2.3, "Customizing the Toolbar with Custom Actions" to the menu bar (to

Note: When a given action is not supported by the current
document/view, it appears disabled (greyed out) in the menu.

Customizing the Menu Bar

Customizing Global Properties, Toolbar, and Menu Bar 5-11

run the custom onClick handler). We can add this action by adding a new entry to the
menu bar called "Custom Menu", with a single menu item called "Hello World", which
will trigger the custom action. Our steps are the following:

1. First, we reuse the default menu bar, and add to it. The simplest way to do this is
to make a copy of the original array:

config.menubar["Page/AVISection"] = config.menubar["default"].slice(0);

2. We can then add our menu as follows:

config.menubar["Page/AVISection"].push(
 "id": "myCustomMenu",
 "label": "Custom Menu",
 "children": [
 // Children go here
]
);

3. Finally, we define the child menu items:

config.menubar["Page/AVISection"].push({
 "id": "myCustomMenu",
 "label": "Custom Menu",
 "children": [{
 "label": "Hello World",
 "action": function () {
 alert("Hello from the top menubar!");
 }
 }]
});

The Custom Menu can now be seen whenever an "AVISection" Page section is
viewed:

Selecting the Hello World menu item should run the custom onClick handler:

4. To run the exact same code, whether clicked from the menu bar or toolbar, we
could write the following:

Customizing the Menu Bar

5-12 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

// define the helloWorld code once
config.myActions = {
 hello: function (args) {
 var doc = SitesApp.getActiveDocument(),
 asset = doc.get('asset'),
 view = SitesApp.getActiveView();

 view.info('Hello World!! The asset is a ' + asset.type + ' with id:
 + asset.id);
 }
};

// attach it to the helloWorld button
config.toolbarButtons['helloworld'] = {
 src: 'js/fw/images/ui/ui/toolbarButton/smartlist.png',
 onClick: config.myActions.hello
};

config.toolbars["web/Page/AVISection"] = {
 "edit": config.toolbars.web.edit, // reuse default for edit mode
 "view": ["form-mode", "edit", "separator", "preview", "approve",
 "delete", "bookmark", "unbookmark", "separator",
 "checkincheckout","separator","helloworld", "refresh"]
}

// attach it to the menubar, under "Custom Menu">"Hello World"
config.menubar['Page/AVISection'] = config.menubar['default'].slice(0);

config.menubar["Page/AVISection"].push({
 "id": "myCustomMenu",
 "label": "Custom Menu",
 "children": [{
 "label": "Hello World",
 "action": config.myActions.hello
 }]
});

6

Customizing Asset Forms 6-1

6Customizing Asset Forms

This chapter discusses customizations that you can apply to asset forms in the
WebCenter Sites Contributor interface. It also provides a step-by-step example for
building a single-valued and multi-valued attribute editor for some of the supported
data types.

This chapter contains the following topics:

■ Section 6.1, "Overview of Asset Forms Customization"

■ Section 6.2, "Modifying the Header of Asset Forms"

■ Section 6.3, "Building an Attribute Editor"

6.1 Overview of Asset Forms Customization
You can perform two types of customizations on asset forms in the Contributor
interface. One, you can modify the header of an asset form. The other is, you can either
customize an existing attribute editor, as explained in the Oracle WebCenter Sites
Developer's Guide (in the chapter “Designing Attribute Editors,” section “Customizing
Attribute Editors“), or you can build a custom attribute editor for the data types
supported by WebCenter Sites, as described in Section 6.3, "Building an Attribute
Editor."

6.2 Modifying the Header of Asset Forms
You can modify the header of any asset form by creating a custom assettype-specific
element in the OpenMarket/Xcelerate/AssetType/<AssetTypeName>/ directory. You
can include additional stylesheets or JavaScript code instead of modifying the body of
the HTML pages. The name of the element must be Header.

6.3 Building an Attribute Editor
You can customize the look and feel of some of the existing out-of-the-box attribute
editors, as described in the Oracle WebCenter Sites Developer's Guide (see “Customizing
Attribute Editors” in the chapter “Designing Attribute Editors”). You can also create a
custom attribute editor for the data types supported in WebCenter Sites.

Note: Unlike other components of the Contributor interface, asset
forms are not in the Contributor framework. Therefore, requests for
asset forms are not processed by the UI Controller.

Building an Attribute Editor

6-2 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

This section describes how to build a custom attribute editor that supports a single
value of data type text, string, integer, or money. This section also provides pointers
and sample code for implementing a multi-valued attribute editor for the same data
types.

Steps for building an attribute editor are the following:

■ Section 6.3.1, "Creating a Dojo Widget and its Template"

■ Section 6.3.2, "Defining the Attribute Editor as a Presentation Object"

■ Section 6.3.3, "Creating the Attribute Editor Element"

■ Section 6.3.4, "Creating the Attribute Editor"

■ Section 6.3.5, "Implementing a Multi-Valued Attribute Editor"

6.3.1 Creating a Dojo Widget and its Template
This section describes how to create a dojo widget to handle a single value of data type
text, string, integer, or money.

This section contains the following topics:

■ Section 6.3.1.1, "Create a Template for the Dojo Widget"

■ Section 6.3.1.2, "Creating a Dojo Widget"

6.3.1.1 Create a Template for the Dojo Widget
To create an HTML template for the Dojo widget:

1. In your WebCenter Sites installation directory, navigate to the <context_
root>/js/ directory.

2. Create a new directory structure under the js directory as follows:
extensions/dijit/templates.

3. In the <context_root>/js/extensions/dijit/templates directory, create an
HTML template file and give it a meaningful name. For example: MyWidget.html

4. In the HTML template file, define the look and feel of the new dojo widget. The
content of this HTML template would look similar to this:

<div>
 <div>
 <input type="text" dojoAttachPoint='inputNode' name='${name}'
size='60' class='valueInputNode'></input>
 </div>
</div>

If you use the above code for the template, then the input node will take the input
from the end user and the value of the input node will be maintained in the dojo
widget which you will create in Section 6.3.1.2, "Creating a Dojo Widget."

5. Save your template file.

6. Continue to Section 6.3.1.2, "Creating a Dojo Widget."

Note: If you want to create a custom attribute editor for the blob or
asset data type, you can base your implementation on the UPLOADER
attribute editor for the blob type and the PICKASSET attribute editor
for the asset data type.

Building an Attribute Editor

Customizing Asset Forms 6-3

6.3.1.2 Creating a Dojo Widget
To create a Dojo widget:

1. Navigate to the js/extensions/dijit directory of the WebCenter Sites
installation.

2. Create a dojo widget, for example, MyWidget.js (see Example 6–1) by
implementing the following mandatory functions:

■ _setValueAttr – This setter method sets the value of the attribute.

■ _getValueAttr – This getter method gets the attribute value.

■ isValid – This method runs validations to see if the given value is valid or
not.

■ focus – This sets the focus on the attribute editor.

■ onChange – This method is called whenever the user updates the value of the
attribute.

■ onBlur – This method updates the widget when the attribute value is entered
by the user. An update will be triggered when the user selects another field.

Example 6–1 Sample Code for a Dojo Widget
dojo.provide('extensions.dijit.MyWidget');
dojo.require('dijit._Widget');
dojo.require('dijit._Templated');
dojo.declare('extensions.dijit.MyWidget', [dijit._Widget, dijit._Templated], {
 //string.
 //The value of the attribute.
 value: '',
 //int
 //The Attribute editor's MAXALLOWEDCHARS should be assigned to this variable.
 maxAllowedLength: 15,
 //string
 // This variable is required only for single valued instance.
 // The server should recieve information from input element with this name.
 name: '',
 //HTMLElement
 // This stores the cached template of the widget's representation.
 templateString: dojo.cache('extensions.dijit', 'templates/MyWidget.html'),
 //string
 // This class will be applied to the top div of widget.
 // It will help in managing css well.
 baseClass: 'MyWidget',
 postCreate: function() {
 var self = this;
 // Do not allow typing characters more than allowed length.
 dojo.connect(this.inputNode, 'onkeypress', function(e) {
 if (this.value.length >= self.maxAllowedLength && e.keyCode !=
dojo.keys.BACKSPACE)
 e.preventDefault();
 });
},
// Start - Mandatory functions
_setValueAttr: function(value) {
 // summary:
 // Set the value to 'value' attribute and input node
 if (value === undefined || !this._isValid(value)) return;
 this.value = value;

Building an Attribute Editor

6-4 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

 this._setInputNode(value);
},
_getValueAttr: function() {
 // summary:
 //Get the latest value and return it.
 return this.value;
},
_isValid: function(newVal) {
 //summary:
 //Verify if the given value is as per the expectation or not.
 if (newVal.length > this.maxAllowedLength) {
 return false;
}
 return true;
},
 focus: function() {
 //summary:
 //Set the focus to the representation node i.e. input node here.
 if (typeof this.inputNode.focus === 'function')
 this.inputNode.focus();
},
onBlur: function() {
 //summary:
 //Custom selected browser event when the value should be updated
 //Any activity which leads to value change should update the widget value as
well.
 this.updateValue();
},
_onChange: function(newValue) {
 //summary:
 //Internal onChange method
 this.onChange(newValue);
},
onChange: function(newValue) {
 //summary:
 //A public hook for onChange.
},
 // End - Mandatory functions
 // Extra functions used in Mandatory functions
_setInputNode: function(value) {
 //summary:
 //Sets the value to input node.
 this.inputNode.value = value;
},
updateValue: function() {
 //summary:
 //Validate the newly entered value and if it is successful then update widget's
value.
 var newVal = this.inputNode.value;
 if (!this._isValid(newVal)) return;
 if (this.value != newVal)
 this._onChange(newVal);
 this.set('value', newVal);
}
});

Note: For information about creating dojo widgets, see the Dojo
documentation at http://dojotoolkit.org/.

Building an Attribute Editor

Customizing Asset Forms 6-5

3. In the js/extensions/themes/directory, create a CSS (for example, MyWidget.css)
for this widget. You can use the following code in the CSS file, or write your own
code:

.fw .MyWidget .valueInputNode {
color: blue;
}

4. In the js/extensions/themes/directory, update the UI.css with an import
statement for the dojo widget’s CSS. For example, @import
url("MyWidget.css");

5. Save your work.

6. Continue to Section 6.3.2, "Defining the Attribute Editor as a Presentation Object."

6.3.2 Defining the Attribute Editor as a Presentation Object
This section describes how to define input tags (presentation objects) for flex
attributes. It also describes how to assign arguments that the input tags can pass from
the attribute editor to the display elements.

To define the attribute editor:

1. In your WebCenter Sites installation, navigate to the
Sites\11gR1\Sites\11.1.1.6.1\presentationobject.dtd file.

2. In the presentationobject.dtd file, do the following;

a. Add a new tag (presentation object) to the list in the <!ELEMENT
PRESENTATIONOBJECT …> statement. In this example, the new tag is named
MYATTREDITOR.

In the following line, MYATTREDITOR is your custom attribute editor whose
name matches the name of the element you will create in Section 6.3.3,
"Creating the Attribute Editor Element." All other tags are out-of-the-box
attribute editors.

<!ELEMENT PRESENTATIONOBJECT (TEXTFIELD | TEXTAREA | PULLDOWN |
RADIOBUTTONS | CHECKBOXES | PICKFROMTREE | EWEBEDITPRO | REMEMBER |
PICKASSET | FIELDCOPIER | DATEPICKER | IMAGEPICKER | REALOBJECT |
CKEDITOR | DATEPICKER | IMAGEPICKER | REALOBJECT | CKEDITOR | FCKEDITOR |
UPLOAD | MAGEEDITOR | RENDERFLASH | PICKORDERASSET | TYPEAHEAD | UPLOADER |
MYATTREDITOR)>

b. Add an <!ELEMENT …> section that defines the new tag (presentation object)
and the arguments it takes. This new tag includes elements that supply the
logic behind the format and behavior of the attribute when it is displayed on a
form. Ensure that MAXALLOWEDCHARS is marked as a required attribute.

<!ELEMENT MYATTREDITOR ANY>
<!ATTLIST MYATTREDITOR MAXALLOWEDCHARS CDATA #REQUIRED>
<!ATTLIST MYATTREDITOR MAXVALUES CDATA #IMPLIED>

c. Save and close the presentationobject.dtd file.

3. Continue to Section 6.3.3, "Creating the Attribute Editor Element."

6.3.3 Creating the Attribute Editor Element
This section describes how to create an element that displays an "edit" view of an
attribute (single-valued) when it appears in a “New” or “Edit” form. This element

Building an Attribute Editor

6-6 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

must be located in the OpenMarket/Gator/AttributeTypes directory in the
ElementCatalog table. The element name must exactly match the name of the tag you
defined in Section 6.3.2, "Defining the Attribute Editor as a Presentation Object," so
that it can be invoked by the tag (in this example, MYATTREDITOR).

1. Navigate to the OpenMarket/Gator/AttributeTypes directory in your
ElementCatalog.

2. Create an attribute element for your new editor (in this example,
MYATTREDITOR.jsp. See Example 6–2.) Ensure that the name of this element
matches the tag name you defined in the presentationobject.dtd file
(Section 6.3.2, "Defining the Attribute Editor as a Presentation Object").

3. To prevent the default rendering of the attribute editor, set the doDefaultDisplay
variable to no.

4. To display the attribute name, call the element
OpenMarket/Gator/FlexibleAssets/Common/DisplayAttributeName. The code is:

<ics:callelement
element="OpenMarket/Gator/FlexibleAssets/Common/DisplayAttributeName"/>

5. To render the widget, call the element
OpenMarket/Gator/AttributeTypes/CustomTextAttributeEditor by using the
following parameters:

■ editorName – Name of the widget created in Section 6.3.1.2, "Creating a Dojo
Widget." In this example it is extensions.dijit.MyWidget.

■ editorParams – This argument passes the JSON string of parameters to the
widget. In this example, it passes the maxAllowedLength value. For example,
the value can look like this: { maxAllowedLength: “10” }

■ maximumValues – Required only for a multi-valued widget. This is the
maximum number of values allowed to be rendered in a multi-valued widget.

For a single-valued widget, the complete code with the initialization
parameters and formatting styles should look like the code in Chapter 6–2,
"Sample Single-Valued Attribute Editor (MYATTREDITOR)." To implement a
multi-valued widget, see Section 6.3.5, "Implementing a Multi-Valued
Attribute Editor."

If you use the code given in Example 6–2, then the single-valued attribute editor
would look like the editor in Figure 6–1.

Figure 6–1 Single-Valued Attribute Editor

Building an Attribute Editor

Customizing Asset Forms 6-7

Example 6–2 Sample Single-Valued Attribute Editor (MYATTREDITOR)

<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>
<%//
// OpenMarket/Gator/AttributeTypes/MYATTREDITOR
//
// INPUT
//
// OUTPUT
//%>
<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<cs:ftcs>
<ics:setvar name="doDefaultDisplay" value="no" />
<script>
 dojo.require('extensions.dijit.MyWidget');
</script>
<link href="<%=ics.GetVar("cs_imagedir")%>/../js/extensions/themes/MyWidget.css"
 rel="stylesheet" type="text/css"/>
<%
FTValList args = new FTValList();
args.setValString("NAME", ics.GetVar("PresInst"));
args.setValString("ATTRIBUTE", "MAXALLOWEDCHARS");
args.setValString("VARNAME", "MAXALLOWEDCHARS");
ics.runTag("presentation.getprimaryattributevalue", args);
args.setValString("NAME", ics.GetVar("PresInst"));
args.setValString("ATTRIBUTE", "MAXVALUES");
args.setValString("VARNAME", "MAXVALUES");
ics.runTag("presentation.getprimaryattributevalue", args);
String maximumValues = ics.GetVar("MAXVALUES");
maximumValues = null == maximumValues ? "-1" : maximumValues;
String editorParams = "{ maxAllowedLength: " + ics.GetVar("MAXALLOWEDCHARS") + "
}";
%>

Note: In Example 6–2, the following core logic is implemented to
render the single-valued attribute using the new attribute editor:

<ics:if condition='<%= "no".equals(ics.GetVar("MultiValueEntry"))
%>'>
<ics:then>
 <div dojoType='<%= ics.GetVar("editorName") %>'
 name='<%= ics.GetVar("cs_SingleInputName") %>'
 value='<%= attributeValue %>'
 >
 </div>
</ics:then>

The name that is coded in the element must be ics.GetVar("cs_
SingleInputName") to ensure that the input node in the dojo template
will have the same name. The input node value will be sent to the
server for saving the attribute.

Building an Attribute Editor

6-8 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

<tr>
<ics:callelement
element="OpenMarket/Gator/FlexibleAssets/Common/DisplayAttributeName"/>
 <td></td>
 <td>
 <ics:callelement
element="OpenMarket/Gator/AttributeTypes/CustomTextAttributeEditor">
 <ics:argument name="editorName" value="extensions.dijit.MyWidget" />
 <ics:argument name="editorParams" value='<%= editorParams %>' />
 <ics:argument name="maximumValues" value="<%= maximumValues %>" />
</ics:callelement>
 </td>
 </tr>
</cs:ftcs>

6. Continue to Section 6.3.4, "Creating the Attribute Editor."

6.3.4 Creating the Attribute Editor
This section describes how to create an attribute editor asset to make it available to
content contributors on their content management sites. This asset will support the
input types you defined in Section 6.3.3, "Creating the Attribute Editor Element," for
example, check boxes, radio options, and drop-down lists. The developer selects this
editor when creating or modifying the attribute.

1. Log in to the Admin interface of your site.

2. On the New page, under the Name column, click New Attribute Editor.

3. In the Name field, enter a meaningful name for your editor. For example,
MyAttrEditor.

4. In the XML box, enter the XML code for your attribute editor. Ensure that the
name of the attribute editor in this code is exactly the same as the element name.
For example:

<?XML VERSION="1.0"?>
<!DOCTYPE PRESENTATIONOBJECT >
<PRESENTATIONOBJECT NAME="MYATTREDITOR">
<MYATTREDITOR MAXALLOWEDCHARS="10"> </MYATTREDITOR> </PRESENTATIONOBJECT>

5. In the Attribute Type box, accept the appropriate value(s).

6. Click the Save icon.

The attribute editor similar to the editor in Figure 6–2 is created for your site.

Building an Attribute Editor

Customizing Asset Forms 6-9

Figure 6–2 Sample Attribute Editor for a Site

7. Continue to Section 6.3.5, "Implementing a Multi-Valued Attribute Editor."

6.3.5 Implementing a Multi-Valued Attribute Editor
In Section 6.3.3, "Creating the Attribute Editor Element," Example 6–2 shows the
implementation for a single-valued attribute editor. To implement a multi-valued
attribute editor for text, integer, string, or money data types, you can write code
similar to the code in Example 6–3.

Example 6–3 Sample Multi-Valued Attribute Editor (CustomTextAttributeEditor)
<%@ taglib prefix="cs" uri="futuretense_cs/ftcs1_0.tld" %>
<%@ taglib prefix="ics" uri="futuretense_cs/ics.tld" %>
<%@ taglib prefix="satellite" uri="futuretense_cs/satellite.tld" %>
<%//
// OpenMarket/Gator/AttributeTypes/CustomTextAttributeEditor
//
// INPUT
//
// OUTPUT
//%>
<%@ page import="COM.FutureTense.Interfaces.FTValList" %>
<%@ page import="COM.FutureTense.Interfaces.ICS" %>
<%@ page import="COM.FutureTense.Interfaces.IList" %>
<%@ page import="COM.FutureTense.Interfaces.Utilities" %>
<%@ page import="COM.FutureTense.Util.ftErrors" %>
<%@ page import="COM.FutureTense.Util.ftMessage"%>
<cs:ftcs>
<%
IList attributeValueList = ics.GetList("AttrValueList", false);
boolean hasValues = null != attributeValueList && attributeValueList.hasData();
String attributeValue = hasValues ? attributeValueList.getValue("value") : "";
%>

Building an Attribute Editor

6-10 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

<ics:if condition='<%= "no".equals(ics.GetVar("MultiValueEntry")) %>'>
<ics:then>
 <div dojoType='<%= ics.GetVar("editorName") %>'
 name='<%= ics.GetVar("cs_SingleInputName") %>'
 value='<%= attributeValue %>'
 >
 </div>
</ics:then>
<ics:else>
<ics:callelement
element="OpenMarket/Gator/AttributeTypes/RenderMultiValuedTextEditor">
 <ics:argument name="editorName" value='<%= ics.GetVar("editorName") %>' />
 <ics:argument name="editorParams" value='<%= ics.GetVar("editorParams") %>'
/>
 <ics:argument name="multiple" value="true" />
 <ics:argument name="maximumValues" value='<%= ics.GetVar("maximumValues")
%>' />
</ics:callelement>
</ics:else>
</ics:if>
</cs:ftcs>

If the code in Example 6–3 is used, then the multi-valued attribute editor will look
similar to the editor in Figure 6–3.

Figure 6–3 Multi-Valued Attribute Editor

Note the following points about Example 6–3:

■ You can instantiate a multi-valued widget, which uses a single-valued widget to
render multi-valued representations.

■ The MultiValueEntry variable with the no value indicates that the attribute editor
renders a single value. Changing the variable value to yes will enable the attribute
editor to render multiple values.

■ You can implement a multi-valued widget that accepts values in the JSON object
or in any other format.

■ For a multi-valued attribute editor, the RenderMultiValuedTextEditor element
creates hidden input nodes required for Save logic. The value of each node is sent
to the server.

■ The multi-valued widget is rendered by calling the
OpenMarket/Gator/AttributeTypes/RenderMultiValuedTextEditor element
using the following code in Example 6–3:

<ics:else>
 <ics:callelement
element="OpenMarket/Gator/AttributeTypes/RenderMultiValuedTextEditor">
 <ics:argument name="editorName" value='<%= ics.GetVar("editorName")

Building an Attribute Editor

Customizing Asset Forms 6-11

%>' />
 <ics:argument name="editorParams" value='<%=
ics.GetVar("editorParams") %>' />
 <ics:argument name="multiple" value="true" />
 <ics:argument name="maximumValues" value='<%=
ics.GetVar("maximumValues") %>' />
 </ics:callelement>
</ics:else>
</ics:if>

If you want to create a custom attribute editor for the blob or asset data type, you can
base your implementation on the UPLOADER attribute editor for the blob type and the
PICKASSET attribute editor for the asset data type.

Building an Attribute Editor

6-12 Oracle WebCenter Sites Developer's Guide for Customizing the Contributor Interface

	Developer’s Guide for Customizing the Contributor Interface
	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Conventions

	1 About Customizing the WebCenter Sites Contributor Interface
	1.1 Before You Begin
	1.2 What Can You Customize in the Contributor Interface?
	1.3 Where to Find Sample Code?
	1.4 Where to Begin?

	2 Contributor Interface Framework
	2.1 Overview of the Contributor Framework
	2.2 UI Controller
	2.2.1 How the UI Controller Processes Requests
	2.2.2 Example: UI Controller Processing an Element Request

	2.3 Custom Elements
	2.3.1 Element Storage
	2.3.2 How the UI Controller Locates Elements
	2.3.3 Element Naming Conventions in This Guide

	3 Customizing the Dashboard
	3.1 Overview of Dashboard Customization
	3.2 Customizing the Dashboard
	3.3 Examples of Customizing the Dashboard
	3.3.1 Adding a ‘Hello World’ Widget
	3.3.2 Adding a Widget that Shows Recently Modified Assets

	4 Customizing Search Views
	4.1 Overview of Search View Customization
	4.1.1 Types of Search Views
	4.1.2 What You Can Customize in Search Views
	4.1.3 View-Rendering Process
	4.1.4 Configuration Elements for Search Views

	4.2 Customization Processes
	4.3 Customizing Undocked Views
	4.3.1 Basic Steps for Customizing Undocked Views
	4.3.2 Setting the Default Undocked View to List or Thumbnail
	4.3.3 Customizing the Undocked List View
	4.3.4 Customizing the Undocked Thumbnail View
	4.3.4.1 More About the <assettypes> Section in the ThumbnailViewConfig Element

	4.4 Customizing Docked Views
	4.5 Customizing Sort Menus, Context Menus, and Tooltips
	4.5.1 Customizing Sort Menus
	4.5.2 Customizing Context Menus
	4.5.3 Customizing Tooltips for Search Results

	5 Customizing Global Properties, Toolbar, and Menu Bar
	5.1 Customizing Global Configuration Properties
	5.1.1 Overview of the Configuration Properties
	5.1.2 Modifying Default Configuration Properties
	5.1.3 Adding Custom Configuration Properties
	5.1.3.1 Adding Custom Global Properties
	5.1.3.2 Adding Site-Specific Properties

	5.2 Customizing the Toolbar
	5.2.1 Overview of Toolbar Customization
	5.2.2 Examples of Toolbar Customization
	5.2.2.1 Customizing the Toolbar with Standard Actions for Web Mode
	5.2.2.2 Customizing the Toolbar with Standard Actions for Asset Type and Subtype
	5.2.2.3 Customizing the Toolbar with Custom Actions

	5.3 Customizing the Menu Bar
	5.3.1 Overview of Menu Bar Customization
	5.3.2 Adding a Custom Action to the Menu Bar

	6 Customizing Asset Forms
	6.1 Overview of Asset Forms Customization
	6.2 Modifying the Header of Asset Forms
	6.3 Building an Attribute Editor
	6.3.1 Creating a Dojo Widget and its Template
	6.3.1.1 Create a Template for the Dojo Widget
	6.3.1.2 Creating a Dojo Widget

	6.3.2 Defining the Attribute Editor as a Presentation Object
	6.3.3 Creating the Attribute Editor Element
	6.3.4 Creating the Attribute Editor
	6.3.5 Implementing a Multi-Valued Attribute Editor

